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PREFACE

The past few decades have seen the merging of many computer and communica-
tion applications. Enabled by the advancement of optical fiber, wireless communi-
cation, and very-large-scale integration (VLSI) technologies, modern telecommuni-
cation networks can be regarded as one of the most important inventions of the past
century.

Before the emergence of Broadband Integrated Services Digital Network
(B-ISDN), several separate communication networks already existed. They include
the telephone network for voice communication, the computer network for data com-
munication, and the television network for TV program broadcasting. These net-
works are designed with a specific application in mind and are typically not well
suited for other applications. For example, the conventional telephone network can-
not carry high-speed multimedia services, which require diverse quality-of-service
(QoS) guarantees to support multirate and multicast connections. In addition, these
heterogeneous networks often require expensive gateways equipped with different
access interfaces running different protocols.

Meanwhile, the appeal of interactive video communication is on the rise in a soci-
ety that is increasingly information-oriented. Images and facial expressions are more
vivid and informative than text and audio for many types of human interactions. For
example, video conferencing has made distant learning, medicine, and surgery pos-
sible, while 3D Internet games give rise to real-time interactions between remote
players. All these applications are based on high-resolution video with large band-
width demands. These developments led to the emergence of B-ISDN—the concept
of an integrated network to support communication services of all kinds to achieve
the most cost-effective sharing of resources was conceived in the late 1980s.

This book focuses on the design and analysis of switch architectures that are
suitable for broadband integrated networks. In particular, the emphasis is on packet-
switched interconnection networks with distributed routing algorithms. The focus is
on the mathematical properties of these networks rather than specific implementation
technologies. As such, although the pedagogical explanations in this book are in
the context of switches, many of the fundamental principles are relevant to other
communication networks with regular topologies. For example, the terminals in a
multi-hop ad hoc wireless network could conceivably be interconnected together to
form a logical topology that is regular. This could be enabled by the use of directional

xiii



xiv PREFACE

antennas, inexpensive multi-radio, and cognitive-radio technologies that can identify
unused spectra. These technologies allow links to be formed among the terminals in
a more flexible way, not necessarily based on proximity alone. There are two main
advantages to regular network topologies: (1) very simple routing and scheduling are
possible with their well-understood mathematical properties; and (2) performance
and behavior are well understood and predictable. The performance and robustness
of these ad hoc networks are by no means ad hoc.

The original content of this book was an outgrowth of an evening course offered at
the Electrical Engineering Department of Columbia University, New York, in 1989.
Since then, this course has been taught at Polytechnic Institute of New York Univer-
sity, Brooklyn, NY and the Chinese University of Hong Kong, Hong Kong. The target
audience is senior undergraduate and first-year postgraduate students with solid back-
ground in probability theory. We found that many of our former students acquired
an appreciation of the beauty of the mathematics associated with telecommunication
networks after taking courses based on this book.

A general introduction and an overview of the entire book are given in Chapter 1,
in which the roles of switching and transmission in the computer networks and tele-
phone networks are discussed. The concept of the modern broadband integrated ser-
vices network is explained and the reasons why this concept is necessary in modern
society are also given in this chapter. The focus of Chapter 2 is on circuit switch design
principles. Two types of the circuit switch design—space domain and time domain—
are introduced in this chapter. Several classical nonblocking networks, including Clos
network, Benes network, and Cantor network, are discussed.

Chapter 3 is devoted to fundamental principles of packet switch design, and
Chapter 4 focuses on the throughput and delay analyses of both waiting and loss
switching systems. The nonblocking and self-routing properties of packet switches
are elaborated by the combination of sorting and Banyan networks. Throughput im-
provements are illustrated by some switch design variations such as speedup principle,
channel-grouping principle, knockout principle, and dilation principle.

Chapter 5, following the previous chapter, explains some advanced switch design
principles to alleviate the packet contention problem. Several networks based on
the deflection routing principle such as tandem-banyan, shuffle-exchange, feedback
shuffle-exchange, feedback bidirectional shuffle-exchange, and dual shuffle-exchange
are introduced. Switch scalability is discussed, which provides some key principles
to the construction of large switches out of modest-size switches, without sacrificing
overall switch performance. Chapter 6, on switch design principles for broadband
services, first presents several fundamental switch design principles for multicasting.
Then we end the chapter by introducing the concept of path switching, which is a
compromise of the dynamic and the static routing schemes.

Chapter 7 departs from switch designs and the focus moves to broadband commu-
nication networks that make use of such switches. The asynchronous transfer mode
(ATM) being standardized worldwide is the technology that meets the requirements
of the broadband communication networks. ATM is a switching technology that di-
vides data into fixed-length packets called cells. Chapter 8, on network traffic control
and bandwidth allocation, gives an introduction on how to allocate network resources
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and control the traffic to satisfy the quality-of-service (QoS) requirements of network
users and to maximize network usage.

The content of Chapter 9 is an article “The mathematical parallels be-
tween packet switching and information transmission” originally posted at
http://arxiv.org/abs/cs/0610050, which is included here as an epilogue. It is clear from
the title that this is a philosophical discussion of analogies between switching and
transmission. We show that transmission noise and packet contention actually have
similar characteristics and can be tamed by comparable means to achieve reliable com-
munication. From various comparisons, we conclude that packet switching systems
are governed by mathematical laws that are similar to those of digital transmission
systems as envisioned by Shannon in his seminal 1948 BSTJ paper “A Mathematical
Theory of Communication.”

We would like to thank many former students of Broadband Communication Lab-
oratory at the Chinese University of Hong Kong, including Cheuk H. Lam, Philip To,
Man Chi Chan, Cathy Chan, Soung-Yue Liew, Yun Deng, Manting Choy, Jianming
Liu, Sichao Ruan, Li Pu, Dongjie Yin, and Pui King Wong, who participated in the
discussions of the content of the book over the years. We are especially grateful for the
delicate latex editing and figure drawing of the entire book by our student assistants
Jiawei Chen and Yulin Deng. Our “family networks,” though small, have given us the
connectivity to many joys of life. We can never repay the debt of gratitude we owe to
our families—our wives, Alice and So Kuen, and our children, Wynne and Edward
Lee, and Vincent and Austin Liew—for their understanding, support, and patience
while we wrote this book.

Tony T. Lee
Soung C. Liew
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1

INTRODUCTION AND OVERVIEW

The past few decades have seen the merging of computer and communication tech-
nologies. Wide-area and local-area computer networks have been deployed to inter-
connect computers distributed throughout the world. This has led to a proliferation of
many useful data communication services, such as electronic mail, remote file transfer,
remote login, and web pages. Most of these services do not have very stringent “real-
time” requirements in the sense that there is no urgency for the data to reach the re-
ceiver within a very short time, say, below 1s. At the other spectrum, the telephone net-
work has been with us for a long time, and the information carried by the network has
been primarily real-time telephone conversations. It is important for voice to reach the
listener almost immediately for an intelligible and coherent conversation to take place.

With the emergence of multimedia services, real-time traffic will include not just
voice, but also video, image, and computer data files. This has given rise to the vision
of an integrated broadband network that is capable of carrying all kinds of information,
real-time or non-real-time.

Many wide-area computer networks are implemented on top of telephone net-
works: transmission lines are leased from the telephone companies, and each of these
lines interconnects two routers that perform data switching. Home computers are also
linked to a gateway via telephone lines using modems. The gateway is in turn con-
nected via telephone lines to other gateways or routers over the wide-area network.
Thus, present-day computer networks are mostly networks overlaid on telephone net-
works. Strictly speaking, the telephone networks that are being used to carry computer
data cannot be said to be integrated. The networks are designed with the intention
that voice traffic will be carried, and their designs are optimized according to this as-
sumption. A transmission line optimized for voice traffic is not necessarily optimal for
other traffic types. The computer data are just “guests” to the telephone networks, and
many components of the telephone network may not be optimized for the transport
of non-voice services.

Principles of Broadband Switching and Networking, by Tony T. Lee and Soung C. Liew
Copyright © 2010 John Wiley & Sons, Inc.
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2 INTRODUCTION AND OVERVIEW

The focus of this book is on future broadband integrated networks. Loosely, the
terms “broadband” and “integration” imply that services with rates from below one
kbps to hundreds of Mbps can be supported. Some of these services, such as video
conferencing, are widely known and anticipated, whereas others may be unforeseen
and created only when the broadband network becomes available. The broadband
network must be flexible enough to accommodate these unanticipated services as
well.

1.1 SWITCHING AND TRANSMISSION

At the fundamental level, a communication network is composed of switching and
transmission resources that make it possible to transport information from one user
to another. On top of the switching and transmission resources, we have the control
functions, which could be implemented by either software or hardware, or both.
Among other things, the control functions make it possible to automate the setting
up of a connection between two users. At another level, they also ensure efficient
usage of the switching and transmission resources. In a real network, the switching,
transmission, and control facilities are typically distributed across many locations.

1.1.1 Roles of Switching and Transmission

When there are only two users, as shown in Fig. 1.1, information created by one user
is always targeted to the other user: switching is not needed and only transmission
is required. In essence, the transmission facilities serve to carry information directly
from one end of the transmission medium, which could be a coaxial cable, an optical
fiber, or the air space, to the other end.

As soon as we have a third user in our network, the question of who wants to
communicate with whom, and at what time, arises. With reference to Fig. 1.2, user
A may want to talk to user B at one time but to user C later. The switching function
makes it possible to change the connectivity among users in a dynamic way. In this
way, a user can communicate with different users at different times.

BA

Transmission medium

When there are only two users, information from A  is

by default destined for B, and vice versa

FIGURE 1.1 A two-user network; switching is not required.
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A

Switching

B

C

Information from A may be destined for B or C

FIGURE 1.2 A three-user network; switching is required.

It turns out that the locations of the switching facilities in a network have a
significant impact on the amount of transmission facilities required in a network.
Figure 1.3(a) depicts a telephone network in which the switching facilities are dis-
tributed and positioned at the N users’ locations, and a user is connected to each of
the other users via a unique line. Switching is performed when the user decides which
of the N lines to use. When N is large, there will be many transmission lines and the
transmission cost will be rather prohibitive.

In contrast, Fig. 1.3(b) shows a network in which each user has only one access
line through which it can be connected to the other users. Switching is performed at

Switching is performed

by a central switch
Central

Switch

1

2

3

N .
.
.

1

N

2

3

...

Switching is performed at

user’s location by selecting

one of the links for reception

# of bidirectional links

= N(N–1)/2

(a)

(b)

FIGURE 1.3 N -user networks with switching performed (a) at user’s locations (b) by a central
switch.
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a central location. To the extent that a user does not need to speak to all the other
users at the same time, this is a better solution because of the reduced number of
transmission lines. Of course, if a user wants to be able to connect to more than one
user simultaneously, multiple lines must still be installed between the user and the
central switch.

In practice, a network typically consists of multiple switching centers at various
locations that are interconnected via transmission lines. By locating the switching
centers judiciously, transmission cost can be reduced.

1.1.2 Telephone Network Switching and Transmission Hierarchy

The switching and transmission facilities in a telephone network are organized in a
hierarchical fashion. A simplified picture of a telephone network is given in Fig. 1.4.
At the lower end of the hierarchy, we have subscribers’ telephones located at business
offices and households. Each telephone is connected to a switching facility, called a
central office, via a subscriber loop. The switching center at this level is called the
local office or the end office. If a subscriber wishes to speak to another subscriber
linked to the same local office, the connection is set up by a switch at the local
office.

Two local offices may be connected via either direct links or a higher level switching
center, called a toll office. In the first case, there must be sufficient voice traffic
between the two local central offices to justify the direct connection; otherwise, since
the transmission capacities cannot be used by other local offices, they will be wasted.
The second solution permits a higher degree of sharing of transmission resources.
As illustrated in the figure, local offices A, B, and C are linked together via a toll
office D. The transmission facilities between D and C are shared between A and B

A B C

Higher level

hierarchy

...

...

...

...

Primary 

office

Toll 

office

Local 

office

(end 

office)

D

Subscribe 

loop

FIGURE 1.4 Telephone network hierarchy.



MULTIPLEXING AND CONCENTRATION 5

in the sense that both traffic between A and C and between B and C travel over
them.

The toll offices are interconnected via an even higher level office, called the primary
office. The primary offices are in turn connected by a yet even higher level office.
Each level may move up to a higher level. In this way, a network hierarchy is formed.

The total amount of traffic reduces as we move up the hierarchy because of the so-
called community-of-interest phenomenon. For instance, it is generally more likely
for a user to make local phone calls than long-distance phone calls. The former may
involve only a local switching office while the latter involves a series of switching
offices at successive levels.

In short, an important objective achieved with the hierarchical network is the
sharing of resources. The resources at the higher level are shared by a larger population
of subscribers. The amount of resources can be reduced because it is statistically
unlikely that all the subscribers will want to use the higher level resources at the same
time.

Another advantage that comes with the hierarchical structure is the simplicity in
finding a “route” for a connection between two subscribers. When subscriber i wants
to connect to subscriber j, the local office of i first checks if j also belongs to the
same office. If yes, switching is completed at the office. Otherwise, a connection is
made between the local office and the next level toll office (assuming there are no
direct links between the central offices of i and j). This procedure is repeated until an
office with branches leading to both i and j is found.

1.2 MULTIPLEXING AND CONCENTRATION

Multiplexing and concentration are important concepts in reducing transmission cost.
In both, a number of users share an underlying transmission medium (e.g., an optical
fiber, a coaxial cable, or the air space).

As a multiplexing example, frequency-division multiplexing (FDM) is used to
broadcast radio and TV programs on the air medium. In FDM, the capacity, or band-
width, of the transmission medium is divided into different frequency bands, and
each band is a logical channel for carrying information from a unique source. FDM
can be used to subdivide the capacity of air medium, a coaxial cable, or any other
transmission medium. Figure 1.5 depicts the transmission of digital information from
a number of sources using FDM. Different carrier frequencies are used to transport
different information streams. Receivers at the other end use bandpass filters to select
the desired information stream.

Multiplexing can also be performed in the time domain. This is a more widely
used multiplexing technique than FDM in telephone networks. Figure 1.6 illustrates
a simple time-division multiplexing (TDM) scheme. The N sources take turns in a
round-robin fashion to transmit on the transmission medium. Time is divided into
frames, each having N time slots. Each source has a time slot dedicated to it in each
frame. Thus, time slot 1 is assigned to source 1, time slot 2 to source 2, and so on.
The slot positions i in successive frames all belong to the source i.
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FIGURE 1.5 Frequency-division multiplexing.

In this book, we define switching as changing the connectivity between end users
or equipments. The goal of a multiplexing system (consisting of the multiplexer, the
transmission medium, and the demultiplexer) is not to perform switching; the goal is
to partition a transmission medium into a number of logical channels, each of which
can be used to interconnect a transmitter and a receiver. In the two scenarios above,
each of the N multiplexed channels is dedicated exclusively to a transmitter–receiver
pair, and which transmitter is connected to which receiver does not change over time.
As an overall system, an input of the multiplexer is always connected to the same
output of the demultiplexer. Thus, functionally, no switching occurs. Such is not the
case with a concentrator.

Concentration achieves cost saving by making use of the fact that it is unlikely
for all users to be active simultaneously at any given time. Therefore, transmission
facilities need only be allocated to the active users. In the telephone network, for
instance, it is unlikely that all the subscribers of the same local office want to use their
phones at the same time. An N × M concentrator, as shown in Fig. 1.7, concentrates
traffic from N sources onto M (M < N) outputs. A number of concentrators are
usually placed at the “front end” of the local switching center to reduce the number

Source 1

Source 2

Source N

Receiver 1

Receiver 2

Receiver N

M

U

X

D

E

M

U

X

. . .. . .

Time 

slot

Frame

NB bps

B bps

FIGURE 1.6 Time-division multiplexing.
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N M
concentrator

(N > M )

.

.

.

.

.

.

Input 1

Input 2

Input N

Output 1

Output 2

Output N

An active input is assigned to one of the outputs. It does 

not matter which output is assigned.

FIGURE 1.7 An N ×M concentrator.

of ports of the switch. An output of a concentrator, hence an input to the switch, is
allocated to the subscriber only when he picks up the phone. The connectivity (i.e.,
which input is connected to which output) of the concentrator changes in a dynamic
manner over time. If more than M sources are active at the same time, then some
of the sources may be “blocked.” For telephone networks, M can usually be made
considerably smaller than N to save cost without incurring a high likelihood for
blocking.

Both multiplexers and concentrators achieve resource sharing, but in different
ways. Let us refer to the sums of the capacities (bit rates) of the transmission lines
connected to the inputs and outputs as the total input and output capacities, respec-
tively. For a multiplexer, the total output capacity is equal to the total input capacity,
whereas for a concentrator, the total output capacity is smaller than the total input
capacity. The output capacity or bandwidth of the concentrator is said to be shared
among the inputs, and that of the multiplexer is not. The concentrator outputs are al-
located dynamically to the inputs based on need, and the allocation cannot be foretold
in advance. In contrast, although a multiplexer allows the same transmission medium
to be shared among several transmitter–receiver pairs, this is achieved by subdividing
the capacity of the transmission medium and dedicating the resulting subchannels in
an exclusive manner to individual pairs.

Statistical multiplexing is a packet-switching technique that can be considered as
combining TDM with concentration. Consider a TDM scheme in which there are M

(M < N) time slots in a frame. The output capacity is then smaller than the maximum
possible total capacities of the inputs. A time slot is not always dedicated to a particular
source. Slot 1 of frame 1 may be used by user 1, but user 1 may be idle in the next
frame and slot 1 of frame 2 may be used by another user. The same slot positions of
different frames can be used by different users, and therefore they can be targeted for
different destinations in the overall communication network. To route the information
in a slot to its final destination, we therefore need to encode the routing information
in a “header” and attach the header to the information bits before putting both into
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FIGURE 1.8 A statistical multiplexer.

the slot. Routing using header information is a basic operating principle in a packet-
switched network. Each time slot is then said to contain a packet. The header in a
packet generally contains either the explicit destination address or information from
which the route to the final destination can be derived.

In circuit switching, the TDM scheme makes use of the fact that slots are assigned
in a fixed way to derive the source and destination information implicitly. Since the
same slot positions of successive frames are used by the same source and targeted for
the same destination, they should be routed in a similar way. The route of these slots
is determined during the call setup process (e.g., when setting up a voice connection);
it will be used repeatedly in successive frames. In particular, no header is needed for
routing purposes. In a packet network, the routing information must be incorporated
into the header since the positions of a slot cannot be used to derive its route. To extend
things even further, since the routing information is now contained in the header, we
can even allow the time slot, or packet, to vary in length according to the amount of
information transmitted by the source at each shot. The frame structure in TDM can
be abandoned altogether in a packet network.

Note that unlike a time-division multiplexer, a statistical multiplexer performs
switching by dynamically changing the user of its output (Fig. 1.8). We cannot foretell
beforehand which source will use the output in advance. The users may also send
data to the multiplexers in a random manner. It is therefore possible that there are
more packets arriving at the statistical multiplexer than can be sent out on the output
immediately. Thus, buffers or memories are required to store these outstanding packets
until they can be cleared.

1.3 TIMESCALES OF INFORMATION TRANSFER

The above discussion of the concentrator and statistical multiplexer alluded to resource
sharing at different timescales. In a telephone network, an output of a concentrator is
assigned to a user only when the user picks up the phone and wants to make a call.
The output is assigned for the duration of the call that typically lasts several minutes.
In a packet-switched network, the output of a statistical multiplexer is assigned only
for the duration of a packet, which typically is much less than 1s. A user may send out
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packets sporadically during a communication session. It is important to have a clear
concept of the timescales of information transfer to appreciate the fact that resource
sharing and network control can be achieved at different timescales.

1.3.1 Sessions and Circuits

Before two end users can send information to each other, a communication session
needs to be established. A telephone call is a communication session. As another
example, when we log onto a computer remotely, we establish a session between the
local terminal and the remote computer.

Network resources are assigned to set up a circuit or connection for this session.
Some of these resources, such as an output of a concentrator in a circuit-switched
network, may be dedicated exclusively to this connection while it remains active.
Some of these resources, such as the output of a statistical multiplexer in a packet
network, may be used by other sessions concurrently. In the latter, the transmission
bandwidth is not dedicated exclusively to the session and is shared among active
sessions, and the associated circuit is sometimes called a virtual circuit.

Some packet networks are not connection-oriented. It is not necessary to preestab-
lish a connection (hence a route from the source to the destination) before data are sent
by a session. In fact, successive packets of the session may traverse different routes
to reach the destination. Although the concept of a connection is absent within the
network, the end users still need to set up a session before they start to communicate.
The setup time, however, can be much shorter than in a connection-oriented network
because the control functions inside the network need not be involved for connection
setup.

1.3.2 Messages

Once a session is set up, the users can then send information in the form of messages
in an on–off manner. For a remote login session, the typing of the carriage-return key
by the end user may result in the sending of a line of text as a message. Files may
also be sent as a message. So, messages tend to vary in length.

For a two-party telephone session, for example, it is known that a user speaks only
40% of the time. The activity of the user is said to alternate between idle period and
busy period. The busy period is called a talkspurt, which can be viewed as a message
in a voice session. A scheme called time assigned speech interpolation (TASI) is often
used to statistically multiplex several voice sources onto the same satellite link on a
talkspurt basis.

1.3.3 Packets and Cells

Messages are data units that have meaning to the end users and have a logical rela-
tionship with the associated service. It could be a talkspurt, a line of text, a file, and
so on. Packets, on the other hand, are transport data units within the network.
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In a packet network, a long message is often fragmented into smaller packets before
it is transported across the network. One possible reason for fragmentation could be
that the communication network does not support packets beyond a certain length.
For instance, the Internet has a maximum packet size of 64 Kbytes.

Another reason for message fragmentation is that most computer networks are
store-and-forward networks in which a switching node must receive the entire packet
before it is forwarded to the next node. By fragmenting a long message into many
smaller packets, the end-to-end delay of the message can be made smaller, especially
when the network is lightly loaded (see Problem 1.4).

Yet another motivation for fragmentation is to prevent a long packet from hogging
a communication channel. Consider the output of a statistical multiplexer. While a
long packet is being transmitted, newly arriving packets from other sources must wait
until the completion of its transmission, which may take an excessively long time if
there were no limit on its length. On the other hand, if the long packet has been cut into
many smaller packets, the newly arriving packets from other sources have a chance
to jump ahead and access the output channel after a short wait for the transmission of
the current packet to complete.

Packet length can be variable or fixed. One advantage of the fixed packet-length
scheme is that more efficient packet switches can be implemented. For instance, by
time aligning the boundaries of the packets across the inputs of a packet switch, higher
throughput can be achieved with the fixed packet-length scheme than with the variable
packet-length scheme.

The fixed packet-length scheme has a disadvantage when the messages to be sent
are much shorter than the packet length. In this case, only a small part of each packet
contains the useful message, and the rest is stuffed with dummy bits to make up the
whole packet. The observation suggests that small packets are preferable. However,
the length of the packet header is largely independent of the overall packet length
(e.g., the destination address length in the header is independent of the packet length).
Hence, the header overhead (ratio of header length to packet length) tends to be larger
for smaller packets. Thus, too small a packet can lead to high inefficiency as well.

In general, the determination of packet size is a complicated issue involving consid-
erations from many different angles, not the least the characteristics of the underlying
network traffic. The ITU (International Telecommunication Union), an international
standard body, has chosen the asynchronous transfer mode (ATM) to be the informa-
tion transport mechanism for the future broadband integrated network. An essence
of the ATM scheme is that the basic information data unit is a 53-byte fixed-length
packet called cells. The details of ATM and the motivations for the small-size cell
will be covered in the later chapters.

1.4 BROADBAND INTEGRATED SERVICES NETWORK

The discussion up to this point forms the backdrop of the focus of this book—
broadband integrated services networks. As the name suggests, an integrated network
must be capable of supporting many different kinds of services.
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Traditionally, services are segregated and each communication network supports
only one type of service. Some examples of these networks are the telephone, televi-
sion, airline reservation, and computer data networks. There are many advantages to
having a single integrated network for the support of all these services. For instance,
efficient resource sharing may be achievable. Take the telephone service. More phone
calls are made during business hours than during the evening. The television service,
on the other hand, is in high demand during the evening. By integrating these ser-
vices on the same network, the same resources can be assigned to different services
at different times.

Traditionally, whenever a new service is introduced, a new communication network
may need to be designed and set up. Carrying the information traffic of this service
on a network designed for another service may not be very efficient because of the
dissimilar characteristics of the traffic. If an integrated network is designed with the
forethought that some unknown services may need to be introduced in the future, then
these services can be accommodated more easily.

The design of an integrated network taking into account the above concern is by
no means easy. Figure 1.9 shows some services with widely varying traffic character-
istics; the holding times (durations of sessions) and bit rate requirements of different
services may differ by several orders of magnitude. Furthermore, some services, such
as computer data transfer, tend to generate traffic in a bursty manner during a session
(Fig. 1.10). Other services such as telephony and video conferencing generate traffic
in a more continuous fashion.

The delay requirements may also be different. Real-time services are highly sensi-
tive to network delay. For example, if real-time video data do not arrive at the display
monitor at the receiver within certain time, they might as well be considered as lost.
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FIGURE 1.9 Holding times and bit rates of various services.
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FIGURE 1.10 Traffic characteristics of sources of different burstiness.

How to control the traffic of these services to satisfy their diverse requirements is
a nontrivial challenge that is still being worked on actively by researchers in this
field.

As mentioned above, part of the challenge is to design the network to be flexible
enough for the support of new services and services whose requirements have changed
over time. As an example of the latter, advances in video and speech coding algorithms
may well influence the characteristics of traffic generated by some services and thus
change the service requirements. Finally, the integrated network must also be cost-
effective and efficient for it to be successful.

PROBLEMS

1.1 This is a simplified problem related to resource sharing. You are among the 10
people sharing four telephones. At any time, a person is using or attempting
to use a telephone with probability 0.2. What is the probability that all the
telephones are being used when you want to make a call to your girl/boy friend?
What if there are 100 people sharing 40 phones? Is it better to have a larger
number of people sharing a pool of resources?

1.2 Does TDM perform the switching or transmission function?

1.3 Each telephone conversation requires 64 kbps of transmission capacity. Consider
a geographical region with 6 million people, each with a telephone. We want
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to multiplex all the telephone traffic onto a number of optical fibers, each with
capacity of 2.4 Gbps. How many fibers are needed?

1.4 Consider the problem of fragmenting a message of 1000 bytes into packets of
x bytes each. Each packet has a header (overhead) of 10 bytes. The message
passes through five links of the same transmission rate in a store-and-forward
network on its way to destination. There is no other traffic in the network. What
is the optimal packet size x in order to minimize end-to-end delay?

1.5 Consider 100 active phone conversations being multiplexed onto 60 lines by
TASI. Assume a person speaks only 40% of the time when using a telephone.
Talkspurts are clipped when all 60 lines have been used. What is the probability
of a talkspurt being clipped?



2

CIRCUIT SWITCH DESIGN
PRINCIPLES

The telephone network is the most widespread and far-reaching among all commu-
nication networks. It is difficult to imagine a modern society without it. In fact, the
telephone network is one of the largest and most complex engineering systems cre-
ated by mankind. A large portion of the Internet is built upon the telephone network
infrastructure. Much thought and work have gone into the design of the telephone
network.

The telephone network is largely a circuit-switched network in which resource
sharing is achieved at the session level. Transmission and switching facilities are
dedicated to a session only when a telephone call is initiated. Using these resources,
a circuit, or a connection, is formed between two end users. These facilities will be
released upon the termination of the call so that other sessions may use them. While
the session is ongoing, however, the resources assigned to the circuit are not shared
by other circuits and can be used to carry the traffic of the circuit only. In other
words, once the resources are assigned to a circuit, they are guaranteed. Of course,
there is a no guarantee that a newly initiated session will get the resources that it
requests. In this case, the call is said to be “blocked.” One important design issue of
the circuit-switched network is how to minimize the blocking probability in a low-cost
and efficient manner.

An example of this problem is the determination of the minimum number of
“trunks” or transmission lines between two switching centers in order to meet a
certain blocking probability requirement. In general, more trunks will be needed for
smaller blocking probability. One of the exercises of this chapter goes over this in
more detail. A call can also be blocked because of the design of the switch even if
there are enough trunks. This chapter focuses on the fundamental design principles
of circuit switches; in particular, how switches can be designed to be nonblocking,
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FIGURE 2.1 An N × N switch used to interconnect N inputs and N outputs.

in which case blocking will be due entirely to number of calls exceeding number of
trunks.

2.1 SPACE-DOMAIN CIRCUIT SWITCHING

An N × N space-division switch can be used to connect N incoming links to N

outgoing links, as illustrated in Fig. 2.1. Switches are often constructed using 2 × 2
switching elements, called crosspoints, shown in Fig. 2.2. Each crosspoint has two
states. In the bar state, the upper input is connected to the upper output and the lower
input is connected to the lower output. In the cross state, the upper input is connected
to the lower output and the lower input connected to the upper output.

Figure 2.3 shows two ways of constructing 4 × 4 switches out of the 2 × 2 ele-
ments. For the crossbar switch, the elements are arranged in a square grid, and by
setting the individual elements in bar and cross states, any input can be connected to
any output without internal blocking. The baseline switch, although requires fewer
number of switch elements, is blocking. As illustrated, if input 1 is already connected
to output 1, then input 2 cannot be connected to output 2. In general, there is a trade-off
between the number of crosspoints needed and the blocking level of the switch.

2.1.1 Nonblocking Properties

Circuit switches are often classified according to their nonblocking properties.

Definition 2.1 (Strictly Nonblocking). A switch is strictly nonblocking if a connec-
tion can always be set up between any idle (or free) input and output without the need
to rearrange the paths of the existing connections.

Bar state Cross state

FIGURE 2.2 Bar and cross states of 2 × 2 switching elements.
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FIGURE 2.3 (a) Crossbar switch; (b) baseline switch.

The reader can verify that the crossbar switch shown in Fig. 2.3(a) is strictly
nonblocking. By setting selected switch elements to bar or cross states, you can
always find a path from an idle input to an idle output without the need to rearrange
the paths taken by the existing connections. The number of switch elements required
in a crossbar switch is N2, where N is the number of input or output ports.

Definition 2.2 (Rearrangeably Nonblocking). A switch is rearrangeably non-
blocking if a connection can always be set up between any idle input and output,
although it may be necessary to rearrange the existing connections.

A 4 × 4 rearrangeably nonblocking switch is shown in Fig. 2.4(a). Figure 2.4(b)
depicts a situation where input 2 is connected to output 2 and input 3 to output 3
with all the switch elements in the bar states. If a new connection arrives requesting
connection from input 4 to output 1, it will be blocked by the two current connections.
However, if we rearrange the connection between input 2 and output 2 as in Fig. 2.4(c),
we find that the new request can now be accommodated.

Definition 2.3 (Wide-Sense Nonblocking). A switch is wide-sense nonblocking if
a route selection policy exists for setting connections in such a way that a new con-
nection can always be set up between any idle input and output without the need to
rearrange the paths of the existing connections.
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FIGURE 2.4 (a) A 4 × 4 rearrangeably nonblocking switch; (b) a connection request from input
4 to output 1 is blocked; (c) same connection request can be satisfied by rearranging the existing
connection from input 2 to output 2.

Thus, associated with the wide-sense nonblocking is an algorithm for setting the
internal paths of the switch. The study and the proof of wide-sense nonblocking
property is generally not easy, since not only the arrivals of connection requests must
be considered, but the departures (terminations) of existing connections must also be
considered.

From the above definitions, it is easily seen that the strictly nonblocking property
poses the most stringent requirements, followed by wide-sense nonblocking property
and then rearrangeably nonblocking. A switch that is strictly nonblocking is also
nonblocking by the other two definitions, but not vice versa. If a switch is wide-sense
nonblocking, it is also rearrangeably nonblocking. To see this, consider a new request
arriving at a wide-sense nonblocking switch. Suppose we have not been following
the connection setup algorithm required for it to be nonblocking and the new request
is blocked. But we can rearrange the existing connections! In the worst case, we can
disconnect all the existing connections and then reconnect them one by one following
the wide-sense nonblocking algorithm. The new request is guaranteed to be satisfiable
after the rearrangement. Note that a rearrangeably nonblocking switch, however, is
not necessarily wide-sense nonblocking.

2.1.2 Complexity of Nonblocking Switches

An interesting question is what is the minimum number of crosspoints needed to build
an N × N nonblocking switch. It turns out that an order of N log N crosspoints are
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FIGURE 2.5 (a) An example of one-to-one mapping from input to output; (b) number of cross-
points needed for nonblocking switch.

needed. This can be seen by relating the number of possible input–output mappings
to the number of states of the switch.

A one-to-one mapping from inputs to outputs is a unique connection of inputs to
outputs in a one-to-one fashion, an example of which is given in Fig. 2.5(a). Clearly,
there are N! possible mappings if all inputs and outputs are busy. In practice, there may
be some idle inputs and outputs at any given time. However, since there is no signal
(or information flow) on these idle ports, it does not matter how they are connected
as long as they are not connected to a busy port. Thus, the mappings with idle inputs
and outputs can be subsumed under one of the N! one-to-one mappings. That is, the
realization of one of the N! mappings can also be used to realize a mapping with idle
ports, and we need only be concerned about the N! mappings.

We must set the states of the individual crosspoints within the switch to realize the
N! mappings. Let there be M crosspoints in the overall switch. Since each crosspoint
has two states and the state of the overall switch is defined by the combination of
the states of the crosspoints, there are 2M states for the overall switch. Each of these
states can realize one and only one of the N! mapping. Thus, to realize all the N!
mappings, we must have

2M ≥ N! (2.1)

The inequality is due to the fact that two states may realize the same mapping. The
reader can easily verify this by experimenting with the switch in Fig. 2.4.



20 CIRCUIT SWITCH DESIGN PRINCIPLES

The Stirling’s formula is

N! = NNe−N
√

2πN(1 + ε(N)),

where ε > 0 is a decreasing function of N. Substituting this into Eq. (2.1) and taking
the log on both sides, we have

M ≥ N log2 N − N log2 e + 0.5 log2(2πN) + log2(1 + ε(N)). (2.2)

The dominant term on the right-hand side of inequality (2.2) is N log N for large N.
Thus, asymptotically, the number of crosspoints required must be at least N log2 N.

Note that the bound applies to all three nonblocking properties defined previously.
The derivation is nonconstructive in that it does not tell us how to construct a switch
that achieves the N log2 N bound. It only tells us that if such a switch exists, its order
of complexity cannot be lower than N log2 N. Thus, the question of whether there
are switches satisfying this bound arises. We now turn our attention to some specific
switch constructions.

2.1.3 Clos Switching Network

An important issue in switch design is the construction of a large switch out of smaller
switch modules. A three-stage Clos switching network is shown in Fig. 2.6. Switch
modules are arranged in three stages and any module is interconnected with any
module in the adjacent stage via a unique link. The modules are nonblocking and
could be, for example, the crossbar switches described previously. To motivate the
study of a three-stage network rather than a two-stage network, Problem 2.11 argues
that two-stage networks are not suitable for constructing nonblocking switches.

n1 r2

n1 r2

n1 r2

r1 r3

r1 r3

r1 r3

r2 n3

r2 n3

r2 n3

...

...

...

...

...

...

(1)

(2)

(r1)

(1)

(2)

(r2)

(1)

(2)

(r3)

...
...

n1r1 = n3r3 = N for N N switch

ri — # switch
modules in
column i

n1 — # inputs in
column 1
module

n3 — # outputs in
column 3
module

Necessary condition 
for nonblocking:

312 ,nnr ≥

...

... ...

...

...

...

...

...
...

... ... ... ...

FIGURE 2.6 A three-stage Clos switch architecture.
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FIGURE 2.7 An example of blocking in a three-stage switch.

There are five independent parameters in the Clos architecture. We have r1, r2,
and r3 modules in stages 1, 2, and 3, respectively. The dimensions of the modules
in the stages 1, 2, and 3 are n1 × r2, r1 × r3, and r2 × n3, respectively. If the overall
switch has equal number of inputs and outputs, then the number of inputs or outputs
is N = n1r1 = n3r3, and there are only four independent parameters.

Figure 2.7 shows a Clos switch with n1 = r1 = r2 = r3 = n3 = 3. This particu-
lar switch structure is not strictly nonblocking. We want to derive the relationship
among the parameters that will guarantee nonblocking operation. A crucial point is
the number of middle-stage modules r2. By making r2 larger, there are more alter-
native paths between stage-1 and stage-3 modules, and therefore we should expect
the likelihood of blocking to be smaller. In fact, if r2 is made large enough, blocking
can be eliminated altogether. On the other hand, the switch becomes more complex
in terms of both the number of stage-2 modules and the dimensions of stage-1 and
stage-3 modules.

It is easy to see that for the switch to be nonblocking, we must have

r2 ≥ n1, n3. (2.3)

Otherwise, if all of the inputs (outputs) of a stage-1 (stage-2) module are active, some
of the connections cannot be set up. Inequalities (2.3) are necessary conditions. We
shall see that they are also sufficient for achieving the rearrangeably nonblocking
property but not the strictly nonblocking property.

We need to develop some notational tools before we proceed. Figure 2.8 shows
that the connection state of the switch can be represented in the form of a connection
matrix. Row i corresponds to first-stage module i and column j corresponds to third-
stage module j. Entry (i, j) is associated with the middle-stage modules. As shown,
if there are connections between module A and module B through modules F, G, and
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FIGURE 2.8 The connection matrix of the three-stage network.

H , then entry (A, B) = {F, G, H}. In other words, entry (i, j) contains the symbols
or labels of the middle-stage modules that are used to connect calls from module i in
stage 1 to module j in stage 3.

Let SA and SB be the sets of symbols in any row A and column B, respectively.
There are three conditions that must be satisfied by a legitimate connection matrix:

1. Each row can have at most n1 symbols:

|SA| ≤ n1. (2.4)

This is because each first-stage module has n1 inputs and can have at most n1
connections. Each connection needs to go through one and only one middle-
stage module.

2. Each column can have at most n3 symbols:

|SB| ≤ n3. (2.5)

3. The symbols in each row or each column must be distinct: this is because each
first- or third- stage module is connected to each middle-stage module by one
and only one link. There can be at most r2 symbols in each row or column.
Thus,

|SA|, |SB| ≤ r2. (2.6)
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Theorem 2.1. Assuming the underlying switch modules are individually strictly non-
blocking, a three-stage N × N Clos network is strictly nonblocking if and only if

r2 ≥ min{n1 + n3 − 1, N}. (2.7)

Proof. The trivial case when N ≤ n1 + n3 − 1 is easy to see: since there can be no
more than N calls in progress at the same time in the overall switch, r2 need not be
more than N. For n1 + n3 − 1 < N, suppose there is a new connection request from
an input in module A to an output in module B. Consider the worst-case situation in
which all other inputs and outputs of A and B are busy. Then,

|SA| = n1 − 1,

|SB| = n3 − 1. (2.8)

Furthermore,

|SA ∪ SB| = |SA| + |SB| − |SA ∩ SB|
≤ |SA| + |SB| = n1 + n3 − 2. (2.9)

The above inequality is satisfied with equality if |SA ∩ SB| = 0; that is, the middle-
stage modules used by connections from A and B are disjoint. If r2 ≥ n1 + n3 − 1,
there must be at least one symbol not in either SA or SB. This is a symbol corresponding
to a middle-stage module as yet unused by the existing connections of A and B, and
it can be used to set up the new connection request. �

The value of r2 can be made smaller if we only require the switch to be rearrangeably
nonblocking. In fact, r2 needs only be no less than max(n1, n3). Certainly, by the pre-
vious theorem, the switch is not strictly nonblocking with this value of r2. Therefore,
we must find a way to rearrange the existing circuits to accommodate a new request
whenever it is blocked.

Substituting a symbol of an entry in the connection matrix with another symbol
corresponds physically to rearranging an existing connection. Specifically, the con-
nection is disconnected and reestablished over the middle-stage module represented
by the new symbol. Certainly, we cannot simply substitute the old symbol with any
arbitrary symbol. The new symbol must not have already occurred in the row and
column of the entry in order not to violate the legitimacy of the matrix.

With reference to Fig. 2.9, suppose we want to establish a new connection between
first-stage module A and third-stage module B. Suppose that all symbols except D

occur in row A and all symbols except C occur in column B. Then, the connection is
blocked because we could not find a symbol that have neither occurred in row A nor
in column B for entry (A, B).

Since C is not currently in column B, we might try to change the symbol D in
column B to symbol C so that we can put D in entry (A, B). But if there were a C

already in the row occupied by the D in column B (see Fig. 2.9), we could not change
the D to C without violating the matrix constraint.
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FIGURE 2.9 (a) A chain of C and D originating from B; (b) physical connections corresponding
to the chain.

In other words, we may need to rearrange more than just one existing connection.
To see which connections need to be rearranged, let us introduce the concept of the
rearrangement chain. A chain of two symbols, C and D, with end points at column
B and row A′′ is shown in Fig. 2.9(a). An end point must lie in a row or column
containing either C or D but not both. For example, column B contains the end
point with symbol D and it does not have a symbol C. The row and column of an
intermediate point each contains one C and one D. To identify the chain, we search
across the rows and columns alternatively for C and D. Thus, if we find a C during
a row search, we then search for D across the column containing C, and so on. The
process stops when a row search fails to find a C or a column search fails to find a D.
The current C or D then forms the other end point of the chain. Note that the chain
has a finite number of points and a loop is impossible if we start with an end point;
otherwise, C or D will occur more than once in some row or column, as illustrated in
Fig. 2.10.

The physical interpretation of the chain is shown in Fig. 2.9(b). Specifically, the
chain corresponds to a set of first-stage and third-stage modules with connections
across middle-stage modules C and D.

The chain is said to be rearranged if we switch the symbols C and D in the chain.
This corresponds to rearranging the associated connections, as illustrated in Fig. 2.11.
Connections that used to be established across C are now established across D, and
vice versa. Note that rearranging the chain as such will not lead to a violation of
the rule that a symbol can occur at most once in each row or column. As shown, by
rearranging the chain starting in B as in Fig. 2.11, we can put D in entry (A, B).

Now, a problem could arise if the chain from column B ends in the symbol C in
row A, as indicated in Fig. 2.12(b), since the rearrangement would have switched the
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FIGURE 2.10 Illustration showing loops in chains are not permitted in legitimate connection
matrix.

C in row A to D and we cannot then put D in the entry (A, B) for the new connection
without violating the constraint that a symbol can occur at most once in each row.
Fortunately, as indicated in Fig. 2.12(b), it is impossible for the chain from column
B to end in row A. To see this, note that for the search starting from column B, each
row search always attempts to find a C and each column search always attempts to
find a D: having the chain connected to the C in row A leads to the contradiction that
a column search finds the C in row A.
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FIGURE 2.11 (a) Rearrangement of the chain in Fig. 2.9; (b) the corresponding rearrangement
of connections.
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FIGURE 2.12 (a) Two chains, one originates from B and one from A; (b) illustration that the two
chains in (a) cannot be connected.

The example assumes that originally there was a symbol C in SA but not in SB and
a symbol D in SB but not in SA. The following theorem states that this is always true
given that r2 ≥ max(n1, n3).

Theorem 2.2. Assuming the underlying switch modules are individually rearrange-
ably nonblocking, a three-stage N × N Clos network is rearrangeably nonblocking
if and only if

r2 ≥ max(n1, n3). (2.10)

Proof. We first consider the more specific case where the underlying modules are
strictly nonblocking. The “only if” part is a trivial corollary of condition (2.3). For the
“if” part, suppose r2 ≥ max(n1, n3), and we want to set up a new connection between
A and B. For the existing connections, we have

|SA| ≤ n1 − 1,

|SB| ≤ n3 − 1. (2.11)

There are two cases: (i) |SA ∪ SB| < r2 and (ii) |SA ∪ SB| = r2. In case (i), there is
a symbol not in A and B and the corresponding middle-stage module can be used to
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set up the connection. In case (ii), inequalities (2.11) yield

|SA − SB| = |SA ∪ SB| − |SB| ≥ r2 − n3 + 1

≥ n3 − n3 + 1 = 1 (2.12)

and

|SB − SA| = |SA ∪ SB| − |SA| ≥ r2 − n1 + 1

≥ n1 − n1 + 1 = 1. (2.13)

Thus, there is a symbol C ∈ SA − SB and a symbol D ∈ SB − SA. That is, C is in row
A but not column B, and D is in column B but not row A. This situation corresponds
to the one in Fig. 2.9, and we can use the rearrangement as depicted in Fig. 2.11 to
accommodate the new connection.

If the underlying switch modules are only rearrangeably nonblocking but not
strictly nonblocking, the existence of C and D can still be proved as above. The
situation now is slightly different in that in addition to the “external rearrangements”
of the connectivity switch modules of adjacent stages, rearrangements within the
switch modules may also be necessary since the external arrangements may neces-
sitate setting up of new connections in the switch modules. But the setting up of
these new connections is always possible by rearranging the existing connections in
the switch modules since they are by assumption rearrangeably nonblocking. This
observation completes the proof. �

Suppose that the switch modules are strictly nonblocking. A question is how many
existing connections need to be rearranged. Suppose we begin traversing the chain
starting from the end point in B. Each time a point is included, a new row or column
is covered. Since there is no loop in the chain, it takes at most r1 + r3 − 2 moves
before all the other rows and columns (in addition to the initial row and column of the
B end point) are covered. Thus, there can be at most r1 + r3 − 1 points in the chain,
which is also the number of arrangements needed. This bound can be improved to
2 min(r1, r3) − 2 if one considers a more careful argument (see Problem 2.9).

The preceding paragraph considers only the chain that starts from B. There is
another chain that starts from A, as illustrated in Fig. 2.12(a). These two chains
cannot be connected and therefore cannot be the same. This fact has already been
argued and is depicted in Fig. 2.12(b).

Theorem 2.3. Assuming the switch modules are individually strictly nonblocking,
the number of rearrangements needed in a rearrangeably nonblocking three-stage
Clos switch is at most min(r1, r3) − 1 if we choose the shorter of the two chains.

Proof. Suppose that we start searching simultaneously from A and B. A composite
move includes a move in each chain. Whenever a chain cannot be extended further,
we choose that chain for rearrangement.



28 CIRCUIT SWITCH DESIGN PRINCIPLES

In each composite move, a new row will be traversed by one of the chains while
a new column will be traversed by the other chain. Since the chains are disjoint, the
same row or column cannot be covered by both chains. There can be at most r1 − 2
composite moves before all rows are included (2 is subtracted from r1 because the
initial two end points occupy two rows). Therefore, the number of points in the shorter
chain is no more than r1 − 1. Similarly, by considering the columns, the number of
points in the shorter chain is no more than r3 − 1. Thus, the number of points in the
shorter chain is at most min(r1, r3) − 1. �

2.1.4 Benes Switching Network

The modules in the Clos switch architecture are usually relatively large switches
compared to the 2 × 2 crosspoints. However, this does not preclude the use
of the theory developed above for 2 × 2 switch elements. Figure 2.13 shows
a symmetric three-stage network in which n1 = n3 = 2. Each of the first- and
third-stage modules are 2 × 2 switching elements. It can be seen that the prob-
lem of constructing an N × N switch has been broken down to the problem of
constructing two N/2 × N/2 switches in the middle. By Theorem 2.2, the N × N

switch is rearrangeably nonblocking if the N/2 × N/2 switches are rearrangeably
nonblocking.

To construct the N/2 × N/2 rearrangeably nonblocking modules, we can use the
same decomposition in a recursive manner. That is, each N/2 × N/2 module can be
broken down into three stages consisting of 2 × 2 elements in the first and third stages
and two N/4 × N/4 modules in the middle. Repeating this, recursively, only 2 × 2
elements will remain in the end. An 8 × 8 switch constructed this way is shown in
Fig. 2.14. This architecture is called the Benes network.

A question is how many crosspoints are there in an N × N Benes network. Let us
assume that N = 2n; that is, it is a power of 2. Let the number of stages in a k × k
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FIGURE 2.13 Recursive decomposition of a rearrangeably nonblocking network.
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FIGURE 2.14 An 8 × 8 Benes network.

Benes switch be denoted by f (k). By the recursive construction, we have

f (N) = f

(
N

2

)
+ 2. (2.14)

Applying the above as below yields a closed-form expression of f (N):

f (2n) = f (2n−1) + 2

= f (2n−2) + 4

...

= f (2n−j) + 2j

...

= f (2) + 2(n − 1)

= 1 + 2(n − 1)

= 2n − 1. (2.15)

Since each stage has N/2 crosspoints, the total number of crosspoints is

N

2
(2n − 1) = N log2 N − N

2
. (2.16)

Notice that asymptotically (i.e., for large N), the Benes network satisfies the N log N

lower bound on the number of crosspoints required in a nonblocking switch.
Although the number of crosspoints in the Benes network is of order N log N,

lacking is a fast control algorithm that can set up paths between the inputs and outputs.
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This makes it less appealing for fast- packet switching in which the paths taken by
packets must be determined in a very short time.

Let us consider a looping algorithm. As illustrated in Fig. 2.13, the Benes network
consists of two subnetworks sandwiched between the first and last columns of 2 × 2
switch elements. Therefore, one way to set up the path for an input–output pair is
to first determine whether it should go through the upper or lower subnetwork. The
constraints that must be satisfied are that the paths of the inputs (outputs) sharing
the same 2 × 2 elements (e.g., inputs (outputs) 1 and 2) must go through different
subnetworks since there is only one link from a 2 × 2 element to a subnetwork.
Once the set of disjoint paths has been determined at this level, we can then go down
to the next level of setting up paths within each of the two N/2 × N/2 subnetworks.
The same algorithm can be applied in a recursive manner until the complete paths are
determined for all input–output pairs.

Let us illustrate the algorithm with an example. With reference to Fig. 2.15, in
which we wish to set up paths for the following input–output pairs: (1,4), (2,5), (3,6),
(4,3), (5,7), (6,8), (7,1), (8,2), we start out by routing the first path (the one from
input 1) through the upper subnetwork. This path reaches output 4. We next satisfy
the constraint generated at the output (i.e., the path to output 3, which shares the same
switch element as output 4) by routing the path from input 4 to output 3 through the
lower subnetwork. This generates the constraint that the path from input 3 must go
through the upper subnetwork. Performing this iteratively by satisfying the constraints
created at the output and input alternatively, eventually, we will close the “loop” by
establishing a path from input 2, which shares an element with input 1, through the
lower subnetwork. This is the situation as depicted in Fig. 2.15. Notice that since this
is a Clos network, we can use the connection matrix already discussed to represent the
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FIGURE 2.15 Illustration of a looping connection setup algorithm; we want to set up paths for
input–output pairs: (1,4), (2,5), (3,6), (4,3), (5,7), (6,8), (7,1), (8,2).
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connection state. Each loop here corresponds to a chain with a loop in the connection
matrix.

The loop may not involve all inputs and outputs. If some inputs and outputs remain
to be connected, then we start the path setup procedure as above again starting from
one of these inputs or outputs. In the example in Fig. 2.15, the connection from input
5 has not been considered in the first loop. Therefore, we may start off by setting the
path from input 5 through the upper subnetwork. In this way, the connections from
all input–output pairs will be established in the end. But this is only the end of the
“first-level” connection setup, which in turn imposes certain input-output connection
requirements on each of the N/2 × N/2 middle switch modules. The same looping
algorithm can be applied when setting up these “second-level” connections in the
each N/2 × N/2 switch modules, leaving us with “third-level” connections in four
N/4 × N/4 switch modules. Applying the looping algorithm recursively solves the
connection problem of the overall switch.

The number of steps required in the first-level path setup is N. Furthermore, these
steps cannot be executed concurrently because each step depends on the previous step.
At the next level when we set up paths within a N/2 × N/2 subnetwork, N/2 steps
are required. Taking into consideration the two subnetworks, a total of N steps are
required. The path setup at the two subnetworks, however, can be executed together. It
is easy to see that a total of N log2 N steps are needed since there are log2 N levels. If
we parallelize the path setup procedures in separate subnetworks, the time complexity
is of order

N + N/2 + N/4 + · · · + 2 = 2(N − 1).

Notice that the algorithm is to be executed by a central controller and that the central
controller is also responsible for setting the states of the 2 × 2 elements at the end
of the algorithm. Lacking is a self-routing algorithm in which each 2 × 2 element
determines its own state based on the local information at its inputs and outputs.
Self-routing networks will be discussed in the next two chapters.

2.1.5 Baseline and Reverse Baseline Networks

The Benes network can be considered as being formed by two subnetworks, as indi-
cated in Fig. 2.14. The middle stage and the stages before it form a network structure
called the baseline network. The middle stage and the stages after it are a mirror image
of the baseline network called the reverse baseline network.

Both the baseline and reverse baseline networks have the interesting property that
within each network there is a unique path from any input to any output. In other
words, there is one and only one way of connecting an input to an output in these
networks. The unique paths from any input to all outputs form a binary tree. To see
this, consider the baseline network. We note that an input is connected to only one
node (i.e., crosspoint) at stage 1. From this node, the signal from the input can branch
out in two directions to two nodes in stage 2, and then four nodes in stage 3. Thus,
the input can reach 2j−1 nodes at stage j. The last stage is stage n = log2 N, and the
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input can reach all the N/2 nodes in the last stage, from which it can reach all the
N outputs. An input can only reach a subset of the nodes in the stages before stage
n, and the path to each of the node in the subset is clearly unique from the above
explanation. In general, we observe the following:

Reachability of nodes in baseline/reverse baseline networks: A node in stage i can be
reached by 2i inputs and can reach 2n−i+1 outputs.

2.1.6 Cantor Switching Network

The Benes network is only rearrangeably nonblocking. However, the above obser-
vations about the two subnetworks of the Benes network can be used to construct
a parallel Benes network, called the Cantor network, which is strictly nonblocking.
Figure 2.16 shows a Cantor network. It is made up of log2 N Benes networks arranged
in a parallel fashion. Input i of the overall switch is connected to inputs i of all the
log2 N Benes switches via a front-end 1 × log2 N switch. Similarly, output j of the
overall switch is connected to outputs j of all the log2 N Benes switch via a back-end
log2 N × 1 switch. Basically, the function of the front-end and back-end switches is
to increase the number of alternative paths for any input–output pair so as to increase
the chance of a successful connection. It just turns out that log2 N Benes networks
are sufficient to always allow connection between any idle input–output pair.

Theorem 2.4. The Cantor network is strictly nonblocking.
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FIGURE 2.16 The Cantor network.
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Proof. For each Benes network, an input can be connected to any of the middle-stage
nodes if there are no existing connections. However, if there are already some existing
connections in the network, it may not be possible to connect the input to some of the
middle-stage nodes. We say that an input can access a node at or before the middle
stage only if none of the links in the unique path from the input to that node is already
used by an existing connection. For example, with respect to Fig. 2.4(b), which shows
the connection state of a 4 × 4 Benes Switch made up of 2 × 2 nodes, the lower node
in the middle stage cannot be accessed by input 1. We define accessibility from an
output to those nodes at or after the middle stage in a similar fashion.

The essence of our argument is to show that there is a node in the middle stage in
one of the Benes networks that can be accessed by both the input and the output of
the new request. The 1 × log2 N and log2 N × 1 switches can then be used to connect
the input and output to that Benes switch and the connection is established thereof.

Let m be the number of Benes networks required to make the Cantor network
strictly nonblocking. Suppose we want to set up a new connection between input a

and output b. We shall first examine accessibility from input a. In each Benes network,
the paths leading from input a to the N/2 middle-stage nodes form a binary tree, as
illustrated in the example of Fig. 2.17, in which a = 3. There are altogether m binary
trees, one in each Benes network, and they contain the paths from input a to the Nm/2
middle-stage nodes in the Cantor network.

Consider the worst-case situation in which all the other N − 1 inputs and output
are currently busy. Each of the N − 1 connections has an associated path from its
input to its output. Each path must intersect or meet with one of the m binary trees at
some node at or before the middle stage. We say that the path meets the binary trees
at stage i if the path intersects with one of the trees for the first time at stage i. Note
that the rest of the path must also intersect with the tree thereof.
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FIGURE 2.17 Binary tree extended from an input to all middle-stage nodes.
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By the construction of the Benes network, we can verify that out of the N − 1
paths, one path meets the binary trees at stage 1. Consider Fig. 2.16 and suppose that
input a is input 3. Then, the path of the existing connection from input 4 meets a
binary tree of input 3 at a stage-1 node. Next, two paths meet the binary trees at stage
2, four paths meet the binary trees at stage 3, and so on. In general, the number of
paths meeting the binary trees at stage i is

Ai = 2i−1.

For verification, the reader can check that

log2 N∑
i=1

Ai = N − 1.

For each of the paths meeting with the trees before the middle stage, say at stage i,
the path will exit on one of the outgoing links of the intersecting node. The subtree
extending out of this link cannot be used by input a for connection (see the example
in Fig. 2.16). This subtree has

Bi = N

2i+1

nodes in the middle stage, and they are not accessible by input a.
A total of

C ≤
log2 N−1∑

i=1

AiBi (2.17)

middle-stage nodes will be eliminated from accessibility by input a. The inequality
is satisfied with equality only in the worst case when all the subtrees generated by the
N − 1 paths are disjoint and therefore the middle-stage nodes eliminated are disjoint.
For the strictly nonblocking property, what is important is the worst-case situation.
Notice, however, that in general some of the subtrees may overlap: for instance, by
the rearrangeably nonblocking property of the Benes network, it is possible for all
the N − 1 paths to concentrate on one of the m Benes networks, eliminating only
N/2 − 1 middle-stage nodes.

Substituting Ai and Bi into the above yields

C ≤ (log2 N − 1)N/4. (2.18)

Thus, the number of middle-stage nodes that can be accessed by input a is

|I| = Nm/2 − C ≥ Nm/2 − (log2 N − 1)N/4, (2.19)
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where I is the set of middle-stage nodes accessible by input a. By symmetry,

|O| ≥ Nm/2 − (log2 N − 1)N/4, (2.20)

where O is the set of middle-stage nodes accessible by output b. But

Nm/2 ≥ |I ∪ O| = |I| + |O| − |I ∩ O|, (2.21)

the rearrangement of which yields

|I ∩ O| ≥ |I| + |O| − Nm/2 ≥ Nm/2 − (log2 N − 1)N/2. (2.22)

There is a middle-stage node accessible by both input a and output b if |I ∩ O| > 0,
which is the case if

Nm/2 − (log2 N − 1)N/2 > 0. (2.23)

The above simplifies to

m > log2 N − 1. (2.24)

Thus, if m = log2 N, the connection between input a and output b can be set up. �

2.2 TIME-DOMAIN AND TIME–SPACE–TIME CIRCUIT SWITCHING

The preceding section concerns switching in the space domain. That is, a set of
physically separate inputs are to be connected to a set of physically separate outputs.
In telephone networks, most digital information streams are time-division multiplexed
(TDM) at the higher network hierarchy. It is often less costly and more convenient to
switch this traffic directly in the time domain.

2.2.1 Time-Domain Switching

Recall from Fig. 1.6 that the time domain of a TDM transmission medium is divided
into frames. In each frame, there are N time slots, and the ith time slot is dedicated for
the transmission of information from source i to receiver i. A question that arises is
what if the sources want to send information to different receivers at different times.

Figure 2.18 shows a possible switching scheme. There is a switching center in
between the sources and the receivers. At the switching center, the TDM traffic is first
demultiplexed into N physically separate streams. The N streams are then switched
using an N × N space-division switch, which could be one of those discussed in the
previous section. After switching, the N output streams are then multiplexed back
into one physical stream. Note that the time slots occupied by the sources could have
been interchanged at this point. At the receiver, when this stream is demultiplexed,
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FIGURE 2.18 Performing time-slot interchange using space-division switch.

the information received by receiver i depends on switching performed by the space-
division switch.

A more direct way to achieve the same function is to use a time-slot interchanger
(TSI) in the middle, as shown in Fig. 2.19. As the name suggests, a TSI interchanges
the time slots occupied by the logical channels within a TDM stream. The TSI is
usually implemented using random access memory (RAM). After a whole frame is
written into the RAM, the time slots in the frame can then be read out in an order
dictated by the switching (or time-slot interchange) to be performed. Thus, if the data
on time slot N are to be switched to time slot 1, these data will be read out first on
the output frame. In this way, switching is performed directly in the time domain.
Logically, the TSI is equivalent to an N × N space-division switch.

Notice that there must be a delay equal to one frame time in the TSI. After a whole
frame is written, it is read. Meanwhile the next frame is being written. Two data
frames of memory are needed.

FIGURE 2.19 Direct time-slot interchange using random access memory (switching in the time
domain).
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Since the TSI is implemented by RAM, its operation is limited by the memory
access speed, considering the fact that data must be written into and read out of the
memory as fast as they arrive. As an example, suppose N = 24, the bit rate per source
is 64 kbps (the data rate for a telephone conversation), and there is a byte to each time
slot. Then,

Arrival rate = 24 × 64, 000

8
= 192, 000 slots/s.

A read and a write are required per time slot. Thus,

Memory access time = 1

192, 000 × 2
s ≈ 2.6 �s.

2.2.2 Time–Space–Time Switching

There are generally many TDM lines connected to a switching center at the higher
network hierarchy. In this situation, a combination of time and space switching is
often performed. A switching structure that is often used in practice is the so-called
time–space–time switch architecture shown in Fig. 2.20.

It turns out that this switch is logically equivalent to the three-stage Clos switch
discussed in the previous section. To see this, let us refer back to the general Clos
switch architecture depicted in Fig. 2.6 and consider the simple symmetric case in
which n1 = n3 = n , r1 = r3 = r, and r2 = m. Now, for the time–space–time switch
architecture in Fig. 2.20, let n be the number of input or output time slots per frame,
r be the number of input or output ports of the space-division switch, and m be the
internal number of time slots per frame. If m 
= n, then the number of time slots per
frame inside the switch is different from that at the external lines. Otherwise, for the
input TSI, the output bit rate is m/n times the inputs bit rate because of the different
numbers of time slots in a frame; for the output TSI, the input bit rate is m/n times
the output bit rate. Each time slot in an input frame can be mapped onto any time
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TSI

r r
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.
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.

mn nm

n, m: number of time slots per frame at various points

FIGURE 2.20 A time–space–time switch.
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slot in an output frame. Thus, logically, the input TSI is like an n × m switch and the
output TSI is like an m × n switch.

The operation of the center space-division switch can be considered as being
divided into m time slots. In the first time slot, it switches the information from
time slot 1 of the inputs to time slot 1 of the outputs. In the second time slot, a
different input–output mapping is used to switch information from time slot 2 of
inputs to time slot 2 of outputs. Thus, the input–output mapping realized by the
switch changes very dynamically from time slot to time slot, and as illustrated in
Fig. 2.21, it is as if there were m copies of space-division switches, one for each time
slot. In fact, if we were to put a time-division multiplexer before each input TSI, and
a time-division demultiplexer after each output, as in Fig. 2.22, the switch will be
functionally identical to the three-stage Clos architecture. Thus, all the nonblocking
conditions we derived previously for the Clos switch also apply here. For instance,
if m = 2n − 1, the switch will be strictly nonblocking, and if m = n, the switch will
be rearrangeably nonblocking. Of course, in the latter case the way time slots are
interchanged in the TSI may need to be rearranged.

PROBLEMS

2.1 A formula that is often used to engineer the trunk facilities between two switch-
ing centers is the Erlang B formula given by

B = an/n!∑n
i=0 ai/i!

,

where B is the blocking probability, n is the number of trunks, and a = λ/μ

is the product of the arrival rate of new connections λ and the average holding
time of a connection 1/μ. Suppose new connections arrive at the rate of 20
calls /min and the average holding time of a call is 5 min. Find the minimum
number of trunks needed to make the blocking probability 10−3.

2.2 Explain why a rearrangeably nonblocking circuit switch is not necessary wide-
sense nonblocking.

2.3 True or false? Constructing a wide-sense nonblocking switch requires a larger
number of crosspoints than constructing a strictly nonblocking switch. Explain.

2.4 Section 2.1.2 mentions that two different switch states may realize the same
input–output mappings. Give an example illustrating this.

2.5 In Section 2.1.2, we examined the lower bound on the number of crosspoints
required by a nonblocking switch. Derive a lower bound for an N × N ′ asym-
metric switch where N ′ = N/2 using the same method.

2.6 Consider a strictly nonblocking symmetric Clos switch with n1 = n3 = n and
r1 = r3 = r made up of three stages of crossbar switch modules. Express the
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number of crosspoints in the overall switch in terms of n and r. For N = 1000,
find the values of n and r that minimize the number of crosspoints. (Note: If it
is necessary to have an N that is slightly larger than 1000 in order to minimize
the crosspoint count, the larger N should be adopted since we can always use
just 1000 of the N ports.)

2.7 Give an example of a strictly nonblocking N × N Clos network in which r2 =
N < n1 + n3 − 1. Explain why in practice no one would construct a three-stage
switch this way by showing that one of the stages can be eliminated. In other
words, show that a simpler two-stage nonblocking switch can be constructed
if N < n1 + n3 − 1.

2.8 Consider a modified three-stage Clos switching network in which there are two
links connecting every switch module in first and third stages to every module
in the middle stage. Each first-stage switch module is n × 2n, each third-stage
module is 2n × n, and the numbers of modules in all the stages are equal. Is
this switch strictly nonblocking? If yes, prove it. If no, give a counterexample.

2.9 The text proves that the number of rearrangements needed in a rearrangeably
Clos nonblocking switch is bounded above by r1 + r3 − 1 by considering one
chain, where r1 and r3 are the number of modules in the first and third stages,
respectively. Improve the bound to 2 min(r1, r3) − 2, still considering only one
chain. That is, you choose one of the two chains before starting to identify the
points in the chain, but you do not know which chain is the shorter one. (Hint:
You may choose the chain based on your knowledge of r1 and r3, but there is
no guarantee that the one you choose will be the shorter one. After choosing
the chain, first consider the columns covered and then the rows covered.)

2.10 Show how to construct N × 1 and 1 × N switches using the minimum number
of crosspoints. Suppose your designs are used in the construction of the Cantor
network. How many crosspoints are needed in the Cantor network?

2.11 Instead of a three-stage network, let us consider a two-stage network as shown
in Fig. 2.23, in which there is one link interconnecting any module at the first
stage and any module at the second stage.
(a) Give an example showing that this network is blocking.

(b) Argue that this network could be highly blocking.

(c) Instead of just one link interconnecting any module at the first module and
any module at the second stage, suppose that there is a group of m links
interconnecting them, as shown in Fig. 2.24. How large should m be to
make this network nonblocking?

(d) Suppose we want to explore a seldom blocking network in which the value
of m is less than the above value. Assume that n = 8, all inputs and outputs
are active, and the inputs are equally likely to be destined for any of the
outputs. What is the probability that there are more than m connections
wanting to go through the same group of m links? How large should m be
to make this probability less than 10−3.
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FIGURE 2.24 Two-stage channel-grouping network.

2.12 The looping algorithm for setting connections in a Benes network alternatively
considers the constraints generated at the inputs and outputs. Suppose we con-
sider the scheme of things only from the inputs by routing the connections from
input 1 via upper middle switch, input 2 via the lower middle switch, input 3
via the upper switch, and input 4 via the lower middle switch. Give an example
showing that this does not work.
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FIGURE 2.25 A time–space–time switch.

2.13 Benes network is a rearrangeably nonblocking network with a recursive struc-
ture. Suppose we want to construct a strictly nonblocking structure using
a similar recursion, but with 2 × 3 switch modules at the first stage, 3 × 2
switch modules at the third stage, and three N/2 × N/2 modules in the middle
stage.
(a) Constructing the switch recursively this way, how many 2 × 3, 3 × 2, and

2 × 2 switch modules are needed altogether, assuming N is a power of 2?

(b) The ratio of the number of internal links at each stage to the number of
inputs is called the bandwidth expansion factor. What is the maximum
bandwidth expansion factor for this switch?

(c) Compare this switch with the Cantor network.

2.14 Consider an 8 × 8 Cantor network. The number of Benes networks needed
to make it strictly nonblocking is log2 8 = 3. Give an example showing that
if the number of Benes networks is only 2, the Cantor network is not strictly
nonblocking.

2.15 The text explains time–space–time switching in terms of the Clos switch ar-
chitecture. This problem attempts to look at time–space–time switching from
a different viewpoint. With reference to Fig. 2.25, let (i, j) denote the data
in time slot j of input 1. In the example the data on different inputs may be
destined for the same output in the same time slot. Show how the input TSIs
can be used to interchange the time slots occupied by the data to avoid output
conflict. Explain why the output TSIs are needed after the data arrive at the
outputs.
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FUNDAMENTAL PRINCIPLES
OF PACKET SWITCH DESIGN

The next few chapters focus primarily on fixed-length packet (or cell) switching. To
switch variable-length packets using a fixed-length switch, one could first fragment
the variable-length packets at the inputs into small fixed-length packets, switch the
packets, and then reassemble the packets back into the original variable-length packets
at the outputs. Generally, it is possible for the packet boundaries of different inputs to
be unaligned (see Fig. 3.1). Because of the fixed packet length, we can deliberately
delay the early arriving packets (e.g., store them into a buffer) in order to align the
boundaries. Thus, as far as the operation of the switch is concerned, we may assume
that time is divided into fixed slots of one-packet duration. In the beginning of each
time slot, new packets arrive at all the inputs simultaneously.

One of the exercises in the preceding chapter examines time–space–time circuit
switching from the viewpoint of contention resolution. Specifically, the information
on different inputs may be destined for the same output of the space-division switch
at any given time slot (see Fig. 2.23). The input TSI rearranges the time slots occupied
by the information so that output conflicts do not occur.

In circuit switching, the time slots occupying the same relative position in succes-
sive frames of an input are assigned to the same circuit, and they contain information
destined for the same output. In other words, the output link to which the information
should be forwarded is known implicitly a priori. In packet switching, the output
links to which a packet should be forwarded is not known before their arrivals. Unlike
in time-division multiplexing, there is no telling exactly how many packets from an
input will be destined for each output over a given period of time. Transmission ca-
pacity may not be dedicated to each communication session in an exclusive manner.
This and the lack of a transmission frame structure make it impossible to use a TSI to

Principles of Broadband Switching and Networking, by Tony T. Lee and Soung C. Liew
Copyright © 2010 John Wiley & Sons, Inc.
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FIGURE 3.1 Packet arrivals in a 4 × 4 packet switch.

eliminate blocking the way it is done in circuit switching.1 Other methods are needed
to deal with the contention problem.

The output destination of a packet must be contained in a header or derivable from
it. In virtual-circuit networks, a virtual circuit is set up for each session and the route
of the virtual circuit is determined during the call setup time. Once the route is set
up, all packets of the virtual circuit will follow the same route while traveling to the
destination. The packet header does not contain the final output destination explicitly.
Instead, it contains a number called the virtual-circuit identifier (VCI). At the switch
input, this number is translated into a local address associated with an output of the
switch. In addition, the input VCI is also mapped onto an output VCI. The input VCI
in the header will be replaced by the output VCI, and the packet will be switched to the
output. The output is in turn connected to an outgoing link that may be connected to
an input of a subsequent switch. In this case, the output VCI becomes the input VCI of
the subsequent switch, and it will be used to identify the output and output VCI of the
packet at the subsequent switch. In general, the switch output to which an input VCI
on an input should be mapped forms part of the end-to-end route that was determined
during the setting up of the virtual circuit. Once the mapping is determined, it is stored
in a memory.

Figure 3.2 shows a schematic diagram of the header translation process. An in-
coming packet is first disassembled into the information part and the header part.
The header contains the input VCI of the packet. The header processor, in addition to
performing other functions, uses the input VCI as an index to locate from the memory
the switch output to which the packet should be forwarded. The output address, along
with the bits of the original header, is then attached to the packet by the assembler.

1The reader should be aware that the point here is not to argue that circuit switching is superior to packet
switching. It is to indicate that because of the different ways in which transmission resources are used in
these two schemes, the switching requirements are different.
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The original header and the information bits will not be examined while the packet
is in the switch; only the output address will be used for switching purposes. Gen-
erally, the output-address header is attached before the original header. In the next
few chapters when we describe about switch operation, the term “header” refers to
the output-address header (and other bits used for routing packets within the switch).
It is the information that will be examined inside the switch and it does not include
the original header bits. After the packet is switched to its desired output, this will be
stripped before the packet is sent to the next switching node.

3.1 PACKET CONTENTION IN SWITCHES

Fundamental to the design of a packet switch is the resolution of output contention.
To see what it takes to eliminate contention entirely in packet switching, consider
Fig. 3.3(a). The figure shows three packets destined for the same output. By speeding
up the operation of the switch three times with respect to the input rate, contention
among the three packets can be eliminated. This is because each switch cycle then
takes up only one-third time slot so that before the next batch of packets arrive at the
inputs, all three packets will have been switched to their target output. But generally,
it is possible, though not probable, in an N × N switch that all the N input packets in
a time slot are targeted for the same output. When the switch dimensions are large,
switching mechanisms that let N packets reach the same destination increase design
complexity and become impractical. As long as only fewer than N packets can reach
the same output address, the potential contention problem remains, and it must be
dealt with in other ways.

There are only two alternative solutions: the switch can drop excess packets that
cannot be switched, or it can buffer them for output access in the next time slot.
Accordingly, switches based on interconnection networks can be classified as either
loss systems or waiting systems, depending on how contention is resolved.
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FIGURE 3.3 Packet contention dealt with by (a) speeding up switch operation by N times;
(b) dropping packets that cannot be switched; (c) queueing packets that cannot be switched.

In a loss system, packets are either dropped or switched to their outputs immedi-
ately. By providing sufficient paths from inputs to outputs, packet loss probability can
be made as small as desired. The maximum number of packets that can be received
by an output in one time slot will be called the group size. Since switch complexity
generally increases with group size, one would look for the minimum group size to
meet the packet loss probability requirement in practice. In addition, if the group size
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is more than 1, packet buffers are needed at outputs, since the output port may not be
able to transmit all arriving packets at once.

As an example, Fig. 3.3(b) shows a 4 × 4 switch that has a group size of 2. If three
packets arrive for the same output, one of them will be dropped. As long as the group
size is less than N, there is the likelihood that a packet will be dropped. There is a
trade-off between switch complexity and packet-loss probability. In some switches,
even though there is no output contention, it is possible that there is internal contention
due to their blocking structures. An example is the baseline switch discussed in the
preceding chapter. If these switches are designed as a loss system, packets may be
dropped internally.

For waiting systems, excess packets are buffered whenever contention arises so that
attempts can be made to switch them in subsequent switch cycles. These packets may
be buffered at the inputs or internally in the switch. Figure 3.3(c) shows a scenario
in which two of the three packets destined for the same output are buffered at the
inputs. We shall see that the throughput of a waiting-system switch is generally less
than 100%. This limitation can be relaxed by increasing the group size so that more
packets can access their destination outputs simultaneously.

To summarize, switches can be classified into two classes with the following char-
acteristics:

� Loss system

– The switch fabric has no input or internal buffers; packets already reaching
their outputs may be queued at outputs waiting to be transmitted if the group
size is more than 1.

– Packets may be dropped internally or at outputs due to contention. The loss
probability can be made arbitrarily small by adjusting the group size or some
related switch design parameters.

� Waiting system

– Output conflicts are resolved by some contention-resolution mechanism to
select the packets that will be switched. Packets that have lost contention
will be buffered so that they can be switched in one of the later time slots.
Packets already reaching their outputs may be queued at outputs waiting to
be transmitted if the group size is more than 1.

– The throughput of the switch can be made arbitrarily close to 100% by in-
creasing the group size or other design parameters.

In the switching literature, the term “input-buffered switch” is often used to refer to a
waiting system with a group size of one that buffers packets only at the inputs. Packets
are not queued at the outputs because no more than one packet may arrive at an output
in a time slot, and by the time the next packet arrives, the current packet at the output,
if any, would have been transmitted. The term “output-buffered switch” is often used
to refer to an ideal switch with a group size of N. Since all packets can be switched
to their desired outputs in the same time slot, there is no contention and buffers at
the inputs are then not needed. However, buffers are needed at the outputs since the
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output link may not be able to transmit all simultaneously arriving packets due to its
limited transmission rate. In the output-buffered switch, there is neither throughput
limitation nor packet loss in the switch. Although the names “input-buffered switch”
and “output-buffered switch” are rather descriptive, they could also be misleading in
that the superior performance of the output-buffered switch improvement is often at-
tributed either explicitly or implicitly to buffering packets at the outputs. In actuality,
the performance improvement of the output-buffered switch over the input-buffered
switch is really an outcome of having a large group size. As we shall see in the next
chapter, this is not without cost and the switch necessarily becomes more complex.
That buffers are needed at the outputs is really a consequence of this switch de-
sign principle rather than the cause of the performance improvement: simply putting
buffers at the outputs without increasing the group size will not lead to any throughput
improvement.

3.2 FUNDAMENTAL PROPERTIES OF INTERCONNECTION
NETWORKS

Many packet switches proposed to date are based on interconnection networks, orig-
inally intended for multiprocessor interconnect in highly parallel computer systems.
These switches make use of many small switch elements in their overall architectures.
An attractive feature of these switches is their regular topological interconnection pat-
tern, that can be easily implemented by VLSI technology.

Some of the circuit switches discussed in the preceding chapter are also made up
of small switch elements. However, the control algorithms used for establishing the
circuits are central algorithms. One can imagine that there is a central controller that
is fully aware of which inputs are to be mapped onto which outputs. It then sets the
switch elements into bar or cross state to establish the connections in a nonconflicting
manner.

A packet switch is said to be internally nonblocking if packets with non-
overlapping targeted outputs can be routed through it in a nonconflicting manner.
Centrally controlled switches that are rearrangeably nonblocking in the circuit switch-
ing sense are also internally nonblocking in the packet-switching sense. To see the
equivalence, consider a set of packets arriving to a rearrangeably nonblocking switch
at the beginning of a time slot. Before they can be launched into the switch, a set
of nonconflicting paths within the switch must be determined by the central con-
troller. The controller can decide the paths in a one-by-one manner and “rearrange”
the paths decided earlier should conflicts arise during the computation. Notice that
these rearrangements do not change the paths already used by packets. Rather, the
rearrangements change the paths tentatively assigned to packets earlier in the compu-
tation: after all, no packet has been launched into the switch yet. By the definition of
rearrangeability, if all packets have non-overlapping outputs, a set of nonconflicting
paths can be determined in the end. Of course, there may be algorithms that are more
clever than others that require less computation time.
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The practical difference between rearrangeably nonblocking circuit switches and
internally nonblocking packet switch is the speed at which the path setup algorithm
must be executed. In packet switching, to avoid large overhead, the execution must be
completed within a small fraction of a time slot. When the switch size N is large, this
becomes difficult with a central algorithm. An advantage of switches constructed using
interconnection networks is their distributed routing algorithm that can be scaled more
easily. These networks to be discussed in this chapter are sometimes called self-routing
networks in the sense that the switch elements make use of only the destination labels
in the packets to perform switching and that they do not need to know the states of the
other switch elements. There is no direct coordination or communication among the
switch elements and a central controller is not needed. This is an important property,
especially for a large switch with packets of small size, since many packets need to
be switched within a short time.

It is also important to point out that unlike a store-and-forward packet communica-
tion network in which packets are received in their entirety before they are forwarded,
the switch elements in an interconnection network need to process only the header in
order to set their states. Thus, a switch element may start to forward a packet before
the rest of it has arrived. Generally, there are at most a few bits of delay at each switch
element; in many designs, there is only one bit of delay.

3.2.1 Definition of Banyan Networks

Let us first consider a fundamental class of interconnection networks that are not
internally nonblocking called the Banyan networks. Figure 3.4 shows four networks

Networks (a) and (c) are isomorphic: one can be obtained 

from the other by interchanging the shaded elements

(a) (b)

(d)(c)

FIGURE 3.4 Four different Banyan networks: (a) shuffle-exchange (omega) network; (b) reverse
shuffle-exchange network; (c) banyan network; (d) baseline network.
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belonging to this class: the shuffle-exchange network (also called the omega network),
the inverse shuffle-exchange network, the banyan network, and the baseline network.
A point of confusion is that the term “banyan network” is sometimes also used to refer
to the network in (c) and sometimes used to refer to any of the networks. To avoid
confusion and to accommodate the common usage, when referring to the specific
network in (c), we shall use the term “banyan network” with a lowercase “b”, and
when referring to any network in the class, we shall use the term “Banyan network”
with an uppercase “B”. Thus, a banyan network and a baseline network are both
Banyan networks, but the baseline network is not a banyan network. For our purpose
a network is considered a Banyan network if it has these two properties:

1. There is a unique path from any input to any output.

2. There are log2 N columns, each with N/2 2 × 2 switch elements.

These networks may have different properties besides the two common properties
above and it is important to distinguish them. On the other hand, characteristics that
depend only on the two properties above are common to all networks within the
class.

Different Banyan networks may be isomorphic with each other—that is there are
different ways of drawing the same network. For example, by interchanging the posi-
tions of the two shaded switch elements of network (a) (without changing the adjacent
switch elements to which they are connected), we get network (c). If we enclose each
of these two networks in a black box, there is no way of telling them apart just by
their properties. Network (b) is not isomorphic to network (a), because one network
cannot be obtained from the other by just rearranging the drawing. In fact, the input–
output mappings that can be realized in one network may not be realizable in the other
network, and vice versa.2

Let us now examine how a packet can be routed from an input to its desired output
destination. Suppose the output destination is labeled as a string of n = log2 N bits,
b1 · · · bn. This output address is encoded into the header of the packet. In the first
column (or stage), the most significant bit b1 is examined. If it is 0, the packet will be
forwarded to the upper outgoing link; if it is 1, the packet will be forwarded to the lower
outgoing link. In the next stage, the next most significant bit b2 will be examined and
the routing performed likewise. The example in Fig. 3.5 illustrates that after log2 N

stages when all the destination bits have been used, the packet reaches the desired
destination. It is easy to understand why this strategy works. After each stage, the
packet enters a smaller subnetwork, and the number of outputs that can be reached
is halved. The subsets of reachable outputs as the packet progresses through the
stages always include the desired output. After log2 N stages, only the desired output

2The four networks, however, are “internally isomorphic” in the sense that if we ignore the external
connections of inputs and outputs to the switch elements at the first and last stages, we may obtain one
network from the other by rearranging the positions of switch elements. This means that by rearranging the
connections of inputs and outputs to the first and last stages, all the four networks can be made isomorphic
to each other, and as a result they realize the same input–output mappings.
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FIGURE 3.5 Routing in the banyan network.

remains. Notice that the routing algorithm is distributed. Each switching element
makes its decision based on only one bit, and a central controller is not needed.

Since the shuffle-exchange network in (a) is isomorphic to this network, the same
routing strategy will also work for the shuffle-exchange network. We shall explain why
the same routing network works for the shuffle-exchange network from a different
viewpoint in one of the subsequent chapters. This routing strategy, however, will not
work for the reverse shuffle-exchange network in (c). The reverse shuffle-exchange
network is a mirror image of the shuffle-exchange network. In this network, one
should route a packet starting from the least significant bit of the output address and
proceeding to the most significant bit.

3.2.2 Simple Switches Based on Banyan Networks

So far we have examined the routing of one packet without considering contention
among packets while they are being routed. As discussed before, packets may contend
for the same output. For Banyan networks, packets with different output addresses
may also contend with each other internally for the same outgoing link of a switch
element, as illustrated in Fig. 3.6.

Let us consider the throughput and the loss probability of the Banyan network
when it is operated as a loss system. Assume a uniform-traffic situation in which
each packet is equally likely to be destined for any of the outputs. Because of the
unique-path property, a packet is also equally likely to be destined for either of the
two outgoing links at each switch element. Let

Pm = Pr[there is a packet at an input link at stage m + 1].

The input load of the network is P0 = ρo. Note that Pm decreases as m increases
as more and more packets are dropped. To express Pm+1 in terms of Pm, consider
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FIGURE 3.6 Internal and external conflicts when routing packets in a banyan network.

an outgoing link of a switch element in stage m + 1, as shown in Fig. 3.7. There
is a packet on this link only if at least one incoming packet is destined for it. The
probability that there is no packet destined for it is (1 − Pm/2)2; taht is, neither of
the inputs has a packet destined for it. Thus,

Pm+1 = 1 − (1 − Pm/2)2 = Pm − P2
m/4. (3.1)

m + 1

Pm Pm+1

654321 7
n = log2 N

0.1

0.2

0.3

0.4

0.5

0.6

Ploss = n / (n+4) {Approximation}

ρ0 = 1

FIGURE 3.7 Loss probability of the Banyan network operating as a loss system.
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From the above, we can calculate Plog2 N in a recursive manner and obtain the loss
probability from

Ploss = P0 − Plog2 N

P0
. (3.2)

However, a closed-form expression for Ploss cannot be obtained this way, since Plog2 N

is not in closed form. As an approximation, suppose we treat m as a “continuous”
variable and expand Pm+1 as a Taylor series:

Pm+1 = Pm + dPm

dm
+ 1

2!

d2Pm

dm2 + · · ·

If dnPm/dmn is small for n ≥ 2, then (3.1) can be viewed as the recursion relation
for the following differential equation:

dPm

dm
= −P2

m

4
. (3.3)

From this, we have

dPm

P2
m

= −dm

4
.

Integrating from m = 0 and substituting P0 = ρo yields

Pm = 4ρo

mρo + 4
. (3.4)

The overall packet loss probability is then given by

Ploss = ρo − Pn

ρo
= nρo

nρo + 4
, (3.5)

where n = log2 N. The maximum throughput is obtained when ρo = 1, and it is

ρ∗ = 1 − Ploss = 4

n + 4
. (3.6)

Figure 3.7 plots the loss probability as a function of n for ρo = 1. The loss probabil-
ity increases quite rapidly with n. Even for a small 4 × 4 switch, the loss probability is
already greater than 0.5. Thus, this switch is not suitable for a communication network
that must provide good quality of service. The problem with the Banyan network is
that there is one and only one path from an input to an output. One must provide more
paths from inputs to outputs in order to reduce the loss probability. We shall examine
in the next chapter how switch parameters, such as the group size, can be engineered
to improve performance.
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As an alternative, we can also operate the Banyan network as a waiting system.
Packets that have lost contention can be queued either at the inputs or at the switch el-
ements where they lost contention. Although there is no packet lost due to contention,
the switch throughput will still be severely limited. For example, if ρo > ρ∗ in (3.6),
then no matter how much buffer we have for the packet queues, they will overflow,
since the Banyan network will not be able to clear the packets as fast as they arrive.

3.2.3 Combinatoric Properties of Banyan Networks

To look at the limitations of the Banyan network from a more fundamental angle, let
us consider how many input–output mappings can be realized by the Banyan network.
There are altogether N

2 log2 N switch elements in the Banyan network. Thus, there are

2
N
2 log2 N = NN/2 states. By the unique-path property of the network, each of these

states corresponds to a unique input–output mapping.
Since each incoming packet can be destined for any output regardless of the other

packets, there are NN possible input–output mappings. Thus, the fraction of realizable
input–output mappings is

NN/2

NN
= 1

NN/2 ,

which approaches zero very quickly as N becomes large.

3.2.4 Nonblocking Conditions for the Banyan Network

It turns out that if the output addresses of the packets are sorted either in an ascending
or in a descending order, the banyan network (note: not all the networks in the class
of Banyan networks), and therefore its isomorphic shuffle-exchange network, will be
internally nonblocking; Fig. 3.8 illustrates this with an example. Thus, if the banyan
network is preceded by a network that sorts the packets according to their output
destinations, the overall sort-banyan network will be internally nonblocking.

Theorem 3.1. The banyan network is nonblocking if the active inputs (inputs with
arriving packets) x1, . . . , xm (xj > xi if j > i) and their corresponding output desti-
nations y1, . . . , ym satisfy the following:

1. Distinct and monotonic outputs: y1 < y2 < · · · < ym or y1 > y2 > · · · > ym.

2. Concentrated inputs: Any input between two active inputs is also active. That
is, xi ≤ w ≤ xj implies input w is active.

Proof. We know that as a packet is routed in the banyan network, it enters a smaller
and smaller subnetwork, as illustrated in Fig. 3.9. The entrance of stage k of an n-stage
banyan network sees 2k−1 subnetworks from top to bottom. Each node in stage k can
be uniquely represented by two binary numbers (an−k · · · a1, b1 · · · bk−1). Intuitively,
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FIGURE 3.8 (a) An example showing the banyan network is nonblocking for sorted inputs; (b)
nonblocking sort-banyan network.

b1 · · · bk−1 is the subnetwork label and an−k · · · a1 is the relative position of the node
numbered from the top within the subnetwork.

Node (an−k · · · a1, b1 · · · bk−1) in stage k is connected by output link bk (0 or 1) to
node (an−k−1 · · · a1, b1 · · · bk−1bk). Thus, the path from an input x = an · · · a1 to an
output y = b1 · · · bn, denoted by 〈x, y〉, consists of the following sequence of nodes:

(an−1 · · · a1, ∅)
b1→ (an−2 · · · a1, b1) · · · (an−k · · · a1, b1 · · · bk−1) · · · bn−1→

(∅, b1 · · · bn−1).

Suppose that two packets, one from input x = an · · · a1 to output y = b1 · · · bn and
the other from input x′ = a′

n · · · a′
1 to output y′ = b′

1 · · · b′
n, collide in stage k. That is,

the two paths 〈x, y〉 and 〈x′, y′〉 merge at the same node (an−k · · · a1, b1 · · · bk−1) =
(a′

n−k · · · a′
1, b

′
1 · · · b′

k−1) and share the same outgoing link bk = b′
k. Then, we have

an−k · · · a1 = a′
n−k · · · a′

1 (3.7)

and

b1 · · · bk = b′
1 · · · b′

k. (3.8)

Since the packets are concentrated, the total number of packets between inputs x and
x′, inclusively, is

|x′ − x| + 1. (3.9)
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FIGURE 3.9 (a) Labeling of nodes in the banyan network; (b) sequence of nodes traversed by
a packet from input an · · ·a1 to output b1 · · ·bn .

By condition 1, all these packets are destined for different outputs, and therefore there
must be |x′ − x| + 1 distinct output addresses among them. Considering the monotone
condition, the largest and the smallest addresses must be y and y′, respectively, or
y′ and y, respectively. Hence, |y − y′| + 1 ≥ number of distinct output addresses =
|x′ − x| + 1, or

|x′ − x| ≤ |y′ − y|. (3.10)

According to (3.7) and (3.8),

|x′ − x| = |a′
n · · · a′

1 − an · · · a1|
= |a′

n · · · a′
n−k+10 · · · 0 − an · · · an−k+10 · · · 0|

= 2n−k|a′
n · · · a′

n−k+1 − an · · · an−k+1|
≥ 2n−k (3.11)
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FIGURE 3.10 An example of unsorted packets having no conflict in the banyan network.

and

|y′ − y| = |b′
1 · · · b′

n − b1 · · · bn|
= |b′

k+1 · · · b′
n − bk+1 · · · bn|

≤ 2n−k − 1. (3.12)

But (3.11) and (3.12) contradict (3.10). Therefore, the two paths 〈x, y〉 and 〈x′, y′〉
must be link-independent, and the theorem is proved. �

As long as the two conditions above are satisfied, the banyan network is nonblocking.
On the other hand, when the two conditions are not satisfied, the banyan network is
not necessarily blocking. An example in which the conditions are not satisfied but the
banyan network is still nonblocking is shown in Fig. 3.10. One can conjure up many
other examples.

For instance, if a set of packets can be routed without internal conflicts then we
can shift (cyclically) the inputs occupied by the packets by a constant amount without
creating internal conflict (see Fig. 3.11 for an example).

Theorem 3.2. Let the input–output pair of packet i be denoted by (xi, yi). If the
packets can be routed through the banyan network without conflicts, so can the set of
packets (xi + z (modN), yi).

Proof. By contradiction, suppose that two packets, one from input x + z (mod N) =
an · · · a1 to output y = b1 · · · bn and the other from input x′ + z (mod N) = a′

n · · · a′
1

to output y′ = b′
1 · · · b′

n, collide in stage k. Then, using the same argument as in the
proof of the preceding theorem, we have

an−k · · · a1 = a′
n−k · · · a′

1 (3.13)
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FIGURE 3.11 Sorted packets in Fig. 3.8(a) remain unblocked after their inputs are shifted
(mod 8) by 6.

and

b1 · · · bk = b′
1 · · · b′

k. (3.14)

Also,

x = (x + z) − z = (x + z) + (N − z) (mod N),

x′ = (x′ + z) − z = (x′ + z) + (N − z) (mod N). (3.15)

Let N − z = cn · · · c1. Then,

x = an · · · a1 + cn · · · c1 (mod N),

x′ = a′
n · · · a′

1 + cn · · · c1 (mod N). (3.16)

In other words, x and x′ are the addition of cn · · · c1 to an · · · a1 and a′
n · · · a′

1, re-
spectively, with only the n least significant bits retained. If an−k · · · a1 = a′

n−k · · · a′
1,

then

an−k · · · a1 + cn−k · · · c1 = a′
n−k · · · a′

1 + cn−k · · · c1. (3.17)

The above expressions may have more than n − k bits. The n − k least significant bits
must be equal for the whole expressions to be equal. Thus, the n − k least significant
bits of x and x′ are equal. Therefore, if the two packets with input–output pairs
(x + z (mod N), y) and (x′ + z (mod N), y′) collide in stage k, so will the two packets
with input–output pairs (x, y) and (x′, y′). �
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The properties summarized in the two theorems let us implement many useful
functions using the banyan and reverse banyan networks. We already see that an
internally nonblocking network can be constructed by cascading a sorting network
and a banyan network. We can also build a packet concentrator using a reverse banyan
network. That is, suppose not all N inputs are always active and we want to concentrate
the incoming packets to M < N links. Unlike for switching, it is not necessary for
the concentrator to route a packet to a specific output—any one of the M outputs
would do. To concentrate packets using the reverse banyan network in a nonblocking
fashion, we can assign the first packet (from top to bottom) the output address 0, the
second packet the output address 1, and so on. By routing from the least significant
bit of the address to the most significant bit, Theorem 3.1 says that the packets would
not have internal conflict—of course, we have to interpret the inputs as outputs and
outputs as inputs.

We can also build a shifter using a reverse banyan network. Suppose that we want to
distribute the incoming packets in a cyclic fashion to the outputs. Say, in the previous
time slot, a batch of packets arrive and they are assigned to adjacent outputs with
output i being the last (from top to bottom) having a packet assignment. In the current
time slots, the batch of incoming packets is to be distributed to outputs i + 1 (mod N),
i + 2 (mod N), and so on. Instead of assigning the output addresses starting from 0,
as in the ordinary concentrator, we offset the assignment by i + 1 (mod N). Thus,
the first packet is assigned to output i + 1 (mod N), the second packet to output
i + 2 (mod N), and so on. By keeping track of the next output to be assigned, we
can distribute packets to the outputs in a cyclic and evenly manner. Theorem 3.1
together with Theorem 3.2 says that assigning output addresses this way does not
cause internal conflict.

One can implement the concentration and shifting functions together in a reverse
banyan network. Suppose that the number of outputs is M < N, with M a power of
2. Then, instead of offsetting output addresses using mod N arithmetic, we can use
mod M arithmetic. The reader can easily check that the shifting property in Theorem
3.2 is still valid. Both the concentrator and the shifter are useful building blocks for
constructing other switching and computation architectures, as will be seen in the
next chapter.

3.3 SORTING NETWORKS

A sorting network is a nonblocking network by itself if

1. All inputs are active.

2. No two packets are destined for the same output.

This is illustrated in Fig. 3.12(a). Let us first examine condition 1 assuming condition
2 is satisfied. When some of the inputs are inactive, the packets may arrive at the
wrong destination, as illustrated in Fig. 3.12(b). This is the reason why we need to
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FIGURE 3.12 Examples showing that the sorting network (a) switches correctly when all inputs
are active and have no common outputs; (b) switches incorrectly when some inputs are inactive;
(c) switches incorrectly when some inputs have common outputs.

cascade a banyan network with the sorting network in order to build an internally
nonblocking network based on a distributed routing algorithm.

The qualifier “based on a distributed routing algorithm” is an important one. With
a central controller, the sorting network by itself can be easily made nonblocking as
follows. On the inactive inputs, the central controller may introduce dummy (artifi-
cial) packets that are destined for the idle outputs in order to make the sorting network
nonblocking by itself (see Fig. 3.13). These dummy packets can be discarded at the
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Dummy packets with destinations 
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Dummy packets 

discarded at outputs

FIGURE 3.13 An example showing that dummy packets with nonconflicting destinations may
be introduced to make the sorting network switch correctly when not all inputs are active; this
requires knowledge of the destinations of active inputs.
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outputs. But this requires the knowledge of the destinations of all the “real packets” in
order that the destinations of the dummy packets can be assigned in a nonconflicting
manner, hence the need for a central agent that gathers this information. The require-
ment of this global knowledge defeats the purpose of the self-routing operation.

Condition 2 is often not satisfied in packet switching. When packets contend for
the same output, the contention needs to be resolved one way or another. This has
been discussed at a preliminary level earlier in this chapter and will be dealt with at
a more detailed level later.

3.3.1 Basic Concepts of Comparison Networks

A comparison network is constructed of 2 × 2 comparators shown in Fig. 3.14(a).
A comparator takes two input numbers and places the smaller number on the upper
output and the larger number on the lower output. A comparator can sometimes be
more conveniently represented by drawing a vertical line with inputs on the left and
outputs on the right, as shown in Fig. 3.14(b).

A comparison network is an interconnection comparator. Not all comparison net-
works are sorting networks. Sorting networks are those that can take N input numbers
and transform them into a sorted sequence at the outputs. Figure 3.15 shows a sorting
network.

A comparison network consists of several stages of comparators. The comparators
at stage d take the outputs of the comparators at stages before d (i.e., d − 1, d −
2, . . . , 1) as their inputs. For a unique representation, we also insist that a comparator
at stage d must have at least one of its inputs taken from stage d − 1; otherwise it will
be placed at a stage before d. The structure of a comparison network corresponds to
an algorithm or procedure that specifies how comparisons are to occur.

The zero–one principle states that if a sorting network sorts those inputs consisting
of only 0’s and 1’s correctly, then it sorts arbitrary numbers correctly. This is a very
powerful principle. It allows us to concentrate on inputs drawn from {0, 1} in con-
structing a working sorting network. Once we have proved that the sorting network
works for 0’s and 1’s, we can appeal to the zero–one principle to show that it works
properly for numbers of arbitrary values. Before proving the zero–one principle, let
us establish the order-preserving property:

ai
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min(ai, aj)

max(ai, aj)
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(b)

FIGURE 3.14 (a) A comparator; (b) a compact way of representing a comparator.
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representation.

Order-Preserving Property. Suppose a comparison network transforms the in-
put sequence a = 〈a1, a2, . . . , aN〉 into the output sequence b = 〈b1, b2, . . . , bN〉,
then for any monotonically increasing function f , the network transforms the in-
puts sequence f (a) = 〈f (a1), f (a2), . . . , f (aN )〉 into the output sequence f (b) =
〈f (b1), f (b2), . . . , f (bN )〉.

Proof. With reference to Fig. 3.16, consider a comparator with inputs x and y and
upper output min(x, y) and lower output max(x, y). Without loss of generality, let
x ≤ y. Since f is monotonically increasing, this implies f (x) ≤ f (y). Thus, if the

x
y

min(x, y)
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FIGURE 3.16 Illustration that a comparator has the order-preserving property.
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FIGURE 3.17 (a) The inputs and outputs of a comparator at stage d when input sequence is
a; (b) the inputs and outputs of the same comparator when input sequence is f (a).

inputs were f (x) and f (y), the upper and lower outputs would be, respectively,

min(f (x), f (y)) = f (x) = f (min(x, y)),

max(f (x), f (y)) = f (y) = f (max(x, y)). (3.18)

Thus, a comparator has the order-preserving property. For a general comparison net-
work, we can show by induction the correctness of this statement: If an output of a
comparator at stage d assumes the value of ci when the input sequence to the overall
network is a, it assumes a value of f (ci) when the input sequence is f (a). Note that
since stage d can be any stage, including the last stage, the correctness of the above
statement implies the order-preserving property.

By (3.18), the statement is true for d = 1, since numbers at the outputs of stage 1
have passed through at most one comparator. By induction, assume that the statement
is true for stages d − 1 and below, we want to show that it is also true for stage d. The
inputs to a comparator at stage d are outputs from the stages d − 1 and below. Thus, if
the inputs assume the value of ai and aj when the input sequence is a, they must assume
the values f (ai) and f (aj) (see Fig. 3.17) when the input sequence is f (a). When the
input sequence is a, the upper and lower outputs of the comparator are ci = min(ai, aj)
and cj = max(ai, aj), respectively. Therefore, by (3.18), the upper and lower outputs
are f (min(ai, aj)) = f (ci) and f (max(ai, aj)) = f (cj), respectively, when the input
sequence is f (a). �
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With the order-preserving property, it is easy to prove the zero–one principle.

Theorem 3.3. If a sorting network with N inputs sorts all the 2N possible sequences
of 0’s and 1’s correctly, then it sorts all sequences of arbitrary input numbers correctly.

Proof. Consider a network that sorts input sequence of 0’s and 1’s correctly. By
contradiction, suppose that it does not sort input sequences of arbitrary numbers
correctly. That is, there is an input sequence 〈a1, a2, . . . , aN〉 containing two elements
ai and aj such that ai < aj , but the network places aj before ai. Define a monotonically
increasing function

f (x) =
{

0, if x ≤ ai,

1, if x > ai.

According to the order-preserving property, since the network places aj before ai

when the input sequence is 〈a1, a2, . . . , aN〉, it places f (aj) = 1 before f (ai) = 0
when the input sequence is 〈f (a1), f (a2), . . . , f (aN )〉. But this input sequence con-
sists of only 0’s and 1’s, and yet the network does not sort it correctly, leading to a
contradiction. �

3.3.2 Sorting Networks Based on Bitonic Sort

There are many ways to construct sorting networks. Merging is a divide-and-conquer
technique for sorting. A k-merger takes two sorted input sequences and merges them
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FIGURE 3.19 Sorting based on merging; successive shorter sorted sequences are merged
into longer sorted sequences.

into one sorted sequence of k elements. Intuitively, merging is easier than sorting in
general because the inputs are already partially sorted. Suppose we have mergers of
different sizes; Fig. 3.19 shows how these mergers can be interconnected together
to sort an arbitrary input sequence. We start with N unsorted numbers, and merge
them using 2-mergers into N/2 sorted sequences, each with two numbers. The N/2
sequences are then merged into N/4 sequences, each with four numbers, and so on,
until we are left with one sorted sequence. One way to construct the mergers is to use
the bitonic sorting algorithm invented by Batcher.

A bitonic sequence is a sequence that either increases monotonically and then
decreases monotonically, or decreases monotonically and then increases monotoni-
cally. In other words, it is a concatenation of two sequences sorted in opposing di-
rections. Sequences that are either increasing monotonically or decreasing monoton-
ically are also considered bitonic. For example, the sequences 〈0, 1, 4, 6, 7, 7, 5, 4〉,
〈9, 8, 7, 3, 3, 2, 4, 6〉, 〈0, 1, 4, 7, 7, 7, 8, 8〉, and 〈8, 7, 3, 3, 2, 1, 1, 0〉 are all bitonic.
A bitonic sorter is a merger that takes a bitonic sequence (i.e., two concatenated
sorted sequences, one ascending and one descending) and sorts it into a monotonic
sequence, as depicted in Fig. 3.20.

To explain the sorting network based on bitonic sorters, let us only consider
inputs consisting of only 0’s and 1’s. If the resulting sorting network can sort the
0’s and 1’s, by the zero–one principle, it can sort arbitrary numbers. The zero–one
principle does not, however, imply that the bitonic sorter that works for 0’s and
1’s will work for arbitrary numbers, even though that is true. It only implies that
the overall sorting network constructed out of many bitonic sorters will work for
any arbitrary numbers. One of the exercises asks you to use the order-preserving
property to show the analog of the zero–one principle that applies to bitonic sorters
specifically.
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A bitonic sequence consisting of only 0’s and 1’s is either of the form 0i1j0k or
of the form 1i0j1k, for some i, j, k ≥ 0, where the notation xi means i successive
x values. A bitonic sequence a is said to be no less (greater) than another bitonic
sequence if none of the element in a is less (greater) than any of the elements in b;
symbolically, we write a ≥ b if a is not less than b and a ≤ b if a is not greater than
b. For example,

〈001100〉 ≥ 〈000000〉,
〈111100〉 ≤ 〈111111〉.

Two sequences do not necessarily have an ordering relationship. For example,
〈001100〉 is neither not less than nor not greater than 〈111100〉. Two zero–one se-
quences have an ordering relationship if and only if at least one of them is consisting
of all 0’s or all 1’s. This is one reason why it is easier to focus on zero–one sequences
in constructing a comparison network.

The following theorem shows how a bitonic sequence a can be decomposed into
two bitonic subsequences a′ and a′′ with a′ ≤ a′′ using only one stage of comparators.
The same decomposition method can then be applied to a′ and a′′ to produce four
bitonic subsequences with each subsequence not greater than the next. Applying
this decomposition in a recursive manner allows us to sort the original bitonic
sequence into a monotonic sequence (when all the subsequences have only one
element).

Theorem 3.4. If a zero–one sequence of 2n elements a = 〈a1, a2, . . . , a2n〉 is bitonic,
then the two n-element sequences

a′ = 〈min(a1, an+1), min(a2, an+2), . . . , min(an, a2n)〉
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and

a′′ = 〈max(a1, an+1), max(a2, an+2), . . . , max(an, a2n)〉

have two properties:

1. They are both bitonic.

2. a′ ≤ a′′.

Comment. The above decomposition can be implemented by a single stage of n

comparators, called a half-cleaner, as depicted in Fig. 3.21. As shown, elements in
the first half and the second half of the input sequence are paired and compared. The
larger elements and smaller elements of the comparisons form two subsequences with
the above properties. Since a′ and a′′ have an ordering relationship and they consist of
only 0’s and 1’s, at least one of them must be all 0’s or all 1’s. A sequence consisting
of all 0’s or all 1’s is said to be clean, hence the name half-cleaner for the comparison
network.

Proof. Without loss of generality, suppose that the bitonic sequence is of the form
0i1j0k. Proving the case 1i0j1k is similar to the argument presented here. There are
only four possible cases depending on where the midpoint falls, as shown in Fig. 3.22.
Cases (i) and (ii) have midpoints falling on a block of 0’s. From the figure, it can be
seen that the theorem holds for both cases. Cases (iii) and (iv) have midpoints falling
on the block of 1’s. In case (iii), there are more 0’s than 1’s in the sequence a, and
in case (iv), there are at least as many 1’s as 0’s. Again, as shown in the figure, the
theorem holds for both cases. �
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FIGURE 3.22 Operations performed by a half-cleaner for different cases.

Figure 3.23 shows the decomposition of a k-bitonic sorter (one that sorts k elements)
into a k-half cleaner followed by two k/2-bitonic sorters. The above theorem states that
the inputs to the lower k/2-bitonic sorter are not less than the inputs to the upper k/2-
bitonic sorter. Furthermore, each of the input sequences is bitonic. The k/2-bitonic
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FIGURE 3.23 Recursive construction of a k -bitonic sorter.
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FIGURE 3.24 (a) A sorting network based on merging using bitonic sorters; (b) the same
network broken down into comparators.

sorters can be further broken down into two k/2-half cleaners and four k/4-bitonic
sorters using the same decomposition. Applying the decomposition recursively, only
2-bitonic sorters are left in the end, and 2-bitonic sorters are simply comparators.
Notice that the structure of the bitonic sorter is the same as that of the banyan network,
and it consists of log2 N stages of comparators.

Now that we know how to build bitonic sorters, we can use them as the mergers in
Fig. 3.19 to build an overall sorting network that sorts arbitrary zero–one sequences
(i.e., sequences that are not necessarily bitonic). Figure 3.24 shows the construction
of an 8 × 8 Batcher sorting network based on the bitonic sort.

To compute the number of comparators in a Batcher sorting network, note that the
number of stages in a k-bitonic sorter is

f (k) = log2 k. (3.19)

Figure 3.24(a) shows that an input element passes through one 2-bitonic sorter,
one 22-bitonic sorter, one 23-bitonic sorter, and so on, on its way to the output of
the overall sorting network. Therefore, the total number of stages in the Batcher
network is

log2 N∑
i=1

f (2i) =
log2 N∑
i=1

i = log2 N(log2 N + 1)

2
. (3.20)
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FIGURE 3.25 Recursion for odd–even merging networks.

Since each stage in the sorting network has N/2 comparators, the total number of
comparator is

N log2 N(log2 N + 1)

4
. (3.21)

The number of elements in the sorting network is therefore of order N log2
2 N.

3.3.3 The Odd–Even Sorting Network

Batcher also invented another order N log2
2 N sorting network. As in the bitonic

sorting algorithm, sorting by merging is used. Instead of using bitonic sorters for
merging, odd–even mergers are used. The basic idea of the recursive odd–even merger
is illustrated in Fig. 3.25. The essence is contained in the following theorem.

Theorem 3.5. Consider two sorted input sequences a = 〈a1, . . . , an〉 and b =
〈b1, . . . , bn〉. The odd-indexed elements of a and b, a′ = 〈a1, a3, . . .〉 and b′ =
〈b1, b3, . . .〉, and the even-indexed elements, a′′ = 〈a2, a4, . . .〉 and b′′ = 〈b2, b4, . . .〉,
are all sorted subsequences. Suppose that the odd-indexed subsequences a′ and b′ are
merged into a sorted sequence d = 〈d1, d2, . . .〉, and the even-indexed subsequences
a′′ and b′′ are merged into e = 〈e1, e2〉. Then, it can be shown that

ei−2 ≤ di ≤ ei. (3.22)

Comment. The above merging of a′ and b′, and a′′ and b′′, is depicted in Fig. 3.25.
The theorem implies that c = 〈d1, min(d2, e1), max(d2, e1), . . . , min(di, ei−1),
max(di, ei−1), . . . , 〉 must be a sorted sequence: that each element is at least as large as
the preceding element can be easily verified using (3.22). The sequence c is produced
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at the last stage of the odd–even merger in Fig. 3.25. The smaller mergers in the mid-
dle are implemented by the same algorithm in a recursive manner. Note the difference
between the bitonic recursion and the odd–even recursion: the smaller mergers in the
former are positioned after the one-stage comparison whereas the latter is the other
way round.

Proof. Let us assume n is even. The proof for odd n is similar. We appeal to the
zero–one principle and shall assume a and b to consist of only 0’s and 1’s. Let
f (x) = (nx, mx) be a tuple denoting the number of 0’s, nx, and the number of 1’s,
mx, in the sequence x. Then, for even n, it can be easily seen that

f (a′) =
(⌈na

2

⌉
,
⌊ma

2

⌋)
,

f (a′′) =
(⌊na

2

⌋
,
⌈ma

2

⌉)
,

f (b′) =
(⌈nb

2

⌉
,
⌊mb

2

⌋)
,

f (b′′) =
(⌊nb

2

⌋
,
⌈mb

2

⌉)
.

Therefore, since d and e are sorted sequences resulting from merging a′ and b′,
and a′′ and b′′, respectively, we have

f (d) =
(⌈na

2

⌉
+

⌈nb

2

⌉
,
⌊ma

2

⌋
+

⌊mb

2

⌋)
,

f (e) =
(⌊na

2

⌋
+

⌊nb

2

⌋
,
⌈ma

2

⌉
+

⌈mb

2

⌉)
.

The number of elements in d and e is the same. The number of 0’s in d is no smaller
than that in e, implying di ≤ ei. The number of 0’s in d can be more than that in e

by at most 2, implying ei−2 ≤ di for i = 3, 4, . . .. These observations complete the
proof. �

3.3.4 Switching and Contention Resolution in Sort-Banyan Network

Recall that in packet switching, the output address of a packet is contained in
the header. When using the Batcher sorting network for switching, the compara-
tor only looks at the header and passes on the information bits without examining
them. Only a delay of one-bit duration is experienced by packets passing through a
comparator.

Figure 3.26 illustrates the operation of a comparator used for packet switching.
Suppose that the output address of the upper packet is 0010 and that of the lower
packet is 0001, and suppose that the comparator is in the bar state initially. Each
time a bit of the output address has arrived on both inputs, the comparator does a
comparison. If both bits are 0’s or 1’s, as in the first and second bits in our example,



72 FUNDAMENTAL PRINCIPLES OF PACKET SWITCH DESIGN

0100…

1000…

Header
Information 

bits

Order of arrival 
from right to left

Comparator in 
bar state

010…

100…
Remain in bar state 
after first bit

0

0

01…

10…
Remain in bar state 
after second bit

00

00

0…

1…

Set to cross state after 
third bit because upper 
input is larger, remains 
in cross state for the 
whole packet duration

000

100

FIGURE 3.26 The operation of a comparator used in a sorting network for packet switching.

the comparator remains in the bar state and the bits are forwarded to the outputs. This
comparison of the bits introduces a one-bit delay. Note that if both bits are the same,
it does not matter whether the comparator is in the bar or cross state. Upon the arrival
of the first pair of bits that differ, the comparator sets its state so that the input with bit
0 is connected to the upper output and the input with bit 1 is connected to the lower
output. In our example, the two output addresses 0010 and 0001 start to differ in the
third bits, and when the third bits on both inputs have arrived, the comparator sets
itself into the cross state, since the upper bit is 1 and the lower bit is 0. The comparator
remains in this state until all the bits of the packets, including the information bits,
have passed through and the next batch of two packets arrives, at which time it starts
to compare headers again.

Not all inputs of the sorting network have packets all the time. We can assign an
additional bit to the header called the activity bit. This bit will be treated as the most
significant bit and is the first bit of the packet to arrive at a comparator. For the active
inputs, the activity bit is set to 0. For the idle inputs, a dummy packet is constructed
and its activity bit is set to 1; it does not matter what the rest of the bits of the dummy
packet are. With the activity bits thus set, the sorting network will “push” all the
dummy packets to the lower end of the outputs. Therefore, the output packets of the
sorting network are concentrated and have output addresses that are monotone. These
packets can then be routed in the banyan network without conflict if there is no output
conflict.
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A complete Batcher–banyan network is shown in Fig. 3.27. The Batcher network
is based on the bitonic sorting algorithm. In packet switching, we cannot guarantee
that no two arriving packets are destined for the same output. Each input, without
knowing the output addresses of the other input, does not know whether its packet
conflicts with the others’ packets. A contention-resolution scheme is needed so that
only a subset of nonconflicting packets can enter the Batcher–banyan network. We
shall focus on a three-phase switching scheme. The first two phases are for contention
resolution and third phase is for switching packets that have won contention.

In the probe phase, only the headers of packets enter the sorting network. Packets
having the same output address will be adjacent to each other at the output of the
sorting network. Output j + 1 then checks with output j to see if their packet addresses
are the same. If yes, we can let output j be the winning packet and output j + 1 be
the losing packet. In this way, we will only choose one winning packet for each
output destination. This comparison operation is local and therefore consistent with
the self-routing requirement.

The next phase is the acknowledgment phase. If the sorting network is designed
with back-propagating paths, acknowledgments can be sent to the inputs of the win-
ning packets through the backpropagating paths. To implement the backpropagating
paths, each node in the Batcher network can have a companion backward 2 × 2
switch element in addition to the forward sorting element. The companion elements
of adjacent stages are interconnected in the same way as the forward sorting cell.
Furthermore, the state of the companion switch element is set in the same way as the
sorting element: in other words, if the sorting cell is in the bar (cross) state, so is the
backward switch element. As depicted in Fig. 3.28, the backpropagating paths travel
through the same nodes as the forward paths set by the sorting network.

The third phase is the send phase. The inputs that receive an acknowledgment can
now send their packets into the sort-banyan network without internal conflict. The
inputs that have lost contention buffer their packets in a buffer so that they can attempt
for output access in the next cycle.
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FIGURE 3.28 Three-phase scheme for sort-banyan network (a) is for probing for conflict; (b) is
for acknowledgment of winning packets; (c) is for routing winning packets.

There are many possible variations to the above basic scheme. The main idea,
however, is to use the sort-banyan network as the contention arbiter as well as the
switching network. The initial two phases are for contention resolution. While the
first two phases are ongoing, no packets are being routed to their outputs, and this in-
troduces a certain amount of contention-resolution overhead, reducing the throughput
of the switch to below 100%.
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The so-called head-of-line (HOL) blocking further reduces the throughput of the
switch. Since the packets losing contention are buffered at their inputs, the sort-
banyan network as described above is a waiting system. While the packets are being
buffered, new packets may arrive, forming queues at the inputs. As illustrated in
Fig. 3.29, the second packet of an input queue whose first packet has lost contention
may be destined for an idle output. If the packets at the inputs access their outputs
in a first-in-first-out fashion, the second packet cannot access its output until the first
packet has accessed its own output. It is said to be blocked by the first (or HOL)
packet. The throughput limitation due to HOL blocking will be derived in the next
chapter.

3.4 NONBLOCKING AND SELF-ROUTING PROPERTIES
OF CLOS NETWORKS

In the previous sections, we have introduced the fundamental properties of Banyan
networks and demonstrated the way to construct a nonblocking packet switch based
on them. Here, we turn our concern to the Clos networks. We shall focus on their
nonblocking conditions and self-routing properties.

Before proceeding, we need to present a scheme to assign addresses to the inputs
and outputs of Clos networks. Let us consider a three-stage Clos network as shown in
Fig. 3.30, which is characterized by two integer parameters p and q. Here, the number
of inputs and outputs N is given by N = pq. There are two ways to address the inputs
and outputs. One is to number them in a consecutive top-to-bottom manner from 0 to
N − 1. The other is to use a 2-tuple addressing scheme. An input is numbered (ai, bi)
if it is the (bi + 1)th input port on switch module ai. Similarly, an output is numbered
(xi, yi) if it is the (yi + 1)th output port on switch module xi. The 2-tuple addresses
s̃i and d̃i can be obtained from their corresponding consecutive addresses si and di by

s̃i =
(⌊

si

q

⌋
, [si]q

)
and d̃i =

(⌊
di

q

⌋
, [di]q

)
, (3.23)
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FIGURE 3.30 A three-stage Clos network with address numbering scheme.

where 
 a
b
� is the largest integer smaller than a/b and [a]b is the reminder of a/b. For

simplicity, we will denote the address (ai, bi) by aibi whenever there is no ambiguity.
Actually, the 2-tuple addressing scheme can be used for routing. For instance, to go

from any middle-stage module to an output xiyi, a packet should go to the (xi + 1)th
output in the middle-stage module and to the (yi + 1)th output in the output-stage
module. Since each middle-stage module here is of size p × p and each output-stage
module is q × q, xi is of base p (0 ≤ xi ≤ p − 1) and yi is of base q (0 ≤ yi ≤ q − 1).

3.4.1 Nonblocking Route Assignment

For nonblocking routing of packets across a Clos network, we need a route assignment
algorithm to assign a middle-stage module for each connection request. An assignment
is nonblocking if none of the internal links is shared by two paths. Consider a three-
stage Clos network with parameters p and q. There are q middle-stage modules, which
provide totally q alternate paths for each input–output pair. Let C = {0, 1, . . . , q − 1}
be the set of middle-stage modules and π = {(s0, d0), . . . , (sn−1, dn−1)} the input–
output permutation (which may be partial). A sufficient condition for an assignment
f : π → C to be nonblocking is

f (si, di) = f (sj, dj) ⇒ | si − sj |≥ q and | di − dj |≥ q, (3.24)

where di = π(si) and dj = π(sj). That is, if two connections (si, di) and (sj, dj) go
through the same middle-stage module, the condition | si − sj |≥ q guarantees that
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the inputs are on different switch modules and the condition | di − dj |≥ q guarantees
that the outputs are on different switch modules. With this, no more than one input
or output on the same module will be assigned to the same middle-stage module and
hence the assignment is nonblocking. Note that (3.24) is a strong condition in the
sense that we only require si and sj to be on different input-stage modules and di

and dj to be on different output-stage modules for the assignment to be nonblocking.
They do not need to be differed by q.

For an assignment f , the routing tag for the connection (si, di) is given by

(
f (si, di),

⌊
di

q

⌋
, [di]q

)
. (3.25)

The first component in the routing tag is the middle-stage module to which the
connection request is assigned. The second and third components are derived from
the address of the output destination. Thus, once the first component is determined
by the route assignment algorithm, the routing tag can be determined immediately.

Consider the reverse path from output di to input si. In order that si and di to be
connected, they must be assigned the same middle-stage module. Therefore, to go
from di to si, the routing tag for the reverse path is

(
f (si, di),

⌊
si

q

⌋
, [si]q

)
. (3.26)

The set of connection requests π is monotonic if the active inputs s0, s1, . . . , sn−1
and their corresponding outputs d0, d1, . . . , dn−1 satisfy either one of the following
conditions:

si < sj ⇒ di < dj for all i, j; or (3.27)

si < sj ⇒ di > dj for all i, j.

Equivalently, the set of output destinations corresponding to the set of active inputs
is either strictly increasing or strictly decreasing. The reason why we consider mono-
tonic connection requests is because they exhibit a simple nonblocking self-routing
scheme due to the following fundamental lemma.

Lemma 3.1. Let x0, x1, ..., xn−1 be a strict monotonic sequence of integers and define
g(xi) as follows:

g(xi) = [m + i]q for all i,

where m and q are constant integers. Then g(xi) = g(xj) implies | xi − xj |≥ q for
i = j.
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Proof. Without loss of generality, assume that the sequence is increasing and let
i < j. It follows that g(xi) = g(xj), which implies i + lq = j, where l ≥ 1. Thus,

xj − xi = (xj − xj−1) + (xj−1 − xj−2) + · · · + (xi+1 − xi)

≥ 1 + · · · + 1︸ ︷︷ ︸
j−i

= j − i = lq ≥ q.

�

Based on this lemma, we obtain a route assignment algorithm for ordered connec-
tion requests, which routes the calls according to their “ranks” and is the so-called
the rank-based assignment algorithm.

Theorem 3.6 (Rank-Based Assignment Algorithm). Let the set of connection
requests π = {(s0, d0), . . . , (sn−1, dn−1)} be monotonic. The assignment

f (si, di) = [m + i]q, (3.28)

where m is a constant integer and i is the rank of the connection request (si, di = π(si)),
is nonblocking.

Proof. Since the set of connection requests π = {(s0, d0), . . . , (sn−1, dn−1)}
is a monotonic input–output permutation, both sequences (s0, . . . , sn−1) and
(d0, . . . , dn−1) are monotonic. Let

g1(si) = f (si, π(si)) = f (si, di) = [m + i]q and

g2(di) = f (π−1(di), di) = f (si, di) = [m + i]q

for all i. Thus, f (si, di) = f (sj, dj) implies g1(si) = g1(sj) and g2(di) = g2(dj). It
follows from Lemma 3.1 that

| si − sj |≥ q and | di − dj |≥ q.

Hence, the assignment is nonblocking according to the condition given in (3.24). �

As an example, consider a three-stage Clos network with q = 3 and p = 4 and a
set of monotonic connection requests given by

π =
(

1 3 5 6 9 11

2 4 7 8 9 11

)
.

Using the rank-based assignment algorithm, we obtain a nonblocking route as-
signment as shown in Table 3.1. In this case, m = 0. The resulting route assignment
is shown graphically in Fig. 3.31.
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TABLE 3.1 Route Assignment for �

si 1 3 5 6 9 11
di 2 4 7 8 9 11
di (0,2) (1,1) (2,1) (2,2) (3,0) (3,2)
m + i 0 1 2 3 4 5
f (si , di ) = [m + i ]q 0 1 2 0 1 2
Routing tag (0,0,2) (1,1,1) (2,2,1) (0,2,2) (1,3,0) (2,3,2)

3.4.2 Recursiveness Property

In the preceding chapter, we have demonstrated that Clos networks can be recursively
constructed. To determine a nonblocking route assignment for such Clos networks, we
establish the following order-preserving property, which states that in a Clos network
with monotonic connection requests, with the use of the rank-based assignment algo-
rithm, each middle-stage module is itself a Clos network with monotonic connection
requests. That is, we can apply the rank-based assignment algorithm in a recursive
manner to obtain the route assignment of each subnetwork.

Theorem 3.7 (Order-Preserving Property of Clos Networks). If the connection
requests to a three-stage Clos network is ordered, and their routes are assigned by
the rank-based assignment algorithm, then the set of connection requests to each
middle-stage switch module is also monotonic. That is, the order of their ranks is
preserved.

Proof. Given a Clos network with monotonic connection requests, consider a middle-
stage module M and consider two inputs si and sj assigned to M. Let their correspond-
ing outputs be di and dj respectively. Without loss of generality, assume that si < sj
and di < dj . Due to the rank-based assignment algorithm, we have sj − si ≥ q and
dj − di ≥ q. Refer to Fig. 3.32. Let the ports on M to which si and sj are connected
be mi and mj , respectively, and let the ports to which di and dj are connected be ni
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FIGURE 3.32 Order is preserved in a middle-stage module M .

and nj , respectively. Now, from (3.25) and (3.26), we have

mj =
⌊

sj

q

⌋
≥

⌊
si + q

q

⌋
=

⌊
si

q

⌋
+ 1 = mi + 1 > mi,

nj =
⌊

dj

q

⌋
≥

⌊
di + q

q

⌋
=

⌊
di

q

⌋
+ 1 = ni + 1 > ni.

(3.29)

The rank order is preserved in each middle-stage module. The active inputs and their
corresponding outputs on M are therefore monotonic. �

As an example, suppose we have an N × N Clos network with monotonic connec-
tion requests. Assume that N can be factorized into N = pqr. As shown in Fig. 3.33,
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FIGURE 3.33 Recursive construction of Clos network.
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each switch module in the input stage and in the output stage is of size q × q. There
are q middle-stage modules, each of size pr × pr. By Theorem 3.7, each middle-
stage module is a Clos network with monotonic connection requests and can be
further decomposed. Suppose a connection request (si, di) is assigned to a middle-
stage module M. The rank of the corresponding connection request on M is given by

i/q�. To see this, recall that a connection request (si, di) is assigned to a middle-stage
module M if f (si, di) = [m + i]q = M. Without loss of generality, suppose m = 0
and f (si, di) = [i]q. Those connection requests with rank M, M + q, M + 2q, ... are
assigned to M. Taking the integer division of their ranks by q therefore gives the rank
of their corresponding connections on M. In this example, there are p middle-stage
modules in each smaller Clos network. The route assignment within each smaller Clos
network can then be determined recursively and the routing tag for this five-stage Clos
network is ⎛

⎝[r(si)]q ,

[⌊
r(si)

q

⌋]
p

,

⎢⎢⎢⎣
⌊

di

q

⌋
p

⎥⎥⎥⎦ ,

[⌊
di

q

⌋]
p

, [di]q

⎞
⎠ . (3.30)

The first two components in this routing tag are due to the rank-based assignment
and indicate which middle-stage module a call should be routed to. The last three
components are used to route the packet correctly to destination starting from the
middle-stage module.

3.4.3 Basic Properties of Half-Clos Networks

A Clos network can be considered as the cascade combination of two symmetric sub-
networks, referred to as half-Clos networks. One well-known example is the formation
of the Benes network by combining the baseline network and the reverse baseline net-
work. In these half-Clos networks, there is a unique path from any input to any output
that can be completely determined by the output destination address. Thus, we can
see that the half-Clos networks possess the nonblocking self-routing property and all
the multistage interconnection networks (MINs) previously described belong to this
class. When two half-Clos networks are combined to form a Clos network, multiple
alternative paths exist for each input–output pair. These paths are the products of the
unique paths in the half-Clos networks.

Figure 3.34 shows that when a Clos network is divided into two parts, the omega
network and the reverse omega network are formed. Without loss of generality, we
shall study the properties of half-Clos networks based on them and explain the fun-
damental principle behind the rank-based assignment algorithm by combining them
together. This leads us to the observation that any MIN can be combined with its
reverse network to form a general Clos-type network taht also possesses the same
nonblocking self-routing property as that of the classical Clos networks.

3.4.3.1 Omega Network An omega network is the right half of a Clos network.
An example of omega network, together with the address numbering scheme, is shown
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Reverse omega network Omega network

Clos network

FIGURE 3.34 Dividing a Clos network into two half-Clos networks.

in Fig. 3.35. There are three modules in the input stage and four in the output stage.
Using the numbering scheme introduced earlier, we can number each input port and
each output port by a 2-tuple address. The shuffle stage at the inputs is required to
ensure that the same numbering scheme is used in the input and the output ports.
Suppose there is no shuffle stage. Denote an input address by aibi and an output
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address by xiyi. It is easy to see that ai is of base q = 3 and bi is of base p = 4 while
xi is of base p = 4 and yi is of base q = 3. The numbering of inputs and outputs is
therefore inconsistent. With the shuffle stage, the input addresses become biai. Each
tuple in the input address then has the same base as the corresponding tuple in the
output address.

Denote an input si by biai and an output di by xiyi. For the omega network to be
externally nonblocking (i.e., no output port conflict) we must have

xi = xj ⇒ yi = yj, (3.31)

and it is internally nonblocking if and only if the active inputs satisfy

ai = aj ⇒ xi = xj. (3.32)

The following theorem gives the sufficient conditions for an omega network to be
internally nonblocking.

Theorem 3.8 (Nonblocking Conditions for Omega Networks). The omega net-
work is internally nonblocking if the active inputs s0, . . . , sn−1 (sj > si if j > i) and
their corresponding output destinations d0, . . . , dn−1 satisfy the following:

1. Concentrated inputs: Any input between two active inputs is also active. That
is, if si and sj are active and si ≤ w ≤ sj , then w is active.

2. Monotonic outputs: d0 < d1 < · · · < dn−1 or d0 > d1 > · · · > dn−1.

Proof. Using the same 2-tuple numbering scheme, denote two active inputs si and sj
(si < sj) by biai and bjaj , respectively. Similarly denote their corresponding outputs
di and dj by xiyi and xjyj , respectively. Without loss of generality, assume that
di < dj . By the concentrated inputs and monotonic outputs conditions, we have

xjyj − xiyi ≥ bjaj − biai.

We are going to show that the omega network is nonblocking by contradiction. If
ai = aj , we have

xjyj − xiyi ≥ bjaj − biai = (bj − bi) · q ≥ q (3.33)

because ai is of base q. However, xi = xj implies

xjyj − xiyi = yj − yi ≤ q − 1. (3.34)

Since (3.33) and (3.34) cannot hold simultaneously, the omega network must be
internally nonblocking with concentrated and ordered connection requests according
to condition (3.32). �
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FIGURE 3.36 A reverse omega network.

In fact, the set of active inputs needs only be concentrated in a modulo fashion.
We can shift a set of concentrated inputs by a constant amount, take modulo N, and
the network is still nonblocking. That is, the set of active inputs can be cyclically
concentrated and “wrap around” the inputs. To see this, consider two arbitrary active
inputs biai and bjaj and their corresponding outputs xiyi and xjyj . If the network is
nonblocking, we have by (3.32) that ai = aj implies xi = xj . Suppose the inputs are
shifted by m and become b′

ia
′
i and b′

ja
′
j , respectively. Since ai is of base q, we have

a′
i = ai + [m]q and a′

j = aj + [m]q. It is easy to see that a′
i = a′

j . Therefore, for this
shifted set of active inputs, we still have a′

i = a′
j ⇒ xi = xj , which by (3.32) implies

that the network is nonblocking.

3.4.3.2 The Reverse Omega Network The reverse omega network is obtained
from the left half of the Clos network. An example of reverse omega network is shown
in Fig. 3.36. Using the numbering scheme as shown in the figure, it is easy to see that
for a reverse omega network to be externally nonblocking, we must have

xi = xj ⇒ yi = yj, (3.35)

and it is internally nonblocking if and only if the active inputs satisfy

ai = aj ⇒ xi = xj. (3.36)
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The nonblocking conditions for the reverse omega network are like the reverse of
those for the omega network and are given by the following theorem.

Theorem 3.9 (Nonblocking Conditions for Reverse Omega Networks). The re-
verse omega network is internally nonblocking if the output destinations d0, ..., dn−1
(dj > di if j > i) and their corresponding inputs s0, ..., sn−1 satisfy the following:

1. Concentrated outputs: Any output between two active outputs is also active.
That is, if di and dj are active and di ≤ w ≤ dj , then w is active.

2. Monotonic inputs: s0 < s1 < · · · < sn−1 or s0 > s1 > · · · > sn−1.

Proof. The proof is similar to the one in Theorem 3.8. Denote two active inputs si
and sj by aibi and ajbj and their corresponding output destinations di and dj by yixi

and yjxj , respectively. Without loss of generality, assume that si < sj . If the inputs
are monotonic and outputs are concentrated, we have

ajbj − aibi ≥ yjxj − yixi.

If ai = aj , the two inputs are on the same input module and we have

q − 1 ≥ bj − bi = ajbj − aibi ≥ yjxj − yixi.

However, xi = xj implies

yjxj − yixi = (yj − yi) · q ≥ q,

which is impossible. Therefore, the reverse omega network is internally nonblocking
with ordered and concentrated output according to condition (3.36). �

Similar to the omega network, the set of active outputs on the reverse omega net-
work needs only be concentrated in a modulo fashion. This can be seen by considering
the reverse omega network as the mirror image of the omega network.

Both the omega and the reverse omega network exhibit simple self-routing
schemes. This feature is extremely important when the networks are used to con-
struct fast packet switches.

For the omega network, if the outputs are numbered by the 2-tuple numbering
scheme as shown in Fig. 3.35, then the routing tag for a call destined to xiyi is given
by (xi, yi). In other words, the call takes the (xi + 1)th output in the first-stage switch
and the (yi + 1)th output in the second-stage switch. Likewise for the reverse omega
network, if the outputs are numbered by the 2-tuple numbering scheme as shown
in Fig. 3.36, the routing tag for a call destined to yixi is given by (xi, yi). If the
nonblocking conditions are satisfied, the connection requests can route through the
networks in a rapid and nonblocking manner.
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FIGURE 3.37 Combining a reverse omega network and an omega network.

3.4.3.3 Cascade Combination of Half-Clos Networks Consider the net-
work formed by combining a reverse omega network and an omega network. An
example is shown in Fig. 3.37. The network has five stages but the central stage
(stage 3) is dummy and no switching is performed in that stage. Input packets are first
routed through the reverse omega network and then fed into the omega network for
routing to route to their final destinations. This network is nonblocking if the inputs
and their corresponding outputs are monotonic. This is because given monotonic in-
puts, we can always route the packets to a set of concentrated ports in stage 3 so as
to avoid blocking in the reverse omega network. Afterward, when the packets enter
the omega network, no blocking will occur because the inputs are concentrated and
their outputs are monotonic. Any sets of concentrated ports in stage 3 can be used,
including cyclically concentrated sets. It is observed that due to the shuffle stage at
the output of the reverse omega network, routing the packets to a set of concentrated
ports in stage 3 is equivalent to routing them to consecutive modules in stage 2. This
can be done with the help of the rank of each connection request.

Since stage 3 is dummy, we can eliminate it and stage 2 and stage 4 are combined
into a single stage. The resulting network is a three-stage Clos network. A nonblocking
route assignment can therefore be obtained by assigning the connection requests
having consecutive ranks to consecutive middle-stage modules in a modulo fashion.
This is the basis of the rank-based assignment algorithm.

In general, any multistage interconnection network can be combined with its re-
verse network to form a general Clos-type network. The scenario is similar to com-
bining the omega with the reverse omega network. In an MIN, there is a unique path
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for each input–output pair. If the MIN is N × N and is composed of 2 × 2 switch
elements, the number of alternative paths for each input–output pair in the combined
network will be equal to N/2. These alternative paths are the product of the paths in
the MINs.

3.4.3.4 Recursiveness Properties Both the omega and the reverse omega
network can be recursively constructed and share the same order-preserving property.
The following is a proof of the order-preserving property of the omega network. This
proof can be similarly applied to the reverse omega network.

Theorem 3.10 (Order-Preserving Property of Omega Network). If the connec-
tion requests to an omega network satisfy the concentrated inputs and monotonic
outputs conditions, then the set of connection requests to each switch module in the
network also satisfy the concentrated inputs and monotonic outputs conditions. That
is, the order of their ranks is preserved.

Proof. Without loss of generality assume that the inputs to an omega network are
concentrated and their corresponding outputs are monotonically increasing. The proof
is divided into two parts.

(1) First-stage modules: We first show that the inputs to a switch module in the
first stage are concentrated and their corresponding outputs on that module are
monotonic. Consider two active ports bi and bj on a first-stage module M, with
bi < bj . They are numbered by the 2-tuple addresses Mbi and Mbj . Suppose
there exists a port bk, where bi < bk < bj , which is inactive. Due to the shuffle
stage, the corresponding input addresses of these ports are biM, bkM, and bjM,
respectively (see Fig. 3.38(a)). We have

bkM − biM = (bk − bi) · q ≥ q and

bjM − bkM = (bj − bk) · q ≥ q.

Therefore, biM < bkM < bjM. In other words, between two active inputs,
there is an inactive port and this contradicts with the concentrated inputs as-
sumption. Therefore, the active inputs on M are concentrated.

Suppose the destinations of inputs biM and bjM (biM < bjM) are xiyi and
xjyj , respectively. On module M, the two connection requests will take outputs
xi and xj , respectively, due to the self-routing property. We want to show that
given bi < bj we have xi < xj . In other words, the active outputs on M are
monotonically increasing.

With the concentrated inputs and monotonic outputs assumptions, we have

biM < bjM ⇒ xiyi < xjyj. (3.37)
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(a)

(b)

FIGURE 3.38 (a) A banyan network; (b) a reverse banyan network.

This implies that xi ≤ xj . But since the omega network is nonblocking and
ai = aj , by (3.32) we have xi = xj . Therefore, we have xi < xj and the outputs
on M are monotonically increasing.

(2) Second-stage modules: Consider a second-stage switch module M ′ in an omega
network. Since the active outputs of the omega network are monotonically
increasing, the active outputs on M are obviously monotonically increasing.

Denote the active outputs on M ′ by x1y1, x2y2, . . . , xkyk (x1y1 < x2y2 <

· · · < xkyk) and suppose that they originate from inputs b1a1, b2a2, . . . , bkak,
respectively (see Fig. 3.38(b)). Obviously, b1a1 < b2a2 < · · · < bkak and they
are concentrated. In other words, their least significant digit ai’s are consecutive
(modulo q) because ai’s are of base q. Let m1, m2, . . . , mk be the active inputs
on M corresponding to x1y1, x2y2, . . . , xkyk. If we imagine routing from the
outputs to the inputs instead, the network becomes a reverse omega network
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Concentration required

No concentration required

(a) Sorting network + omega network

(b) Sorting network + Clos network

FIGURE 3.39 Construction of nonblocking self-routing switches.

and it is easy to see that the m1 = a1, m2 = a2, ..., mk = ak. Therefore, the set
of active inputs on M is concentrated (modulo q). �

3.4.4 Sort-Clos Principle

A nonblocking self-routing point-to-point switch can be constructed with an omega
network or a Clos network. As illustrated in Fig. 3.39(a), we can cascade a sorting
network and an omega network to form a nonblocking self-routing switch. The sorting
network sorts the input packets based on their output destinations and concentrates
them so that the set of input packets to the omega network is concentrated and their
corresponding output destinations are monotonic. The omega network then routes the
packets to their destinations in a nonblocking manner. This is the basic sort-banyan
principle. In a similar manner, a nonblocking self-routing switch can be constructed
by cascading a sorting network and a Clos network, as shown in Fig. 3.39(b). The
sorting network, however, is only required to provide a set of monotonic connection
requests to the Clos network. No concentration is required. Thus, the contention res-
olution consists only of two phases. By using the rank-based assignment algorithm, a
nonblocking route assignment can be easily found and the packets can be self-routed
to their destinations. We denote this as the sort-Clos principle. It is the generaliza-
tion of the sort-banyan principle. With this switching principle, the construction of
nonblocking self-routing switch is no longer limited to 2 × 2 switch elements.
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PROBLEMS

3.1 Consider an 8 × 8 reverse shuffle-exchange network.
(a) Show how the bits in the output address are used to route a packet from

input 001 to output 110. Show how a packet is routed from input 110 to
output 010.

(b) If this network is used as a loss system, do you think its loss probability
would be higher or lower than a shuffle-exchange network?

3.2 For the class of Banyan networks, suppose a central controller knowing the
destinations of all the input packets is used to perform the routing and setting
the states of the switch elements. Can the loss probability be improved with
respect to that in the self-routing Banyan networks? If your answer is no,
explain why. If your answer is yes, give an example in which a centralized
routing decision leads to fewer packets being dropped.

3.3 Consider an 8 × 8 Banyan network. Suppose with probability 0.75 a packet
is destined for outputs 000, 001, 010, or 011, and with probability 0.25 it is
destined for the other four outputs. Within each group of outputs, the packet is
equally likely to be destined for any of the four outputs. Is the loss probability
higher in this case than when a packet is equally likely to be destined for any
of the eight outputs? Modify the analysis in the text to answer this question.

3.4 In Section 3.2.3, it is mentioned that each of the NN/2 states of the Banyan
network corresponds to a unique input–output mapping by the unique-path
property. Explain why. In Section 3.2.2, it is mentioned that the uniform-traffic
assumption also means that a packet is equally likely to be destined for either
of the two outgoing links of a switch element. Explain why.

3.5 Show how to use the reverse banyan (reverse shuffle-exchange) network as
a concentrator. That is, we want to concentrate packets from N inputs to M

outputs where M < N. It does not matter which output a packet goes to as long
as the packet gets to an output. As long as there are no more than M incoming
packets, none of them will be dropped or buffered at the input.

3.6 Use the order-preserving property to show that a bitonic sorter that works for
zero–one sequence also works for sequences of arbitrary numbers.

3.7 A circular bitonic sequence is a sequence that can be made bitonic by
shifting the sequence in a circular fashion. For example, the sequence
〈3, 1, 1, 2, 3, 4, 5, 4〉 is circular bitonic because after two circular left shift
it becomes the bitonic sequence 〈1, 2, 3, 4, 4, 5, 3, 1〉. The bitonic sequences
are a subset of circular bitonic sequences.
(a) Show that a bitonic sorter also sorts circular bitonic sequences of arbitrary

numbers correctly. (Hint: Use a proof similar to that of the zero–one prin-
ciple, but first argue that if the numbers are limited to 0’s and 1’s, there is
no difference between circular bitonic and bitonic sequences.)
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FIGURE 3.40 A set of input packets for a sort-banyan network.

(b) Theorem 3.4 concerns the decomposition of a zero–one bitonic sequence
into two zero–one bitonic sequences. For a bitonic sequence of arbitrary
numbers, the decomposition does not necessarily yield two bitonic se-
quences; one of the sequences could be circular bitonic but not bitonic.
Give an example to illustrate this.

3.8 Prove the bitonic sorting algorithm without relying on the zero–one principle.

3.9 The proof of the odd–even merging algorithm in the text assumes that n is
even. Repeat the proof for odd n.

3.10 For n a power of 2, compute the number of 2 × 2 comparators in an overall
sorting network based on the odd–even merging algorithm.

3.11 Show that the odd-even merging algorithm can merge two sorted input se-
quences of different sizes. That is, the input sequences are 〈a1, . . . , as〉 and
〈b1, . . . , bt〉 where s  t.
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FIGURE 3.41 Ring contention-resolution scheme.
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3.12 Consider an N × N banyan network with n = log2 N stages, where n is even.
Suppose that there are N input packets, all destined for different outputs. Show
that in the worst case, there may be

√
N packets wanting to cross the same link

inside the network in order to reach their outputs. That is, the same link is in√
N input–output paths of the packets.

3.13 Consider a Batcher–banyan network that uses the three-phase contention-
resolution scheme.
(a) How many bits of delays (in terms of N) are needed before the completion

of the first two phases, assuming the acknowledgments take only one-bit
delay?

(b) Suppose that the information payload of the packets is 53-byte long.
Express the overhead in terms of the ratio of the contention-resolution
delay to the amount of time needed to route one batch of packets to their
destinations. For what N does the ratio become 50%?

3.14 Consider an 8 × 8 Batcher–banyan switch with input packets as depicted in
Fig. 3.40.
(a) Draw the 8 × 8 Batcher bitonic sorting network and show how the paths

taken by the input packets.

(b) Which packets will win contention in the three-phase switching scheme?

(c) Show the paths taken by the winning packets in the banyan network.

3.15 When the sorting network is used for contention resolution, an unlucky packet
may end up at a sorting-network output lower than other packets destined for
the same switch output repeatedly in successive time slots. For fairness, we
can add several priority bits to the header so that the priority level of a packet
will be raised in the next time slot each time a packet loses contention. Explain
how these bits should be used in the sorting network so that the packet that has
lost contention the most number of times will be the winner among all packets
destined for the same switch output in each time slot.

3.16 We can use a ring contention–resolution scheme for a sort-banyan network. The
ring contention-resolution scheme is very much like the medium access control
(MAC) of the token-ring local-area network, except that there are N tokens,
one for each output. The tokens circulate around the inputs, as illustrated in
Fig. 3.41. Each token has only one bit that is set to 0 initially. The token for
output i is positioned at input i at the beginning. If input i has a packet that
is destined for output i, it sets the token to 1, capturing the right to send to
output i. The tokens then undergo a circular shift so that the token for output i

is now positioned at input i + 1 (mod N). If input i + 1 (mod N) has a packet
destined for output i, it first must make sure that the token is not already set
to 1. If yes, it has lost the contention to another input. Otherwise, it sets token
to 1 and captures the right to send a packet to output i. After N steps and
each token has the chance to visit each token once, the contention-resolution
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process is completed. The winning inputs can then send their packets to the
outputs.
(a) How does this scheme compare with the three-phase scheme in terms of

contention-resolution overhead?

(b) Describe how the basic scheme can be modified to obviate the need
for the banyan network by letting the tokens circulate around the inputs
twice.



4

SWITCH PERFORMANCE ANALYSIS
AND DESIGN IMPROVEMENTS

This chapter first focuses on the performance analysis of some simple switch designs.
From the analysis, we shall see that head-of-line (HOL) blocking as well as output
contention among packets may severely limit the switch throughput. This chapter will
then present several fundamental switch design principles to alleviate these problems
and achieve performance improvement. Each switch design principle will be illus-
trated using specific implementations. Note, however, that many implementations are
possible based on each switch design concept, and one should not confuse implemen-
tations with concepts.

4.1 PERFORMANCE OF SIMPLE SWITCH DESIGNS

This section analyzes the delay and throughput performance of some simple switch
designs with an internally nonblocking structure. Since the packets are fixed-length,
the arrivals can be aligned (as discussed at the beginning of the preceding chapter)
with a maximum alignment delay of one-packet duration. With the alignment, we may
assume in our analysis that time is slotted and that the packets arrive to the inputs at
the beginning of each time slot.

For simplicity, we shall also assume a uniform-traffic distribution. Packet arrivals at
the inputs are described by a simple Bernoulli process: in any time slot, the probability
that a packet will arrive on a particular input is ρo. The parameter ρo is also referred to
as the offered load. Each packet is destined for any given output with equal probability
1/N and the output destinations of successive packets are independent.

We shall engage much of the analysis in the domain of generating functions.
The generating function of any random variable R, E[zR], will be denoted by

Principles of Broadband Switching and Networking, by Tony T. Lee and Soung C. Liew
Copyright © 2010 John Wiley & Sons, Inc.
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R(z). If conditional probabilities are used in taking the expectation, we shall write
R(z|conditions).

4.1.1 Throughput of an Internally Nonblocking Loss System

Let us first derive the maximum throughput of a loss system. There are no queues in
the system, and packets that have lost contention in a time slot are simply dropped.

Consider a particular output i. In any time slot, the probability that an arbitrary
output has a packet destined for it is ρo/N. Thus, the probability that none of the N

inputs has a packet destined for it is (1 − ρo/N)N . This value approaches e−ρo very
quickly as N increases. The throughput is therefore

ρ = 1 − e−ρo (4.1)

for large N. Since the function increases with ρo, the maximum throughput, or the
maximum carried load, is obtained when the offered load ρo = 1, and it is

ρ∗ = 1 − e−1 ≈ 0.632. (4.2)

Instead of dropping packets that have lost contention, we may buffer them at the
inputs so that they can attempt to access their outputs at a later time slot. This further
reduces the maximum throughput to 0.586 because of HOL blocking, as shown in the
next subsection.

4.1.2 Throughput of an Input-Buffered Switch

The analysis of a waiting system is more involved. Suppose that the input queues
are first-in-first-out. Then only the HOL packets may contend for output access. The
scenario is depicted in Fig. 4.1. In addition to the N input queues, we may imagine for

1
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(Input, output)

Fictitious output 
queues formed by 
HOL packets

(1,2)(1,1)
(2,3)(2,1)
(3,2)(3,2)
(4,4)(4,1)

(1,2)(3,2)
(2,3)
(4,4) Output 4

Output 3
Output 2
Output 1

FIGURE 4.1 An input-buffered switch with the fictitious queues used for analysis.
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analytical purposes that there are also N fictitious queues, one for each output, whose
elements consist of the HOL packets destined for the N outputs. Thus, a packet joins
a fictitious queue only after it has proceeded to the front of its input queue.

Let us consider the fictitious queue associated with a particular output i. Let Ci
m

be the number of packets in it at the start of time slot m. Let Ai
m be the number of

packets entering the fictitious queue at the start of time slot m. The system evolves
according to the equation

Ci
m = max(0, Ci

m−1 − 1) + Ai
m

= Bi
m−1 + Ai

m, (4.3)

where Bi
m−1 = max(0, Ci

m−1 − 1) is the number of packets remaining in the fictitious
queue at the end of time slot m − 1. To interpret the equation, note that if the queue
was not empty at the beginning of time slot m − 1, then one packet would be cleared
by the end of it, hence the term Ci

m−1 − 1. On the other hand, if the queue was empty
(Ci

m−1 = 0), no packet would be cleared, and the queue remained empty at the end of
the time slot, hence the term max(0, Ci

m−1 − 1). To this we add the number of newly
arriving packets at the beginning of time slot m, Ai

m, to obtain Ci
m.

To study the system dynamic, we need to know Ai
m. For the calculation of the

maximum allowable throughput, let us assume that all the input queues are saturated
so that as soon as a HOL packet is cleared, its position is taken by a subsequent packet
in the next time slot. In this way, the system is loaded at its maximum capacity. At
the beginning of time slot m, the inputs can be divided into two groups:

1. Those that won contention in the previous time slot.

2. Those that lost contention in the previous time slot.

Let Fm−1 be the number of inputs that won contention in time slot m − 1. This is
also the number of new HOL packets in time slot m under the saturation condition.
The total number of backlogged packets at the HOL at the end of time slot m − 1 is∑N

i=1 Bi
m−1. By conservation,

Fm−1 +
N∑

i=1

Bi
m−1 = N.

The probability that a new HOL packet is destined for output i is 1/N. Thus, consid-
ering all the Fm−1 new HOL packets, the probability that k of them are destined for
output i is

Pr{Ai
m = k | Fm−1} =

(
Fm−1

k

) (
1

N

)k (
1 − 1

N

)Fm−1−k

. (4.4)
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The above packet arrival process is difficult to deal with analytically because Fm−1
(and therefore Ai

m) depends on Bi
m−1. It is known in queueing theory that whenever

the arrival process depends on the system state, the analysis becomes complicated.
Fortunately, the concern goes away when N is very large so that we can at least get
an analytical result for that case.

To see this, let us first look at the effect of Bi
m−1 on Fm−1. Recall that Fm−1 is

the number of cleared packets in time slot m − 1. Certainly, given Bi
m−1, the range

of values that Fm−1 can adopt is 1, . . . , N − Bi
m−1, since we know that at least Bi

m−1
HOL packets addressed for output i did not get cleared. When N is small (e.g.,
N = 2), the effect of Bi

m−1 on Fm−1 is rather significant. However, when N is large,
since Bi

m−1 is the backlogged packets of one output among many outputs, Bi
m−1 is

typically much smaller than N and N − Bi
m−1 ≈ N. The dependence between Bi

m−1
and Fm−1 is negligible for large N. In the limit N → ∞, Bi

m−1 and Ai
m become

independent. Therefore, for simplicity, we shall assume that N is very large in the
following analysis.

Intuitively, the binomial arrival process in (4.4) approaches a Poisson process as
N → ∞. However, Fm−1 changes from time slot to time slot. As a result, the binomial
arrival process as described in (4.4) is a modulated binomial process in which the
number of packet sources Fm−1 changes with time. We now argue that to the extent
that N → ∞, Ai

m approaches an “unmodulated” Poisson process with rate ρ, where
ρ is the maximum load yet to be determined.

To avoid cluttered notation, we shall drop the superscript i in Ai
m, Bi

m, and Ci
m

in the following with the implicit understanding that they all refer to the particular
output i. The generating function of Am given Fm−1 is

Am(z | Fm−1)
def= E[zAm | Fm−1] =

Fm−1∑
k=0

zk Pr{Am = k | Fm−1}

=
Fm−1∑
k=0

zk

(
Fm−1

k

) (
1

N

)k (
1 − 1

N

)Fm−1−k

=
[

1 + (z − 1)

N

]Fm−1

. (4.5)

Now, let

Gm−1 = Fm−1

N
. (4.6)

The knowledge of Gm−1 is equivalent to the knowledge of Fm−1, so that
Am(z | Fm−1) = Am(z | Gm−1). Since the value of Gm−1 is finite (between 0 and 1),
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we may take the following limit for large N:

Am(z | Gm−1) =
[

1 + (z − 1)

N

]NGm−1

→ e(z−1)Gm−1

= 1 + (z − 1)Gm−1 + (z − 1)

2!
G2

m−1 + · · · (4.7)

We want to uncondition Am(z | Gm−1) on Gm−1. Define

Xj
m

def=
{

1, if the HOL packet on input j is cleared in time slot m,

0, otherwise.
(4.8)

Thus, by definition,

Fm =
N∑

j=1

Xj
m.

Suppose that all inputs are treated equally in the contention-resolution process. Then,
by symmetricity, for all j, E[Xj

m] = Pr{Xj
m = 1} = ρ in the steady state as m → ∞,

where ρ is the maximum carried load. In general,

E[(Xj
m)k] = 0k Pr{Xj

m = 0} + 1k Pr{Xj
m = 1} = ρ

for all k ≥ 1. Thus, we can write

E[Gm−1] = E

[
Fm−1

N

]
= 1

N

∑
j

E[Xj
m−1] = ρ

and

E[G2
m−1] = 1

N2

∑
j

∑
k

E
[
X

j
m−1X

k
m−1

]

= 1

N2

⎛
⎝∑

j

E

[(
X

j
m−1

)2
]

+
∑

j

∑
k �=j

E
[
X

j
m−1X

k
m−1

]⎞⎠ .
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When N is large, the dependence between the clearance of packets at inputs j and k

can be neglected, and X
j
m−1 and Xk

m−1 are independent as N〉∞. We have

E[G2
m−1] ≈ 1

N2

⎛
⎝∑

j

E
[(

X
j
m−1

)2
]

+
∑

j

∑
k �=j

E
[
X

j
m−1

]
E

[
Xk

m−1

]⎞⎠

= 1

N2 [Nρ + N(N − 1)ρ2]

→ ρ2.

In general, we can show that

E[Gk
m−1] → ρk. (4.9)

Thus,

Am(z) = EGm−1 [Aj
m(z | Gm−1)]

= 1 + (z − 1)E[Gm−1] + (z − 1)2

2!
E[G2

m−1] + · · ·

→ 1 + (z − 1)ρ + (z − 1)2

2!
ρ2 + · · ·

= e(z−1)ρ. (4.10)

Note that in the steady state, the arrival process Am is independent of m and therefore
we can replace Am(z) with A(z). It can be easily verified that A(z) is the generating
function of a Poisson process:

Pr{A = k} = ρk

k!
e−ρ. (4.11)

In the steady state, the subscript m in Bm and Cm can also be dropped. The generating
function of B = max(0, C − 1) is

B(z) =
∞∑

k=0

zk Pr{B = k}

= Pr{B = 0} + z Pr{B = 1} + z2 Pr{B = 2} + · · ·
= Pr{C = 0} + Pr{C = 1} + z Pr{C = 2} + z2 Pr{C = 3} + · · ·
= Pr{C = 0} + z−1(z Pr{C = 1} + z2 Pr{C = 2} + z3 Pr{C = 3} + · · ·
= (1 − z−1) Pr{C = 0} + z−1(Pr{C = 0} + z Pr{C = 1} + z2 Pr{C = 2} + · · ·
= (1 − z−1)(1 − ρ) + z−1C(z), (4.12)
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where we have made use of the fact that 1 − Pr{C = 0} = ρ (the throughput is
the probability that a packet is cleared, and a packet will be cleared so long as
C > 0).

We have already shown that A becomes independent of B as N → ∞. The gener-
ating function of the sum of two independent random variables is the product of the
individual generating functions. Thus, taking the generating functions on both sides
of (4.3) yields

C(z) = [(1 − z−1)(1 − ρ) + z−1C(z)]A(z). (4.13)

Rearranging the above, we obtain

C(z)(z − A(z)) = (z − 1)A(z)(1 − ρ). (4.14)

Differentiating with respect to z twice, substituting z = 1, and noting that C(1) =
A(1) = 1, we have

2C′(1)(1 − A′(1)) − A′′(1) = 2A′(1)(1 − ρ). (4.15)

Now, C is the number of packets at the fictitious queue of output i. The sum of
the packets at all the fictitious queues is N, since these are the HOL packets from
the N inputs. Thus, on average each fictitious queue has one packet, and therefore
E[C] = C′(1) = 1. Substituting this into the above, we obtain

2(1 − A′(1)) − A′′(1) = 2A′(1)(1 − ρ). (4.16)

It is easy to derive from A(z) = e(z−1)ρ that A′(1) = ρ and A′′(1) = ρ2. Substituting
into the above and rearranging, we get a quadratic equation for ρ

ρ2 − 4ρ + 2 = 0. (4.17)

The roots of the equation are 2 ± √
2, the smaller of which is the maximum throughput

ρ∗ = 2 −
√

2 ≈ 0.586. (4.18)

This is the maximum achievable throughput when there are infinite buffers in the
input queues. It is time to sit back and ponder the physical meaning of this parameter.
As we have shown earlier, if packets losing contention are dropped, the maximum
throughput is 0.632, which is higher than the above. Intuitively, the lower throughput
here is attributable to the memory effect that heavy contention tends to carry over
to the next time slot. For instance, if in the current time slot, there are many packets
destined for a particular output, in the next time slot there will be only one fewer
packet destined for this output, and the contention remains intense. With the loss
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TABLE 4.1 Maximum
Throughput for Input-Buffered
Switches of Different Sizes

N �∗

2 0.75
3 0.68
4 0.66
5 0.64
6 0.63
7 0.62
8 0.62
∞ 0.59

system, all these packets would have been dropped and the next time slot is a whole
new ball game.

The carried load ρ is ρo(1 − Pdrop), where ρo is the offered load and Pdrop is the
probability that a packet is dropped. When ρo < ρ∗, Pdrop can be made arbitrarily
small with sufficiently large buffer size, making it possible to carry all the offered
load (i.e., ρ ≈ ρo). In contrast, when ρo ≥ ρ∗, no matter how large the buffer size is,
the carried load cannot be larger than ρ∗. This is because the throughput limitation is
due to switch design, not the buffer size.

The analysis presented applies only for large N. When N is small, we can use a
Markov chain analysis to find the maximum throughput. One of the exercises asks you
to do that for a 2 × 2 switch. Unfortunately, the number of states in the Markov chain
grows exponentially with N and the analysis becomes very complicated. Thus, the
analysis is simple when N is small or very large, but not somewhere in between. That
the performance analysis can be made simpler by letting certain system parameter
approach infinity is also observed in many other systems. One example is the class
of multiple-access communication networks, which is often analyzed assuming the
number of users is infinite. Fortunately for the input-buffered switch, the maximum
throughput approaches 0.586 very quickly as N increases, as shown in Table 4.1. The
analysis of many cases with finite N is therefore unnecessary.

It should be noticed that our analysis did not assume any particular contention-
resolution discipline. It does not matter whether the packets at the fictitious queue
are served in a first-in-first-out (FIFO) fashion, random fashion, or any other manner.
As long as the queue is a work-conserving system in which a packet is cleared in
each time slot when the queue is not empty, the same maximum throughput will be
observed. The delay experienced by a packet, on the other hand, does depend on the
contention-resolution discipline. What this means is that the delay will go to infinity
as the offered load approaches the maximum throughput, but for offered load below
the maximum throughput different contention-resolution disciplines yield different
delays.
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FIGURE 4.2 Queueing scenario for the delay analysis of the input-buffered switch.

4.1.3 Delay of an Input-Buffered Switch

We shall again assume the simple input traffic in which arriving packets are inde-
pendent and equally likely to be destined for any of the N outputs. There are several
methods for the derivation of the delay statistics. We present a method that focuses on
the busy periods; Problems 4.9 and 4.10 in the problem set show you an alternative
derivation for the mean delay. The derivation here is divided into two parts. First of
all, we derive the waiting time of a packet in the input queue in terms of the delay
at the fictitious queues (i.e., contention delay experienced at the HOL). We then find
the delay statistics of the fictitious queues assuming a FIFO contention-resolution
discipline.

With reference to Fig. 4.2, let us focus on a particular input queue. Whenever a
packet gets to the head of line, it will enter one of the N fictitious queues. For large N

it is unlikely that successive HOL packets will enter the same fictitious queue, since
each packet is equally likely to be destined for any of the N fictitious queue. Thus,
we may assume that the service times (the delays at the HOL) of different packets are
independent.

The input alternates between busy period and idle period over time. Figure 4.3 is
a graph depicting a typical busy period. The y-axis is the amount of work remaining
(or number of packets in the input queue) U(t). Each busy period is in turn divided
into service intervals X0, X1, . . . , Xi, . . .. The packets that are cleared in interval Xi

are those that arrive during interval Xi−1. Interval X0 is started off by one or more
packets that arrive during the previous idle period.

For consistency, let us assume for the purpose of analysis that packets arrive only
at the beginning of the time slots (t = 1, 2, 3, . . .), but service starts and completes
slightly after the time-slot boundaries (t = 1+, 2+, 3+, . . .). Thus, X0 begins in the
same time slot as the packets arrive, and those packets that arrive just as Xi−1 ends



104 SWITCH PERFORMANCE ANALYSIS AND DESIGN IMPROVEMENTS

X0X3X2X1         X0     

Busy period
Idle 

periodBusy period
Y

t

U(t)

Arrivals here are 
considered as 
arrivals in 
intervals i-2

Arrivals here are considered as 
arrivals in intervals i-1

Xi-1 Xi

FIGURE 4.3 The busy periods and interpretations for delay analysis of an input queue.

and Xi starts will be considered as having arrived in Xi−1 and therefore will be served
in Xi (see Fig. 4.3). Define

Y
def= length of busy period = X0 + X1 + · · · ,

Ni
def= number of arrivals during interval Xi,

S
def= service time at the HOL.

Suppose that Ni−1 = n packets arrive during interval i − 1 with Xi−1 = x. Then
Xi is the sum of the service times of the n packets. The service times of the packets are
independent and identically distributed. Thus, the generating function of their sums
is the product of their generating functions. We can write

Xi(z | Xi−1 = x, Ni−1 = n) = Sn(z).

Unconditioning on Ni−1, we have

Xi(z | Xi−1 = x) =
∞∑

n=0

Sn(z) Pr{Ni−1 = n | Xi−1 = x}.

Notice that we allow the possibility of n = 0 and Xi = 0. We note that the above
summation is similar to the computation of the conditional generating function of
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Ni−1 except that z has been replaced by S(z). Therefore,

Xi(z | Xi−1 = x) = Ni−1[S(z) | Xi−1 = x].

Unconditioning on Xi−1 gives

Xi(z) =
∞∑

x=0

Ni−1[S(z) | Xi−1 = x] Pr{Xi−1 = x}.

Let

K
def= number of arrivals in an arbitrary time slot .

We shall assume that arrivals at different time slots are independent and iden-
tically distributed. The total number of arrivals over x time slots therefore has
the generating function Kx(z). Noting that Ni−1(z | Xi−1 = x) = Kx(z), we can
write

Xi(z) =
∞∑

x=0

Kx[S(z)] Pr{Xi−1 = x} = Xi−1{K[S(z)]}. (4.19)

The physical meaning of the above relationship can be unveiled by expanding the
generating functions in terms of the power of z. Intuitively, since Xi is the sum of the
service durations of those packets arriving in interval i − 1, we can expect Xi−1 to
correlate positively with Xi. Each time slot in interval i − 1 produces a random of K

packets to be served in interval i, and each of these packets has a random service time
of S. Equation (4.19) is simply a succinct way of summarizing this dependency. We
shall come back to use the above relationship later. Let us now focus on one particular
packet that arrives in service interval i. Define

W
def= waiting time of the packet before joining HOL,

Ri
def= the residual time of interval i upon the arrival of the packet,

Mi
def= the number of arrivals in the same interval but in time slots

prior to the one in which the packet of focus arrives,

L
def= the number of arrivals in the same time slot as the packet of focus

that will be served before it.

In queueing theory, the waiting time customarily refers to the time from the arrival
to the start of service, and the delay is the waiting time plus the service time. Thus,
defining the “start of service” as the time the packet proceeds to the HOL, the delay
here is the waiting time plus time spent at the HOL. The definitions of the other
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FIGURE 4.4 Illustration of the meanings of the random variables used in the delay analysis of
an input queue.

random variables are illustrated in Fig. 4.4. Note also that for a Bernoulli arrival
process at most one packet can arrive in any given time slot, and so L = 0. However,
such is not the case for the fictitious queue. In order that we can borrow the results
here for the analysis of the fictitious queue later, the general dependency of W on L

is retained intentionally in the following.
Suppose Mi = m, L = l, and Ri = r are given. Then the waiting time is the sum

of the residual time of interval i and service times of the m + l packets. We have

W(z | i, Xi = x, Ri = r, Mi = m, L = l) = zrSm+l(z).

We assume the arrivals on different time slots are independent and therefore L and
Mi are independent. Unconditioning on Mi and L, we have

W(z | i, Xi = x, Ri = r) = zr
∞∑
l=0

∞∑
m=0

Sm+l(z) Pr{Mi = m | i, Xi = x, Ri = r}

× Pr{L = l | i, Xi = x, Ri = r}
= zrL[S(z) | i, Xi = x, Ri = r]

× Mi[S(z) | i, Xi = x, Ri = r]

= zrL[S(z)] Mi[S(z) | i, Xi = x, Ri = r], (4.20)

where we note in the last line that the L relates to the arrivals in one particular time
slot and therefore is independent of the lengths of Xi and Ri. To uncondition on Xi
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and Ri, we first find

Pr{Xi = x, Ri = r | i} = Pr{Ri = r | i, Xi = x} Pr{Xi = x | i}

= 1

x
× x

E[Xi]
Pr{Xi = x}. (4.21)

In the above, given that the packet arrives in a service interval of length x, it is equally
likely for the residual time Ri to be 0, 1, 2, . . . , or x − 1. Also, it is more likely for
the packet to fall into a larger interval than a smaller one. Therefore, the interval size
observed by the packet is not identically distributed as Xi. To see this, let us consider
a very long stretch of time with a large number of busy periods. Let N be the number
of busy periods we observe. For large N, the number of busy periods with Xi = x is
N Pr{Xi = x}. The expected number of arrivals in these intervals is ρxN Pr{Xi = x}.
The expected number of arrivals in intervals i of all N busy periods, regardless of
Xi, is

∑∞
x=0 ρxN Pr{Xi = x}. Thus, the probability that a packet entering in an ith

interval will find the interval to be of length x is

Pr{Xi = x | i} = lim
N→∞

N Pr{Xi = x}xρ∑∞
x=0 NPr{Xi = x}xρ = x Pr{Xi = x}

E[Xi]
.

We now use (4.21) to uncondition (4.20)

W(z | i) =
∞∑

x=1

x−1∑
r=0

zrL[S(z)] Mi[S(z) | i, Xi = x, Ri = r] × Pr{Xi = x}
E[Xi]

= L[S(z)]

E[Xi]

∞∑
x=1

Pr{Xi = x}zx−1
x−1∑
r=0

Mi[S(z) | i, Xi = x, Ri = r]

zx−1−r
. (4.22)

Recall that K is the random variable for the number of arrivals in one time slot.
Given Xi = x and R = r, there are x − r − 1 earlier time slots in which the Mi

packets can arrive. Therefore, Mi[z | i, Xi = x, Ri = r] = Kx−r−1(z). Substituting
into (4.22) and simplifying, we have

W(z | i) = L[S(z)]

E[Xi]

∞∑
x=1

Pr{Xi = x}{Kx[S(z)] − zx}
K[S(z)] − z

= L[S(z)]

E[Xi]

(Xi{K[S(z)]} − Xi(z))

K[S(z)] − z

= L[S(z)]

E[Xi]

(Xi+1(z) − Xi(z))

K[S(z)] − z
, (4.23)

where in the last line we have made use of the relationship (4.19). Given that the
packet enters in a busy period, the probability that it falls into interval i is E[Xi]/E[Y ].
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Unconditioning on i, we have

W(z | enter in busy period) =
∞∑
i=0

W(z | i)
E[Xi]

E[Y ]

= L[S(z)]

E[Y ]{K[S(z)] − z}
∞∑
i=0

[Xi+1(z) − Xi(z)]

= L[S(z)]

E[Y ]{K[S(z)] − z} [1 − X0(z)], (4.24)

where we have made use of the fact that limi→∞ Xi(z) = 1 (since with probability
one a busy period eventually will terminate and therefore limi→∞ Pr{Xi = 0} = 1).
For the input queue, X0 is the service time of one packet because at most one packet
can arrive in a time slot. If multiple packets can arrive simultaneously, such as the
case with the fictitious queue, things are more complicated. To analyze the general
situation, let N−1 be the number of simultaneous arrivals that start off a new busy
period. Given that N−1 = n, the subsequent X0 consists of the service times of n

packets. Thus,

X0(z | N−1 = n) = Sn(z).

Now N−1 is the number of arrivals in a time slot given that there is at least one arrival.
Therefore,

Pr{N−1 = n} =
⎧⎨
⎩

0, if n = 0,

Pr{K = n}
1 − Pr{K = 0} , if n ≥ 1.

This gives

X0(z) =
∞∑

n=1

X0(z | N−1 = n)
Pr{K = n}

1 − Pr{K = 0}

=
∞∑

n=1

Sn(z)
Pr{K = n}

1 − Pr{K = 0}

= K[S(z)] − Pr{K = 0}
1 − Pr{K = 0} . (4.25)

Substituting the above into (4.24), we get

W(z | enter in busy period) = L[S(z)]

E[Y ]{K[S(z)] − z}
{

1 − K[S(z)]

1 − Pr{K = 0}
}

. (4.26)
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There are several ways to find E[Y ]. One of the exercises asks you to derive it based on
a direct probabilistic argument. If our derivation W(z | enter in busy period) is correct
up to this point, we can use a normalization method. Specifically, any generating
function substituted with z = 1 is equal to 1. The normalization method should always
be used with care because the mistakes in the derivation of W(z | enter in busy period),
if any, will not be uncovered; whereas if we use both the direct and normalization
methods, we can verify that the two results are the same. Knowing that this checking
is done in the exercise, we now normalize W(z | enter in busy period), giving

E[Y ] = S′(1)K′(1)

[1 − S′(1)K′(1)](1 − Pr{K = 0}) = Sρ

(1 − Sρ)(1 − Pr{K = 0}) . (4.27)

Substituting the above into (4.24) gives

W(z | enter in busy period) = 1 − Sρ

Sρ

{
L[S(z)]{1 − K[S(z)]}

K[S(z)] − z

}
.

Over a long stretch of time t, ρt packets arrive, and each of them contributes an average
of S to the busy periods. Thus, the fraction of time the system is in busy periods is
limt→∞ ρtS/t = ρS. Therefore, with probability ρS a packet will enter during a busy
period and with probability 1 − ρS it will enter during an idle period, in which case
the generating function of the waiting time is L[S(z)]. We have

W(z) = (1 − ρS)L[S(z)] + ρSW(z | enter in busy period)

= (1 − ρS)L[S(z)]

{
1 − z

K[S(z)] − z

}
. (4.28)

For the input queue with Bernoulli arrival process,

L(z) = 1, (4.29)

K(z) = 1 + (z − 1)ρ. (4.30)

Substituting into (4.28), we get

W(z) = (1 − ρS)
1 − z

(1 − z) + [S(z) − 1]ρ
. (4.31)

The mean waiting time W can be obtained by differentiating (4.31). This yields

W = ρS(S − 1)

2(1 − ρS)
. (4.32)

Equations (4.28) and (4.31) are only valid when the input queue is FIFO (the fictitious
queue does not have to be). Equation (4.32), on the other hand, applies even when the
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W
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FIGURE 4.5 Different contention-resolution policies have different waiting time versus load
relationships, but a common maximum load at which waiting time goes to infinity.

service discipline is not FIFO; it can be shown by focusing on the remaining work
U(t) (see Fig. 4.3) that all work-conserving systems have the same average waiting
time.

The service discipline of the fictitious queue (i.e., the contention-resolution policy),
however, does affect W through the second moment of the service time S(S − 1).
Figure 4.5 shows qualitatively the relationship between waiting times of different
service disciplines and load. As shown, all service disciplines have the same maximum
load at which waiting time goes to infinity (recall that our saturation throughput
calculation did not assume any particular service discipline). However, their waiting
times at load below the maximum load differ.

Let us focus on a FIFO fictitious queue. We want to make use of (4.28) for the
analysis here, too. In the fictitious queue, each packet takes exactly one slot to be
cleared. Thus, the service time S in (4.28) should be replaced as

S(z) → z and S → 1.

Also, S in the input queue is the delay in the fictitious queue. The waiting time in the
fictitious queue is S − 1, Thus, replacing the waiting time in (4.28) with the waiting
time in the fictitious queue means

W(z) → S(z)

z
.

Equation (4.28) now takes the form

S(z) = (1 − ρ)
z(1 − z)L(z)

K(z) − z
. (4.33)
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FIGURE 4.6 A unit line for determining the order of service among simultaneously arriving
packets.

We argued previously in the analysis of maximum throughput that the arrival process
is Poisson when N is very large and the system is saturated. A similar argument can
be used to show that the arrival process is still Poisson even when the system is not
saturated. Thus,

K(z) = e(z−1)ρ. (4.34)

Several packets can arrive simultaneously when the arrival is Poisson. Thus, L is not
always zero. Suppose simultaneous packets are served in a random order. We can
imagine a continuous line of unit length (see Fig. 4.6) onto which the arrivals are
placed at random. The arrivals placed before the packet of focus will be served first.
Given that the packet whose waiting time is being analyzed is placed at t, the number
of packets placed before is Poisson with rate ρt. Thus,

L(z | t) = e(z−1)ρt. (4.35)

The above is a well-known fact for people who are familiar with the Poisson
process, but one of the exercises shows you how to derive it yourself. Given the
random nature, t is equally likely to be placed anywhere between 0 and 1. Therefore,

L(z) =
∫ 1

0
e(z−1)ρtdt = e(z−1)ρ − 1

(z − 1)ρ
. (4.36)

By differentiation, we can obtain S = S′(1) and S(S − 1) = S′′(1) from (4.33). After
going through the tedious computation, we get

S = 1 + ρ

2(1 − ρ)
(4.37)

and

S(S − 1) = ρ(ρ2 − 4ρ + 6)

6(1 − ρ)2 . (4.38)
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Substituting the above into (4.32) and solving, we obtain

W = ρ2(ρ2 − 4ρ + 6)

6(1 − ρ)(ρ2 − 4ρ + 2)
. (4.39)

The average delay experienced by a packet from arrival to departure is

D = W + S = ρ2(ρ2 − 4ρ + 6)

6(1 − ρ)(ρ2 − 4ρ + 2)
+ 2 − ρ

2(1 − ρ)
. (4.40)

As an example, for offered load ρo = ρ = 0.5, S = 1.5 and W ≈ 1.41. The average
delay D ≈ 3. That is, a packet experiences an average delay of three packet durations
in the input queue. We see that the delay is rather small if the offered load is slightly
below the maximum throughput. The variance of delay is also an important parameter,
especially for real-time communication services. The variance can be obtained from
the higher derivatives of W(z) and S(z).

4.1.4 Delay of an Output-Buffered Switch

As mentioned earlier in the chapter, the throughput of a switch can be improved by
increasing the group size, which is the number of packets that can access a common
output in a given time slot. The throughput as a function of the group size will be
studied in the next chapter.

Let us now examine the ideal case in which all N packets (where N is the number
of input ports) can access the same output in the same time slot if they so desire.
All packets are switched to their destined outputs immediately upon their arrivals
and none of them are dropped at the inputs. Therefore, there is no throughput limi-
tation like that in the input-buffered switch. This ideal switch also obviates the need
for input buffers. In addition, instead of the fictitious output queues discussed pre-
viously, we have real output queues here. These output queues are needed because
the output link may not be able to transmit all the simultaneously arriving packets
immediately.

The study of the output queues is similar to that of the the fictitious queue. In fact,
the justification for the Poisson arrival process is more straightforward for the output
queues because its packet sources are the inputs, whose number does not change with
time; the packet sources of the fictitious queue are those inputs whose HOL packets
were cleared in the previous time slot, and their number may change from time slot
to time slot.

Given that the arrival process to each input is Bernoulli with rate ρo, the arrival
process to an output is binomial: Pr{A = k} = (

N
k

) (
ρo
N

)k (
1 − ρo

N

)N−k, which ap-
proaches the Poisson distribution with rate ρo as N → ∞. We can therefore imme-
diately use the result obtained for the fictitious queue, replacing ρ with ρo. Note that
for the fictitious queue, the carried load ρ may not be the same as the offered load ρo
because of input queueing; but for the output queue, since all packets are immediately
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switched to the output with no loss, the offered load is the same as the carried load
so long as the output buffer does not overflow.

Let us consider a particular output and assume that it has infinite buffering space.
From (4.14), the number of backlogged packets at the beginning of each time slot is
given by

C(z) = (z − 1)A(z)(1 − ρo)

(z − A(z))
, (4.41)

where A(z) = e(z−1)ρo . Unlike for the fictitious queue in which C ≤ 1 because of the
constraint imposed by the input queues, the value of C for the output queue depends
on ρo, and it can be obtained from (4.41) by differentiation:

C = C′(1) = ρo + ρ2
o

2(1 − ρo)
. (4.42)

The average delay in the output queue is given by the Little’s law:

S = C

ρo
= 1 + ρo

2(1 − ρo)
. (4.43)

The delay can also be obtained directly by considering the waiting time. Replacing ρ

with ρo in (4.33), (4.34), and (4.36), we get

S(z) = z(1 − ρo)(1 − e(z−1)ρo )

ρo(e(z−1)ρo − z)
. (4.44)

From (4.44), we can derive (4.43) and other higher moments of S.

4.2 DESIGN IMPROVEMENTS FOR INPUT QUEUEING SWITCHES

The preceding section showed that input-buffered switch with single FIFO queues,
on the contrary, is good for its simplicity but is constrained by its low throughput of
58.6%. It is the result of head-of-line (HOL) blocking at an input queue, forbidding
packets other than the HOL one to be transmitted when more than one HOL packet
from different inputs contends at the same output (see Fig. 3.28). For throughput
improvement, we need to remove the FIFO constraint on the input queues to relieve
the HOL blocking.

4.2.1 Look-Ahead Contention Resolution

An earlier scheme for improving the performance of an input-buffered switches is
look-ahead selection of packets in FIFO input queues. In the look-ahead scheme,
the first w packets of each input will be examined during the contention-resolution
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TABLE 4.2 Maximum Throughput of a 32 × 32
Input-Buffered Switch for Various Contention
Window Sizes

w �∗

1 0.59
2 0.70
3 0.76
4 0.80
5 0.83
6 0.85
7 0.87
8 0.88
∞ 1 (by analytical argument)

phase. The contention-resolution procedure is divided into w cycles. The first cycle
is like the original scheme and at the end of it a set of winning packets out of the
HOL packets are determined. In the second cycle, the scheme looks at the second set
of packets of the inputs that have lost contention in the first cycle to see if they are
destined for any outputs that are as yet unclaimed. A second set of winning packets
is then determined. In this way, each cycle looks one packet deeper into the queue
than the previous cycle. After w cycles, the w sets of winning packets are then sent to
their outputs. Each input still sends at most one packet, and each output still receives
at most one packet, in a time slot. Certainly, as w increases, we expect the maximum
throughput to increase accordingly.

There is no known exact analytical method for deriving the maximum throughput
for w > 1. Table 4.2 lists the simulation results for various values of w for a 32 × 32
switch. In general, it can be easily shown (see Problem 4.12) that as w → ∞, ρ∗ → 1,
assuming the input queues have infinite amounts of buffers (note that this is another
example that the analysis is simple when a relevant system parameter is either small
or very large; but it becomes difficult when the parameter is somewhere in between).
Table 4.2 shows, however, that ρ∗ approaches 1 very slowly.

It should be pointed out the throughput improvement does not come without cost.
If the three-phase sort-banyan network switch is used, the first two phases must be
performed w times, resulting in higher contention-resolution overhead. Let ε be the
overhead associated with one round of contention resolution measured in time slot.
The actual throughput is then ρ∗/(1 + wε). As w is increased, a point may be reached
at which the throughput improvement is more than offset by the contention-resolution
overhead, bringing about a lower actual throughput.

A second factor that may decrease the throughput improvement is the input traffic
characteristics. We have assumed that successive packets on an input are indepen-
dently and equally likely to be destined for any output. In many situations, successive
packets may not be independent and are destined for only a small subset of the out-
puts. The input look-ahead scheme will yield smaller throughput improvement in
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FIGURE 4.7 Virtual output queueing scheme.

such situations because looking deeper into the queue may often find packets with
the same destination.

4.2.2 Parallel Iterative Matching

In order to get rid of HOL blocking in an input-buffered switch, we can modify
the above buffer organization in such a way that every input port maintains N logical
queues, named virtual output queues (VOQs), instead of keeping a single FIFO queue.
This is illustrated in Fig. 4.7. In this setup, each of these N logical queues is dedicated
for one of the N output ports so that packets with different destinations can take part
in the contention resolution simultaneously, thus entirely eliminating HOL blocking
at input ports. This technique is known as virtual output queueing because the switch
behaves as if it is an output queueing switch. In order to further increase the switch
throughput, a scheduler is needed for resolving input and output conflicts with the
existing connection requests. The arbitration of the scheduler is then passed to the
switching fabrics, and connection among input and outputs will be set up accordingly.

The question that arises now is how we can schedule the transmission of the queued
packets so as to achieve a high throughput. In actuality, choosing a set of packets for
transmission in an input-buffered switch can be formulated as a matching problem
in a bipartite graph as shown in Fig. 4.8, where inputs and outputs of the switch can
be considered as the two sets of nodes for matching. It is obvious that if we could
always maximize the number of matches for the matching requests given in the graph,
then we can achieve an optimum throughput performance for the switch. However,
owing to the fact that finding a maximum matching is computationally complex, an
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FIGURE 4.8 Relationship between switch scheduling and bipartite graph matching.

algorithm, called parallel iterative matching (PIM), is proposed to find a maximal
matching for the graph. Note that a maximal matching is a matching in which no
unmatched input has a queued packet destined for an unmatched output (i.e., no more
matches can be made without rearranging the existing matching), while a maximum
matching is one with the maximum number of matching pairs of inputs and outputs.

PIM uses parallelism, randomness, and iteration to find a maximal matching
between the inputs that have buffered packets for transmission and the outputs
that have queued packets (at the inputs) destined for them. Based on this maximal
matching, we can determine which inputs transmit packets over the nonblocking
switch to which outputs in the next time slot. Specifically, this matching algorithm
iterates the following three steps until a maximal matching is found or a fixed number
of iterations are performed.

Request:
Each unmatched input sends a request to every output for which it has a queued packet.

Grant:
If an unmatched output receives any requests, it grants to one by randomly selecting
a request uniformly over all requests.

Accept:
If an input receives grants, it accepts one by selecting an output among those that
granted to this input.
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FIGURE 4.9 (a) PIM: first iteration; (b) PIM: second iteration, request phase only.

Figure 4.9(a) illustrates how PIM works in one iteration. First, in the request phase,
every unmatched input port sends a request to every output port whenever there is
backlogged packet for it. As depicted in Fig. 4.9, input port 1 sends requests to output
ports 1, 2, and 3 simultaneously. Then, in the grant phase, if an unmatched output
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receives multiple requests, it grants one randomly. For example, output 2 grants input
1 in the grant phase below. Finally, in the accept phase, an unmatched input will accept
one grant randomly on receiving multiple grants. In this case, input 1 accepts the grant
from output 1 and input 2 accepts that from output 3. After the first iteration, input
3 remains unmatched, and therefore, it will send requests to output ports 1, 2, and 3
in the request phase of the second iteration (see Fig. 4.9(b)). Since outputs 1 and 3
have already been matched, they will neglect those requests and postpone scheduling
of the corresponding packets to the next time slot. Only output 2 will consider the
request sent by input 3 in this iteration. Thus, two iterations are required for PIM to
find a maximal matching in this example.

In the following, we analyze the maximum throughput of an input-buffered switch
with respect to the number of iterations of PIM invoked. Let us assume that the switch
is very large in size and all the logical queues are saturated so that as soon as a HOL
packet is cleared, its position is taken by a subsequent packet in the next time slot. In
this way, the switch is loaded at its maximum capacity and each output port receives
a request from every unmatched input port during the request phase.

Consider that in the first iteration, the output port receive a request from each of
N input ports and will select one of them randomly to grant. The probability that a
particular input port does not receive any grant is

Pr{no grant received} =
(

1 − 1

N

)N

. (4.45)

Thus, the probability that an input port will receive at least one grant for matching in
the first iteration is given by

ρ̂ = 1 − Pr{no grant received} = 1 −
(

1 − 1

N

)N

. (4.46)

When N is large,

ρ̂ ≈ 1 − e−1 = 0.632. (4.47)

This is the maximum throughput of an input-buffered switch with invoking only one
iteration of PIM.

After the first iteration, there are totally N̂ = (1 − ρ̂)N input–output pairs not yet
to be matched. We can use the same approach to find the number of pairs that could
be matched up in the second iteration. That is,

[
1 −

(
1 − 1

N̂

)N̂
]

· N̂ = ρ̂ · N̂ = ρ̂ · (1 − ρ̂)N. (4.48)
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TABLE 4.3 Maximum Throughput for Input-Buffered Switches Invoking Different
Number of Iterations of PIM

Number of iterations 1 2 3 4 5

Maximum throughput 0.632 0.865 0.950 0.981 0.993

In other words, the proportion of pairs that can be matched up, or the maximum
throughput that can be achieved in the first two iterations of PIM, is

max. throughput2 = ρ̂ + ρ̂(1 − ρ̂), (4.49)

where ρ̂ = 0.632.
Similarly, for K ≥ 2 iterations, it is easy to show that the maximum throughput is

max. throughputK = ρ̂

K∑
k=1

(1 − ρ̂)k−1, (4.50)

when N is sufficiently large. The analytical results of the maximum throughput are
shown in Table 4.3 for different number of iterations of PIM invoked.

4.3 DESIGN IMPROVEMENTS BASED ON OUTPUT CAPACITY
EXPANSION

Output capacity expansion refers to a class of design strategies that alleviate the
contention problem by allowing more than one packet to reach the same output in the
same time slot. Therefore, the throughput of a switch can be much increased.

4.3.1 Speedup Principle

Perhaps the most straightforward output capacity expansion strategy is to speed up
the operation of the switch so that each switch cycle is equal to a fraction of a time
slot. For example, by operating an internally nonblocking switch at twice the external
link rate, each switch cycle is equal to half a time slot. In the first half of a time slot,
a contention-resolution scheme elects the winning packets for output access. In the
second half, the losing packets, together with the new HOL packets, attempt to access
their outputs. It is easily seen that the maximum throughput is now 2 × 0.586, and
since the offered load by definition cannot be more than 1, the input queues will not
saturate.

For such a switch, a packet incurs delays at an input queue and an output queue
(see Fig. 4.10). The output queue is needed because two packets may arrive at an
output in a time slot, during which only one packet can be transmitted on the output
link. The input queue is still required because there remains the chance that more than
two HOL input packets are destined for the same output.
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Switch with
speedup

factor = S 

To avoid packet loss 
at inputs, input 
queues are needed if 
S < N

Output queues are needed 
because packets may 
arrive too many at a time 
for immediate 
transmission at outputs

Each switch cycle = 1/S time slot. Up to S 
packets may leave a given input or reach a 
given output in a time slot

FIGURE 4.10 The speedup principle.

The delay may still be too large even though the throughput limitation has been
removed. To reduce the delay further, we can speed up the switch operation by more
than two times. However, there is a practical limit on the speedup factor. For example,
assuming a 53-byte packet size and an input or output link rate of 155 Mbps, each
time slot is about 2.7 �s, which is already straining the switch design even without
speedup.

A method to achieve the effect of speedup without actually speeding up switch
operation is to use multiple switches. Figure 4.11(a) shows a duplex switch that
achieves a speedup factor of 2 by directing packets to two switches alternately. There
are two switch cycles to a time slot, one for each switch. The switch cycle in the
second switch lags behind that in the first switch by an amount of time needed for
the first switch to resolve packet contention. After the contention-resolution process,
the winning packets then access their outputs via the first switch, and the losing
packets and the new HOL packets contend with each other to access their outputs via
the second switch. In this way, the two switches take turns switching the packets.

Figure 4.11(b) depicts an alternative that uses packet slicing. For speedup of two,
each packet is cut into half, with the complete output address attached to each half.
The two halves are sent simultaneously into two switches that work at the same speed
as the external link. Thanks to its half size, each packet takes approximately half a
time slot to traverse the switch.

For comparison with other switches, we may express the complexity of a speedup
switch by the product of the speedup factor and the complexity of a similar switch
without speedup. Suppose that the complexity measure is the crosspoint count and
that the underlying switch is Batcher–banyan. Then the total crosspoint count is
N
4 log2 N(log2 N + 1) + N

2 log2 N. For a speedup factor of S, the order of complexity
for a speedup switch isSN log2

2 N for largeN. Certainly, switch performance improves
with larger S, but the complexity also becomes higher. From an engineering viewpoint,
the problem is to find the minimum complexity such that certain performance criteria,
such as delay and throughput, can be satisfied. We will find this theme recurring again
and again in this chapter.



DESIGN IMPROVEMENTS BASED ON OUTPUT CAPACITY EXPANSION 121

2

1

Packet 2 will be directed to 
switch 2 if packet 1 is cleared in 
switch 1. Otherwise, packet 1 
will be directed to switch 2

Packet 2 Packet 1

Packets are directed to switch 1 in the first half-time slot and 
to switch 2 in the second half-time slot

(a)

2

1

(b)

Output address

Packet cut into half
Packet assembled

FIGURE 4.11 Methods for achieving speedup effect without speeding up switch operation:
(a) using multiple switches; (b) using packet-slicing concept.

4.3.2 Channel-Grouping Principle

The channel-grouping principle is another output capacity expansion method. In the
speedup method, it is possible to send out S packets from an input in a time slot (e.g.,
when there are S packets in a particular input queue and no packet in all other input
queues). Channel grouping refers to a method in which an input may send out at most
one packet, but multiple packets may be received by an output if these packets are
from different inputs. The number of packets that can be received in a time slot is
referred to as the group size.

Generally, given that the group size R is equal to the speedup factor S, the switch
that employs channel grouping is less complex than the one that employs speedup. On
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FIGURE 4.12 A Batcher–R-banyan network that implements the channel-grouping principle.

the other hand, the speedup switch has better performance because of its capability
to switch multiple packets of an input within the same time slot.

4.3.2.1 Channel Grouping Using Batcher–banyan Networks A Batcher–
R-banyan network that utilizes the channel-grouping concept is shown in Fig. 4.12.
As shown, the structure consists of a Batcher network connected to R parallel banyan
networks. The outputs of the Batcher network are connected to the inputs of the R

banyan network in an interleaving fashion as shown in the figure: the first output of
the Batcher network is connected to the first input of the first banyan network, the
second output to the first input of the second banyan network, and so on. In general,
the output i (i = 0, 1, 2, . . . , N − 1) of the Batcher network is connected to input
�i/R (the integer part of i/R) of banyan network i mod R.

If at most R input packets are addressed to the same destination (output of the
overall switch), then the Batcher network and the interleaving connections between
it and the banyan networks ensure that the input packets to each banyan network are
sorted, concentrated, and have nonconflicting output addresses. The banyan networks
are therefore nonblocking. Outputs i (i = 0, . . . , N − 1) of different banyan networks
correspond to the same logical address and they are collected and fed into a multiplexer
for transmission on the output port.

To ensure that no more than R packets are addressed to the same output, the
underlying contention-resolution scheme must be modified. Consider for example
the three-phase scheme in which the Batcher network is used to resolve contention.
At the end of the first phase, output i of the Batcher network examines output i − R

(as opposed to output i − 1 without channel grouping) for possible conflict. If the
destination addresses of these two packets are the same, then at least R + 1 packets
have the same destination address, thanks to the sorting performed by the Batcher
network. That is, packets at outputs i − R to i all have the same destination addresses.
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Output i’s packet is then declared a loser and queued at its input at the Batcher network,
waiting for the next switch cycle to reattempt output access. On the other hand, if the
destination addresses of the packets at outputs i and i − R are different, the packet
at output i is declared a winner and will be switched in the third phase. In this way,
no more than R packets for the same destination will be declared the winner, thus
ensuring the nonblocking operation in the third phase.

Instead of the R banyan networks, we may also use the expansion banyan network
structure shown in Fig. 4.13. In this configuration, each output of the Batcher net-
work is connected to a 1-to-R expander. The outputs of the N expanders are in turn
connected to R truncated banyan networks. Compared to the preceding structure, this
structure has the advantage that the outputs belonging to the same group are adjacent
to each other. Recall that the packets from each output group must be multiplexed
and buffered in an output queue because the output link may not be able to transmit
all arriving packets immediately. If each truncated banyan network is implemented
in a chip, then the multiplexer and the output queue associated with each group can
also be implemented in the same chip.

R

R

R

Truncated 
banyan 
network

(a)

Truncated 
banyan 
network

0
1

N

0

R–1

R–1

0

0

1

N

Truncated 
banyan 
network

b1b2…bR

R

R

Relative output 
00 …0

R
Relative output 
bR+1 …bn

Relative output 
11 …1

Inputs connected 
to outputs b1 ...bR
of all expanders

(b)

FIGURE 4.13 (a) The expansion banyan network; (b) labeling of the truncated banyan network
and its output groups.
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The expander has the structure of a binary tree. Routing in the expander is similar
to that in an ordinary banyan network. Assuming R is a power of 2, a 1-to-R expander
has r = log2 R stages and it uses the r most significant bits of the output address
for routing. A truncated banyan network is a banyan network with the last r stages
removed and it uses the remaining s = log2 N/R bits for routing. Recall that as a
packet travels through a banyan network, it sees a smaller and smaller subnetwork,
and the outputs it can reach are restricted to a smaller and smaller subset. If it is not
necessary to reach any particular output of an output group (i.e., any output within
a group will do), then there is no need to travel farther through the banyan network
beyond the stages needed to distinguish between the different groups, hence the idea
behind truncation.

To see why the expander truncated banyan network is nonblocking, first note that
no conflict occurs in the expanders since at most one packet travels through each of
them. Packets that exit from expander outputs b1b2 · · · br (labeled in a binary fashion)
are for destinations b1b2 · · · br00 · · · 0, b1b2 · · · br00 · · · 1, . . ., or b1b2 · · · br11 · · · 1.
These packets are routed to a particular truncated banyan network labeled b1b2 · · · br,
as shown in Fig. 4.13(b). The input packets to any particular truncated banyan network
are monotone and concentrated, thanks to the preceding Batcher network. The proof
of the following theorem completes our argument.

Theorem 4.1. The R-truncated-banyan network is nonblocking if the active inputs
x1, . . . , xn (xj > xi if j > i) and their corresponding output addresses y1, . . . , ym

satisfy the following:

1. Limited output conflict: At most R packets are destined for any given output.

2. Monotonic outputs: y1 ≤ y2 ≤ · · · ≤ ym or y1 ≥ y2 ≥ · · · ≥ ym.

3. Concentrated inputs: Any input between two active inputs is also active. That
is, xi ≤ w ≤ xj implies input w is active.

Proof. The output address of a packet has only s = n − r remaining bits for rout-
ing. The relative output address of an output group is therefore labeled br+1 · · · bn,
where n = log2 N. The complete address of the output group, b1 · · · brbr+1 · · · bn, is
obtained by concatenating the truncated banyan network label b1b2 · · · br with the
relative output address br+1 · · · bn. To show that conflict does not occur in any of the
s stages of the truncated banyan network, let us assume the contrary: two packets at
a node in stage k, 1 ≤ k ≤ s, want to access the same outgoing link. Let the input
and relative output addresses of the packet 1 be x = an · · · a1 and y = br+1 · · · bn,
respectively, and those of packet 2 be x′ = a′

n · · · a′
1 and y′ = b′

r+1 · · · b′
n. As in the

proof of Theorem 3.1, their conflict in stage k implies

an−k · · · a1 = a′
n−k · · · a′

1 (4.51)

and

br+1 · · · br+k = b′
r+1 · · · b′

r+k. (4.52)
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Since the packets are concentrated, the total number of packets between inputs x and
x′, inclusively, is

|x′ − x| + 1.

By condition 1, at most R packets can be destined for any particular output address.
By condition 2, the largest and the smallest addresses of the |x′ − x| + 1 packets
must be y and y′, respectively, or y′ and y, respectively. Hence, the number of distinct
output addresses among the |x′ − x| + 1 packets is

|y − y′| + 1 ≥ (|x′ − x| + 1)/R. (4.53)

But according to (4.51) and (4.52),

|x′ − x| = |a′
n · · · a′

1 − an · · · a1|
= |a′

n · · · a′
n−k+10 · · · 0 − an · · · an−k+10 · · · 0|

≥ 2n−k (4.54)

and

|y′ − y| = |b′
r+1 · · · b′

n − br+1 · · · bn|
= |b′

r+k+1 · · · b′
n − br+k+1 · · · bn|

≤ 2n−r−k − 1 = 2n−k

R
− 1 (4.55)

Combining (4.54) and (4.55), we have

|y′ − y| ≤ |x′ − x|/R − 1. (4.56)

But (4.53) and (4.56) contradict each other and therefore the packet conflict could not
have occurred given that the three conditions are satisfied. �

To illustrate that channel-grouped switches are less complex than speedup switches
when R = S, let us compare the number of crosspoints needed. For the Batcher–
truncated banyan network, the N expanders have N(R − 1) crosspoints, the R trun-
cated banyan networks have RN

2 log2
N
R

crosspoints, and the Batcher network has
N
4 log2 N(log2 N + 1) crosspoints. If R = S < N, which is the case for large N since
R and S need only to be fixed at a constant value independent of N to achieve sat-
isfactory performance (see the next subsection), then the complexity of the Batcher
network dominates. Since only one Batcher network is needed here and S Batcher
networks are needed in the speedup scheme, we conclude that the channel-grouped
switch is less complex than the speedup switch when the underlying switch structures
are Batcher–banyan.
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FIGURE 4.14 (a) Multiplexer and output queue at an output of a channel-grouped switch. To
accommodate simultaneous packet arrivals, the multiplexer must work R times faster than link
rate. (b) An implementation of a logical FIFO queue such that the multiplexer only have to work
at same speed as link rate.

Both speedup and channel-grouping schemes require a multiplexer and an output
queue in each output. Figure 4.14(a) shows an implementation that employs an R × 1
switch that runs at R times the link speed. In each time slot, the multiplexer scans
across all the inputs and switches the packets, if any, one by one to the output queue.
The access speed of the memory that implements the queue must also be fast enough
to keep up with the scanning.

Figure 4.14(b) is an alternative scheme that achieves the same function with-
out employing speedup. It consists of an R × R shifting concentrator (described in
Section 3.2.4) followed by R queues and a multiplexer. For explanation, let us pre-
tend that the structure does not have the shifting concentrator for the time being. The
multiplexer works at the same speed as the output link. It scans the queues in a round-
robin fashion and in each time slot and selects a packet from one of the queues for
transmission on the output link. In R time slots, each queue has at least one chance
to send a packet. It is possible for successive packets of a communication session to
arrive at different output queues due to the interference of packets from other inputs:
the number of other packets contending with the session’s packets, and their inputs,
may change from time slot to time slot. If by chance a packet of the session reaches a
queue that is shorter than the one reached by an earlier packet, it will be transmitted
first, causing the packets to be received out of order at the destination.

The purpose of the shifting concentrator is to maintain the sequence order of the
packets. It concentrates and loads the arriving packets in a round-robin fashion into
the queues. In the very first time slot of the switch operation, the shifting concentrator
loads the arriving packets into queues 1, 2, and so on. Similarly, packets will be
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read out from the queues by the multiplexer starting from queue 1 in a round-robin
manner. Suppose that queue i is the last queue to which a packet is loaded and that
K ≤ R packets arrive in the next time slot. Then the shifting concentrator sends the
newly arriving packets to queues i + 1, . . . , i + K (mod R). In the subsequent time
slot, packets will be loaded into the queues starting from queue i + K + 1 (mod R).
Meanwhile the multiplexer reads packets out of the queues in a round-robin fashion,
and if it finds the queue to be read empty in a time slot, it simply waits until the shifting
concentrator loads a packet into the queue—in this situation, the other queues are also
empty, and the queue is the one to be loaded next. It can be easily seen that the R

queues are logically equivalent to a FIFO queue, because it is impossible for a packet
of a session to depart from the switch before an earlier packet does. As for the shifting
concentrator, it has already been shown in Section 3.2.4 that it can be implemented
using a reverse banyan network.

4.3.2.2 Performance of Switches Based on Channel Grouping Let us
consider a waiting system in which if more than R packets are destined for the same
output, the excess packets are buffered at the inputs. The special case R = 1 has been
considered in the preceding chapter. The basic steps are the same in the general case.
Therefore, we will go through the derivations rather briefly.

We made the same assumption that each packet is equally likely to be destined
for any of the N outputs and packet destinations are independent. To derive the
maximum throughput, as before, consider the fictitious queue that consists of HOL
packets destined for a particular output. Let Cm be the number of packets in the queue
and Am be the number of arriving packets at the start of time slot m. The system
evolves according to the equation

Cm = max(0, Cm−1 − R) + Am. (4.57)

As before, we can argue that for large N, Am is Poisson and independent of m in the
steady state. For the steady-state analysis, the subscript m is dropped. Its generating
function is

A(z) = e(z−1)ρ, (4.58)

where ρ is the throughput of the system. Using the same steps, we can show that

C(z) =
A(z)

[∑R−1
k=0 (zR − zk) Pr{C = k}

]
zR − A(z)

. (4.59)

We have expressed C(z) in terms of Pr{C = 0}, Pr{C = 1}, . . . , Pr{C = R − 1}.
These probabilities cannot be found so easily, and they can only be derived indi-
rectly numerically.

The term
∑R−1

k=0 (zR − zk) Pr{C = k} in the numerator of C(z) is a polynomial
of degree R in z. We can therefore alternatively express it as K(z − 1)(z − z1) . . .
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(z − zR−1), where 1, z1, . . . , zR−1 are roots of the polynomial and K = ∑R−1
k=0 Pr{C =

k}. Substitute this form into (4.59). Differentiating C(z) with respect to z and taking
the limit z → 1 we obtain (see Problem 4.21 for details)

C = C′(1) = ρ + ρ2 − R(R − 1)

2(R − ρ)
+

R−1∑
k=1

1

1 − zk

, (4.60)

where 1 and zk, k = 1, . . . , R − 1, are the R zeros of the numerator of
∑R−1

k=0 (zR −
zk) Pr{C = k}. But we do not know Pr{C = 1}, . . . , Pr{C = R − 1} and therefore zk

cannot be found by solving for the zeros in a direct manner! Fortunately, there is
an indirect method to derive zk without the knowledge of the probabilities. In fact,
it is the other way round: the probabilities can be found from zk after the indirect
derivation.

The first step of this indirect method makes use of a result in complex analysis
called the Rouche’s theorem to show that the denominator of C(z), zR − A(z), contains
exactly R zeros with magnitude less than or equal to 1. The use of Rouche’s theorem
is beyond the scope of this book, and we will simply accept this fact here. It can
be easily verified that z = 1 is a zero of zR − A(z) by substitution. Denote the other
R − 1 zeros by z′

1, z′
2, . . . , z

′
R−1.

The second step makes use of the fact that any generating function, including C(z),
must be analytical (does not go to infinity) for |z| ≤ 1.1 Therefore, the R zeros of the
denominator with magnitude not more than one, 1, z′

1, . . . , z
′
R−1, must also be the R

zeros 1, z1, . . . , zR−1 in the numerator—otherwise substituting z = z′
k in C(z) will

make C(z) go to infinity because the denominator becomes zero while the numerator
is nonzero; but this is impossible because we have just argued that substituting any z

with |z| ≤ 1 into C(z) should not make it go to infinity. Thus, zk, k = 1, . . . , R − 1,
can be found numerically by solving for the roots of the denominator, and this is given
by solving the following (R − 1) complex equations:

z

(
cos

2kπ

R
+ i sin

2kπ

R

)
− A

1
R (z) = 0, k = 1, . . . , R − 1. (4.61)

As before, we can argue that C′(1) = 1 when the input queues saturate. Substituting
this into (4.60), we get

ρ + ρ2 − R(R − 1)

2(R − ρ)
+

R−1∑
k=1

1

1 − zk(ρ)
= 1. (4.62)

1To see this intuitively, consider the fact that a generating function is a weighted sum of the associated
probabilities with zk being the weights. When z = 1, the probabilities sum to 1 by definition. When |z| < 1,
the weighted sum can only be smaller.
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TABLE 4.4 Maximum
Throughput for Input-Buffered
Switches with Group Size R

R �∗

1 0.586
2 0.885
3 0.975
4 0.996
8 1.000

Note that we have explicitly put in the dependence of zk found from (4.61) on ρ

through the notation zk(ρ). Equation (4.62) relates the throughput ρ and the group
size R. To find the saturation throughput ρ numerically, we start with an initial guess
of ρ and find the corresponding roots zk(ρ) using (4.61). The roots are then substituted
into (4.62) to get a quadratic equation of ρ, from which we obtain a new ρ. This new
ρ is then substituted into (4.61) for a new set of roots zk(ρ). This process is iterated
until the required accuracy of ρ is obtained. The resulting throughput is the saturation
or maximum achievable throughput ρ∗. Table 4.4 lists the values of ρ∗ for various R

and shows that it indeed approaches to 1 very quickly with R.
The derivation of the waiting time can largely be proceeded as before. In particular,

the general form of (4.31) still applies:

W(z) = (1 − ρS)
1 − z

(1 − z) + [S(z) − 1]ρ
, (4.63)

where W(z) and S(z) are, respectively, the generating functions of the waiting time
and the service time at the HOL. The mean waiting time is

W = ρS(S − 1)

2(1 − ρS)
. (4.64)

These equations are expressed in terms of S, the service time at HOL. But as for
C(z), there is no known way of finding S(z) or Pr{S} in closed form. To find S(z)
numerically, let the number of packets at the end of a time slot in the steady state be
B. Then,

B(z) = C(z)

A(z)
=

[∑R−1
k=0 (zR − zk) Pr{C = k}

]
zR − A(z)

. (4.65)

As for C(z), we can argue that for B(z) the R roots of the numerator are the same
as the R roots of the denominator that are less than or equal to 1. For a given ρ <

ρ∗, therefore, we can use (4.61) to find the roots zk(ρ), k = 1, . . . , R − 1, and then
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substitute them into

B(z) = (z − 1)
∏R−1

k=1 (z − zk(ρ))

zR − A(z)

(
R−1∑
k=0

Pr{C = k}
)

, (4.66)

where
∑R−1

k=1 Pr{C = k} can be found from B(1) = 1.
To find S(z), let us consider a FIFO fictitious queue. The tricky part here is that in

each time slot, there may be up to R packets being cleared. As in the R = 1 case, let
B be the number of other packets already in the queue found by an arriving packet,
and let L be the number of other packets arriving together with the packet that are
scheduled to be served first. Define S′ = B + L + 1, hence

S′(z) = B(z)L(z)z, (4.67)

where L(z) is given by (4.36) using the same argument in that section:

L(z) = e(z−1)ρ − 1

(z − 1)ρ
. (4.68)

Note that S = S′ if R = 1. In general,

S =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if S′ ≤ R,

2, if R < S′ ≤ 2R,

...

i, if (i − 1)R < S′ ≤ iR,

...

(4.69)

By expanding S′(z) in (4.67) as a power series of z, we can find Pr{S′ = k}, from
which we can then get

Pr{S = i} =
iR∑

k=(i−1)R+1

Pr{S′ = k} for i = 1, 2, . . . (4.70)

In particular, for a given ρ < ρ∗, we can approximate S(z) = ∑∞
i=1 Pr{S = i}zi with

a truncated series. From this approximate S(z), we can then estimate W(z) and W

from (4.63) and (4.64). To decide how the series should be truncated for the derivation
of W , note that it depends on S(S − 1) = S′′(1), Therefore, we can write a computer
program to test when i(i − 1) Pr{S = i} becomes too small to be an important term
in S′′(1).

As mentioned before, when R > 1, delays are also incurred by packets at the
output queues. When R is small, it is difficult to analyze the delay at an output queue
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because the packet arrivals at successive time slots are strongly correlated. In general,
however, one would engineer R to be large enough so that the switch does not have
any significant throughput limitation (say, R > 4 from Table 4.4). In this situation,
the delay at the input queue is usually much smaller than the delay at the output,
and we can make an approximation that all packets are immediately switched to their
outputs. Output delay can then be analyzed using the approach in Section 4.1.4.

4.3.3 Knockout Principle

The performance analysis above has assumed channel-grouped switches operated as
waiting systems. As R becomes large, the switch throughput approaches one, and we
might ask whether in fact almost all packets are immediately switched to their outputs
upon arrival. Furthermore, if the probability of queueing at the inputs is small enough,
perhaps we can do away with the input queues and simply drop the very few packets
that have lost contention. Such switches operate as loss systems, and the underlying
principle is called the knockout principle.

The knockout principle states that the likelihood of a packet being dropped due to
contention can be made arbitrarily small with sufficiently large R, and furthermore,
for a given loss probability requirement, there exists an R that is independent of the
switch size N such that the actual loss probability is not larger than the requirement.

To demonstrate the knockout principle, let us first calculate the loss probability as
a function of R. Assume that the destinations of packets on different inputs are inde-
pendent and that they are equally likely to be destined for any of the N outputs, then
the probability of k packets destined for a particular output in a time slot is binomial:

Pk =
(

N

k

) (ρo

N

)k

(1 − ρo

N
)N−k, k = 0, 1, . . . , N, (4.71)

where ρo is the offered load or the probability that an input has a packet. The
probability of a packet being dropped at an output is the expected number of packets
dropped divided by the offered load:

Ploss = 1

ρo

N∑
k=R+1

(k − R)

(
N

k

) (ρo

N

)k (
1 − ρo

N

)N−k

. (4.72)

One can show that Ploss increases with N. The proof is messy and does not yield
much insight, and it will be omitted here. The reader can verify this fact by trying out
several values of ρo and R. Returning to (4.72), taking the limit as N → ∞, we have

Ploss = 1

ρo

∞∑
k=R+1

(k − R)
ρk

o

k!
e−ρo

= 1

ρo

[ ∞∑
k=0

(k − R)
ρk

o

k!
e−ρo −

R∑
k=0

(k − R)
ρk

o

k!
e−ρo

]
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= 1
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R∑
k=0

k
ρk

o

k!
e−ρo + R

R∑
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) (
1 −
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k=0

ρk
o
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e−ρo

)
+ ρR

o

R!
e−ρo .

(4.73)

It can be easily shown from the above expression that Ploss decreases as R increases.
That is, Ploss decreases monotonically as R → N, and when R = N, Ploss = 0 (it is
physically obvious that if up to N packets can access the same output simultaneously,
the loss probability must be zero). This means that for any given loss probability
requirement, we can always find a sufficiently large R to achieve a loss probability
that is not larger than the requirement. To illustrate that a finite R would do for all
N, consider a loss probability requirement of 10−6. We can compute from (4.73)
that R = 8 is enough. Furthermore, this R applies for all N, since (4.73) is an upper
bound on the loss probability for finite N.

The channel-grouped Batcher–banyan networks described in the previous subsec-
tion can adopt the knockout principle and operate as a loss system. As in the waiting
system, a contention-resolution scheme (e.g., the three-phase scheme) is used to select
up to R packets for each output for switching. The excess packets, instead of being
queued, are dropped at the inputs.

An alternative to separating the contention-resolution phase and the switching
phase is to deal with the contention on-the-fly while the packets are being routed. This
eliminates the overhead associated with a dedicated contention-resolution phase. Fig-
ure 4.15 shows a Batcher–banyan switch design in which a reverse banyan concentra-
tor is inserted between the Batcher and the banyan networks. In this network, packets
are launched in their entireties into the Batcher network at the beginning of each time
slot (as opposed to only the headers in the three-phase scheme). As discussed before,
winning and losing packets are determined at the outputs of the Batcher network by
address comparison. The losing packets are dropped. This means that the remain-
ing winning packets may not be concentrated anymore. Internal conflict may arise if
they are launched into the banyan networks directly. To avoid such conflict, a reverse
banyan network is a used as a concentrator to remove the gaps between the packets.

The outputs of the reverse banyan concentrator are connected in an interleaving
fashion to R N × N banyan networks (as in the connection from the Batcher network
to the banyan networks in Fig. 4.12): output i (i = 0, . . . , N − 1) of the concentrator is
connected to input �i/R of banyan network i mod R. It is easily seen that no conflict
occurs in any of the N × N banyan network because the packets are concentrated and
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FIGURE 4.15 A Batcher–banyan knockout switch.

have distinct monotonic addresses. Outputs i (i = 0, . . . , N − 1) of different banyan
networks correspond to the same output address and they are collected and fed into
a multiplexer with a logical FIFO (see Fig. 4.14(b)) to maintain packet sequence
integrity.

The Batcher–banyan knockout switch is a good example of how the basic building
blocks that we have learned so far can be used to construct a sophisticated packet
switch. A number of parallel distributed algorithms—sorting in the Batcher network,
concentration in the reverse banyan network, routing in the banyan networks, and
multiplexing in the logical FIFO queues at the outputs—are executed simultaneously.
Every essential step seems to have been parallelized except for one thing. In the
discussion of the reverse banyan concentrator in Section 3.2.4, we have ignored a
critical problem that surfaces when N is large, namely, how does a packet at an input
find out the number of arriving packets at other inputs so that its output address at
the shifting concentrator can be determined accordingly? After all, the concentrator
output assigned to a packet corresponds to the number of active packets above it:
from top to bottom, the first active packet is assigned output 0, second, output 1,
third, output 2, and so on. When the number of inputs N is small, a central controller
that polls the inputs and returns the assigned output addresses at the beginning of
each time slot can be incorporated (see Fig. 4.16(a)). But this takes up an amount of
time proportional to the number of inputs. When the number of inputs N is large, this
approach is not viable. Hence, a parallel architecture that performs such polling and
address assignment in a distributed fashion is needed.

For each input, the task is to compute the number (or the running sum) of packets
above it. Figure 4.16(b) shows an 8 × 8 running-adder address generator for such
computation. An N × N running-adder address generator comprises log2 N stages of
N adders each. At the inputs, a log2 N-bit header is attached to each packet for the
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FIGURE 4.16 (a) A central controller for computing the assignments of packets to concentrator
outputs; (b) a running-adder address generator that computes the assignments in a parallel and
distributed manner.

storage of the running sum. An adder is a 2 × 1 device that takes two input packets,
adds the running sum of the upper input to that of the lower input, and outputs the
lower packet with the new running-sum header. At stage k (k = 1, . . . , log2 N), link
i (i = 0, . . . , N − 1) is connected to two adders: the lower input of adder i and the
upper input of adder i + 2k−1.

Initially, the running-sum headers of active input packets to the address generator
are set to one. By construction, some of the inputs to the adders at various stages may
not be connected to any previous-stage outputs (see Fig. 4.16(b)), and the running
sums of these inputs are set to zero. To understand the structure, let us trace through
the path taken by a packet on input i and examine the steps for computing its running
sum. Let

Xj =

⎧⎪⎨
⎪⎩

1, if input j, j = 0, . . . , N − 1, has an active packet,

0, if input j, j = 0, . . . , N − 1, is inactive,

0, if j < 0.

At the output of stage 1, the running sum of the packet at input i is Si[1] = Xi + Xi−1;
at the output of stage 2, the running sum is Si[2] = Si[1] + Si−2[1] = Xi + Xi−1 +
Xi−2 + Xi−3; and in general, at the output of stage k ≤ log2 N, Si[k] = ∑2k−1

j=0 Xi−j ,
so that the running sum of the packet at the output of the address generator is

Si[log2 N] = Xi + Xi−1 + · · · + Xi−N−1 = Xi + Xi−1 + · · · + X0 (4.74)
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Since the running sum Si[·] includes packet i, one is subtracted from Si[log2 N] at
the output of the address generator to obtain the concentrator-output assignment of
the packet.

Let us consider the order of complexity of the overall Batcher–banyan knockout
switch. The complexity of the address generator is of order N log2 N because it has
N log2 N adders. Considering its crosspoint count, the reverse banyan concentrator
also has a complexity of order N log2 N. The crosspoint count of the R N log2 N

banyan networks is RN
2 log2 N. Since R can be fixed at a constant independent of

N to satisfy any loss probability requirement, the order of complexity is N log2 N

for large N. By the same token, the N logical FIFO queues are of complexity order
N. For large N, therefore, the order of complexity of the Batcher network N log2

2 N

dominates. Thus, overall, this is still a N log2
2 N network.

Figure 4.17 shows yet another realization of the knockout concept. This is the
design proposed by the original proponents of the knockout principle. It uses N

buses to broadcast all input packets to all outputs. At each output, filters are used to
select the packets addressed to it. Contention resolution is performed by a “knockout”
concentrator at the output that selects R packets to feed into a logical FIFO queue.
The excess packets are dropped (knocked out) in the knockout concentrator. An
advantage of this structure is that multicast capability (sending copies of a packet
to several outputs simultaneously) is inbuilt: the same packet can be selected by
filters at different outputs concurrently. A disadvantage is that the implementation
complexity is higher than that of the Batcher–banyan design.

The knockout concentrator is implemented as shown in Fig. 4.18. It is divided into
R sections, each corresponding to a tournament that selects one winning packet. The
N inputs of the concentrator are connected to the first section on the left. The losing
packets at each section are fed into the next section so that after R sections, R or fewer
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Output 1
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N
Input

Output

Output N
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FIGURE 4.17 A knockout switch based on broadcast buses and knockout concentrators.
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packets (if there are fewer than R input packets) are selected as winners. As shown
in the figure, each section is a binary-tree interconnection of 2 × 2 switch elements.
The delay elements are used to synchronize packet arrivals at the switch elements and
at the concentrator outputs.

At each switch element, if there is only one packet at the inputs, it is declared the
winner and sent out on the left output. If there are two packets at the inputs, the switch
element is set to the bar state to make the left packet winner and right packet loser.
The switch element can also be designed so that it alternates between favoring the left
and right inputs in successive switch cycles to achieve a certain degree of fairness.

The number of switch elements in the kth section is N − k. The total number of
switch elements is (N − 1) + (N − 2) + · · · + (N − R) ≈ NR for N � R. There-
fore, considering all outputs, the total number of switch elements in all N knockout
concentrators is N2R. Hence, the complexity of this design is of order N2.

That the knockout concept can be implemented using very different switch archi-
tectures points out that it is important to separate principles from realizations so that
we have a clear idea of what the realizations aim to achieve. The same switching
principle can be implemented in different ways, each with its own advantages and
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disadvantages. When comparing switch architectures, better insight can be obtained if
we have a clear idea of whether the differences are due to different implementations
of the same switching principle or different underlying switching principles (e.g.,
waiting system versus loss system).

4.3.4 Replication Principle

Switches that employ the channel-grouped and knockout principles are internally non-
blocking. In fact, they are more than internally nonblocking in that multiple packets
can be routed to the same output destination simultaneously. Many other switching
networks, such as the Banyan networks, are internally blocking. It turns out that we can
tackle the problems of internal and external conflicts concurrently in these networks
using two techniques that are similar to channel grouping. The first technique employs
the replication principle and is discussed in this subsection. The second technique is
based on the dilation principle and will be discussed in the next subsection.

To explain the replication principle, let us apply it to the class of Banyan networks.
Figure 4.19 depicts a parallel Banyan network. The basic idea is to have multiple
copies of Banyan networks so that a packet has several alternative routes, one in each
Banyan network, to its destination. There are two ways to operate the parallel network.

The first alternative is based on random routing. Suppose that there are K parallel
networks. An incoming packet is routed randomly to one of the K networks. The load
to each Banyan network is reduced by a factor of K, giving rise to a correspondingly
lower Ploss. Using (3.5), with the load set to ρo/K, we find that

Ploss = nρo

nρo + 4K
. (4.75)
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FIGURE 4.19 A parallel banyan network.
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Suppose we fix the loss probability requirement and ask what is the value of K that
is needed to satisfy that requirement. From (4.75), we have

K = (P−1
loss − 1)nλ

4
≈ λ

4

log N

Ploss
(4.76)

for small Ploss. Each Banyan network has N
2 log N switch elements. In terms of N,

therefore, the parallel Banyan network has a complexity order of N log2 N.
Instead of random routing, we can use broadcast routing. An incoming packet is

broadcast to all the K parallel Banyan networks. Since multiple copies of the packet
may be received at the output, filters are needed to remove redundant packets. With
broadcast routing, the load to each Banyan network is still ρo, but a packet is lost only
if all its replicas fail to reach its destination output. For this strategy to work properly,
we must adopt a random contention-resolution scheme in each of the parallel Banyan
networks so that when two packets attempt to access the same output of a 2 × 2 switch
element, the winning packet will be chosen at random. Otherwise, with all the Banyan
networks using the same fixed contention-resolution scheme (e.g., always choose the
packet from the upper input port), packets that are dropped in one Banyan network
will also be dropped in other Banyan networks.

Even with the random contention-resolution scheme, the event of a packet being
dropped in one Banyan network is not independent of the events of its replicas being
dropped in the other Banyan networks, because all Banyan networks have the same
set of input packets. Given a packet is dropped in one Banyan network, for instance, it
is more likely that the packet will be dropped in another Banyan network because the
knowledge that it is dropped in the first network implies that there is at least one other
packet contending with it. For simplicity, if we further make the assumption that the
contention-resolution processes in different Banyan networks are independent, then

Ploss =
(

nρo

nρo + 4

)K

. (4.77)

From this, we get

K = log Ploss

log
(

1 − 4
nρo+4

) ≈ (4 + ρo log N)

4
(− ln Ploss). (4.78)

The number of parallel Banyan networks needed for broadcast routing is less
than the number needed for random routing. In either case, however, the order of
complexity is not less than that of the Batcher–banyan network.

4.3.5 Dilation Principle

We shall focus on dilated Banyan networks operated as loss systems. The basic idea
of the dilated Banyan network is to expand the internal link bandwidth in order



DESIGN IMPROVEMENTS BASED ON OUTPUT CAPACITY EXPANSION 139

010

001

100

011

000

111
110

101

010

001

100

011

000

111
110

101

FIGURE 4.20 An 8 × 8 banyan network with dilation degree 2.

to reduce the likelihood of a packet being dropped. Figure 4.20 shows an 8 × 8
dilated Banyan network with a dilation degree of 2. The overall interconnection
structure of a dilated-Banyan network is the same as that in the Banyan network,
except that connected switch elements are linked by a multiplicity of d channels
in the d-dilated-Banyan network. Thus, the regular Banyan network can be con-
sidered as a special case of the d-dilated-Banyan network with d = 1. The switch
elements are themselves 2d × 2d switches with two outgoing addresses. Each out-
going address has d associated outgoing links. Consequently, up to a maximum
of d packets can be forwarded to the same outgoing address in any given time
slot.

In a loss system, if more than d packets are destined for the same outgoing address
of a switch element, then d packets would be forwarded and the remaining packets
dropped from the system. Thus, by making d sufficiently large, we can achieve ar-
bitrarily small packet loss probability. The drawback, of course, is that the switch
becomes complex as d increases.

To see how large d should be for a given loss probability requirement Ploss, let us
first consider an exact calculation. Assume that input packets to the overall network
are independent and equally likely to be destined for any of the N outputs. Let Rm(j)
be the probability that j packets are forwarded to an outgoing address of a switch
element at stage m, where 0 ≤ j ≤ d. Only d packets are forwarded when more than
d packets are destined for the output address. The probability of i packets entering a
switch element at stage m + 1 is

Sm+1(i) =
i∑

k=0

Rm(k)Rm(i − k), 0 ≤ i ≤ 2d, (4.79)

since Rm(k)Rm(i − k) is the probability that there are k and i − k packets on the upper
and lower input-channel groups, respectively. The probability that j of these packets
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are destined for a particular output address is
(

i
j

)
2−i. Thus,

Rm+1(j) =
{∑2d

i=j Sm+1(i)
(

i
j

)
2−i, if j < d,∑2d

i=d Sm+1(i)
∑i

k=d

(
i
k

)
2−i, if j = d.

(4.80)

With the initial condition

R0(j) =

⎧⎪⎨
⎪⎩

1 − ρo, if j = 0,

ρo, if j = 1,

0, if j > 1,

where ρo is the offered load, Rn(j) can be found recursively. The packet loss proba-
bility for the overall switch is simply

Ploss = 1 −
∑d

j=0 jRn(j)

ρo
, (4.81)

where n = log2 N.
The above is not a closed-form result and it does not relate Ploss to n, d, and ρo

explicitly. The approximate analysis below will be used to study how dilation degree
d is related to n for given Ploss and ρo.

There are two groups of d incoming links for each switch element. Strictly speak-
ing, the links belonging to the same group are not independent in the sense that finding
a packet on one link is correlated with finding packets on other links. For analytical
tractability, however, we will make the simplifying assumption that the input ports are
independent. Let Pm denote the probability that there is a packet at an input channel of
a switch element at stage m + 1. With the independence assumption, the probability
of finding a packet at an arbitrary outgoing link of this switch element (or an incoming
link of a switch element in the m + 2 stage ) is

Pm+1 = 1

d

{
d∑

k=1

k

(
2d

k

) (
Pm

2

)k (
1 − Pm

2

)2d−k

+ d

2d∑
k=d+1

(
2d

k

) (
Pm

2

)k (
1 − Pm

2

)2d−k
}

= Pm − 1

d

2d∑
k=d+1

(k − d)

(
2d

k

) (
Pm

2

)k (
1 − Pm

2

)2d−k

. (4.82)
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The complexity of the dilated Banyan network can be estimated from the packet loss
probability for a switch element at stage m given by

Qm = 1 − Pm

Pm−1

= 1

Pm−1d

2d∑
k=d+1

(k − d)

(
2d

k

) (
Pm−1

2

)k (
1 − Pm−1

2

)2d−k

, m > log2 d.

(4.83)

We limit the application of the above formula to m > log2 d because it can be seen
from the structure of the switch that Qm = 0 for m ≤ log d: there can be no more
than d/2 packets at each input group of switch elements at stages 1 through log d;
that is, even under full loading conditions, when all input ports of the overall network
have a packet, it takes at least log d + 1 stages before contentions between packets
may occur.

It is easy to see from (4.82) that Pm decreases monotonically with m. Intuitively,
the loss probability Qm also decreases monotonically with m:

Q1 ≥ · · · ≥ Qn. (4.84)

The above monotonic sequence is easy to interpret: As we progress through the stages
of the network and as packets are dropped due to contention, fewer and fewer packets
are left. This means the contention level is lighter in the later stages and therefore Qm

decreases as m increases. Problem 4.24 derives (4.84) formally.
In the following, all logarithms are taken to the base two unless otherwise noted:

log = log2. The loss probability Ploss can be bounded from above as follows:

Ploss = P0 − Pn

P0

= (P0 − P1) + (P1 − P2) + · · · + (Pn−1 − Pn)

P0

= Q1 + Q2
P1

P0
+ · · · + Qlog d

Plog d−1

P0
+ Qlog d+1

Plog d

P0
+ · · · + Qn

Pn−1

P0

≤ (n − log d) Qlog d+1, (4.85)

where the last line is obtained by observing that Q1 = Q2 = · · · = Qlogd
= 0 and

that Qm and Pm decrease monotonically with m. This is basically a union bound
(i.e., the overall loss probability is upper-bounded by the sum of loss probabilities at
different stages), which is likely to be very good when Ploss (and therefore Qm) is
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small. To find a bound for Qlog d+1, substituting Plog d = ρo/d into (4.83) gives

Qlog d+1 = 1

ρo

2d∑
j=d+1

(j − d)

(
2d

j

) (ρo

2d

)j (
1 − ρo

2d

)2d−j

= (ρo/2d)d

ρo

d∑
i=1

i

(
2d

i + d

) (ρo

2d

)i (
1 − ρo

2d

)d−i

, (4.86)

where we have made the index change i = j − d. Now,

(
2d

i + d

)
=

(
2d

d

)(
d

i

)
× d! i!

(i + d)!
=

(
2d

d

)(
d

i

)
× i

i + d

i − 1

i − 1 + d
× · · ·

× 1

1 + d
≤

(
2d

d

)(
d

i

)
2−i for i ≤ d.

Substituting the above into (4.86) and simplifying by Stirling’s formula

n! = nne−n
√

2πn(1 + ε(n)), (4.87)

where ε(n) > 0 is a decreasing function of n, we get

Qlog d+1 ≤ 1

4

(ρo

d

)d (
1 − ρo

4d

)d−1 2d

√
πd

.

Thus,

Ploss ≤ (n − log d)
1

4

(ρo

d

)d (
1 − ρo

4d

)d−1 2d

√
πd

. (4.88)

To get a lower bound for Ploss, continuing from the first line of (4.85), we have

Ploss ≥ Pn

P0
(Qlog d+1 + Qlog d+2 + · · · + Qn)

≥ (1 − Ploss)(n − log d)Qn. (4.89)

From (4.83) and with the index change i = k − d, we obtain

Qn = (Pn−1/2)d

Pn−1d

d∑
i=1

i

(
2d

i + d

) (
Pn−1

2

)i (
1 − Pn−1

2

)d−i

. (4.90)
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Now,

(
2d

i + d

)
=

(
d

i

)
× 2d · · · (d + 1)

(d + i) · · · (i + 1)
≥

(
d

i

)
2d−i.

Substituting into (4.90) and simplifying

Qn ≥ [(ρo/d)(1 − Ploss)]d

4

(
1 − ρo

4d

)d−1
, (4.91)

where we have made use of the facts that Pn−1 ≥ Pn = (ρo/d)(1 − Ploss) and Pn−1 ≤
ρo/d. Substitution of (4.91) into (4.89) gives

Ploss

(1 − Ploss)d+1 ≥ 1

4

(ρo

d

)d (
1 − ρo

4d

)d−1
(n − log d). (4.92)

If we are only interested in very small Ploss, then

Ploss

(1 − Ploss)d+1 ≈ Ploss(1 + (d + 1)Ploss) ≈ Ploss.

Making this approximation, we obtain

Ploss ≥ 1

4

(ρo

d

)d (
1 − ρo

4d

)d−1
(n − log d). (4.93)

Combining (4.88) and the above, we have

(n − log d)

4

(ρo

d

)d (
1 − ρo

4d

)d−1≤ Ploss ≤ (n − log d)

4

(ρo

d

)d (
1 − ρo

4d

)d−1 2d

√
πd

.

(4.94)

The above can be used to estimate Ploss for given d and n. We can turn the problem
around and find the required dilation degree d for given loss probability requirement
Ploss and switch size N = 2n. It can be shown (see Problem 4.25) that

d log d = log log N − log Ploss + O(d), (4.95)

where O(d) is a term that increases not more than linearly with d: that is, a constant
C can be found such that O(d) ≤ Cd.

Each 2d × 2d switch element in the dilated Banyan network have only two outgo-
ing addresses, and its implementation can be simpler than a regular 2d × 2d switch
element with 2d outgoing addresses. Figure 4.21 shows how the 2d × 2d switch ele-
ment can be implemented. An incoming packet is switched by a 1 × 2 element to its
desired output group. A 2d × d concentrator is then used to concentrate the packets
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2 d×d 
concentrator

2 d×d 
concentrator

Complexity~ O(d log d)

FIGURE 4.21 An implementation of 2d × 2d switch element with order of complexity d logd .

destined for the same group to d outgoing links. Excess packets are dropped if more
than d packets arrive for the same output group.

We have learned earlier in this chapter that the concentrator can be realized using
a running-adder address generator and a reverse Banyan network. The order of com-
plexity is d log d. The order of complexity of each switch element is therefore d log d.
Since there are altogether N

2 log N such switch elements, the overall dilated network
is of order N

2 log N × d log d. For large N, d log d is of order log log N, in terms of N.
The dilated network is therefore of order N log N log log N. This order of complexity
is less than those of the parallel Banyan network and Batcher–banyan network. How-
ever, since order-of-complexity measure is meaningful only for large N, it cannot be
argued that this network is simpler to implement in practice, especially if one consid-
ers that for small d, it may not be worthwhile to use the running-adder-and-reverse
banyan approach to build the 2d × 2d switch.

PROBLEMS

4.1 Consider a 2 × 2 switch operating as a waiting system. Each input has a queue.
If the two packets at the heads of the queues are destined for the same output,
one of them is chosen at random to be routed and the other will remain in the
queue. Consider the saturation situation in which there are always packets in
the queues. Draw a four-state Markov chain in which state (i, j) means that the
packet at the head of queue 1 is destined for output i and the packet at the head
of queue 2 is destined for output j. Each transition corresponds to the passing
of a time slot. Derive the maximum switch throughput.

4.2 Explain intuitively why input-buffered switches of smaller dimensions have
higher maximum throughput than those of larger dimensions when the packets
on each input are equally likely to be destined for any of the outputs.
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4.3 Consider two N × N internally nonblocking packet switches where N is very
large. One is operated as a waiting system with very large input buffers and
the other is operated as a loss system without input buffers. For the former,
packets are dropped when the input buffers overflow, and for the latter, packets
that lost contention are dropped.
(a) When the load is 0.5, which system has a lower packet loss probability?

How about when the load is 1?

(b) Roughly, what is the “transition point” for the load at which the relative
loss performance of the systems is reversed?

4.4 Consider an 8 × 8 input-buffered switch with nonuniform traffic distributions:
Packets from inputs 1 to 4 are equally likely to be destined for outputs 1 to 4
but none of them is destined for outputs 5 to 8. Similarly, packets from inputs
5 to 8 are equally likely to be destined for outputs 5 to 8 but none of them
is destined for outputs 1 to 4. Do you expect the maximum throughput to be
higher or lower than the case in which packets from all inputs are equally likely
to be destined for all outputs. Explain.

4.5 Explain qualitatively why a switch operated as a loss system generally has a
higher maximum throughput than the same switch operated as a waiting system.
For example, for an internally nonblocking switch, the maximum throughput
is 0.632 for the former and 0.586 for the latter. Should we then operate all
switches as loss systems?

4.6 For a large input-buffered switch, we derived in the text that the average backlog
in a fictitious queue is

C′(1) = 2ρ(1 − ρ) + ρ2

2(1 − ρ)
,

where ρ is the throughput.
(a) Explain why C′(1) is between 0 and 1 in general.

(b) Show that the maximum throughput is indeed achieved when the input
queue is saturated (i.e., when C′(1) = 1).

(c) Plot qualitatively the throughput ρ as a function of the offered load ρo for
ρo between 0 and 1. That is, ρo is the probability that a packet arrives at
an input queue in a given time slot.

4.7 The text uses the normalization method to derive the expected length of a busy
period equation (4.27). We now wish to derive it directly. Consider a long
stretch of time from 0 to t.
(a) Argue that the total amount of time the system is in busy periods is approx-

imately ρtS, and therefore, the total amount of idle time is approximately
t − ρtS.
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(b) Show that the average duration of idle periods is 1
1−Pr{K=0} , and there-

fore the total number of idle periods is approximately (t − ρtS)(1 −
Pr{K = 0}).

(c) From (a) and (b) show that E[Y ] = Sρ

(1−Sρ)(1−Pr{K=0}).
4.8 Prove the argument that gives rise to Eq. (4.35):

(a) Consider a Poisson process with rate ρ. Show that given that at least one
packet arrives, the probability that there are N other arrivals is still Poisson
with rate ρ (i.e., the arrivals of other packets are not affected by the arrival
of the packet of focus).

(b) Given that N is Poisson with rate ρ, show that if the N arrivals are randomly
placed on a unit line, the number of arrivals placed before point t is Poisson
with rate ρt. (Hint: Find the conditional probability that L packets are
placed before t given that N packets arrive. Then uncondition on N.)

4.9 The text uses the busy-period method to arrive at the waiting time at an input
queue of an input-buffered switch (Eqs. (4.31) and (4.32)). This problem
considers the number of packets in the input queue upon the arrival of a new
packet. The mean waiting time W in (4.32) can then be obtained by Little’s
law.
(a) Argue that the number of packets H found by an arriving packet (not

including the arriving packet) has the same probability distribution as the
number of packets D left behind by a departing packet (not including the
departing packet).

(b) Show that Dm+1 = max(0, Dm − 1) + Am+1, where Dm is the number
of packets left behind by the mth packet that departs from the system and
Am is the number packets that arrive during its service time.

(c) Derive D(z) from the above and obtain D from it.

(d) Argue that the number of packets found by an arriving packet has the same
probability distribution as the number of packets found by an arbitrary
observer at arbitrary time. Use Little’s law to obtain the average waiting
time from D (i.e., derive (4.32)).

4.10 Let us consider an alternative derivation of the first and second moments of
the service time of an input queue (Eqs. (4.37) and (4.38)). Let B be the
number of packets found by an arriving packet to the fictitious queue and L be
the number of simultaneously arriving packets scheduled to be served before
the arriving packet.
(a) Show that S = B + L + 1.

(b) Express S and S(S − 1) in terms of the moments of B and L.

(c) Find B(z) in terms of A(z) = e(z−1)ρ, the moment-generating function of
the arrival process. (Hint: See Eqs. (4.12) and (4.13).)

(d) Find the moments of B and L, and express S and S(S − 1) in terms of
only ρ.
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4.11 True or false? The look-ahead contention-resolution scheme in the input-
buffered switch cannot maintain the sequence order of the cells of a
point-to-point VC because the packets in the input queues may not be served
in a first-in-first-out fashion.

4.12 For the input-buffered switch operated with a look-ahead scheme with window
size w (see the last few paragraphs of Section 4.1.2):
(a) Argue that if the input queues have infinite amounts of buffer, as w → ∞,

the maximum throughput approaches 1.

(b) Show that the average delay of the input-window scheme can never be
smaller than that in the ideal output-buffered switch of Section 4.1.4.
(Hint: Consider the packet backlog and use Little’s law.)

4.13 Consider the following analytical derivation of the maximum throughput of
an input-buffered switch with a look-ahead window size of w = 2. Under
saturation, since we are considering the first two packets from each input
queue, the average number of packets in the fictitious queue of a particular
output is C′(1) = 2. Substituting this into the formula that relates C′(1) to

the throughput from the analysis of the fictitious queue, C′(1) = (2ρ−ρ2)
2(1−ρ) ,

and solving for ρ, we get ρ = 3 − √
(5) = 0.76, which is different from the

simulation result of 0.70. Give an example showing how the above argument
fails to reflect the real situation in the look-ahead scheme.

4.14 Consider a three-phase Batcher–banyan switch with a look-ahead contention-
resolution scheme. With reference to the maximum throughputs given in Table
4.2 (these throughputs do not take into account the contention-resolution
overhead), for what value of w is the throughput maximized for a 32 × 32
switch if the contention-resolution overhead is taken into consideration.
Assume a packet size of 53 bytes plus 6 bits (5 bits for output address and 1
bit for activity bit), and assume that checking of conflict at the outputs of the
sorting network takes one-bit time and the backpropagating acknowledgments
take one-bit time.

4.15 Consider an improved input look-ahead scheme. For an input queue, if the first
packet loses contention in the first round, the second packet will be examined
in the second round. However, if its output address is the same as that of the
first packet, we proceed immediately to the third packet (since the output has
been taken by a packet at another input during the first-round contention), and
so on until a packet with a different output address is found. Thus, we can
be sure that the packets presented by an input for contention in the w rounds
have distinct addresses.
(a) Describe qualitatively why you expect to see improvement over the look-

ahead scheme described in the text. Do you expect much improvement if
successive packets are independent and the switch size N is large? What
if the output addresses of successive packets are strongly correlated and
likely to be the same?
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(b) What is wrong with the following analysis? Assume N is very large and
all packets are independent. Let ρ∗ = 0.586 be the maximum throughput
when w = 1. When w = 2, after the first round, a set of outputs have been
assigned to a set of inputs, and the fraction of remaining inputs and outputs
is approximately 1 − ρ∗. It is as if we have a smaller N(1 − ρ∗) × N(1 −
ρ∗) switch in the second round. Therefore, the additional throughput ob-
tained with the second-round contention is (1 − ρ∗)ρ∗. Arguing this way,
the total throughput in general is ρ∗ + (1 − ρ∗)ρ∗ + · · · + (1 − ρ∗)w−1ρ∗.

4.16 Which switch has the better delay performance when the input offered load
is 0.2?

1. The generic nonblocking input-buffered (with no speedup, no look-ahead,
etc.) where queueing delay is incurred only at the inputs.

2. The generic nonblocking output-buffered switch in which all incoming
packets are immediately forwarded to their desired outputs and queued
there.

4.17 Consider the packet-slicing switch design (see Fig. 4.11(b)). Suppose that
the switch is 256 × 256 and the packet size is 53 bytes not including the
output-address header. If a speedup factor of 8 is to be achieved, what is the
ratio of switch cycle to time slot?

4.18 Consider an 8 × 8 channel-grouped Batcher–banyan switch with R = 2.
Suppose that the three-phase contention-resolution scheme is adopted. Draw
diagrams showing how the following set of packets will be routed through the
switch: (0, 1), (2, 4), (4, 2), (5, 1), (6, 2), (7, 1), where (i, j) means a packet
at input i destined for output j. Do not show the inside of the Batcher and
banyan networks. Only show the positions of the packets at the inputs and
outputs of the networks.

4.19 Show how to build an N × M expansion Batcher–banyan switch, where
M = NK > N, K an integer, using an N × N Batcher network and an
expansion banyan structure similar to that of Fig. 4.13. There is no channel
grouping and each of the M outputs corresponds to a distinct address. Show
how the routing is done and argue that the switch is internally nonblocking.

4.20 Consider an N × MR switch operating as a channel-grouped waiting system.
There are M output addresses, and a group of R output ports belong to the
same address. Rank these switches according to their maximum through-
puts per input: (i) N = 16, M = 16, R = 2; (ii) N = 16, M = 16, R = 1;
(iii) N = 16, M = 8, R = 2; (iv) N = 8, M = 8, R = 2.

4.21 This problem shows how to derive Eq. (4.60) from Eq. (4.59) in the text. From
Eq. (4.59), we have C(z) = N(z)/D(z), where D(z) = zRA−1(z) − 1 and
N(z) = ∑R−1

k=0 (zR − zk) Pr{C = k}. The text argues that N(z) can be written
alternatively as N(z) = K(z − 1)(z − z1(ρ)) · · · (z − zR−1(ρ)), where zk(ρ) is
the (R − 1) complex roots of zR − A(z) with modulus less than 1.
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(a) Show that D(1) = N(1) = 0.

(b) By differentiating the left and right sides of D(z)C(z) = N(z) once, show
that D′(1) = N ′(1). From this, show that K = (R − ρ)/

∏R−1
i=1 (1 − zi(ρ)).

(c) By differentiating D(z)C(z) = N(z), show that C′(1) = (N ′′(1) −
D′′(1))/2D′(1).

(d) Find N ′′(1), D′′(1), and D′(1) to substitute into the above to derive
Eq. (4.60).

4.22 Find the mean delay at an input queue of a channel-grouped waiting system
in which R = 2 and ρ = 0.8.

4.23 For an 8 × 8 Batcher–banyan knockout switch with R = 2 (as the one depicted
in Fig. 4.15), draw diagrams showing how the following set of packets will
be routed through the switch: (0, 1), (2, 4), (4, 2), (5, 1), (6, 2), (7, 1), where
(i, j) means a packet at input i destined for output j. Do not show the inside
of the Batcher and banyan networks, but show how the running-adder address
generator, including its internal operations, and the reverse banyan network
are used to concentrate the packets.

4.24 We want to derive (4.84). First, rewrite (4.82) in the form Pm+1 =
Pm − 1

d
f (Pm), where f (x) = ∑2d

k=d+1(k − d)
(2d

k

)
( x

2 )k(1 − x
2 )2d−k.

(a) Show that f (x) increases monotonically with x for 0 ≤ x ≤ 1.

(b) Show that Qm+1 − Qm = (P2
m − Pm+1Pm−1)/Pm−1Pm ≤ 0.

4.25 Derive (4.95) as follows:
(a) Taking logarithms on both sides of (4.88), show that

log n − log Ploss ≥ d log d + f (d),

where

f (d) = 2 − d log ρo − d − 1

2
log π + 1

2
log d.

(b) Taking logarithms on both sides of (4.93), show that

log Ploss − (d + 1) log(1 − Ploss) ≥ log n + log

(
1 − log d

n

)
− 2

+ d log ρo − d log d + (d − 1) log
(

1 − ρo

4d

)
+ d.

From

(d − 1) log
(

1 − ρo

4d

)
≥ (d − 1) log

(
1 − ρo

4

)
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since d ≥ 1, and

log

(
1 − log d

n

)
≥ log

(
1 − log d

2d log d+f (d)

)

by substitution from the result of part (a), show that

log n − log Ploss ≤ d log d + g(d),

where

g(d) = − log

(
1 − log d

2d log d+f (d)

)
+ 2 − d log ρo −

(d − 1) log
(

1 − ρo

4

)
− d − (d + 1) log(1 − Ploss).

(c) From parts (a) and (b), conclude that

d log d = log log N − log Ploss + O(d).

4.26 Which of the following switches operated as a loss system has the highest
throughput (or lowest loss probability)?

1. Knockout switch with knockout parameter = 4.

2. Dilated banyan network with dilation degree = 4.

3. Parallel banyan network with four banyan networks in parallel.

4.27 Which input-buffered switch has the higher throughput?
1. Speedup switch with speedup factor = 3.

2. Channel-grouped switch with group size = 3.



5

ADVANCED SWITCH DESIGN
PRINCIPLES

The preceding chapter has introduced various basic switch design principles to solve
packet contention problem. In this chapters, we shall first present some advance
switch design principles to further alleviate this problem. We shall see that despite
these advanced switch designs, switch dimensions continue to be severely limited
by both technological and physical constraints. We close this chapter by providing
some key principles to construct large switches out of modest-size switches, without
sacrificing overall switch performance.

5.1 SWITCH DESIGN PRINCIPLES BASED ON
DEFLECTION ROUTING

One way to solve the packet contention problem without having to buffer the losing
packets is to use deflection routing. The basic idea is to route (deflect) the losing
packets to “wrong” outgoing links rather than drop them. Redundancy is built into
the switch design so that deflected packets can be routed in later switching stages in
a way that corrects the earlier mistakes.

5.1.1 Tandem-Banyan Network

The tandem-Banyan switching network consists of K Banyan networks connected in
series (see Fig. 5.1). Except for the last Banyan network, each output of a Banyan
network is connected to both an input of the subsequent Banyan network and a con-
centrator (statistical multiplexer). With this setup, a packet would be routed to the
concentrator if it reaches the correct output, and to the subsequent Banyan network
otherwise. Thus, each packet can have up to K attempts to reach its destined output.

Principles of Broadband Switching and Networking, by Tony T. Lee and Soung C. Liew
Copyright © 2010 John Wiley & Sons, Inc.

151



152 ADVANCED SWITCH DESIGN PRINCIPLES
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Packet filter for marked packets

Packet filter for unmarked 

packets

Output 1 Output N

FIGURE 5.1 The tandem-Banyan network.

Deflection routing is employed within each Banyan network: whenever there is a
conflict at a 2 × 2 switch element, one packet would be routed correctly while the
other would be marked and routed in the wrong direction. To optimize the number
of correctly routed packets, the marked packet would have a lower priority than an
unmarked one for the rest of its journey within the Banyan network. In other words,
because of the unique-path property, a deflected packet will reach the wrong output
no matter how it is routed in the later stages of the Banyan network, and we might as
well try to route the unmarked packets correctly when they contend with the marked
packets.

If a packet remains unmarked when it reaches the output of the Banyan network,
it has reached the correct destination. Therefore, it is removed and forwarded to the
concentrator associated with the output destination. On the other hand, a marked
packet will be unmarked and forwarded to the next Banyan network, and a new
attempt to route the packet to its desired output is initiated. A packet is considered
lost if it still fails to reach the desired output after passing through all the K Banyan
networks.

Let D be the delay suffered by a packet as it travels through a Banyan network.
Certainly, a packet that reaches its correct destination at a later Banyan network ex-
periences a larger delay than one that does so at an earlier Banyan network. Thus,
correctly routed packets to an output address may not reach its concentrator simulta-
neously. To compensate for the delay differences, one can insert delay elements with
varying delays at different places: for the links that connect the N outputs of Banyan
network i to the N concentrators, one can introduce a delay of (K − i)D. In this way,
correctly routed packets from all Banyan networks experience a delay of KD and
arrive at the inputs of the concentrators simultaneously.

To study the functional dependence of K on N for a given Ploss, let Lk = ρk/ρo be
the probability that a packet still fails to reach its destination after traveling through



SWITCH DESIGN PRINCIPLES BASED ON DEFLECTION ROUTING 153
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ρk = ρk+1 + ρc
k+1 
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FIGURE 5.2 Relationship between the offered load �k , carried load �c
k+1, and rejected load

�k+1 of the (k + 1) Banyan network in a tandem-Banyan network.

k Banyan networks, where ρo is the initial offered load and ρk is the offered load to
the input of (k + 1)th Banyan network, and let ρc

k be the carried load on each output
of the kth Banyan network (see Fig. 5.2). It follows that

ρk+1 = ρk − ρc
k+1 ≈ ρk − 4ρk

nρk + 4
= nρk

2

nρk + 4
. (5.1)

We then immediately have the recursive formula for the loss probability of a tandem-
Banyan switch with k + 1 Banyan networks:

Lk+1 = (ρk+1/ρo) = nρo(ρk/ρo)2

nρo(ρk/ρo) + 4
= aL2

k

aLk + 4
, (5.2)

where a = ρon = ρo log N. From the above,

Lk+1 − Lk = −4Lk

aLk + 4
. (5.3)

Using the Taylor series approximation technique introduced earlier, we can transform
the above difference equation into the following differential equation:

dLk

dk
= −4Lk

aLk + 4
.

Integration and matching of the boundary conditions, L0 = 1 and LK = Ploss,
gives

K = ρo log N

4
(1 − Ploss) − ln Ploss. (5.4)
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In the analysis, we have made the assumption that packets at successive Banyan
networks are uncorrelated with each other. Whether two packets collide in a Banyan
network depends on whether there are common links between their paths, which in
turn are determined by their inputs and outputs by the unique-path property. Even if
the input packets to the first Banyan network are uncorrelated, they become corre-
lated in the succeeding Banyan networks because of contention and path overlaps in
the preceding Banyan networks. Consequently, packet output destinations are not
independent anymore after the first Banyan network. Recall that there are many
possible network structures within the class of Banyan networks (e.g., see Fig. 3.4).
The Banyan network in the tandem-Banyan network can be any of them provided the
associated routing algorithm is also used. It turns out that the loss probability of the
overall tandem network depends rather strongly on which Banyan network is used,
thanks to the fact that different Banyan networks generate different packet correlations
at subsequent stages of the tandem network. The study of this dependency is com-
plicated and will not be treated here. We point out, however, that the noncorrelation
assumption in our analysis is one that yields an optimistic performance estimate.

In any case, the analysis does reveal the asymptotic complexity order of the switch.
From (5.4), the order of complexity of the tandem-Banyan network for a fixed loss
probability is N(log N)2, the same as that of the Batcher–banyan switch! That is, even
under the optimistic assumption, the complexity of the tandem-Banyan network is
still of order N(log N)2.

5.1.2 Shuffle-Exchange Network

If a packet is deflected in a Banyan network of the tandem-Banyan switch, say at
the ith stage, it must go through another n − i = log2 N − i stages before it exits
the Banyan network and an attempt to route it in the next Banyan network can be
started. The journey of a packet to its destination can be represented by a finite-state
machine (see Fig. 5.3) wherein the state, called the distance, is the remaining number
of stages that the packet must travel before reaching its desired output. Certainly, at
the entrance of the tandem-Banyan switch, all packets have a distance of n. As shown
in Fig. 5.3, each time a packet is routed correctly, the distance is decremented by 1.
However, each time a packet in state j, j ≤ n, is deflected, its distance increases by
n − 1 to n + j − 1. This increase in distance is called the deflection distance.

2n – 1 2n –2 n+j–1 n +1 jn 1 0

FIGURE 5.3 The state-transition diagram of the tandem-banyan network.
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n–1n 1j 0

FIGURE 5.4 The state-transition diagram of the shuffle-exchange network.

The number of Banyan networks required to meet a Ploss requirement, hence the
switch complexity, is closely related to the number of steps required for a packet
to reach its destinations in the finite-state machine model. The number of steps is a
random variable depending on the number of deflections and the deflection penalties.
With K Banyan networks in the tandem structure, a packet must reach its destination
within Kn steps, or else it will be dropped. Thus, minimizing deflection distance has
the effect of decreasing the packet loss probability. By the same token, for a fixed
loss probability requirement, minimizing deflection distance reduces the number of
Banyan networks required, hence the switch complexity.

A question one might raise is whether attempts can be made immediately upon
deflections to route packets to their destinations rather than having to waste j − 1
more steps in the current Banyan network. In other words, can one realize a finite-
state machine model depicted in Fig. 4.18 wherein each deflection sets the distance
of the packet back to n rather than n + j − 1? This requires the stages in the Banyan
network to be homogeneous and leads us to the shuffle-exchange network introduced
in Chapter 3 (see Fig. 3.4).

We mentioned in Chapter 3 that the regular shuffle-exchange network with n stages
is isomorphic to the banyan network without a formal proof. To show that the same
routing mechanism applies and to introduce some key concepts and notation, let us
first consider the structure of a single stage, shown in Fig. 5.5.
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Perfect shuffle Perfect shuffle + exchange
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The term “shuffle” refers to the way adjacent switch stages are interconnected: it
is analogous to the shuffling of a deck of cards. Suppose we take the top and bottom
halves of a deck of cards and merge them by taking cards one by one alternately from
the two halves from top to bottom. We are said to have performed a “perfect shuffle.”
Imagine a deck of N cards riding on the outgoing links of a switch stage, one on
each link. These cards “travel” to the incoming links of the next stage through the
interconnection. It can be easily seen from Fig. 5.5 that the interconnection performs
a perfect shuffle on the cards.

What is interesting from the switching viewpoint is that perfect shuffle achieves a
cyclic left shift of the link label. Let us label the links from top to bottom in a binary
fashion. Thus, the top link is 00 · · · 0 and the bottom link is 11 · · · 1. It can be shown
that (or verified from the example in Fig. 5.5) outgoing link xnxn−1 · · · x1 of a stage is
connected to incoming link xn−1 · · · x1xn of the next stage. In other words, a packet
on link xnxn−1 · · · x1 occupies link xn−1 · · · x1xn after the shuffle.

The term “exchange” refers to the operation performed by 2 × 2 switch elements.
Let us label the 2 × 2 switch elements in any stage with (n − 1)-bit binary numbers.
The two incoming, as well as the two outgoing, links connected to switch element
xn−1 · · · x1 are labeled xn−1 · · · x10 and xn−1 · · · x11. The 2 × 2 switch element for-
wards an input packet to output link xn−1 · · · x10 if the routing bit is 0 and to link
xn−1 · · · x11 if the routing bit is 1. In other words, the switch element exchanges
the least significant bit of the link label with the routing bit. Thus, if the incom-
ing link occupied by a packet is xn−1 · · · x1xn at a switching stage and dn is the
routing bit, then the packet will occupy link xn−1 · · · x1dn at the output of the stage
(see Fig. 5.5).

The algebraic operations of the shuffling and switching stages provide us with
a way to understand why the overall routing mechanism works. Let the source and
destination addresses of a packet be S = sn · · · s1 and D = dn · · · d1, respectively.
The destination address will be used for routing starting from the most significant bit
to the least significant bit. Initially, the packet occupies link sn · · · s1 at the entrance
to the shuffle-exchange network. After the first shuffle, its link label is sn−1 · · · s1sn
at the input to the first-stage switching node. Bit dn is used to switch this packet
to outgoing link sn−1 · · · s1dn. We see that sn has been replaced by dn. By another
shuffle and exchange, the packet then occupies link sn−2 · · · s1dndn−1 at the output of
the next stage. Repeating this process, we see that the output links of the successive
switching stages traversed by a packet are

S = sn · · · s1 → sn−1 · · · s1dn → · · · (5.5)

→ sn−i · · · s1dn · · · dn−i+1 → · · · (5.6)

→ dn · · · d1 = D. (5.7)

In other words, the sequence of links is embedded in the binary string sn · · · s1dn · · · d1
and can be revealed by an n-bit window moving one bit per stage from left to right.
After the last step, the packet reaches link dn · · · d1, which is the desired destination.
In this way, bit by bit, the packet is routed to its targeted output. Figure 5.6 gives an
example of how a packet is routed in an 8 × 8 regular shuffle-exchange network.
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The above describes the route traversed by a packet when there is no contention
from other packets. When deflection routing is used to tackle the contention problem,
instead of a regular shuffle-exchange network with n stages, we have an elongated
shuffle-exchange network with L ≥ n stages, as depicted in Fig. 5.7. As discussed
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before, the output address of a packet is represented in binary form for routing, and
the most significant bit is used in the first stage, the second most significant bit in the
second stage, and so on. When all the bits are used, the packet has reached its desired
destination, and it will be removed from the elongated shuffle-exchange network
and forwarded to the concentrator of the associated output so that it will bypass
the remaining stages. The mechanism for doing so will be referred to as the bypass
mechanism. When a deflection occurs, routing is started from the most significant
bit again. An example is given in Fig. 5.7. It is possible for a packet to reach its
destination after stages n, n + 1, · · · , or L, depending on the number of deflections
and the deflection distances. Therefore, bypass mechanisms must be installed after
each of these stages.

Figure 5.4 shows the state-transition diagram associated with the elongated shuffle-
exchange network. Each deflection sets the distance of a packet back to n. Because
of the reduced penalty associated with deflections, we would expect the complexity
of this switch to be less than that of the tandem-Banyan network. Although this is
true, it can be shown that the asymptotic complexity order of this network is still not
better than that of the tandem-Banyan network: N(log2 N)2. The reason is that the
deflection penalty is still too large: a packet that is already very close to its destination
may still be deflected back to state n. One might wonder if it is possible to construct
a network in which the deflection penalty is a constant that is independent of n. In
fact, one can show that the network complexity will then be of order N log N. It
turns out that the dual shuffle-exchange network to be described in Section 5.1.5
can indeed achieve this. The network can be understood more easily after we have
discussed the feedback version of the shuffle-exchange network and its bidirectional
variant.

5.1.3 Feedback Shuffle-Exchange Network

Let us consider a feedback shuffle-exchange network that has only one switching
stage. The outgoing links, instead of being forwarded to a next stage, are fed back to
the same stage after a shuffle. Figure 5.8 gives an example of such a network with
four nodes.

Feedback and feedforward networks are also called the undirected and directed
networks, respectively, in the computer science literature. Both are used to allow
the processors and memories in a parallel computer architecture to communicate
with each other. Each input or output link of the directed network is connected to a
processor or memory. Its nodes are just simple switching elements. Each node in the
undirected network, on the other hand, is associated with a processor. Nodes rather
than input and output links are the sources and destinations of packets.

Suppose that there are N nodes in the feedback shuffle-exchange network whose
addresses are labeled with a binary number xn · · · x1. Each node has two incoming
links and two outgoing links. The links can be labeled with an (n + 1)-bit binary
number xn · · · x1x0. The outputs of the nodes undergo a perfect shuffle before they are
fed back to the inputs. Thus, a packet that is switched to output dn of node xn · · · x1 will
reach node xn−1 · · · x1dn after the shuffle. Using the destination address D = dn · · · d1
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as the routing tag, a packet will reach its destination node after n undeflected steps.
From this, we see that the operation of the feedback network is similar to that in the
feedforward network.

Notice, however, that whereas the design issue in the feedforward network is the
number of stages L required to meet a loss probability requirement, the situation
here is slightly different in that a packet can be routed indefinitely until it reaches
its destination node: packet loss probability due to contention is zero! Moreover, the
number of stage is fixed at one. Is there some magic going on here? The answer is
we have not gained something for nothing. It turns out that the performance issue in
the feedback network is throughput rather than packet loss. Whereas the maximum
throughput per input or output of the feedforward network is close to one when the
loss probability is small, which can be achieved by having a sufficient number of
stages, the fact that there is only one stage in the feedback network severely limits
the network throughput when N is large. We shall derive this throughput limitation
analytically later in this subsection.

Recall that with the multistage feedforward shuffle-exchange network, a node
forwards a packet to the next stage as soon as it has received enough bits of the header
for it to make the switching decision. It is not necessary to wait for the arrival of the
entire packet.1 With the feedback version of the network, because of the feedback
loop, the information bits of the previous packets are still being transmitted at the
outputs when their headers arrive at the inputs of the nodes. Therefore, the arriving
packets must wait until all the bits of the previous packets have been transmitted
before they can be forwarded to the outputs. As shown in Fig. 5.9, a one-packet buffer
is located at each input link of a node to buffer the arriving packet while it waits for

1This is sometimes called virtual cut-through routing.
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FIGURE 5.9 A node in the feedback shuffle network.

the next time slot to be transmitted. In addition, there is a mechanism at the inputs for
the removal of packets destined for the node and the injection of packets originating
from the node. There is also an input queue for the storage of packets originating from
the node. A packet in the queue must wait for an empty time slot on the input links
(i.e., when one of the inputs does not carry an active packet) before it can enter the
network. In the following, we assume a greedy policy in which as soon as an empty
slot is available in one of the input links, the packet at the head of the input queue
will be injected into the network.

As in the feedforward shuffle-exchange network, whenever a packet is deflected,
routing of the packet starts anew, beginning with the most significant bit of the destina-
tion address again. To implement self-routing, a possibility is to have two fields in the
header of a packet: a routing tag consisting of the destination address dn · · · d1 and a
log2 n-bit pointer indicating the current routing bit di to be used. Originally, the pointer
points to bit dn. Whenever the packet is routed correctly, the pointer value is decre-
mented, and whenever the packet is deflected, the pointer is reset to point to dn again.

To analyze the delay and throughput of the system, let us make the simplifying
assumption that the packets arriving at the two inputs of a node are independent and
that they are equally likely to be destined for either of the two outputs. We assume a
simple contention-resolution policy in which the winning packet is chosen at random.
Assume further that the deflection probability q is independent of the distance of the
packet—this is a reasonable simplifying assumption when there are a large number of
packets entering and leaving the system in each time slot. Let Ti denote the expected
additional number of steps taken by a packet in state i before reaching its destination
node. We have

Ti = 1 + pTi−1 + qTn, 1 ≤ i ≤ n, (5.8)

T0 = 0,
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where p = (1 − q) is the probability of not being deflected. Equation (5.8) is a linear
difference equation in i. It is a well-established result that the general solution of a lin-
ear difference equation is a constant times the homogeneous solution plus a particular
solution. The homogeneous solution to Ti − pTi−1 = 0 is Ti = pi and a particular
solution to Ti − pTi−1 = 1 + qTn is Ti = (1 + qTn)/(1 − p) = (1 + qTn)/q. There-
fore, we have

Ti = cpi + 1 + qTn

q
, (5.9)

where c is a constant to be found by matching the boundary condition. The boundary
condition T0 = 0 yields c = −(1 + qTn)/q. Thus,

Ti = (1 + Tn)(1 − pi)

q
, 0 ≤ i ≤ n. (5.10)

Substituting i = n in the above, we get

Tn = 1 − pn

pnq
. (5.11)

Substituting this into (5.9), we have

Ti = 1 − pi

pnq
, 0 ≤ i ≤ n. (5.12)

Let ρ be the probability of finding a packet at an input link at the beginning of
a time slot; this is the link loading. Then, with probability ρ/2 an input packet will
encounter a packet at the other input of the same node that desires the same output.
Thus, with the random contention-resolution scheme, the packet will be deflected
with probability q = ρ/4. The total throughput of the network � is given by Little’s
law:

� = Expected number of packets in the whole network

Expected packet delay

= 2Nρ

Tn

= 8Nq2pn

1 − pn

= 8N(ρ/4)2(1 − ρ/4)n

1 − (1 − ρ/4)n
. (5.13)

It can be shown from the above equation that for n ≤ 4, � is maximum when ρ = 1.
This is achieved when the input queues at the nodes are saturated so that as soon as a
packet reaches its destination, a new packet is injected into the network. In this case,
the maximum throughput of the system �max is equal to its saturation throughput
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FIGURE 5.10 (a) Throughput as a function of link loading; (b) throughput as a function of offered
load; for feedback shuffle-exchange network with n ≥ 5.

�sat. As long as the offered load to the system is lower than �max, the input queues
will not saturate.

Things become more complicated when n ≥ 5 because the maximum throughput
is not obtained when the input queues are saturated (see Problem 5.4). In other words,
we can find a link loading ρ∗ < 1 such that �(ρ = ρ∗) > �(ρ = 1) = �sat. As shown
in Problem 5.4, d�/dρ becomes negative when ρ becomes too large. Thus, beyond a
certain offered load, the carried load of the system actually decreases. Intuitively, when
there are too many packets in the system, packet deflections due to contention become
very likely, and it may take so many steps for packets to reach their destinations that
the throughput decreases. The reason why this does not happen for smaller n is that
the distance to destination is bounded by n, and the penalty associated with deflections
is not so high when n is small.

The fact that �max > �sat also reveals that the system can run into unstable con-
gestion behavior. To explain this, let ρmax be the value of ρ when �max is achieved.
Each � ∈ [�sat, �max) can be achieved with two ρ values (see Fig. 5.10(a)). Let
ρ′ be the lower ρ value at which �sat is achieved. Supposed that the offered load
to each and every node is �o/N so that the total offered load to the network
is �o. We consider three regions of operation: �o > �max, �sat ≤ �o ≤ �max,
and �o < �sat.

When �o > �max, the input queues saturate because the input rate of packets
is greater than the sustainable output rate, the throughput. Because the queues are
saturated, as soon as a packet reaches its destination and leaves the system, another
packet will enter the system (since we assume the greedy policy that a packet from a
nonempty queue will be injected into the system as soon as an empty slot is available).
Therefore, the achieved throughput � = �sat, corresponding to the full link-loading
situation when ρ = 1.

When �o < �sat, the queues will not saturate, and throughput equals offered
load: � = �o. When �sat ≤ �o ≤ �max, the system can operate in either the stable
region ρ ∈ [ρ′, ρmax)—a value of ρ between ρ′ and ρmax—or the unstable region



SWITCH DESIGN PRINCIPLES BASED ON DEFLECTION ROUTING 163

ρ ∈ [ρmax, 1]. In the stable region, throughput equals offered load: � = �o. In the
unstable region, as reasoned in the next paragraph, the system quickly evolves away
from the region, ending up either at ρ = 1 and � = �sat, the saturated case, or at
ρ ∈ [ρ′, ρmax) and � = �o, the unsaturated case.

The offered load is the average packet arrival rate to the input queues over a long
time period. Because of the statistical nature of packet arrivals and departures, the
number of backlogged packets in the input queues varies over time. These backlogged
packets in turn determine the instantaneous or near-term offered load to the network.
Therefore, the instantaneous offered load fluctuates over time in accordance to the
backlogged packets. Any increase in the number of nonempty input queues results in
an increase in instantaneous offered load, which in turn raises the instantaneous link
loading ρ of the network. By the same token, decreasing instantaneous offered load
also decreases instantaneous ρ. In the unstable region, since d�/dρ is negative, the
throughput decreases as a result of even a small increase in the instantaneous offered
load. Therefore, the throughput � becomes smaller than the offered load �o, and
the negative balance between packet arrival and departure rates further increases the
input-queue backlogs, resulting in an even higher instantaneous offered load. This
creates a positive feedback effect that eventually brings � down to �sat and the input
queues are saturated. By the same token, in the unstable region any decrease in the
instantaneous offered load will quickly bring the system back to the stable point
at which � = �o through a positive feedback effect. Figure 5.10(b) shows � as a
function of �o. There is a bifurcation point at �o = �sat, and there are two operating
regions between �o = �sat and �o = �max.

If the system is unsaturated with �o ≥ �sat (hence ρ′ ≤ ρ < ρmax), there is still the
danger that the system will evolve to the unstable region and then become saturated.
This can be caused by (1) a sudden increase in the number of packets arriving at the
input queues, or (2) a series of bad luck in which packets already in the network are
deflected more than the usual number of times so that there is a sudden increase in link
loading ρ to beyond ρmax. Once that happens, the system may become saturated very
quickly, making it impossible for the system to return to the original operating point.
On the other hand, if �o < �sat (hence ρ < ρ′), the system will eventually evolve
back to the stable region even when there is a temporary increase in the number of
packets in the system. This is because the saturation throughput �sat can sustain the
offered load over the long term. Such is not the case, however, when �o ≥ �sat.
In general, the system can only be safely operated at offered load below �sat even
though the maximum throughput �max is higher. One can easily write a simulation
computer program to verify this: when �o ∈ [�sat, �max], even if the throughput and
the offered load are balanced to begin with (� = �o), the system eventually evolves
to the saturation point � = �sat < �o.

In the unstable region, we have a typical network congestion scenario in which
higher offered load brings about lower throughput and higher delay at the same time.
Figure 5.10 also suggests that if some congestion control mechanism is exercised over
the system, offered load of up to �max may be sustainable without instability. For
instance, we could introduce 2Nρmax tokens in the network. A packet is not allowed
to enter the network until it has acquired a token from one of the input links, and
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the token will be released back to the network only when the packet has reached its
destination. In this way, ρ is kept to be not more than ρmax. As with all networks
operated with token access, one has to deal with the possibility of lost tokens due to
transmission errors or malfunctioning nodes.

Another strategy is to use a contention-resolution policy that is more efficient
than the random contention-resolution policy and it is hoped that it will reduce the
deflection penalty enough to stabilize the system. It turns out that an arbitration policy
that favors packets closer to their destinations will stabilize the system. When a packet
in state i is deflected back to state n, n − i + 1 previous routing steps are wasted. The
idea of favoring packets closer to their destinations is to minimize the amount of
routing effort that is wasted given that deflection is inevitable.

The analysis of this strategy is more complicated because the deflection probability
is state dependent. Instead of the uniform deflection probability q, we have qi for the
deflection probability at state i, 1 ≤ i ≤ n. Although tokens are not used in reality,
we can still imagine for analytical purposes that there are 2N fictitious tokens, one on
each link, circulating around the network. A packet at an input queue must acquire
an unused token before it can enter the network. A token is said to be active and in
state i, 1 ≤ i ≤ n, if the packet it carries is in state i. A token is said to be inactive or
in state 0 if it is unused.

We trace the evolution of the state of a particular token. Let P(i) be the probability
that the token is in state i at the beginning of a time slot. We have

P(i − 1) = P(i)(1 − qi), 2 ≤ i ≤ n. (5.14)

Define

π(i) = P(1) + · · · + P(i), 1 ≤ i ≤ n,

to be the probability of the token either in state 1, 2, · · ·, or i. By definition, the
probability of the token being active is π(n). An active token implies the link it
occupies is active. Since every link has a token on it at all time, the probability of an
active token must also be the probability of an active link. Thus,

π(n) = ρ.

Assume that when two packets of the same state contend with each other, the winning
packet will be chosen at random. The probability of a packet in state i being deflected
is given by the sum of the probability of being deflected by a packet in state i and the
probability of being deflected by a packet in state below i:

qi = P(i)

4
+ P(1) + · · · + P(i − 1)

2
= P(i)

4
+ π(i)

2
, 1 ≤ i ≤ n.

(5.15)
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Substituting the above into (5.14) for each i, summing equations, and after some
manipulation, we obtain

π(i − 1) = [π(i) − π(1)]

{
1 − π(1)

2
−

[
π(i) − π(1)

4

]}
, 2 ≤ i ≤ n, (5.16)

π(n) = ρ. (5.17)

Equation (5.16) is subject to this interpretation: the probability that the token is active
and in state i − 1 or lower is equal to the probability that it was in the previous time
slot an active token in state between 2 and i and that the packet it carries was not
deflected. The above can be simplified to

π(i − 1) = π(i) − π2(i)

4
− π(1) + π2(1)

4
, 2 ≤ i ≤ n,

π(n) = ρ. (5.18)

The throughput is related to π(1) as follows. The probability of a token in state 1 not
being deflected is (1 − π/4), and if it is not deflected the packet carried by it will
reach the final destination. Therefore,

� = 2Nπ(1)

(
1 − π(1)

4

)
. (5.19)

Unfortunately, (5.18) does not allow π(1) to be solved in closed form in terms of ρ.
Therefore, numerical method is needed for an exact solution. Equation (5.18) does
let us show that the kind of instability associated with random contention-resolution
policy does not occur here. The key is to show that d�/dρ > 0 for all 0 ≤ ρ ≤ 1.
From (5.19),

d�

dπ(1)
= 2N

[
1 − π(1)

2

]
> 0. (5.20)

From (5.18),

dπ(i)

dπ(i − 1)
=

{
1 +

[
1 − π(1)

2

]
dπ(1)

dπ(i−1)

}
[1 − π(i)

2 ]
, 2 ≤ i ≤ n. (5.21)

Substituting i = 2, we find that dπ(2)/dπ(1) > 0. It can be easily shown by induction
using (5.21) that dπ(i)/dπ(1) > 0 for all 1 ≤ i ≤ n. Thus,

d�

dρ
= d�

dπ(n)
= d�

dπ(1)

dπ(1)

dπ(n)
> 0. (5.22)
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FIGURE 5.11 A feedback bidirectional shuffle-exchange network.

Although instability does not occur with shortest-distance priority contention res-
olution, the deflection penalty is still rather significant for large n. The next subsection
considers a shuffle-exchange network in which the shuffle links are bidirectional. It
is shown that the deflection distance can be reduced to 1.

5.1.4 Feedback Bidirectional Shuffle-Exchange Network

Let us consider a bidirectional shuffle-exchange network in which the shuffle links are
bidirectional so that packets can travel in the reverse direction. In actual implementa-
tion, each node is 4 × 4 in dimensions, and there is a set of unshuffle links laying side
by side with the set of shuffle links, as shown in Fig. 5.11. When a packet is deflected
from node i to node j, thanks to the link in the reverse direction connecting node j

to node i, the packet can travel back to node j from node i, correcting the deflection
in one step. Implementation of self-routing is more complicated here, since a packet
can be deflected a number of times in succession. We need to encode systematically
in the packet header the routing steps required to correct deflections.

Since each node has four outputs, two routing bits are needed to indicate the
outgoing link desired by a packet. In the original shuffle-exchange network, the two
outputs of a node are labeled 0 and 1. Here, the four outputs are labeled 00, 01, 10,
and 11: the most significant bit indicates whether the link is a shuffle or unshuffle
link. Without loss of generality, let outputs 00 and 01 be unshuffle links 0 and 1,
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respectively, and outputs 10 and 11 be the shuffle links 0 and 1, respectively. The
collections of shuffle and unshuffle links connected to all nodes are said to be in the
shuffle and unshuffle planes, respectively.

Consider a packet at nodes xn · · · x1. If it is routed to a shuffle link 1r (r = 0 or
1), by the cyclic left shift operation, the next node visited is xn−1 · · · x1r. That is,
the combination of switching and shuffling removes bit xn from the left and attaches
bit r to the right of the node label. If, on the other hand, the packet is routed to
an unshuffle link 0r, by the cyclic right shift operation, the next node visited is
rxn · · · x2: bit x1 is removed from the right and bit r attaches to the left of the node
label.

Let us first look at the routing of a packet from source S = sn · · · s1 to destination
D = dn · · · d1 through the network without deflections. There are two possible ways
of setting the initial routing tags of the packet. We can set it to 1dn1dn−1 · · · 1d1, in
which case the packet will travel to its destination via the shuffle plane. After each
hop, the next two bits will be used for routing in the next node. The sequence of nodes
traversed is then the same as that in the unidirectional shuffle-exchange network given
by (5.7). Alternatively, we can set the routing tag to 0d10d2 · · · 0dn, in which case the
packet will travel through the unshuffle links (note: in the unshuffle network, the order
in which the destination address bits are used is reverse, hence the way the routing
tag is set). The sequence of nodes traversed is then

S = sn · · · s1 → d1sn · · · s2 → · · · (5.23)

→ di · · · d1sn · · · si+1 → · · · (5.24)

→ dn · · · d1 = D. (5.25)

We now consider what happens when a packet is deflected. For illustration, let
us assume that the routing tag of the packet is set to 1dn1dn−1 · · · 1d1. The ba-
sic idea is to remove two routing bits from the routing tag whenever routing is
successful in each stage, and add two error-correction routing bits whenever a de-
flection is encountered. After i hops without deflections, the packet arrives at an
input of node sn−isn−i−1 · · · s1dndn−1 · · · dn−i+1 with routing tag 1dn−i · · · 1d1. Sup-
pose it is deflected at this node to the wrong shuffle output link. Instead of arriving
subsequently at the correct node sn−i−1 · · · s1dn · · · dn−i, the packet will arrive at
node sn−i−1 · · · s1dn...d̄n−i, where d̄n−i is the complement of dn−i, as illustrated in
Fig. 5.12.

In order to correct this deflection, we add two routing bits 0sn−i; this indicates
that the packet wants to go back to the previous node where the deflection occurred.
Thus, the routing tag at this point is 0sn−i1dn−i1dn−i−1 · · · d1. Suppose routing at
the node sn−i−1 · · · s1dn · · · d̄n−i is successful. Then the next node visited will be
sn−i · · · s1dndn−1dn−i+1, the node at which the deflection occurred. At this point the
routing tag will be 1dn−i · · · 1d1. We see that the packet returns to the original state,
and the packet can proceed as before to its destination.

In general, a packet can be deflected to any of the three incorrect outputs at a node,
and the basic idea is to add two routing bits to indicate the reverse link on which the
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Node
sn–i–1… s1dn … dn–i

Node
sn–i… s1dn … dn–i+1

Node
sn–i–1… s1dn … dn–i

_

1dn–1

1dn-1

_

Packets deflected to node sn–i–1… s1dn … dn–i can return 

to node sn–i… s1dn … dn–i+1 via this link

_

FIGURE 5.12 Illustration showing how a routing error can be corrected via a reverse link.

packet can return to the node where the deflection occurred. Figure 5.13 summarizes
the algorithm performed at the output of a node. Consider a packet at node xn · · · x1
with routing tag ckrk · · · c1r1. If it is switched to the correct output indicated by the
routing bits ckrk, then these two bits will be removed from its routing tag and it will

Packet at node xn…x1 with

routing tag =ckrk…c1r1 

Switched to output cr

cr=ckrk? 
(undeflected)

Yes

Yes No

No

k=n?

Remove two routing

bits. New routing tag

= ck–1rk–1… c1r1  

Reset routing tag to

0d1…0dn or

1dn…1d1  

Add two routing bits:

ck+1rk+1= 0xn if c = 1
1x1 if c = 0

New routing tag = 
ck+1rk+1ckrk…c1r1

{

Forward packet to next 

node

FIGURE 5.13 The algorithm for correcting deflection errors.
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be forwarded to the next node with routing tag ck−1rk−1 · · · c1r1. If it is switched to
an incorrect output cr, the routing bits ckrk will not be removed and two routing bits
ck+1rk+1 will be added to the routing tag:

ck+1rk+1 =
{

0xn, if c = 1,

1x1, if c = 0.

The following explains why ck+1rk+1 are set in this manner. If c = 1, the packet
has been deflected to the shuffle plane and will visit node xn−1 · · · x1r next. The
two routing bits added, 0xn, will return the packet back to node xn · · · x1 from node
xn−1 · · · x1r. If c = 0, the packet has been deflected to the unshuffle plane and will
visit node rxn · · · x2 next. The two routing bits, 1x1, will return the packet back to
node xn · · · x1 from node rxn · · · x2.

Note that because of the addition of routing bits, the routing tag may grow in
an unbounded fashion if the packet is deflected many times in successive nodes. To
prevent this, whenever the distance is n and the packet is deflected, the routing tag
is reset to either 1dn · · · 1d1 or 0d1 · · · 0dn so that the distance is always no more
than n.

To see that successive deflections can be corrected with the algorithm in Fig. 5.13,
refer to the finite-state machine representation in Fig. 5.14. The state of a packet
is represented by a 2-tuple (routing tag, node). Since there is only a finite number
of different combinations of routing tags and node labels, there is only a finite number
of states. Suppose that a packet is deflected from the current state, say, state a, to one of
the three possible states, say, state b. The error-correction algorithm guarantees that
there is a transition through which the packet can return to state a later. But suppose

ck–1rk–1… c1r1   

xn–1… x1rk

0xnckrk … c1r1  

xn-1… x1rk

ckrk … c1r1  
xn … x1

1x1ckrk … c1r1 

rk xn … x2

1x1ckrk … c1r1 

rkxn … x2

_

_

0xn          
1rk

1rk         
0xn

0rk   

1x10rk

1x1   

_
_

Regular transition

Deflection Assume ck= 1

FIGURE 5.14 A state and its four adjacent states in the finite-state machine representation of
packet state.
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Pointer Routing tag Destination address

log n bits 2n bits n bits

(a)

Regular

pointer 
Regular 

routing tag
Error-correction 

pointer
Error-correction 

routing tag
Mode

log n bits 2n bits log n bits 2n bits1 bits

(b)

FIGURE 5.15 Two possible packet-header implementations.

that another deflection occurs immediately after the current deflection so that the
packet reaches state c subsequently. By attaching two additional error-correction bits
to the routing tag, we provide a return transition from state c to state b, from which
the packet can eventually return to state a. The error-correction bits are added and
used in a last-in-first-out fashion, and they guarantee a transition path back to state
a no matter how many times the packet has been deflected. Thus, the algorithm is
recursive and capable of correcting multiple deflections.

An alternative way to look at the problem that may appeal to readers who are
familiar with Markov chain is as follows. Except for the absorption state that corre-
sponds to packet reaching its destination, there is a transition path from each state to
the other states. If at each state, the “correct” transition occurs with finite probability,
then the packet will eventually reach the absorption state.

Figure 5.15 shows two possible implementations of the packet header. In (a), the
header consists of a copy of the complete destination address, a routing tag, a pointer,
and a destination indicator. The complete destination address is for the purpose of
resetting the routing tag as described above. The routing tag contains the current
remaining routing bits. The pointer points to the two routing bits to be used next.
The removal of two routing bits upon successful switching can be implemented by
decreasing the pointer value by 1 (note: pointer points to a pair of bits rather than one
bit). When a deflection occurs, two routing bits are inserted at locations just beyond
the position to which the pointer refers, and the pointer value increases by 1. Note that
the pointer value is equal to packet distance minus 1, and it ranges from 0 to n − 1.
The one-bit destination indicator is initially set to 0. After the last step in switching,
it is set to 1 so that the next node recognizes the packet as being destined for it.

At any time, a packet in the bidirectional shuffle-exchange network is in one
of two possible modes: it is either in the regular mode (when the packet is
in its regular path to its destination), or in the error mode. In Fig. 5.15(b), a
one-bit field is used to indicate the packet mode. There are two routing tags:
the regular routing tag is used when the packet is in the regular mode and the
error-correction routing tag is used when the packet is in the error mode. The regular
routing tag is set to either 1dn · · · 1d1 or 0d1 · · · 0dn initially and is never modified.
The regular pointer points to the two routing bits in the regular routing tag that will
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FIGURE 5.16 The state-transition diagram of a packet in the bidirectional shuffle-exchange
network in which the distance is the state.

be used next. The error-correction routing tag consists of the error-correction routing
bits. Whenever there is a deflection, two bits are added to this tag, and the error-
correction pointer increases by 1. This field operates like a stack. When the bits in
this tag are exhausted, the packet returns to the regular mode, and the regular routing
tag will then be used for subsequent stages.

Let us now consider the performance of the network. As far as the distance to
destination is concerned, the packet is performing a random walk associated with
the state-transition diagram in Fig. 5.16. In actuality, the knowledge of distance is
not enough for a complete analysis. A packet in general is not equally likely to
be destined for the outputs in different planes. Therefore, for a fixed distance, the
deflection probability for cross-plane switching is different from that for in-plane
switching. The complete analysis is rather lengthy and involved.

We shall explore an approximate analysis that assumes that each packet is equally
likely to be destined for any of the four outputs of a node regardless of whether
the packet is in the error or regular mode. We shall also assume the random
contention-resolution scheme.2 As before, let Ti be the expected number of addi-
tional hops a packet in state i will experience before reaching the destination node.
Then,

T0 = 0, (5.26)

Ti = 1 + pTi−1 + qTi+1, 1 ≤ i ≤ n − 1, (5.27)

Tn = 1 + pTn−1 + qTn. (5.28)

Let us define Mi = Ti − Ti−1. From (5.27) and (5.28), we have

pMi = qMi+1 + 1, 1 ≤ i ≤ n − 1, (5.29)

pMn = 1. (5.30)

2Since deflection distances are equal for all states (except stage n), favoring packets closer to their des-
tinations in contention resolution will not yield as significant an improvement as in the shuffle-exchange
network.
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A particular solution to the linear difference equation (5.29) is Mi = 1/(p − q), and
the homogeneous solution to pMi − qMi+1 = 0 is (p/q)i. Therefore,

Mi = Ti − Ti−1 = 1

(p − q)
+ c

(
p

q

)i

, (5.31)

where c is a constant that can be found from the boundary condition (5.30). Doing so
yields

c = −
(

q

p

)n (
1

p − q
− 1

p

)
.

Now,

Ti = Ti − T0

=
i∑

j=1

Mj

= i

p − q
+ c

p

q

[
1 − (p

q
)i

1 − p
q

]

= i

p − q
−

(
1

p−q
− 1

p

) [(
p
q

)i − 1

]
(

p
q

)n−1 (
p
q

− 1
) . (5.32)

To interpret the above equation, let us refer to the state-transition diagram in Fig. 5.16.
In each step, with probability p, state i (i < n) will drift to the right (direction toward
state 0) and with probability q, it will drift to the left. Therefore, (p − q) is the expected
drift toward state 0 at state i. Suppose that the state transitions were homogeneous
without the reflection boundary at state n. That is, suppose that deflection distances
in all states were equal to one, and a packet in state n would be deflected to state
n + 1, a packet in state n + 1 would be deflected to state n + 2, and so on. It can be
shown that i/(p − q) would be the expected number of steps required to reach state
0 starting from any state i if p > q. In our case, thanks to the reflection boundary,
the expected number of steps is reduced by the second term in (5.32). This reduction,
however, is not significant for large n, and the system dynamics can be understood
more readily by simply examining the first term.

To find p in terms of link loading ρ, consider the probability of at least one input
packet desiring a particular outgoing link, which is 1 − (1 − ρ/4)4. If there is at least
one input packet targeted for the output, there is an undeflected packet on it after
the routing at the node. Thus, this is also the probability of finding an undeflected
packet on an output link. By conservation, the probability must equal the probability
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of finding a packet on an input link and that it will not be deflected, ρp. Thus,

p = 1 − (1 − ρ/4)4

ρ
. (5.33)

Let us examine Tn for large n. Substituting i = n into (5.32) and after some minor
simplification, we obtain

Tn = n

p − q
−

(
1

p − q
− 1

p

) [
1 − (q/p)n

1 − q/p

]
≤ n

p − q
. (5.34)

In particular, Tn is dominated by the term n
p−q

for large n, and we can write

Tn ≈ n

p − q
. (5.35)

Comparing the above with (5.11), the expected delay in the unidirectional shuffle-
exchange network, we notice a very significant improvement: whereas the expected
delay in (5.11) grows exponentially with n, the expected delay here grows only linearly
with n. Since the expected delay is related to throughput, we should expect a marked
improvement in throughput also.

Let us consider the system throughput � as a function of link loading ρ. There are
four links to a node. By Little’s law,

� = 4Nρ

Tn

. (5.36)

It can be shown that d�/dρ < 0 for ρ close to 1, and therefore the instability problem
exists in this network. However, it can be shown that the instability problem is much
less severe than the unidirectional shuffle-exchange network and that the maximum
throughput �max is very close to the saturation throughput �sat. Problem 4.7 explores
this issue in detail. With ρ = 1 in (5.33), (5.35), and (5.36), we get

�sat ≈ 1.469N

n
. (5.37)

Instead of using a nonblocking 4 × 4 switch at each node, we could also use
the simpler reverse banyan network shown in Fig. 5.17 (or any network within the
Banyan class provided the associated routing algorithm is used) to perform switching
at each node. The deflection probability will be higher since there is the possibility of
internal conflict. For instance, as shown in the figure, although packet A and packet B
are destined for different outputs, one of them will be deflected to the wrong output. In
the reverse banyan network, bit x1 of the routing bits x2x1 is used at the first column,
and bit x2 is used at the second column. Once a packet has been deflected in column
1, it does not matter how it is routed in the column 2 because it will reach the wrong
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00
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11

FIGURE 5.17 A 4 × 4 reverse banyan switch to be used in a node in the bidirectional shuffle-
exchange network.

output link anyway. Therefore, priority at column 2 should be given to packets that
have not been deflected in column 1 to reduce their deflection probability.

Let us consider the deflection probability. An incoming packet to a column-1 node
will be deflected only if there is another packet on the other input link destined for the
same outgoing link and it loses contention to this other packet. With the assumption
that packets are equally likely to be destined for any of the four outputs of 4 × 4
switch, the probability that there is another input packet desiring the same outgoing
link of the 2 × 2 column-1 node is ρ/2, where ρ is the link loading. With probability
1/2, this packet will win contention. Thus, the deflection probability at the column-
1 node is ρ/4. The probability that an incoming link to a column-2 node has an
undeflected packet is therefore ρ(1 − ρ/4) and the deflection probability in column
2 is 1 − ρ(1 − ρ/4)/4. Hence, the probability of an arbitrary packet not deflected in
the overall 4 × 4 switch is

p = Pr{not deflected in column 1}
× Pr{not deflected in column 2 | not deflected in column 1}

= (1 − ρ/4)[1 − (ρ − ρ2/4)/4]. (5.38)

This results in a higher deflection probability than with 4 × 4 nonblocking switch
elements, and therefore more number of hops is needed for the packet to reach its
final destination (see Problem 5.8). However, the same random walk as depicted
in Fig. 5.16 still applies and the deflection distance is still one. Therefore, we do
not expect the use of simpler Banyan networks will result in significantly worse
performance and the average number of hops needed is still proportional to n.

We close this subsection by pointing out that the performance of the bidirectional
shuffle-exchange network can be further improved. With reference to Fig. 5.18, con-
sider a packet that has not been deflected—the nodes in the figure are drawn in two
separate columns for clarity. Suppose that it is at node a and wants to go to node c

next. However, it is deflected to node d via the wrong forward link (forward links are
shuffle links if the packet is to travel to its destination via the shuffle plane and are
unshuffle links otherwise). In our original routing algorithm, we add routing bits so
that the packet can return to node a via a reverse link from node d. This strategy at-
tempts to go back to the original path. However, by the construction of the shuffle and
unshuffle links, the packet can also travel via the other reverse link of node d to node
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ca

db

Bidirectional links

In bidirectional shuffle-exchange network, nodes a and b
connected to node d implies they are also connected to another

common node c 

FIGURE 5.18 Illustration showing that both reverse links can be used to correct a deflection
error.

b and then via a forward link in node b to node c; going back to node a is not strictly
necessary. This is a simple observation of the shuffle and unshuffle interconnections:
if nodes a and b are connected by shuffle (unshuffle) links to a common node d, then
both nodes a and b are also connected by shuffle (unshuffle) links to another common
node c.

By letting the packet use either of the reverse links, we reduce the deflection
probability of the packet while its previous deflection is being corrected. In other
words, we have a “don’t care” situation in which the packet does not care which
reverse link it acquires as long as one is available. In general, however, we do not
always have a “don’t care” situation when performing error correction. For example,
if the packet were to be deflected to a reverse link instead of a forward link at node a,
then it would be necessary for it to go back to node a to get to node c. When correcting
successive deflections, it is also possible that some steps have a “don’t care” situation
while some do not. The general treatment is beyond the scope of this book. Suffice
it to say that by considering the routing tags of packets and the nodes they occupy
at each step, one can derive systematically the general “don’t care” conditions and
modify the routing strategy for further performance improvement. Further discussion
can be found in Problem 5.10.

5.1.5 Dual Shuffle-Exchange Network

The idea of the feedback bidirectional shuffle-exchange network can be used in a
feedforward dual shuffle-exchange network. Instead of feeding the outputs of the
nodes back to the inputs of the same nodes through a set of shuffle links and a set of
unshuffle links, the outputs are fed forward to a set of “new” nodes at the next stage.
In this way, a packet traverses physically different nodes on route to its destination.



176 ADVANCED SWITCH DESIGN PRINCIPLES

This is the same idea as the shuffle-exchange network discussed in Section 5.1.2. The
difference is that the deflection penalty in the dual shuffle-exchange network is much
lower than that in the shuffle-exchange network.

One way to look at the dual shuffle-exchange network (DSN) is to consider it
as being constructed of two subnetworks, a shuffle network (SN) and an unshuffle
network (USN)—the mirror image of the shuffle network, as illustrated in Fig. 5.19.
Of course, in order that packets can be transferred from one network to the other
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FIGURE 5.19 Construction of a dual shuffle network using shuffle-exchange and unshuffle-
exchange networks: (a) Shuffle-exchange network, (b) unshuffle-exchange network, (c) dual
shuffle-exchange network.
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for correcting deflections, we need 4 × 4 nodes rather than 2 × 2 nodes. Conceptu-
ally, the routing and error-correction mechanisms of the DSN are the same as those
in the feedback bidirectional shuffle-exchange network. There are, however, some
differences relating to implementation and performance issues, and this subsection
concentrates on these areas.

In the bidirectional shuffle-exchange network, the nodes are the packet sources and
destinations; in the DSN, the input and output links are the sources and destinations.
Consider a network with N/2 nodes at each stage. Since each node is 4 × 4, there
are altogether 2N links connecting adjacent stages. We label the N/2 nodes at each
stage with an (n − 1)-bit number xn · · · x2 (as opposed to xn · · · x1 in the feedback
network with N nodes). The four output shuffle and unshuffle links connecting to a
particular node xn · · · x2 are labeled as (1, xn · · · x1) and (0, xn · · · x1), respectively.
The four input links are also similarly labeled. Routing of a packet in the DSN consists
of first directing it to the node to which the desired output is attached—which is
similar to routing in the feedback network—in the first log2 n − 1 steps, and then
from the node to the destination output link in the last step. Therefore, the same error-
correcting routing algorithm as depicted in Figs. 5.13 and 5.14 can be used, with the
understanding that x1 in the figures must be replaced by x2 to take into account the
new situation that x2 is the least significant bit of the node label.

The DSN can be configured as an N × N switch or a 2N × 2N switch, as shown
in Fig. 5.20. Figure 5.20(a) depicts the N × N version. Both the SN and USN in
the DSN are used for routing packets. In the N × N DSN, links (1, dn · · · d1) and
(0, dn · · · d1) are associated with the same logical address dn · · · d1. Packets reaching
these two links as their final destinations will be multiplexed onto the same output
link of the overall switch. Therefore, a packet with destination address dn · · · d1 can

N N SN

N N USN

Multiplexer

Output address space: 

dndn–1... d1;  di ∈{0,1}

4 4 node interconnecting 
SN and USN

1 2 router

(a)

N N SN

N N USN

Output address space: 
1dndn–1… d1

2N outputs2N inputs

Output address space: 
0dndn–1… d1

(b)

FIGURE 5.20 (a) DSN configured as N × N switch; (b) DSN configured as 2N × 2N switch.
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have either of them as its destination. An incoming packet to the switch is routed
either to an SN input or an USN input, and accordingly, its routing tag is set to either
1dn · · · 1d1 or 0d1 · · · 0dn. In the first case, the packet’s primary route is in the SN, and
in the second case, the primary route is in the USN. Any excursion to the companion
network is for error-correction purposes only.

Figure 5.20(b) shows the 2N × 2N version. Here, links (1, dn · · · d1) and
(0, dn · · · d1) belong to two different logical addresses, 1dn · · · d1 and 0dn · · · d1, re-
spectively. An incoming packet with destination 1d1d2 · · · dn is assigned the routing
tag 1dn1dn−1 · · · 1d1, and a packet with destination 0dndn−1 · · · d1 is assigned the
routing tag 0d10d2 · · · 0dn. This setup has the advantage that the switch size is double
that of Fig. 5.20(a) with essentially the same amount of hardware. For explanation
purposes, however, we shall focus mainly on the design in Fig. 5.20(a) for the rest of
this subsection.

Figure 5.21 shows an example of the routing of two packets A and B whose
primary routes are both in the shuffle plane. The shuffle and unshuffle planes in the
DSN are drawn separately for clarity, with the understanding that the two nodes with
the same label at the same stage of the two planes are actually the same node in the
DSN. As shown, the deflection of packet A to an incorrect shuffle link is corrected
by forwarding it to an unshuffle link that returns it back to the previous node where
the deflection occurred (node with the same label two stages later). In general, as
in the bidirectional networks, deflections to shuffle links are corrected by routing to
unshuffle links, and vice versa.

For further design simplification, let us reexamine the SN and USN shown in
Fig. 5.19. We note that the first shuffle of the inputs to the SN is unnecessary and can
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be removed. The links traversed by an undeflected packet with source S = sn · · · s1
and destination D = dn · · · d1 at the outputs of successive switching stages are then

S = sn · · · s1 → (1, sn · · · s2dn) → (1, sn−1 · · · s2dndn−1)

→ · · · → (1, sn−i+1 · · · s2dn · · · dn−i+1) → · · ·
→ (1, s2dn · · · d2) → (1, dn · · · d1) = D.

From Fig. 5.19, we also see that whereas the shuffling of links precedes switching
nodes in each stage of the SN, the switch nodes precede the unshuffling of links
in the USN. Thus, a packet with primary route in the USN that has been switched
successfully at the last switching stage must undergo another unshuffle before it can
be considered as having reached its destination. The reader may verify this with an
example, say, a packet destined for output 101, in Fig. 5.19. Alternatively, this can
also be revealed by the sequence of links traversed by an undeflected packet at the
outputs of successive switching stages:

S = sn · · · s1 → (0, sn · · · s2d1) → (0, d1sn · · · s3d2)

→ · · · → (0, di−1 · · · d1sn · · · si+1di) → · · ·
→ (0, dn−2 · · · d1sndn−1) → (0, dn−1 · · · d1dn) 	= D.

One more unshuffle (cyclic right shift) is necessary to move the packet to the correct
destination. To remove this inconvenience, the initial routing tag for a packet must
be set to 0d20d30 · · · 0dn0d1. That is, a 2-bit cyclic right shift is performed on the
original routing tag so that the two least significant bits 0d1 are used at the last stage
of the new USN. The correctness of this strategy can be revealed by the sequence of
output links traversed by an undeflected packet:

S = sn · · · s1 → (0, sn · · · s2d2) → (0, d2sn · · · s3d3)

→ · · · → (0, di · · · d2sn · · · si+1di+1) → · · ·
→ (0, dn−1 · · · d1sndn) → (0, dn · · · d1) = D.

The main advantage of the above modification is that the bypass mechanisms within
the SN and USN can both be implemented at the outputs of switch nodes; otherwise,
the bypass mechanism of the USN must be implemented at the inputs of the next
stage.

With the modification, the block diagram of a switch node is shown in Fig. 5.22.
Figure 5.22(b) depicts the connection of bypass lines across two nodes of successive
stages. The bypass lines are needed only for stages n and above. The postprocessors
perform two functions: (1) process packets according to the error-correction routing
algorithm; and (2) forward packets that have reached their destinations to the bypass
lines. At the bypass lines, packets are multiplexed with other packets reaching the
same destination in the previous stages. Note that although the multiplexers create
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FIGURE 5.22 (a) Block diagram of a switch node; (b) interconnection of bypass lines between
adjacent switch nodes of same labels.

physical queues internal to the network, the switch is logically an output-queued
switch; the physical buffers for the output queues are distributed across many switch
nodes. Instead of the above, we may also have lines leading out of the switch from
the bypass locations and use a “large” multiplexer to multiplex packets for the same
destination (see the configuration of the tandem-Banyan switch). In this case, there
is only one physical queue for each output.

We now show that the complexity of the DSN is N log N using an approximate
analysis. The validity of the analysis and the correctness of the routing algorithm have
been verified with simulation.

Since routing requires at least n = log N stages, clearly the lower bound on the
complexity of the DSN is N log N. We shall now show that N log N is also an upper
bound on the order of complexity for a given packet loss probability requirement
Ploss. As a simplifying approximation, we assume that the input packets to a switch
node are uncorrelated with each other and that they are equally likely to be destined
for any of the four outputs. We further assume that the 4 × 4 switch elements are
internally nonblocking. Let ρt be the load of an input at switch stage t, that is, ρt is the
probability that there is an incoming packet on an input link. Let pt be the probability
that a packet is successfully routed at stage t. We have

pt =
1 −

(
1 − 1

4ρt

)4

ρt

. (5.39)

It is easy to show that dpt/dρt ≤ 0 for 0 ≤ ρt ≤ 1. Since the load cannot increase as
t increases (number of packets cannot increase), ρt is a nonincreasing function of t.
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Therefore, pt ≥ pt−1 ≥ · · · ≥ p1. This agrees with our intuition that the probability
of success increases as more and more packets are removed from the network. To
obtain an upper bound on L, the number of stages required to meet a given Ploss, we
perform a worst-case analysis in which pt , for all t, is replaced by p1 = p. That is,
the L required by our system is bounded above by the L required in a corresponding
“time-invariant” random walk depicted by the Markov chain in Fig. 4.30, in which
the state is the packet distance, and q = 1 − p is the deflection probability.

For analytical convenience, let us adopt a version of the DSN similar to the one in
Fig. 5.20(a), but in which each of the N incoming packets is randomly routed to one
of the 2N input ports of the SN and USN, with at most one packet assigned to the
same input port. The input load on each input is ρ1 = 0.5. This gives

p = p1 = 1 − (1 − 0.5/4)4

0.5
≈ 0.828. (5.40)

Let gi(k) be the conditional probability that a packet will reach its destination (or
state 0) in k more steps given that its current state is i.

g0(k) =
{

1, if k = 0,

0, otherwise,
(5.41)

gi(k) = pgi−1(k − 1) + qgi+1(k − 1), 0 < i < n, (5.42)

gn(k) = pgn−1(k − 1) + qgn(k − 1). (5.43)

The generating function Gi(z) = ∑∞
k=0 gi(k)zk is given by

G0(z) = 1, (5.44)

Gi(z) = pzGi−1(z) + qzGi+1(z), 0 < i < n, (5.45)

Gn(z) = pzGn−1(z) + qzGn(z). (5.46)

Equation (5.45) is a homogeneous linear difference equation in terms of i; (5.44) and
(5.46) are the boundary conditions. The general technique for solving the difference
equation (5.45) is to substitute Gi(z) = Si(z). This gives

S2(z) − 1

qz
S(z) + p

q
= 0. (5.47)

The roots of the quadratic equation are

S1(z), S2(z) = 1

2qz

(
1 ±

√
1 − 4pqz2

)
. (5.48)
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The general solution of Gi(z) is

Gi(z) = C1(z)Si
1(z) + C2(z)Si

2(z). (5.49)

The constants, C1(z) and C2(z), can be found by matching the boundary conditions
at i = 0 and i = n using (5.44) and (5.46). This yields

Gn(z) = pz[Sn−1
2 (z)Sn

1 (z) − Sn−1
1 (z)Sn

2 (z)]

(1 − qz)[Sn
1 (z) − Sn

2 (z)] − pz[Sn−1
1 (z) − Sn−1

2 (z)]
. (5.50)

We can obtain a Chernoff bound on Ploss as follows:

Ploss ≤
∞∑

k=L+1

gn(k)

≤
∞∑

k=L+1

gn(k)zk−(L+1), for some real z ≥ 1 ,

≤ z−(L+1)
∞∑

k=0

gn(k)zk

= z−(L+1)Gn(z). (5.51)

Thus, we are interested in Gn(z) for real z ≥ 1. It is clear from inequality (5.51) that
to obtain a tight bound, z−(L+1) must be sufficiently small, or z sufficiently large.
Let us determine a priori that we shall choose z large enough that S1(·) and S2(·) are
both complex as a result. Then, it is more convenient to express them in the polar
coordinates of the complex plane:

S1(θ), S2(θ) =
√

p/q e±iθ, (5.52)

where i = √−1 and θ = cos−1 1
2z

√
pq

. After some manipulation, we obtain

Gn(θ) = (p/q)n/2 sin θ

sin (n + 1)θ − √
q/p sin nθ

. (5.53)

By inspection, substituting θ = 0 appears to give a reasonably tight Chernoff bound.
Doing so yields

Gn(θ = 0) = (p/q)n/2

(n + 1) − n
√

q/p

≤ (p/q)n/2

(n + 1)(1 − √
q/p)

. (5.54)
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Now, θ = 0 implies z = 1/2
√

pq. Substituting the above Gn(·) and z into inequality
(5.51) and taking logarithms on both sides yields an upper bound for L:

L ≤ 2.793n − 3.554 ln(n + 1) + 3.554 ln P−1
loss + 1.162. (5.55)

Since each stage consists of N/2 switch elements, the complexity of the DSN for a
given Ploss is therefore of order N log N.

Theoretically, this is the lowest complexity that can be achieved. We saw in Chapter
2 that the complexity order of a nonblocking switch must be at least N log N. In a
certain sense, this is also the least complexity order of any “reasonable” switch, not
necessarily nonblocking. For example, the Banyan networks are the least complex
switches that guarantee that there is at least one path from any input to any output,
and they are also of order N log N. Of course, the Banyan networks operated as loss
systems would have very high loss probability, as has been demonstrated in Chapter 3.
What we have shown for the DSN is that it can achieve the same order of complexity
as the Banyan network while attaining arbitrarily small loss probability.

We close this subsection by observing that the complexity of the bypass mech-
anisms can be also reduced using a simple trick. The DSN operation assumed so
far is associated with the random-walk model in Fig. 5.16. State n is different from
other states because error in this state does not increment the distance further: the
routing tag is simply reset to the original routing tag. Suppose that this state is treated
no differently than other states. The corresponding random-walk model is shown in
Fig. 5.23(a), in which there is no reflecting barrier.

The advantage of removing the boundary is that the number of bypass locations
in the DSN can be decreased. With this new random walk, regardless of the state
of a packet, each deflection means the packet will need two more steps to reach its
destination. In other words, a packet that experiences a total of k deflections will
exit at stage n + 2k of the DSN. Therefore, only stages n + 2k, k = 0, 1, 2, · · ·, need
to have the bypass mechanisms installed. The disadvantage is that the length of the
routing tag may in principle grow in an unbounded fashion.

n+2 n+1 n i 1 0

Bypass location: n + 2k; k = 0,1,2, ...
(a)

n+1 n i 1 0

Transition probability

from n + 1 to n = 1
By-pass locations: n + 2k; k = 0,1,2...

(b)

FIGURE 5.23 Two random-walk models realizable with DSN: (a) random walk without boundary;
(b) boundary with one-step reflection to the right.
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FIGURE 5.24 Switching by loading packets from N inputs into RAM locations based on their
targeted outputs and outputting packets into the N outputs in a round-robin fashion.

The random walk in Fig. 5.23(b) also only needs bypass mechanisms at stages
n + 2k, k = 0, 1, 2, · · ·, but bounds the routing tag to at most 2(n + 1) bits. To
realize this random walk, if an error is made in state n, the routing tag is re-
set to the original destination address plus two dummy bits: x1x20d10d2 · · · 0dn or
x1x21dn1dn−1 · · · 1d1, where x1x2 are the dummy routing bits.3 This moves the packet
to state n + 1. In state n + 1, routing will be considered successful regardless of the
outcome and the two dummy routing bits removed. Consequently, a packet in state
n + 1 will move to state n in one step with probability 1. Thus, we have a boundary
in the random walk that reflects the walk one step to the right. Again, each deflection
results in two additional steps before the packet can reach its destination.

5.2 SWITCHING BY MEMORY I/O

So far we have been mainly concentrating on packet switching in the space domain. In
Chapter 2, it was shown that circuit switching in the time domain can be implemented
using random access memory (RAM). Recall that in TDM, time is divided into frames,
each of which consists of a number of time slots. The information on different time
slots are associated with different circuits and are read into a RAM in the order of
their arrival. By changing the order in which the information are read onto the output,
the time slots occupied by the information can be interchanged.

A similar idea can be used in packet switching. Consider the N × N packet switch
depicted in Fig. 5.24. An N × 1 switch multiplexes the packets from the N inputs onto
one channel connected to a RAM. The buffer space in the memory is divided into N

partitions, one for each output. Packets are loaded into the partitions associated with
their targeted outputs, and the N outputs take turns reading out their packets from
the memory via a 1 × N switch. In practice, small switches based on variants of this

3Alternatively, state n + 1 can be indicated using another extra bit in the header and the routing tag kept
to length 2n bits.
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scheme have been built. This switching approach, however, does not scale very well
for large N: certainly, the N × 1 and 1 × N switches must work at N times the speed
of input or output links; the memory must also have very high access speed. The reader
is referred to Problem 4.15 for a discussion on the required memory access speed.

One way to reduce the required access speed is to use a parallelization approach in
which several, say M, RAMs are used to store the packets. This strategy is similar to
the switch speedup scheme by packet slicing discussed in Chapter 4. The information
content of a packet is divided into M parts, with each part stored in one of the RAMs.
The required memory access speed is then reduced M-fold. The trade-off is that there
are more wires interconnecting the inputs and outputs to the memories. Thus, the
architecture can only be parallelized to a certain extent, and the scaling problem is
still not solved for large N.

If an output is congested and has many packets in its buffer, the buffering space
allocated to it may overflow, leading to packet loss. Meanwhile, some other outputs
may not be very busy and their buffers are underutilized. A simple extension, called
shared-buffer memory switching, removes the partitioning of buffering space and
allows it to be shared by all outputs. Buffers are allocated on an as-needed basis,
and an arriving packet will be dropped only if the overall memory has been used.
Therefore, for a given amount of memory, this scheme can achieve a lower packet
loss probability.

The buffer management strategy is illustrated in Fig. 5.25. The buffer is organized
as N linked lists, each implementing the queue of an output. A linked list has a head
and a tail, corresponding to the first and last packets in the queue. In addition to
the buffer required to store a packet, each entry of the linked list also has a pointer
containing the address of the next entry. Thus, the first packet points to the second

Packet 1 in list 1 

Packet 2 in list 1 

PacketPointer

Packet 3 in list 1  

Dummy packet

Dummy address indicating end

of queue 

If list i is empty, then   

both Ti and Hi point to 

the dummy address

H1

H

T1

T

FIGURE 5.25 Buffer management in the shared-buffer memory switch.
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packet, the second points to the third, and so on. The last entry, the tail, points to
a specially designated dummy address (could be address 0, for example) to indicate
the end of the linked list. The addresses of the head and tail of queue i are stored in
buffers (or registers) Hi and Ti, respectively.

The N linked lists consist of all the used buffer locations. There is another linked
list, called the free list, whose entries are the free buffer locations that could be
allocated to the newly arriving packets. The addresses of the head and tail of this list
are stored in buffers (or registers) H and T . An incoming packet destined for output i

must first acquire a free location from this list. The operations on the linked lists are
as follows, where we assume for the sake of brevity that the free list and list i are not
empty (a few steps must be added if this is not the case):

(H ) ← PACKET load packet into location pointed to by H ,

(Ti ).NEXT ← H add packet to tail of list i ,

Ti ← H update the tail of list i ,

H ← (H ).NEXT update H to point to the next free location,

(Ti ).NEXT ← DUMMY last entry of list i points to dummy address.

The N outputs take turns reading packets from the memory via the 1 × N switch.
After output i has successfully read out a packet, the free list and list i are updated as
follows, where we assume for brevity that the free list is not empty before the update
and list i is not empty after the update:

(T ).NEXT ← Hi return buffer to free list,

T ← Hi

Hi ← (Hi ).NEXT update list i ,

(T ).NEXT ← DUMMY last entry of free list points to dummy address.

Although it can be seen intuitively and shown quantitatively that the packet loss
probability can indeed be reduced by the buffer-sharing approach, one must be care-
ful in drawing the conclusion that the shared-buffer switch is therefore superior to
unshared-buffer switch. There are several arguments against the shared-buffer switch
that must also be considered.

In the unshared-buffer switch, output queues do not interfere with each other. In
the shared-buffer switch, a misbehaving output (due to traffic congestion, network
management errors, or hardware failures) can easily use up a large amount of the
shared memory, to the detriment of the other outputs. The shared-buffer switch has
an advantage over the unshared-buffer switch only to the extent that memory is an
expensive resources. With the rapid advances in memory technology, this is fast
becoming a weak argument. One might contend that in a real network, potential for
traffic congestion always exists, and no matter how much buffer there is, there is a
chance that it will fill up; therefore, having more buffer always helps. The problem
with this argument is that more buffer does not help solve traffic congestion; in fact,
it may delay the discovery of congestion. The shared-buffer switch allows an output
queue to grow very large because of the sharing. If the carried traffic is real-time
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(e.g., video conference traffic) and must reach the receiver within certain time limit,
excessive delay may have been incurred: the packets may as well be dropped at the
switch. Furthermore, many network traffic management schemes use buffer overflow
as an indication of congestion. For these schemes to be effective, the buffer cannot
be too large. Overall, in designing a switch, we want it to have enough buffer to
prevent excessive packet loss under normal traffic conditions; using more buffer than
necessary, however, does not solve the congestion in heavy-traffic situations.

5.3 DESIGN PRINCIPLES FOR SCALABLE SWITCHES

Although various switches can theoretically be designed to large dimensions, techno-
logical and physical constraints often impose a practical limit on their maximum size,
N ′ × N ′. If we want to construct a large switch system, say 2N ′ × 2N ′, then two or
more N ′ × N ′ switches have to be interconnected. Straightforward interconnections
of these small switches create several stages of queueing delay. This may also result in
severe performance degradation if congestion occurs at intermediate switches. Thus,
increasing performance penalty for larger switch sizes seems unavoidable.

In this section we shall focus on switch scalability; we shall provide some key
principles to construct large switches out of modest-size switches, without sacrificing
overall switch performance.

5.3.1 Generalized Knockout Principle

As mentioned before, the knockout switch takes advantage of the fact that, with
uncorrelated traffic among input ports and uniformly directed to all output ports, the
probability of more than R packets destined for any particular output port in each
time slot is very low. In this way, we can do away with the input queues and operate
the switch as a loss system by simply dropping the very few packets that have lost
contention.

The knockout principle can be implemented using very different switch architec-
tures. In Chapter 4, we have presented two possible ways for its implementation. One
is a design based on Batcher–banyan networks and the other is an implementation
using broadcast buses and knockout concentrators. Although the complexity of the
Batcher-banyan knockout switch is of order N log2

2 N, which is much lower than that
of the second implementation for large N, the growing complexity of interconnection
wiring between stages in this design makes it impossible to scale well. The knockout
switch based on broadcast buses and concentrators has a uniform and regular structure
and thus has the advantages of easy expansion and high integration density for VLSI
implementation. It is one of the representative approaches to construct large-scale
switches.

For large N (e.g., a few thousands), the complexity of a knockout concentrator at
the output is still very high; the total number of switch elements in all N knockout con-
centrator is N2R. Although we can design VLSI chips to contain such large amounts
of switch elements, it is still desirable to reduce the number of switch elements to
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FIGURE 5.26 Partitioning outputs into multiple groups.

some extent by reducing the value of R. There are two ways to reduce the R value.
One is to provide an input buffer at each input port, and an output buffer at each
output port. Suppose that an eight-packet buffer is added at each input port; R can be
reduced from 8 to 3 at the same packet loss probability of 10−6 for any switch size N

with ρo = 0.9 (i.e., 90% load). Because the input buffer scheme is used, contention
resolution must be performed among packets destined for the same output port. This
will increase its complexity to the same extent as the pure input buffer scheme, which
is the extreme case of R = 1.

The second way to reduce the value of R is to put a number of output ports into
a group so that the routing links belonging to the same group can be shared by the
packets that are destined for any outputs in this group. For example, as shown in
Fig. 5.26, every n output ports are put together in one group, and R × n routing links
are shared in this group. The center network, as shown in Fig. 5.26, used to partition
output ports into a number of groups is thus called a “grouping network.” If there
are more than R × n packets in one time slot destined for the same output group,
the excess packets will be discarded and lost while they are competing with others
for available paths. Once packets are sent onto the R × n vertical routing links at the
output of the knockout concentrator, they are routed to proper output ports through
a distribution network, which can be implemented by any modest-size switch. This
method generalizes the knockout principle from a single output to a group of outputs
and is so-called generalized knockout principle. It is the combination of the knockout
principle and channel grouping and provides a promising way to construct large
switches out of small-scale switches.

Assuming the packets have independent, uniform destination address distributions,
then the probability an input packet is destined to this group of outputs is simply
n/N. If we only allow up to R × n packets to pass through to the group outputs, the
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TABLE 5.1 Value of R for Different Group Sizes n and Loss Probability Ploss with
�o = 0.9

Ploss n = 1 n = 2 n = 4 n = 8 n = 16 n = 32 n = 64 n = 128 n = 256

10−6 8 5.30 3.70 2.70 2.10 1.70 1.45 1.25 1.15
10−8 10 6.45 4.40 3.15 2.40 1.90 1.55 1.35 1.20
10−10 12 7.50 5.05 3.60 2.65 2.00 1.70 1.45 1.25

probability for a packet to be dropped is

Ploss = 1

nρo

N∑
k=Rn+1

(k − Rn)

(
N

k

)(nρo

N

)k (
1 − nρo

N

)N−k

, (5.56)

where ρo is the offered load of each input port. As N → ∞, we have

Ploss =
(

1 − R

ρo

) (
1 −

Rn∑
k=0

(nρo)ke−nρo

k!

)
+ (nρo)Rne−nρo

(Rn)!
. (5.57)

The practical R and n combinations for three different packet loss probabilities are
determined from (5.57) and listed in Table 5.1. For a given acceptable packet loss
probability, for example, 10−10, the required value of R decreases from 12 to 8 as
the number n of output ports in each group increases from 1 to 2. The larger the size
of the output group, the smaller the R value required. It is interesting to notice that
as the R value increases from 1.25 to 1.45, the size n of the output group reduces
considerably from 256 to 128 at 10−10 loss probability. Because it is practical to route
packets to different groups based on some portion of the routing information carried
in the packet header, the group size is therefore chosen as 2i, where i = 0, 1, 2, · · ·. In
actuality, it is always desirable to choose a smaller R for a large group size n to keep
the hardware complexity smaller. However, to avoid the implementation difficulty
resulting from the requirement of preserving correct packet sequence, every group is
limited to a reasonable size.

We can also apply the generalized knockout principle to the distribution networks
and further reduce the size n of the output groups by increasing the R value. For
example, as the R value is increased from 1.25 to 2, the group size is reduced from
256 to 32 for the loss probability of 10−10. This principle can be applied recursively
until the n value becomes 1, where input packets are routed to an output port properly.
In this way, many stages of the grouping network can be constructed recursively, which
results in smaller hardware complexity and packet delay. Figure 5.27 illustrates one
possible way to construct a switch with three stages of grouping network. In this switch
design, the first stage grouping network has K groups (K = N/n), and each group
has R × n fanouts. They are then fed to another grouping network at the second stage,
which hasR × n input lines andK′ output (K′ = n/n′), with each group’s fanout equal
to R′ × n′. At the third stage, the R′ × n′ input lines are then routed to n′ groups with
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FIGURE 5.27 A switch with three stages of grouping networks.

R′′ fanouts for each group. Packets on these R′′ lines are statistically multiplexed and
stored in a multiplexer with a logical FIFO to maintain packet sequence integrity.

As shown in Fig. 5.27, there are N/n knockout concentrators in the grouping
network at the first stage. Thus, the total number of switch elements in the first stage
is equal to

N/n × (number of input lines) × (number of output lines per concentrator)

= N/n × N × Rn

= N2R. (5.58)

Similarly, we obtain the number of switch elements used in the second stage and
the third stage; they are N × n × R × R′ and N × n′ × R′ × R′′, respectively. The
total number of switch elements in the switch fabric is, therefore, equal to the sum
of them, or N2R + N × n × R × R′ + N × n′ × R′ × R′′. If we choose n = 256,
R = 1.25, n′ = 32, R′ = 2, and R′′ = 12 for the packet loss probability of 10−10,
the total number of switch elements will be equal to 1.25N2 + 1048N ≈ 1.25N2 for
very large N. It is close to one order of magnitude reduction from 12N2, which is
the number of switch elements required for building an N × N knockout switch with
R = 12 and n = 1.
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FIGURE 5.28 The decomposition of a large switch into modules.

5.3.2 Modular Architecture

The generalized knockout principle provides the flexibility and efficiency for increas-
ing the switch size by equally partitioning all outputs into multiple groups and doing
routing according to these groups. Here, we shall present a modular architecture,
which does so by equally partitioning all inputs into multiple subsets and performing
switching based on them.

Figure 5.28 illustrates the basic idea of the modular approach to construct a switch
fabric with a large number of ports. The set of all inputs is equally partitioned into K

subsets. Each subset of the inputs is then interconnected to all N outputs, forming the
basic building block of the system called the switch module. The number of inputs
of a switch module, M = N/K, is called the base dimension of the switch. In this
architecture, each module is an autonomous nonblocking, self-routing packet switch.
The outputs with the same index, one from each switch module, are multiplexed
together and then fed to the output queue bearing that index as its port address.

Physically, as shown in Fig. 5.29, the modular architecture can be realized as an
array of three-dimensional parallel processors. Each processor is a switch module con-
sisting of a Batcher sorting network and an expansion routing network. The expansion
network is a set of binary trees cross interconnected with a set of banyan networks.
The set of concurrent modules is interconnected at the outputs by multiplexers. Thus,
no interference between switch modules is possible, which is the key to simplifying
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FIGURE 5.29 The 3D modular architecture of Batcher-binary-banyan packet switch.

the operation and maintenance of the whole system. This architecture also allows
independent clocking of modules, which simplifies timing substantially. Within each
module, the small physical size makes it fairly straightforward to synchronize, and
the simpler hardware makes higher speed implementation possible.

5.3.2.1 Modular Batcher–Binary–Banyan Switch With reference to the
previous discussion, each of the K modules of an N × N switch is a cascade of
an M × M Batcher network, a stack of M binary trees and a group of K banyan
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networks where M = N/K. We will use σ(M, N, K) to represent such a switch mod-
ule. The Batcher network sorts the input packets based on their destination addresses.
The succeeding binary trees and banyan networks then route the packets to the correct
outputs.

The principle of this modular architecture is based on a common approach
called divide-and-conquer, which has been used extensively in designing efficient
algorithms. A well-known example is the fast Fourier transform. It simply splits
a large problem into small parts, solves them, and then combines the solutions
for the parts into a solution for the whole. This point is illustrated in Fig. 5.30.
The set of inputs is first partitioned into K subsets. Each subset is sorted by a
Batcher network. The sorted subset is then partitioned again by the binary trees
into finer subsubsets. In each module, the ordered packets of these subsubsets
are routed concurrently to their destinations by K parallel banyan subnetworks.
Finally, these packets are buffered in respective output queues, waiting for
transmission.

The combination of binary trees and banyan networks forms an expansion network,
a network has larger fan-out than fan-in. As such, the output space of an expansion
network can be arbitrarily enlarged by adding more banyan networks. Thus, each
module may even have more outlets than the number of outputs. The structure and
property of the switch modules are detailed below.
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Binary–Banyan Expansion Network An n-stage expansion network with M =
2m inputs and N = 2n outputs is a combination of a set of M binary trees and a
set of K = N/M banyan networks. Figure 5.31 illustrates a three-stage expansion
network with four inputs and eight outputs. Each 1 × K binary tree has k = log K =
log N − log M = n − m stages and each M × M banyan network has m stages. Every
node of the network is either a 1 × 2 or a 2 × 2 switch element capable of performing
the binary routing algorithm based on the n-bit destination address in the header of
the packet. That is, a node at stage j sends the packet on link 0 (up) or link 1 (down)
according to the jth bit of the header.

The cross interconnection of M binary trees and K banyan networks is similar
to the link system of a multistage crossbar switch. The outputs of a binary tree can
be labeled by two binary numbers (x1 · · · xm, y1 · · · yn−m=k), where x1 · · · xm is the
top-down numbering of the binary tree and y1 · · · yk is the local address of each
input within the binary tree. Similarly, the inputs of the banyan network can also
be identified by two binary numbers (a1 · · · an−m=k, b1 · · · bm) where a1 · · · an−m

is the top-down numbering of the banyan network and b1 · · · bm is the local ad-
dress of the input. The binary trees and banyan networks are transpose intercon-
nected according to this numbering scheme; the two ports are interconnected if
(x1 · · · xm, y1 · · · yn−m) = (b1 · · · bm, a1 · · · an−m). This transpose cross interconnec-
tion results in a three-dimensional realization of switch modules as portrayed in
Fig. 5.29.

The binary trees of the expansion network consist of 1 × 2 elements, which only
allow one input packet at any instant of time. Packets will never collide in this stage
of the network, but this may occur in the subsequent banyan subnetworks. In the
following, we will discuss the condition on inputs that prevents any possible packet
collisions in an expansion network.
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Nonblocking Property of Expansion Networks An interconnection network is
nonblocking if the packet routing is not store-and-forward, and internal buffers are
not needed within the switch nodes. It is known that if the incoming packets with
distinct destination addresses are arranged in an ascending or a descending order,
then the banyan network is internally nonblocking.

The cross interconnection defined by the above numbering scheme guarantees
that the routing performed by the set of binary trees preserves the ordering of the
destination addresses in input packet headers. Since a binary tree is actually a 1 × K

demultiplexer, at most one packet will be routed by a tree during any time slot. Packet
collisions may only occur in the subsequent banyan subnetworks. This implies that
the same nonblocking condition for banyan networks can still be applied to expansion
networks. Formally, this property states the following.

[NB] “If the set of destination addresses of input packets to the expansion network is
monotone and concentrated, then so is every subset of input packets to each banyan
subnetwork of the expansion network.”

This nonblocking condition can be best demonstrated by the following example.
Consider two packets

A: from 01 to 1001 and B: from 10 to 1011

input adjacently to the 4 × 16 expansion network as shown in Fig. 5.32. According to
the self-routing algorithm, they will emerge at outputs labeled 01,10 and 10,10 of the
binary trees 01 and 10, respectively. Following the transpose interconnection, packet
A and B will be routed to the inputs 10,01 and 10,10, respectively, of the banyan
subnetwork 10. The two packets are still neighboring contiguously, no gap has been
created, and in the same spatial order. The assertion in [NB] can be established by
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TABLE 5.2 The statistics of a Switch Module �(M,N,K )

Number of networks Dimension Number of Stages Number of Nodes

Batcher network 1 M ×M
logM (1+logM )

2
M logM (1+logM )

4
Binary tree M 1 × K logK K − 1
Banyan network K M ×M logM M

2 logM

applying the same argument to every adjacent pair of input packets. Consequently,
a rectangular nonblocking self-routing switch with large fan-out than fan-in can be
formed by combining a Batcher sorting network and an expansion network with
arbitrary input/output ratio.

It should be noticed that the perfect shuffle preceding the inputs of banyan subnet-
works is topologically equivalent to the perfect shuffle of inputs preceding to the stack
of binary trees. This point can be demonstrated by the three-dimensional configuration
shown in Fig. 5.29.

5.3.2.2 Complexity and Contention Resolutions The statistics of a switch
module σ(M, N, K) is tabulated in Table 5.2. The modularity only cuts down the
complexity of Batcher networks. The total number of nodes is increasing with respect
to K, the number of modules. However, these extra nodes are not entirely overhead.
The modularity can improve switch throughput performance. Intuitively, this is simply
because there are fewer input packets competing for outputs in each module. The
analysis of this point will be elaborated later.

Theoretically, there is virtually no limit on the dimension of the modular switch
that can be built from fixed-size Batcher and banyan networks. However, there is a
trade-off between the base dimension M and the number of modules K for a given
switch with dimension N, since N = MK. There are two notable special cases worth
mentioning here. Namely, the Batcher–banyan switch for M = N and the knockout
switch for M = 1. In the case of M = N, it is obvious that the modular switch itself is
a Batcher–banyan switch. On the other hand, in the case of M = 1, every module has
only one input and each input is connected to every output directly, then the modular
switch becomes a knockout switch, where the knockout function can be implemented
by using a concentrator to regulate the maximum number of concurrent packet arrivals
at the output during a time slot.

Therefore, the three-dimensional modular architecture is actually the unification of
Batcher–banyan and knockout switches. Both switch architectures cannot be scaled
to very large size N because either the base dimension M = N or the number of
modules K = N. That is, the decomposition of N into smaller factors does not apply.
A choice for balancing these factors is M = K = √

N, from which we can claim that
this approach has at least the power to square the performance dimensions of these
interconnection networks.

The throughput of the modular switch is limited mainly due to the head-of-line
(HOL) blocking phenomena. This limitation can be relaxed and throughput can be in-
creased by using look-ahead contention-resolution scheme described in the preceding
chapter. In additional, when multiple packets simultaneously request the same output
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port of the same switch module, output conflict occurs. To resolve these conflicts,
we can directly apply the contention-resolution algorithms developed for Batcher–
banyan switches (see Chapter 4) without any modification. Also, we can engineer the
switch throughput to meet any desired requirement. This can be achieved by adjusting
the number of modules K and the maximum number R of packets that can be received
by an output port simultaneously.

5.3.2.3 Performance Analysis In the following, we analyze the throughput of
a switch module σR(M, N, K), which allows at most R packet arrivals at the output
in a time slot. We assume that if there are S(>R) packets waiting at the heads of input
queues addressed to the same output, the selection of R to pass through the switch is
done at random, and the S − R that loses the contention will be ignored. Under these
assumptions, the switch throughput is defined to be the carried load on an output line
when all input lines are fully loaded.

Suppose the input line loading, or the probability that a slot contains a packet, is
λ. Let Mi be the number of packets addressed to output i, we have

Pr{Mi = j} =
(

M

j

)(
λ

N

)j (
1 − λ

N

)M−j

,

j = 0, · · · , M. (5.59)

Suppose Ai = min(Mi, R) is the number of packets that actually arrived at output
i in a time slot. For sufficiently large N, we can use Poisson approximation with
parameter Mλ/N = λ/K to obtain

aj = Pr{Ai = j} =
(

λ

K

)j
e−λ/K

j!
,

j = 0, · · · , R − 1. (5.60)

and

aR = 1 − a0 − · · · − aR−1. (5.61)

The carried load on an output line, denoted by λ′, can be intuitively interpreted as the
probability that a time slot on the output line is occupied by a packet. Because of the
symmetricity of the K modules, we immediately obtain

λ′ = K · E[Ai] = K ·
⎡
⎣R −

R−1∑
j=0

(R − j)aj

⎤
⎦

= K ·
⎡
⎣R − e−λ/K

R−1∑
j=0

(
λ

K

)j
R − j

j!

⎤
⎦ . (5.62)
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TABLE 5.3 Maximum Throughput of Modular Switches �R (M,N,K )

L K = 1 K = 2 K = 4 K = 8 K = 16 K = 32

1 0.6321 0.7869 0.8848 0.9400 0.9694 0.9845
2 0.8964 0.9673 0.9908 0.9976 0.9994 0.9998
3 0.9767 0.9961 0.9994 0.9999 1.0000 1.0000

The maximum throughput of the switch is the carried load when all input lines are
saturated, which can be obtained by substituting λ = 1 into (5.62). Table 5.3 lists
the maximum throughput versus number of modules K for different values of R. For
K ≥ 2, maximum throughput λ = 0.95 can be achieved with R = 2. So, we can see
that we can improve the switch throughput by increasing the value of K only.

PROBLEMS

5.1 Show formally that the shuffle link interconnection pattern corresponds to a
cyclic left shift of the link label.

5.2 Consider a feedback shuffle-exchange network with nodes 00, 01, 10, and 11.
Suppose that there is a packet at each of the nodes and the source–destination
mapping is 00 → 01, 01 → 10, 10 → 11, and 11 → 00.
(a) Show the sequence of nodes traversed by each of the packets on route to

its destination node. Is there contention among packets?

(b) Give an example in which there is contention among packets even though
they are destined for different destinations. (Hint: Can there be contention
if there is only one packet at each source?)

5.3 In the analysis of the feedback shuffle-exchange network in Section 5.1.3, we
made the assumption that the packets on the incoming link are independently
and equally likely to be destined for either of the output link. Do you ex-
pect the independence assumption to give rise to an optimistic or pessimistic
performance estimate? Write a simulation program to verify your conjecture.

5.4 We want to study the relationship between the saturation throughput �sat and
the maximum throughput �max of a feedback shuffle-exchange network with
N = 2n nodes. From (5.13),
(a) Show that d�/dρ ≥ 0 when n ≤ 4.

(b) Show that for each n ≥ 5, there is a ρ < 1 beyond which d�/dρ < 0.

(c) Argue that �max > �sat for n ≥ 5 from parts (a) and (b).

5.5 Consider the input queue at a node in a feedback shuffle-exchange network
with the random deflection scheme in which the winning packet is chosen
at random under contention. This problem explores how the queueing delay
incurred by a packet can in principle be derived, given an offered load to the
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queue ρo = �o/N < �sat/N. This is very similar to the waiting time derivation
for the input-buffered internally nonblocking switch discussed in Chapter 3
except that the service time at the HOL is geometric.
(a) Let P(0) be the probability of no active packet and P(1) be the probability

of a packet in state 1 at the beginning of a time slot. Assume for simplicity
that the input queue may inject no more than one packet into the network
per time slot, and when both input links are empty at the end of a time slot,
one of the links will be chosen at random. Argue that the probability of
finding an input link empty at the end of a time slot is P(1)p + P(0)[P0 +
(1 − P0)P(0)/2], where p = (1 − q) is the probability of a packet not
being deflected and P0 is the probability of an input queue being empty.

(b) Show that P(1)p = ρo/2 and P(0) = 1 − ρ, where ρ is the link loading
in the network.

(c) Show using Little’s law that P0 = 1 − S/ρo, where S is the service time
at the HOL of the input queue.

(d) From the above, derive a, the probability of finding neither of the input
links empty at the end of a time slot in terms of only ρo, ρ, and S.

(e) Show that Pr{S = i} = (1 − a)i−1a and from that S = 1/a. Thus, this and
the previous part yield an equation governing ρo and the unknowns ρ and
S. Equation (5.13) gives the other equation governing ρo and ρ. Thus, in
principle, S can be found given ρo. From this, a and therefore S(z) can be
found. Using the same approach as in the analysis of an input queue of an
input-buffered switch (i.e., Eq. (4.31) can be used directly), the generating
function of the waiting time W(z) can then be found.

5.6 For the feedback shuffle-exchange network with the contention policy that
favors packets closer to their destinations, write a computer program to solve
numerically the link loading ρ as a function of the throughput �.

5.7 This problem investigates network stability in bidirectional shuffle-exchange
network.
(a) Show from (5.33) that

ρ
dp

dρ
=

(
1 − ρ

4

)3 − p.

(b) Show from (5.36) that
d�

dρ
= 4N

Tn

(
1 − ρ

Tn

dTn

dρ

)
.

(c) Show from (5.35) that

ρ

Tn

dTn

dρ
= 1 + 1 − 2(1 − ρ/4)3

2p − 1
.

(d) From the above, show that

d�

dρ
= 4N

Tn

[
2(1 − ρ/4)3 − 1

2p − 1

]
> 0
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and that if ρ < 0.825, regardless of n, d�/dρ > 0. Find the difference
between �max and �sat.

(e) Write a computer program based on the more accurate formula for Tn,
Eq. (5.34), and Eq. (5.36). By plotting graphs, show that �sat and �max
are very close to each other for n up to 30 (3 billion nodes!). Argue therefore
that the stability problem is not severe and can be ignored in this network.

5.8 Consider the feedback bidirectional shuffle-exchange network with the 4 × 4
switching nodes implemented using Banyan networks.
(a) From (5.33) and (5.38), show that the deflection probability is higher with

the Banyan network than with a nonblocking switching network.

(b) Derive the mean delay and the saturation throughput of the bidirectional
network when the Banyan networks are used.

5.9 Consider a network with four nodes 00, 01, 10, and 11 arranged as a square.
There are eight links in the network interconnecting nodes whose labels differ
in one bit only in both directions (e.g., there are two links between nodes 01
and 00 and no links between nodes 00 and 11). This is the two-dimensional
hypercube network. Consider using deflection routing in this network. The
nodes are the sources and destinations of packets. The distance of a packet
inside the network at any time is either 2 or 1. There is zero probability of
deflection when the distance is 2, since routing to either of the adjacent node
decreases the distance by 1. A packet with distance 1 cannot be deflected
by a packet with distance 2—priority is given to the packet with distance
1, since the packet with distance 2 is guaranteed not to be deflected. For this
question, assume random contention resolution when two packets with distance
1 contend with each other. Furthermore, assume that a new packet just arriving
to the network externally is equally likely to be destined for any of the three
other nodes.
(a) Draw the state-transition diagram of a packet being routed in the network.

(b) Express T1 and T2, the mean delay given a packet is in states 1 and 2,
respectively, in terms of the success probability at state 1, p = 1 − q,
where q is the deflection probability. What is the mean delay for an arbitrary
packet?

(c) Consider the saturation situation in which a packet leaving the network is
immediately replaced by a new packet so that the link loading ρ is always
1. Express the saturation throughput �sat of the overall network in terms
of p.

(d) Let N1 be the expected number of packets in state 1 at the beginning of a
time slot under saturation condition. Express N1 in terms of p and �sat.

(e) Find p, hence the saturation throughput in terms of a real number.

5.10 Toward the end of Section 5.1.4, we discussed a strategy for reducing the de-
flection probability in bidirectional shuffle-exchange networks by considering
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certain “don’t care” situation in routing. Let us examine the problem in more
detail. Consider a packet in transit to its destination.
(a) Argue that in general, after a series of successes and deflections, the node

at which the packet is currently residing has label dn−k · · · di+1y
′
i · · · y1,

x′
k · · · x1dn−k · · · di+1, or x′

k · · · x1dn−k · · · di+1y
′
i · · · y1, where dn · · · d1 is

the destination address, and xj’s, yj’s, i, i′ k, and k′ are unknowns that
depend on previous packet deflections. What are the physical meanings of
i, i′ k, and k′? Show that i + k = i′ + k′.

(b) Consider the general case with node label x′
k · · · x1dn−k · · · di+1y

′
i · · · y1,

what should the next few routing steps be in order to send the packet
to the node dn−k · · · di+1y

′
i · · · y1 · · ·? Do we have a “don’t care” situ-

ation in these routing steps? What if we want to send the packet to
node · · · x′

k · · · x1dn−k · · · di+1 instead?

(c) Consider sending the packet to node dn−k · · · di+1y
′
i · · · y1 · · ·, and then

to node dn · · · di+1y
′
i · · · y1, then to node · · · dn · · · di+1, and then to the

destination node dn · · · d1. How many undeflected steps are needed alto-
gether? How many steps have “don’t care” situations and how many do
not, which steps involve routing to the shuffle plane and which steps to
unshuffle plane?

(d) Answer the same questions for the other alternative: sending the packet
to node · · · x′

k · · · x1dn−k

· · · di+1, then to node x′
k · · · x1dn−k · · · d1, and then to node

dn−k · · · di+1 · · ·, and then to the destination node dn · · · di+1. Which
alternative is more efficient?

(e) Show that by keeping the four parameters i, i′, k, and k′ and the destination
dn · · · d1 in the packet header, we have sufficient information for routing
decision at each node.

5.11 Consider a variant of feedback shuffle-exchange network called the stay-or-
shuffle network. Each node, in addition to the two regular input and two regular
output links, has a third link that feeds back to the same node so that the node
has three inputs and three outputs. The third link will be called a stationary
link and the regular links, shuffle links.
(a) Suppose that at a node, only two of the input links have an incoming

packet and both packets want to access the same shuffle output link. Is it
better to deflect the losing packet to the other shuffle link or the stationary
link? Why? Do you expect this network to perform better than the regular
feedback shuffle-exchange network? Why?

(b) When all three inputs have an incoming packet, each output (stationary
or shuffle link) will have a packet forwarded to it. When only two of the
inputs have an incoming packet, assuming that they are equally likely to
be destined for any of the two shuffle output links, what is the probability
that the stationary output link will have a packet forwarded to it?
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(c) Let the link loading of the stationary link be ρ′ and the link loading of each
of the shuffle link be ρ. Derive the relationship between ρ′ and ρ drawing
from clues in the previous part.

(d) Represent the state of a packet by a 2-tuple (i, j). State (i, 0) means the
distance of the packet is i and it is currently on a shuffle link, and state
(i, 1) means the distance of the packet is i and it is currently on a stationary
link. Draw the state-transition diagram. Use pi, qi, and ri to denote the
probabilities of success, deflection to the wrong shuffle link, and deflection
to the stationary link, respectively, at state (i, 0). Use p′

i, q
′
i, and r′

i to denote
the corresponding probabilities at state (i, 1).

(e) Consider the random contention-resolution scheme in which contending
packets are equally likely to be chosen as the winner. Derive p = pi, r = ri,
q = qi, p′ = p′

i, r′ = r′
i, and q′ = q′

i, in terms of ρ and ρ′.
(f) Let T (i, j) denote the expected number of steps needed to reach the des-

tination from state (i, j). Write down the dynamic equations of T (i, j).
Describe how you would solve for the throughput of the system.

5.12 This problem compares the configuration of a DSN as a 2N × 2N switch and
as an N × N switch.
(a) Given a fixed load per input, argue that a DSN configured as a 2N × 2N

switch has higher packet loss probability than the same DSN configured as
an N × N switch. How would you modify the 2N × 2N switch to achieve
the same loss probability with the same load? Which switch has higher
complexity now?

(b) Let us consider two DSNs, one with N/2 nodes and other with N/4
nodes in each stage. Both are configured as an N × N switch. For a given
fixed input load and a fixed loss probability, intuitively, which network
would have a higher number of nodes? Can you argue for your conclusion
analytically?

5.13 Consider a log2 N-stage reverse shuffle-exchange network with the last un-
shuffling of links removed. The text explained that the routing tag of a packet
should be set to d2d3 · · · dnd1 in order to route the packet to its destination
dn · · · d1 in this network. True or false? A set of input packets that can be
routed through the original shuffle-exchange network (the one without the last
unshuffling of links removed) without conflict can also be routed through this
network without conflict.

5.14 In the text, contention is resolved in a random manner at the switch nodes of
the DSN. This problem shows that deadlocks could occur when contention is
resolved in a deterministic manner. Deadlock occurs when a group of pack-
ets contend with other in a periodic fashion and they take turns winning the
contention.
(a) Give an example in which two packets keep contending with other, re-

sulting in a deadlock situation in which the distance of neither packet
progresses to 0.
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(b) Argue that deadlocks could not occur if packets with the shorter distance
are favored under contention.

5.15 Consider an unshared-buffer memory switch. Suppose that packets are 60 bytes
in length and that the transmission rate of input and output ports is 150 Mbps.
Assume that four bytes can be written into and read out of the RAM together
each time and that the access times for read and write are the same. What is
the required access time for the RAM for a 64 × 64 switch?
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SWITCHING PRINCIPLES FOR
MULTICAST, MULTIRATE, AND

MULTIMEDIA SERVICES

A challenge of modern broadband digital networks is to efficiently support multirate
and multicast connections for providing high-speed multimedia services. These ser-
vices often have diverse quality-of-service (QoS) requirements. A key to the success
of the future broadband network deployments, therefore, lies in the design of a high-
speed packet switch to cope with these three m’s. In this chapter, we first present
several fundamental switch design principles for multicasting. Then, we introduce
the concept of path switching, which combines the advantageous elements of both
dynamic and static routing. A cross-path switch is a Clos network operated under the
principle of path switching. We shall show how cross-path switches can integrate var-
ious switch design principles together to support multirate, multicast, and multimedia
traffic efficiently.

6.1 MULTICAST SWITCHING

So far we have been focusing on point-to-point switching in which an input packet is
targeted for one and only one output. Many communication services, such as telephone
calls, are point-to-point in nature and involve only two parties. At the other end of the
spectrum, we have services such as television broadcast in which the same programs
are received by all network users. The most general form of network connectivity is
point-to-multipoint, in which information from one source is sent to a selected group
of destinations. A three-party video conference call, for example, may be set up
using three point-to-multipoint simplex (one-direction) connections, one from each
source. Sending the same information from one source to a number of destinations

Principles of Broadband Switching and Networking, by Tony T. Lee and Soung C. Liew
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FIGURE 6.1 (a) Multicasting by separate point-to-point connections from source to destinations;
(b) multicasting using multicast switches in network.

is called multicasting, and unicasting and broadcasting are the two extreme forms of
multicasting.

While it is possible to perform multicasting by having the source establish a sepa-
rate connection for each destination (see Fig. 6.1), this is usually not the most efficient
way and is not viable when the number of destinations is large. Consider, for example,
a video program vendor that wants to send its programs to hundreds of subscribers.
This strategy would require very costly access facilities from the video source to
the network. A better way is to set up just one connection from the source to some
node (or nodes) in the communication network wherein the information is replicated
and forwarded to the destinations. The node then requires a switch that can send
information from one input to a number of selected outputs.

One version of the knockout switch architectures in the previous chapter uses N

buses, one for each input, to broadcast input packets to the outputs. Filters at the outputs
then select the packets destined for them. The multicast capability is inbuilt to such
bus-based switch architectures. We may introduce, say, m bits in the packet header to
indicate the multicast group. During connection setup, the filters of the outputs that
belong to the multicast group are informed of the m-bit group identification. It is then
possible for the filters to recognize and select the packets belonging to the group. The
complexity of this switch architecture, as has been seen, is of order N2, indicating
that it does not scale well for large N.
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FIGURE 6.2 An input–output tree generated by generalized self-routing algorithm.

An alternative is to modify an interconnection network switch architecture, such
as the banyan network, to handle packet replication and routing at the same time.
Figure 6.2 shows the routing and copying of packets in a 16 × 16 banyan switch.
Each 2 × 2 switch element has four states: in addition to the cross and bar states,
the two other states correspond to connecting one of the inputs to both outputs. In
the example, an input packet is destined for outputs 1001, 1010, and 1111. All these
addresses are attached to the packet header. In stage i, bits i of all the addresses in
the header are examined. If all of them are 0’s (1’s), the packet is forwarded to the
upper (lower) output. On the other hand, if some bits are 0’s and some bits are 1’s,
then the packet is duplicated with one copy sent to each output. The output addresses
are split into two subsets: addresses with bit i equal to 0 attached to the upper packet,
and addresses with bit i equal to 1 attached to the lower packet. It is easily seen that
if there were only one packet being routed and replicated, a copy of the packet would
eventually reach each desired output destination.

There are several problems with this approach. First of all, as we have seen in
Chapter 3, the banyan network is highly blocking even for point-to-point connections
when packets from many inputs are being routed. Adding the copying function to the
routing function would only increase packet contention and exacerbate the situation.
The second problem is more fundamental and applies to all switches (not necessarily
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Copy network Point- to-point switch

FIGURE 6.3 A multicast packet switch that consists of a copy network and a point-to-point
switch.

banyan networks) that attempt to route and copy at the same time. With N outputs,
there are 2N − 1 possible subsets of outputs for which a packet might be destined.
To be able to specify all 2N − 1 possible subsets of outputs, there must be at least
log2(2N − 1) ≈ N bits in the packet header, which may be excessive for large N.
Unless the fanout (number of outputs) of the connection is limited, this problem
cannot be removed.

6.1.1 Multicasting Based on Nonblocking Copy Networks

A third approach that scales better is to separate the copying and the routing functions,
as shown in Fig. 6.3. The copy network is responsible for making the exact number of
copies required of the input packets without worrying about the outputs from which
the copies emerge. A point-to-point switch, which could be any of those we have
studied, then routes these copies to their respective targeted outputs.

Since the specific copy-network output reached by a packet copy is not important,
we may introduce an additional restriction that all the copies of a packet must reach
contiguous outputs. This restriction allows us to reduce the number of bits needed to
specify the outputs in the packet header by using an output interval: (MIN, MAX).
The output addresses MIN and MAX are the smallest and largest output addresses in
the interval and the number of copies CN = MAX − MIN + 1. It turns out that we
can design a nonblocking copy network using a broadcast banyan network, and this
interval provides enough information for routing and duplication of packets at each
stage within the network.

6.1.1.1 Packet Replication Using Boolean Interval Splitting Algorithm
The routing algorithm is called the Boolean interval splitting algorithm. The general
algorithm is explained below; the reader is referred to Fig. 6.4 for a specific exam-
ple. Suppose that a node at stage k received a packet with the header containing an
address interval specified by two binary numbers: MIN(k − 1) = m1 · · · mn and
MAX(k − 1) = M1 · · · Mn. The reason for introducing the argument (k − 1) is that
the values of MIN and MAX are modified dynamically as the packet travels through
the stages. The direction for packet routing is described as follows:
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FIGURE 6.4 The Boolean interval splitting algorithm generates the equivalent input–output tree
of a packet with interval addresses.

1. If mk = Mk = 0 or mk = Mk = 1, then send the packet out on link 0 (upper
link) or 1 (lower link), respectively.

2. If mk = 0 and Mk = 1, then duplicate the packet and modify the header (ac-
cording to the scheme described below) and send both packets out on both
links.

(a) For the packet sent out on link 0

MIN(k) = MIN(k − 1) = m1 . . . mn,

MAX(k) = M1 . . . Mk−101 . . . 1.

(b) For the packet sent out on link 1

MIN(k) = M1 . . . Mk−110 . . . 0,

MAX(k) = MAX(k − 1) = M1 . . . Mn.
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Physically, the above splitting means that the upper branch is responsible for replicat-
ing and routing packets to output interval (m1 · · · mn, M1 · · · Mk−101 · · · 1), and the
lower branch to output interval (M1 · · · Mk−110 · · · 0, M1 · · · Mn). These two intervals
are contiguous to each other because the address M1 · · · Mk−110 · · · 0 is next to the
address M1 · · · Mk−101 · · · 1. Therefore, the interval (m1 · · · mn, M1 · · · Mn) will be
covered by both branches. Note from the above rules that mi = Mi, i = 1, · · · , k − 1,
holds for every packet that arrives at stage k (this can be easily argued by induction
on k). Therefore, the event mk = 1 and Mk = 0 is impossible due to the min–max
representation of the address intervals.

6.1.1.2 Nonblocking Condition of Broadcast Banyan Network A copy
network is said to be nonblocking if it can produce all the packet copies requested
provided the total number of copies required by all input packets is no more than
N. In the broadcast banyan network, a set of input broadcast packets generates a set
of embedded input–output trees. The network is nonblocking if the trees are link-
independent (no common links among the trees). In Chapter 3, we showed that the
banyan network is nonblocking for point-to-point connections if the input packets
are sorted and concentrated. The following theorem is a generalization of the result.
It specifies the conditions that must be met by the packets, hence the processing
needed, before they can be forwarded to the broadcast banyan network for nonblocking
replication. Let the input address of a packet i be xi and the set of output addresses (i.e.,
addresses within the assigned output interval) to which the packet is targeted be Yi.

Theorem 6.1 (Nonblocking Conditions of Broadcast Banyan Networks). A
broadcast banyan network is nonblocking if the active inputs (inputs with arriv-
ing packets) x1, . . . , xm (xj > xi if j > i) and their corresponding sets of outputs
Y1, . . . , Ym satisfy the following:

1. Distinct and monotonic outputs: Y1 < Y2 < · · · < Ym or Y1 > Y2 > · · · > Ym,
where Yi < Yj (Yi > Yj) indicates that every output address in Yi is less than
(greater than) every output address in Yj .

2. Concentrated inputs: Any input between two active inputs is also active. That
is, xi ≤ w ≤ xj implies input w is active.

Proof. We know from Theorem 3.1 that the set of input–output paths
〈x1, y1〉, . . . , 〈xm, ym〉 is link-independent for an arbitrary choice of output addresses
y1 ∈ Y1, . . . , ym ∈ Ym. It follows that the set of input–output trees embedded in the
broadcast banyan network must be link-independent. �

This theorem indicates that two tasks must be performed before the input packets
enter the broadcast banyan network. First, the packets must be concentrated. This can
be achieved by placing a concentrator before the broadcast banyan network. Second,
the output addresses assigned to packets must be monotonic. One way is to assign the
outputs to the active inputs from top to bottom as follows: for each active input i that
requests CNi copies, assign the next contiguous set of outputs Yi, with |Yi| = CNi.
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FIGURE 6.5 The structure of a nonblocking copy network.

Recall that a concentrator may be built by a running-adder network and a reverse
banyan network. The running-adder network assigns a set of concentrated reverse
banyan network’s output addresses to the input packets by computing the running
sums of their activity bits. It turns out that the running-adder address network can
also be used to assign the broadcast banyan network’s output intervals to the input
packets, as will be described after the following overview.

The overall structure of the copy network is depicted in Fig. 6.5. As shown, it con-
sists of a cascade of five components: a running-adder network, a set of N dummy
address encoders, a reverse banyan network, a broadcast banyan network, and a set
of N trunk-number translators. There are two additional fields in the header of each
incoming packet: the broadcast channel number (BCN) identifies the multicast con-
nection, and the copy number (CN) specifies the number of copies required. The BCN
and CN are associated with a virtual connection and are determined during the call
setup time. The different copies of a packet must reach different output destinations of
the point-to-point switch that follows the copy network and they are distinguished by
their copy indices (CIs). The CIs are generated inside the copy network after packet
replication. The output addresses are referred to as the trunk numbers (TNs), and a
trunk-number translator uses the packet’s BCN and CI to look up its trunk number.

Packet replications are accomplished by two fundamental processes, an encoding
process and a decoding process. The encoding process is performed by the running-
adder network and dummy address encoders. The decoding process is performed by
the concentrator, broadcast banyan network, and the trunk-number translator.

6.1.1.3 Encoding Process Two pieces of information must be generated for
every packet during the encoding process: (1) its reverse banyan network output
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address and (2) its broadcast banyan network output intervals. The use of a running-
adder network to compute the former has been described earlier in this chapter. To
produce the latter, in addition to the running sums of the activity bits of packets,
the running-adder network also computes the running sums of CNs, as depicted in
Fig. 6.6. Similar to the computation of the activity bit running sums, it can be shown
that the running sum

RSj =
j∑

i=0

CNi

is produced at output j, 0 ≤ j ≤ N − 1, of the network. Based on adjacent running
sums, the dummy address encoders then generate the following sequence of address
intervals:

(0, RS0 − 1), (RS0, RS1 − 1), . . . , (RSN−2, RSN−1 − 1).

If the packet on output j is active, then RSj − 1 ≥ RSj−1 and (RSj−1, RSj − 1) is a
legitimate interval and the output interval assigned to the packet is (MIN, MAX) =
(RSj−1, RSj − 1). If the packet is inactive, RSj = RSj−1 and the interval is illegiti-
mate, which is of no adverse consequence anyway.

6.1.1.4 Decoding Process First of all, the reverse banyan network concen-
trates the input packets based on the running sums of their activity bits. The header of
a packet as it enters the broadcast banyan network contains three fields important to
the copying process: the BCN, address interval (MIN, MAX), and an index reference
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(IR) that is set to MIN. The IR field is not used or modified in the broadcast banyan
network, and all copies of the same master packet have the same IR value. Its purpose
is the computation of copy indices (CI), which identifies the different copies at the
outputs of the banyan network, as will be explained shortly.

We have already seen that packets can be replicated and routed in a nonblocking
manner in the broadcast banyan network based on the Boolean routing algorithm.
Some finer implementation details are described here. An activity bit must be posted
in front of the address field to indicate whether the packet is active. At a switch node,
if one of the input packets is active and one is inactive, routing will be performed
based on the active packet header. Depending on the header, the switch element could
be set to cross, bar, or the branching state. If both packets are inactive, we have a
“don’t care” situation and it does not matter to which state the switch is set. If both
packets are active, neither packet needs to be duplicated. The switch element must be
set to either the bar or cross state, and either packet header can be used to achieve the
same setting.

When packets emerge from the broadcast banyan network, the address interval
in their header contains only one address. That is, according to the Boolean interval
splitting algorithm, we have

MIN(n) = MAX(n) = output address

and the copy index is computed by

CI = output address − IR.

In this way, the CN copies of a packet would have distinct CI, ranging from 0 to
CN − 1. Based on BCN and CI, the trunk-number translator retrieves the trunk number
(output address of the subsequent point-to-point switch) for which the packet copy
is destined from a table. The trunk number corresponding to a BCN and a CI is
determined during the setup of the multicast connection and is stored in the table
throughout the duration of the session. Note that successive packets of the same BCN
and CI may emerge from different broadcast banyan network outputs in different time
slots. Therefore, it is important that the trunk number associated with the BCN and
CI be stored in all the trunk-number translators.

6.1.2 Performance Improvement of Copy Networks

In the copy network discussed thus far, if the total number of copies requested by
all input ports is not more than the network capacity N, all the requests are granted;
otherwise, overflow of the copy requests occurs and some requests must be queued
at the inputs for the next time slot.1 The overflow problem gives rise to two issues:

1One may also design a loss system in which the overflow packets are dropped. As in the point-to-point
switch, the issue then is how to design and engineer the copy network to have small packet loss probability.
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1. How to remove the inherent bias of the running-adder network against the lower
ports?

2. How to perform partial service of a copy request?

The first issue is related to input fairness. Since the address intervals of the broadcast
banyan network are assigned to the copy requests by the running-adder network
starting from top to bottom, lower input ports suffer when the available addresses run
out. As a result, packets from lower input ports must be buffered much more often
than those from upper ports under heavy-traffic situations. The solution is to allow
computation of the running sums starting from any arbitrary input i so that port i

is effectively the top port and port (i − 1) mod N the bottom port. Changing i from
time slot to time slot based on the overflow condition allows input fairness to be
achieved.

The second issue is related to the efficiency of the copy network. The utilization
of the copy network would be improved if partial service of copy requests, called call
splitting, can be implemented when overflow occurs. For argument’s sake, suppose
that the packet from the first input requests one copy and the packet from the second
input requests N copies. If no partial service is allowed, the copy network would
produce only one packet copy in the current time slot, resulting in much wastefulness.
The solution is to allow N − 1 copies to be made of the second packet in the current
time slot, leaving a residual copy to be made in the next time slot. Call splitting
allows the maximum number of packet copies (N) to be made whenever overflow
occurs.

Before providing the solution, let us illustrate what we want to achieve with the
4 × 4 copy network example given in Fig. 6.7. In the current time slot, the total
number of copies requested is seven, exceeding the capacity of the network. We note

Current time slot

Packet A : 2
Packet B : 1
Packet C : 3
Packet D : 1

Packet E : 2

CN

Copy network

Next time slot

Packet E : 2

Packet C : 2
Packet D : 1

Copy network

(New starting 
point)

FIGURE 6.7 Illustration showing the principle for achieving input fairness by shifting the service
priority order and the principle of achieving efficiency by call splitting in a copy network.
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that although packet C requests three copies, the request cannot be satisfied due to
overflow. However, call splitting allows one copy to be made in the current time slot.
In the next time slot, the starting point for service will be packet C, because this is
where overflow occurs in the current time slot.

6.1.2.1 Cyclic Running-Adder Network To achieve the above, we intro-
duce a modified running-adder network called the cyclic running-adder network.
Figure 6.8 shows the basic structure and operation of the cyclic running-adder net-
work. The structure is totally symmetrical across all ports. Recall that in the original
running-adder network, partially computed running sums from the upper links are
fed to the lower links, but not the other way round. In the cyclic structure, partially
computed running sums from the lower links are also fed to the upper links, as
shown in the figure, where the interconnections are indicated by letters a, b, . . . , g.
Wrapping the top of the figure to the bottom results in a cylindrically symmetrical
structure.

In each time slot, a starting point for the computation of the running sums is
defined. In Fig. 6.8, for example, running sums are computed starting from the fourth
port. For explanation, we shall refer to the starting point as port 0, the next as port 1,
and so on (see Fig. 6.8), with the understanding that the labeling changes from time
slot to time slot. The partially computed running sums that cross the starting point are
ignored by the adders to which they are fed: with reference to Fig. 6.8, the darkened
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FIGURE 6.8 The architecture and operation of a cyclic running-adder network.
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links that cross the dashed horizontal line are ignored by the shaded adders. In other
words, the partial running sums on the darkened links are treated as having values of
zero, effectively making port 0 the top port, port 1, the second port, and so on, in the
running-sum computation (cf. Fig. 6.6).

The next question is how to inform the shaded adders to ignore their upper inputs,
considering that the set of shaded adders changes from time slot to time slot with the
starting point. We note that the paths from the starting input port to the shaded adders
form a binary tree. Therefore, we introduce a one-bit starting indicator (SI) field, as
shown in Fig. 6.8. Initially, only the starting port has this field set to 1; the other ports
have it set to 0. The adders in the network simply add the SI fields on their two inputs.
Notice that only the shaded adders have the SI field on their lower inputs set to 1.
Therefore, this can be used as an indication that they must ignore their upper inputs
in running-sum computation.

The starting point remains the same until overflow occurs, in which case the new
starting point in the next time slot will be the first port that encounters overflow in
the current time slot. By the end of each time slot, every input port must be informed
of the effective starting point for the next time slot and the number of copies pro-
duced for its request in the current time slot—this is needed for implementing call
splitting.

For this purpose, at the outputs of the running-adder network, the SI for the next
time slot and the served copy number (SCN) for the current time slot are determined
for every port based on its running sum and the one above. This information is then
fed back to the corresponding input port via a backpropagating path. Let RSi be the
running sum computed at output i. The SI bit indicates whether the input port is the
next starting point and is computed as follows:

SI0 =
{

1, if RSN−1 ≤ N ,

0, otherwise ,

SIi =
{

1, if RSi−1 ≤ N and RSi > N ,

0, otherwise ,
(6.1)

for port i = 1, 2, . . . , N − 1. In Fig. 6.8, the next starting point is port 6 (the second
port from the top) and its SI bit for the next time slot is set to 1 according to the above
rule.

The SCN represents the number of copies allowed for the packet in the current
time slot. It is computed as follows:

SCN0 = RS0,

SCNi =
{

min(N, RSi) − RSi−1, if RSi−1 < N ,

0, otherwise ,
(6.2)
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for input port i = 1, 2, · · · , N − 1. We assume that the maximum allowable copies
of each packet are bounded by the capacity of the copy network N. Therefore, the
residual copy request from the current starting point can always be fulfilled within
one cycle, and the delay difference between any two copies of the same master packet
is at most one slot time. For any other input port i, its copy request will be fully
satisfied if its running sum does not exceed N. Otherwise, the call will be split and
only max(0, N − RSi−1) copies will be allowed.

In Fig 6.8, the SCN field returned to port 6 is 1 according to the above procedure,
meaning that only one out of two requested copies is allowed. The residual copy
request will be served in the next time slot. No copy is allowed for port 7, since its
running sum and the one above both exceed N = 8. The activity bit of this overflow
packet is set to 0, indicating that they become inactive in the current cycle.

6.1.2.2 Implication of Shifting Starting Point for Concentration Recall
that the packets that exit from the running-adder network must be concentrated by a
concentrator before they can be replicated in a nonblocking manner in the broadcast
banyan network. In the original design, the running sums of the activity bits are com-
puted together with the running sums of the copy numbers in the same running-adder
network. We may continue to do so in the cyclic running-adder network. However,
shifting the starting point for computation running sums away from the top port
presents a new problem: the reverse banyan network may not be nonblocking any-
more. As shown by the example in Fig. 6.9, when the outputs of the reverse banyan
network assigned to the packets are no more monotonic from top to bottom, the reverse
banyan network could be blocking.

Figure 6.10 presents three ways to solve this problem. Problem 6.4 proposes two
other methods. The approach in Fig. 6.10(a) uses an additional running-adder network
for the computation of the running sums of SCNs and activity bits (RAs) starting
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from the top port. The preceding cyclic running-adder network makes sure that not
more than a total N packet copies are allowed. Therefore, the additional running-
adder network can perform exactly the same function as in the original design of
copy network without encountering overflow. The cyclic network serves purely as a
“contention-resolution” device.

The other approach is based on the observation that a cyclically shifted monotone
sequence can be divided into two monotone subsequences. As shown in Fig. 6.10(b),
the RA fields of star-marked packets form a monotone subsequence, and the RA
fields of unmarked packets form the other one. The basic idea is to send these two
monotone subsequences separately to two different reverse banyan networks. No
blocking occurs in either reverse banyan network. In this design, packets above the
starting point are forwarded to the upper reverse banyan network and packets at or
below the starting point are forwarded to the lower one. For self-routing, a 1 × 2
switch at each output of the cyclic running-adder network must make this deci-
sion based on the packet header, and the knowledge of the starting point must be
available.

To broadcast the starting point, let us reexamine Fig. 6.8. Notice that the SI fields
of all packets are set to 1 at the outputs of the cyclic running-adder network. In
other words, the SI bit of the starting port has propagated to all the other ports
using the network as a broadcast device. Thus, for our purpose here, we may re-
place the SI field with a starting port (SP) field. At the inputs, the SP field of the
starting port i is set to i; the SP fields of the rest are set to, say, −1 (assuming we
label the ports using 0 to N − 1 from top to bottom). The conditions “If SIB = 0”
and “If SIB = 1” in Fig. 6.8 for the operation of an adder are replaced with “If
SPB = −1” and “If SPB �= −1,” respectively. In this way, the starting port is en-
coded into the SP fields of all the packets at the outputs, and it is easy for a 1 × 2
switch to determine the position of the associated port with respect to the starting
point.

The third approach, which is more elegant than the second, does not require phys-
ically separating the packets into two parts. Suppose we overlay one reverse banyan
network in Fig. 6.10(b) on the other, we find that any internal link in this overlaid
network will not be occupied by no more than two packets simultaneously. That is,
any packet collision in Fig. 6.10 would only occur between a star-marked packet
and an unmarked one. Therefore, as shown in Fig. 6.10(c), a dilated reverse banyan
network with dilation degree 2 can be utilized as a concentrator network, and it will
route the cyclically shifted monotone sequence in a nonblocking manner.

6.1.2.3 Implication of Call Splitting for Index Reference Recall that an
index reference (IR) is needed to compute the copy index of a packet copy so that
the trunk-number translator can distinguish it from the other copies of the same
master packet. In the original design discussed in the preceding subsection, the IR
field is always set to the minimum of the address interval (MIN, MAX). However,
if call splitting is implemented, the IR field of the starting point should be adjusted
according to the number of copies generated in the previous time slot to maintain
the continuity of the index sequence. Specifically, for the port whose request is only
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partially fulfilled in the previous time slot,

IR = MIN − previous SCN. (6.3)

It follows that the copy index (CI) of a packet that exits at output i of the broadcast
banyan network would be

CI = i − IR = i − MIN + previous SCN. (6.4)

In this way, the trunk-number translator can then assign the correct output address to
the packet for routing in the subsequent point-to-point switch.

6.1.3 Multicasting Algorithm for Arbitrary Network Topologies

In the copy networks of the preceding subsections, the routes traversed by a packet
are predetermined before they enter the copy networks. There is another category of
copy networks that operate in an analogous way as deflection routing in that the routes
are determined on the fly as packet traverses the networks.

In the previous approach, much preprocessing is performed before packets are
launched into the broadcast banyan network for replication. The goal of the prepro-
cessing is to avoid the conflict of packets inside the network. It can be easily seen
that the complexity of the preprocessing hardware is actually more than that of the
broadcast banyan network itself.

An alternative approach is to make no attempt to avoid packet conflict in the
broadcast banyan network. Arriving packets are immediately launched into it. At any
2 × 2 node in the network, an input packet desiring replication will be duplicated and
forwarded to both outputs provided there is no packet arriving on the other input. Oth-
erwise, each of the input packets will simply be forwarded to one of the two outputs.
In other words, a packet desiring replication will be duplicated when possible. Other-
wise, the replication process will be delayed until a later stage. This strategy is rather
general and does not depend on the nonblocking condition of the broadcast banyan
network, since no attempt is made to avoid conflict in the network anyway. Therefore,
it can be applied to arbitrary network topologies, including directed networks.

Let us first focus on the shuffle-exchange network before relating the replication
algorithm to general network topologies. Instead of a log2 N-stage network, we have
an L-stage network in which L ≥ log2 N. In general, the larger the L value, the more
likely that all the copy requests can be satisfied, since larger L implies more chances
for packet replication attempts.

We shall generalize the Boolean splitting interval algorithm (Problem 6.5 considers
an approach in which the copy number is encoded in the packet header rather than the
splitting interval). Instead of using the interval to code the exact output addresses of
the packet, we use it to code the fanout or the number of copies desired by the packet.
For instance, the interval (0, F − 1) can be assigned to every packet, where F is its
fanout number. On which output a particular packet copy will end up depends on its in-
teractions with other packets within the network and is not predetermined beforehand.
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FIGURE 6.11 General replication scheme using interval splitting.

For illustration, an example of the replication process is given in Fig. 6.11. In
the example, there are two packets, A and B, requesting for two and six copies,
respectively. Let us track the replication of packet B.

Initially, its address interval is (0000, 0101). Unlike the original interval splitting
algorithm, bits k are not necessarily used at stage k here. In our example, the first bits
of 0000 and 0101 are both 0, so we progress directly to the second bits—in general,
we skip the first bit position where MIN and MAX differ so that splitting can be
performed immediately. After splitting, both copies of packet B find a copy of packet
A at the other input of the same node at the second stage.

Let us first look at the upper copy of packet B. Since we do not want to buffer
packets, splitting at this stage is not possible because each input packet must exit on
one of the outputs. The splitting is therefore delayed until the third stage. This means
that the third stage should examine the same bit position as the second stage to decide
whether splitting is required. In the example, replication is possible at the third stage
because the other input does not have a packet. The replication process is completed
after five stages.

Now look at the lower copy of packet B at the second stage. Both bits examined
are 0 and replication is not needed. Therefore, unlike the upper copy, we can progress
to the next bit position at the third stage here. In general, only when replication is
required and is denied will we examine the same bit position at the next stage.
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The general algorithm can be described as follows:

Generalized Interval Splitting Algorithm

1. Initially, skip directly to the first bit position where MIN and MAX differ.

2. At any stage, examine the two routing bits.

(a) If the bits are different and the other input of the switch node does not
have a packet, perform splitting according to the original interval splitting
algorithm.

(b) If the bits are different and the other input of the switch node has a packet,
do not perform splitting. At the next stage, the same two bits will still be
examined.

(c) If the bits are the same, progress to the next bits at the next stage.

Since the bits to be examined at stage k are not necessarily bits k, a way to indicate
the effective routing bits is needed. This can be solved rather easily by positioning the
effective routing bits at the front of the packet header at all times so that they are by
default the first two bits, and this can be achieved by a logic design involving six-bit
delays at each stage. The details of bit manipulation and logic implementation are
beyond the scope of this book, which focuses only on the principles.

Several issues that must be addressed are discussed below.

6.1.3.1 Distinguishing Packet Copies As discussed before, at the outputs of
a copy network, packets of different multicast connections are distinguished using
BCN and an IR. All copies of the same master packet have the same BCN, so the
BCN can be incorporated into the header of the packet. For generation of distinct IRs,
suppose that the interval (0, F − 1) is assigned to all master packets. After successful
replication, there will be F copies, all with MIN equal to MAX in their interval fields.
Furthermore, the MIN (MAX) of the different copies are distinct and range from 0 to
F − 1. Therefore, the MIN (or MAX) value can be used as the IR and no explicit IR
field is needed in the header. If the replication process is not completed yet for a copy
at an output of the copy network, then its MIN < MAX, and (MAX − MIN) copies
will be considered as lost. The copy chosen to be the successful one can have an IR
anywhere between MIN and MAX, inclusively.

6.1.3.2 Deadlock Prevention Although larger L implies lower packet loss
probability, there are two phenomena, however, that may prevent the completion
of the replication process, no matter how large L is.

This first is obvious, and it is request overflow, which occurs when the sum of the
fanouts of input packets exceeds N, the capacity of the network. The ways for dealing
with overflow will be discussed later. The second phenomenon is deadlock, which
occurs even when the total copies requested is less than N if certain deterministic
routing policies are used.
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FIGURE 6.12 A deadlock example with a deterministic routing policy: set switch elements into
bar state under “don’t care” situations. A packet fails to be duplicated regardless of the number
of stages while the bottom link is idle at each stage.

Figure 6.12 shows an example of a deadlock with the following policy: at a 2 × 2
node, if there are two input packets, set the switch element to bar state (i.e., forward
the upper input packet to the upper output and the lower input packet to the lower);
also set the switch element to bar state under the “don’t care” situation when one input
has a packet that does not need to be replicated while the other input does not have
an active packet. In the example, the top input has a packet with F = 2, the bottom
input does not have an active packet, and each of the rest of the inputs has a packet
with F = 1. It is easily seen that with the above policy, no matter how large L is, the
top packet will stay at the top link while the bottom link remains idle throughout all
the stages. This is not a contrived example, and one can come up with many different
deadlock scenarios.

There are two ways to prevent deadlocks. One is to use random routing policy.
Whenever we have a “don’t care” situation, set the switch element randomly either
to bar or to cross state. One disadvantage with this approach is the need for imple-
menting a random-number generator at each switch node. The alternative is to devise
deterministic routing policies that are deadlock-free. We explain below a very simple
deadlock-free policy.

For simple explanation, one can picture a token on each idle link. In order for a
packet to be duplicated at a node, it must acquire and “consume” a token on the other
input. Thus, the problem becomes that of devising a routing policy that will ensure
the meeting of a token and the packet desiring replication. There are two “don’t care”
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situations that must be made into “care” conditions: (1) whenever there is a token
at one input and the other input does not have a packet that desires duplication, we
forward the token to the upper output; (2) whenever the two inputs are occupied and
at least one packet desires duplication, we forward that packet to the upper output.

To see why this strategy works, suppose we label the nodes in each stage from top to
bottom in a binary fashion. As we have already learned, the construction of the shuffle-
exchange network is such that a packet or a token residing at node xnxn−1 · · · x2 will
be forwarded via the upper outgoing link to node 0xnxn−1 · · · x3 at the next stage.
Therefore, the above policy can be viewed as attempting to route tokens and packets
desiring replication to the top node 00 · · · 0. Thus, if there is a token and a packet that
desires replication in the network, they will eventually meet at node 00 · · · 0, if not
earlier. Consequently, deadlocks cannot occur.

In the worst case, a packet can be duplicated at node 00 · · · 0 every log2 N stages.
In actuality, packets desiring replication and tokens meet much more often. This
becomes evident when we view the routing policy as attempting to concentrate tokens
and packets desiring replications at nodes with many 0’s (but not necessarily all 0’s)
in their labels. Packets whose replication has been completed are “pushed” to nodes
with many 1’s in their labels.

6.1.3.3 Overflow Problem Overflow occurs when the sum of the fanouts of
input packets exceeds N. There are two classes of approaches to this problem. The
first, such as that discussed in the preceding subsection, is to incorporate a reserva-
tion (contention-resolution) mechanism so that the packets allowed to enter the copy
network desire at most a total of N copies. The overflow requests are buffered at the
inputs so that replication can be attempted in the next time slot. One of the goals of
the copy network in this subsection, however, is to eliminate this kind of preprocess-
ing. Therefore, we examine the second approach, which is to increase the bandwidth
(capacity) inside the network with respect to the external bandwidth.

One possibility is to employ expansion. An M × M (M > N) shuffle-exchange
copy network could be used in such a way that only the upper N of its M input ports
are connected to input links. Because only N of the input links are used, some switch
elements at the initial stages are guaranteed not to be traversed by packets. An N × M

expansion network results when these switch elements are removed. In this way, the
capacity of the network is expanded to M and the internal load to the copy network
is reduced, making the occurrence of overflow less likely.

Another possibility is to speed up the internal link with respect to the external
link. With a speedup factor of 2, for example, each external time slot corresponds to
two internal time slots, and by dividing the copy requests into two batches, one for
each internal time slot, the overflow probability can be reduced. With this approach,
if the point-to-point switch that follows the copy network does not employ speedup,
buffers are needed in between them, since multiple copies may be delivered to the
same link interconnecting them in the same time slot. In this sense, this scheme is
compatible with point-to-point switches that employ input buffering. This scheme
is also compatible with those point-to-point output-buffered switches that employ
internal speedup with the same or higher speedup factor. The overall multicast switch
will then be output-buffered.
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6.1.3.4 Performance We consider a brief approximate analysis of the loss prob-
ability of packet copies. The analysis here applies to arbitrary network topologies.
Consider an input packet requesting F = 2f copies in a large-size copy network. We
can picture the input packet as having F embedded copies and focus on one of the
copies. Each time splitting occurs, the copy becomes embedded in one of the output
packets. The loss probability of the copy can be approximated by the probability that
the copy experiences fewer than f splittings after traversing the L stages of the copy
network.

For simplicity, we assume that a splitting attempt will be made as long as the
replication process is not completed. Furthermore, we assume the probabilities of
successful splitting at different stages to be independent. In reality, the probabilities
of success at the earlier stages are higher than those at later stages because there are
more packet copies at later stages. However, for analytical tractability, we assume that
the probabilities are all equal to p, which will be set to the worst-case value later.2

The situation is then the same as that in Bernoulli trials with success probability p

and failure probability q = 1 − p. Denote the number of successes in L trials by SL.
The loss probability can be approximated by the probability that SL is less than f ,
which can in turn be approximated by the error function when f is large:

Ploss ≈ Pr{SL < f } ≈ 1√
2π

∫ −y

−∞
e−x2/2dx, (6.5)

where

y = Lp − f√
pqL

=
√

L(p − f/L)√
pq

. (6.6)

The inequality

1√
2π

∫ −y

−∞
e−x2/2dx ≤ 1

2
e−y2/2 (6.7)

can be used to obtain a simpler bound. For L large enough that (p − f/L) ≈ p, it can
be seen that Ploss decreases exponentially with L.

Let us now take another viewpoint: what L is required to meet a given loss prob-
ability requirement? We note from (6.5) and (6.6) that f/L is an important quantity.
Specifically, for a given constant f/L < p the upper bound on Ploss approaches zero
as f (and therefore L increases), whereas if f/L > p the upper bound approaches
one. Therefore, in general, the required L for a given loss probability requirement
should be a constant times f ′ = f/p:

L = kf ′ = kf/p, (6.8)

where k > 1. For large f , L needs only be slightly more than f/p.

2This analysis has also ignored the overflow effect, which causes the success probabilities at different
stages to be dependent. Thus, strictly speaking, our approximation is valid only if the overflow probability
has been made very small by design.
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Consider the following fact: when there is no contention and p = 1, f stages
are needed to complete the replication process; but when p < 1, roughly f ′ = f/p

stages are required according to the above analysis. Therefore, f ′ can be interpreted
as the effective fanout parameter when there is contention from other packets. For
the worst possible fanout, f = n, the required L is proportional to n/p, where
n = log2 N.3

To see how L relates to a given Ploss more specifically, write k = 1 + ε where
ε > 0. It is easy to derive from (6.5) and (6.7) that

ε2 ≤ −2q

f
ln(2Ploss) − ε < −2q

f
ln(2Ploss). (6.9)

Thus, the ε required to achieve a given loss probability goes to zero as f tends to
infinity given a fixed q. This indicates that for large copy networks, in the worst case,
the required L needs only be slightly more than n/p.

We now relate p to the network load. Let ρ denote the output offered load of the
network. It is related to the input offered load ρo (probability of finding a packet at an
input) by ρ = fρo, where f is the average fanout. Inside the network, the probability
of a packet finding another packet at the same switch node, and therefore splitting is
not possible, is bounded by ρ. In other words, p = 1 − ρ and q = ρ. For a network
that adopts expansion or speedup (see Section 6.1.3.3) with an expansion or speedup
factor of S, p = 1 − ρ/S and q = ρ/S.

Let us consider an example in which ρ = 0.8, S = 2, and F = 32. Suppose that
a loss probability of 10−8 is required. It can be derived from (6.9) that the required
ε < 1.7, and the required L < 23. For a 256 × 256 copy network, n = log2 N = 8,
this means L < 2.8n.

In reality, the required L should be much smaller, thanks to our generous simpli-
fying assumptions in the analysis. The interested readers are referred to Ref. [Lie95]
for simulated performance results.

6.1.3.5 Application to Arbitrary Topologies Let us now illustrate the gen-
erality of the replication scheme by considering an entirely different network topol-
ogy. The main observation is that the correctness of the algorithm does not depend
on the shuffle-exchange pattern. The adjacent stages can be interconnected in any
fashion.4

The same scheme also applies to undirected networks. An example is the shuffle-
exchange network consisting of only one stage in which the output links of the stage
are connected back to the inputs of the same stage via a shuffle pattern. For undi-

3In practice, the fanouts of multicast connections depend on the underlying services and applications, and
they may not simply grow with the switch size. One would therefore expect the required L to be less than
proportional to n/p as n increases.
4The performance, however, may be dependent on the interconnection pattern regularly or irregularly. For
example, we can have an interconnection in which the N × N copy network is actually two unconnected
N/2 × N/2 shuffle-exchange networks in parallel. The performance will not be as good as a single N × N

shuffle-exchange network.
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FIGURE 6.13 Packet replication in a Manhattan-street network using interval splitting: an ex-
ample in which the source node is (1, 1) and the packet requests six copies.

rected networks, the same network can be used for both replication and routing: the
replication algorithm is performed, and a copy is routed to its destination when no
further splitting is required of it. Since the copies of the same master packet may
be produced at different times, some copies may embark on journeys to their actual
destination nodes while the others are still being replicated. Also, packets of dif-
ferent multicast connections may be replicated and routed simultaneously, and the
network operation does not have to be divided into separate replication and routing
phases.

Consider the application of the generalized interval splitting algorithm in the
Manhattan-street network, a 16-node example of which is given in Fig. 6.13. In this
example, the nodes are arranged as a 4 × 4 square grid. Each node has two inputs
and two outputs. The data flows on the rows (columns) alternate between left-to-right
(upward) and right-to-left (downward). The example adopts the interval splitting al-
gorithm. We have a packet at node (1, 1) requesting for six copies, and its splitting
interval is set to (0000, 0101). We end up with two copies each at nodes (0, 3) and
(1, 2) and one copy each at nodes (2, 1) and (3, 0).

In general, when several packets are being replicated and routed, contention may
occur and the replication process on some branches may be delayed. In addition,
in undirected networks, copies of the same master packet may interfere with each
other. For example, this happens in Fig. 6.13 if the two copies at node (0, 3) are to
be split further (i.e., more than six copies are requested). Another situation that must
be taken care of in undirected networks is when all the links have a packet and the
splitting process of none of them is completed yet. This is an analog to the overflow
problem. The copies circulate around the network indefinitely. In addition, there is also
the possibility of deadlocks, in which even though overflow does not occur, packets
desiring replication fail to do so no matter after how many steps. A mechanism must
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be installed to either prevent this from happening or break the deadlock. The details
are beyond the scope of this book: Problem 6.6 explores this issue a little further
based on a two-dimensional hypercube network.

The packet replication algorithm can readily be generalized to networks in which
the nodes are not 2 × 2 (e.g., the hypercube network). The basic idea remains the
same, except that now partial splitting is possible. For instance, when two packets
enter a 4 × 4 node both wanting to split three ways, we may split both packets two
ways.

6.1.4 Nonblocking Copy Networks Based on Broadcast Clos Networks

In this subsection, we extend the nonblocking properties of the Clos network to
construct a nonblocking broadcast Clos network. We shall present a generalized
nonblocking copy network architecture based on this broadcast Clos network.

A broadcast Clos network is a Clos network with switching nodes that can perform
packet replication. Let the active inputs be s0, s1, . . . , sn−1 (sj > si if j > i). Each
active input may go to a number of outputs. Let their corresponding sets of outputs
be D0, D1, . . . , Dn−1, respectively. The set of connection requests is monotonic if

si < sj ⇒ di < dj ∀di ∈ Di and ∀dj ∈ Dj

or

si < sj ⇒ di > dj ∀di ∈ Di and ∀dj ∈ Dj.

If the set of connection requests is monotonic, route assignment can be done by
the rank-based assignment algorithm for broadcast Clos networks.

Theorem 6.2 (Rank-based Assignment Algorithm for Broadcast Clos
Network). Let the set of connection requests π = {(s0, D0), . . . , (sn−1, Dn−1)} be
monotonic. The assignment

f (si, Di) = [m + i]q, (6.10)

where q is the number of middle-stage modules, m is a constant integer, and i is the
rank of the connection request, is nonblocking.

Proof. Construct the sequence (d0, d1, . . . , dn−1) by arbitrarily choosing a di from
Di for 0 ≤ i ≤ n − 1. Since π is monotonic, the sequences (s0, s1, . . . , sn−1) and
(d0, d1, . . . , dn−1) are monotonic. If two connection requests (si, di) and (sj, dj),
where i < j, are assigned to the same middle-stage module, we have [m + i]q =
[m + j]q and this implies that i + lq = j, where l ≥ 1. Now we have

sj − si = (sj − sj−1) + (sj−1 − sj−2) + · · · + (si+1 − si)

≥ 1 + 1 + 1 + · · · + 1︸ ︷︷ ︸
j−i

= j − i = lq ≥ q
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FIGURE 6.14 An example of broadcast Clos network.

and

dj − di = (dj − dj−1) + (dj−1 − dj−2) + · · · + (di+1 − di)

≥ 1 + 1 + 1 + · · · + 1︸ ︷︷ ︸
j−i

= j − i = lq ≥ q.

This implies that
∣∣si − sj

∣∣ ≥ q and
∣∣di − dj

∣∣ ≥ q. Packets from the same input-stage
module will not be assigned to the same middle-stage module. Similarly, packets
destined for the same output-stage module will not be assigned to the same middle-
stage module. Since the choice of di from Di is arbitrary, the broadcast Clos network
is therefore non blocking. �

To illustrate this idea, consider a three-stage broadcast Clos network with q = 3
and p = 4 as shown in Fig. 6.14. The connection requests (which are monotonic)
are shown in Table 6.1. Using the rank-based assignment algorithm (and setting
m = 0), a nonblocking route assignment can be obtained. The connection request
(si, Di) is routed to middle-stage module f (si, Di). Packet replications are performed
subsequently in the middle-stage modules and in the output-stage modules.

In general, each middle-stage module can be considered as a broadcast Clos net-
work. Recall that the rank-based assignment algorithm preserves the order of the
connection requests. Thus, we can apply it recursively to these broadcast Clos net-
works. Using the same notation as in Section 3.4.2, the rank r(si) of a connection
request (si, Di) can be written as

r(si) =
n−1∑
i=1

αi

i−1∏
j=0

qj + α0.
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TABLE 6.1 Connection Requests to the Broadcast Clos Network

si 2 3 4 5 8

s̃i 02 10 11 12 22
Di 0,1 2,3,4 5,6 7,8,9 10,11
D̃i 00,01 02,10,11 12,20 21,22,30 31,32
m + i 0 1 2 3 4

f (si , Di ) = [m + i ]q 0 1 2 0 1

The routing tag for the packet to go from input to the middle-stage module assigned
to it is given by (α0, α1, α2, . . . , αn−2). Once the packets reach the middle-stage
modules, packet replications and routing are controlled by the generalized interval
splitting algorithm that is discussed in the following.

6.1.4.1 Generalized Interval Splitting Algorithm for Broadcast Clos Net-
work We denote the switch modules from the middle stage to the output stage as
broadcast switch modules due to their capability in performing replication. A packet
arriving at a broadcast switch module can be routed to any one of the output links, or
it can be replicated if necessary and sent out to a subset of the output links. For the
nonblocking operation of the broadcast Clos network, assume that the set of connec-
tion requests is monotonic and the set of output destinations assigned to each input
packet is consecutive. This assumption is justified because in a copy network, the
replicated packets do not need to be routed to some specific output ports. Routing
is done by a point-to-point switching network that is cascaded behind the copy net-
work. We can therefore deliberately assign the sets of output destinations to the input
packets such that the connection requests are monotonic. Under such assumption, the
set of output destinations of each packet consists of an address interval that can be
represented by two numbers, the minimum and maximum.

Let N = q0 · q1 · · · · · qn−1. The broadcast Clos network consists of 2n − 1 stages
numbered 0, 1, . . . , 2n − 2. An address interval is a set of contiguous n-tuple. Sup-
pose a node at stage i (n − 1 ≤ i ≤ 2n − 2) receives a packet containing an address in-
terval specified by min(i − 1) = mn−1 · · · m2n−2 and max(i − 1) = Mn−1 · · · M2n−2,
where the argument (i − 1) indicates that the packet comes from a node in stage
(i − 1). Since the size of the modules in different stages may be different, each tuple
in an address can be of different bases. As discussed in Section 3.4.2, mj and Mj ,
where n − 1 ≤ j ≤ 2n − 2, are of base q2n−2−j . When a node in stage i receives a
packet, the following procedure is performed:

1. If mi = Mi, then send the packet out on link mi.

2. If mi �= Mi, then (Mi − mi + 1) copies of the packet are required. Replicate
the packet, modify the headers and send the packets out on links mi to Mi.

The purpose of header modification is to split the original address interval into
several subintervals, each contained in a replicated packet. It is easy to see that
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mj = Mj for j = n − 1, . . . , i − 1 holds for every packet that arrives at stage i, where
n − 1 ≤ i ≤ 2n − 2. The event mi > Mi is impossible. For the packet sent out on link
mi, the header becomes

min(i) = min(i − 1) = (mn−1, . . . , mi, mi+1, . . . , m2n−2),

max(i) = (mn−1, . . . , mi, q(2n−2)−(i+1) − 1, . . . , q0 − 1). (6.11)

This is due to the fact that the bases of mi+1, mi+2, . . . , m2n−2 are q(2n−2)−(i+1),
q(2n−2)−(i+2), . . . , q0, respectively. For the packet sent out on link Mi, the header
becomes

min(i) = (Mn−1, . . . , Mi, 0, . . . , 0),

max(i) = max(i − 1) = (Mn−1, . . . , Mi, Mi+1, . . . , M2n−2). (6.12)

For those packets going to output j where mi < j < Mi, the header becomes

min(i) = (mn−1, . . . , mi−1, j, 0, . . . , 0),

max(i) = (mn−1, . . . , mi−1, j, q(2n−2)−(i+1) − 1, . . . , q0 − 1). (6.13)

Figure 6.15 shows the operations of the generalized interval splitting algorithm on
a five-stage broadcast Clos network. An input or output address is represented by a
3-tuple. The first and the second components are of base 2 while the third one is of base
3. By recursively applying the rank-based assignment algorithm, the packet is routed
to one of the middle-stage modules. The packets are then subsequently replicated
and routed to the destinations using the generalized interval splitting algorithm. The
address intervals contained in the header of each packet are shown in the shaded
boxes.

6.1.4.2 Decomposition and Degeneration The broadcast Clos network is in
fact the cascade combination of a reverse omega network and a broadcast omega net-
work. As mentioned in Chapter 3, the omega network belongs to a class of multistage
interconnection networks (MINs) and possesses the nonblocking and self-routing
properties. A broadcast omega network is an omega network with switching nodes
that can perform packet replications. The sufficient conditions for the broadcast omega
network to be nonblocking are exactly the same as that for broadcast banyan network.
They are given as follows.

Theorem 6.3 (Nonblocking Conditions of Broadcast Omega Networks). A broad-
cast omega network is nonblocking if the active inputs s0, s1, · · · , sn−1 (sj > si if
j > i) and their corresponding sets of outputs D0, D1, . . . , Dn−1 satisfy the fol-
lowing:
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FIGURE 6.15 Packet replication process in a five-stage Clos network.

1. Concentrated outputs: Any input between two active inputs is also active.

2. Monotonic outputs: D0 < D1 < · · · < Dn−1 or D0 > D1 > · · · > Dn−1. The
inequality Di < Dj indicates that every output address in Di is less than every
output address in Dj .

It can also be shown that the broadcast-omega network can be recursively con-
structed.

Consider the five-stage network formed by cascading a reverse omega network
and a broadcast omega network as shown in Fig. 6.16. This five-stage network is a
nonblocking copy network given monotonic connection requests. To see this, suppose
the set of monotonic connection requests defined in Table 6.1 is to be fulfilled. In the
reverse omega network, the input packets can be routed to a set concentrated ports in
stage 2 so that the nonblocking conditions for the reverse omega network are satisfied.
In this example, the packets are routed to the set of ports from 10 to 21, but any other
sets of concentrated ports can be used, including those that are cyclically concentrated.
In the broadcast omega network, since the inputs are concentrated and their sets of
outputs are monotonic, the packets can be routed and replicated in a nonblocking
manner. The routing and replications of packets in the broadcast omega network can
be performed by using the generalized interval splitting algorithm in a similar manner
as in the broadcast Clos network.

It is not difficult to realize that this five-stage network is in fact equivalent to a
broadcast Clos network. Note that stage 2 is dummy and may be eliminated. After that,
stage 1 can be combined with stage 3 and the resulting network is a broadcast Clos
network. In the five-stage network, routing the input packets to a set of concentrated
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FIGURE 6.16 Broadcast Clos network decomposed into a reverse omega network and a broad-
cast omega network.

ports in stage 2 is equivalent to routing consecutive input packets to consecutive
modules in stage 1 in a modulo fashion. In our example, the first input packet is
routed to module 0, the second routed to module 1, and so on. In fact, this is the basis
of the rank-based assignment algorithm used in the broadcast Clos network, which
performs route assignment based on the rank of each connection request.

When the reverse omega network and the broadcast omega network in this five-
stage network are recursively constructed using 2 × 2 switching elements, we obtain
a cascade combination of the reverse banyan network and the broadcast-banyan net-
work, which is the structure of the copy network presented in Section 6.1.1. The
reverse banyan network, together with a running-adder network, performs the func-
tion of packet concentration and the broadcast banyan network is responsible for
packet replication and routing. Therefore, we can see that the copy network based on
broadcast Clos network is in fact the generalization of the structure based on broadcast
banyan network.

6.1.4.3 Generalized Connection Networks A generalized connection net-
work (GCN) is a switching network with N inputs and N outputs in which each output
may be connected to any one of the inputs for a total of NN different connection pat-
terns. In other words, a mapping π = {(s0, π(s0)), . . . , (sn−1, π(sn−1))}, where π(i)
is a set of output destinations (not necessarily continuous), can be realized if

π(i) ∩ π(j) = ∅ for i �= j and 0 ≤ i, j ≤ n − 1.
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FIGURE 6.17 A five-stage GCN.

Let |π(si)| denote the number of elements in π(si). Here, we show by an example
that a five-stage GCN can be constructed using a broadcast Clos network and the
concepts discussed in this subsection. Consider the network formed by cascading a
12 × 12 broadcast Clos network and a 12 × 12 Clos network. Let q = 3 and p = 4
in both networks. The resulting five-stage network is a GCN. Suppose the following
set of connection requests is to be satisfied:

π =
(

0 2 5 10

{6, 9} {0, 4, 7} {1, 5, 10} {3}

)
.

Using the previous notations, we have π(0) = {6, 9}, π(2) = {0, 4, 7}, π(5) =
{1, 5, 10}, and π(10) = {3}. The broadcast Clos network is responsible for broad-
casting the inputs based on the number of output destinations of each input. Given π,
the number of output destinations of each input is determined and π is transformed
to a set of connection requests for the broadcast Clos network. In this example,
input si is assigned a set of consecutive outputs Di in stage 2 based on | π(si) |
(Table 6.2). By using the rank-based assignment algorithm and the generalized in-
terval splitting algorithm, the inputs are broadcasted to the outputs in stage 2 in a
nonblocking manner.

When the calls emerge from the broadcast Clos network, they subsequently enter
the Clos network. Since the calls appear consecutively at the output of stage 2, the set
of connection requests for the Clos network can be easily determined. In our example,
let πj(si) denote the jth element of the set π(si) and let π′ be the set of connection
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TABLE 6.2 Connection Requests to the Broadcast-Clos Network.

si 0 2 5 10

Di 0,1 2,3,4 5,6,7 8
m + i 0 1 2 3

f (si , Di ) = [m + i ]q 0 1 2 0

requests in the Clos network. We can obtain π′ as follows:

π′ =
(

0 1 2 3 4 5 6 7 8

π0(0) π1(0) π0(2) π1(2) π2(2) π0(5) π1(5) π2(5) π0(10)

)

=
(

0 1 2 3 4 5 6 7 8

6 9 0 4 7 1 5 10 3

)
.

This is because there are two output destinations from input 0, three from inputs
2 and 5, and one from input 10, respectively. Based on π′, a nonblocking route
assignment can be determined and the connection requests can be established in a
nonblocking manner.

Obviously, no switching is performed between modules in stage 2 and modules in
stage 3. We can therefore combine them together to form a five-stage rearrangeably
nonblocking multiconnection network. Note, however, that this network is only suit-
able for circuit switching applications since centralized route assignment is required
in the Clos network.

6.2 PATH SWITCHING

Large packet switch architectures can be built based on the modular Clos network. As
discussed in Chapter 2, the original Clos network was proposed for circuit switching
systems, in which a path from an input to an output is established and dedicated to
a connection during its whole lifetime. In contrast to these systems, packet switches
carry information in multiplexed format. Often, each connection only requires a por-
tion of the capacity of the internal link carrying it, and the bandwidth needed for the
connection may be time varying. One way to operate such systems is to use static
route assignment, called multirate circuit switching, where a path is established for
each connection such that a portion of the path capacity is allocated to the connection
during its lifetime. The capacity allocated along the path can be the peak bandwidth
requirement of the connection in order to ensure low delay and packet loss probability.
Static routing, however, may result in low utilization of the system, because it does
not exploit the full advantage of the statistical multiplexing gain offered by packet
switching. The other extreme is the dynamic routing scheme, called cell switching,
where the connection pattern of the Clos network is rearranged in every time slot
according to the targeted outputs of the arrived packets. Since paths for incoming
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packets must be assigned on a slot-by-slot basis, the collecting and processing of
global traffic information for path hunting on the fly would become a bottleneck
severely limiting the growth of the switch size and speed. Unlike multirate circuit
switching, the dynamic routing scheme usually does not guarantee the bandwidth
for each individual connection, thus only desired overall system performance, such
as total packet loss probability or throughput, is attainable. In general, the system
utilization of the dynamic scheme is expected to be higher than the static scheme, but
the latter provides better guarantee of QoS for each connection.

In this section, we shall present a novel quasi-static routing scheme called path
switching. It is a unification of circuit switching and packet switching and is a com-
promise of the dynamic and the static routing schemes. In actuality, static switching
is similar to the railway system, where path scheduling and reservation for trains are
such that the railway is idle most of time, resulting in low utilization. On the other
hand, although dynamic routing i packet switching can raise utilization, its complex-
ity places a limit on the size of the switch. Path switching is an analog to the traffic
signals governing the routing of cars at the crossroad. It does not require any compli-
cated or special hardware, but still yields high utilization. Because of its simplicity
and its flexibility, this quasi-static routing scheme provides distributed control in the
Clos network.

The routing of path switching is based on the concept of virtual path within the
Clos network. We consider that there is a virtual path between an input module and
an output module, which comprises all virtual circuits interconnecting any incoming
port and any outgoing port on this pair of modules. The scheduling of path switching
consists of two parts. First, the capacity required for each virtual path is determined by
the traffic statistics among all pairs of input and output modules so that the path-level
QoS of the traffic on each pair can be satisfied. Then, a finite number of regular bipartite
multigraphs are generated according to the capacity assignment matrix. If the switch
is operated repeatedly according to a set of connection patterns, predetermined by
the edge coloring of the bipartite graph, then the capacity requirement on each virtual
path can be satisfied in the long run, and the computation of route assignment on
the fly can be avoided. Path switching is a quasi-static routing scheme, and it is a
compromise of the static scheme and the dynamic scheme.

The path-switched Clos network will be called cross-path switch, a statistical Clos
network. Instead of using a central controller to process, schedule, and route all incom-
ing packets simultaneously. The cross-path switch makes use of a routing algorithm
that is distributed over the three stages of the Clos network. The route assignment in
central modules, predetermined by the bipartite multigraphs, will be used repeatedly.
Storing the routing table in the local memory of every input module, the connection
pattern of the central stage is known in every time slot. Each connection pattern speci-
fies exactly how many packets can be delivered to a particular output module through
which central modules in that time slot. Based on this routing specification, each input
module will select those packets waiting in the local input buffers according to their
destinations and priorities. The selection process will match the destination addresses
with the desired output modules only, such that each output module would have to
handle the output port contentions.
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To construct the cross-path switch, any nonblocking, self-routing interconnect fab-
rics can be used as the building blocks of the first two stages. The switch modules
of the third stage must be capable of resolving the output port contentions; either
the Batcher–banyan network with extended outputs or the knockout switch can be
employed to perform this task. The implementation of path switching is completely
distributed. Although the computation of the capacity assignment and route assign-
ment by the central controller still requires global information, it is not a slot-by-slot
task. The routing tables stored in the local memory of input modules would be updated
only if the traffic matrix changes significantly and the switch performance becomes
unacceptable.

6.2.1 Basic Concept of Path Switching

A three-stage Clos network is shown in Fig. 6.18. The first stage consists of k input
modules, each of dimensions n × m. The dimensions of each central module in the
middle stage are k × k. As illustrated in Fig. 6.19, the routing constraints of Clos
network are briefly stated as follows:

1. Any central module can only be assigned to one input of each input module,
and one output of each output module.

2. Input i and output j can be connected through any central module.

3. The number of alternate paths between input i and output j is equal to the
number of central modules.
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FIGURE 6.18 Three-stage Clos network.
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FIGURE 6.19 Routing in Clos network.

If we consider each input module and each output module as a node, a particular
connection pattern in the middle stage of the Clos network can be represented by a
regular bipartite multigraph with node degree m as illustrated in Fig. 6.20, where each
central module corresponds to a group of k edges, each connecting one distinct pair
of input–output nodes (modules). Suppose the routing algorithm of the Clos network
is based on dynamic cell switching, and the amount of traffic from input module Ii

to output module Oj is λij cells per time slot. The connection pattern will change in
every time slot according to arrived packets, and the routes will be computed on a
slot-by-slot basis. Let eij(t) be the number of edges from Ii to Oj of the corresponding
bipartite multigraph in time slot t. Then the capacity Cij of the virtual path between
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FIGURE 6.20 Correspondence between the middle-stage route scheduling in a Clos network
and the edge coloring of the regular bipartite multigraph: (a) three-stage Clos network; (b) the
equivalent regular bipartite graph.
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Ii and Oj must satisfy

Cij = lim
T→∞

∑T
t=1 eij(t)

T
> λij. (6.14)

On the other hand, the routes of circuit-switched Clos network are fixed, and the
connection pattern will be the same in every time slot. The capacity must satisfy

Cij = eij(t) = eij > λij, (6.15)

which implies that the peak bandwidth Cij is provided for each virtual circuit at call
setup time, and it does not take statistical multiplexing into consideration at all. We
implement the idea of quasi-static routing, called path switching, using finite number
of different connection patterns in the middle stage repeatedly, as a compromise of
the above two extreme schemes. For any given λij , if

∑
i λij < n ≤ m, and

∑
j λij <

n ≤ m, we can always find a finite number f of regular bipartite multigraphs such
that ∑f

t=1 eij(t)

f
> λij, (6.16)

where eij(t) is the number of edges from node i to node j in the tth bipartite multi-
graph. A cross-path switch is said to be statistically stable if and only if the capacity
requirement (6.14) can be satisfied by providing connections repeatedly according to
the coloring of these F bipartite multigraphs. These finite amounts of routing informa-
tion can be stored in the local memory of each input module to avoid the slot-by-slot
computation of route assignments. Path switching becomes circuit switching if f = 1,
and it is equivalent to cell switching if f → ∞.

The scheduling of path switching consists of two steps, the capacity assignment
and the route assignment. The capacity assignment is to find the capacity Cij > λij

for each virtual path between input module Ii and output module Oj; it can be carried
out by optimizing some objective functions subject to

∑
i Cij = ∑

j Cij = m. The
choice of the objective function depends on the stochastic characteristic of the traffic
on virtual paths and the quality of service requirements of connections.

The next step is to convert the capacity matrix [Cij] into edge coloring of a
finite number f of regular bipartite multigraphs; each of them represents a parti-
cular connection pattern of central modules in the Clos network. An edge coloring of
a bipartite multigraph is to assign m distinct colors to m edges of each node such that
no two adjacent edges have the same color. It is well known that a regular bipartite
multigraph with degree m is m-colorable. Each color corresponds to a central module,
and the color assigned to an edge from input module i to output module j represents
a connection between them through the corresponding central module.

Suppose that we choose a sufficient large integer f such that fCij are integers
for all i, j and form a regular bipartite multigraph, called capacity graph, in which
the number of edges between node i and node j is fCij . Since the capacity graph is
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regular with degree fm, it can be edge colored by fm different colors. Furthermore,
it is easy to show that any edge coloring of the capacity graph with degree fm is the
superposition of the edge coloring of f regular bipartite multigraphs of degree m.
Consider a particular color assignment a ∈ {0, 1, . . . , fm − 1} of an edge between
input node Ii and output node Oj of the capacity graph. Let

a = r · f + t, (6.17)

where r ∈ {0, 1, . . . , m − 1} and t ∈ {0, 1, . . . , f − 1} are the quotient and the
remainder of dividing a by f , respectively. The mapping g(a) = (t, r) from the
set {0, 1, . . . , fm − 1} → {0, 1, . . . , f − 1} × {0, 1, . . . , m − 1} is one-to-one and
onto, that is,

a = a′ ⇐⇒ t = t′ and r = r′.

That is, the color assignment a, or equivalently the assignment pair (t, r), of the
edge between Ii and Oj indicates that the central module r has been assigned to
a route from Ii to Oj in the tth time slot of every cycle. Adopting the convention
in TDMA system, each cycle will be called a frame and the period f frame size.
As illustrated by the example shown in Fig. 6.21(a)–(c), where m = 3 and frame
size f = 2, the decomposition of the edge coloring into assignment pairs guarantees
that route assignments are either space interleaved or time interleaved. Thus, relation
(6.17) will be called the time–space interleaving principle.

For uniform traffic, where the distribution of traffic loading between input modules
and output modules is homogeneous, the fm edges of each node can be evenly divided
into k groups, where k is the total number of input (output) modules. Each group
contains g = fm/k edges between any I/O pair, where the frame size f should be
chosen properly to make the group size g an integer. The edges of this capacity graph
can be easily colored by the Latin square given in Fig. 6.22, where each Ai, 0 ≤ i ≤
k − 1, represents a set of distinct colors, for example,

A0 = {0, 1, . . . , g − 1}; A1 = {g, g + 1, . . . , 2g − 1}; . . . ; Ak−1

= {(k − 1)g, (k − 1)g + 1, . . . , kg − 1}.

Since each number in the set {0, 1, . . . , fm − 1} appears only once in any row
or column in the table, it is a legitimate edge coloring of the capacity graph. The
assignment a = (t, r) of an edge between the Ii/Oj pair indicates that the central
module r will connect the input module i to output module j in the tth slot of every
frame. As an example, for m = 3 and k = 2, we can choose f = 2 and thus g = 3.
Then, the groups of colors are A0 = {0, 1, 2} and A1 = {3, 4, 5}, respectively.
The procedure described above is illustrated in Fig. 6.22, and the correspondence
between the route assignments and the connection patterns in the middle stage is
shown in Fig. 6.23.
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FIGURE 6.21 Illustration of time–space interleaving principle.
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FIGURE 6.23 Route scheduling in the middle stage for uniform traffic: (a) connection pairs in
central modules; (b) time slot 0; (c) time slot 1.

In the above example, since the number of central modules m is greater than
the number of input modules k, it is possible that more than one central modules
are assigned to some I/O pairs in one time slot. In the case that m < k, there are
not enough central modules for all I/O pairs in one time slot assignment. Never-
theless, the total number of central modules assigned to every I/O pair within a
frame should be the same, for uniform input traffic to fulfill the capacity requirement,
and it is equal to g = fm/k. This point is illustrated in the following example. For
m = 4 and k = 6, we choose f = 3 and g = 2. The same method will result in the
connection patterns shown in Fig. 6.24. It is easy to verify that the number of cen-
tral modules (paths, edges) assigned for each I/O pair is equal to g = 2 per f = 3
slots.

6.2.2 Capacity and Route Assignments for Multirate Traffic

In general, the traffic loadings among different I/O pairs may not be homogeneous.
The uniform capacity assignment would result in nonuniform distribution of offered
load on different virtual paths, and packets may suffer dissimilar delays and losses.
Thus, for nonuniform traffic, the distribution of the limited capacity among virtual
paths should depend on their loadings, and it can be determined by optimizing some
objective functions. The procedure of converting quantitative capacity assignments
to route assignments is the same as before: coloring the edges of the capacity graph
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FIGURE 6.24 Route scheduling in central modules for the second example of uniform traffic:
(a) time slot 0; (b) time slot 1; (c) time slot 2.
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first and then decomposing them into assignment pairs according to the time–space
interleaving principle.

6.2.2.1 Capacity Allocation In this part, we shall discuss the allocation of
the limited capacity in the cross-path switch to meet diverse QoS requirements for
individual calls. The capacity in the cross-path switch can be classified into three
levels, namely, the switch level, the call level, and the packet level. The capacity
of switch level can be viewed as the overall switching resources in the cross-path
switch. It is defined to be the number of packets that can be routed from the input
stage to the output stage in one slot time. The switch-level capacity is fixed and
determined by the number of central modules. The call-level capacity allocation is
constrained by the capacity of the switch level. At the call level, the cross-path switch
will allocate a certain amount of capacity, called effective bandwidth, to individual
calls such that their statistical QoS constraints in terms of delay or loss at the packet
level can be satisfied. The effective bandwidths can be estimated through the direct
approach, model fitting, or the virtual-buffer approach. An example of calculating
effective bandwidths based on–off source model is provided in the appendix.

Let αuv, in unit of cells/slot, be the effective bandwidth required to accommodate
the aggregate traffic between an input link u and an output link v. We assume that the
following link capacity constraints are observed by call admission procedure:{∑

u αuv ≤ 1, ∀ 0 ≤ v ≤ N − 1,∑
v αuv ≤ 1, ∀ 0 ≤ u ≤ N − 1.

(6.18)

The capacity of each link may not be fully utilized, and its remaining capacity can
be distributed to available bit rate (ABR) traffic, which is not bounded by any delay
constraints, as specified in the following chapter. The ABR service can be supported
by feedback flow control mechanisms to provide rapid access to unused network
bandwidth whenever available. Let ρuv be the mean rate of the admitted ABR traffic
between input link u and output link v, satisfying the following constraint of remaining
link capacity: {∑

u ρuv ≤ 1 − ∑
u αuv, ∀ v,∑

v ρuv ≤ 1 − ∑
v αuv, ∀ u.

(6.19)

As shown in Fig. 6.25, let λij = ∑
(u,v)|u∈Ii,v∈Oj

ρuv be the total rate of ABR traffic
on the virtual path between input module Ii and output module Oj , and we assume
that the following k × k ABR traffic matrix is given:

T =

⎡
⎢⎢⎢⎢⎣

λ0,0 λ0,1 · · · λ0,k−1

λ1,0 λ1,1 · · · λ1,k−1

...
...

. . .
...

λk−1,0 λk−1,1 · · · λk−1,k−1

⎤
⎥⎥⎥⎥⎦ .
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FIGURE 6.25 Virtual path between input module i and output module j .

Then, the capacity allocation is to find a matrix

C =

⎡
⎢⎢⎢⎢⎣

c0,0 c0,1 · · · c0,k−1

c1,0 c1,1 · · · c1,k−1

...
...

. . .
...

ck−1,0 ck−1,1 · · · ck−1,k−1

⎤
⎥⎥⎥⎥⎦ ,

subject to the following constraints:

⎧⎪⎪⎨
⎪⎪⎩

cij ≥ λij, ∀i, j,∑
j cij = m − ∑

u∈Ii,v
αuv, ∀i,∑

i cij = m − ∑
v∈Oj,u

αuv, ∀j.

(6.20)

The goal of capacity allocation is to distribute limited resources fairly among all
ABR calls. In the one-dimensional case, a fair allocation is to distribute the capacity
proportional to individual arrival rates as follows:

ci = λi · c∑
j λj

, ∀i, (6.21)

where c is the total bandwidth. This is equivalent to minimizing the total weighted
offered load λi/ci function

z =
∑

i

λ2
i

ci

,
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subject to

∑
i

ci = c.

The offered load is defined to be the ratio of mean arrival rate λi to the allocated
capacity ci. In the cross-path switch with two-dimensional constraints (6.20), we can
minimize the following similar objective function:

z =
∑
i,j

λ2
ij

cij

. (6.22)

Alternatively, each virtual path can be modeled as an independent M/M/1 queue
with arrival rate λij and service rate cij for all i, j; then the average delay for the
packets from input module i to output module j is given by

Tij = 1

cij − λij

, ∀(i, j). (6.23)

The objective is to minimize the total weighted delay [BeG92]

z =
∑
i,j

λij

cij − λij

. (6.24)

The total capacity allocated for the virtual path between Ii and Oj is then equal to
Cij = cij + ∑

(u,v)|u∈Ii,v∈Oj
αuv.

There are several efficient methods that can be used to solve the optimization prob-
lem. The objective functions (6.22) and (6.24) are convex, and each can be minimized
subject to the linear constraints (6.20) by using the sequential linear approximation
algorithm [Frank], or the generalized reduced gradient (GRG) method [Lasdon] for
convex programming. Furthermore, since it is a sum of some single-variable func-
tions, and each of them can be approximated by a linear function, the problem can
then be transformed into a linear programming problem and solved by the modified
simplex method to reduce the computation complexity [Hillier].

6.2.2.2 Route Assignment In this part, we shall discuss the issue of converting
the overall capacity allocation matrix [Cij] into time–space interleaved route schedul-
ing. Consider the cross-path switch with parameters n = 3, k = 3, and m = 4 and
assume that the traffic is of ABR type only. If the traffic matrix is given by

T =

⎡
⎢⎣ 1 1 1

2 1 0

0 1 1

⎤
⎥⎦ , (6.25)
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the capacity assignment matrix calculated by the minimization of the total weighted
delay (6.24) is

C =

⎡
⎢⎣ 1.3366 1.2774 1.3859

2.6564 1.3366 0

0 1.3859 2.6044

⎤
⎥⎦ ≈

⎡
⎢⎣

4
3

4
3

4
3

8
3

4
3 0

0 4
3

8
3

⎤
⎥⎦ . (6.26)

In general, the resulting capacity assignment matrix is non-integer such as the example
shown above. However, the capacity assignments in a frame of size f , f · C, can be
rounded off into integers, and the round-off error is inversely proportional to f . That
is, the error can be arbitrarily small if the frame size is sufficiently large. However,
since the amount of routing information stored in the memory is linearly proportional
to f , the frame size is limited by the access speed and the memory space of input
modules. In practice, the choice of frame size f is a compromise between the round-
off error and the memory requirement. We assume, without loss of generality, that
eij = f · cij are all integers for a sufficiently large f . Then,

∑
j

eij =
∑

i

eij = f · m (6.27)

and

E = f · C =

⎡
⎢⎢⎢⎢⎣

e0,0 e0,1 · · · e0,k−1

e1,0 e1,1 · · · e1,k−1

...
...

. . .
...

ek−1,0 ek−1,1 · · · ek−1,k−1

⎤
⎥⎥⎥⎥⎦ .

In the above matrix E, each element eij represents the number of the edges between
the Ii/Oj pair in the k × k capacity graph, in which each node has degree of fm. As
mentioned in Section II, this capacity graph can be colored by fm colors, and each
color represents one distinct time–space slot based on the time–space interleaving
principle (6.17). Coloring can be found by complete matching, which is repeated
recursively to reduce the degree of every node one by one. One general method to
search for a complete matching is the so-called Hungarian algorithm or alternating
path algorithm [Leighton, McEliece]. It is a sequential algorithm with the worst time
complexity O(k2), or totally O(fm × k2) because there are fm matchings. For the
above example, the route scheduling is shown in Fig. 6.26. If each of fm and k is a
power of 2, an efficient parallel algorithm proposed in Ref. [LeLi02] for conflict-free
route scheduling in a three-stage Clos network with time complexity of O(log2(fmk))
can be used.
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FIGURE 6.26 Route scheduling for the example of nonuniform traffic: (a) time slot 0; (b) time
slot 1; (c) time slot 2.
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6.2.3 Trade-Off Between Performance and Complexity

Although the core issue of the cross-path switch is to incorporate the concept of
virtual path in the switch architecture and provide a coherent network management
paradigm, we still need to investigate the trade-off between its cell-level performance
and switch complexity to provide information for switch design. First, we shall study
various trade-offs between performance and complexity in terms of the parameters
n, m, and k of an N × N Clos Network. Since a packet arriving at its destined output
module of m × n still needs to be routed to one of the n output ports, the complexity
of output modules will grow with respect to n. On the other hand, a large value of
n means a small value of k for fixed switch size N = nk, and the traffic stream on
each virtual path would be much smoother, resulting in better statistical multiplexing
gain. This is because the superposition of n point processes will approach a Poisson
process for large n. Also, the capacity assignment and route assignment will be simpler
for a smaller value of k, since both the optimization procedure and edge-coloring
algorithm are based on the k × k traffic matrix. In practice, the determination of the
precise module size n should take the overall loss probability and the throughput into
consideration.

A fair comparison of systems with different values of n and m/n must be based
on the same amount of overhead. There are three types of overhead in implementing
the cross-path switch.

1. Input arbitration: For better throughput performance, the look-ahead
contention-resolution scheme described in Section 4.2.1 is implemented at
the input modules. Recall that the depth of search in each queue is called
window size. The larger the window size, the better the throughput, but the
processing of look-ahead selection is limited by the transmission time of one
packet. For window size w and module size n, the maximum number of pack-
ets that can be examined is wn. This product reflects the processing time re-
quired by the look-ahead scheme, and therefore we assume that it is fixed
in making the throughput comparison. For example, the throughput of the
1024 × 1024 switch with module size n = 8 and window size w = 8 will be
compared with that of n = 16 and w = 4, because they have the same product
wn = 64. Notice that the module size n should not be too large, otherwise the
internal processing speed may not be fast enough to support the look-ahead
scheme.

2. Input memory: In a cross-path switch, the predetermined central-stage connec-
tion patterns are stored in the memory of each input module. The total number
of memory space needed to store the addresses of all central modules is ex-
actly m, and the overall memory requirement is mkf = m/n · (Nf ) for k input
modules with frame size f . We assume that the frame size f is a constant in all
cases, and use the expansion factor m/n to represent this memory requirement.
This point is illustrated by the example shown in Fig. 6.27.

3. Expansion factor: The expansion factor m/n represents the overall capac-
ity expansion, and it is the most critical parameter in the performance of



250 SWITCHING PRINCIPLES FOR MULTICAST, MULTIRATE, AND MULTIMEDIA SERVICES

…Nilam−1

…bm−2, bm−1am−2k−2
k−1

...
...

...
...

…b2 , b3a21
…b0 , b1a0 , a10
…10

Through which central modules at time slotDestined output 
module

32, 332
111, 21

0, 2000
210

Central modules at time slotDestined output 
module

(a)

(b)

FIGURE 6.27 Storage of the middle-stage connection patterns at an input module: (a) a general
format and (b) a specific storage for input module 1 in Fig. 6.26.

cross-path switch. Intuitively, the system will perform uniformly better with
larger expansion factor at the cost of extra overhead m/n − 1 due to the in-
creased number of modules in the central stage. In the following analysis,
however, we will show that the packet loss probability at output module will
also increase with respect to the expansion factor. That is, arbitrary large ex-
pansion factor does not necessarily result in better system performance as one
might expect.

In a cross-path switch, the switching of a packet in the first two stages is performed
according to the address of its destined output module, while the switching in the last
stage only depends on the local address of its destined output port, and these two
“addresses” are independent. To simplify the analysis, the performances of the first
stage and the last stage of the cross-path switch will be evaluated separately. For an
N × N switch, once the module size n, number of incoming (outgoing) links to an
input (output) module, and the expansion factor m/n are given, the other parameters
k = N/n, and m = n · m/n are all fixed. We will focus our discussion on the effects of
the variation of these two parameters on the throughput and the packet loss probability
of the switch.

We shall consider a 1024 × 1024 switch with uniform traffic as an example and
make performance comparisons among five different cases of n × k = 4 × 256 =
8 × 128 = 16 × 64 = 32 × 32 = 64 × 16. For the sake of simplicity, we assume that
the output modules can achieve nearly 100% throughput at the last stage, while there
is no packet loss in the first stage for sufficiently large input buffers. Thus, the system
performance is mainly characterized by the loss probability in the output modules
and the throughput limitation in the input modules.
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We first estimate the loss probability of an m × n output module with evenly
distributed input traffic. This is a straightforward extension of the loss probability
analysis in the knockout switch in Chapter 4. Suppose each output port can accept
up to L packets in one-slot time. The loading on an input link of an output module,
denoted by ρout , is related to the loading on an input port of an input module, denoted
by ρin, as follows:

ρout = n

m
· ρin. (6.28)

It follows that the packet loss probability at the last stage, under the assumption that
a packet arrives at each link independently with probability ρout , is given by

Ploss = 1

ρin

·
m∑

l=L+1

(l − L) ·
(

m

l

) (ρout

n

)l ·
(

1 − ρout

n

)m−l

. (6.29)

Figure 6.28 shows the loss probability as a function of L, and Fig. 6.29 shows the loss
probability versus the expansion factor m/n, for different n with ρin = 0.8. These
figures reveal the fact that the loss probability will increase with respect to both
parameters n and m/n.

As shown in Figs. 6.30–6.33, however, it is obvious that larger values of n and
m/n will always result in better throughput of input modules with the look-ahead
selection scheme in the first stage. We assume in the simulation that packets arrive
independently at each input link, and they are equally likely to be destined for each
output module. Figure 6.30 shows the throughput versus the window size for different
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FIGURE 6.28 Loss probability versus L with 80% loading.
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module sizes n with constant expansion factor m/n = 1.5. Figure 6.31 illustrates
that the throughput is increasing with respect to the expansion factor m/n. However,
larger values of m/n and w will increase the complexity of the central stage and the
processing time at the input stage, respectively. To have a fair comparison, we fix
the input-arbitration overhead wn = 64 in Fig. 6.32 when plotting the throughput for
different module sizes n. It shows again that the larger the module size, the higher the
throughput.

Figure 6.33 shows how large the expansion factor m/n should be for some particu-
lar module size n to achieve 80% throughput with several fixed products of the window
size and the module size. Again, the larger modules behave better. The trade-off be-
tween the loss probability of output modules and the throughput of input modules
is summarized in Table 6.3. It shows that a proper choice of the module size and
the expansion factor should be n = 16 and m/n = 2, respectively, for switch size
N = 1024. With window size w = 4, the maximal throughput that can be achieved is
above 80%, while the loss probability at the output modules is kept below 10−7 with
L = 8.

6.2.4 Multicasting in Path Switching

In this subsection, we shall study two multicast schemes to enhance the cross-path
switch to support multicasting. The first scheme, namely scheme 1, performs replica-
tion in both input and output modules. As shown in Fig. 6.34(a), a packet in this case is
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TABLE 6.3 Summary of Trade-Off in Module Size n

Module Expansion Factor m/n = 1, Expansion Factor m/n = 2,
Size n Ploss(L = 8,Load = 80%) Throughput Ploss(L = 8,Load = 80%) Throughput

4 0 0.29 0 0.47
8 0 0.41 O(10−8) 0.64
16 O(10−8) 0.56 O(10−7) 0.84
32 O(10−7) 0.72 O(10−7) 0.97
64 O(10−7) 0.78 O(10−7) 0.99

first replicated at the input stage. The number of copies replicated at this stage is equal
to the number of destined output modules of the packet. These copies will be routed
by the central modules to their destined output modules. Each copy arriving at the last
stage will be further replicated if it is destined for more than one output port within
that output module. In contrast to the scheme 1, the second scheme, namely scheme
2, only performs packet replication in input modules. In this scheme, a packet that has
different destined output ports within the same output module needs to be replicated
in the first stage and the resulting copies will be routed independently through differ-
ent central modules (see Fig. 6.34(b)). We do not consider multicasting at the middle
stage, because the capacity provided by some point-to-multipoint connection pattern
in the central modules will be affected by the time-varying replication requests and
it is not appropriate for the capacity assignment of the cross-path switch.

With the same number of central modules, one would intuitively expect higher
throughput in the first scheme. However, as it requires packet replication at the last
stage, the complexity of output modules will be higher. On the contrary, by using
more central modules in the second multicast scheme, the same throughput can also
be attained. Since both schemes have their own advantages, it is necessary to evaluate
the trade-off between the performance and the complexity.

 Replicating cells in both 
input and output stage

Replicating cells only in 
the input stage

(a) (b)

FIGURE 6.34 Two multicast schemes in cross-path switch.
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6.2.4.1 Capacity Allocation for Multicast Traffic In the original unicast
cross-path switch, the capacity allocation is based on the traffic load and the effective
bandwidth of each virtual path at the middle stage to guarantee the QoS require-
ment. For multicast traffic, the middle-stage traffic load will be affected by the packet
fanout distribution and the multicast schemes used. The modified capacity assignment
procedure is described below.

Let Su, Sv, SIi , and SOj be the sets of the call requests on input link u, output link
v, input module Ii, and output module Oj , respectively. We assume that the traffic
load (before replication) ρr, in unit of packet/slot, the effective bandwidth (before
replication) αr, and the packet fanout number yr of call request r are given at the
call setup, and they satisfy the following constraints to fulfill the packet-level QoS
requirement:

1. Input link load constraint: ∑
r∈Su

ρr ≤ 1, ∀u. (6.30)

2. Output link capacity constraint:∑
r∈Sv

αr ≤ 1, ∀v. (6.31)

We say that r ∈ Su when the call request r comes from input link u, and r ∈ Sv

when one of the destinations of r is output link v.
Define λij to be the total traffic load of the virtual path connecting input module

Ii and output module Oj . For scheme 1, in which a call request has only one copy
routed in the middle stage for each destined output module,

λ
(1)
ij =

∑
r∈SIi

, r∈SOj

ρr. (6.32)

In contrast, the traffic load of call request r at the middle stage of scheme 2 is expanded
yr times, and yr(i, j) of them will be routed through the virtual path from Ii to Oj .
Then the total traffic load of this virtual path is given by

λ
(2)
ij =

∑
r∈SIi

, r∈SOj

ρr · yr(i, j). (6.33)

Similarly, the aggregate effective bandwidths βij of a virtual path connecting Ii and
Oj in two multicast schemes are given, respectively, as follows:

β
(1)
ij =

∑
r∈SIi

, r∈SOj

αr, β
(2)
ij =

∑
r∈SIi

, r∈SOj

αr · yr(i, j). (6.34)
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The capacity assignment is to find the capacity Cij for the virtual path connecting
Ii and Oj such that the following constraints are satisfied:

⎧⎪⎨
⎪⎩

Cij ≥ βij, ∀i, j,∑
i Cij = m, ∀j,∑
j Cij = m, ∀i,

(6.35)

where m is the number of central modules.
Like the case of unicast traffic, an optimal assignment requires establishing an

objective function such as minimizing total weighted delay z after each virtual path
is modeled as an M/M/1 queue:

z =
∑
i,j

λij

Cij − λij

. (6.36)

6.2.4.2 Performance Evaluations In the following, we shall study how the
multicast traffic affects the throughput and the packet loss probability in a 1024 ×
1024 cross-path switch. The performance analysis is based on two assumptions. First,
the traffic distribution among input ports and output ports is homogeneous, and a
packet is equally likely to be destined for any output port. Second, the arrival process
at each input link is Bernoulli, that is, the probability that there is a packet arriving in
each time slot is identical and independent.

Fanout Distribution and Middle-Stage Traffic Load To characterize the effect of
the multicast traffic on the cross-path switch, we consider three fanout distributions
to make comparisons. Let Y be the random variable of the fanout number, and M be
its maximum.

1. Constant distribution:

Pr{Y = M} = 1. (6.37)

Mean E[Y ] = M and variance Var[Y ] = 0.

2. Uniform distribution: Suppose the requested fanout is uniformly distributed
from 1 to M, which is the maximum. In other words,

Pr{Y = y} = 1/M, 1 ≤ y ≤ M. (6.38)

Thus, E[Y ] = M + 1/2 and Var[Y ] = M(M + 1)/6.

3. Truncated geometric distribution:

Pr{Y = y} = (1 − q)qy−1

1 − qM
, 1 ≤ y ≤ M, (6.39)
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where q is used to control the shape of the distribution. The mean is given by

E[Y ] = 1

1 − q
− MqM

1 − qM
. (6.40)

This distribution is often used in the literature for modeling the fanout distri-
bution. By fixing M equal to the switch size N = 1024, the parameter q can be
calculated for a given mean fanout E[Y ].

Multicast traffic load in input stage is different from that in the output stage because
packets are replicated inside the switch. Let ρin and ρout denote the traffic load of
each input link at input stage and the traffic load of each output link at output stage,
respectively. The traffic in output stage is more than that in input stage, and the ratio
is given by

ρout

ρin
= E[Y ], (6.41)

which is the mean packet fanout number.
Here, we define the middle-stage traffic load ρmid such that ρmid/ρin is equal to the

ratio of the amount of traffic in middle stage to that in input stage. It can be viewed
as a reference load of the switch and reflects some difference between two multicast
schemes when comparing their throughput and loss performance.

To calculate the middle-stage traffic load ρmid, we let X be the number of copies
that are replicated from a packet at input stage, that is, the number of distinct output
modules that the packet is destined for, then ρmid = ρin · E[X].

For scheme 1 in which there is packet replication at both the input and the output
stages, E[X] varies for different fanout distributions. To evaluate E[X], we first notice
that the probability that a packet has no copy destined for a specific output module is
given by

p0 =
M∑

y=1

(
n
0

)(
N−n

y

)
(
N
y

) · Pr{Y = y}. (6.42)

Then the average of the total number of copies replicated from a packet at the input
stage is k · (1 − p0) = E[X]. For scheme 2 where there is no replication in output
modules, E[X] = E[Y ]; thus, ρmid = ρout .

To facilitate the comparison of the two schemes in the following, we provide some
numerical figures of ρmid by fixing ρout = 1 in Table 6.4.

Throughput Since output queueing implemented in output modules ensures 100%
throughput at the last stage, the throughput of the whole switch is limited only by
the head-of-line blocking in input modules with look-ahead selection. Here, we shall
only focus on the throughput at the input stage.
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TABLE 6.4 The Middle-Stage Traffic Load in Multicast Cross-Path Switches for Different
Fanout Distributions

Mean Fanout
Module Multicast Fanout

Size Scheme Distribution E [Y ] = 2 E [Y ] = 4 E [Y ] = 8

Geometric 0.9855 0.9578 0.9064
n=16 S1 Uniform 0.9902 0.9712 0.9345

Constant 0.9927 0.9782 0.9501

n=16 S2 G/U/C 1

G 0.9706 0.9165 0.8242
n=32 S1 U 0.9800 0.9416 0.8712

C 0.9849 0.9554 0.9000

n=32 S2 G/U/C 1

G 0.9419 0.8438 0.6978
n=64 S1 U 0.9596 0.8857 0.7620

C 0.9692 0.9113 0.8087

n=64 S2 G/U/C 1

S1: replicating packets in both input and output stages; S2: replicating packets only in input stage.

In a cross-path switch, the throughput of an input module is mainly characterized
by the window size w of the input queues and the group size m/k. Recall from
Chapter 4 that the window size in look-ahead selection is defined to be the number
of packets waiting at each input queue that will be checked in one time slot, and it
is limited by the module size n and the processing speed. For multicast packets, the
window size is defined to be the number of copies instead of packets. On the other
hand, the group size represents the maximum number of packets that can be delivered
to an output port in one time slot. For an n × m input module in cross-path switch, the
real destination of a packet is one of the k output modules; thus, the average group size
is m/k. The window size is used to release the head-of-line blocking, while the group
size can be regarded as the output capacity provided by each destination. Increasing
either of them will certainly result in better throughput, but there is a trade-off. The
processing speed limits the product of the window size w and the module size n, thus
a smaller n is desirable. On the contrary, when n is larger, the statistical multiplexing
gain is higher. We choose the median size n = 32 in this analysis.

For clear presentation, we itemize the factors affecting the throughput as follows:

1. The expansion factor m/n: Recall that in a cross-path switch, the ratio m/n is
called the expansion factor. One can think of it as the average capacity per input
link. As shown in Fig. 6.35, the throughput is increasing with the expansion
factor. Nearly 100% throughput can be achieved by a sufficiently large expan-
sion factor. The saturation speed is relatively faster in scheme 1 or with a larger
mean fanout.
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FIGURE 6.35 Throughput increase with expansion factor m/n.

2. The mean fanout E[Y ]: To see the multicast effect, we first focus on the first
moment of multicast traffic, that is, the mean fanout. The throughput versus
E[Y ] curve is plotted in Fig. 6.36. It can be observed that the throughput is
higher when the mean fanout is larger. The reason is that the copies from the
same packet have distinct destinations, thus the output contention at the head
of line is reduced, compared with the case of having the same total number of
unicast packets waiting. In conclusion, the look-ahead throughput performance
is more favored to multicast traffic.

3. The fanout distribution: Even with the same mean fanout number, the through-
put still varies for different fanout distributions as shown in Figs. 6.37 and 6.38.
The throughput discrepancy is larger in scheme 1 because the middle-stage
traffic load ρmid is different for different fanout distributions, as shown in Table
6.4. The larger the ρmid , the more congested the switch and the smaller the
throughput. It helps to explain why the highest throughput is attained when the
packet fanout is geometrically distributed.

Conversely, the throughput discrepancy in scheme 2 is smaller because the
middle-stage traffic load ρmid is the same as ρout for all fanout distributions.
However, since the geometric fanout distribution has the largest variance, its
performance is the worst. This is similar to other switching systems that the
performance is probably better in handling traffic with less fluctuations.

Loss Probability The overall loss probability of the switch can be well approxi-
mated by the knockout loss at the output stage, provided the buffer size of each input
link is sufficiently large and thus the packet loss at the input stage is negligible.
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Consider an output module of size m × n. Since the packets of the m input links
may come from different input modules and the pattern is time varying, we need to
simulate all k input modules and totally N = 1024 links in order to obtain the loss
probability. However, we devise a procedure in order to obtain this value more easily.

1 1.2 1.4 1.6 1.8 2
0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Expansion factor, m /n

T
hr

ou
gh

pu
t

            E [Y ]=2
            E [Y ]=8
            Geo
     *      Con
     +     Uni

FIGURE 6.37 Throughput varying with fanout distribution in scheme 1.



262 SWITCHING PRINCIPLES FOR MULTICAST, MULTIRATE, AND MULTIMEDIA SERVICES

1 1.2 1.4 1.6 1.8 2
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Expansion factor, m/n

T
hr

ou
gh

pu
t

            E [Y ]=2
            E [Y ]=8
            Geo
    *       Con
    +      Uni

FIGURE 6.38 Throughput varying with fanout distribution in scheme 2.

Since there is no buffering at the input links of the output modules, the time correlation
between the arrival process of the input links need not be taken into consideration.
Although we still need the simulation data to capture the “space” correlation among
the active neighboring input links connected from the same input module in order
to calculate the loss probability, it is sufficient to simulate only one input module
and collect the statistics of the packets delivered to the specific output module. The
procedure is presented as follows:

Procedure for Calculating Loss Probability

1. Consider all m input links of an output module, and let A be the random variable
of the number of active links. To calculate the loss probability, we first need to
obtain the probability distribution of A. Define GA(z) = ∑m

a=0 Pr{A = a} · za

to be the generating function. Suppose mi of the m input links are connected
from input module i, 0 ≤ i ≤ k − 1;

∑k−1
i=0 mi = m. Similarly, we define Ai to

be the number of corresponding active links among the group of mi links. Since
the traffic from different modules is independent, it follows that

GA(z) = �k−1
i=0 GAi(z). (6.43)

Also since the traffic statistics from the input modules are independent and
identically distributed, we can obtain the probabilities Pr{Ai = a}, 0 ≤ a ≤ mi,
∀i, by simulating only one input module and collecting the departure statistics.
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TABLE 6.5 The Statistics of the Number of Packets Leaving from an Input Module for an
Output Module

Pr {x Links Are Active}
Time The Corresponding
Slot C x = 0 x = 1 x = 2 Generating Function

0 2 0.1589 0.2474 0.5937 G0(z ) = 0.1589 + 0.2474z
+0.5937z2

1 1 0.2286 0.7714 – G1(z ) = 0.2286 + 0.7714z
2 1 0.2109 0.7891 – G2(z ) = 0.2109 + 0.7891z
3 1 0.1973 0.8027 – G3(z ) = 0.1973 + 0.8027z
4 1 0.1850 0.8150 – G4(z ) = 0.1850 + 0.8150z
5 1 0.1795 0.8205 – G5(z ) = 0.1795 + 0.8205z
6 1 0.1710 0.8290 – G6(z ) = 0.1710 + 0.8290z
7 1 0.1682 0.8318 – G7(z ) = 0.1682 + 0.8318z

C: number of links connected to the specific output module.

As an example, we demonstrate the calculation of GA(z) for the case that
m = 36 and E[Y ] = 2. The frame size is equal to f = 8, and g = mf/k = 9,
indicating that there are totally nine links connected from an input module to
an output module during eight time slots. The statistics of the packet delivered
from any input module to the specific output module is summarized in Table 6.5.
The m = 36 input links of an output module can be partitioned into four groups,
and each has nine links with statistics as given in Table 6.5. By convolution,
the generating function of the probability distribution of the number of active
packets arriving at an output module is given by

[G0(z)G1(z)G2(z)G3(z)G4(z)G5(z)G6(z)G7(z)]4 . (6.44)

2. Let Yo be the random variable of the fanout number of a packet arriving at the
output module. Consider a packet (at the input stage), the average number of the
copies destined for the specific output module is obviously E[Y ]/k, including
the case that no copy of the packet is destined for the output module. Then

E[Y ]

k
= p0 · 0 + (1 − p0) · E[Yo], (6.45)

where p0 is the probability that no copy of the packet is destined for the output
module. Thus,

E[Yo] = E[Y ]

k(1 − p0)
= E[Y ]

E[X]
. (6.46)

3. Consider the probability that one copy of a packet arriving at the output module
is destined for a particular output port, which is simply p = E[Yo]/n. In scheme
1, this probability is independent from link to link, because no two packets
arriving at the output module come from the same original packet. In scheme 2,
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since there may be the case that more than one packet simultaneously arriving at
the output module is generated from the same original packet, this probability
is dependently distributed over the links from the same input module. This
dependence here is beneficial to having less loss because the copies generated
from an original packet will not be destined for the same output port, resulting
in less output port contention. We make the independence assumption in the
following computation to produce an upper bound for the loss probability of
scheme 2. When k is sufficiently large or m/n is small, the bound is expected
to be tight.

4. Consider a particular output port. Let L be the random variable that represents
the number of packet copies destined for the port in one time slot. Its generating
function is given by

GL(z) =
m∑

a=0

(1 − p + pz)a Pr{A = a}, (6.47)

where p = E[Yo]/n and Pr{A = a} is the probability that a of the m links are
active. Thus,

Pr{L = l} =
m∑

a=l

Pr{A = a} ·
(

a

l

)
(1 − p)a−lpl. (6.48)

The loss probability is

1

ρout

m∑
l=G+1

(l − G) Pr{L = l}, (6.49)

where G is the group size of an output module.

The numerical results are presented below.

1. The group size G: First, we demonstrate the function of group size G in output
modules in Figs. 6.39 and 6.40. The group size G is defined to be the number
of packet copies that can be delivered to each output port during one time slot.
The larger the group size, the smaller the loss probability but the higher the
complexity. Arbitrarily small loss probability can be achieved by a sufficiently
large G. In addition, the discrepancy in the loss probability is not so significant
with different parameters such as the number of central modules m and the
mean fanout number E[Y ]. In other words, it is mainly characterized by the
group size G.

2. The expansion factor: As shown in Fig. 6.41, the loss probability is also varying
with the expansion factor m/n. When the number of central modules is large,
the number of active packets allowed to be simultaneously delivered to an
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output module tends to be more uniformly distributed, and thus a higher loss
probability is expected.

3. The mean fanout number: The effect of multicast traffic on the loss probability
is not so significant. As shown in Fig. 6.42 with fixed group size G = 8, the
expansion factor m/n dominates the trend of the loss probability. It changes
only a little when the mean fanout number E[Y ] increases, except when the
expansion factor is small (m/n = 1) in scheme 1 due to the dramatic increase
in throughput. Please refer to Fig. 6.36.

6.2.4.3 Overall Complexity Measurements and Comparisons We have
considered feasible designs for each multicast schemes to implement the multi-
cast cross-path switch. In the following, we shall estimate their complexity in
terms of the number of switching nodes used under certain performance require-
ment.

The input modules and the central modules in both schemes will be the same.
Since the central modules are required to be rearrangeably nonblocking only, so that
every connection pattern of the route assignment can be realized, Benes networks are
suitable and sufficient. Its complexity is given by

Ccm = k

(
log2 k − 1

2

)
, (6.50)
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where k is the size of a central module, that is, the number of input modules. Then
the complexity of the middle stage consisting m central modules is

Cmid = mk

(
log2 k − 1

2

)
. (6.51)

Since packet replications are necessary at the input stage, a copy network cascaded
with a point-to-point switch is sufficient. As mentioned in the previous section, the
copy network is estimated as two banyan interconnection fabrics, each with complex-
ity Ccn = m

2 log2 m, while the point-to-point switch consists of a Batcher–banyan and
its complexity is given by

Cpp = m

4
log2 m(log2 m + 1) + m

2
log2 m. (6.52)

Thus, the overall complexity of the input stage is Cin = k(Ccn + Cpp).
At the last stage, two different switches are used. For scheme 1 where packet

replications are still needed in the output modules, a knockout switch with broadcast
buses can be used. Since each concentrator with group size G has the complexity

m + (m − 1) + (m − 2) + · · · + (m − G) = mG − G(G + 1)

2
,
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put requirement.

we need Cknock = n[mG − G(G + 1)/2] switching nodes to build up one knock-
out switch and totally Cout1 = kCknock for the whole output stage. For scheme 2,
a Batcher–banyan switch with channel grouping can be used in the output module.
Recall from Chapter 4 that this switch contains an m × m Batcher sorting network,
an m × m concentrator, and G parallel banyan networks. The total complexity of the
output stage for scheme 2 is given by

Cout2 = k ·
[m

4
log2 m(log2 m + 1) + m

2
log2 m + G · n

2
log2 n

]
. (6.53)

The complexity measures of the switch architectures are shown in Figs. 6.43 and
6.44, respectively. The trade-off between performance and complexity of scheme 2
is superior to scheme 1 because of the huge complexity in establishing the broadcast
knockout switches. Therefore, it might not be worth implementing multicast switching
at the output stage of the cross-path switch.

6.A APPENDIX

6.A.1 A Formulation of Effective Bandwidth

The basis of call-level capacity allocation is the QoS requirement at the packet level.
In general, the QoS requirement could be the loss rate, the mean delay, the delay jitter,
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or some combinations of these performance indicators. The effective bandwidth is the
minimum capacity required to satisfy the prerequisite QoS of each call. We formulate
the packet-level QoS requirement by a pair of constraints: the delay and the loss. The
delay constraint is defined to be

− log10 Pr{W > τ} > δD, (6.54)

where Pr{W > τ} is the probability that the packet waiting time W exceeds a certain
accepted amount τ. The loss constraint [Guerin, Veciana] can be defined in a similar
manner:

− log10 Pr{X ≥ B | seen by arrivals} > δL, (6.55)

where X is the random variable of queue length and B is the required buffer size.
Thus, the required delay and loss QoS constraints can be satisfied by the resources α

and B allocated for the connection request.

6.A.2 Approximations of Effective Bandwidth Based on On–Off
Source Model

We provide the widely used Markovian on–off source model here to demon-
strate the approximate estimation of the effective bandwidth of a call request. A
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two-state Markovian process can be fully characterized by the following three pa-
rameters [AMS81]:

⎧⎪⎨
⎪⎩

mean arrival rate, λ cell/slot,

peak arrival rate, λp cell/slot,

average“on”period, Ton slot.

With service rate (capacity) μ, the queue length distribution given in Ref.[Anick] is
as follows:

Pr{X > x} = λ

μ
e
− λp(μ−λ)x

μTon(λp−μ)(λp−λ) . (6.56)

The overflow probability seen by arrivals is given by

Pr{X > x | seen by arrivals} = e
− λp(μ−λ)x

μTon(λp−μ)(λp−λ) . (6.57)

The waiting time distribution Pr{W > τ} is just a scaled version of (6.57) due to the
relation x = μτ, and given as follows:

Pr{W > τ} = e
− λp(μ−λ)τ

Ton(λp−μ)(λp−λ) . (6.58)

The effective bandwidth α can be calculated from the delay constraint (6.54), and it
is given by

α = λ + Ton(δD + log10 e)(λp − λ)2

λpτ + Ton(δD + log10 e)(λp − λ)
. (6.59)

Similarly, the required buffer size B given below can be obtained from (6.55) through
(6.57).

B = αTon(λp − α)(λp − λ)(δL + log10 e)

λp(α − λ)
. (6.60)

PROBLEMS

6.1 For the broadcast banyan network, argue that two bits are the minimum number
of bits required to perform routing at each switch element, and therefore, the
Boolean interval splitting algorithm is a “minimal” algorithm.

6.2 Consider the following broadcast banyan network that attempts to perform copy-
ing and routing at the same time with a 2n-bit routing tag. Two bits are used
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in each stage. Bits 00 and 11 mean the packet is to be forwarded to upper and
lower outgoing links, respectively. Bits 01 mean the packet is to be duplicated
and forwarded to both outgoing links. Not all the 2N − 1 subsets of outputs can
be reached this way. Describe the subsets of outputs that can be reached.

6.3 Consider an 8 × 8 copy network based on the Boolean interval splitting algo-
rithm in the broadcast banyan network operated as a waiting system such that
overflow requests that cannot be fulfilled will be queued at inputs.

(a) Show the encoding and decoding processes for the following copy requests:
two copies for input 0, one copy for input 3, and three copies for input 5;
the other inputs are inactive. Show the values adopted by the various fields
in the packet headers as they travel through the five components of the copy
network. Assume the running-adder network is not cyclic.

(b) Now, do the same assuming a cyclic running-adder network and a dilated
reverse banyan concentrator, with input 5 being the starting point.

(c) Give an example showing that fewer than N packet copies are allowed
even though there are more requests still waiting at the input queues (Hint:
consider HOL blocking).

(d) Show how the efficiency of the copy network can be improved by placing a
shifting concentrator before the copy network so as to implement a logical
FIFO queue out of the N input queues.

(e) Consider an input–output pair of a multicast communication session of the
overall multicast switch. Show that packets arriving at successive time slots
to the input to the shifting concentrator may have their copies delivered
simultaneously to the output of the point-to-point switch, assuming that the
switch is an output-buffered switch. However, it is not possible for a later
arriving packet to have its copy delivered to the output before an earlier
arriving packet.

(f) Part (e) means that the switch output must be able to uncover the underlying
sequence of the simultaneously delivered packets in order to avoid out-of-
sequence packet transmission on its transmission links. Propose a scheme
that enables the output to do so.

6.4 The text explained how a reverse–banyan network fails to concentrate the packets
between the cyclic running-adder network and the broadcast–banyan network
in a copy network. Three approaches to solving this problem were proposed.
This question considers two other approaches.

(a) Show that a Benes network can be used to concentrate the packets. In par-
ticular, show how you would set the 2n − 1 bits for routing in the Benes
network.

(b) A three-phase scheme analogous to the sort-banyan point-to-point switch
could be used. In the first two phases, only the headers of packets enter the
cyclic running-adder network. The first phase calculates the running sums
and determines the served copy numbers. The second phase acknowledges
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the inputs of the served copy numbers and the current starting port. The third
phase performs a cyclic shift on all the winning input packets so that the
starting-port packet appears on the uppermost output of the adder network.
In this way, a reverse–banyan network can then be used to concentrate
the packets in a nonblocking manner. Show how to use the adder-network
structure to perform the cyclic shift.

6.5 For the probabilistic copy algorithm for arbitrary network topologies, the text
considered the splitting interval to keep track of the replication process. An
alternative is to directly encode the copy number, CN, into the header.
(a) Explain how you would modify CN at each stage whenever it is possible to

duplicate a packet.

(b) An index reference (IR) field is also needed in the packet header. How would
you modify the IR field whenever duplication occurs so that the IR fields of
packet copies of the same master packet are distinct?

6.6 Consider applying the probabilistic copy algorithm on a two-dimensional hy-
percube network with four nodes, labeled as 00, 01, 10, and 11, as shown in
Fig. 6.45. The links are bidirectional and simultaneously carry one packet in
each direction.
(a) Suppose that there is a packet at node 00 desiring four copies and there are

no other packets. Show the packet replication process.

(b) Show that a deadlock occurs if the packet desires eight copies.

(c) Suppose that there is a buffer that can hold just one packet at each node. In
other words, when there are no incoming packets to a node, both desiring
replication, we can hold one of the packets in the buffer while duplicate
the other packets on the two outgoing links. Show that this eliminates the
deadlock in part (b).
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6.7 Consider multicasting in a large feedback shuffle-exchange network. A master
packet to be routed to F destinations will be replicated first before the individual
copies are routed to their destination nodes. That is, the F copies will be made
according to the following algorithm. Each packet has a CN field that keeps
track of the number of copies to be made from it. The CN field of the original
master packet is set to F initially. Each time a packet with a CN field greater
than 1 arrives at a node, it will be duplicated and forwarded to both outputs if
there is no incoming packet on the other input. Otherwise, it will be forwarded
to one of the outputs without being replicated, and the replication process is
deferred until the packet visits a node with no packet on the other input.

(a) Describe how the CN fields of the two packet copies will be updated each
time a packet is duplicated.

(b) Consider a master packet with F = 2f , where f is a positive integer (i.e.,
F is a power of 2). Focus on a particular copy to be made. We can picture
that it is embedded in a packet with CN copies yet to be made during
replication process. Let the state of the copy be log2 CN. Draw the state-
transition diagram that corresponds to the state evolution of the copy during
replication, where p = probability of successful duplication and q = 1 − p.

(c) Let ρ be the link loading in equilibrium. Express the transition probabilities
in the previous part in terms of ρ.

(d) Let T (i) be the expected number of additional steps needed before the repli-
cation of the copy is completed (i.e., before its CN value becomes 1). Write
down the dynamic equation and boundary condition for T (i).

(e) Calculate T (f ) in terms of ρ.
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BASIC CONCEPTS OF BROADBAND
COMMUNICATION NETWORKS

This chapter discusses various elementary concepts of broadband communication
networks. The focus is on networks in which information is transported in fixed-
length packets called cells. The asynchronous transfer mode (ATM) standardized
worldwide, for example, assumes such a transport mechanism. The coverage is brief
but should provide enough background information for the more detailed study in
Chapter 8.

7.1 SYNCHRONOUS TRANSFER MODE

To understand the motivations behind ATM, let us consider the limitations of the syn-
chronous transfer mode (STM) that lead to the proposal of ATM in the first place. Sim-
ply put, STM is time-division multiplexing (TDM) and ATM is fixed-length packet
switching.

Recall from Chapter 1 that in TDM, information from several sources is multi-
plexed onto one physical transmission medium in which the time is slotted. Time slots
are grouped into frames. Each time-slot position in a frame is dedicated exclusively to
a particular source. Thus, time slot i of frames 1, 2, 3, . . . can carry information from
one and only one source once the connection has been set up. There is no sharing of
time slots among different connections.

While this exclusive dedication of bandwidth works well for sources that produce
traffic in a continuous fashion (e.g., voice and video), it is wasteful for sources with
bursty traffic (e.g., computer data): when the sources are idle, their associated time
slots do not carry any information. This limitation of STM is rather obvious and has
long been recognized as one of the disadvantages of circuit switching when compared
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with packet switching. It turns out that this efficiency consideration, although valid,
was not the main motivation for ATM when it was first proposed. ATM is advantageous
in many respects even if all sources had more or less constant-rate traffic. In fact,
some people view the bandwidth efficiency of ATM for bursty traffic as icing on the
cake.

The ATM transport mechanism was originally proposed by the telephone network
community, although the technology is also aggressively being adopted by the com-
puter communication community. To understand the original motivation for ATM, let
us briefly review the STM technology the way it is adopted in telephone networks.
There are several fixed transport rates in the telephone networks. A voice conver-
sation, after digitization, requires 64 kbps of bandwidth, and this forms the basic
transport rate. The Digital Signal Level 0 (DS-0) of the TDM hierarchy carries infor-
mation at this rate. The next higher rate is the DS-1 rate, which is about 1.5 Mbps.
Thus, 24 telephone conversations, or DS-0 channels, can be multiplexed onto a DS-1
channel. Each time slot is 1 byte and each frame consists of 24 bytes, one for each
DS-0 channel.

Instead of subscribing communication channels from the network operator at the
basic 64 kbps rate, a customer may also lease a T-1 line that carries a 1.5 Mbps DS-1
data signal. Note that the term “DS-1” refers to the data signal whereas the term “T-1”
refers to the carrier system, that includes the transmitter, the transmission medium,
and the receiver for the DS-1 data signal. The T-1 line can be used to send either voice
or computer data, and the choice is up to the subscriber. If it is used to carry data, the
whole 1.5 Mbps can be used as an entire chunk of bandwidth without the need for a
preliminary stage of multiplexing DS-0 signals.

A number of DS-1 signals can be multiplexed onto a high-speed data-signal level.
The DS-2 signal consists of 4 DS-1 signals and the DS-3 signal consists of 28 DS-1
signals. The DS-3 rate is about 45 Mbps. For the purpose of TDM, instead of multi-
plexing from DS-1 to DS-2 and then to DS-3, it is a common practice to multiplex
directly from DS-1 to DS-3. In this case, each time slot in a DS-3 is dedicated to data
from a particular DS-1 signal.

With this transport-rate hierarchy, the next question is how to switch these channels.
The STM switches are typically designed to switch at one of the basic rates (i.e., at 64
kbps, 1.5 Mbps, or 45 Mbps). Switching at rate r means that all the data in an input
channel of rate r will be switched to an output channel of rate r; that is, one cannot
switch some of the data within the input channel across different output channels. For
instance, a switch that switches at DS-1 rate does not take apart the underlying DS-0
signals before switching is being performed, and the whole input DS-1 is switched to
an output DS-1.

The switching rate may not be the same as the data rate of the input lines. For
example, as illustrated in Fig. 7.1, a switch that switches at the 64 kbps DS-0 rate
may have input lines at the DS-1 rate. It is more complicated to switch at the lower
rate for two reasons. First, the switch must be able to take apart the data at the higher
rate to obtain the data at the lower rate: this is essentially the demultiplexing function.
Second, there are more data channels at the lower rate and their switching is more
complicated simply because of their large number.
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FIGURE 7.1 A T-S-T DS-0 switch with DS-1 line interface.

It should be noted that implementation-wise, it is not necessary to spatially de-
multiplex the DS-1 channel so that each of the underlying channels is carried on a
physical channel. In practice, the demultiplexing function and part of the switching
function are often performed in the time domain. Returning to the example in Fig. 7.1,
the DS-0 data on each time slot of an input DS-1 line are destined for a particular
time slot of a particular output DS-1 line. Each input DS-1 line is fed into a time-slot
interchanger (TSI), which is essentially a time-domain switch (see Chapter 2). The
TSI switches the time-slot positions taken by the DS-0 data channels and forwards
the time-slotted data in a one-by-one fashion to a next stage of space-domain switch.
The space-domain switch operates in a time-slotted fashion, and the switching con-
figuration changes from time slot to time slot. The outputs of the space-domain switch
are connected to yet another stage of TSI. By controlling the TSI at both the outer
stages and the connectivites of the center-stage space-domain switch, it is possible
to switch any input DS-0 channel to any output DS-0 channel provided the switch is
nonblocking (see Chapter 2).

One limitation of the STM transport-rate hierarchy is that a subscriber can only
acquire a channel of 64 kbps, 1.5 Mbps, or 45 Mbps (ignoring the DS-2 rate that
is less popular in practice). In fact, the difficulty of offering data-transport services
other than the basic rates was the reason why ATM was first proposed. We discuss
the issues in the following.

If a subscriber needs, say, a bandwidth of 15 Mbps, the straightforward option is
to lease a 45 Mbps DS-3 channel. However, this is more than that is needed and can
be rather expensive. Alternatively, the subscriber may acquire ten 1.5 Mbps channels
to make up the 15 Mbps bandwidth and disperse the 15 Mbps source traffic over the
ten 1.5 Mbps channels. A difficulty is that the network does not recognize these 10
channels as being logically related to each other and may switch them over different
paths from source to the destination. Since different paths may introduce different
delays on the data, the receiving end needs to compensate for the longer-delay paths
by introducing additional delays in the shorter-delay paths after the data are received
so that the original information can be reassembled in the correct sequence. The end
equipment required at the source and destination for such synchronization is com-
mercially available from third-party equipment vendors. The process of dispersing a
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channel over several parallel subchannels is called inverse multiplexing for obvious
reason. The network operator is unaware of (and has no need to be aware of) the
use of inverse multiplexing by the subscriber. The inverse-multiplexing equipment,
however, introduces additional cost to the subscriber.

Instead of inverse multiplexing, one may also modify the switches so that they can
perform multirate switching so that channels of rate n× basic rate, n an integer, can
be supported. For example, if a switch has input and output lines of DS-3 rate and
can switch at the DS-1 rate, we can modify it so that it can switch a channel of n×
DS-1 rate, where n = 1, 2, . . . , 28. The switch must recognize the n DS-1 channels as
logical subchannels of the actual channel during both call setup and switching of time
slots. There are two ways to go about this and both introduce additional complexity
to the switch design.

The first method is to simply perform some sort of inverse multiplexing at the
switch. A subscriber sends to the network a channel of 1.5 × n Mbps bandwidth.
After being multiplexed with data from other subscribers, the channel occupies n

time slots of a DS-3 input line to a switch. During call setup, the switch controller
must be informed of the n time-slot positions taken by the input channel. One by
one, the controller sets up n DS-1 connections over the switch. Although these con-
nections have the same input and output, they may be switched over different paths
within the switch. This is illustrated in Fig. 7.2(a), which shows many T-S-T switch
modules (each T-S-T module is like that in Fig. 7.1) connected in three stages. These
n time slots, if switched over different internal paths, may suffer different processing
and switching delays. Consequently, it is possible that the n time slots within a frame
period at the input may arrive at the output in different frame periods. Hence, it is nec-
essary to introduce artificial delays at the output (as in inverse multiplexing) to these
time slots so that the time slots of the frame period at the input can be realigned back
into the same frame period at the output. In addition, within the same frame period, the
order of the time slots may not be preserved and a time-slot interchanger is needed to
reorder the time slots (although the controller can integrate this consideration easily
into the call setup procedure).

The second method for multirate switching is to design the switch such that one
can specify not only the desired output of a connection, but also the internal path to
be taken. By insisting that the switch sets up n subchannels over the same internal
path, there will be no need for time-slot realignment at the output. This is illustrated
in Fig. 7.2(b). Although there is no need for time-slot realignment at the output, some
new complexities are introduced as a result.

First, the call setup is more complicated because the overall switch must recognize
the logical relationship of all the time slots and must then attempt to switch them over
the same path, maintaining the sequence. In addition, there is also the performance
penalty in terms of the increased blocking probability as compared to the first method.
This is due to the phenomenon of bandwidth fragmentation: one may not find n idle
time slots in any particular path (especially when n is large) although there are more
than n idle time slots in total over different paths, in which case the call is not blocked
in the first method, but is blocked in the second method. For the same blocking
performance, the second method generally requires the number of alternative paths
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FIGURE 7.2 (a) Using basic rate switch to switch multirate connections; (b) using multirate
switch to switch multirate connections.

to be increased. For the switching network in Fig. 7.2, this means that the number of
middle-stage switch modules must be increased.

To summarize, the first limitation of STM is that the present-day network can
only offer the basic rate transport because most network equipments are not designed
to handle multirate switching. The second limitation is that although multirate
switching is possible by modifying the switches, additional complexity will be
incurred at both the software (managing the connections) and hardware levels. Even
if multirate switching were available, there would still be the third limitation that
the channel rate must be an integral multiple of the basic rate of the switch. For
example, a DS-1 switch modified to handle multirate switching will not be able to
accommodate channels at 100 kbps, 1 Mbps, or 2 Mbps.
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To deal with these limitations, the proponents of ATM argued that the concept of
frames should be removed so that time slots can be assigned independently to chan-
nels: time slots are not assigned in a periodic fashion to channels and they are given to
the channels only when there is information to be transported on that channel. In other
words, time slots are not dedicated to channels in a synchronous fashion. Without the
frames, the output (destinations) of a time slot is not implicitly derivable from its
position anymore. Therefore, a header that specifies the output must be attached to
the time slot so that the switch can use it to route the time slot to the correct output.
With this, what we have is basically the framework for fixed-length packet switching
where each time slot carries a fixed-length packet! With the additional introduction
of virtual-circuit routing (to be discussed in Section 7.4) so that information from a
source is routed through a single path over the network, there is no need for inverse
multiplexing. Also, without the frame structure, there is no need to limit the band-
width assignment to an integral multiple of the basic rate. This new framework also
gives rise to new issues and considerations, and they will be discussed in the next few
sections.

In addition to regular user data, network equipment also needs to coordinate with
each other to achieve certain functions. For instance, to set up an end-to-end connec-
tion from source to destination, several switches will be involved. The traffic status
at different parts of the network may also need to be disseminated. In STM, control
channels can be defined for the purpose of transporting control information. However,
the bandwidth of the control channels will typically need to be overengineered so as
to accommodate control functions needed in future services. Also, control informa-
tion, unlike continuous traffic like voice and video, may arrive in a bursty fashion.
For efficiency, one can send the control information in packet form in the control
channel.

One advantage of ATM is that the transport mechanism is already packet-based,
and only as much bandwidth as is required by the control channels needs to be as-
signed. Among the five-byte headers, only certain bits need to be predefined for
the indication of whether the cell is a control or a regular data cell. If 5 bytes are
not enough to distinguish the different levels or shades of control functionalities
needed, one may further define different types of control cells using some of the
bytes of the 48-byte payload. To draw an analogy, control information is like in-
structions in a computer in that they both achieve certain functions by invoking op-
erations of the underlying systems. ATM cells are a very simple mechanism that
allows a rich set of “instructions” to be defined: each 53-byte cell is like a 53-byte
instruction.

7.2 DELAYS IN ATM NETWORK

Let us consider the delays incurred by packets in an ATM network. With the aid
of Fig. 7.3, we shall trace the delays of a packet as it travels from its source to the
receiver. At the source, the information must be packetized into fixed-length packets
called cells. In the ATM standard, each cell is 53 bytes of which 48 bytes are dedicated
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FIGURE 7.3 Delay components of cells from source to destination.

to carrying the source traffic1 and 5 bytes are the packet header. The packetization
of the information to be transported is part of the so-called adaptation process. The
delay incurred during the process is called the adaptation delay.

There are two ways in which adaptation delay could be incurred. If the information
to be sent is a long message that arrives in its entirety as a data block, then the
only delay that is incurred is the delay incurred by the hardware or software that
“segments” the message into cells and then computes and inserts the cell headers.
This is the adaptation processing delay. Instead of block messages, information can
also arrive as a data stream. For example, a data stream can be a byte stream in which
the bytes arrive one after another with a certain time gap between successive bytes.
In this case, some delay is incurred during the adaptation process to wait for enough
number of bytes (i.e., 48 bytes) to arrive to form a cell. This is the adaptation waiting
delay. For such stream information, there are therefore two delay components: the
waiting delay followed by the processing delay. The processing delay is generally a
fixed, constant delay. The waiting delay can be fixed or varying depending on how
the source generates the bytes. The waiting delay, for example, is fixed for a voice
source that generates data at a rate of 64 kbps. Specifically, the waiting delay will
then be about 48 × 8/64 = 6 ms.

When a cell travels from node to node, there is also the propagation delay due to the
limit on how fast signals can travel, the speed of which must be lower than the speed
of light. In other words, the propagation delay of a link is the time required for a bit
of information to travel from the transmitter end to the receiver end of a transmission
link. The end-to-end propagation delay is simply the sum of the propagation delays
incurred on all links in the end-to-end path. The propagation delay does not vary
widely over time for a fixed path and can be considered as fixed. The temperature may

1In actuality, less than 48 bytes are used to carry the source traffic (see the appendix) because of additional
overhead bytes within the 48 bytes.
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have an effect on the propagation delay of, say, a fiber link, because the temperature
expansion and contraction of the glass may affect the fiber length, but the effect is
generally insignificant.

As a cell travels from node to node, it may also incur processing delay and waiting
delay at each node. First, consider the source node again. After adaptation, the cell
will be forwarded to the transmitter end of the transmission link. Because there could
be a number of cells already waiting to be transmitted, the cell concerned will incur a
queueing delay while waiting for its turn to be transmitted. For example, after a long
message has been adapted, the resulting cells may be put into a buffer waiting to be
transmitted. The cells at the later part of the message would wait for a longer time
than cells at the earlier part of the message.

As the cell travels through nodes in the network, within each node, the cell will
be processed (e.g., VCI translation, switching, etc.) upon arriving at each node. The
switching part of the processing delay can be varying or fixed, depending on the switch
implementation. Recall that the arrivals of packets to a switch are not scheduled in
an ATM network, and several cells may be targeted for the same output at the same
time. This leads to the contention problem that we have already covered in Chapters
3 and 4. As has been seen, some solutions to the contention problem (e.g., using input
buffers to store packets that have lost contention) may cause random and variable
delays. In short, some input delay is incurred at the input. Part of the input delay is the
processing delay for VCI translation and so on. Depending on the switch architecture,
part of the delay can be random and variable delay due to waiting at an input queue
for output access.

In addition, cells may also incur delay at an output after they have arrived at the
outputs. There are two possible delay components at an output, the queueing delay
and the transmission delay. The queueing delay is incurred when more cells arrive
at the output than can be transmitted immediately. Some of the cells must then be
buffered for transmission some time in the future. This can happen in switches that
are capable of forwarding more than one cell to an output in each time slot. The
transmission delay is simply the amount of time needed to transmit one cell. For an
ideal output-buffered switch, the output queueing delay is the only delay component
that is random and varying.

The random and varying queueing delays at the nodes in turn cause the end-to-end
delay from source to destination to be random and time varying. The variation in the
end-to-end delay from cell to cell is often referred to as the delay jitter. For many
applications, it is desirable to remove this delay jitter so that data can be forwarded to
the user (or end application) in a continuous and periodic fashion. For example, for
voice conversation, data are injected into the network in a continuous and periodic
fashion. While traveling through the network, the cells may incur varying delays and
the time gap between adjacent cells may be variable by the time they arrive at the
receiver because of network delay jitter. It is necessary to remove the jitter before the
audio is played out.

A smoothing buffer is generally used to remove the delay jitter. The principle of
the smoothing buffer works like that of a water dam. Water may arrive to the dam
in a bursty manner that depends on the rainfall. However, the water flows out of the
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dam at a constant rate. At the receiver, instead of immediately presenting the arrived
data to the user, the receiver buffers it in the smoothing buffer first. By introducing
a sufficiently large delay at the buffer, it is possible to deliver the data to the user in
a continuous fashion. This additional delay is the adaptation delay incurred at the
receiver end. The idea is that cells that have suffered a large delay within the network
will incur a small receiver adaptation delay, and vice versa. Specifically, let Tn be
all other delays and Ta be the adaptation delay introduced by the smoothing buffer.
The idea is to make Tn + Ta a constant: when Tn is large and Ta is small, and vice
versa.

7.3 CELL SIZE CONSIDERATION

We have already covered the motivations for fixed-length cell switching from the
viewpoint of traditional circuit switching. These were the considerations that gave
rise to the ATM proposal originally. In that context, cells are basically time slots of 53
bytes. Instead of motivating cell switching from the shortcomings of circuit switch-
ing, let us examine fixed-length cell switching in the context of packet switching.
Specifically, we now consider fixed-length versus variable-length packet switching
and the issue of setting packet size.

Transport using fixed-length cells may incur more overhead than using variable-
length packet because of the segmentation process. Consider the sending of a message.
As shown in Fig. 7.4, if the underlying network transports information in the form of
fixed-length cells, it is then necessary to partition the packet into many cells before
transmission. The header of each cell must contain enough information for the nodes in
the network to be able route it to the desired destination, and this information must be
repeated for successive cells. This incurs much overhead as compared to transporting
the long message as a long packet. In a variable-length packet, the packet can be as
long as the message to be transmitted.

Let Lm be the length of the message, and let Lo be the header size. For the sake of
argument, suppose that Lo in the cell network and the variable-length packet network
are the same. Then, the number of bytes needed to transmit the message as a packet

Lm

Lo Lc

FIGURE 7.4 Segmentation of a message into cells during the adaptation process.
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in the latter is

Bp = Lm + Lo. (7.1)

The fractional overhead is (Bp − Lm)/Lm. The number of bytes needed to transport
the message in the cell network is

Bc = �Lm/Lc� × (Lc + Lo), (7.2)

where Lc is the number of bytes in a cell excluding the header. The fractional overhead
is (Bc − Lm)/Lm. When Lm is not exactly a multiple of Lc, the last cell will only
be partially packed and some bytes are not transporting useful information. If the
message is long, the round-off is insignificant, and we have

Bc ≈ Lm + LmLo/Lc � Bp. (7.3)

The penalty is primarily in the form of higher header overhead.
If the message is short, the header overhead penalty is reduced. However, the

round-off penalty due to the message size Lm not being a multiple of cell size Lc will
be more significant. This overhead tends to be more severe the shorter the message.

The above discussion shows that cell transport is less efficient than variable-length
packet transport in terms of bandwidth usage. Cell transport has two advantages
over variable-length packet transport. The first is that it is easier to design switches
to have high throughput when the incoming traffic is fixed-size cells. The switch
designs discussed in the previous chapters were based on the assumption of cells.
It can be shown that the throughputs of the switches will decrease when the input
packets are variable length and the switches are not operated in a time-slotted manner.
Furthermore, since the operation of the switch is not time-slotted, it is necessary for
the switch to keep track of the durations of the transport of the packets through the
switch. This leads to additional complexity in switch design.

The second advantage of cell transport can be explained with the aid of Fig. 7.5. In
the figure, a multiplexer is used to multiplex traffic from two inputs onto one output.
Suppose on one input there is a long packet and on the other input there is a short
packet that arrives slightly later. That is, the transmission of the long packet on the
output has begun when the shorter packet arrives. Then, the short packet must wait
for a long time before it can be transmitted. On the other hand, if the long packet
has been segmented into smaller cells before transmission, then the short packet can
be transmitted before the other cells of the long packet are transmitted, as shown
in the figure. Thus, cell transport coupled with the use of an appropriate scheduling
scheme can prevent a long packet from hogging the use of the output transmission
capacity. This issue of unfairness, however, is perhaps less of a concern when the
output link has very high transmission rate: even if the short packet has to wait for
the transmission of the long packet to finish, the waiting time is not too long anyway.
In any case, this unfairness issue was not the motivating factor for cell network as far
as the ATM proposal is concerned.
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FIGURE 7.5 (a) Multiplexing variable-length packets; (b) multiplexing cells.

Given that we want to adopt cell transport, there is then the consideration of the
cell size. If the cell size is small, the header overhead will then be large. If the cell
size is too large, on the other hand, the adaptation waiting delay of low-rate real-time
services, such as voice, may be too large. Recall that ATM was originally initiated by
people in the telephone network community. The decision to set the cell size to 53
bytes is mainly motivated from the consideration of the transport of voice. Smaller
cell size may be inefficient. Cell size much larger than this (say 100 bytes) may result
in echo problems. The voice transmitted by the source, through the headset of the
receiver, may be fed back to the source through the reverse path of a duplex voice
connection. Recall that the bit rate of digital voice is 64 kbps. Each sample is one byte
in length. Therefore, the sampling rate is 8000 samples per second. The adaptation
delay both ways, assuming 100-byte cell, is already 2 × 100/8 = 25 ms. This itself
results in noticeable echoes even in the absence of all other delays.

7.4 CELL NETWORKING, VIRTUAL CHANNELS, AND VIRTUAL PATHS

There are many options and alternatives for the operation and architecture design of
a cell network. This book by and large assumes those options adopted by the ATM
standard. This section explains the principles and rationale behind them.

7.4.1 No Data Link Layer

In traditional packet-switched networks, the links between nodes are not reliable and
the bit error rate is high. Therefore, the data link layer (more specifically, automatic
repeat request (ARQ) in the data link layer) is introduced to coordinate and auto-
mate the retransmission of data in case of data corruption. The advent of fiber-optic
technology brings along very reliable transmission. An important assumption in the
ATM standard is the use of reliable links. With reliable links, the ATM proponents
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argue that there is no need of a data link layer, which only makes networking more
complicated and less efficient. Thus, for ATM networks, there is no data link layer.
The recent development of wireless ATM may challenge the assumption of reliable
links, since the transmission medium may not be as reliable as is assumed. Neverthe-
less, the ATM standard has been defined, and other ways must be sought for reliable
communication. A possibility is to introduce ARQ at a layer higher than the ATM
layer.

7.4.2 Cell Sequence Preservation

To simplify the implementation of network services and applications over ATM net-
works, the standard specifies that ATM networks must deliver cells in the correct
sequence from source to destination. In other words, if you write an application pro-
gram that sends data from a source workstation to a destination workstation over an
ATM network, the communication “pipe” is expected to be FIFO so that the order in
which cells are sent at the source is also the order in which they are received at the
destination. This makes it easier for the users to develop network applications and
services over the ATM network.

7.4.3 Virtual-Circuit Hop-by-Hop Routing

An implication of the sequence-preservation requirement is that the ATM network
must be a virtual-circuit (or connection-oriented) network. A connection must be set
up a priori before data can be sent over the network. If the network were to be a
datagram (connectionless) network, cells might then travel over different physical
routes to their destinations, and the different delays of these routes might introduce
out-of-sequence arrivals at the receiver.

There are two possible routing mechanisms in a virtual-circuit network: source
routing and hop-by-hop routing. In source routing, the sequence of nodes to be tra-
versed by a packet is encoded in the packet header. In a cell network, the cells have
a fixed-length header, and therefore there is an upper bound on the number of bytes
that can be used to encode the sequence of nodes. In other words, there is a limit on
the maximum number hops if source routing were to be adopted.

The ATM standard adopted hop-by-hop routing. The nodes traversed are not ex-
plicitly encoded in the header. Rather, there is a fixed-length virtual-circuit identifier
in the header that is used to identify cells belonging to a particular virtual circuit.
Upon the arrival of a cell to a node, its virtual-circuit identifier is used to retrieve from
a lookup table the output link of the node to which the cell must be forwarded. The
cell is then switched and transported on this output link, that connects to the node next
in sequence in the path. In this way, the sequence of nodes to be traveled is derived
on a hop-by-hop basis, and there is no limit on the maximum number of nodes that
can be in the route. The virtual-circuit identifiers of different virtual circuits on the
same physical link must be distinct; otherwise, there will be confusion during the
table lookup.
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7.4.4 Virtual Channels and Virtual Paths

There are two types of virtual circuits in the ATM virtual-circuit hierarchy: the virtual
channel (VC) and the virtual path (VP). The VC is at a lower level and the VP is at the
higher level. To draw an analogy with the telephone network multiplexing hierarchy,
the VC is analogous to the 64 kbps DS-0 voice channel and the VP is analogous to the
1.5 Mbps DS-1 channel that consists of 24 voice channels. A difference is that the
bandwidths of VCs or VPs may be varying rather than fixed.

The reader is referred to Fig. 7.6(a) in the following explanation of VCs and VPs.
A VC is an end-to-end entity associated with a source and a destination. Thus, it
may pass through several nodes within the ATM network. A VC has two termination
points: the head end and the tail end. The source injects cells into the ATM network
through the head end and the destination removes cells from the ATM network through
the tail end. A VC is specified in terms of a sequence of VPs rather than physical
links from source to destination. The cells of the VC pass through these VPs while
traveling from source to destination. To a VC, the VPs are like logical links. A VP,
in turn, consists of a succession of physical links. Each physical link connects two
physically adjacent switch nodes.

As in a VC, a VP also has two termination points. The head end is located at either
a source or an output of a switch node within the ATM network. The tail end is located
at either a destination or an input to a switch node. Several VCs can be multiplexed
onto a VP at the VP’s head end, and the VCs contained in a VP are demultiplexed from
the VP at the VP’s tail end. Thus, as the cells of a VC travel through the sequence of its
associated VPs, they can be multiplexed and demultiplexed several times, depending
on the number of VPs. The situation is analogous to that in a telephone network in
which DS-0 channels are multiplexed onto and demultiplexed from the higher level
DS-1 channels.

With reference to Fig. 7.6(a), we see that in a way it is correct to say that a VP
consists of a number of VCs or that a VC consists of number of VPs. This is a point
that often causes confusion. The former statement is correct if we interpret it to mean
that several VCs may be multiplexed onto a VP. A VC, however, does not necessarily
terminate at the tail end of a VP. In this case, the VC will be demultiplexed from the
VP and remultiplexed onto yet another VP. Thus, we see that the latter statement is
correct in that a VC may traverse several VPs from source to destination.

The network in Fig. 7.6(a) can be broken down into two levels for the understanding
of its routing mechanism. At the higher level, which is shown in Fig. 7.6(b), we have
a VP network with all the physical nodes and links as its underlying building blocks.
At the lower level, which is shown in Fig. 7.6(c), we have a VC network with a subset
of physical nodes and VPs as its building blocks.

Between the two terminal points of a VP, the cells of the VP may pass through
several physical nodes. At the intermediate (nonterminating) nodes, all arriving
cells of the same VP are routed to the same physical output link. In other words,
although the cells of a VP may be from different VCs within the VP, no attempt is
made to distinguish these cells as far as routing at an intermediate node is concerned.
Cells of different VPs may, however, be routed to different physical outputs of an
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(a)

VP head end: VCs are
multiplexed here 

VP tail end: VCs are
demultiplexed here 

(b)

(c)

Two VPs on the same 
physical link that 
terminate at different VC 
switches

VC
VP
Physical link

VC switch
VP switch
VC/VP switch

FIGURE 7.6 (a) A VC/VP network; (b) the VP logical network; (c) the VC logical network.
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intermediate node when the VPs do not traverse the same sequence of physical links.
These intermediate nodes are sometimes called VP switches, since they distinguish
cells based on their VPs rather than VCs in the routing process.

The nodes to which the termination points of a VP are attached are called VC
switches, and they form the nodes of the lower level VC network shown in Fig. 7.6(c).
The network in the figure is a logical network rather than a physical network. The VP
switches are transparent in the logical network, since VCs do not terminate there. To
a VC, a VP is like a link between two nodes. At the input of a VC switch, the cells
from a terminating VP are distinguished based on their VCs, and cells from different
VCs may be routed to different output VPs at the VC switch. Note that we say output
VPs rather than output physical links because each output physical link may contain
several VPs that, to the VCs, are different logical entities. Different output VPs at the
VC switch, even if they were on the same physical output links, could lead to different
VC switches at their tail ends, as shown by the example in Fig. 7.6(c).

In general, a switch can be a VC, VP, or VC/VP switch. As explained above, a VP
switch is not a terminating node for VPs or VCs, and a VC switch is a terminating node
for VPs but not VCs. (Note: VCs terminate at their destinations outside the network.)
A VC/VP switch is simply one in which some VPs terminate and some VPs do
not (see Fig. 7.6(a) for an example). In this switch, the cells of nonterminating VPs
are not distinguished based on their VCs, and the cells of terminating VPs must be
distinguished based on their VCs for further routing.

We can draw an analogy between VP/VC networking and transportation by bus.
Cells of a VC are like people who are from a common origin wanting to go to a
common destination. If there is no direct bus from the origin to the destination, then
these people must take several bus routes in succession to reach the destination. The
different bus routes are like VPs. Each bus route goes through several streets or roads,
which are analogous to physical links. At the beginning of each bus route, people
(possibly from different origins and to different destinations) board the bus, and at
the end of the bus route, they either reach their destinations or continue on to another
bus route. This is analogous to multiplexing VCs onto and demultiplexing VCs from
a VP. A VP switch is like a nonterminal road junction where nobody is allowed to
board or leave the bus. A VC switch, on the other hand, is like a bus station where
many bus routes end and begin.

7.4.5 Routing Using VCI and VPI

With hop-by-hop routing, virtual-circuit identifiers must be encoded in the cell headers
so that a switch may use them to decide how to route cells. The identifiers are used as
an index to retrieve routing information from a routing table. Each input of a switch
typically has a routing table. The routing information associated with a virtual circuit
is added to the table during the setting up of the virtual circuit, and it is removed from
the table when the virtual circuit is torn down.

With the two-level hierarchy in which there are two types of virtual circuits, VCs
and VPs, each cell has two identifiers in its header: the virtual-channel identifier (VCI)
and the virtual-path identifier (VPI). Figure 7.7 illustrates how routing is performed
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at the VC and VP switches and the corresponding routing tables. Each input link
(physical link) of a VP switch has a routing table that is used to determine how to
route cells arriving on the input. The VPI of a cell is used as the index to look up an
entry in the table, and the entry contains two elements (output link and output VPI),
which indicates the output link to which the cell must be switched and the new VPI
value it should adopt at the output link.

The cells of a VP may change its VPI value as they travel from a physical link
to another physical link within the VP. The reasons for allowing the VPI to change
from link to link, even though the VP has not terminated, are to simplify network
operation and to reduce blocking probability due to insufficient VPIs. These are also
the reasons for allowing the VCI of a VC to change, the details of which will be
elaborated shortly. A point also to be noted is that the cells with the same VPI value
but on different physical links may actually belong to different VPs.

While a VP switch uses only the VPI for routing, a VC switch uses both VPI and
VCI. As shown in Fig. 7.7, the VPI–VCI combination is the index for reference to
an entry in the routing table. This is because the cells of a VC can only be identified
by the combination of VPI and VCI: cells with different VPIs but the same VCIs, or
with different VCIs but the same VPIs, are cells of different VCs. An entry of the
routing tables at a VC switch consists of three elements: output link, output VPI, and
output VCI).

The VCI of a VC is allowed to change as its cells travel from source to destination.
While the VPI of the cells can change from physical link to physical link, the VCI can
change only when the cells pass through a VC switch; the VCI does not change when
cells pass through a VP switch. The changing of VPI and VCI does not cause confusion
as long as the VPI–VCI combinations of different VCs on a link are different. An
analogy is to compare the situation to that of a person wearing shirts of different colors
or adopting different names on different occasions: as long as the color or name is
unique on each occasion (i.e., no other person wears the same color or uses the same
name), we can use it to identify the person.

There are two reasons why the VCI of a VC and the VPI of a VP are allowed to
change: simpler operation and lower blocking probability during call setup. Consider
the alternative of requiring the VPI and VCI to remain the same. Let us focus on the
setting up of a new VC over the lower level VC network. Suppose that a sequence
of VPs for the VC has been identified. Each VP in the sequence may have some
VCI values already used by existing VCs within the VP. To set up the new VC, the
sequence of VC switches at the termination points of the VPs must coordinate with
each other to come up with a commonly available VCI not already used in any of
the VPs. For instance, if VCI = 11 is already used in the first VP, and VPI = 10 is
already used in the second VP, then neither VCI = 10 nor VPI = 11 can be assigned
to the new VC.

The coordination of the VC switches to come up with a unique VCI assignment
throughout the path required a complicated distributed control algorithm and a lot of
control information to be sent around among the VC switches (see Problem 7.7). The
alternative of allowing the VCI to change from VP to VP is much more desirable.
Each VC switch simply keeps track of the unused VCIs on each of its output virtual
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paths. During call setup, the source chooses one unused VCI to be used for the new
VC and informs the next VC switch in sequence that this VCI will be used. The next
VC switch will then use this VCI to identify the arriving cells of the VC in the future.
The next VC switch in turn maps this input VCI to yet a different VCI that is available
on the output VP next in the sequence. In this way, only adjacent nodes coordinate
with each other and only one short message needs to be passed between two adjacent
nodes.

Insisting on using the same VCI from end to end also increases the likelihood
of blocking probability (see Problem 7.7). It could be that each VP has at least one
unused VCI but that there is no common VCI that is not used in all the VPs. Allowing
VCI to change from VP to VP ensures that the call will not be blocked in this way.

We have assumed a node is either a VC or a VP switch in the above discussion.
Recall that we could also have a node that performs both VC and VP routing. In other
words, at this node, some VPs are nonterminating and routed directly, while other VPs
are terminating and their VCs need to be taken apart and routed individually. Logically,
the node (see Fig. 7.8) appears to consist of three switches, two VP switches and one
VC switch. The first VP switch routes all the terminating VPs to the VC switch;
the nonterminating VPs are forwarded directly to the inputs of the second VP switch.
The VC switch demultiplexes the VCs of the terminating VPs and remultiplexed them
onto new VPs. The second VP switch multiplexes the new and nonterminating VPs
onto output links.

Figure 7.8 depicts the logical functions performed at a VP/VC switch. In actual
implementation, any VC switch is also capable of performing VP routing and can

Nonterminating VPs

Terminating VPs Originating VPs

VC 

switch

VP 

switch

VP 

switch

In actual implementation, using appropriate routing tables, only 

one physical switch is needed to realize the VP/VC switching 

function

FIGURE 7.8 The logical structure of a VP–VC switch.
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therefore be used as a VP/VC switch. That is, one physical switch can simultane-
ously perform both VP and VC routing. In the routing table, all the VCs of the
nonterminating VPs will simply be mapped to the same VPs without their VCIs
being changed, as illustrated in the following example in which input VCI = 1 is
nonterminating.

Input VPI Input VCI Output Output VPI Output VCI

1 0 2 3 0
1 1 2 3 1
1 2 2 3 2
1 3 2 3 3
...

...
...

...
...

A more efficient (in terms of routing table size) method is to divide the table into
two subtables. The first subtable operates at the VP level. The VPI of the cells of
a nonterminating VP will simply be mapped to an output VPI without their VCIs
being changed. Thus, only one entry is needed for each nonterminating VP. For a
terminating VP, this entry consists of a pointer to a location in the second subtable
rather than the output VPI value. At this location of the second subtable, there are
entries that indicate how the VPI and the VCIs of the cells of the terminating VP
should be changed. In this way, the routing table memory requirements of the VP/VC
switch can be reduced.

7.4.6 Motivations for VP/VC Two-Tier Hierarchy

Having discussed the operation of VP/VC networks, let us now examine the motiva-
tions for this two-tier hierarchy. First, it simplifies network management and operation
in several ways:

1. Call setup is simplified. Setting up a call involves finding a route from source to
destination, allocating bandwidth over the path, and updating the routing tables
of the switches in the route. A call is usually established by setting up a VC to
carry its traffic. A VC, in turn, is set up over a sequence of VPs. Typically, these
VPs are existing VPs that have previously been set up rather than new VPs: new
VPs are needed only if the existing VPs are not suitable for the VC (e.g., when
the VPs do not have sufficient bandwidth to accommodate the VC or when the
VPs run out of VCIs), which should occur rarely in a well-operated network.
Thus, VP switches are usually not involved in the setting up of a VC and no
actions are required of them even though the VC may pass through them. Since
only the VC switches are involved, calls can be established much quicker than
when all the switches are involved.

2. A VP switch is less complex than a VC switch. A VP switch does not need
to examine the VCIs of cells, and therefore, its routing tables can be much
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FIGURE 7.9 (a) Directly multiplexing a large number of VCs onto a physical link; (b) two-tier
multiplexing hierarchy.

smaller. As the call is ongoing, a VP switch does not need to monitor the status
and guarantee the performance experienced by individual VCs. It only monitors
and guarantees the performance of VPs.

3. Multiplexing is simplified. Let us focus on the local problem of multiplexing
traffic from VCs, with and without the two-tier hierarchy. Figure 7.9(a) shows a
multiplexer that statistically multiplexes the traffic from, say, 1000 VCs onto a
physical link directly. The traffic from the VCs may not arrive at the multiplexer
in a predictable fashion. As shall be detailed in the next chapter, a scheduling
policy is needed to determine the order in which the input traffic from different
VCs will be transmitted on the output physical link. Among other requirements,
the scheduling policy must guarantee the performance (say, in terms of cell loss
or delay) experienced by individual VCs. This becomes increasingly difficult
as the number of VCs being multiplexed increases.

Figure 7.9(b) shows the alternative of using the two-tier hierarchy. The VCs
are divided into groups (say, 100 VCs to each group) and each group is first
multiplexed onto a VP. The VPs are then multiplexed onto the physical link.
The design of a complex multiplexer has been decomposed to that of a number
of less complex multiplexers. Now, the simplification does not come without
cost. In terms of bandwidth usage, it is better to multiplex (see Problem 7.8)
a large number of VCs directly onto the physical link. This allows all VCs to
share a larger pool of transmission bandwidth. For the two-tier system, if each
VP is allocated a fraction of the capacity of the physical link, there could be
situations in which some VPs are underutilized while other VPs are congested.
Nonetheless, to the extent that there are already many VCs being multiplexed
onto each VP, this phenomenon is less likely to occur (see Problem 7.8).

From the overall networking viewpoint, it is generally worthwhile to set up a VP
between two physical locations when there is sufficient traffic between them. This
way, the bandwidth usage penalty of the two-tier hierarchy will be small and the
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management and control of traffic between the two end points can be simpler, since
there is no need to take apart the traffic of individual VCs at the intermediate VP
switch nodes. It is simpler to deal with fewer channels of high bandwidths than many
channels of small bandwidths.

VPs can also be used to segregate the traffic of different services in an integrated
service network. Some services, say real-time video or voice, have very stringent delay
requirements but may tolerate some data loss. The traffic is more or less continuous.
Other services, such as computer data transport, may tolerate some delay but not loss,
and the traffic can be bursty. Different services and applications can have very diverse
requirements and traffic characteristics, and it is generally difficult to intermix their
traffic and to guarantee their respective performance requirements at the same time.

One simple way to deal with the problem is to set up different logical networks
on the same physical network (see Fig. 7.10). The “links” in the logical networks
are made up of VPs rather than physical links. A VP belongs exclusively to one
logical network only and all the traffic on it belongs to one type (or similar type)
of service. On each logical network, one then has to worry only about multiplexing
services of the same type, and the objectives and goals can be more clearly defined.
The bandwidth on a physical link is partitioned and allocated to the VPs on it, and
there is no interference among traffic of different VPs.

The bandwidth allocated to each VP is quasi-static in the sense that it does not
change rapidly over time. The bandwidth changes are slow, say, on the timescale of
hours. For instance, one VP could be carrying voice traffic, and during business hours,
more bandwidth can be assigned to it. During the evenings, perhaps the VP does not
need as much bandwidth, and some of the excess bandwidth can be assigned to VPs
carrying entertainment video programs. In this way, efficient bandwidth usage and
simple network management and control can be achieved simultaneously.

Segregation of virtual private networks (VPNs) is another way in which VP net-
working can be useful. Several virtual private networks, each belonging to a cus-
tomer of the network provider, can be set up over the same physical network. A
customer could be, for example, a private company. The bandwidth on each VP is
dedicated and not shared to prevent the interference of traffic of different VPNs.
Different customers can use their own virtual networks in whichever way they
want.

7.5 ATM LAYER, ADAPTATION LAYER, AND SERVICE CLASS

We have discussed cell networking with respect to the ATM standard. From the end
user’s viewpoint, in many situations it would be nice if the end user does not have to
worry about the intricacies of cell networking when using the network. Also, enhanced
capabilities can be added to the basic service provided by a cell network to simplify
and facilitate the development of network services and applications. The above two
functions are provided by the adaptation layer. The adaptation layer exists only at the
two ends of a VC and it is not an entity within the ATM network, although its design
is closely tied to the principles of the ATM network.
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FIGURE 7.10 (a) Overlaying two logical networks on one physical network using VPs; (b) first
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One task performed by the adaptation layer is to convert the data to be sent at the
source into cells before transmission and to reassemble the cells reaching the receiver
back into the original form. In addition, certain services may have particular require-
ments. For example, for services that require the end-to-end delay to be constant, the
adaptation layer may handle cell delay variation introduced by the network via the use
of an elastic buffer (see Section 7.2). For services that deliver data to the adaptation
layer in stream mode (see Section 7.2) but require the delay to be not too large, the
adaptation layer may limit the maximum adaptation waiting delay at the source and
send out partially filled cells if necessary. Given that there is no data link layer in the
ATM network, end-to-end error protection will be required for services that demand
high integrity in data delivery if the network links are unreliable (e.g., wireless data
links). This protection can be applied at the adaptation layer through forward error
control and ARQ. In addition to the above functions, the adaptation layer at the re-
ceiver may also be responsible for the recovery of source clock. In short, the purpose
of the adaptation layer is to make the underlying network easier to use from the user’s
perspective. What functions are implemented at the adaptation layer depends on the
services to be supported.

In the ATM standard, the adaptation layer is divided into two sublayers. Each of
the sublayers may add overhead information to the data to be transmitted in order
to perform its job. The lower sublayer is the segmentation and reassembly (SAR)
sublayer. It is responsible for segmenting source data into cells and reassembling re-
ceived data from cells at the receiver. The higher sublayer is the convergence sublayer
(CS). It is responsible for managing the flow of data to and from the SAR sublayer.
Depending on the services, the CS performs functions like synchronizing the receiver
and sender’s clock, handling delay variations, and so on, as described in the previous
paragraph.

The ATM standard divides the services to be supported by the ATM network into
four classes, and different ATM adaptation layers (AALs) are defined accordingly to
facilitate their support. As shown in the following table, each class is associated with
certain characteristics. The appendix goes into the details of AAL headers adopted
by the standard committee. Here, we confine ourselves to a brief discussion of the
basic principles.

Class A Class B Class C Class D

Constant bit-rate traffic Variable bit-rate traffic

Connection-oriented Connectionless

Fixed delay required Fixed delay not required

With reference to the above table, there are two important aspects to a service. The
first is the characteristics of the traffic generated by the source and the second is
the required support and performance to be guaranteed by the network. For the first
consideration, the traffic can be generated by the source either in a continuous or a
bursty fashion. The former presents a constant-rate data stream to the network and the
latter a variable-rate data stream. The sources are commonly referred to as constant
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bit-rate (CBR) and variable bit-rate (VBR) services, respectively. An example of
a continuous bit-rate traffic source is the telephone, in which traffic is generated
continuously at a rate of 64 kbps. An example of a variable bit-rate traffic source
is the computer, in which traffic is generated only when the user has something to
send.

For the second consideration, there are two aspects. First, a user can demand either
connection-oriented services or connectionless services. The ATM network itself is
connection-oriented and therefore offering connection-oriented services is relatively
straightforward. However, it is sometimes desirable to overlay a connectionless net-
work on top of the ATM network. One can define a set of VPs within the ATM network
for the exclusive use of the traffic generated connectionless services, as illustrated by
the Internet example in Fig. 7.10(c). The Internet Protocol (IP) is connectionless and
the Internet router in the figure is an example of a connectionless server. Basically,
this server performs connectionless routing. In the later section, we shall discuss the
support of IP services over ATM in detail. The two ends of a VP of the connection-
less network are connected to connectionless servers, end users of the connectionless
communication service, or LANs connected to the end users. The interface of the
ATM network with the overlaid connectionless network is through the adaptation
layer between the VP termination points and the connectionless servers, users, or
LANs. In other words, the offering of connectionless services is made possible by the
adaptation layer and the connectionless servers outside the ATM network. Consider
the delivery of an IP packet. At the source, the adaptation layer divides the packet into
many cells and routes them through the ATM network to a connectionless server. The
adaptation layer at the connection server reassembles the IP packet from the cells.
The server examines the IP address in the packet and decides how to further route
the packet. The packet is then forwarded to the VP associated with the route to be
taken. Of course, before the data enter the VP, they must go through the segmentation
process at the adaptation layer.

A service may also have certain performance requirements. Some services, such
as telephone voice, may require a fixed delay from end to end. As already discussed
in Section 7.2, the ATM network may introduce time-varying delay. The adapta-
tion layer is responsible for handling this delay variations by introducing additional
compensating delay at the receiver. In addition, for services that have very stringent
requirements on the integrity of data delivered, the adaptation layer is responsible for
providing error protection at the receiving end.

To deal with the diverse traffic characteristics and the requirements of services,
several types adaptation layers can be defined. Exactly how many different types are
required is a controversial issue and some people argue that one universal adaptation
will suffice. Currently, there are five different AALs in the ATM standard.

AAL1 is for the adaptation of constant bit-rate, connection-oriented services that
require fixed end-to-end delay. That is, the end-to-end delay must be constant and
the introduction of delay compensation at the receiver adaptation layer is necessary.
Examples of these services are voice, constant bit-rate video, and circuit emulation.
Circuit emulation basically emulates the circuit-switched environment in which a user
can lease a circuit from the telephone company. For these services, within the ATM
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network, an amount of bandwidth equal to the bit rate of the service must be dedicated
exclusively for the associated connection.

AAL2 is for variable bit-rate, connection-oriented services with fixed delay re-
quirement. An example is the delivery of video data that have been compressed with
a variable-rate compression algorithm: compression reduces the data amount by re-
moving redundant information in the data, and depending on the scene contents, the
compression ratio may vary over time, giving rise to variable bit-rate compressed
output. Bandwidth allocation is especially difficult (relative to other service classes)
within the ATM network for this class of services. If no exclusive bandwidth is allo-
cated, then it is difficult to bound end-to-end delay tightly. If bandwidth equivalent
to the peak rate is allocated, then bandwidth usage will be very inefficient and it
somewhat defeats the original purpose of data compression. If a bandwidth below
the peak rate is allocated, then the delay may be large when the source generates
data at close to the peak rate because the network is not ready to deal with it. Many
issues remain to be investigated further, and perhaps for this reason, AAL2 is the least
well-standardized among all the AALs.

AAL3 and AAL4 are for connection-oriented and connectionless variable bit-rate
services, respectively. There is no strict delay requirement and the end-to-end
delay can be varying. The standard committee has found the specifications of
AAL3 and AAL4 to be so similar that there is no strong reason to distinguish
between the connection-oriented and connectionless services at the adaptation
layer. Consequently, AAL3 and AAL4 have been combined into one adaptation
layer type, AAL3/4. AAL3/4 does not perform all functions required by connec-
tionless services. For instance, functions like routing and network addressing are
handled at a higher layer (through a connectionless server, for example). Thus,
for a source with multiple ongoing sessions simultaneously, the data of sessions
destined for different destinations must be separated by the higher layer before they
enter the adaptation layer. The data of separate sessions are handled by separate
adaptation-layer processes, and each adaptation-layer process is associated with
a VC or VP. For multiple sessions with a common destination, AAL3/4 allows
their data to be multiplexed at the adaptation layer so that they can be handled by
one adaptation-layer process and they will use only one VC or VP to reach the
destination.

AAL3/4 is primarily for datadelivery services. After the standardization of
AAL3/4, it was found that it is very inefficient (the header overhead in the AAL3/4
SAR sublayer is rather high) for such services and does not provide sufficient data
protection. Subsequently, AAL5 was developed to replace it. The reader can find more
details in the appendix.

For services with no stringent delay requirements, no exclusive bandwidth needs
to be dedicated in the ATM network. The traffic of this service class, for instance,
may use the leftover bandwidth on a link. The kind of network service provided to
the users that does not have hard bandwidth guarantee is called the available bit-rate
(ABR) service. The ABR service matches well with the AAL5 protocol.

The above has briefly discussed the different AALs in the ATM standard. A more
detailed discussion requires us to look into the AAL cell headers and explains the
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motivations for each field in the headers and how they are used. This discussion can
be found in the appendix.

7.6 TRANSMISSION INTERFACE

ATM switches and equipment are connected by physical links. Bits of the cells are
coded and transmitted on these physical links according to some specifications, which
are sometimes referred to as the transmission interfaces, and they belong to the phys-
ical layer of the network protocol stack. Examples of the common transmission in-
terfaces are the 100 Mbps 4B/5B2 TAXI interface, the 45 Mbps DS-3 interface, the
SONET/OC-3c, and so on. The specifications include the way bits are encoded, over-
head bytes used for synchronizing the transmitter and receiver, error protection, and
so on. Each of these interfaces can be used to transmit data other than ATM cells,
and additional specifications on how cells are packed and transported are generally
needed when used for ATM purposes.

It is possible to have an ATM switch that has input/output ports with different
transmission interfaces. However, the transmitter end and the receiver end of a phys-
ical link must be of the same interface for compatibility. Some of the standards
(e.g., TAXI) are purely for transmission purposes only (i.e., they transmit bits or
bytes with no regard to the applications) and they cause no confusion. Other stan-
dards, such as DS-3 and SONET/OC-3, are also commonly used to transport STM
data, and they were originally designed by the telephone community to have a fixed-
size frame for such a purpose. The use of these interfaces on ATM equipment may
be wrongly perceived as combining the ATM and STM multiplexing techniques.
It turns out that DS-3 or OC-3 frames can also be used to transport cells with the
understanding that the data in them are not TDM data. If the two pieces of ATM
equipment connected to the two ends of a DS-3 or OC-3 line conform to the same
cell-packing standard, cells can be extracted from the frames at the receiving end
without any problem. If the equipment is an ATM switch, the extracted cells from
the physical/transmission layer are then forwarded to inputs of the switch for further
routing.

7.7 APPROACHES TOWARD IP OVER ATM

Although ATM is suitable for wide-area networks (WANs) as well as for local-
area networks (LANs), the deployment of an end-to-end ATM infrastructure may be
expensive compared to the other competing technologies such as Fast Ethernet and
Gigabit Ethernet in LANs. Also, there is a lack of applications deployed directly
on an ATM network infrastructure. Typically application developers concentrated

2A standard block code that transforms 4 bits into 5 bits for error protection and synchronization purposes
at the physical layer.
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on IP stack for end-to-end data communications, and ATM is therefore mainly
used as a lower layer technology for WANs, which in most cases carries IP-related
traffic.

IP is a connectionless network layer protocol capable of supporting point-to-point
and multicast communication. Each IP datagram is routed from its source to its des-
tination in a hop-by-hop manner via a number of IP routers. The delivery service is
called best-effort as no quality-of-service (QoS) guarantee is provided. However, with
a surge of business activities on the Internet, users are demanding more bandwidth
and QoS support for multimedia applications. These applications generally require
the underlying network to provide predictable and bounded packet delay, loss rate,
and minimum bandwidth. The best-effort service of Internet can no longer satisfy
these requirements. Owing to its QoS support as well as the ability to provide high
bit rate, ATM seems to be the most promising candidate as an underlying link-layer
mechanism for carrying IP packets.

There are many challenges and problems in transmitting IP traffic over ATM net-
works. Recall that ATM is connection-oriented. It is fast, but could be expensive
and ineffective for short-lived applications. On the other hand, IP traffic is connec-
tionless, and there are no overhead and delay associated with connection set-up in a
connection-oriented network. However, it is in general more difficult to provide QoS
guarantee on a differentiated basis (i.e., different QoS for different applications) in
a connectionless network. ATM technology provides an evolutionary path for IP for
QoS support.

7.7.1 Classical IP over ATM

Recently, various methodologies have been proposed for supporting IP traffic on top
of ATM backbone infrastructure. Classical IP over ATM (RFC1577) is one of the
early attempts. The term “classical” here grew out of a need to make no changes
in the internetworking paradigm when deploying ATM. The prime concern of this
model is not on how to take full advantage of ATM for efficient data forwarding. In
contrast, it largely negates the potential benefits of ATM in exchange for preserving
the connectionless nature of IP for facilitating easy migration to ATM. For example,
in classical IP over ATM, an ATM network is separated into logical IP subnets (LISs)
interconnected by IP routers. In this environment, direct ATM connections between
IP hosts in separate LISs are prohibited even if the underlying ATM topology is
capable of supporting them. An ATM virtual connection (VC) originating within a
given LIS can only extend as far as a router at the LIS boundary where the contents
of the received ATM cells will be reassembled into IP packets, each of which is then
subjected to an IP forwarding decision. These IP packets will be resegmented into
ATM cells at the next intra-LIS router along the journey and sent along a default VC
within this LIS (see Fig. 7.11).

In actuality, the reassembly and resegmentation of IP packets at each router along
the path severely restrict the potential benefits of ATM. Also, the necessity for an
address resolution mechanism for this approach to map a next hop’s IP address to its
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FIGURE 7.11 Overhead of IP layer forwarding with classical models.

ATM address greatly limits the overall size of the ATM network. In addition, because
the end-to-end path is forced to traverse certain LIS boundary routers, a convoluted
path may result, which depends on the physical positioning of those boundary routers.
Furthermore, to accommodate certain IP protocols, each LIS must provide intra-LIS
broadcast, which is typically implemented using a point-to-point VC from every node
in the LIS to a multicast server and a single point-to-multipoint VC from the multicast
server to every node in the LIS it serves. This implementation imposes a limit on the
number of nodes in each LIS, which depends on the number of VCs the multicast
server can support.

7.7.2 Next Hop Resolution Protocol

The Next Hop Resolution Protocol (NHRP) was developed to utilize the potential
benefits of ATM, which are lost with the classical IP over ATM. NHRP is an inter-LIS
address resolution mechanism that maps a destination’s IP address to the destination’s
ATM address if the destination resides within the same ATM cloud as the sources.
In cases where the destination resides outside the ATM cloud containing the source,
NHRP returns the ATM address of the source ATM cloud’s egress router that is
closest to the destination. Once the source receives the NHRP response, it can then
set up a direct cut-through VC to the destination or to the closest egress router to the
destination in cases where the destination is outside the ATM cloud, using standard
ATM signaling/routing protocols (Fig. 7.12).

Although NHRP overcomes some of the weaknesses of the classical IP over ATM
model, it has its own restrictions. First, setting up a separate VC for every single
data flow is unlikely to yield optimal results, especially in large ATM clouds within
the Internet. This is because in such an environment the number of IP flows travers-
ing the cloud may be very large. Using a separate VC for each flow in this case
may result in an unmanageable number of VCs at switches within the cloud. Sec-
ond, providing such a cut-through VC may be unnecessary and even undesirable for
certain short-lived flows. In these cases, it would be hard to justify the associated
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FIGURE 7.12 Classical service path and cut-through service path.

overhead of the end-to-end connection and its setup, especially for flows that make
no assumptions about QoS anyway. Also, NHRP cannot directly support multicast,
although certain elements of NHRP may be used to facilitate shortcuts within cer-
tain multicast scenarios. Moreover, an NHRP solution necessitates routing/signaling
functionality in both the ATM and IP layers, which further increases the overall
complexity.

7.7.3 IP Switch and Cell Switch Router

There have been a number of schemes proposed based on similar hybrid ATM
switch/IP router designs, which allow coexistence of hop-by-hop IP forwarding with
direct VC cut-through mode of service in order to provide each data flow with the
most suitable mode of service while maintaining desirable network conditions such
as a manageable number of VCs at each switch. Amongst these schemes, IP switch
and cell switch router (CSR) are the most well known and established, and thus they
are the focus of our discussion in this subsection.

The IP switch and CSR hybrid switch/routers contain all the usual functionality of
conventional IP routers and thus can support connectionless IP forwarding services.
However, their usage depends on the topological configurations. The IP switch does
not support the ATM user–network interface (UNI) standards, so it is incapable of
interfacing with conventional ATM switch in existing ATM networks. For example,
it can work for the topology shown in Fig. 7.13 but not for that in Fig. 7.14. The
CSR, on the other hand, is UNI compatible and therefore capable of interconnecting
ATM subnets in a similar way to the LIS border routers in the classical IP over ATM
model. The difference is that unlike the classical model, the CSR is also capable of
providing direct VC cut-through between the adjacent subnets for selected data flows.
Consequently, the valid configurations for it include that of Figs. 7.13 and 7.14.

In IP switch and CSR, a dedicated cut-through VC for a data flow can be set
up by associating an incoming VC with an outgoing VC for switching cells of that
flow directly in hardware without IP forwarding (see Fig. 7.15). This cut-through



304 BASIC CONCEPTS OF BROADBAND COMMUNICATION NETWORKS

FIGURE 7.13 Topology for IP switch or CSR.

service differs from that offered by NHRP and traditional ATM signaling in that
the switching table associations are no longer made on an end-to-end basis. Instead,
each hybrid switch router makes a decision independently on whether to implement
local cut-through. The rules for making such decisions can be configured by network
management and will typically result in cut-through for flows of any suitable higher
layer protocol. For example, TCP FTP flows are suitable since they are of sufficient
duration to justify the overhead associated with cut-through setup. User Datagram

FIGURE 7.14 Topology for CSR.
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FIGURE 7.15 Cut-through service of a hybrid switch/router.

Protocol (UDP) flows carrying Network Time Protocol (NTP) traffic, on the other
hand, are not suitable since each UDP flow typically consists of a single packet. The
higher layer protocol can be determined by inspecting the packet headers during IP
processing of the first packet of a flow. Once the cut-through decision has been made
and the switching table associations installed, all further packets of the flow will
receive local cut-through service at each hybrid switch/router along the path. The
end-to-end service received by the flow is essentially the same as that obtained using
the end-to-end signaling approach of NHRP.

Using a concatenation of local cut-throughs is advantageous in a number of aspects.
One of the advantages is that with the hybrid switch/routers, the end-to-end route
is determined entirely, using the underlying IP routing protocols. This means that
the ATM routing/signaling and address resolution protocols are no longer required,
which leads to a reduction in complexity. Note that CSRs must still support ATM
UNI signaling in order to connect to adjacent CSRs that are reachable across ATM
subnets. Also, hybrid switch/routers are well suited for use with Resource Reservation
Protocol (RSVP), which is the protocol of choice for setting up QoS over IP networks
and will be discussed in the next chapter. RSVP control messages would travel over
the default VCs and would receive full IP processing at each hybrid switch/router,
where they could initiate setup of flow-specific VC cut-throughs according to the QoS
information contained within the RSVP messages. In addition, any VC associations
set up by the hybrid switch/routers are soft-state, which means that they need to
be continually refreshed in order to avoid timeout. The use of soft-state rather than
hard-state helps to maintain much of the connectionless nature of IP. Another key
advantage of hybrid switch/routers over NHRP is that they offer full support for cut-
through multicast trees by accommodating branch points at the ATM layer. In spite of
its point-to-point nature, NHRP could be used to emulate multicast through a number



306 BASIC CONCEPTS OF BROADBAND COMMUNICATION NETWORKS

of point-to-point VCs, although this would be bandwidth-inefficient since many of
the multicast VCs may share common links that consequently carry the same data
more than once.

7.7.4 ARIS and Tag Switching

In the hybrid switch/router approaches, setup of VCs is either topology-driven for
default VCs in ATM subnets or traffic-driven for flow-specific VCs. The traffic-driven
approach requires cooperation between edge devices and hybrid switch/routers in
order to make a decision on whether to establish a “cut-through” path across the
hybrid switch/router. The topology-driven approach, on the other hand, requires a
protocol to distribute the routing information, as well as a way to label the cells with
short headers used by the ATM switches for forwarding. The fundamental differences
in the two approaches are that the amount of control traffic in a traffic-driven scheme is
equal to the number of individual flows (which may grow very high), while the amount
of control traffic in a topology-driven approach is constant, based on the number of IP
destinations. IBM’s Aggregated Route-Based IP Switching (ARIS) and Cisco’s Tag
Switching architecture are approaches to IP over ATM in which VC association is
completely topology-driven. Both ARIS and Tag Switching use VC cut-through for all
traffic, including best-effort. They can do this without causing “VC explosion” since
they are able to offer a choice of granularities according to the network environment.
In this way, the cut-through VCs of both ARIS and Tag Switching can have a coarser
granularity than the per-flow cut-through VCs of the hybrid switch/routers.

ARIS introduces the concept of “egress identifier” type to define granularity. For
each value of “egress identifier,” the ARIS protocol establishes a multipoint-to-point
tree that originates at routing domain ingress integrated switch routers (ISRs) and
terminates at the router domain egress ISR for that particular egress identifier. The
multipoint-to-point tree will also be a multipoint-to-point VC if VC merging is used,
as described later. Here, ISR is the name used to refer to an ARIS-compatible switch.
The identification of the egress ISR for a particular egress identifier is obtained from
the routing protocols. Thus, if the egress identifier represents IP destination prefixes,
a separate multipoint-to-point tree is set up per IP destination prefix. This is illustrated
in Fig. 7.16, which shows a multipoint-to-point tree that is set up from ingress ISRs
A, B, C, and D to egress ISR E. When a packet arrives at one of these ingress ISRs,
the forwarding table is consulted to determine which outgoing interface as well as
virtual-path identifier/VC identifier (VPI/VCI) label to be used. Cells from the packet
are then switched along the tree completely at the ATM layer until they reach egress
ISR E, where they are again reassembled.

The ARIS protocol mechanisms for setting up the tree vary depending on whether
VC merging is used. VC merging is when cells arriving on separate incoming links of
an ISR are routed onto the same VC of an outgoing link of the ISR. With AAL5, which
has no intra-VC multiplexing identifier, VC merging is only possible provided no
interleaving of cells from different AAL5 frames occurs. Otherwise, it is not possible
to reconstruct each AAL5 frame at the destination since it is difficult to determine
which cells belong to which frames. To support VC merging, switches need to buffer
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FIGURE 7.16 ARIS multipoint-to-point tree.

cells of each incoming AAL5 frame until the full frame has arrived, store the full
frame for a period of time determined by the scheduler, and then transmit the frame
so that it occupies a contiguous sequence of cells on the output link, as shown in
Fig. 7.17. VC merging reduces the number of consumed VCs but introduces latency
due to buffering of AAL5 frames. However, this increase in latency will still be less
than that for the case of IP forwarding, while the switching speed will be close to that
attainable without VC merging. If VC merging is not used by the ISRs, buffering of
AAL5 frames is unnecessary since mapping each input VC to a separate output VC
allows us to reconstruct each AAL5 frame at the destination while cells of frames
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from different input VCs are interleaved on the output link. The interleaving process
is illustrated in Fig. 7.17.

Tag Switching uses a tag information base (TIB) in each tag switch router (TSR) in
order to provide the mapping between an incoming interface and tag (VPI/VCI value)
of an incoming cell to the outgoing interface and the outgoing tag of the cell. The
TIB entries can be generated either explicitly or using the Tag Distribution Protocol.
In the latter case, a separate TIB entry is created for each route in the forwarding
information base (FIB). The FIB is the information base in IP routers that is used to
forward IP packets. In addition, the FIB is extended to include a tag entry for each
route. That is, when a packet first arrives at the ingress TSR for the tag switching
network, the FIB forwards the packet to the next hop while labeling the outgoing
cells with the indicated tag value. In this case, each TSR will switch the cells directly
at the ATM layer using the TIBs of each subsequent TSR traversed.

There are a lot of similarities between ARIS and Tag Switching mechanisms. First,
both mechanisms can provide support for multicast and explicit routes. Second, both
use default VCs between the hybrid switch/routers in order to implement hop-by-
hop forwarding for their control protocols as well as for the IP routing protocols.
Third, the ARIS and Tag Switching architectures include protocol mechanisms to
avoid setup of switched path loops. Also, they are both able to correctly implement
time-to-live (TTL) decrement for cut-throughs. That is, when a packet is reassembled
at the egress router following VC cut-through, its TTL value will be the same as
if it had undergone hop-by-hop IP forwarding instead. Furthermore, apart from the
throughput improvement obtained by ARIS and Tag Switching through bypassing the
IP layer, the use of underlying ATM technology also makes them very suitable for
offering QoS support.

7.7.5 Multiprotocol Label Switching

The works of ARIS and Tag Switching are currently receiving much attention within
the networking community, and this has resulted in the Internet Engineering Task
Force (IETF) setting up the Multiprotocol Label Switching (MPLS) Working Group
in order to standardize these schemes. The MPLS Working Group of the IETF is
concerned with the label switching concept of ARIS and Tag Switching in general
and not just with the special case of label switching in an ATM environment.

MPLS is designed to incorporate many elements of ARIS and Tag Switching,
including label distribution protocols and mechanisms, topology-based assignment,
support for VC merging, as well as multicast, QoS, and traffic engineering. It has a
wide range of usage; some of the examples include IP-over-ATM, high-performance
forwarding, QoS, and traffic differentiation.

In MPLS, labels are assigned to packets for transport across packet- or cell-based
networks, which is just similar to ATM networks and frame relay networks. Like
ARIS, the forwarding mechanism throughout the network is label swapping, in which
units of data carry a short, fixed-length label that tells switching nodes along the
packets path how to process and forward the data. The label may correspond to an
ATM VPI/VCI.
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FIGURE 7.18 Basic architecture of an MPLS node.

The MPLS architecture is divided into two separate components: the control com-
ponent and the forwarding component. The control component is responsible for
intercepting the information from the IP routing protocols and creating and main-
taining label-forwarding information, which is called bindings, among a group of
interconnected label switches. In addition, it is responsible for signaling and topol-
ogy discovery. The forwarding component is responsible for maintaining the label-
forwarding database and using the label switch to perform the forwarding of data
packets based on labels carried by packets. Figure 7.18 shows the basic architecture
of an MPLS node that performs IP routing.

MPLS requires the IP routing protocols to operate together. Every MPLS node
must rely on the IP routing protocols to exchange IP routing information with other
MPLS nodes. Similar to traditional routers, the IP routing protocols populate the IP
routing table, but it is not directly used. Instead, it is now used for determining the
label binding exchange, where adjacent MPLS nodes exchange labels for individual
subnets that are contained within the IP routing table.

The concept of MPLS architecture network is very similar to the differentiated
services (discussed in the next chapter). Any router or switch that is capable of im-
plementing label distribution procedures and forwarding packets based on labels is
called label switch router (LSR), which is similar to that in ARSI. A group of LSR
forms a domain called MPLS domain. When a packet enters a particular MPLS do-
main from the non-MPLS domain, a label is being added for the incoming packets,
which is called label imposition, at the ingress point of the MPLS domain, and the
label is removed when it leaves the MPLS domain, which is called label disposition,
at the egress point of MPLS domain. Both of the actions are done by the edge-LSR,
which is located at the boundary of the MPLS domain. The edge-LSR keeps both the
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IP routing table and label routing table. When the non-boundary LSR encounters a
labeled packet, it will only use the label-forwarding table to determine the next hop
address for the packet.

To perform label imposition, the edge-LSR needs to understand where the packet
is headed and which label should be assigned to the packet. This actually involves
two steps. The first step is to divide the entire set of possible packets into a set of
IP destination prefixes. In MPLS architecture, the result of the first step is called
forwarding equivalence classes (FEC), which describes a group of IP packets that
are forwarded in the same manner. The criteria for FEC can be fields in IP packet,
such as destination IP subnet and the IP precedence value. The second step is to
map the IP destination prefix to an IP next hop address. In MPLS, it is possible
based on other criteria, rather than the shortest path, to determine the next hop. This
feature is very desirable as the shortest path may not necessarily be the best path with
QoS. In addition, this feature is a must for the implementation of per-hop QoS. The
relationship between different components of MPLS is shown in Fig. 7.19.

Each LSR keeps two tables for holding the relevant information for MPLS forward-
ing component. The first one, known as label information base (LIB), holds all labels
assigned by the LSR and the mappings of the labels from other neighbors in different
MPLS domains. This information is distributed by using label distribution protocol
(LDP). The second table, known as label-forwarding information base (LFIB), stores
only the labels that are currently used by the forwarding component of MPLS.
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As previously mentioned, each packet enters an MPLS network at an ingress LSR
and exits the MPLS network at an egress LSR. Here, LDP is used to create the unidi-
rectional path from ingress to egress point for each FEC in the MPLS domain, which is
referred to as label switched path (LSP). It is necessary because the forwarding tables
at each LSR must be populated with the mappings from the incoming interface/label
value to outgoing interface/label value. The creation of LSP is connection-oriented
as the path needs to be set up before any traffic flow.

The MPLS architecture document does not assign a single protocol for the distri-
bution of labels between LSRs. Several approaches to label distribution can be used
depending on the requirements of the hardware and the administrative policies used
on the network. Only the approaches related to traffic engineering are covered.

From the previously mentioned architecture of MPLS, if the LSP can be controlled
in such a way that it will only be set up as long as certain QoS requirements can be
satisfied for that path, then MPLS can be easily used for traffic engineering, which
is referred to as the process where data are routed through the network according
to a management view of the availability of resources and the current and expected
traffic. The MPLS domain uses LSPs to provide tunnel-like topological isolation, and
temporal isolation if the LSPs have associated QoS guarantees. Hence, one of the
main uses of MPLS is for building virtual private network (VPN).

Traffic-engineered and/or QoS-enabled LSPs are conventionally referred to as
constraint-routed LSPs (CR-LSPs). Two solutions exist for the explicit signaling
of CR-LSPs. One solution are borrows from existing RSVP called M-RSVP, and
the other solution requires adding new functionality to the base LDP, referred to as
CR-LDP. At abstract level, both the protocols have a lot of similarity between their
functions. Both of them can form strict or loose specification of the route to be taken by
the LSP that is initialized by edge-LSR and specify QoS parameters to be associated
with the LSP. The details of the protocol will not be covered here.

APPENDIX 7.A ATM CELL FORMAT

This appendix describes the ATM cell formats and the function of each field in the
header. The overhead at the AAL is also described.

7.A.1 ATM Layer

An ATM cell is 53 bytes in length. Out of the 53 bytes, 5 bytes are overhead and
48 bytes are payload for carrying information from and to the layer above the ATM
layer. There are two formats for the 5 bytes of overhead, as shown in Fig. 7.20(a)
and (b).

A function of any standard is to allow equipment of different vendors to inter-
operate. As such, conformation to the cell formats is important at the “interface”
between equipment. The header format in Fig. 7.20(a) applies to the UNI (user–
network interface), and the header format in Fig. 7.20(b) applies to the NNI (network–
node interface). As the names suggest, the former refers to the interface between the



312 BASIC CONCEPTS OF BROADBAND COMMUNICATION NETWORKS

VCI

VCI

HEC

PTIVCI

VCI

VPI

GFC

CLP

12345678

1

2

3

4

5

(a)

Bit

Byte
VCI

VCI

HEC

PTIVCI

VCI

VPI

GFC

CLP

2345678 1

1

2

3

4

5

(b)

Bit

Byte

FIGURE 7.20 (a) The cell header format for the UNI; (b) the cell header format for the NNI.

user’s equipment and the network, and the latter refers to the interface between two
ATM nodes. The only difference between these two formats is that the UNI format
has a 4-bit GFC (generic flow control) field whereas the NNI format does not.

The GFC is not carried from end to end and has local significance only for flow
control on the customer site. The user’s terminal equipment may not be directly
connected to an input port of a public ATM switch. In fact, a number of users may
be connected to a multiaccess local-area or metropolitan-area network (such as, e.g.,
a DQDB (distributed queue dual bus) network), which is in turn connected to the
ATM network. The GFC field provides a mechanism for the flow control of traffic
of multiple user terminals on the multiaccess network. Alternatively, traffic from a
number of users may be multiplexed onto a shared trunk that is connected to the ATM
network. The GFC field also allows the multiplexer to regulate the transmission of
the users’ traffic to the multiplexer.

The GFC field is absent in the NNI header. The 4 bits of GFC and 8 bits of VPI in
the UNI header become the 12 bits of VPI in the NNI header. This means that there
can be 16 times more VPs on a physical link in the ATM network of the network
provider, which is reasonable since VPs are expected to be more widely used in the
higher network hierarchy. The rest of the header formats are the same for the UNI
and the NNI.

There are two bytes for VCI. After that, three bits are reserved for PTI (payload
type). In the ATM network, both the traffic of the user and the control traffic pertaining
to operations, administration, and management (OAM) are carried in cells. The PTI
field is used to distinguish among different traffic types. The values of the PTI are
defined as follows:

PTI Cell Type

000 and 001 User cell, no congestion
010 and 011 User cell, congestion
100 Segment OAM cell for a VC
101 End-to-end OAM cell for a VC
110 Resource management cell
111 Reserved for future functions
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The first bit is used to differentiate between user and OAM cells. If it is 0 then
the cell is a user cell, and if it is 1 then the cell is an OAM cell. For the user cell,
the second bit is set if the cell encounters congestion in the network. The third bit
is available to the users for end-to-end indication purposes. The ATM network does
not examine this bit and will not modify it. For instance, in AAL 5, the bit is used
to indicate whether the cell is the last cell of a packet, that has been segmented into
several cells during adaptation.

For the OAM cell, PTI = 100 or 101 means that the cell is related to the OAM
function of a VC. The VPI and VCI of the cell will be set to be same as that of the
user cells of the same VC. If PTI = 100, then the cell is related to the OAM function
of the segment of a VC across the UNI. Segment OAM cells will be removed and
examined at the end of the segment (i.e., at the first public network node through
which the VC traverses). If PTI = 101, then the cell is related to the end-to-end OAM
function of a VC. End-to-end OAM cells are passed unmodified by all intermediate
nodes, although the contents may be monitored by any node in the path. These cells
are removed and examined at the end point of the VC. Finally, if PTI = 110, then the
cell is a resource management cell, and at the moment PTI = 111 is undefined and
reserved for future use.

After PTI, there is one CLP (cell loss priority) bit for indicating the priority of the
cell when it is necessary to discard cells in the network during congestion. Cells with
lower priority are dropped first before the cells with higher priority.

One byte of HEC (header error control) is used to store the CRC (cyclic redundancy
code) computed over the five-byte header using the CRC polynomial x8 + x2 + x + 1.
Since the header of a cell may change from node to node (consider, for instance, that
the VPI and VCI may change), the CRC needs to be checked and recomputed at every
node. With the CRC polynomial, the header has a minimum distance of 4, meaning
two headers must differ in at least four bits. A point to emphasize is that this HEC is
for the protection of the header only, and the 48-byte payload is not protected in the
ATM network.

The CRC is used for both error detection and correction. The normal or default
mode is the single-bit error-correction mode. In this mode, if a single-bit error is
detected, it is corrected and the cell is forwarded, and the receiver goes into the
detection mode. Note that with a minimum distance of 4, it is possible to treat a three-
bit error as a single-bit error and “correct” the header the wrong way. More generally,
odd number of errors will be treated as single-bit errors and even number of errors will
be treated as multiple-bit errors. If multiple-bit errors are detected during the normal
mode, the cell will be discarded and the receiver goes into the detection mode. In the
detection mode, no attempt is made to correct errors, and all cells with errors detected
will be discarded: this, for instance, prevents odd bit errors from being treated as
single-bit errors, which occurs during the correction mode. As soon as a header with
no error is encountered, the receiver goes back to the correction mode. This operation
is devised with very high-quality links (e.g., fiber-optic link) in mind. Random bit
errors in the link and the detector are rare and independent, and encountering more
than a bit error in the header due to noise in the physical channel is even rarer. The
detection mode is used to guard against burst errors, that may occur when there is an
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FIGURE 7.21 AAL1 SAR protocol data unit.

equipment problem (e.g., an equipment fault on the transmitter side that causes it to
output random bit patterns).

7.A.2 Adaptation Layer

The overhead for the adaptation layer is included as part of the 48 bytes of the payload
of the ATM layer. Recall that the adaptation layer is divided into two sublayers: the
CS and the SAR sublayers, with the former above the latter. Figure 7.21 shows the
SAR protocol data unit (PDU)3 for AAL1. One byte is the overhead and the other 47
bytes are the payload from the CS sublayer (i.e., each CS PDU is 47 bytes).

The three-bit SN (sequence number) in Fig. 7.21 is incremented once for every
cell. It is used to detect missing cells due to loss (e.g., discarded by the network
during congestion) or errors. With the three-bit SN, however, it is not possible to
detect multiples of eight missing cells.

The SNP (sequence number protection) consists of two parts: a three-bit CRC and
one parity bit. The CRC is computed over the SN using the polynomial x3 + x + 1.
The parity bit is computed over the other seven bits. The SNP is capable of single-bit
error correction and multiple-bit error detection.

The one-bit CSI (convergence sublayer indicator) is used for signaling purposes as
well as for the indication of the absence or the presence of a CS function. The use of
this field is optional. Strictly speaking, this bit belongs to the CS layer. In the absence
of a CS function, the CSI is set to 0, in which case the whole 47 bytes of payload at the
SAR layer is used to transport user data. There is no additional predefined overhead
at the CS layer. Basically, this means that the user can define the usage of the 47
bytes in whatever way that is suitable for the application. Note that CSI = 0 does
not mean that the application has no need for CS functions such as clock recovery,
error protection, and so on. It simply means that it is up to the user to decide how the
various CS functions are to be implemented within the 47 bytes.

The CSI bit may be used in a number of ways. For instance, the CSI bits of
successive ATM cells may be used to convey timing information from the source to
the receiver so as to synchronize the clock of the receiver to that of the source. For
circuit emulation of DS1 and DS3 over ATM, the timing information is conveyed
over the CSI bits of cells with odd SN values. AAL1 also provides the so-called
structured data transfer, in which case the CSI may be set 1 to indicate that 1 byte

3In conformance to normal usage, we refer to the packet or message unit generated by layer A as layer-A
PDU. The PDU includes the overhead. The term layer-A service data unit (SDU) excludes the overhead
and refers only to the payload.
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FIGURE 7.22 AAL1 CS forward error correction for transporting video data.

in the SAR payload is reserved for CS usage and only 46 bytes are for the user
data.

Another function that can be performed by the CS is forward error correction. The
example in Fig. 7.22 shows the CS for the transport of video data with forward error
correction. The video data is arranged in 124 rows of 47 bytes each, and each row is
packed into one cell. Additional four cells are used for error-protection purposes. An
error-correction code (e.g., the Reed–Solomen code) is computed over the ith bytes
of all rows and it forms the four ith bytes in the four error-protection cells. After the
codes are computed, they are put into cells separated from the data cell. Up to four
lost cells can be recovered at the receiver.

Figure 7.23 shows the SAR PDU for AAL2. The SN field contains the sequence
number of the cell. The source generates traffic at variable rate and some cells could
be partially filled only. A message may be contained in one or more cells. The IT (in-
formation type) field is two bits in length, and it indicates whether the cell contains the
BOM (begin of message), COM (continuation of message), or EOM (end of message):
10 for BOM, 00 for COM, 01 for EOM, and 11 for a message equal to or shorter than
one cell in length (i.e., the cell contains the whole message). The LI (length indicator)
at the trailer of the cell indicates the number of bytes used in partially filled cells. At
present, AAL2 is not well defined and the length of each field requires further study.

CRCLISAR-SDUITSN

2 bits

FIGURE 7.23 AAL2 SAR protocol data unit.



316 BASIC CONCEPTS OF BROADBAND COMMUNICATION NETWORKS

SAR-SDU CRCLIRES/MIDITSN

2 bits 4 bits 10 bits 44 bytes 6 bits  10 bits

FIGURE 7.24 AAL3/4 SAR protocol data unit.

There are two modes for AAL3/4:

� Message mode: In this mode, the layer above the AAL passes data to the AAL
as messages that could be fixed or variable in length. Each message is passed in
its entirety at one time. At the receiver end, data are also passed from the AAL
to the layer above in discrete messages.

� Streaming Mode: This service provides the transport of long variable-length
data units. In this mode, the layer above the AAL may pass data to the AAL in
separate chunks. Each pass may contain only part of the whole data unit, and
several passes may occur at separate times. A reason for not passing a data unit
as a whole could be that the data unit has not been created by the application
entirely. The AAL may send out cells associated with a data unit before all the
data have arrived. In this way, the adaptation delay could be reduced.

Figure 7.24 shows the SAR-PDU format of AAL3/4. Four bytes in each cell are used as
the overhead. The two-bit ST (segment type) field is the same as the IT field in AAL2,
and it is used to indicate BOM, COM, EOM, or SSM (single segment message). The
four-bit SN is used for detection of lost and inserted cells. The LI field is six bits in
length: an EOM or SSM cell may be only partially filled (i.e., less than 44 bytes) and
the LI indicates the number of bytes used. The 10 CRC bits are computed over the
whole SAR PDU using the generating polynomial x10 + x9 + x5 + x4 + x + 1.

The 10-bit MID (multiplexing identifier) field is used in AAL4 (i.e., connectionless
service) only; the bits are reserved for future usage in AAL3. In AAL4, this means
that up to 210 connectionless packets (messages) can be transmitted on the same ATM
connection simultaneously. For instance, there could be two connectionless servers
(e.g., IP routers) connected to the two ends of the ATM connection sitting on top of
the adaptation layer. At the transmitter end, the connectionless server aggregates all
the connectionless traffic to be routed to the other connectionless server and forwards
it via the ATM connection. Each IP packet can be assigned an MID, and the cells of
the packet will have the same MID. At the receiving end, the connectionless server
in turn examines the MID field of each incoming cell and reassembles the cells with
the same MID back to the packet before deciding how to further route it.

The multiplexing/demultiplexing mechanism is needed only if the cells of dif-
ferent messages are interleaved during the transmission over one ATM connection.
In this case, successive cells arriving at the receiving end may belong to different
messages and the MID field is needed to distinguish them apart. For illustration, a
situation where this may arise is shown in Fig. 7.25. There are several connectionless
servers connecting to the same ATM switch via different inputs of the switch. The
connectionless servers may have traffic to be routed to a remote connection server,
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FIGURE 7.25 Multiplexing the cells from several connectionless servers onto one VP.

that is connected to a remote ATM switch. To improve efficiency, the traffic from all
the transmitting connection servers may be statistically multiplexed onto the same
ATM connection (say, a VC) for transport to the remote ATM switch.

In situations where the cells of different messages are not interleaved over an
ATM connection, there is no need for the MID, since any particular message will be
transmitted as successive cells. The ST field will be sufficient for reassembling the
message at the receiver end. In the above example, instead of one VC, separate VCs
can be used to transport the cells from different connectionless servers to the remote
connectionless server. There will then be no need for the use of MID. Of course,
there will be several AAL processes, one for each VC, interfacing with the receiving
connectionless server.

In the situation where cells of different messages are interleaved, instead of the
MID, one could in principle encode the routing information in all cells of a mes-
sage. Each message forwarded by the connectionless server to the AAL must contain
the explicit routing information (e.g., IP address for IP routing) for the receiving
connectionless server to further route the message. The problem is that the routing
information may be much lengthier than the MID (e.g., the IP address is 32 bits) and
will therefore create larger overhead if it is incorporated in all cells of the message.

The overhead in the CS of AAL3/4 consists of four bytes of header and four
bytes of trailer, as illustrated in Fig. 7.26. The one-byte CPI (common part indicator)
signals how the rest of the overhead fields are to be interpreted. Until further studies
by the standard committee, this field is always set to 0. The zero value indicates that
the counting units in the two-byte BASize (buffer allocation size) and the one-byte
Length fields are bytes.

The BASize indicates the maximum number of bytes needed to store the CS PDU
at the receiver. It is used to reserve buffer at the receiver for the reception of the PDU.
It is possible for the cells associated with the CS PDU to arrive at the peer convergence
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FIGURE 7.26 AAL3/4 CS protocol data unit.
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sublayer at the receiver separated in time. This could be the case, for instance, when
the interface between the CS and AAL3/4 at the sender is in the streaming mode.
With 16 bits, the maximum size of the CS PDU is 216 bytes. When the message mode
is used, the BASize corresponds to the payload of the CS PDU (or SDU), and the
contents of the BASize and Length fields are the same. The BASize and Length fields
may be different when the streaming mode is used. In this case, the BASize is set to
be equal to or greater than the actual CS SDU length. Typically, this is set to be the
maximum possible CS SDU length, since in the streaming mode the sender itself may
not know the exact length of the data unit when it sends out the cell containing the
BASize field (because the data unit may not have arrived in its entirety). The exact
length of the SDU is indicated in the Length field, that is contained in the last cell of
the data unit.

The one-byte BTag (beginning tag) and the one-byte ETag (end tag) fields are set
to the same value, which changes for each successive CS PDU. They are for error
detection purposes. If the BTag and ETag of a received CS PDU do not match, then
some cells must have been lost. Although the four-bit SN of the AAL3/4 SAR sublayer
is also meant for detecting missing cells, the mechanism at the SAR sublayer may
not be strong enough and in many situations, lost cells may not be detected. Thus, the
BTag and ETag can be viewed as an enhancement to the cell loss detection capability.

The one-byte AL (alignment) field serves no other purpose than to make the trailer
32-bit long. The reason is that many computers are 32-bit machines that work on 32
bits in each cycle. Between the CS PDU payload and the trailer, there will be 0–3
unused bytes for padding purposes. The reason is again to make sure that the whole
CS PDU is a multiple of 32 bits in length.

The overhead in the AAL3/4 SAR layer is rather high: 4 bytes out of every 44
bytes. Also, the 10-bit CRC may not offer enough protection at the cell level, and
there is no CRC at the CS PDU level; generally, the longer the block length of the data,
the better the efficiency achieved in error protection (i.e., for a given data corruption
probability, the longer the block length, the smaller the ratio of CRC bits to the data
bits), and this would have argued for putting the CRC in the CS. For these and other
reasons, the computing industry initiated the AAL5.

There is no overhead in the AAL5 SAR sublayer. All 48 bytes of the payload of
the ATM layer are used to carry the CS PDU. Figure 7.27 shows the format of the
AAL5 CS PDU and how it is being segmented into cells at the SAR sublayer. One bit
of the PTI (payload type) field of the ATM-layer header is used to indicate the end of
the PDU. That is, if the cell is user cell (first bit of the PTI is set to 0) and if the last bit
of the PTI is set to 1, then the cell contains the last segment of the PDU. If this is the
case, then the last eight bytes of the payload of the cell are the overhead associated
with the convergence sublayer of AAL5. The one-byte UU (user-to-user indication)
field is intended for signaling between two end users and it is carried transparently by
AAL5. The usage of the one-byte CPI is currently not defined. The two-byte Length
field is the number of bytes in the CS SDU, not including the padding in the last cell.
The 32-bit CRC is computed over the entire CS PDU, including the padding and the
trailer. Notice that strictly speaking, AAL5 has violated the layering principle in that
a bit of the overhead of the ATM layer has been “stolen” for use in the AAL layer.
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FIGURE 7.27 AAL5 CS protocol data unit and its segmentation.

This, however, does not cause any confusion as long as the designers of the AAL5
and ATM hardware or software have taken it into account.

PROBLEMS

7.1 Consider the second method of multirate switching depicted in Fig. 7.2(b). The
main idea is that all the n channels of the same input connection must be routed
over the same internal path. Each input/output link is DS-1, which consists of
24 DS-0s. Suppose that each connection consists of either one or two DS-0
channels (i.e., n is either 1 or 2). How many middle-stage modules are needed
for the overall switch to be strictly nonblocking, assuming the switch modules
in all stages are nonblocking?

7.2 Does ATM switching solve the problem of bandwidth fragmentation in a switch
consisting of multiple stages of switch modules? Has the problem of increased
blocking probability during call setup of a connection due to bandwidth frag-
mentation been solved?

7.3 Consider sending the cells from a voice source over an ATM network. Suppose
that the delay suffered by each cell in the network ranges from 2 to 10 ms. How
much time after the arrival of the first cell can the receiver start to play out the
audio? How should the buffer be dimensioned to avoid data overflow?

7.4 What is the worst message length for a cell network in terms of the overhead?

7.5 Suppose that each cell has a fixed header size of 5 bytes. The packet to be
fragmented into cells has a fixed size of 100 bytes. What is the overhead if
the cell size is fixed to be 32 bytes (excluding the 5-byte header)? What is the
overhead if the cell size is 48 bytes instead? Which cell size is more efficient
for these fixed-length packets?
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7.6 The network shown in Fig. 7.7 consists of a number of VC and VP switches.
(a) Identify the end-to-end path of the VC from user A to user B with VPI =

2 and VCI = 3 at the source.

(b) Write down the VPI/VCI entry in the VPI/VCI table needed for routing
the VC traffic at the last node just before the traffic reaches user B. (Note:
the answer is not unique.)

(c) Indicate the VP termination points (if any) in the path.

(d) Indicate the VC termination points (if any) in the path.

7.7 Consider the problem of setting up a new VC over a sequence of n VPs.
Suppose that the VCI of the VC is not allowed to change from VP to VP and
that we want to use the same VCI throughout. Suppose that on each of the
VPs, a fraction p of the VCI values has already been used, and a fraction 1 − p

has not been used. Assume that there are altogether m possible VCI values on
each VP.
(a) The source node first randomly chooses a VCI not already used in the first

VP, it then asks the next VC switch whether this VCI has been used in the
next VP. If no, the next VC switch asks the VC switch further downstream
whether the VCI has been used; if yes, the source is asked to choose another
VCI and repeat the process. This is repeated until a unique VCI throughout
the path can be found. For small p, how many attempts by the source will
be needed before a unique VCI can be found? Can you think of a better
way to reduce the number of attempts?

(b) Estimate the probability of not having a unique VCI throughout in terms
of p, n, and m, assuming the VCIs already used in different VPs are un-
correlated? For p = 0.75, n = 4, and m = 256, what is the blocking prob-
ability?

7.8 This problem examines the shortcoming of the VP/VC two-tier multiplexing
hierarchy depicted in Fig. 7.8 and the extent to which the shortcoming is impor-
tant. Suppose that all the VCs behave the same way. For each VC, half of the
time, data are arriving at the rate of r bits per second and half of the time there is
no data arriving. Suppose that there are n VCs being multiplexed directly onto
a physical link of 0.6rn bits per second. Define the probability of congestion
as the probability that the arrival rate of the data into the multiplexer is higher
than the departure rate, 0.6rn. Suppose we use the two-tier hierarchy with 10
VPs, each of which have a bandwidth of 0.06rn bits per second, and there are
0.1n VCs being multiplexed onto each VP. What is probability of congestion
for each of the first-level multiplexers? How do the two cases differ when n is
small, say, n = 20, and when n is large, say, n = 1000.

7.9 The text discussed the mapping of input VPI–VCI pair to an output VPI–VCI
pair at an input of a VC switch. This works for point-to-point connections.
For a multicast connection in a multicast switch, there are several outputs, and
therefore, several output VPI–VCI pairs must be mapped to the input VPI–VCI
pair. Consider a 256 × 256 switch in the following.
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(a) Suppose the switch supports only point-to-point connections. Assume that
the VPI is 12 bits and VCI is 16 bits. Estimate the routing table size at an
input.

(b) For a switch that supports multicast connections, suggest a structure for
the routing table at an input, assuming that the number of outputs for a
general connection (point-to-point or multicast) can range from 1 to 256.
Based on this routing table, estimate the memory required at an input.

(c) For the multicast switch that is made up of a cascade of a copy network
and a point-to-point switch, what is the problem (other than the large
memory requirement) of doing the mapping at the input? (Hint: Before
packet replication, the master packet represents many packets that will be
replicated, what output VPI–VCI should it have?)

(d) Consider the cascade multicast network again. Suppose that for point-
to-point connections, the mapping will be the same as before. But for
multicast connections, the BCN mechanism will be used at the outputs of
the copy network to retrieve both the output and the output VPI–VCI pair
of a packet. Estimate the memory requirement of the lookup table at an
output of the copy network.

(e) Consider a bus-based multicast switch such as the knockout switch. In this
case, the outputs of a multicast cell pick up the cell from the bus. Discuss
the design of the routing tables and their locations in such a switch.

7.10 With respect to the discussion of the use of MID in AAL4 in the appendix,
can AAL5 be used to transport messages from different connectionless servers
over the same ATM connection? How?

7.11 Suppose we want to send a short message of 1000 bytes, is AAL3/4 more
efficient or AAL5? Is there any situation under which AAL3/4 is more effi-
cient than AAL5? Do you think AAL3/4 will be used in practice to transport
connectionless data?
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NETWORK TRAFFIC CONTROL
AND BANDWIDTH ALLOCATION

A broadband integrated network carries a large volume of traffic, and the traffic may be
from many different types of sources and have diverse characteristics. It is necessary
to allocate network resources and control this traffic to achieve two fundamental
goals:

� Satisfy the QoS (quality of service) requirements of network users.
� Maximize network usage.

Controls at different timescales are exercised to achieve these two goals. Recall that
many logical networks can be set up on the same physical network by VP networking.
Control can be exercised on the VPs in logical networks. Each logical network can
be used by many end users who establish VCs over it, so we also have control at the
VC connection level. Finally, the delivery of cells over a VC must also be controlled
to meet certain QoS objectives, such as delay and cell loss probability.

In a virtual-path (VP) network, the virtual paths and the bandwidths on them may
be reconfigured dynamically over time. For instance, if VPs are used to segregate
services, different services may demand different amount of network resources at
different times of the day. To maximize network usage and service quality, bandwidths
can be reallocated once in a while (say, every half hour or so) among the different
logical networks according to their usage. In addition, new VPs may be set up and
old VPs may be torn down in a logical network dynamically to reflect the change in
traffic demands within it. The control timescale at the VP level is large compared to
that in cell-level control.

At the VC connection level, we have the control functions of call admission,
routing, and bandwidth allocation. Since each VP may contain many VCs, the amount
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of control actions is larger at the VC level than at the VP level: VC-level control occurs
more frequently in the network. Depending on the service, a VC may last for a long or
short time. A telephone call will probably last a few minutes, and the control timescale
of the associated VC will be smaller than that at the VP-level control. A movie, on
the other hand, may last up to 2 h, and the control timescale is not necessarily smaller
than that at the VP level.

For an overview, let us briefly walk through the process of call admission control
at the VC connection level. The purpose of call admission is basically to determine
whether to admit or reject a connection request based on a projection of the conse-
quences of admitting the call. If accepting the call will degrade the QoS (say, the
delay or the cell loss probability) of the existing connections to an unsatisfactory
level, then the call should be rejected. At the same time, if the QoS demanded by
the call cannot be satisfied, then the call should either be rejected or negotiation
should be initiated to see if a lower QoS is acceptable to the end user requesting the
call.

Closely tied to call admission is the issue of routing. There may be several al-
ternative routes in the network from the source to the destination of a new con-
nection request. Whether the call is admitted depends on whether an acceptable
route can be found. Some paths may not satisfy the QOS criteria and some may.
Among the latter, the “optimal” route should be chosen such that the network re-
sources are used in the most efficient way. The definition of the optimal route is not
as trivial as it might first appear. For instance, if by optimality, we mean the route
that can maximize the number of accepted calls in the future (or minimize the call
blocking probability), then some statistics of the future call arrivals must be avail-
able. In addition to routing, bandwidth allocation (i.e., how much bandwidth is to be
allocated to the connection) should also be considered as part of the call admission
process. In short, the issues of call admission, routing, and bandwidth allocation are
interrelated.

Once a call is accepted, control at the cell level will be exercised throughout
the call’s duration. Since each VC may have many cells, cell-level control is very
much more frequent than connection-level control. Also, each cell lasts for a very
short time, and therefore the control timescale is very small. For this reason, cell-
level control is often performed by specialized hardware rather than software. For
example, the switches we have discussed in the previous chapters are specialized
hardware for routing cells. This is in contrast to VC- and VP- level control that is
often implemented in software for flexibility.

Cell-level control can occur at several places in the network. Control may be applied
at the boundary of the network to make sure that the connection is not pumping cells
into the network at a rate higher than some pre-agreed rate. This is sometimes called the
policing function. The end user may also perform “traffic shaping” (e.g., intentionally
delay some cells at the edge or space out their transmission in time) at the source so
that the traffic presented to the network conforms to the pre-agreed rate.

Once the cells enter the network, their flow may also be monitored and controlled.
Consider a connection traversing several nodes in a given direction. A node is said
to be upstream (downstream) of another node if cells of the connection traverse the
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node before (after) passing through the other node. In feedback flow control (also
called closed-loop control), the downstream traffic conditions are fed back upstream
to regulate the traffic flow. In feedforward flow control (also called open-loop control),
there is no feedback signal.

There are several possibilities for closed-loop control: among them are link-to-
link flow control and end-to-end flow control. In link-to-link flow control, the traffic
condition at a node is fed back to the immediate upstream node. If the downstream
link is congested, then the upstream node will slow down the transmission of cells to
the downstream node. This in turn may cause cells to back up at the upstream node,
and through feedback, the node further upstream will be informed to cut down the
rate of its traffic flow. Through a chain of this “back-pressure” mechanism, eventually
the source will be told to reduce its transmission of traffic.

In end-to-end feedback flow control, the feedback to the source comes from the
destination rather than through the back-pressure mechanism in link-to-link control.
There are many possibilities for end-to-end feedback. In ATM network, recall that
there is a bit in the PTI (see the appendix of Chapter 7) field in the ATM cell header
that is used for congestion indication. In ABR service, the source sets this bit to
zero. As a cell travels through the nodes in the network, this bit will be set to one at
congestion points. The destination, upon receiving this cell, can then inform the source
of the occurrence of congestion (or the absence of it) through a path in the reverse
direction.

In open-loop control, since there is no feedback on the downstream traffic con-
ditions, the rate at which the source pumps traffic into the network must be tightly
controlled so that it conforms to some pre-agreed rate. Otherwise, if many sources
transmit large amounts of traffic simultaneously, congestion in the network may occur,
giving rise to large cell loss rates when switch buffers start to overflow. If all traffic
sources conform to their pre-agreed rates, the transport of their cells in the network can
be scheduled such that their desired QoS can be satisfied. Feedforward flow control
eliminates a problem with feedback flow control in a high-speed network in which
the propagation delay is large compared to how fast the statistics of cell traffic can
change: by the time the feedback signal arrives at the source, the traffic conditions at
the downstream nodes may have already changed; it is also possible that by the time
a traffic congestion signal reaches the source, the source may have already pumped
out a large number of cells, making the congestion even worse.

Feedforward flow control, on the other hand, may not be able to achieve a statistical
multiplexing gain as high as that in feedback flow control. In case of light traffic at the
downstream node, the source may not be able to take advantage of that by pumping
in more traffic, since there is no feedback telling it so.

The current ATM standard reflects the following as far as feedback and feedfor-
ward flow control is concerned. For services that have stringent delay requirements,
feedforward flow control can better meet the requirement. This will be the case for
AAL1 and AAL2 traffic, and the targeted network services are CBR and VBR. For
data services such as those supported by AAL3/4 and AAL5, delay requirement is
less stringent. The targeted network services are either ABR (available bit rate) or
UBR (unspecified bit rate). In the ABR service, for instance, the available capacity
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for the transmission of the traffic from a source may change over time in a way that
depends on network usage by other users. The network capacity available at any
time is reflected in the feedback signal. Having overviewed the general issues and
methods of traffic control, the remaining sections of this chapter will treat them at
a more fundamental level. As a start, we will first introduce a traffic model for cell
traffic that will be useful for the study of flow control.

8.1 FLUID-FLOW MODEL: DETERMINISTIC DISCUSSION

A fluid-flow model can be used to describe the flow of cell traffic in the network. This
model treats traffic as fluid flow. The fluid-flow model is a powerful and intuitive
tool for visualizing the flow traffic in the network without the need for complicated
queueing analysis. This is especially true when we have a deterministic description
of the “worst-case” input traffic pattern that a source can pump into the network. This
is the case, for example, when traffic policing is applied at the edge of the network.
When the input traffic is stochastic and not known deterministically, the model can
also be subjected to rigorous mathematical analysis, as shall be seen in Section 8.2. By
adopting the fluid-flow model, closed-form analytical solutions can often be obtained
where they are not so readily available otherwise. In other words, the analysis can
often be carried out further with the fluid-flow model than by using the cell-traffic
model.

To explain the fluid-flow model, let us focus on the traffic of a simple “on–off
source.” Figure 8.1(a) shows the cell-traffic model. During on time a cell is generated
every T seconds, and during off time no cell is generated. Packetized voice traffic
exhibits this kind of behavior. The on time is the duration of a talkspurt when the

T T T
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On timeOff time

(a)

(b)

…

T T T

…

On timeOff time

… Peak

Fluid flow on time

FIGURE 8.1 (a) On–off cell-traffic source; (b) approximating on–off cell traffic with fluid-flow
traffic.
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speaker speaks, and the off time is simply when the speaker idles. The average data
rate during on time is therefore 1/T cells/s or

ron-time = 53 × 8

T
bits/s. (8.1)

The on and off times are in general not fixed and may vary over time. Let the average
off time be denoted by 1/λ and the average on time be denoted by 1/μ. Then the
average rate of the traffic is

rave =
1
μ
ron-time

1
λ

+ 1
μ

= λron-time

λ + μ
bits/s. (8.2)

Figure 8.1(b) shows the approximation of the cell-traffic model with the fluid-flow
model. During on time, instead of cells being separated by intervals of T , we make
the approximation that the arrivals are continuous in time at rate ron. Thus, instead of
cell arrivals, we have “fluid” arrivals. The peak rate of the on–off fluid-flow source is
rpeak = ron. Both models have the same total number of bits arrived in each on period,
but the bit arrivals are distributed evenly over time in the fluid-flow model.

Consider the statistical multiplexing of traffic from several on–off sources, as
illustrated in Fig. 8.2. Suppose that the buffer capacity is B bits and the transmission
bandwidth is C bits/s. Then, as far as the buffer occupancy is concerned, the mul-
tiplexer is analogous to a leaky bucket of size B with a hole at the bottom. Fluid is
poured into the bucket at a rate corresponding to the traffic generated by the sources,
and fluid leaks out of the bucket at rate C.

Figure 8.3 shows the simple case in which there is only one traffic source and
rpeak > C. Both the rate-versus-time and cumulative traffic-versus-time curves are
drawn. By drawing the cumulative arrived and departed traffic, we can find out the
delay of a bit i (or a drop of fluid) and the buffer occupancy at time t. As shown in

Source 

1

Source 

2 Source 

N…

C bits/s

Leaky 

bucket

Source 

1

Source 

2 Source 

N…

C bits/s

Buffer 

size

= B bits

(Statistical multiplexing)

FIGURE 8.2 An analogy between a transmission buffer of output rate C and a leaky bucket.



328 NETWORK TRAFFIC CONTROL AND BANDWIDTH ALLOCATION

b1

b2

tt 1 t2

Slope = c

Departurebit i
Slope = rpeak

Arrival

t1−t2 = delay of bit i

Time (s)

Cumulative traffic (bits)

b2− b1

= buffer 

occupancy 

at time t

Single 

source

C

rpeak >C

Arrival curve

Departure curve

(a)

Arrival curve

Departure curve

Time (s)

Traffic rate (bits/s)

C

(b)

rpeak

FIGURE 8.3 A leaky bucket with a single source; (a) cumulative traffic-versus-time arrival and
departure curves; (b) traffic rate-versus-time arrival and departure curves.

Fig. 8.3, the delay of a bit i corresponds to the horizontal difference between the arrival
and departure curves at bit position i. The buffer occupancy at time t corresponds to
the vertical difference between the two curves at time t.

Figure 8.4 shows the case in which there are multiple sources. The cumulative
arrived traffic is a piecewise linear curve whose slope changes according to how
many sources are on: specifically, when m sources are on, the slope is mrpeak. In the
figure, we assume that the traffic is normalized so that rpeak = 1. The departure curve
has a maximum slope of C. When the departure curve is below the arrival curve, the
backlog in the buffer starts to build up. If we assume that the system works as hard
as possible to clear up the backlog, the slope of the departure curve is C whenever
the backlog is nonzero. That is, with the leaky-bucket analogy, fluid will continue to
leak out at the maximum rate C so long as there is fluid in the bucket.

When there is no backlog and the total arrival rate from all sources is less than
or equal to C, then the fluid that goes into the bucket immediately flows out. In this
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FIGURE 8.4 The arrival and departure curves of a fluid-flow multiplexer.

situation, the cumulative departed traffic equals the cumulative arrived traffic, and the
departure rate equals the arrival rate. When there is no backlog and the arrival rate is
larger than C, then backlog immediately builds up, and the departure rate will be C.

The curves in Fig. 8.4 only show the “global” view of a multiplexer. The QoS
as perceived by individual traffic streams cannot be seen from the curves. The QoS
perceived by a traffic stream depends to a large extent on the scheduling algorithm
used by the multiplexer. When several streams have backlog in the multiplexer, the
multiplexer has a choice of whose data to send out first, and the order in which the data
are sent out is determined by a scheduling algorithm. Different scheduling schemes
may give rise to different QoS.

Let us assume that the traffic of each stream must be served in a first-come-first-
serve (FCFS) manner. That is, for a particular stream, the bit that arrives before
another bit from the same stream must also depart before this other bit. Interpreting
each stream as one VC in the ATM network, the FCFS requirement makes sure that
the data will be delivered to the end destination in the correct order. For sequence
preservation of the data of a VC, however, it is not necessary that the bits from different
streams to be served in any particular order: for example, sending out a bit of a stream
before a bit of another stream that arrives earlier would not compromise the sequence
order of either stream.

Let us first return to the cell-traffic model. The round-robin scheduling scheme
treats all streams as equal and serves them in a round-robin fashion. Conceptually,
there is one buffer for each traffic stream. The multiplexer selects cells from the
nonempty buffers in a round-robin fashion. That is, the head-of-line cells of the
nonempty buffers are served in a cyclic fashion.



330 NETWORK TRAFFIC CONTROL AND BANDWIDTH ALLOCATION

We would like to approximate the round-robin service discipline with a fluid-flow
service model that is compatible with the fluid-flow source traffic model. That is,
instead of serving data in a cell-by-cell manner, we assume that data are infinitely
divisible (i.e., like fluid) and can be served in infinitesimal amount by infinitesimal
amount fashion. A more detailed discussion of the relationship between the round-
robin service discipline and the fluid-flow service discipline will be presented in
Section 8.4.

Roughly, the round-robin service discipline with cell traffic can be approximated
by the fluid-flow service discipline with fluid traffic as follows: instead of scanning
through the streams with backlog, all streams with backlog will be served simultane-
ously in the fluid-flow service discipline. Specifically, the output capacity C will be
divided evenly among the traffic streams with backlog: if there are m backlog streams,
then the departure rate of each stream will be C/m.

Figure 8.5 gives an example in which there are two traffic streams: for traffic stream
i, Ai(t) and Di(t) are the cumulative arrived traffic and cumulative departed traffic;
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FIGURE 8.5 A multiplexer with two sources: the cumulative arrival and departure curves for the
total traffic and the traffic of stream 1.
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the rpeak of each source is 1 and 1 < C < 2. From time t0 to t1, there are arrivals
from stream 1 but not from stream 2, so the arrived traffic departs immediately, since
the whole capacity C is dedicated to stream 1 and C > 1 = rpeak. From time t1 to
t2, there are arrivals from both streams 1 and 2, the total arrival rate, 2, is more
than C; C is divided evenly among the two streams and each of them is served at
the rate of C/2; backlog starts to build up for both streams. From time t2 to t4,
only stream 2 has arrivals. But at time t2, there is still backlog for stream 1 and
therefore the service rates for both streams remain at C/2. At time t3(t2 < t3 < t4),
the backlog of stream 1 is cleared, and therefore from time t3 to t4, stream 2 is served at
rate C.

Strictly speaking, the preceding discussion was overly simplified and it neglected a
subtle difference between the cell-traffic and the fluid-flow models. In the cell-traffic
model, as far as the service discipline is concerned, each stream is in one of the two
possible states: when its buffer is empty, it is in the idle state. An idle stream will
not receive any service, and a busy stream will wait for its turn to receive service.
At any one time, only one of the busy streams is served, and during its service the
whole capacity C is dedicated to it to transmit a cell. In the fluid-flow service model,
we assume that the capacity C can be divided and allocated to the busy streams so
that they can be served simultaneously, each at a lower rate than C. In the discussion
in the preceding paragraph, we attempted to divide the capacity evenly among the
busy streams. But such even distribution of capacity cannot always be achieved in the
fluid-flow model, as described below!

Consider an example. Suppose that there are m = 2 streams with backlog. How-
ever, there is another stream with no backlog, which is in the on state and therefore has
traffic arriving at the rate of 1. Suppose that C = 4. Then, how should C be divided
among the three streams? Dividing it evenly means each stream should be served at
rate C/3 = 4/3, but this is more than the arrival rate of the third stream, and we are
certainly not making full use of the capacity C. If we divide C only among the first
two streams, then backlog immediately builds up in the third stream, making it also
a busy stream and therefore C must be divided among three streams again. In other
words, the service rate of the third stream alternates between 0 and C/3 within an
infinitesimal amount of time.

A problem is with the previous definition of “busy streams.” As far as the service
discipline is concerned, for the fluid-flow model, it is more appropriate to treat the
streams as having three possible states: (1) idle state: the buffer is empty and the arrival
rate is zero; (2) busy state: the buffer is nonempty; and (3) partially busy state: the
buffer is empty but the arrival rate is nonzero. In the above example, the third stream,
which is partially busy, will be served at its input rate 1, and the two busy streams
will be served at rate (C − 1)/2 = 3/2. Of course, in situations where rpeak > C, it
is not possible to have the partially busy state.

In general, the fluid-flow service discipline that attempts to approximate the round-
robin discipline will first see if it is possible to serve each non-idle stream at rate
C/(m + n), where m is number of busy streams and n is the number of partially busy
streams. Among the partially busy streams, those with arrival rate ri < C/(m + n)
will be served at rate ri. If none of the partially busy streams has arrival rate less than
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C/(m + n), then all non-idle streams will be served at rate C/(m + n). Furthermore,
those partially busy streams with ri > C/(m + n) quickly become busy.

Let us suppose that some partially busy streams do in fact have ri < C/(m + n).
Then, these partially busy streams remain partially busy and there is no backlog
buildup for them. The multiplexer will attempt to allocate the remaining transmission
capacity (after deducting the rates already allocated to the first group of partially busy
streams) among the rest of the streams. Let us say, there are C′ capacity remaining and
n′ partially busy streams remaining. Then, equal division of C′ yields C′/(m + n′).
However, the arrival rate of the n′ partially busy streams may be less than C′/(m + n′),
in which case the rate allocated to them will also be equal to their input rates, and
there is no buildup of backlog and these partially bust streams remain partially busy.
This process is repeated until all remaining non-idle streams have arrival rate greater
than the equipartition of the remaining capacity.

Given a particular service discipline, if we know the arrival patterns of the traffic
streams, then we can predict the delay and backlog experienced by each of them.
We shall see in Section 8.4 that if the traffic streams are shaped at the source using
a leaky-bucket mechanism before they enter the network, then analyzing piecewise
linear curves as above in a deterministic way can give us the worst-case delay and
backlog within the network. In general, the arrival patterns could be stochastic rather
than deterministic. In the stochastic situation, drawing arrival and departure curves
gives us some sense of the performance to be expected, but does not readily yield
statistical performance data such as average delay and the variance of delay. In the next
section, we shall focus on a stochastic analysis of the system and derive performance
data such as average delay and buffer-overflow probability.

8.2 FLUID-FLOW ON–OFF SOURCE MODEL: STOCHASTIC
TREATMENT

We have discussed the on–off source model but have not mentioned the statistical
distributions of the on and off periods, which are needed in a stochastic analysis.
In the following analysis, we assume that the on and off periods, Ton and Toff , are
independent and exponentially distributed. Furthermore, we assume that the unit of
time measurement has been normalized so that the average on time is 1. The on time
and off time have the following probability densities:

pTon (t) = e−t ,

pToff (t) = λe−λt, (8.3)

where 1/λ is the average off time. Figure 8.6(a) shows the input traffic to which a
multiplexing system with two such on–off sources is subjected. The arrivals from the
two sources are assumed to be independent. The state S(t) of the system is defined to
be the number of on sources, so it is either 0, 1, or 2. The associated continuous-time
Markov chain is shown at the bottom of the figure. At state 0, the rate of transition
to state 1 is 2λ. That is, in an infinitesimal amount of time �t, the probability of
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FIGURE 8.6 (a) Input traffic of a multiplexing system with two on–off sources and its associated
Markov chain; (b) the Markov chain for the input traffic of a multiplexing system with N sources.

transition, Pr[S(t + �t) = 1|S(t) = 0] ≈ 2λ�t. More exactly, the rate of transition
has the following interpretation:

Pr[S(t + �t) = 1|S(t) = 0] = Pr[S(�t) = 1|S(0) = 0]

= Pr[source 1 or source 2 is on at time t + �t]

= Pr[source 1 turns on in time interval �t]

+ Pr[source 2 turns on in time interval �t] + O(�2t)

= 2
∫ �t

0
PToff (τ)dτ

= 2(1 − e−λ�t) + O(�2t)

= 2λ�t + O(�2t), (8.4)
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where O(�2t) represents all terms of order �2t or higher: this includes, for example,
the probability of multiple transitions, such as both sources turn on in time interval
�t. By the same argument, we can show that

Pr[S(t + �t) = 0|S(t) = 0] = 1 − 2λ�t + O(�2t),

Pr[S(t + �t) = 2|S(t) = 0] = O(�2t),

Pr[S(t + �t) = 0|S(t) = 1] = �t + O(�2t),

Pr[S(t + �t) = 1|S(t) = 1] = 1 − (1 + λ)�t + O(�2t),

Pr[S(t + �t) = 2|S(t) = 1] = λ�t + O(�2t),

Pr[S(t + �t) = 0|S(t) = 2] = O(�2t),

Pr[S(t + �t) = 1|S(t) = 2] = 2�t + O(�2t),

Pr[S(t + �t) = 2|S(t) = 2] = 1 − 2�t + O(�2t). (8.5)

Let Pi(t) be the probability of state i at time t. We can write

Pi(t + �t) =
∑

j

Pj(t)Pr[S(t + �t) = i|S(t) = j], i = 0, 1, 2. (8.6)

From (8.5) and (8.6), we can get

dP0

dt
= lim

�t→0

P0(t + �t) − P0(t)

�t
= −2λP0(t) + P1(t). (8.7)

Note that the terms O(�2t) get canceled out in the limit �t → 0. Also, note that the
coefficients in (8.7) are associated with the transition rates: 2λ is the transition rate
out of state 0 and 1 is the transition rate into state 0 from state 1. In a similar fashion,
the following can be derived from (8.5) and (8.6), yielding the same interpretation of
the transition rates:

dP1

dt
= −(1 + λ)P1(t) + 2λP0(t) + 2P2(t),

dP2

dt
= −2P2(t) + λP1(t). (8.8)

At equilibrium (as t → ∞), dPi/dt → 0. Substituting this into (8.7) and (8.8), we
get

P1 = 2λP0,

P2 = λ

2
P1 = λ2P0, (8.9)
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where Pi denotes the equilibrium probability Pi(t → ∞). Using the fact that P0 +
P1 + P2 = 1 in (8.9), we can get

P0 = 1/(1 + 2λ + λ2) = 1/(1 + λ)2. (8.10)

In general, we note that

Pi =
(

2

i

) (
1

1 + 1/λ

)i ( 1/λ

1 + 1/λ

)2−i

, i = 0, 1, 2. (8.11)

This could have been obtained using the following more straightforward argument
than the Markov chain analysis. At any arbitrary time, the probability of a source
being on, denoted by q, is the ratio of the average on time divided by the sum of the
average on and off times (i.e., a “cycle” of on and off times). This is q = 1/(1 + 1/λ).
Given that the sources are independent, the number of on sources is then given by the
binomial distribution with parameter q, which yields (8.11).

Equation (8.11) does not tell us much about the multiplexing system. It only
describes the source behavior. To study a multiplexer in more detail, we have to define
the state to include the buffer occupancy in addition to the number of on sources. In
this case, straightforward argument as in the previous paragraph does not work. This
is the motivation for the more roundabout Markov chain approach: we can modify
the argument to study the buffer occupancy.

Before moving onto the study of buffer occupancy, Fig. 8.6(b) shows the Markov
chain of the general case with N sources. From state i, 1 < i < N, the system can
only evolve to state i − 1 or i + 1 in the next transition. At the boundary states, 0 and
N, the transition can go only one way. The equilibrium probability is given by

Pi =
(

N

i

) (
1

1 + 1/λ

)i ( 1/λ

1 + 1/λ

)N−i

=
(

N

i

)
λi

(
1

1 + λ

)N

, i = 0, . . . , N. (8.12)

We now consider a multiplexer system with infinite buffering space. Let X(t) be the
random variable for the buffer occupancy level and S(t), as discussed before, be the
random number denoting the number of on sources at time t. For a stable system in
which X(t) does not grow to infinity, the output capacity C must be larger than the
average arrival rate from the N sources,

r = N

1 + 1/λ
. (8.13)

In the fluid-flow model, X(t) is a continuous variable. Let the probability density that
S(t) = i and X(t) = x be denoted by pi(t, x). We want to find the dynamic equation
governing the evolution of pi(t, x). For i = 1, 2, . . . , N − 1, pi(t + �t, x) can be
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expressed in terms of the probability densities at time t as the sum of three terms,
corresponding to the events of no transition and transitions from two neighboring
states i − 1 and i + 1. Let Enone, Eon, and Eoff , be the events of no transition, an off
source turns on, and an on source turns off in time �t, respectively. The events of
multiple transitions have probability densities of order �2t. We have

pi(t + �t, x) = Ai + Ai−1 + Ai+1 + O(�2t),

where

Ai = p(S(t) = i, Enone, X(t) = x − (i − C)�t),

Ai−1 = p(S(t) = i − 1, Eon, X(t) = f (x)),

Ai+1 = p(S(t) = i + 1, Eoff , X(t) = g(x)), (8.14)

where p(·) are probability densities, and we leave f (x) and g(x) undefined for the
time being.

The term Ai is associated with no transition in the time interval �t. Given that
there is no transition, away from the boundary where X(t) = 0, the departure rate
from the buffer is C and the arrival rate to the buffer is i. This means that the net
increase in buffer occupancy from time t to time �t is (i − c). Therefore, in order that
X(t + �t) = x, we must have X(t) = x − (i − C)�t. We can write

Ai = Pr[Enone|S(t) = i, X(t) = x − (i − C)�t] pi(t, x − (i − C)�t)

= [1 − {(N − i)λ + i}�t] pi(t, x − (i − C)�t) + O(�2t)

= [1 − {(N − i)λ + i}�t]

{
pi(t, x) − (i − C)�t

∂pi

∂x
+ O(�2t)

}
+ O(�2t)

= [1 − {(N − i)λ + i}�t]pi(t, x) − (i − C)�t
∂pi

∂x
+ O(�2t), (8.15)

where we have used the Taylor’s series expansion in the second last line.
The term Ai−1 in (8.14) is associated with an off source turning on in time interval

�t. The question is what should f (t) be. Depending on when the source turns on
within the time interval �t, f (t) may differ. Let t + �t′ (0 < �t′ ≤ �t) be the time
the source turns on. We can write

Ai−1 =
∫ �t

0
d(�t′) p(S(t) = i − 1, Eon, on transition at t

+ �t′, X(t) = x − (i − C)�t + �t′), (8.16)

where we have made use of the fact that the on transition is at time t + �t′ to de-
rive that X(t) = x − (i − C)�t + �t′. Note that (8.16) makes use of the marginal
probability-density formula: p(A = a) = ∫

all b
db p(A = a, B = b). Continuing
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from (8.16),

Ai−1 =
∫ �t

0
d(�t′) p(S(t) = i − 1, Eon, X(t) = x − (i − C)�t + �t′)

×p(on transition at t + �t′|S(t) = i − 1, Eon, X(t)

= x − (i − C)�t + �t′). (8.17)

Now, the conditional probability density p(on transition at t + �t′|S(t) = i − 1,
Eon, X(t) = x − (i − C)�t + �t′) does not depend on X(t) given Eon and S(t). We
have

p(on transition at t + �t′|S(t) = i − 1, Eon, X(t) = x − (i − C)�t + �t′)

= p(on transition at t + �t′|Eon, S(t) = i − 1)

= {N − (i − 1)}λe−{N−(i−1)}λ�t′

1 − e−{N−(i−1)}λ�t
, (8.18)

where, in the last line, the numerator is the unconditional probability density that
one of the {N − (i − 1)} off sources turns on at time �t′, and the denominator is the
probability that one of the off sources turns on within the time interval �t. Now,

p(S(t) = i − 1, Eon, X(t) = x − (i − C)�t + �t′)

= Pr[Eon|S(t) = i − 1, X(t) = x − (i − C)�t + �t′]

pi−1(t, x − (i − C)�t + �t′)

= {N − (i − 1}λ�t × pi−1(t, x − (i − C)�t + �t′) + O(�2t)

= {N − (i − 1)}λ�t ×
[
pi−1(t, x) − {(i − C)�t + �t′}∂pi−1

∂x
+ O(�2t)

]

+ O(�2t).

(8.19)

Substituting (8.18) and (8.19) into (8.17) and integrating, we can get

Ai−1 = {N − (i − 1)}λ�tpi−1(t, x) + O(�2t). (8.20)

Note that the term associated with ∂pi−1/∂x after integration has a coefficient of order
O(�2t). It will disappear when we take the limit �t → 0 later. So, although we have
taken the exact time of transition t + �t′ into consideration and the term ∂pi−1/∂x

arises from this consideration, the term turns out to be not important after all. We
could have ignored at the outset the ∂pi−1/∂x term and just consider the transition
from state i − 1 to state i without taking into account the change in x. The above
derivation, however, shows exactly how this can be justified.
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Using a similar argument, it is routine to show that

Ai+1 = (i + 1)�tpi+1(t, x) + O(�2t). (8.21)

From (8.14), (8.15), (8.20), and (8.21), we can get

∂pi

∂t
= lim

�t→0

pi(t + �t, x) − pi(t, x)

�t

= lim
�t→0

Ai + Ai−1 + Ai+1 − pi(t, x)

�t

= − {(N − i)λ + i}pi(t, x) − (i − C)
∂pi

∂x

+ {N − (i − 1)}λpi−1(t, x) + (i + 1)pi+1(t, x), (8.22)

which is the dynamic equation governing the evolution of the probability densities
pi(t, x). Solving this equation completely will give us the transient as well as equi-
librium probability densities. For a stable system ∂pi/∂x → 0 as t → ∞, and the
resulting pi(t = ∞, x) is the equilibrium probability density. Let us now study the
equilibrium probability density. Define

fi(x) = lim
t→∞ pi(t, x).

From (8.22) we have

(i − C)
dfi

dx
= −{(N − i)λ + i}fi(x) + {N − (i − 1)}λfi−1(x) + (i + 1)fi+1(x).

Notice that instead of ∂fi/∂x, we wrote dfi/dx to signify the fact that there is no
dependence on t. Instead of probability density, we can focus on the probability dis-
tribution that turns out to be more convenient when matching the boundary conditions
later on. Define

Fi(x) = Pr[X(t) ≤ x] =
∫ x

0
fi(x

′)dx′.

In the above, we need to know fi(x) at x = 0. Equation (8.23), however, is valid only
for x ≥ 0+: in the derivation of Ai in (8.15), we have assumed that x > 0 so that
x − (i − C)�t is not negative. Note also that there may be a finite probability that
the buffer size is 0 that translates to fi(0) being an impulse. Integrating (8.23) from
x = 0+, we have

(i − C){fi(x) − fi(0+)}
= −{(N − i)λ + i}(Fi(x) − Fi(0)) + {N − (i − 1)}λ(Fi−1(x) − Fi−1(0))

+ (i + 1)(Fi+1(x) − Fi+1(0)). (8.23)
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It turns out that the above can be further reduced to

(i − C)
dFi(x)

dx
= − {(N − i)λ + i}Fi(x) + {N − (i − 1)}λFi−1(x)

+ (i + 1)Fi+1(x). (8.24)

which is of the same form as (8.23) with fi replaced by Fi, because

(i − C)
dFi(x)

dx

∣∣∣∣
x=0+

= −{(N − i)λ + i}Fi(0) + {N − (i − 1)}λFi−1(0)

+ (i + 1)Fi+1(0). (8.25)

Equation (8.25) can be derived using a similar argument as the derivation (8.23),
but instead of probability density, probability distribution is examined. Briefly, as in
(8.14) we start out by observing

Pr[S(t + �t) = i, X(t + �t) = 0] = Ai + Ai−1 + Ai+1 + O(�2t),

where

Ai = Pr[S(t) = i, Enone, X(t) ≤ −(i − c)�t],

Ai−1 = Pr[S(t) = i − 1, Eon, X(t) ≤ f ],

Ai+1 = Pr[S(t) = i + 1, Eoff , X(t) ≤ g], (8.26)

where, as mentioned before, f and g depend on the analysis of the transition time
but turn out to be not important when the limit �t → 0 is taken: that is, both f

and g can be treated as 0. Using the same argument as before, it can be shown
that

Ai = [1 − {(N − i)λ + i}�t]Pr{S(t) = i, X(t) = 0}
−(i − c)�tpi(t, 0+) + O(�2t),

Ai−1 = {N − (i − 1)}λ�tPr{S(t) = i − 1, X(t) = 0} + O(�2t),

Ai+1 = (i + 1)�tPr{S(t) = i + 1, X(t) = 0} + O(�2t). (8.27)

From the above, (8.25) can be derived by considering the equilibrium probability
distribution in exactly the same way as discussed before. Note that in (8.27), Ai = 0
for all i > C because Pr{S(t) = i, X(t) = 0} = 0 for all i > C due to the fact that any
empty buffer fills up in no time at all in the fluid-flow model when the input rate is
greater than the output rate. Equation (8.25) remains valid, however, so long as we
have this understanding: indeed, this fact will be used later to match the boundary
conditions.
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We now move to the second part of the derivation: solving the dynamic equation
(8.24). Define an (N + 1)-dimensional vector

F(x) = [F0(x) F1(x) F2(x) · · · FN (x)]T . (8.28)

Then (8.24) can be written in vector form as

D
d

dx
F(x) = MF(x), x ≥ 0, ) (8.29)

where D is an (N + 1) × (N + 1) diagonal matrix:

D = diag{−c, 1 − c, 2 − c, . . . , N − c} (8.30)

and M is an (N + 1) × (N + 1) tridiagonal matrix:

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Nλ 1 0 · · · 0 0

Nλ −((N − 1)λ + 1) 2 · · · 0 0

0 (N − 1)λ −((N − 2)λ + 2) · · · 0 0
...

...
...

...
...

...

0 0 0 · · · −(λ + (N − 1)) N

0 0 0 · · · λ −N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(8.31)

Equation (8.29) is a system of linear differential equations. The standard way of
solving it is as follows. Let us assume that F has the form

F = esx�, (8.32)

where

� = [φ0 φ1 · · · φN ]T .

We want to find s and �, which are referred to as the eigenvalue and eigenvector,
respectively. Substituting (8.32) into (8.29), we get

Dsesx� = Mesx�, (8.33)

which gives

(D−1M − sI)� = 0, (8.34)

where D−1 is the inverse of D and I is the (N + 1) × (N + 1) identity matrix. In order
that the solution to � is not the trivial solution (i.e., � = 0), the matrix (D−1M − sI)
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must not have an inverse: otherwise, multiplying the LHS and RHS of (8.34) by the
inverse will yield the trivial solution. To have no inverse,

det(D−1M − sI) = 0. (8.35)

This translates to solving for the roots of an (N + 1)-order polynomial equation in s.
The (N + 1) roots, s0, s1, . . . , sN are the eigenvalues. Corresponding to each root si
is an eigenvector �i that can be solved by substituting si into (8.34).

After solving for all the eigenvalues and eigenvectors, the general solution of (8.29)
is given by

F(x) =
∑

i

aie
six�i, (8.36)

where the coefficients {ai} are determined by boundary conditions. Although in prin-
ciple the above general method can be used, numerical instability may result if we rely
on numerical computation by a computer. Also, the special structures of the matrices
D and M allow us to carry the analysis further to yield further insights.

Because of the diagonal structure of D and tridiagonal structure of M, we can write
from (8.29) and (8.32) the following:

s(i − C)φi = λ(N + 1 − i)φi−1 − {(N − i)λ + i}φi + (i + 1)φi+1,

0 ≤ i ≤ N. (8.37)

Define the generating function of φi as

�̃(z) =
N∑

i=0

φiz
i. (8.38)

It is straightforward to verify that

�̃′(z)

�̃(z)
= sC − Nλ + Nλz

λz2 + (s + 1 − λ)z − 1
, (8.39)

where �̃′(z) = d�̃/dz. Let z1 and z2 denote the roots of the denominator λz2 + (s +
1 − λ)z − 1:

z1, z2 = −(s + 1 − λ) ±
√

(s + 1 − λ)2 + 4λ

2λ
. (8.40)

We can write

�̃′(z)

�̃(z)
= sC − Nλ + Nλz

λ(z − z1)(z − z2)
= C1

z − z1
+ C2

z − z2
, (8.41)
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where

C1 = sC − Nλ + Nλz1

λ(z1 − z2)
, (8.42)

C2 = N − C1. (8.43)

From (8.41), we have the following indefinite integration:

∫
d�̃

�̃
=

∫
dz

(
C1

z − z1
+ C2

z − z2

)
, (8.44)

the solution of which is ln �̃ = C1 ln(z − z1) + C2 ln(z − z2) + constant, or

�̃(z) = K(z − z1)C1 (z − z2)C2 = K(z − z1)C1 (z − z2)N−C1 , (8.45)

where K is a constant. The eigenvector of an eigenvalue is unique modulus, a constant.
That is, if �i is an eigenvector of si, so is K�i, where K is a constant. At this point,
only the relative magnitudes of the components of an eigenvector are important. When
all the eigenvectors and eigenvalues are found, boundary conditions will be matched
using (8.36), at which point, the constant ai will be adjusted. And so we may ignore
K in (8.45) and write

�̃(z) = (z − z1)C1 (z − z2)N−C1 . (8.46)

In (8.42), C1 is expressed in terms of the eigenvalue s, but s is not derived yet. We
may turn the problem around and take a different standpoint: if C1 is known, then the
associated eigenvalue s can be found. There are two important observations on �̃(z)
that narrow down the possibilities for C1:

1. By definition in (8.38), �(z) is a polynomial of z of degree N.

2. From (8.40), it can be seen that z1 �= z2.

The two observations, applied on (8.46), imply that C1 must be an integer in [0, N].
That is,

�̃(z) = (z − z1)k(z − z2)N−k, k = 0, 1, . . . , N. (8.47)

As shown below, each k corresponds to two eigenvalues. Substituting C1 = k as well
as z1 and z2 from (8.40) into (8.42), we can get the following second-order polynomial
of s:

A(k)s2 + B(k)s + C(k) = 0, k = 0, 1, . . . , N, (8.48)
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where

A(k) = (N/2 − k)2 − (N/2 − C)2, (8.49)

B(k) = 2(1 − λ)(N/2 − k)2 − N(1 + λ)(N/2 − C), (8.50)

C(k) = −(1 + λ)2{(N/2)2 − (N/2 − k)2}. (8.51)

Note from the above that A(k) = A(N − k), B(k) = B(N − k), and C(k) = C(N −
k). Therefore, substituting k and (N − k) in (8.48) yields the same eigenvalues. It
is easily seen that the number of eigenvalues for k = 0, . . . , 	N
 is (N + 1) for N

odd. For N even, k = N/2 yields a repeated real root in (8.48), and so the number
of distinct eigenvalues is also (N + 1). It can also be shown that among the (N + 1)
eigenvalues, N − 	C
 are negative, one is 0, and 	C
 are positive. Furthermore, they
are all distinct. Label the negative eigenvalues s0, s1, . . . , sN−	C
−1, the 0 eigenvalue
sN , and the positive eigenvalue sN−	C
, . . . , sN−1. The positive eigenvalues corre-
spond to unstable solutions in (8.36) because esix → ∞ as x → ∞, and therefore
they can be eliminated from consideration (i.e., the associated ai = 0 in (8.36)), since
they do not make physical sense. The negative and zero eigenvalues correspond to
stable solutions.

Associated with k = 0 is the zero eigenvalue and the largest negative eigenvalue.
Label this largest negative eigenvalue by s0. It is

s0 = −(1 + λ − Nλ/C)

(1 − c/N)
= − (1 + λ)(1 − ρ)

(1 − c/N)
, (8.52)

where ρ = Nλ/C(1 + λ) is the traffic load. Now, as x → ∞, esix → 0 if si < 0.
Therefore, only the term corresponding to the zero eigenvalue is left in (8.36). That
is,

F(∞) = aN�N. (8.53)

Thus, we can write

F(x) = F(∞) +
N−	C
−1∑

i=0

aie
six�i. (8.54)

The value of F(∞) can be derived either by substituting s = 0 into (8.34) and solving
for the eigenvector or by the direct observation that

Fj(∞) = Pr[i sources are on] =
(

N

j

) (
1

1 + 1/λ

)j (
1/λ

1 + 1/λ

)N−j

=
(

N

j

)
λj

(
1

1 + λ

)N

. (8.55)
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Now that we know how to solve for the eigenvalues s0, . . . , sN−	C
−1, the next step
is to solve for the corresponding eigenvectors. Given a k and an associated eigenvalue
si, we can use (8.40) to solve for z1 and z2. All these are then substituted into (8.47)
and the coefficients of the resulting polynomial are the eigenvector components.
Specifically, the ith component of the eigenvector is

φi = (−1)N−i
k∑

i=0

(
k

j

)(
N − k

i − j

)
z
k−j
1 z

N−k−i+j
2 , 0 ≤ i ≤ N. (8.56)

The rest is to solve for the coefficientsai in (8.52) by matching boundary conditions.
Consider the boundary at x = 0 (i.e., buffer is empty). If the number of on sources j >

C, the capacity of the output channel, then Pr[x = 0] = 0, since the buffer occupancy
is always increasing. Using this fact on (8.54), we have

Fj(0) = 0 = Fj(∞) +
N−	C
−1∑

i=0

ai(�i)j, 	C
 + 1 ≤ j ≤ N, (8.57)

where (�i)j is the jth component of the eigenvector �i. The above equation gives
us N − 	C
 equations that can be used to determine the N − 	C
 coefficients ai.
However, it is difficult to get a closed-form solution for large N. A closed-form
solution can be obtained by a different method that is beyond the scope of this book.1

It is given by

ai = −
(

λ

1 + λ

)N N−	C
−1∏
j=0
j �=i

sj

sj − si
, 0 ≤ i ≤ N − 	C
 − 1. (8.58)

Several performance measures of interest can be derived. Let us first examine the
probability that the buffer content exceeds x, denoted by G(x). In the above analysis,
the buffer size is assumed to be infinite. In a real system, the buffer size is limited
by the physical constraint. The probability G(x) gives us a rough idea on how likely
that a real system with a buffer size of x will overflow. In general, G(x) is an upper
bound on the overflow probability (see Problem 8.2), which is the proportion of time
the finite buffer will overflow in a long stretch of time. The derivation of G(x) is as
follows:

G(x) = Pr{Queue length > x }

= 1 −
N∑

i=0

Fi(x) = 1 − (11 · · · 1)F(x)

1See Ref. [AMS82] for details.
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= 1 − 1 − (11 · · · 1)F(∞) − (11 · · · 1)
N−	C
−1∑

i=0

aie
six�i

= −
N−	C
−1∑

i=0

aie
six(11 · · · 1)�i. (8.59)

To approximate a finite-buffer system with a large buffer size, we are interested in
large x. As x → ∞, the asymptotic behavior of G(x) will be dominated by the term
with the largest eigenvalue s0, which is given by (8.52). Therefore, for large x

G(x) ∼ −a0e
s0x(11 · · · 1)�0. (8.60)

For eigenvalue s0, we have

z1 = 1 − N

C
, z2 = 1

λ

1

N/C − 1
, k = 0, (8.61)

and

�̃0(z) = {z + (N/C − 1)}N . (8.62)

Now,

(11 · · · 1)�0 = �̃0(z = 0) = (N/C)N. (8.63)

Substituting the above and (8.58) into (8.60), we get

G(x) ∼ ρN

⎧⎨
⎩

N−	C
−1∏
j=0

sj

sj − s0

⎫⎬
⎭ es0x. (8.64)

Recall that the traffic intensity ρ = Nλ/C(1 + λ). Thus, the probability G(x) varies
with three parameters: the average off period 1/λ for a source, the output capacity
C, and the total number of sources N. Figure 8.7 plots G(x) versus buffer size x. We
have the following observations from (8.64) and the graph:

1. G(x) is asymptotically linear in log scale with x, and the slope is s0. The asymp-
totical approximation is less accurate for small x. This can be seen directly from
(8.64).

2. For fixed C and λ, G(x) becomes larger as the number of sources N increases
(see Fig. 8.7(a)). This is expected because the system is then subjected to higher
traffic load.

3. For fixed traffic intensity ρ and C, G(x) increases as N increases. The expla-
nation is that although the input traffic intensity ρ remains the same, the traffic
is more bursty than before with a larger number of sources.
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4. For fixed ρ and λ, G(x) becomes smaller as N increases (see Fig. 8.7(b)). To
explain this, observe that C varies in a way that is proportional to N when ρ and
λ are fixed. That is, doubling N also doubles the output capacity C. Resource
sharing is achieved at a higher level because more sources are sharing a larger
pool of bandwidth with bandwidth per source being constant.

Instead of using G(x) to approximate the overflow probability in a finite-buffer
system, one may also derive the solution for the finite-buffer system directly. The
eigenvalues and eigenvectors derived remain valid, and the difference is in matching
the boundary conditions to find out ai’s. This is considered in Problem 8.3. Also, the
overflow probability is not the probability of data loss due to overflow. The former is
related to the proportion of time the system overflows and the latter is related to the
proportion of input traffic that is discarded due to buffer overflow. This is considered
in more detail in Problem 8.4.

Continuing on the infinite-buffer system, we now consider the delay. The average
delay can be derived easily using the Little’s law. Let f (x) = ∑N

j=0 fj(x) and F (x) =∑N
j=0 Fj(x). The average buffer occupancy is given by

E[X] =
∫ ∞

0
xf (x)dx =

∫ ∞

0
1 − F (x)dx. (8.65)

The second equality is a standard probability result and is derived in Problem 8.5.
The average delay is given by E[X]/r, where r is the average traffic arrival rate,
Nλ/(1 + λ).

To derive the delay distribution, a subtle point to note is that Fj(x) is the probability
distribution observed at an arbitrary point in time, which is not the same as the
probability distribution observed by an arbitrary arrival. This is because the arrival
rate during larger j is higher than during lower j, and therefore more arrivals see
larger j than indicated by Fj(x). Let

Hj(x) = Pr[an arrival sees state j and X ≤ x] (8.66)

Consider an infinitely long stretch of time T , the fraction of time the system is in state
j is TFj(x). Therefore, the total amount of traffic arrivals seeing state j and X ≤ x is
jTFj(x). The total amount of arrived traffic is T r. Therefore,

Hj(x) = jTFj(x)

T r
= jFj(x)

Nλ/(1 + λ)
. (8.67)

We have

Pr[an arbitrary arrival sees X ≤ x] =
N∑

j=0

Hj(x). (8.68)
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and �.
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An arbitrary arrival seeing X ≤ x has a waiting time or delay of W ≤ x/C. Thus, the
delay distribution

Pr[delay ≤ t] =
N∑

j=0

Hj(Ct). (8.69)

8.3 TRAFFIC SHAPING AND POLICING

Traffic shaping and policing are functions performed at the boundary of the network
at the user–network interface (UNI). The idea is that there is some sort of a contract
between the user and the network that specifies the traffic that the user can inject into
the network. From the user’s viewpoint, the network is required to provide certain
performance guarantee: for instance, the network may guarantee the user that the
maximum delay experienced by a packet in the network will not exceed a certain
bound. However, without any constraint on the user traffic, the network will not be
able to offer performance guarantee to individual users, especially when many users
start to pump excessive amount of data into the network. In such a situation, well-
behaved users may experience bad performance because of greedy users. Thus, it
is essential that each user be constrained somewhat. As part of the user–network
contract, the allowable traffic from each user is specified in terms of a set of traffic
parameters.

Traffic policing is performed by the network to ensure that the parameters specified
by the user are being complied. Traffic in excess of the specification may be discarded
at the UNI or transmitted as low-priority traffic that may be discarded in the network
when congestion arises.

The source traffic (e.g., the traffic output from a video encoder) can have char-
acteristics that do not conform to the specification in the contract. For instance, the
source traffic may be very bursty in nature while the contract specifies that the input
rate of the traffic into the network must be constant. Traffic shaping can be performed
by the user on the source traffic in order to conform to the specification. Instead of
injecting the source traffic into the network immediately when a burst occurs, the user
may buffer the excess data outside the network so that they can be sent out later. In
this way, traffic injected into the network is smoother than the traffic generated by the
source.

The simplest form of a traffic-shaping device is perhaps the simple leaky bucket
shown in Fig. 8.8(a). Here, the contract between the user and the network is specified
in terms of a parameter: the channel capacity ρ. The user cannot inject bursty traffic
into the network and only CBR traffic is allowed. Any data in excess of those allowed
are temporarily stored in a buffer of size β.

We now use the fluid-flow model to discuss several traffic-shaping mechanisms.
First, in the simple leaky bucket of Fig. 8.8(a), the buffer is analogous to a bucket with
a hole at the bottom through which fluid can flow out at the rate of ρ. Figure 8.8(b)
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FIGURE 8.8 (a) A simple leaky bucket; (b) an example of arrival and departure curves; (c)
another example of arrival and departure curves.

shows the departure pattern (traffic allowed into the network) that corresponds to a
particular arrival pattern. Note that the slope of the departure curve can never be larger
than ρ. When there is backlog in the buffer, the departure rate is ρ. When there is no
backlog, the departure rate equals the arrival rate. Figure 8.8(c) shows the departure
pattern that corresponds to another arrival pattern. The arrivals could correspond to
that of an on–off source in which the traffic arrives at a rate greater than ρ during on
time. In general, it is easy to see that any piecewise linear arrival curve will give rise
to a piecewise linear departure curve.

In the literature, the term “leaky bucket” is more commonly used to refer to the dual-
leaky-bucket system shown in Fig. 8.9(a). There are two buckets, one corresponding
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to the buffer for the data and the other corresponding to the buffer for a pool of
tokens. Before a unit of data can enter the network, it must acquire and remove a
corresponding unit of token from the token bucket. Tokens are generated at the rate
of ρ and the bucket size for the tokens is σ. When the token bucket is full, the excess
tokens being generated are simply discarded.

In the model, as long as there are enough tokens in the token bucket, any arriv-
ing data can depart immediately: that is, there is no restriction on the instantaneous
departure rate. Over the long term, however, the average rate at which the data enter
the network cannot be higher than ρ, the token generation rate. For the same arrival
patterns in Fig. 8.8(b) and (c), Fig. 8.9(b) and (c) shows the departure patterns in the
dual-bucket system. In addition to the arrival and departure patterns, the total amount
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FIGURE 8.9 (a) A dual-leaky-bucket system; (b) an example of token, arrival, and departure
curves; (c) another example of token, arrival, and departure curves.
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of tokens that have been generated is also shown, assuming initially the token bucket
is full.

Note that the data that arrive when the token bucket is nonempty can depart im-
mediately. Comparing Figs. 8.8(b) and 8.9(b), we see that in Fig. 8.9(b), all arrivals
depart immediately because the token bucket is never empty. Also note that it is not
possible for both the token bucket and the data bucket to be nonempty at the same
time: the data backlog would have used the tokens to depart the system. Because
of this, with the fluid-flow model, the departure curve tracks either the token curve
(when the data bucket is nonempty) or the arrival curve (when the token bucket is
nonempty). Problem 8.6 makes use of this fact to perform a stochastic analysis of the
system.

Compared with the simple leaky bucket, the dual leaky bucket allows a certain
degree of burstiness in the traffic that enters the network. In the simple leaky-bucket
system, the maximum amount of data allowed into the network in a duration of T

is ρT . Assuming a full token bucket initially, the dual-bucket system can allow a
maximum amount of data equal to ρT + σ. For small T , we see that the data can
enter the network as a large burst. But over a long period (i.e., ρT � σ), the data
departure rate averages out to be approximately ρ in the worst case.

In actual implementation, the tokens and token bucket need not be implemented
as actual physical entities. We only need a counter to keep track of the amount of
tokens in the token bucket. For discrete cell traffic (as opposed to the fluid-flow
traffic), each time a cell departs, the counter is decremented, and each time a token is
generated (assuming the tokens are also generated in a discrete manner), the counter
is incremented.

Figure 8.10(a) shows a more sophisticated three-bucket system. In addition to the
two buckets in the dual-bucket system, an additional data bucket is added to the output
of the dual-bucket system. This additional bucket has a bucket size of σ and a service
rate of C. There are two reasons for this model. The first is that it models the physical
situation more realistically. For instance, the link between the UNI and the network
may have only a finite capacity C rather than ∞, which is assumed in the dual-bucket
system. The second applies to the situation where the physical link has capacity more
than C: the additional constraint is introduced so as to reduce the burstiness of traffic
entering the network. The maximum amount of traffic that can enter the network in
this system in a period of time T is min(ρT + σ, CT ).

Note that it does not make sense in the three-bucket system to have a ρ > C.
Otherwise, the traffic entering the third bucket may saturate the buffer when the
arrivals are bursty, resulting in lost data; meanwhile, the traffic cannot depart at
a rate higher than C anyway: that is, increasing ρ beyond C does not relax the
burstiness constraint on the data entering the network. If ρ = C, then the system
is equivalent to a simple leaky-bucket system (see Problem 8.8). Thus, only when
C > ρ does it make sense to have a three-leaky-bucket system. When C > ρ, given
that the token bucket size is σ, the backlog in the third bucket can never be more
than σ (why?), and therefore as shown in the figure, the size of the third bucket
is also σ. Figure 8.10(b) and (c) shows the departure curves for the same arrival
patterns as discussed before. In general, with C > ρ, the departure curve of the
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FIGURE 8.10 (a) A three-bucket system; (b) an example of token, arrival, and departure curves;
(c) another example of token, arrival, and departure curves.

three-leaky-bucket system is between those of the simple and dual-leaky-bucket
systems.

Once the traffic enters the network, it may traverse several nodes and links be-
fore reaching its destination. The fluid-flow model can again be used to study the
delay and backlog within the network. As an example, consider Fig. 8.11(a), in
which a dual-leaky-bucket traffic shaper is used to control the traffic entering the
network. In the network, the traffic passes through a switch and exits on one of its
outputs.

Recall that a physical link in the network can generally be shared among many
VCs. In this example, the switch assigned a bandwidth of ρ′ to the VC concerned.
Figure 8.11(b) shows the token generation curves, and the arrival and departure curves
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FIGURE 8.11 (a) A cascade curve of a dual leaky bucket and a simple leaky bucket; (b) an
example of cumulative curves; (c) worst-case arrival curve and its associated departure curves.

at various locations. Note that the traffic leaving the leaky bucket will suffer a fixed
amount of propagation delay from the output of the leaky bucket to the switch and
then a fixed amount of processing delay in the switch before arriving at the targeted
switch output (we assume that the switch is an output-buffered switch so that the only
queueing point, where delay can be variable, is at the switch output).

With an amount of bandwidth ρ′ assigned to it, it is as if there is a simple leaky
bucket at the switch output controlling the traffic of the source that leaves the switch.
So, we can again use the fluid-flow diagram to study the delay at the output. First,
suppose that ρ′ > ρ. A question is what is the worst-case delay. The corresponding
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fluid-flow diagram is depicted in Fig. 8.11(c). We shall not provide a rigorous proof
for the following results, as they are pretty obvious intuitively.

The worst-case delay is incurred whenever the source pumps in as much traffic as
is allowed by the dual leaky bucket, and this corresponds to the linear curve shown
in the diagram. Note that at time 0, the traffic entering the network is an impulse
of σ, and since we assume the link between the source and the switch has infi-
nite bandwidth, this impulse arrives at the switch output after a fixed delay d. The
more realistic situation in which the link has a limited capacity C is explored in
Problem 8.9.

As shown in Fig. 8.11(c), since ρ′ > ρ, the maximum backlog occurs at time d,
where d is the fixed delay between the output of the dual leaky bucket and the output
of the switch. The maximum delay is suffered by the first bit of the data that enters
the switch output, and this is σ/ρ′. Also illustrated in Fig. 8.11(c) is the fact that the
delay and backlog will be unfounded if ρ′ < ρ, since the slope of the departure curve
will then be smaller than the slope of the arrival curve.

The above discussion concerns static assignment of bandwidth ρ′ to the VC con-
cerned. More generally, to use the output capacity more efficiently, ρ′ could be a
function varying with time t. For instance, when there is little traffic arriving from
the other VCs sharing the same output link, we could increase ρ′(t) if there is a lot of
traffic from the VC concerned. This is related to the flow control issues that will be
discussed in the next Section.

8.4 OPEN-LOOP FLOW CONTROL AND SCHEDULING

Open-loop control, or feedforward flow control, deals with the issue of regulating the
flow of the traffic of a session through the network without feedback. The issues in
open-loop flow control are listed as follows:

1. Service guarantee: During call setup, a session may have been guaranteed a
certain amount of end-to-end transport capacity. An issue is how to ensure each
session receives its proper amount of transmission capacity as its packets pass
from node to node. For instance, a greedy session that pumps a lot of data into
the network should not jeopardize the service of other sessions.

2. Efficient use of link capacity: Another issue is how to make use of the link
capacity in an efficient manner. Ideally, if there are packets waiting to use the
link, a packet should be transmitted. Also, it could turn out that the sum total of
the guaranteed capacities to all the sessions passing through the link is less than
the link transmission capacity. This extra capacity, if not used, will be wasted.
An issue is how to allocate the extra capacity to the sessions in a fair manner
so that their packets can be delivered as soon as possible.

The two issues above are addressed by how multiplexing is performed at the output
links of a node. Multiplexing has been discussed very briefly in Sections 8.1 and 8.2.
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The discussion in Section 8.2, in particular, dwelled on the multiplexing of homoge-
neous fluid-flow on–off sources. The focus was on the overall performance rather than
on the performance of individual data streams. That is, not much has been said about
the allocation of transmission capacity to a particular session. The performance as
perceived by individual sessions was not discussed, although some simple examples
were given in Section 8.1 to familiarize the reader with the use of the fluid-flow model
as an intuitive tool to aid understanding.

This section is devoted to a more detailed study of the multiplexing issue. In
particular, we shall investigate how to schedule the transmission of input traffic on the
output channel of a multiplexer in order to guarantee the performance of individual
sessions. As shown in Fig. 8.12, the situation at a particular output of an output-
buffered switch is the same as that in the multiplexer. Scheduling is a form of open-
loop flow control on individual sessions. At the multiplexer, the backlog consists of
data from different sources. It is up to the multiplexer to schedule the order in which
data will be transmitted.

8.4.1 First-Come-First-Serve Scheduling

The simplest scheduling scheme is perhaps the first-come-first-serve (FCFS) scheme.
With FCFS scheduling, the data from different sessions are put into a common buffer
and transmitted in a first-come-first-serve manner. This scheduling scheme is “fair”
to the extent that the sources are homogeneous and there are no misbehaving sources.
However, it cannot guarantee the performance of individual sessions in case there are
some “greedy” sessions that pump an excessive amount of data into the multiplexer.
A well-behaved session will then suffer a large delay because of the greedy sessions.
This is illustrated in Fig. 8.17 using the fluid-flow model.

In Fig. 8.13, there are three sessions. The cumulative curves A1(t), A2(t), and A3(t)
are the amount of traffic arrived from sessions 1, 2, and 3, respectively. The capacity
of the output channel is C. The arrival rates of both sessions 1 and 2 are C from time
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FIGURE 8.12 Multiplexing at the output of a switch.
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FIGURE 8.13 FCFS service discipline.

0 to 2T . The arrival rate of session 3 is C from time T to 3T . Between time 0 and T ,
the total amount of traffic arriving from sessions 1 and 2 is 2CT , while the amount of
traffic exiting the multiplexer is CT . This leaves a backlog of CT by the time the first
bit of session 3 arrives. Therefore, with the FCFS service discipline, session 3’s traffic
must wait for another T time unit before its first bit will go out of the multiplexer. This
service discipline is unfair to session 3 because it is being penalized by the arrivals
of other sessions.

An alternative is to maintain a separate queue for each session. Within the queue
of a session, data are still served in a FCFS fashion. However, the data from separate
queues may not be served in the FCFS manner. An issue then is the order in which
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data should be taken from the queues for transmission on the output channel in order
to avoid a greedy session from hogging the use of the output channel.

8.4.2 Fixed-Capacity Assignment

For illustration, let us first consider the simplistic fixed-capacity scheduling, as illus-
trated in Fig. 8.14. The output-channel capacity is divided among the sessions. In the
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FIGURE 8.14 Fixed-capacity assignment service discipline.



358 NETWORK TRAFFIC CONTROL AND BANDWIDTH ALLOCATION

figure, a fixed capacity of C/3 is allocated exclusively to each of the three sessions.
A session’s traffic cannot make use of the capacity already assigned to another ses-
sion. Conceptually, it is as if the traffic of each session enters a simple leaky bucket
(i.e., the one in Fig. 8.8(a)) with a drain rate of C/3. There is no interference among
the sessions. This is the same situation as in that of Fig. 8.11. With the same arrival
patterns as in Fig. 8.13, we see from Fig. 8.14 that session 3’s traffic is not penalized
because of other sessions’ traffic.

If the capacity guaranteed to each session is less than or equal to C/3, then the
above fixed-capacity scheduling can meet the commitment. More generally, it is not
necessary that the sessions be allocated equal amount of capacities. The only constraint
is that the sum total of the allocated capacities should not exceed C.

Unfortunately, the output channel cannot be used in an efficient manner with ex-
clusive allocation of capacities. For example, in Fig. 8.14 the sum of the arrival rates
of sessions 1 and 2 is 2C from time 0 to T . The output rate in the same time win-
dow is only 2C/3, which is below the transmission capacity C of the output channel.
Meanwhile, the backlogs of sessions 1 and 2 build up. A better scheduling scheme is
as follows: when there is no arrival from a particular session and there is no backlog
for that session, the capacity allocated to that session should be reallocated and used
by other sessions with backlogs. With our example, the capacity of C/3 originally
assigned to session 3 could have been redistributed to sessions 1 and 2 from time 0 to
T . This will reduce the backlogs and delays of both these sessions. At time T , when
the traffic of session 3 begins to arrive, this capacity can be returned to session 3. In
this way, the capacity already guaranteed to session 4 can still be maintained.

There are many ways in which unused capacities of idle sessions can be redis-
tributed to the active sessions. A multiplexer is said to be work conserving if the output-
channel capacity is fully used (i.e., data are being transmitted at rate C) when there
is backlog (of any session) in the multiplexer. Loosely speaking, a work-conserving
multiplexer is “efficient” in the sense that it tries to use the capacity of the output
channel whenever it is possible; the only time the output capacity is not fully used is
when there is no backlog, and data arrive at a rate smaller than C.

FCFS scheduling is work conserving, while fixed-capacity assignment is not. The
FCFS scheduling scheme suffers from the lack of guarantees to individual sessions,
while the fixed-capacity assignment scheme is not efficient because it is not work
conserving. There are many scheduling schemes that can maintain the capacity guar-
anteed to each session while being efficient. We shall discuss two general schemes
here.

8.4.3 Round-Robin Scheduling

We have used the fluid-flow model to simplify the discussion in the above. In practice,
traffic must be transmitted at the output channel in a packet-by-packet manner. Thus,
the above discussion, particularly the discussion of the fixed-capacity assignment
scheme, is only an approximation to what happens in reality. In the example of the
fixed-assignment scheme, what happens in reality is that the queues of the sessions



OPEN-LOOP FLOW CONTROL AND SCHEDULING 359

FIGURE 8.15 Round-robin scheduler.

are scanned in a one-by-one fashion. One packet is taken out of each nonempty queue
whenever it is scanned. If the queue is empty, no packet is transmitted on the output
and the capacity is wasted. A more efficient scheme is to skip directly to a nonempty
queue whenever an empty queue is encountered in order to save the time slot. This is
the idea underpinning the round-robin scheduling scheme.

The round-robin service discipline is illustrated in Fig. 8.15. The scheduler scans
the queues in a round-robin fashion: whenever it encounters a nonempty queue, it
outputs the head-of-line packet from the queue and moves on to the next queue; if
a queue is empty, it simply moves on to the next queue without wasting a time slot
doing nothing. Therefore, it is a work-conserving service discipline.

With N sessions, the worst-case service time for a head-of-line packet, TS, defined
as the maximum amount of time it can spend at the head of its queue in the worst case,
is N packet times, and this occurs when the queues of all N sessions are nonempty.
To see this, consider a packet that moves into the head of its queue immediately after
the transmission of the previous head-of-line packet. If all the other sessions have
packets, it will take N − 1 packet times before the scheduler visits its queue again.
Another unit of time is needed to transmit the packet itself. In the round-robin scheme,
TS is also the worst-case cycle time TC, which is the maximum amount of time before
the scanning pattern repeats itself.

There is a minimum performance guarantee to each session in that each session
gets a capacity of at least C/N, and the negative effect of a greedy session on other
sessions is restrained. It is also possible to construct a more sophisticated round-robin
scheduler that takes into account the varying service requirements and priorities of
different sessions. For instance, a scheduler may serve more than one packet from
a high-priority queue in each cycle of service when it scans through all queues.
Specifically, for each queue i, we may assign a number ni (ni ≥ 1) that represents the
maximum number of packets that will be served each time the scheduler serves the
queue. One shortcoming is that TS would then be larger because TC is. Specifically,
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TC is given by

TC =
N∑

j=1

nj (8.70)

and the TS for a particular session i is given by

TS =
∑
j �=i

nj + 1. (8.71)

For a session with ni = 1, its TS is the same as TC. For a session with ni > 1, TS is
smaller. It can be easily seen that the worst-case service time would be larger when
many queues have ni > 1 and/or when some ni’s are large.

To solve this problem, one may introduce mini-cycles within the original cycle.
In each mini-cycle, at most one packet will be served from each queue. In the first
mini-cycle, all queues will be scanned; in the second mini-cycle, all queues with
ni ≥ 2 will be scanned; and in general, in the jth mini-cycle, all queues with ni ≥ j

will be scanned. The last mini-cycle within a cycle is the nmaxth mini-cycle, where
nmax = maxi ni, and after that a new scanning cycle begins. For those sessions with
ni = 1, the worst-case service time is still

∑N
i=1 ni, but these are presumably the

low-priority sessions. In general, for a session l with nl = k, the worst-case service
time can be calculated as follows.

With the aid of Fig. 8.16, we examine how long in the worst case a packet has to
wait before the scheduler scans its queue again. The kth mini-cycle is the last mini-
cycle within the current cycle that the queue will be served. In the kth mini-cycle,
suppose that immediately after the scheduler finishes with serving queue l, a packet
from queue l moves to the head of line. The question is what is the worst-case service
time for this packet. The scheduler will not scan queue l again until the next overall
cycle begins. We assume that within each mini-cycle, the queues with lower indices
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FIGURE 8.16 Computation of the worst-case service time of queue L in a round-robin scheduler.
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are scanned before the higher one. The time till the end of the kth mini-cycle after a
packet from queue l is served is

∑
i>l:ni≥k 1, or the number of sessions with ni ≥ k

and i > l. The time from the end of the kth mini-cycle till the end of the current cycle
is

∑
i:ni>k(ni − k). Thus, the time from the end of the service of the packet from

queue l till the end of the current cycle is

∑
i>l:ni≥k

1 +
∑

i:ni>k

(ni − k). (8.72)

From the beginning of the next cycle until the completion of the service of the next
packet from queue l is l (i.e., there are (l − 1) queues that will be scanned before queue
l and it takes one packet time to transmit the packet of queue l). Thus, for session l,
the worst-case service time is

TS =
∑

i>l:ni≥k

1 +
∑

i:ni>k

(ni − k) + l. (8.73)

It can be seen that the introduction of the mini-cycles reduces the worst-case service
time (see Problem 8.10). However, the mini-cycle scheme can be further improved.
For illustration, consider a session l with nl = 2, and suppose that there are many
sessions with ni > 2. The worst-case service time is incurred by a packet that moves
to the front of the queue l immediately after the scheduler serves the queue in the
second mini-cycle. The packet must wait for a long time before the next cycle begins.
Certainly, the worst-case service time can be reduced if instead of the second mini-
cycle, we serve queue l at a later time within the overall cycle. In particular, if the
scheduler can make sure that the intervals between scanning times of queue l are
equally separated, then the worst-case service time can be reduced.

For simplicity, let us first examine the problem of scheduling the service of a
queue with approximately equal scanning intervals when all the sessions always have
packets to send. We will retain the concept of a repeating scanning pattern in every
cycle but do away with the mini-cycles. When all sessions always have packets to
send, the cycle time is TC = ∑N

i=1 ni, and a queue l with nl = k must be served
approximately every TC/k time slots to minimize the TS.

There are two ways in which it is not possible to schedule the service interval to
be exactly TC/k. The first is due to the discrete nature of time slots: the scanning
interval cannot be exactly TC/k if TC/k is not an integer. To approximate, we may let
the interval be TC/k� sometimes and 	TC/k
 at other times. The second scenario is
more subtle and it occurs even when TC/k is an integer for all sessions. Consider an
example in which the number of sessions N = 3, and n1 = 1, n2 = 2, and n3 = 3.
The cycle time is 6, and session 3 is to be served once every other time slot. It can
be easily seen that if we serve session 3 every other slots and session 1 once every
six slots, it is then not possible to serve session 2 once every three slots. In general,
the scheduler must perform some computation to approximate the periodic service
of once every TC/k slots for each session, and with a large N, the task would not be
simple.
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FIGURE 8.17 Fluid-flow model.

Let us consider a systematic way to compute the scanning pattern. We shall first
examine the scheduling problem using the fluid-flow model again. With the fluid-
flow service model, the scheduling problem is basically a way to determine how the
channel capacity C can be partitioned and distributed to the sessions. Let gi be the
capacity assigned to session i. A high-priority session or a session with high input
traffic can be assigned a higher gi. The sum total of the capacities assigned to all
sessions should not exceed C. That is,

∑N
i=1 gi ≤ C.

Let us again examine the simple scenario in which all sessions always have packets
waiting to be transmitted. Session i should be able to transmit gi bits per second on
the output channel. Consider the fluid-flow model as depicted in Fig. 8.17. We picture
data as being infinitely divisible fluid and that data from different sessions may “flow”
out of the multiplexer simultaneously. The data from session i will flow out at the rate
of gi bits per second. This will be the “ideal” way to distribute the output-channel
capacity. Of course, in practice, the multiplexer must transmit packets one at a time
and two sessions cannot be served simultaneously. As can be seen, the fluid-flow
model that distributes different amounts of capacities to different sessions is really
simple. The problem is how to extend that to the packet-by-packet model. A strategy
is to use “ideal” fluid-flow service model to help us compute the packet-by-packet
service schedule. In other words, we can use the departure times of data in the fluid-
flow model as a guide of how packets in the packet-by-packet model are to be served,
as explained below.

Each packet has a certain number of bits. We define the time at which the last
bit leaves the multiplexing system as the departure time. Each packet in the fluid-
flow model has a departure time. We can schedule the transmission of packets in the
packet-by-packet model according to these departure times. That is, the packets with
earlier departure times in the fluid-flow system will be served earlier. In other words,
the departure times under the fluid-flow model will be simulated and used to schedule
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FIGURE 8.18 Departure time: time at which the last bit leaves.

the transmission of packets in the actual system. This is illustrated in Fig. 8.18. There
are three sessions in the examples, with g1 = 1, g2 = 2, and g3 = 3. The jth packet of
session i is denoted by (i, j), and the departure times of the packet under the fluid-flow
model are denoted by tij . As shown, the transmission schedule should accordingly be

(3, 1), (2, 1), (3, 2), (3, 3), (2, 2), (1, 1), . . . (8.74)

Note that t11 = t22 = t33 and we have a tie for three packets, in which case the actual
ordering can be determined in an arbitrary fashion. Also, the departure time of a
packet in the “real” schedule is different from its departure time in the “simulated”
schedule in the fluid-flow model. Let us assume gi and C are expressed in terms of
packets per second. Then t31 = 1/3 s. However, its actual departure time in the “real”
multiplexer is t = 1/6 s, ahead of t31. The departure time of a packet in the actual
packet-by-packet system is therefore different from that in the simulated fluid-flow
model.

The above schedule determines the order of transmission in a cycle of the round-
robin scheduling scheme. Corresponding to (8.74) is the order of transmission: session
3, session 2, session 3, session 3, session 2, and session 1. The scanning pattern keeps
repeating itself. Note that the transmission times of session 3’s packets are sometimes
separated by zero time slots, sometimes by one time slot, and sometimes by two time
slots. This is somewhat different from the ideal of one time slot, and it is due to the
arbitrary tie breaking of simultaneous departures.

Now, in practice some of the queues may not have packets to send when they are
scanned. In this case, as mentioned before, the multiplexer simply looks to the next
queue in the scanning pattern for a packet to transmit. In this way, the busy sessions
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are being served more often when some of the other sessions are idling. In fact, a busy
session i receives more than its allocated share of capacity gi when there are some
idle sessions.

8.4.4 Weighted Fair Queueing

The fluid-flow model is used to construct the scanning pattern in a cycle in the above.
Weighted fair queueing is another work-conserving service discipline. It also uses
the departure times of packets under the fluid-flow service model to schedule the
actual transmission of the packets. The concept of a repetitive scanning cycle is
dropped altogether. The system chooses the packet with the smallest departure time
for transmission rather than relying on the scanning-cycle pattern to decide whom to
serve next.

For explanation, we first consider the scenario in which all sessions have backlog
packets in the multiplexer. With reference to the example in Fig. 8.19, we now explain
the calculation of the departure time of a packet. Let a(i)

n be the arrival time of the
nth packet from session i. The arrival time is defined to be the time by which the last
bit of the packet has arrived. Let d(i)

n be the departure time of this packet under the
fluid-flow model. Suppose that the capacity gi is expressed in terms of packets per
second. Then

d(i)
n = max[a(i)

n , d
(i)
n−1] + 1/gi. (8.75)

Note that d(i)
n = a(i)

n + 1/gi if the (n − 1)th packet has already departed by the time

the nth packet has arrived, and d(i)
n = d

(i)
n−1 + 1/gi if the (n − 1)th packet is still in

the multiplexer by the time the nth packet has arrived.
This scheme and the round-robin scheme differ when not all sessions are active and

some sessions do not have backlogs in the multiplexer. In the round-robin scheme, the
scanning cycle is retained and the scheduler will simply skip over the inactive queues
to an active queue. The weighted fair queueing does not use a repetitive scanning
pattern. Instead, the departure times are adjusted when some queues are inactive. In
other words, the departure times are calculated in a different manner from (8.75) when
some queues are empty. Let B(t) denote the set of busy sessions (i.e., sessions with
backlog in the fluid-flow multiplexer) at time t. In the weighted fair queueing scheme,
the service rate of queue i at time t is

g′
i(t) = gi × g∑

i∈B(t) gi

, (8.76)

where g = ∑N
i=1 gi. For our purpose, we may assume that g = C. If g < C, we can

introduce for conceptual purposes a dummy session that is assigned a capacity C − g

so that all the capacity C will be used.
Consider the nth arriving packet from session i again. Let Th = (max[a(i)

n , d
(i)
n−1],

d(i)
n ] be the time interval during which this nth packet is at the head of the queue.
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FIGURE 8.19 (a) Fluid-flow service: packet-by-packet arrivals; (b) packet-by-packet service
arrival.

Suppose that B(t) does not change during Th. Then

d(i)
n = max[a(i)

n , d
(i)
n−1] + 1/g′

i(t), (8.77)

where t ∈ Th. Equation (8.77), however, is valid only when B(t) does not change
during Th. If B(t) changes during this time (either due to the arrival of new packets
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to some empty queues or due to the emptying of some backlogged queues), g′
i(t)

will change accordingly. But we know that the packet must accumulate the service
equivalent to one packet before it can depart. The time needed to accumulate this
service is

Th such that
∫

t∈Th

g′
i(t)dt = 1, (8.78)

where we have assumed that g′(t) has been normalized to have unit in packet per unit
time. One way to interpret the above result is the following. At any time, the departure
time of a head-of-line packet in a queue will be calculated assuming B(t) does not
change during its stay at the head of the queue. However, if B(t) changes before it
departs, then the departure time is recalculated, taking into account the amount of
service that has already been accumulated so far and the amount of remaining service
that is required before the packet can depart. The computation complexity can be
quite formidable because it is possible that the departure time of a packet has to be
recomputed again and again.

The computation complexity can be solved somewhat by making the observation
that the departure times in the fluid-flow system are used to order the transmission
of packets in the actual packet-by-packet system. As indicated earlier, they are not
the actual departure times of the packets in the real system. In the real system, the
scheduler will simply serve the packet with the earliest departure time. It is quite
possible that while transmitting this packet (say packet A), another packet (say packet
B) has arrived into the empty queue of another session and that this packet should
have an earlier departure time under the fluid-flow model (see Problem 8.11). In this
case, there is a discrepancy between the departure order in fluid-flow weighted fair
queueing and that in packet-by-packet fair queueing, which corresponds to the actual
system. But given that packet B has not arrived when the scheduler serves packet
A, in order not to waste the output-channel capacity, the scheduler must go ahead
and serve packet A anyway. The actual system does its best to “track” the simulated
system. We shall come back to examine the maximum “extra” delay suffered by a
packet under the packet-by-packet model relative to the fluid-flow model.

Returning to the issue of computation complexity of the departure times of the
fluid-flow model. The observation that the actual departure times of packets are not
important and that only the order of departure times is important for scheduling the
service of packets in the real system allows us to simplify the computation somewhat.
Let dA, dB, . . . be the departure times of packets A, B, . . . calculated using the method
as described previously. Without loss of generality, suppose that

dA ≤ dB ≤ · · · (8.79)

Suppose we have another way of calculating another set of departure times d′
A, d′

B, . . .

for the packets such that the order is preserved:

d′
A ≤ d′

B ≤ · · · (8.80)
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As far as ordering the service of packets in the real packet-by-packet system is con-
cerned, the new way of calculating the departure times is equivalent to the old way
because the order of service remains the same. In particular, the departure times do
not need to be the time as measured by a real clock. We now describe a method in
which the departure time of a packet needs to be calculated only once. Instead of
adjusting its departure time whenever B(t) changes, we adjust the rate at which a
“virtual” clock ticks.

Consider a real clock and a virtual clock. The real clock advances at a constant
rate; the rate at which the virtual clock advances, however, may change with time.
For the time being, let us say the advancement rate of the virtual clock changes in
an arbitrary manner, except that it must be positive (i.e., the reading of the virtual
clock cannot become smaller and smaller). Now, instead of labeling the departure
times dA, dB, . . . of packets A, B, . . . with the readings of the real clock, suppose that
we label them with the readings of the virtual clock at real times dA, dB, . . .. Let the
readings of the virtual clock be V (dA), V (dB), . . .. Certainly

V (dA) ≤ V (dB) ≤ · · · (8.81)

In other words, the readings of the virtual clock are just as good as far as ordering
packets is concerned.

We now specify the advancement rate of the virtual clock. Let V (t) be the read-
ing of the virtual clock at real time t. Then, the rate at which the virtual clock
advances is

dV (t)

dt
= g∑

i∈B(t) gi

(8.82)

Note that the virtual time advances faster (slower) when there are fewer (more) busy
sessions. This corresponds to the fact that the service rate received by a busy session
is higher (lower) when there are fewer (more) busy sessions, and therefore, the virtual
departure time of a packet will be reached earlier (later).

Recall that each packet needs to receive a unit of service before it can depart in the
original method. Let us see how much virtual time is needed before a unit of service
is accumulated. From (8.76) and (8.78),

∫ d
(i)
n

max[a(i)
n ,d

(i)
n−1]

gi × g∑
i∈B(t) gi

dt = 1. (8.83)

The above and (8.82) imply that

∫ V (d(i)
n )

V (max[a(i)
n ,d

(i)
n−1])

gidV = 1. (8.84)
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This gives us

V (d(i)
n ) = max[V (a(i)

n ), V (d(i)
n−1)] + 1/gi, (8.85)

which is the formula for the virtual departure time calculation. Note that this formula
is similar to (8.75), with the difference that both the arrival times and the departure
times of packets are now virtual times with reference to a virtual clock. In particular,
the service rate gi in the new method is constant.

In the original method, the service rate varies with time according to g′
i(t) and time

advances at a constant rate. In the virtual-time method, the service rate is fixed but the
time advancement rate varies. The advantage of the virtual-time method is that the
virtual departure time of a packet can be immediately computed according to (8.85);
this is not possible in the real-time method, because the real departure time needs to
be adjusted according to the number of busy sessions in the future. Once the virtual
departure time of the packet is computed, it can then be sorted together with other
existing packets and their transmission ordered; there is no need to recompute the
departure time of a packet again and again.

We have thus reduced the problem to that of constructing or simulating a virtual
clock with the advancement rate given by (8.82). Since the advancement rate depends
on B(t), the set of busy sessions must be tracked. A subtlety is that B(t) is still a
function of the real time, and therefore, we still need to know when B changes in real
time, (as opposed to in virtual time). The overall updating of the virtual time and the
computation are given as follows.

Define the busy period of the system as the time during which there is backlog in
the fluid-flow multiplexer. Whenever the system is idle with no packets in any queue,
both the real time and virtual time are set to be zero. Therefore, the beginning of any
busy period is always time 0. We will see how virtual time is to be updated during the
busy period. Since the set B may change only when there is an arrival or when there
is a departure, we only need to update the virtual times at this instance. An arrival
instant is always known since it is marked by an input packet to the system. (Note:
Arrival instants in the simulated fluid-flow model are the same as those in the actual
packet-by-packet system and therefore the arrival instants in the actual system can be
used for updating purposes in the simulated model.)

When the nth packet of session i arrives at real time a(i)
n , the following computation

is performed.

Computation of Virtual Departure Time

1. The virtual time is updated:

V (a(i)
n ) = dV

dt
× (a(i)

n − tlast) + V (tlast), (8.86)

where tlast is the last time (real time) when the virtual time was updated and
dV/dt was the effective virtual clock advancement rate between tlast and a(i)

n .



OPEN-LOOP FLOW CONTROL AND SCHEDULING 369

2. The parameter tlast is updated:

tlast = a(i)
n . (8.87)

3. Equation (8.85) is used to compute the virtual departure time of the packet. The
virtual departure time is used to schedule the transmission of the packet and
will be stored.

4. If the queue of session i is empty when the packet arrives, then B will change
after the arrival. In this case, update B and the virtual clock advancement rate
according to (8.82).

The update of the virtual clock advancement rate due to a departure is more prob-
lematic compared to that due to an arrival. Unlike the arrival instant, the departure
instant of a packet in the simulated fluid-flow model may not be the same as the actual
departure instant of the packet in the actual packet-by-packet system, and therefore,
we cannot use the actual departure time as the time to perform the update. In other
words, the departure time under the fluid-flow model must be used for the purpose
of updating. However, the stored virtual departure time of the packet does not tell us
when to update the virtual clock advancement rate; it is only used to order packets
for transmission purposes; the real time must be used. This means that, at any time,
we must know the real time at which the next departure will occur in the fluid-flow
model in order that we can adjust B should it change at this instant. Let tnext be the
real time at which the next packet will depart if there are no more packet arrivals from
now to tnext. The value of tnext can be computed from the virtual time V (tnext) of the
packet scheduled to depart next, by the following relationship:

V (tnext) = V (tlast) + (tnext − tlast)
dV

dt
. (8.88)

Or equivalently,

tnext = tlast + [V (tnext) − V (tlast)]

dV/dt
. (8.89)

If indeed that there is no arrival between tlast and tnext, then at tnext the following will
be performed.

Update of Virtual Clock Rate Due to Departures

1. Check and see if the departure of the packet at tnext will leave its associated
queue empty. If so, B will change after the departure, and so update B and the
virtual clock advancement rate according to (8.82).

2. Update the virtual time: V (tlast) = V (tnext).

3. Update the last update time for the virtual time: tlast = tnext.
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4. If the system still has backlog packets after the departure of the above packet,
compute the real departure time tnext of the next packet according to (8.89).

If there is an arrival between tlast and tnext, there are two possibilities that must be
taken into account: (1) this new packet may have a smaller virtual departure time than
the packet originally scheduled to depart next, especially if the service rate assigned
to the session of the new packet is high; (2) the value of B may change (hence dV/dt)
due to this arrival. In either case, after computing the virtual departure time of this
new packet according to the procedure “Computation of Virtual Departure Time,”
recompute tnext with virtual departure time of the packet scheduled to depart next
(whether it is the original or the new packet) according to (8.89).

To summarize, we have described in the above a way of computing the virtual
departure times of packets for the purpose of ordering the packets for transmission.
The method obviates the need to recompute the departure times of a packet again
and again. Implementation-wise, with the virtual departure times, arriving packets
from all sessions can be inserted into a common queue according to the values of
their departure times. Of course, simultaneous arrivals and simultaneous departures
are still possible in the fluid-flow model. For simultaneous departures, arbitrary tie
breaking can be performed to schedule the packet to transmit next in the actual packet-
by-packet system.

There is another subtlety. As described above, in the fluid-flow model, a new arrival
may have a departure time earlier than all those packets already in the system. In this
case, the new packet will still depart earlier than the previous head-of-line packet in
the fluid-flow model. In the packet-by-packet model, however, the previous head-of-
line packet is already under service when the new packet arrives and the new packet
must wait until the previous packet has been totally transmitted before it can depart.
This means that it is possible for the departure time of a packet in the packet-by-packet
system to be later than its departure time in the fluid-flow system. Nevertheless, we
shall see in the following that the worst-case increase in departure time is still quite
minimal when packet lengths are small.

Consider an arbitrary packet k. Let its departure time (real) in the fluid-flow system
be dk and its departure time in the packet-by-packet system be d̂k. It can be shown
that

d̂k − dk ≤ 1

g
. (8.90)

In other words, the departure time “penalty” for the packet-by-packet system is at
most 1/g. Before explaining the result, let us consider an example shown in Fig. 8.20.
There are two sessions, and g1 = g2 = 0.5. The system is not busy until the arrival
of a packet from session 1 at time a

(1)
1 = 0. Another packet arrives from session 2

almost immediately after that at time a
(2)
1 = ε, where ε is an arbitrarily small positive

number. In the fluid-flow system, the departure times of both the first and second
packets are approximately 2. In the packet-by-packet model, however, the departure
time of the first packet is 1 and the departure time of the second packet is 2. It can be
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FIGURE 8.20 The departure time “penalty” for the packet-by-packet systems.

seen from this example that the departure time of a packet is usually smaller in the
packet-by-packet system than in the fluid-flow system.

An exception is when a packet, say packet A, arrives just immediately after the
service of another packet, say packet B, and the virtual departure time of A is smaller
than that of B. In this case the virtual departure time of A would be delayed by one
slot in the packet-by-packet system, and this is one situation in which (8.90) can be
satisfied equally.

We now show (8.90) in general. Since both the fluid-flow and packet-by-packet
systems are work conserving, their busy periods coincide. Consider a particular busy
period. Let the starting time of the busy period be time zero. Suppose that we order
the packets according to their departure times in the packet-by-packet system. Let pk

be the kth packet leaving the packet-by-packet multiplexer and let d̂k be its departure
time and ak be its arrival time. The arrival time of pk in the fluid-flow system is also
ak, and let dk be its departure time.

Consider those packets that leave the packet-by-packet system before pk does. Let
m, m < k, be the largest integer such that

dm > dk,

dk ≥ dk−1 ≥ · · · ≥ dm+1. (8.91)

This is illustrated in Fig. 8.21. That is, pm+1, pm+2, . . . , pk leave the packet-by-
packet system after pm, but they leave the fluid-flow system before pm. Such m may
or may not exist. For the time being, we will assume such m exists and consider the
case in which such m does not exist later.
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In the packet-by-packet system, pm starts getting served at time d̂m − 1/g. Now,
the arrival times of pm+1, pm+2, . . . , pk must be after d̂m − 1/g; otherwise, by (8.91),
they would have been served in the packet-by-packet system before pm, which con-
tradicts our assumption.

Let us now look at the fluid-flow system. Packets pm+1, pm+2, . . . , pk also arrive
at the same time. In particular, these (k − m) packets must also arrive during the time
interval (d̂m − 1/g, dk). Since they also depart during this time interval, we must
have

{
dk −

(
d̂m − 1

g

)}
× g ≥ k − m. (8.92)

The left-hand side is the amount of service performed during this interval, and the
right-hand side is the minimum amount of service needed so that these (k − m) packets
can arrive and leave the system within this time interval.

Let us now examine the packet-by-packet system. With reference to Fig. 8.22, we
must have

(d̂k − d̂m) = (k − m)

g
, (8.93)

since the interdeparture times of successive leaving packets are always 1/g. From
(8.92) and (8.93), we get the result we want: (8.90).

Now, suppose that pm does not exist such that (8.91) is satisfied. Then, none of
p1, . . . , pk−1 leaves the fluid-flow system after pk does. In the fluid-flow system, the
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amount of work performed in the interval (0, dk] is

dkg ≥ k, (8.94)

since by time dk (including time dk), k packets would have left the fluid-flow system.
In the packet-by-packet system, the number of packets that have left the system by
time d̂k is also k, and we have

d̂k = k

g
. (8.95)

From (8.94) and (8.95), we therefore have

d̂k ≤ dk. (8.96)

8.4.5 Delay Bound in Weighted Fair Queueing with Leaky-Bucket
Access Control

In the subsequent discussion, we shall see how the packet delay in the weighted
fair queueing system can be bounded if the arrivals from sessions are regulated by
leaky buckets. These delay bounds are necessary for us to provide deterministic delay
guarantees for each data session in the system.

A leaky-bucket scheme is shown in Fig. 8.9(a). Tokens here are generated at a
fixed rate, ρ, and packets can be released into the network only after removing the
required number of tokens from the token bucket that contains at most σ bits worth of
tokens. There is no bound on the number of packets that can be buffered. The traffic
is constrained to leave the bucket at a maximum rate of C > ρ.

Let Ai(τ, t) denote the amount of traffic from session i that leaves the leaky bucket
and enters the network in time interval (τ, t]. Then,

Ai(τ, t) ≤ min{(t − τ)Ci, σi + ρi(t − τ)}, for all t ≥ τ ≥ 0, (8.97)

for every session i.
We say that the arrival function Ai conforms to (σi, ρi, Ci), or A ∼ (σi, ρi, Ci).

This arrival constraint is attractive because it restricts the traffic in terms of
three simple parameters: average sustainable rate (ρi), burstiness (σi), and peak
rate (Ci).

Ai(0, t) is plotted in Fig. 8.22. Let li(t) be the amount of tokens in the session
i token bucket at time t. Assuming that the session starts out with a full bucket of
tokens, if Li(t) is the total number of tokens accepted at the session i bucket in the
interval (0, t] (it does not include the full bucket of tokens that session i starts out
with, and does not include arriving tokens that find the bucket full), then

Li(t) = min
0≤τ≤t

{Ai(0, τ) + ρi(t − τ)}. (8.98)
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FIGURE 8.22 Arrival curve.

Since the token generation rate is ρi, we have

Li(t) − Li(τ) ≤ ρi(t − τ), (8.99)

for all τ ≤ t.
Thus, li(t) is expressed as follows:

li(t) = σi + Li(t) − Ai(0, t). (8.100)

From (8.100) and (8.99), we have

Ai(τ, t) ≤ li(τ) + ρi(t − τ) − li(t). (8.101)

In the following, we analyze the worst-case performance of weighted fair queueing
systems for sessions that operate under leaky-bucket constraints. That is, the session
traffic is constrained as in (8.97).

Let there be N sessions in the system. The incoming traffic from session i is
Ai ∼ (σi, ρi, Ci) for i = 1, 2, . . . , N. We assume that the system is empty before
time zero. The server is work conserving (i.e., it is never idle if there is work in the
system) and operates at the fixed rate of 1.

Let Si(τ, t) be the amount of session i traffic served in the interval (τ, t]. Note that
Si(0, t) is continuous and nondecreasing for all t (see Fig. 8.23). It depends on the
amount of traffic from all the sessions, that is, the arrival function A1, . . . , AN . The
session i backlog at time τ is defined to be

Qi(τ) = Ai(0, τ) − Si(0, τ). (8.102)
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FIGURE 8.23 The session service curve Si (0, t ).

The session i delay at time τ is denoted by Di(τ), which is the amount of time that
it would take for the session i backlog to clear if no session i bits were to arrive after
time τ. Thus,

Di(τ) = inf{t ≤ τ : Si(0, t) = Ai(0, τ)} − τ. (8.103)

From Fig. 8.23, we see that Di(τ) is the horizontal distance between curves Ai(0, t)
and Si(0, t) at the ordinate value of Ai(0, τ).

Clearly, Di(τ) depends on Si(0, t), that is, the arrival functions A1, . . . , AN . It is
interesting to compute the maximum delay over all time, and over all arrival func-
tions that are consistent with (8.97). Let D∗

i be the maximum delay for session i.
Then,

D∗
i = max

(A1,...,AN )
max
τ≥0

Di(τ). (8.104)

Similarly, we define the maximum backlog for session i, Q∗
i :

Q∗
i = max

(A1,···,AN )
max
τ≥0

Qi(τ). (8.105)

Given g1, . . . , gN for a weighted fair queueing server of rate g = 1 and given
(σj, ρj), j = 1, . . . , N, we are going to determine D∗

i and Q∗
i for every session i.

Let σT
i be the sum of the number of tokens left in the bucket and the session backlog

at the server for session i at time τ ≥ 0, then

στ
i = Qi(τ) + li(τ), (8.106)



376 NETWORK TRAFFIC CONTROL AND BANDWIDTH ALLOCATION

where li(τ) is defined in (8.100). If Ci = ∞, we can consider στ
i as the maximum

amount of session i backlog at time τ+ over all arrival functions Ai, . . . , AN up to
time τ.

Recall (8.101)

Ai(τ, t) ≤ li(τ) + ρi(t − τ) − li(t). (8.107)

Substituting for lτi and lti from (8.106),

Qi(τ) + Ai(τ, t) − Qi(t) ≤ στ
i − σt

i + ρi(t − τ). (8.108)

Now note that

Si(τ, t) = Qi(τ) + Ai(τ, t) − Qi(t). (8.109)

Combining (8.108) and (8.109), we have the following useful result:

Si(τ, t) ≤ στ
i − σt

i + ρi(t − τ), (8.110)

for every session i, τ ≤ t.
Let us define a system busy period to be a maximal interval B such that for any

τ, t ∈ B, τ ≤ t:
N∑

i=1

Si(τ, t) = t − τ. (8.111)

Suppose [t1, t2] is a system busy period, that is, B = [t1, t2]. Since the system is
work conserving, we have

N∑
i=1

Qi(t1) =
N∑

i=1

Qi(t2) = 0. (8.112)

Thus,

N∑
i=1

Ai(t1, t2) =
N∑

i=1

Si(t1, t2) = t2 − t1. (8.113)

Substituting from (8.97) and rearranging terms, we have

t2 − t1 ≤
∑N

i=1 σi

1 − ∑N
i=1 ρi

. (8.114)

It is the upper bound on the length of a system busy period.
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This result shows that all system busy periods are bounded whenever
∑N

i=1 ρi < 1.
Since session delay is bounded by the length of the largest possible system busy period,
the session delays are bounded as well.

Let a session i busy period be a maximal interval Bi contained in a single system
busy period, such that for all τ, t ∈ Bi:

Si(τ, t)

Sj(τ, t)
≥ gi

gj

, j = 1, 2, . . . , N. (8.115)

Note that it is possible for a session to have zero backlog during its busy period.
However, if Qi(τ) > 0, then τ must be in a session i busy period at time τ.

For every interval [τ, t] that is in a session i busy period,

Si(τ, t) ≥ (t − τ)gi. (8.116)

Session i is defined to be greedy starting at time τ, if

Ai(τ, t) = min{Ci(t − τ), li(τ) + (t − τ)ρi}, for all t ≥ τ. (8.117)

This means that the session uses as many tokens as possible (i.e., sends at maximum
possible rate) for all times ≥ ρ. At time ρ, session i has li(τ) tokens left in the bucket,
but it is constrained to send traffic at a maximum rate of Ci. Thus, it takes lτi /(Ci − ρi)
time units to deplete the tokens in the bucket. After this, the rate will be limited by
the token arrival rate ρi.

Define Aτ
i as an arrival function that is greedy starting at time τ (see Fig. 8.24).

From the figure (and from (8.97)), we see that if a system busy period starts at time

Slope = Ci

Slope = ρi

li (α)

li(τ) =σ i
σ + i Li (t)

σi

Li(t)

τα t

(0,t)Ai
τ

FIGURE 8.24 An arrival function of a greedy session.
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zero, then

A0
i (0, t) ≥ A(0, t), for all A ∼ (σi, ρi, Ci), t ≥ 0. (8.118)

Suppose that Cj ≥ g for every session j, where g is the rate of a server. Then,
for every session i, D∗

i and Q∗
i are achieved (not necessarily at the same time)

when every session is greedy starting at time zero, the beginning of a system busy
period.

This means that the all-greedy regime can maximize the delay as well as the
backlog for every session in the weighted fair queueing system. In actuality, it seems
reasonable that if a session sends as much traffic as possible at all times, it is going to
impede the progress of packets arriving from the other sessions. This gives a simple
scenario for investigating the worst-case behavior. To prove this result, the easiest
way is to show it is true for the case when Ci = ∞ for all i first and then based on this
analysis to yield the results for the cases with finite link capacities. Since the proof
is very complicated and cannot provide any insight to the readers, we do not include
it here.

Define e1 as the first time at which one of the sessions, say L(1), ends its busy
period in an all-greedy system. That is, in the interval [0, e1], each session i is in a
busy period and is served at rate gi/

∑N
k=1 gk, assuming that σ − i > 0 for all i. Since

session L(1) is greedy after 0, it follows that

ρL(1) <
gi∑
N
k=1gk

, (8.119)

where i = L(1). Now each session j still in a busy period will be served at rate

(1 − ρL(1))gj∑N
k=1 gk − gL(1)

(8.120)

until a time e2 when another session, say L(2), ends its busy period.
Similarly, for each k, we have

ρL(k) <
(1 − ρL(j))gi∑N

j=1 gj − ∑k−1
j=1 gL(j)

, k = 1, 2, . . . , N, i = L(k). (8.121)

As shown in Fig. 8.25, the slopes of the various segments that comprise Si(0, t)
are si1, s

i
2, . . .. From (8.121), we get

sik =
(

1 − ∑k−1
j=1 ρL(j)

)
gi∑N

j=1 gj − ∑k−1
j=1 gL(j)

, k = 1, 2, . . . , L(i). (8.122)

It can be seen that sik, k = 1, 2, . . . , L(i), forms an increasing sequence. Any
ordering of sessions that meets (8.121) is known as a feasible ordering.
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FIGURE 8.25 The departure curve of session i .

Note that we only require that 0 ≤ e1 ≤ e2 ≤ · · · ≤ eN , allowing for several ei to
be equal. Session L(i) in this case has exactly one busy period, the interval [0, ei].
Also, we are only interested in t ≤ eL(i), since the session i buffer is always empty
after this time.

In the following, we shall determine bounds for the maximum delay D∗
i and the

maximum backlog Q∗
i . Suppose Q∗

i is achieved at time t, and let τ be the first time
before t when there are no session i bits backlogged in the server. Then by (8.116),
we have

Q∗
i ≤ (σi + ρi(t − τ)) − gi(t − τ)

≤ (σi + ρi(t − τ)) − gi(t − τ)

= σi. (8.123)

An arriving session i bit will be after at most Q∗
i session i bits have been served.

Since these backlogged bits are served at a rate of at least gi,

D∗
i ≤ Q∗

i

gi

≤ σi

gi

. (8.124)

However, the bounds obtained above are quite loose since the assumption is that
the session i is served with a constant rate gi till its backlog is cleared. In reality, the
service rates of backlogged sessions increase as more and more sessions complete
their backlogged periods, where a backlogged period for session i is any period
of time during which packets belonging to that session are continuously queued in
the system. This is because as each session completes its backlog, the bandwidth
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released is distributed among the still backlogged sessions in proportion to their
weights.

8.5 CLOSED-LOOP FLOW CONTROL

One problem with open-loop flow control is that network bandwidth may not be used
efficiently. Access control is needed to prevent a session from injecting excessive
amount of data into the network. The data rate allowed by each session is prenegotiated
upfront and it does not take into account that the available network bandwidth as
well as the desirable bandwidth by the user sessions may vary dynamically with
time.

If the “natural” data rates of all sessions are more or less constant (e.g., such as
that for digitized voice), open loop will work well because there is no need to give the
sessions more bandwidth, even when there is unused bandwidth in the network. By
contrast, if each session would like to pump in as much data as possible by making
use of unused bandwidth in the network, open-loop control does not work well. Two
example scenarios are as follows: (1) file transfer in which it is desirable to transfer
a large file to the destination as fast as possible; and (2) a VBR (variable bit-rate)
coded video in which it is desirable to exploit any unused bandwidth in the network
to increase image quality.

A reasonable way to provision the network bandwidth is to divide sessions into
different service types. For services that do not have highly varying data rates that
require strong guarantee for bandwidth availability during transmission, the open-
loop control can be used. In this situation, the services would not attempt to use
more than their allocated share of bandwidth and the network would not assign more
bandwidth than preallocated to the services.

For services that do not require strong guarantee on bandwidth availability but
that may desire extra bandwidth in a time-varying way (e.g., file transfers that are
initiated in a sporadic fashion), we may use closed-loop control to provision band-
width. This kind of service is sometimes referred to as the available bit-rate service
(ABR).

For the ABR service, there must be a way to inform the sessions if extra bandwidth
is available in the network and if so how much of it is available. In other words, the
network traffic conditions must be fed back to the sessions so that they know how
much traffic to inject into the network. And this is the reason why closed-loop control
is needed so that excess unused bandwidth can be utilized.

For simplicity, let us begin by looking at the interactions between two successive
links of an ABR VC. Consider Fig. 6.23 in which we show the source node connecting
to a switch in the network. When the output link of the VC on the switch does not
suffer congestion, its buffer is relatively empty. The source should not be prevented
from pumping in data to make off the unused bandwidth on the output link. This
output link, however, may be shared by several ABR VCs, and when many of them
start to pump in data, it is possible that the input rate to the output link is higher than
its output rate. The buffer occupancy starts to build up, and unless something is done
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to limit the data from the sources, the buffer may eventually overflow, resulting in data
loss. If the higher level protocol at the sources attempts to retransmit data because of
this data loss, the congestion will tend to become even worse. Therefore, it is better
to prevent the data loss to begin with and take actions before the buffer begins to
overflow.

We can set a threshold on the buffer occupancy. When the threshold is exceeded,
the sources of the ABR VCs that pass through the link will be instructed to cut down
their rates. Two issues that must be resolved are

� What should be the value of the threshold in order to prevent data loss.
� How should the source data rates be reduced when congestion occurs.

PROBLEMS

8.1 Use the fluid-flow model in this question. Suppose you want to multiplex
two on–off sources using a statistical multiplexer with output capacity C = 3.
Suppose that the peak rate of one of the sources is 1 and that of the other source
is 3.
(a) For the arrival rates shown in Fig. 8.1 for the two sources, plot the amount

of total traffic that has arrived at and departed from the multiplexer.

(b) When there is backlog for one source, the whole capacity c will be dedi-
cated to the transmission of its traffic. When both sources have backlogs,
the multiplexer will serve source A with rate 1 and source B with rate 2.
Plot the arrived and departed traffic for each source.

(c) Suppose the average “on” time for both sources is 1 and the average “off”
time for both sources is λ. Both the on and off times are exponentially
distributed. Draw a four-state Markov chain to represent the state transition
of the system. State 00 means both sources are off, state 01 means source
A is off and source B is on, and so on. What is the expected number of on
sources at any time?

(d) With the service discipline in part (b) and the arrival processes in part (c),
what is the expected amount of time needed to completely clear the traffic
of source B that arrives during a single on period?

8.2 Explain why G(x) derived in (8.59) in the text is an upper bound on the over-
flow probability of a finite buffer of size x. Use a simple example and draw a
fluid-flow diagram in your explanation. (Hint: Consider two systems, one with
infinite buffer and one with finite buffer, and both systems are subjected to the
same arrival traffic pattern. Argue that at any time, the system with infinite
buffer has a higher buffer occupancy than the one with finite buffer. Argue
that if the buffer occupancy in the infinite-buffer system is more than x, the
finite-buffer system does not necessarily overflow; when the finite-buffer sys-
tem overflows, however, the buffer occupancy in the infinite-buffer system is
greater than x.)
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8.3 Section 8.2 analyzes an infinite-buffer multiplexing system with on–off fluid
flow sources. This problem explores the solution when the buffer size B is finite.
The eigenvalues and eigenvectors are the same as before, but the coefficients
ai’s must be matched to different boundary conditions.
(a) Explain why the terms with positive eigenvalues cannot be ignored any-

more. Argue that

Fj(0) = 0 =
N∑

i=0

ai(�i)j, 	C
 + 1 ≤ j ≤ N.

(b) Explain why Fj(x) at boundary x = B may have a discontinuity (i.e.,
Fj(B−) �= Fj(B)). For what j’s are there discontinuities?

(c) Argue that

Fj(B−) =
(

N

j

)
λj

(
1

1 + λ

)N

=
N∑

i=0

ai(�i)j, 0 ≤ j ≤ C� − 1.

(d) Parts (a) and (b) give N + 1 equations for N + 1 unknowns ai, 0 ≤ i ≤ N,
when C is not an integer. For C an integer, there are only N equations. For
an additional equation, argue that

{(N − C)λ + C}FC(0) = {N − (C − 1)}λFC−1(0),

which gives

N∑
i=0

ai[{(N − C)λ + C}(�i)C − {N − (C − 1)}λ(�i)C−1] = 0.

(e) Express the overflow probability in terms Fj(B−), 0 ≤ j ≤ N, when C is
not an integer as well as when C is an integer.

8.4 Continuing from the previous problem, this problem examines the loss prob-
ability in a finite-buffer system. Consider an infinitely long stretch of time T .
The total amount of traffic arriving at the system is approximately rT , where
r = Nλ/(1 + λ) is the average arrival rate.
(a) Argue that amount of loss traffic is approximately

N∑
j>C

(Fj(B) − Fj(B−))(j − C)T.

(b) Express Fj(B) in terms of N and λ.

(c) Express the loss probability in terms of Fj(B−), λ, and N.
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8.5 This problem derives the standard probability result in the second equality of
(8.65). Express

∫ ∞
0 xf (x)dx as limb→∞

∫ b

0 xf (x)dx.
(a) By integration by parts, show that

∫ b

0
xf (x)dx =

∫ b

0
F (b) − F (x)dx.

(b) Argue that

lim
b→∞

∫ b

0
F (b) − F (x)dx =

∫ ∞

0
1 − F (x)dx.

8.6 Using the fluid-flow traffic model, this problem considers the stochastic analy-
sis of a dual-leaky-bucket system with input traffic from an on–off source. We
shall use the same traffic model as described in Section 8.2 and assume that
the data buffer in the dual-leaky-bucket size is infinite. A similar analysis as in
Section 8.2 can be used to study the buffer occupancy in the data buffer of the
leaky bucket. Let QD(t) be the buffer occupancy of the data bucket and QT(t)
be the buffer occupancy of the token bucket at time t. The state of the system
is defined by three parameters: whether source is on or off, QD(t), and QT(t).
(a) Argue that both QD(t) and QT(t) cannot be nonzero at the same time.

(b) Argue that because of the above, we can define a parameter Q(t) such that
Q(t) = σ + QD(t) when QD(t) �= 0 and Q(t) = σ − QT(t) when QT(t) �=
0, and describe the state with just two parameters: whether the source is
on or off, and Q(t). Argue that QD(t) and QT(t) can be derived from Q(t)
if it is known.

(c) Interpret Q(t) as the buffer occupancy of a fictitious queue with a server
serving at the rate of ρ. Argue that the same analysis as in Section 8.2 can
then be used to study Q(t). (Note: It is actually simpler here since we have
only one source.)

8.7 In the three-leaky-bucket system, argue that if the arrival rate is never more
than C, then the third leaky bucket is redundant. That is, the departure curve
would have been the same in the dual-bucket system.

8.8 In the three-leaky-bucket system, argue that if ρ = C, we can replace the system
with a simple leaky-bucket system with bucket size β + σ as far as the departed
traffic is concerned. What is the service rate of the simple leaky bucket? (Hint:
Argue that it is not possible for the third leaky bucket to be empty while the
first leaky bucket is not empty.)

8.9 Consider the situation in Fig. 8.11 in the text. Instead of a dual-leaky-bucket
traffic shaper, we have a three-leaky-bucket traffic shaper. Assuming that C >

ρ′ > ρ, draw a diagram similar to that in Fig. 8.11(c). What is the worst-case
backlog and delay suffered by the traffic at the output of the switch.
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8.10 For the round-robin scheduling scheme that serves ni packets from session i in
a continuous fashion before moving on to the next queue (i.e., the one without
mini-cycles), derive the worst-case service time for a session l with nl = k.
How does this compare with the worst-case service time in the scheduler with
mini-cycles?

8.11 Give an example in which the order of service in the simulated fluid-flow
weighted fair queueing is different from that in the real packet-by-packet
weighted fair queueing. (Hint: Consider the arrival of a packet into an empty
queue of session i with a very high ρi.)



9

PACKET SWITCHING AND
INFORMATION TRANSMISSION

All communication networks comprise transmission systems and switching systems,
even though their designs are usually treated as two separate issues. Communication
channels are generally disturbed by noise from various sources. In circuit-switched
networks, reliable communication requires error-tolerant transmission of bits over
noisy channels. In packet-switched networks, however, not only can bits be corrupted
with noise, but resources along connection paths are also subject to contention. Thus,
quality of service (QoS) is determined by buffer delays and packet losses. The theme
of this chapter is to show that transmission noise and packet contention actually have
similar characteristics and can be tamed by comparable means to achieve reliable
communication. The following analogies between switching and transmission are
identified:

1. Buffering against contention is a process that is similar to the error correction
of noise corrupted signals. A signal-to-noise ratio that represents the carried
load of packet switches can be deduced from the Boltzmann model of packet
distribution.

2. When deflection routing is applied to Clos networks, the loss probability de-
creases exponentially, which is similar to the exponential behavior of the error
probability of binary symmetric channels with random channel coding. In in-
formation theory, this result is stated as the noisy channel coding theorem.

3. The similarity between Hall’s condition of bipartite matching and expander
graph manifests the resemblance between nonblocking route assignments and
error-correcting codes. An extension of the Sipser–Speilman decoding algo-
rithm of expander codes to route assignments of Benes networks is given to
illustrate their correspondence.

Principles of Broadband Switching and Networking, by Tony T. Lee and Soung C. Liew
Copyright © 2010 John Wiley & Sons, Inc.
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4. Scheduling in packet switching serves the same function as noiseless chan-
nel coding in digital transmission. The smoothness of scheduling, like source
coding, is bounded by entropy inequalities.

5. The sampling theorem of bandlimited signals provides the cornerstone of digital
communication and signal processing. Recently, the Birkhoff–von Neumann
decomposition of traffic matrices has been widely applied to packet switches.
With respect to the complexity reduction of packet switching, we show that the
decomposition of a doubly stochastic traffic matrix plays a similar role to that
of the sampling theorem in digital transmission.

We conclude that packet switching systems are governed by mathematical laws
that are similar to those of digital transmission systems as envisioned by Shannon in
his seminal 1948 paper, A Mathematical Theory of Communication.

9.1 DUALITY OF SWITCHING AND TRANSMISSION

All communication networks comprise transmission systems and switching systems,
even though their designs are usually treated as two separate issues. Communication
channels are generally disturbed by noise from various sources. In circuit-switched
networks, resources are dedicated to connections and reliable communication only
requires error-tolerant transmission of bits over noisy channels. In packet-switched
networks, however, not only can bits be corrupted with noise, but resources along
connection paths are also subject to contention. Despite the great achievements of in-
formation theory in dealing with transmission noise [Sha48,Mac03,Mas84], there are
still many networking problems in modern communication systems that information
theory is unable to provide solutions for. A particular problem that has come to the
fore is the delay that is induced by contention in packet-switched networks, the solu-
tion for which lies in extending the theory to go beyond the bit rate of transmission
[EpHa98].

The theme of this chapter is to show that transmission noise and packet contention
actually have similar mathematical characteristics and can be tamed by comparable
means to achieve reliable communication. The source information of the transmission
channel is a function of time, and errors are corrected by coding, which expands the
signal space. For switching systems, source information is a space function f (i) = j,
for i = 1, 2, . . . , N, from inputs VI to outputs Vo. The function f (i) represents a set
of connection requests. Packets lost in contention are usually buffered or deflected
to stretch out time and defer their requests. As shown in Fig. 9.1, the processes of
transmission and switching are antisymmetric with respect to time and space and they
are both governed by the law of probability.

In transmission systems, the fundamental QoS parameter is bit rate, or channel ca-
pacity, which can be pinpointed by signal-to-noise ratio. In packet-switched networks,
QoS parameters, buffer delay, and packet loss are all determined by loading. In order
to provide a common ground for comparison, the carried load of a packet switch is
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FIGURE 9.1 The parallel characteristics between packet switching and digital transmission.

converted into a pseudo signal-to-noise ratio (PSNR) induced by Boltzmann’s model
of packet distribution. Based on this correspondence between carried load and PSNR,
we show that a packet-switched Clos network with random routing can be modeled
as an abstract channel with additive Gaussian noise.

The schematic diagrams of a transmission channel and a three-stage Clos network
[Clo53] are shown in Fig. 9.2. The input modules in the first stage and output modules
in the third stage of the Clos network correspond to transmitters and receivers, respec-
tively, of the transmission system. The number of central modules is the bandwidth
of the Clos network. The disturbances due to internal contentions in the middle stage
of a packet-switched Clos network mimic the noise of a channel. In this chapter, we
demonstrate that various routing schemes applied to a packet-switched Clos network
to cope with contentions are comparable to coding schemes of a transmission channel.
The routing schemes of packet switching and their counterparts in digital transmis-
sion are listed in Fig. 9.3. Depending on the implementation of routing schemes, and
similar to the separation of channel coding and source coding in information theory,
the Clos network can be modeled as either a noisy channel with nonblocking routing,
analogous to channel coding, or a noiseless channel with route scheduling, analogous
to source coding, as explained below.

The noisy channel model of the Clos network. We first compare the deflection rout-
ing of packet switching with the random coding over noisy channel. Errors introduced
by noises in transmission are subdued by redundant bits, while packet contentions
can be relieved by redundant links in switching. When deflection routing is applied
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FIGURE 9.2 Comparison of transmission systems and switching systems.

to Clos networks, the loss probability decreases exponentially with respect to the net-
work length, which is similar to the exponential behavior of the error probability of
binary symmetric channels with random channel coding. In information theory, this
result is stated as the noisy channel coding theorem [Sha48,Mac03,Ham86,Abr63].

In contrast to deflection routing, nonblocking routing in the Clos network will
avoid internal contentions completely by conflict-free route assignments according to

Packet-switched
Clos network

Random routing
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Route assignment

BvN decomposition

Path switching

Scheduling

Noisy channel capacity theorem

Noisy channel coding theorem

Error-correcting code

Sampling theorem

Noiseless channel

Noiseless coding theorem

Transmission channel

FIGURE 9.3 Analogies between packet switching and information transmission.
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input requests [Ben65,ChJi03,Jaj03]. The route assignment algorithms are based on
the matching of bipartite graphs. In the error-correcting code, the low-density parity
check (LDPC) code developed by Gallager can also be represented by a bipartite graph
[Gal62,Tan81], and a subclass called the expander code was constructed by Sipser
and Speilman [SiSp96]. The condition on the expander graph is a generalization
of Hall’s condition on complete matching, which suggests the resemblance between
nonblocking route assignments and error-correcting codes. An extension of the Sipser
and Speilman decoding algorithm of expander codes to route assignments of Benes
networks is given to illustrate their correspondence.

The noiseless channel model of the Clos network. A drastically different approach,
called path switching (see Chapter 7), to deal with contention in a Clos network
is proposed in Ref. [LeLa97]. A set of connection patterns of central modules is
determined by the traffic matrix decomposition for this purpose. Path switching pe-
riodically uses this finite set of predetermined connections in the central stage of the
Clos network to avoid online computation of route assignments. Once the connection
patterns of central modules are fixed in each time slot, incoming packets can be sched-
uled accordingly in the input buffer. Regarding the predetermined connections as a
code book, scheduling is a process similar to source coding in digital transmission
[Sha48,Mac03,Ham86,Abr63]. The smoothness of scheduling, like noiseless coding,
is bounded by entropy inequalities.

The decomposition of traffic matrices, sometimes called the Birkhoff–von Neu-
mann decomposition, has been widely used in SS/TDMA satellite communications
[Inu79,BBB87]. Path switching adopts this scheduling scheme in packet switching
systems to guarantee the capacity of virtual paths in Clos networks. The same approach
can be applied to the crossbar switch, also called the Birkhoff–von Neumann switch,
in Ref. [CCH00]. Mathematically, the series expansion and reconstruction of doubly
stochastic capacity matrices are similar to the Fourier series expansion and interpola-
tion of sampling theorem of bandlimited signals [Nyq28,Sha49,Whi15,Kot33]. They
also serve the same function in terms of complexity reduction of communication sys-
tems. The capacity matrix decomposition employed in path switching will reduce the
dimension of permutation space of a Clos network from N! to O(N2) or even lower,
while the sampling theorem in transmission reduces the infinite-dimensional signal
space of any duration T to a finite number of samples.

The remainder of the chapter is organized as follows. In Section 9.2, we propose
the definition of pseudo signal-to-noise ratio of packet switch and prove that the
trade-off between the bandwidth and PSNR of a Clos network is the same as that
given by noisy channel capacity theorem in transmission. In Section 9.3, we show
that the loss probability of the Clos network with deflection routing is similar to the
exponential error probability of binary symmetric channels with random coding. In
Section 9.4, we demonstrate the correspondence between nonblocking route assign-
ments and error-correcting codes. In Section 9.5, we address the capacity allocation
and capacity matrix decomposition issues related to the path switching implemented
on a Clos network. In Section 9.6, the entropy inequalities of smoothness of schedul-
ing are derived, and comparisons of scheduling algorithms are discussed. Finally, the
conclusion and future research are summarized in Section 9.7.
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9.2 PARALLEL CHARACTERISTICS OF CONTENTION AND NOISE

The apparent causes of contention and noise are quite different, but they both limit
the performance of communication systems. In transmission, the trade-off between
bandwidth and signal-to-noise ratio is given by Shannon–Hartley’s noisy channel
capacity theorem [Sha49]. In packet switching, the difference between offered load
and carried load reflects the degree of contention. In order to provide a common
ground to compare contention and noise, a pseudo signal-to-noise ratio is defined to
represent the carried load of a packet switch. We show that the packet-switched Clos
network with random routing can be mathematically modeled as a noisy channel.

9.2.1 Pseudo Signal-to-Noise Ratio of Packet Switch

Output port contention occurs in a crossbar switch when several packets are destined
for the same output in a time slot. Packets lost in contention will be dropped as shown
in Fig. 9.4. Consider an N × N crossbar switch, without any prior knowledge of
input traffic. We assume that input loading ρ is homogeneous and output address is
uniformly distributed, then the carried load ρ′ is the probability that an output is busy
in any given time slot:

ρ′ = 1 −
(

1 − ρ

N

)N N→+∞−→ 1 − e−ρ. (9.1)

The difference between offered load and carried load is caused by packet dropping
due to contention at the outputs. Benes considered the number of calls in progress
as the energy of the connecting network in the thermodynamics theory of traffic in a
telephone system [Ben63]. A similar traffic model was also explored in the broadband
network [HuKa95]. If we regard packets as energy quantum, this proposition can be
adopted in packet switching and stated as follows.

Proposition 9.1 (Benes). The signal power Sp of an N × N crossbar switch is the
number of packets carried by the system, and the noise power is equal toNp = N − Sp.
Furthermore, both the signal power and noise power are Gaussian random variables
when N is large.
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This proposition can be verified by the Boltzmann model of packet distribution.
Consider an N × N switch as a thermal system. The outputs are particles and the
energy level of an output, denoted by εi, is equal to the number of packets destined for
that output. The distribution of packets over outputs can be determined by maximizing
the Boltzmann entropy [KiK80].

Suppose there are M packets from N input ports to N output ports. Let ni be the
number of output ports with energy level εi. An example with N = 8 and M = 4
is shown in Fig. 9.5, where n0 = 5, n1 = 2, and n3 = 1. The number of possible
divisions of N outputs into r + 1 distinct energy levels of respective sizes n0, . . . , nr

is

N!

n0!n1! · · · nr!
,

and the number of possible divisions of M packets into N distinct outputs of respective
sizes 0, . . . , 0︸ ︷︷ ︸

n0

, . . . , r, . . . , r︸ ︷︷ ︸
nr

is

M!

(0!)n0 (1!)n1 · · · (r!)nr
.

Suppose each input can send one packet at most in any time slot, then the total number
of states of the entire switch is given by

W = N!

(N − M)!M!
· N!

n0!n1! · · · nr!
· M!

(0!)n0 (1!)n1 · · · (r!)nr
(9.2)

subject to the following constraints:

N = n0 + n1 + n2 + · · · + nr (9.3)

and

M = 0n0 + 1n1 + 2n2 + · · · + rnr. (9.4)



392 PACKET SWITCHING AND INFORMATION TRANSMISSION

The Boltzmann entropy S of the system is given by

S = C ln W, (9.5)

where C is the Boltzmann constant. The maximal entropy can be obtained from the
following function formed by Lagrange multipliers:

f (ni) = ln W + α

(∑
i

ni − N

)
+ β

(∑
i

ini − M

)
. (9.6)

Using Stirling’s approximation ln x! ≈ x ln x − x for the factorials, we have

f (ni)
.= N ln N − N − (N − M) ln(N − M) + (N − M)

+ N ln N − N −
∑

i

(ni ln ni − ni) −
∑

i

ni ln(i!) (9.7)

+ α

(∑
i

ni − N

)
+ β

(∑
i

ini − M

)
.

Taking the derivatives with respect to ni, setting the result to zero, and solving for ni

yields the population number

ni = e(α+βi)

i!
. (9.8)

If the offered load ρ is uniform on each input, then we have

ρ = M

N
=
∑

i ini∑
i ni

= eβ. (9.9)

The probability that there are i packets destined for a particular output has the Poisson
distribution:

pi = ni

N
=

e(α+βi)

i!∑
i ni

= e−ρ ρi

i!
, i = 1, 2, 3, . . . . (9.10)

The carried load is equal to the probability that an output port is busy:

ρ′ = 1 − p0 = 1 − e−ρ, (9.11)

which is consistent with (9.1). Hence, our proposition on the signal power of switch
is verified.

We next show that both the signal Sp and noise Np of an N × N crossbar switch
are normally distributed under the assumptions of homogeneous input loading ρ and
uniform output address.



PARALLEL CHARACTERISTICS OF CONTENTION AND NOISE 393

The signal power Sp is the sum of the following i.i.d. random variables:

Xi =
{

1, if output i is busy,

0, otherwise,

with mean E[Xi] = ρ′ and variance Var[Xi] = ρ′(1 − ρ′), where ρ′ is the carried load
given in (9.1). It follows from the central limit theorem that the signal power Sp =∑n

i=1 Xi is normally distributed with mean E[Sp] = Nρ′ and variance Var[Sp] =
Nρ′(1 − ρ′). The noise power Np = N − Sp becomes independent of the signal power
Sp when N is large. Using a similar argument, the noise Np is also normally distributed
with mean E[Np] = N(1 − ρ′) and variance Var[Np] = Nρ′(1 − ρ′). It follows that
the carried load of a crossbar switch can be converted to pseudo signal-to-noise ratio,
a concept that is comparable to the signal-to-noise ratio in transmission.

Definition 9.23. The pseudo signal-to-noise ratio of a crossbar switch is the ratio of
mean signal power to mean noise power:

PSNR = E[Sp]

E[Np]
= Nρ′

N − Nρ′ = ρ′

1 − ρ′ . (9.12)

It should be noted that the ratio of signal power to noise power SNR in transmission
is defined by the ratio of the second moment of signal to that of noise, but PSNR is the
ratio of their mean magnitudes here. Next, we will investigate the trade-off between
bandwidth and PSNR of the Clos network.

9.2.2 Clos Network with Random Routing as a Noisy Channel

In a three-stage Clos network, each pair of adjacent switch modules is interconnected
by a unique link, and each module is a crossbar switch. As shown in Fig. 9.6, the
N × N Clos network with k input/output modules and m central modules is denoted
by C(m, n, k) [Clo53,Ben65], where n is the number of input ports or output ports of
each input module or output module, where N = kn. The dimensions of the modules
in the input, middle, and output stages are n × m, k × k, and m × n, respectively. The
Clos network C(m, n, k) has the following characteristics:

1. Any central module can only assign to one input of each input module and one
output of each output module.

2. Source address S and destination address D can be connected through any
central module.

3. The number of alternative paths between input S and output D is equal to the
number of central modules m.

In circuit switching theory, it is known that the Clos network C(m, n, k)
is rearrangeably nonblocking if m ≥ n and strictly nonblocking if m ≥ 2n − 1
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[Ben65,Hui90]. Consider the number of central modules m as the bandwidth, then the
trade-off between bandwidth m and PSNR of C(m, n, k) with nonblocking routing is
given by

E[Sp]

E[Np]
= n

m − n
. (9.13)

In a packet-switched Clos network, the maximal data rate of each input module is n

packets per time slot. Thus, we have the following.

Definition 9.24. The ratio σ = n/m is the maximal utilization of a Clos network
C(m, n, k).

The route of each packet can be expressed by the numbering scheme of the Clos
network [LeTo98]. The switch modules in each stage of the network, as well as the
links associated with each module, are independently labeled from top to bottom.
According to this numbering scheme, the source address S is represented by the 2-
tuple S(QS, RS), indicating that the source S is the link RS of the input module QS ,
where RS = [S]n and QS = �S/n� are the remainder and quotient of S divided by n.
Similarly, the destination address D can be represented by the 2-tuple D(QD, RD).
The path of an input packet from source S to destination D is determined by the
choice of central module. Suppose the path goes through the central module G, then
the routing tag is (G, QD, RD) and the path is expressed by

S(QS, RS) → QS
G→ G

QD→ QD
RD→ D(QD, RD).
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In a packet-switched Clos network C(m, n, k), contentions may occur in the middle
stage even if destination addresses of input packets are all different. With random
routing scheme, the trade-off between bandwidth m and PSNR is given as follows.

Theorem 9.1. The maximum data rate of each input module of the packet-switched
Clos network C(m, n, k) with random routing is given by

n = m ln

(
1 + E[Sp]

E[Np]

)
. (9.14)

Proof. The maximum data rate is achieved when the input loading ρ = 1 and des-
tination addresses of input packets are all different in every time slot, in which case
input modules and output modules are contention-free. If the central module is se-
lected randomly for each input packet, then the loading on each input link of a central
module is given by

σ = n/m.

Since each switch module of the Clos network is a crossbar switch, the carried load
on each output link of a central module is

σ′ = 1 −
(

1 − n/m

k

)k
k→+∞−→ = 1 − e−n/m. (9.15)

Substituting the following PSNR for the carried load σ′ in (9.15),

E[Sp]

E[Np]
= kmσ′

km − kmσ′ = σ′

1 − σ′ ,

and taking logarithm, we obtain (9.14). �

The trade-offs given in (9.13) and (9.14) for constant data rate n packets per time
slot of each input/output module are plotted in Fig. 9.7, which shows the improvement
of PSNR that can be achieved by nonblocking routing. The same kind of trade-off
between bandwidth and SNR in the transmission channel is stated in the Shannon–
Hartley theorem [Sha49] on noisy cannel capacity as follows.

Noisy Channel Capacity Theorem. The channel capacity of a bandlimited Gaussian
channel in the presence of additive Gaussian noise is given by

C = W log

(
1 + S

N

)
, (9.16)
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where C is the capacity in bits per second, W is the bandwidth of the channel in Hertz,
and S/N is the signal-to-noise ratio.

With the understanding that the contention is mathematically analogous to noise,
the rest of the chapter seeks to investigate the connections between the various routing
schemes of the Clos network and the corresponding coding schemes of the trans-
mission channel. We first demonstrate the similarity between deflection routing and
random coding in the next section.

9.3 CLOS NETWORK WITH DEFLECTION ROUTING

Packet contention is inevitable in packet switching. One way of solving this problem
without having to buffer the losing packet is to use deflection routing. In contrast to
“store-and-forward” routing where the network allows buffering, deflection routing,
also known as hot potato routing, is a routing scheme without buffering and can
only be implemented for packet-switched networks [Tan81]. In case the individual
communication links cannot support more than one packet at a time, excessive packets
will be transferred to other available links. Conceptually, deflection routing utilizes
idle or redundant links of the network as temporary storages. Redundancy is built into
the switch design so that deflected packets can use extra stages to correct the deviated
routes.
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9.3.1 Cascaded Clos Network

A cascaded Clos network is constructed by a sequence of alternate three-stage
C(n, n, k) and C(k, k, n) networks, as illustrated in Fig. 9.8. Each output link of a
switch module is connected to a module in the next stage and an output concentrator
(not shown in Fig. 9.8). A packet will be sent to the concentrator if its destination
address matches the output numbering, otherwise it will continue with the remain-
ing journey. The loss probability can be made arbitrarily small by providing a large
enough number of stages.

In the cascaded Clos network, the destination address D of a packet can be ex-
pressed by either D = nQ1 + R1 in the C(n, n, k) network or D = kQ2 + R2 in the
C(k, k, n) network, as shown in the example given in Fig. 9.8, and therefore, the
routing tag in the packet header comprises a 4-tuple (Q1, R1, Q2, R2). A packet can
reach its destination D in any two consecutively successful steps, either (Q1, R1) or
(Q2, R2). The Markov chain shown in Fig. 9.9 describes the complete journey of a
packet, where pi and qi = 1 − pi are respective probabilities of success and deflection
in C(n, n, k) and C(k, k, n).

9.3.2 Analysis of Deflection Clos Network

For the sake of simplicity, we assume that the cascaded Clos network is formed
by C(n, n, n) network uniformly. Since we will consider the worst-case deflection
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probability when both n and k are sufficiently large, the assumption that n = k does
not lose the generality of analysis, and the packet loss probability will be a conservative
estimate. Under this presumption, a simplified Markov chain is depicted in Fig. 9.10.

The probability of success p in an n × n switch module is a function of input
loading ρ. Under the homogeneous traffic assumption, we have

1 − pρ =
(

1 − ρ

n

)n n→∞−→ e−ρ.

Thus, the worst probability of success is given by

p = 1 − e−ρ

ρ
.

The probabilities of success p and deflection q = 1 − p versus the loading ρ are
plotted in Fig. 9.11(a). Let Gi(k) be the probability that the packet in state i will reach
the output state O in exactly k steps. The following equations can be derived from
the Markov chain shown in Fig. 9.10:

GO(k) =
{

1, if k = 0,

0, otherwise,

GR(k) = pG0(k − 1) + qGQ(k − 1), k = 1, 2, . . . ,

GQ(k) = pGR(k − 1) + qGQ(k − 1), k = 1, 2, . . . . (9.17)

Input

Q R O

 q

q

p
p

Output

FIGURE 9.10 The simplified Markov chain of deflection routing.
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The generating function GQ(k) is given by

GQ(z) =
∞∑

k=0

GQ(k)zk = p2z2

1 − qz − pqz2 , (9.18)

from which we obtain the following steady-state probabilities:

GQ(k) =

⎧⎪⎨
⎪⎩

0, k = 0, 1,
p
vq

(pq)(k+1)/2 cosh(k − 1)θ, k = 2, 4, 6, . . . ,

p
vq

(pq)(k+1)/2 sinh(k − 1)θ, k = 3, 5, 7, . . . ,

(9.19)

where v =
√

q2+4pq

2 and θ = ln q+
√

q2+4qp

2
√

pq
. For a given network length L, a conser-

vative estimate of packet loss probability is given as follows:

Ploss ≤
∞∑

k=L+1

GQ(k), (9.20)

which can be explicitly expressed as

Ploss ≤
⎧⎨
⎩

1
vq

(pq)(L+2)/2 sinh(L + 2)θ, for even length L,

1
vq

(pq)(L+2)/2 cosh(L + 2)θ, for odd length L.

When L is large, the logarithm of Ploss is linear in L as shown by the curves in
Fig. 9.11(c):

ln Ploss ≤ m(L + 2) + b, (9.21)

where m = ln

(
q+

√
q2+4pq

2

)
and b = ln

(
1

q
√

q2+4pq

)
. In the worst case when ρ =

1, p = 0.6321, q = 0.3679, m = −0.3566, and b = 0.9683.

Theorem 9.2. If the offered load ρ ≤ 1 on each input of the Clos network with
deflection routing, then the loss probability can be arbitrarily small and the carried
load ρ′ on each output can be arbitrarily close to the carried load ρ.

Proof. It follows from (9.21) that the loss probability in terms of offered load ρ and
carried load ρ′ is bounded by

Ploss = ρ − ρ′

ρ
≤ ca−L. (9.22)
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FIGURE 9.11 Loss probabilities of deflection routing.

The two parameters a and c are given by the following functions of deflection prob-
ability q:

a = 2

q +
√

q2 + 4pq
> 1

and

c =
(
q +
√

q2 + 4pq
)2

4q
√

q2 + 4pq
> 1.

The parameters a and c versus the offered load ρ are plotted in Fig. 9.11(b), in which
a = 1.4285 and c = 1.2906 when ρ = 1. �
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Conversely, if the offered load ρ > 1, then the loss probability is unbounded,
because the number of packets input to a switch module could be more than the total
number of outputs and there is not enough space to deflect packets, which can be lost
halfway through.

Compare the deflection Clos network with the binary symmetric channel (BSC)
with random coding, as illustrated in Fig. 9.12. Table 9.1 provides the parallels be-
tween the above theorem and Shannon’s main theorem [Sha48,Mac03,Ham86,Abr63]
stated as follows.

Noisy Channel Coding Theorem. Given a noisy channel with capacity C and in-
formation transmitted at a rate R, then if R ≤ C, there exists a coding technique that
allows the probability of error at the receiver to be made arbitrarily small. This means
it is possible to transmit information without error up to a limit C. However, if R > C,
the probability of error at the receiver increases without bound.

The capacity of BSC with cross probability q = 1 − p is given by

C = 1 + p log p + (1 − p) log(1 − p). (9.23)

The noisy channel coding theorem states that there exist an encoding function
E : {0, 1}k → {0, 1}n and a decoding function D : {0, 1}n → {0, 1}k, such that the

TABLE 9.1 Comparison of Deflection Clos Network and Binary Symmetric Channel

Deflection Clos Network Binary Symmetric Channel

Deflection probability q < 1/2 Cross probability q < 1/2
Deflection routing Random coding
� ≤ 1 R ≤ C

Exponential loss probability Exponential error probability
Ploss ≤ ca−L Pe ≤ a−n + c−n

Complexity increases Complexity increases
with network length L with code length n

Equivalent set of outputs Typical set decoding
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error probability that the receiver gets a wrong message is bounded by

Pe ≤ a−n + c−n, a > 1, c > 1, (9.24)

if the code rate R = k/n = C − δ for some δ > 0 [Gal65]. Thus, the error probability
Pe can be arbitrarily small for a sufficiently large n. Conversely, if the rate R = k/n =
C + δ for some δ > 0, then the error probability is unbounded.

The similar behavior of the deflection routing of the Clos network and the random
coding of noisy channel suggests the connection between nonblocking route
assignments and error-correcting codes. This analogy can be extended to multistage
interconnection networks as well. The deflection routing of the tandem-banyan
network proposed in [TKC91] is equivalent to the concept of error detection and
retransmission, while the deflection routing of the dual shuffle-exchange network
is a distributed error-correction algorithm [LiL94]. These points will be further
elaborated on in the next section.

9.4 ROUTE ASSIGNMENTS AND ERROR-CORRECTING CODES

The Clos network C(m, n, k) is rearrangeable if m ≥ n, meaning that it can realize
connections of any permutations between inputs and outputs with the possibility
of rearranging the calls in progress. Both Slepian–Duguid’s nonblocking theorem
[Ben65,Hui90] and Paull’s rearrangeable theorem [Pau62] on route assignments of
the Clos network are rooted in matching theory, which starts with Hall’s marriage
theorem that gives the existence condition of a complete matching in a given bipartite
graph [Hal35]. In the error-correcting code, the LDPC code can also be represented
by a bipartite graph [Gal62,Tan81]. The connection between route assignment and
LDPC code in the context of bipartite graph is the main point addressed in this section.

9.4.1 Complete Matching in Bipartite Graphs

A bipartite graph G = (VL, VR, E) consists of two finite sets of vertices VL and VR
and a collection of edges E connecting vertices in VL to vertices in VR.

Definition 9.3. A complete matching in a bipartite graph G is an injective function
f : VL → VR so that for every x ∈ VL, there is an edge in E whose end points are x

and f (x).

Definition 9.4. The neighborhood of any subset A ⊂ VL is defined by

NA = {b|(a, b) ∈ E, a ∈ A} ⊆ VR,

which are end points of an edge in E whose other end points lie in A.

The necessary and sufficient condition for a bipartite graph to have a complete
matching is given by Hall’s marriage theorem [Hal35,Wil72]. Because it is the most
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fundamental theorem in switching theory, we state the theorem and give Rado’s
elegant proof [Rad67] below.

Theorem 9.3 (Hall). Let G = (VL, VR, E) be a bipartite graph, then there exists a
complete matching for G if and only if

|NA| ≥ |A| (9.25)

for any subset A ⊆ VL.

Proof. It is clear that the condition is essential for the existence of a complete
matching, but it remains to show that it is sufficient. Let VL = {1, 2, . . . , n} and
F = {N1, N2, . . . , Nn}; by contradiction, suppose N1 contains x, y, then the removal
of either x or y violates Hall’s condition. There exist A, B ⊆ {2, . . . , n} with the
property

RA = NA ∪ (N1 − {x}), |RA| ≤ |A|,
RB = NB ∪ (N1 − {y}), |RB| ≤ |B|.

Then, |RA ∪ RB| = |NA∪B ∪ N1| and |RA ∩ RB| ≥ |NA∩B|. It follows that

|A| + |B| ≥ |RA| + |RB| = |RA ∪ RB| + |RA ∩ RB|
≥ |NA∪B ∪ N1| + |NA∩B|. (9.26)

On the other hand, from Hall’s condition, we have

|NA∪B ∪ N1| + |NA∩B| ≥ |A ∪ B| + 1 + |A ∩ B| = |A| + |B| + 1. (9.27)

Combining (9.26) and (9.27) will lead to

|A| + |B| ≥ |A| + |B| + 1,

a contradiction. Hence, the removal of either x or y does not violate Hall’s condition,
and a complete matching can be obtained by repeating this procedure until each Ni

contains only one element. �

The nonblocking route assignment of the Clos network and the edge coloring of
the bipartite graph stated in the following theorem are equivalent consequences of
Hall’s marriage theorem.

Theorem 9.4. The following statements are equivalent:

1. A regular bipartite graph G with degree n can be edge colored by m colors if
m ≥ n.
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FIGURE 9.13 An edge-colored regular bipartite graph and decomposition of integer doubly
stochastic matrix.

2. Slepian–Duguid: The Clos network C(m, n, k) is rearrangeably nonblocking if
m ≥ n.

Proof. 1. For any subset A ⊆ VL, the edges terminating on vertices in A must be
terminated on vertices in its neighborhood set NA at the other end; Hall’s condition
holds because

n|NA| ≥ n|A| ⇒ |NA| ≥ |A|.

The bipartite graph G can be reduced to n complete matching by repeatedly ap-
plying Hall’s theorem. It is clear that edge-coloring can be satisfied if m ≥ n. The
edge-colored bipartite graph is equivalent to the decomposition of an integer doubly
stochastic matrix into permutation matrices. An example to illustrate this point is
shown in Fig. 9.13.

2. Consider a set of call requests {(S0, D0), . . . , (SN−1, DN−1)}, in which the
destination addresses are all different, and suppose the central module Gi is assigned
to the request (Si, Di) for i = 0, . . . , N − 1. This set of assignments is nonblocking,
or contention-free, if and only if

�Si/n� = �Sj/n� ⇒ Gi �= Gj

and

�Di/n� = �Dj/n� ⇒ Gi �= Gj

for all i �= j. It simply means that if either of the two sources Si and Sj are on the same
input modules, or the two destinations Di and Dj are on the same output module,
then the central modules assigned to (Si, Di) and (Sj, Dj) must be different.

The route assignments can be formulated as the edge coloring of a bipartite graph
G(VL, VR, E), in which vertices of VL represent input modules and vertices of VR
represent output modules, and each connection request (Si, Di) is represented by an
edge (�Si/n�, �Di/n�) in E. This bipartite graph is regular with degree n and can be
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FIGURE 9.14 Correspondence between Clos network and bipartite graph.

colored by m colors if m ≥ n, such that each color represents a central module and
the edge coloring is the set of route assignments. �

An example to show the equivalence between route assignment of the Clos network
and edge coloring of the bipartite graph is given in Fig. 9.14. The resulting route
assignments of the call request are listed in Table 9.2. The connection between route
assignment and error-correcting code will be addressed in the sequel.

9.4.2 Graphical Codes

The LDPC code is a class of linear block code that can be represented by bipartite
graphs G(VL, VR, E), called Tanner graph [Tan81], in which VL is the set of variable
vertices and VR the set of constraint vertices. The parity matrix specifies the edge set
E. Each variable can assume the value of 0 or 1, and a constraint is satisfied if the
sum of all the variables adjacent to it is 0 mod 2. Figure 9.15 illustrates an example
of such a bipartite graph that represents the following matrix:

⎡
⎢⎢⎢⎣

0 1 0 1 1 0 0 1

1 1 1 0 0 1 0 0

0 0 1 0 0 1 1 1

1 0 0 1 1 0 1 0

⎤
⎥⎥⎥⎦ . (9.28)

TABLE 9.2 The Set of Routing Tags (G,Q,R)

S 0 1 2 3 4 5 6 7
D 1 3 2 0 6 4 7 5
G 0 2 0 2 2 1 0 2
Q 0 1 1 0 3 2 3 2
R 1 1 0 0 0 0 1 1
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FIGURE 9.15 Low-density parity check code.

A vector x ∈ {0, 1}n is a code word if and only if x satisfies all constraints. The set
of all code words is closed with respect to mod 2 sum and forms a linear subspace of
{0, 1}n.

A subclass of graphical codes based on expander graphs was constructed by Sipser
and Speilman [SiSp96]. The expander code has the following linear time sequential
decoding algorithm.

Sipser–Speilman Decoding Algorithm
If there is a variable vertex v such that most of its neighboring constraints are
unsatisfied, flip the value of v. Repeat.

The decoding algorithm of expander codes guarantees that the number of unsatis-
fied vertices will be monotonically decreasing until all constraints are satisfied. The
main result is stated in the following theorem.

Theorem 9.5 (Sipser–Speilman). Let G(VL, VR, E) be the bipartite graph of size
|VL| = n, |VR| = m that is k-regular on the left. Assume that for any subset A ⊆ VL
of size |A| ≤ αn, |NA| > 3k/4|A|, then the decoding algorithm will correct up to
αn/2 errors.

The similarity between Hall’s condition (9.25) on complete matching and the
condition on expander graphs in the above theorem is quite obvious. The resemblance
between these two structural conditions on bipartite graphs suggests the connection
between error-correcting code and route assignment of Clos network. The Sipser–
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Speilman decoding algorithm is extended to the nonblocking route assignment of
Benes network to illustrate their correspondence.

9.4.3 Route Assignments of Benes Network

A Benes network is a multistage connecting network that can be recursively con-
structed from Clos network C(2, 2, k) [Ben65,Hui90]. A set of call requests is a
mapping from inputs to outputs. An example is given in (9.29), which displays a set
of connection requests in an 8 × 8 Benes network. The upper row of the matrix is the
ordered inputs from 0 to 7, and the lower row consists of the respective outputs.

π =
(

0 1 2 3 4 5 6 7

1 6 0 5 7 2 4 3

)
. (9.29)

The two central modules in C(2, 2, N/2), as shown in Fig. 9.19(a), are labeled,
respectively, by 0 and 1. Let xi be the binary variable associated with the request
(i, π(i)), for i = 0, . . . , N − 1. The value of xi ∈ {0, 1} defines the following route
assignment:

xi =
{

0, if module 0 is assigned to (i, π(i)),

1, otherwise.
(9.30)

Since the same central module cannot be assigned to two inputs or two outputs on the
same module, the necessary and sufficient condition on nonblocking route assignment
can be simply formulated as a set of linear constraints

xi + xj = 1 (9.31)

for all i �= j such that either two inputs i and j are on the same input module or two
outputs π(i) and π(j) are on the same output module.

As shown in Fig. 9.16, let VL = {x0, . . . , xN−1} be the set of variables and VR be the
set of constraints (9.31); a bipartite graph G(VL, VR, E) similar to that of LDPC can
be constructed to solve for the values of x′

i’s, which determine the nonblocking routes
of the set of call requests in π. It should be noted that the set of solutions to (9.31) is not
closed with respect to mod 2 sum. In fact, two solutions in each connected component
of the bipartite graph G(VL, VR, E) are complementary to each other, and the total
number of solutions of (9.31) should be 2g, where g is the number of connected
components of G. The following route assignment algorithm is a modification of
Sipser–Speilman decoding algorithm.

The flip algorithm for nonblocking route assignments:

Step 1 Initially assign x0 = 0, x1 = 1, x2 = 0, x3 = 1, . . . to satisfy all input module
constraints.

Step 2 In each cycle of the bipartite graph, unsatisfied vertices divide the cycle into
line segments. Label them α and β alternately and flip the values of all variables
located in α segments.
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The initial values of all variables can be arbitrarily assigned. Compared to the
Sipser–Speilman decoding algorithm, the initial assignment can be considered as the
received signal, and errors are systematically removed by the flip algorithm to satisfy
all constraints.

Theorem 9.6. All constraints are satisfied when the flip algorithm terminates.

Proof. The proof of this theorem is illustrated by the example displayed in Fig. 9.17.
First, we want to show that every cycle has an even number of unsatisfied vertices. It
is clear that the total number of constraints is even because there is an equal number
of input modules and output modules in each cycle. Assume by contradiction that
the number of unsatisfied vertices is odd, then the number of satisfied vertices must
also be odd. Let u0 and u1 be the number of unsatisfied vertices whose neighboring
variables both equal 0 and 1, respectively, and let s be the number of satisfied vertices.
Then, the number of variables equal to 0 and 1, respectively, should be u0 + s/2 and
u1 + s/2, which is impossible if s is odd.

Next, we want to show that all constraints are satisfied when the flip algorithm ter-
minates as shown in Fig. 9.17. For an arbitrary constraint vertex v ∈ VR, let xi, xj ∈ VL
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FIGURE 9.17 The flip algorithm for nonblocking route assignments.

be the two neighboring variables of v. If v is unsatisfied, the two variables xi and xj

should have the same value but are located in segments bearing different labels. Only
one located in the α segment will flip the value, and the vertex v should be satisfied
when the algorithm terminates.

On the other hand, if the constraint v is initially satisfied, then xi and xj flip
simultaneously if they are both in an α segment, or else they keep the same value if
they are located in a β segment. Hence, the constraint v remains satisfied in either
case when the algorithm terminates. �

The route assignments of the set of call requests (9.29) resulting from the flip
algorithm are displayed in Fig. 9.18, and the complete assignments shown in Fig.
9.19 can be determined iteratively. If both N and n are of the power of 2, the set of
equations (9.31) can also be solved by the parallel algorithm proposed in Ref. [LeLi02]
with time complexity on the order of O(log2(N)).
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9.5 CLOS NETWORK AS NOISELESS CHANNEL-PATH SWITCHING

Path switching proposed in Ref. [LeLa97] is a compromise of static routing and
dynamic routing schemes for a Clos network. A set of connection patterns of the
central modules is predetermined according to the traffic between pairs of input and
output modules. This set of connection patterns is repeatedly used in a cyclic manner
such that online path hunting can be avoided and bandwidth requirements can be
satisfied in the long run.

The scheduling of path switching is based on the following relationships between
the edge-colored bipartite graph and the connection pattern in the middle stage of the
Clos network as depicted in Fig. 9.14 earlier:

1. The number of edges eij represents the number of packets that can be sent
from input module Ii to output module Oj , the virtual path Vij , in one time
slot.

2. Each color of the bipartite graph corresponds to a central module of the Clos
network.

This correspondence suggests the scheduling of switch according to predetermined
connection patterns if traffic matrix is expressed as weighted sum of a finite number
of permutation matrices as shown in Fig. 9.20.

For any given traffic matrix T = [λij], where λij is the number of packets per
time slot from input module Ii to output module Oj , such that

∑
i λij < n ≤ m and∑

j λij < n ≤ m, there exist a finite number F of regular bipartite graphs such that
the capacity cij of the virtual path Vij between Ii and Oj satisfies

cij =
∑F−1

t=0 eij(t)

F
> λij, (9.32)

where eij(t) is the number of edges from node i to node j in the tth bipartite graph. The
bandwidth requirement T = [λij] can be satisfied if the system periodically provides
connections according to the edge coloring of these F bipartite graphs. Adopting
convention in the TDMA system, each cycle is called a frame and the period F frame
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FIGURE 9.20 Capacity of virtual path as average number of edges.

size. The routing information can be stored in the local memory of each input module
to avoid the slot-by-slot computation of route assignments [EHY,MeT89].

Since the connection patterns of switch modules in the middle stage are fixed, the
virtual path between any pair of input module and output module is contention-free. As
shown in Fig. 9.21, input/output modules are scaled to a much smaller size and routing
decisions in these modules become independent. Each input module is an independent
input-queued switch, and arrival packets can be scheduled in the input buffer according
to predetermined routes in every time slot by some matching algorithm similar to the
scheduling algorithm for input-queued crossbar switch [McK99], while each output
module could be an output-queued switch similar to a knockout switch [YHA87].
Consider the scheduled Clos network as a noiseless channel, then the scheduling of
path switching maps central modules and time slots into incoming packets, a process
similar to the source coding of transmission [Sha48,Mac03,Ham86,Abr63] if the set
of predetermined connection patterns is regarded as a code book. In this section,
we address the capacity allocation and traffic matrix decomposition issues, and the
smoothness of scheduling will be discussed in the next section.

9.5.1 Capacity Allocation

The capacity allocation problem seeks to find the capacity cij > λij for each virtual
pathVij between Ii andOj such that non-overbooking condition

∑
i cij =∑j cij = m

for each input/output module is observed. The problem can be formulated as con-
strained optimization of some objective function [Str86]. The choice of the objective
function depends on the stochastic characteristic of the traffic on virtual paths and the
quality-of-service requirements of connections. Following Kleinrock’s independency
assumption [Klei75,BeG92], each virtual path can be modeled as an M/M/1 queue
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with arrival rate λij and service rate cij for all i, j, then the average delay for the
packets from input module Ii to output module Oj is given by

Dij = 1

cij − λij

(9.33)

and the objective is to minimize the total weighted delay [Klei75]∑
i,j

λij

cij − λij

(9.34)

subject to cij > λij and
∑

i cij =∑j cij = m. The computation of the optimal allo-
cation is quite involved in general. Nevertheless, the following heuristic algorithm
based on Kleinrock’s square root rule [Klei75] can always yield suboptimal capacity
allocation that is close to the optimal solution.

Theorem 9.7. For any given traffic matrix T = [λij] with nonzero entries, λij > 0
for all i and j, then

n∑
j=1

λij ≤
n∑

j=1

cij = m (9.35)
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and

n∑
i=1

λij ≤
n∑

i=1

cij = m (9.36)

when the capacity allocation algorithm terminates.

Capacity Allocation Algorithm

Step 1 Initialization: Set k = 1 and c
(0)
ij = λij.

Step 2 Calculate slack capacity of each input module (row) and output module (col-
umn). ⎧⎨

⎩A
(k−1)
i = m −∑n

j=1 c
(k−1)
ij

B
(k−1)
j = m −∑n

i=1 c
(k−1)
ij

Step 3 Remove any saturated row i if A
(k−1)
i = 0 and column j if B

(k−1)
j = 0. The

algorithm terminates if there is no slack capacity left, otherwise do

c
(k)
ij = c

(k−1)
ij + min

(
A

(k−1)
i

√
λij∑n

j=1

√
λij

,
B

(k−1)
j

√
λij∑n

i=1

√
λij

)
,

and set k = k + 1, go to step 2.

Proof. Since λij > 0, it is obvious that

c
(k)
ij > c

(k−1)
ij (9.37)

in kth iteration of the algorithm for all k. Also, we have

n∑
j=1

c
(k)
ij ≤

n∑
j=1

c
(k−1)
ij +

n∑
j=1

A
(k−1)
i

√
λij∑n

j=1

√
λij

= m. (9.38)

The combination of (9.37) and (9.38) assures that
∑n

j=1 cij = m, and similarly, that∑n
i=1 cij = m, when the algorithm terminates. �

Notice that if some entries λij are zero, then the strict inequality (9.37) does not
hold in general, and there is no guarantee that the algorithm will halt. It is also true
for any capacity allocation algorithm that if λij = 0 implies cij = 0, then the doubly
stochastic matrix C = [cij] that satisfies (9.35) and (9.36) may not exist. Nevertheless,
this problem can be eliminated in practice if a small amount of capacity cij = ε

allocated to a virtual path with λij = 0 is allowed.
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9.5.2 Capacity Matrix Decomposition

The time axis is divided into frames of time slots, and the frame size is denoted by
F . Within each frame, the rate requirement will be satisfied by a set of connection
patterns, which are predetermined by the decomposition of the capacity matrix [cij]. In
a time-slotted system, it is reasonable to assume that all entries cij are rational numbers
with a least common denominator F . Then [F · cij] is an integer doubly stochastic
matrix with constant mF row sum and column sum. According to Theorem 2, the
bipartite graph corresponding to the matrix [F · cij] can be colored by mF colors.
The colored bipartite graph can also be expressed by the generalized Birkhoff–von
Neumann decomposition [Bir46,LLL83,LLL86] stated in the following theorem.

Theorem 9.8 (Generalized Birkhoff–von Neumann Decomposition). The capac-
ity matrix C has the following expansions:

C = 1

F

mF∑
i=1

Mi = 1

F

F∑
i=1

Gi =
K∑

i=1

φiPi, (9.39)

such that Gi =∑mi
j=m(i−1)+1 Mj, i = 1, . . . , F , and

∑K
i=1 φi = 1.

With respect to the scheduling of path switching, the correspondence between
connection patterns in the Clos network C(m, n, k) and these matrices in the series
expansions (9.39) is given as follows:

1. Each Mi is a permutation matrix, or complete matching.

2. Each matrix Gi is a sum of m permutation matrices, Mm(i−1)+1, . . . , Mmi,
which represent connection patterns of those m central modules of C(m, n, k)
in time slot i of every frame. That is, the matrix Gi is an edge-colored regular
bipartite graph with degree m. The combination of permutation matrices in Gi

can be arbitrary.

3. Each matrix Pi is a state of the switch such that Pi �= Pj for all i �= j, and
{P1, . . . , PK} = {G1, . . . , GF }. The coefficient φi is the frequency of the state
Pi within each time frame. Since the total number of constraints in the doubly
stochastic matrix C is equal to (N − 1)2 + 1, the number of states is bounded
by K ≤ min{F, N2 − 2N + 2}.

The scheduling information stored in the memory is linearly proportional to F ,
and the frame size is limited by the access speed and the memory space of input
modules. In the capacity matrix decomposition (9.39), both K and F could be too
large in practice, because the number of states K is on the order of O(N2) and the
frame size F is determined by the least common denominator of cij . The following
limitations compromise between complexity and QoS:

1. If the capacity matrix C is bandlimited such that cij ≤ B/F , then it is easy to
show that K ≤ F ≤ BN/m.
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2. The frame size F can be a constant independent of switch size N if [F · cij]
is rounded off into an integer matrix, and the round-off error on the order of
O(1/F ) is acceptable. The error can be arbitrarily small if the frame size F is
sufficiently large, as shown in the examples given in Fig. 9.22.

Consider the traffic matrix as the aggregate of signals input to the packet switch,
then the series expansion of doubly stochastic capacity matrix into permutation ma-
trices (9.39) and the reconstruction of capacity by weighted running sum of scheduled
connections are mathematically similar to those of the Nyquist–Shannon sampling
theorem of bandlimited signals [Nyq28,Sha49,Whi15,Kot33] input to the transmis-
sion channel.

Sampling Theorem of bandlimited signal. If a function f (t) contains no frequencies
higher than W cps, it is completely determined by its ordinates at a series of equally
spaced sampling intervals of 1/2W s, called Nyquist intervals. If |F (ω)| = 0, for
|ω| ≥ 2πW , then

f (t) =
+∞∑
−∞

fn

sin π(2Wt − n)

π(2Wt − n)

where fn = f
(

n
2W

)
is the nth sample of f (t).

An important common characteristic of both series expansions is the reduction
of complexity. Without scheduling, the total number of possible permutations of a
packet switch for a given capacity matrix is N!. The complexity reduction is achieved
by limiting the space to those permutations only involved in the expansion (9.39).
Hence, the dimension of permutation space is reduced to O(N2) by the traffic matrix
decomposition. It can further be reduced to O(N) if each connection is bandwidth
limited. The complexity of packet-level problems can be significantly reduced if the
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TABLE 9.3 Comparison of Traffic Matrix Decomposition and Sampling Theorem

Packet Switching Digital Transmission

Network environment Time-slotted switching system Time-slotted transmission system

Bandwidth limitation Capacity-limited traffic matrix Bandwidth-limited signal function

N∑
i=1

�ij ≤
N∑
i=1

cij = m f (t ) = 1
2�

∫ 2�w

−2�w

F (ω)dω

N∑
j=1

�ij ≤
N∑
i=1

cij = m F (ω) = 0, |ω| ≥ 2�w

�ij ≤ cij

Samples (0,1) Permutation matrices (0,1) Binary sequences

BvN decomposition (Hall’s marriage
theorem)

Fourier series

Expansion C =
Fm∑
i=1

Mi

F
=

K∑
i=1

�iPi f (t ) =
+∞∑
−∞

fn
sin�(2Wt − n)
�(2Wt − n)

Frame size = F = lcm of
denominators of cij

Nyquist interval = T = 1/2W

Inversion Reconstruct the capacity by running
sum

Reconstruct the signal by
interpolation

Complexity reduction • Reduce number of permutations
from N ! to O(N2)

• Reduce infinite-dimensional signal
space to finite number 2tW in any
duration t• Reduce to O(N ) if bandwidth is

limited
• Reduce to constant F if truncation

error of order
O(1/F ) is acceptable

QoS Capacity guarantee, scheduling,
delay bound

Error-correcting code, data
compression, DSP

switch fabric is limited to this set of predetermined permutations only, operating in
a much smaller subspace, yet the capacity of each connection is still guaranteed.
In general, the minimal number of permutations required is determined by the edge
coloring of the corresponding bipartite graphs as stated in Theorem 9.4.

In digital transmission, the sampling theorem reduces the infinite-dimensional
signal space in any time interval T to a finite number 2TW of samples, and the minimal
number of samples is determined by the Nyquist sampling rate for limited bandwidth
W of the input signal function. The comparisons of the these two expansions and their
respective roles in packet switching and digital transmission are listed in Table 9.3.

9.6 SCHEDULING AND SOURCE CODING

The process and function of a scheduling algorithm are similar to those of source
coding in transmission. If we regard the set of predetermined connection patterns as
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Pi Pi Pi Pi Pi
(i)
1x (i)

2x (i)
3x (i)

4x

F

FIGURE 9.23 Interstate time for i th state within a frame of size F .

a code book, scheduling incoming packets in the input buffer according to predeter-
mined connection patterns is the same as encoding the source signal. This point will
be elaborated by the construction of a scheduling algorithm based on the Huffman
tree. We first show that the smoothness of scheduling, like source coding, is bounded
by the source entropy, or the entropy of capacity decomposition. The results can then
be generalized to the smoothness of two-dimensional scheduling of tokens assigned
to each virtual path of the Clos network.

9.6.1 Smoothness of Scheduling

In light of the fairness of services, the scheduling is expected to be as smooth as
possible. In a Clos network with path switching, in addition to guaranteeing capacity
for each virtual path, smooth scheduling also reduces delay jitters and alleviates head-
of-line (HOL) blocking at input buffer [Hui90].

Consider a scheduling of a given capacity decomposition C =∑K
i=1 φiPi with

frame size F . Let X
(i)
1 , X

(i)
2 , . . . , X(i)

ni
be a sequence of interstate times of state Pi

within a frame. It is easy to see from Fig. 9.23 that

ni = φiF, (9.40)

X
(i)
1 + · · · + X(i)

ni
= F, for all i = 1, . . . , k. (9.41)

Since delay jitter is one of the major concerns of scheduling, it is natural to define the
smoothness of scheduling by the second moment of interstate time.

Definition 9.5. The smoothness of state Pi is defined by

Li = log

√∑ni

k=1(X(i)
k )2

ni

, (9.42)

and the smoothness of a scheduling is the weighted average given by

L =
K∑

i=1

φiLi. (9.43)
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The following theorem reveals the fact that the smoothness of scheduling is parallel
to the code length of source coding in information theory.

Theorem 9.9. For any scheduling of a given capacity decomposition C =∑K
i=1 φiPi

with frame size F , we have

K∑
i=1

2−Li ≤ 1 (Kraft’s inequality), (9.44)

and the average smoothness is bounded by

L =
K∑

i=1

φiLi ≥
K∑

i=1

φi log
1

φi

= H. (9.45)

Both equalities hold when X
(i)
k = 1/φi, for all i = 1, . . . , K, and k = 1, . . . , ni.

Proof. The inequality (9.44) can be obtained by substituting (9.40) and (9.41) into
the Cauchy–Schwartz inequality:

K∑
i=1

2−Li =
K∑

i=1

√
ni∑ni

k=1(X(i)
k )2

≤
K∑

i=1

ni

F
=

K∑
i=1

φi = 1.

Again, using the Cauchy–Schwartz inequality, we have

L =
K∑

i=1

φiLi =
K∑

i=1

φi log

√∑ni

k=1(X(i)
k )2

ni

=
K∑

i=1

φi

2
log

∑ni

k=1(X(i)
k )2

ni

≥
K∑

i=1

φi log
1

φi

= H.

�

Suppose equalities in the above theorem hold, then the scheduling is obviously
optimal. First, we consider a simple example where K = F, φi = 1/F , and ni = 1
for all i, then X

(i)
1 = F for all i = 1, . . . , F , in which case the smoothness equals

entropy.

L = 1

F

F∑
i=1

log
√

(F2) = log F = H. (9.46)
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P1 P2 P1 P3 P1 P2 P1 P4 P1 P1 P2 P1 P1 P2 P3 P4

(a) Optimal scheduling (b) WFQ scheduling

FIGURE 9.24 Examples of Scheduling.

When all weights are reciprocals of the power of 2, for example φi =
1/2, 1/4, 1/8, 1/8, an optimal scheduling can be easily found. An example is shown
in Fig. 9.24(a), where F = 8, K = 4, and ni = 4, 2, 1, 1 with respect to state Pi for
i = 1, . . . , 4. The scheduling with constant interstate time X(i) = 2, 4, 8, 8 satisfies
both equalities of Theorem 10.9:

H = L = 1

2
· +1

4
· 2 + 1

8
· 3 + 1

8
· 3 = 1.75. (9.47)

Another scheduling based on weighted fair queueing (WFQ) for the same decom-
position is shown in Fig. 9.24(b). The smoothness L = 1.8758 is greater than the
decomposition entropy H = 1.75, and the superiority of the optimal scheduling is
quite obvious by comparing Fig. 9.24(a) and (b). An upper bound of smoothness is
given in the following theorem.

Theorem 9.10. For any capacity decomposition C =∑K
i=1 φiPi, it is always possible

to devise a scheduling whose smoothness L is within 1/2 of decomposition entropy:

H ≤ L < H + 1

2
. (9.48)

Proof. Consider a random scheduling without frame structure such that the state Pi of
each time slot is randomly selected with probability φi. The interstate time X(i) of state
Pi is a geometric random variable with E[X(i)] = 1/φi and Var[X(i)] = (1 − φi)/φ2

i .
The second moment of X(i) and the smoothness of state Pi are given, respectively, as
follows:

E[(X(i))2] = Var[X(i)] + (E[X(i)])2 = 2 − φi

φ2
i

(9.49)

and

Li = log
√

E[(X(i))2] = 1

2
log (2 − φi) + log φi. (9.50)

It is counterintuitive that the smoothness L of random scheduling is not equal to the
decomposition entropy H ; in fact, we have

L =
K∑

i=1

φiLi = 1

2

K∑
i=1

φi log (2 − φi) + H. (9.51)
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It is easy to show that the Kullback–Leibler distance L − H reaches the maximum
value when φ1 = φ2 = · · · = φK = 1

K
, in which case we have

L − H = 1

2

K∑
i=1

φi log (2 − φi) ≤ 1

2
log

(
2 − 1

K

)
<

1

2
. (9.52)

The random scheduling is actually no scheduling at all. Hence, a scheduling algorithm,
with or without frame, should exist that satisfies the bound given in (9.48). �

It is obvious that Theorems 9.9 and 9.10 are counterparts of the source coding
theorem stated as follows.

Noiseless Coding Theorem. Let random variable X take the possible values
x1, . . . , xK with respective probabilities p(x1), . . . , p(xK). Then, the necessary and
sufficient condition to encode the values of X in binary prefix code (none of which is
an extension of another) of respective lengths L1, . . . , LK is

K∑
i=1

2−Li ≤ 1 (Kraft’s inequality). (9.53)

The average code length is bounded by

L =
K∑

i=1

p(xi)Li ≥ H(X) =
K∑

i=1

p(xi) log
1

p(xi)
(9.54)

and it is always possible to devise an optimal prefix code for X whose average code
length L is within 1 of entropy:

H(X) ≤ L < H(X) + 1. (9.55)

9.6.2 Comparison of Scheduling Algorithms

The scheduling algorithm for an arbitrary set of decomposition weights φi achieves
optimal smoothness if L = H , which requires the constant interstate time that is equal
to the inverse of weight X(i)

k = F/ni = 1/φi for all state Pi. Most proposed scheduling
algorithms are indeed constructed from the reciprocal of the normalized weights. A
comparison of several stereotype algorithms is given below.

9.6.2.1 Weighted Fair Queueing (WFQ) Scheduling Algorithm The
WFQ scheduling algorithm [DKS89] is constructed from the sequence of virtual
finish times 1/φi, 2/φi, . . . of each state Pi with the initial finish time 1/φi. The
algorithm is given as follows.
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The WFQ Scheduling Algorithm

Select the state with the smallest finish time and increase its finish time by the inverse
of its weight. Repeat this process until the frame size is reached.

We will use the running example of a set of five states P1, P2, P3, P4, and P5
with respective weights φ1 = 0.5 and φ2 = φ3 = φ4 = φ5 = 0.125 to illustrate the
performance of the scheduling algorithms presented in this section. The sequence
generated by WFQ in each time slot τ within a frame is given in Table 9.4, and the
final sequence is P1P1P1P1P2P3P4P5.

Although the WFQ algorithm properly utilizes the inverse weights in constructing
the scheduling, the above example shows that the sequence generated by WFQ is
still far from the achievable optimal smoothness. Possible amendments to WFQ are
discussed below.

9.6.2.2 WF 2Q Scheduling Algorithm WF2Q is a scheduling algorithm
[Zha95] that incorporates the stringent rate requirement of generalized processor
sharing (GPS)[PaGa93] in WFQ. Let Ti(τ) be the number of time slots assigned to
state Pi up to time τ, then the WF2Q will select the state Pi that satisfies

Ti(τ − 1) < τ · φi (9.56)

in every time slot τ = 1, 2, . . .. That is, only the states that have started its service in
the corresponding GPS system will be selected. The set of states qualified for selection
in time slot τ is defined by

Qτ = {Pi | Ti(τ − 1) < τ · φi}. (9.57)

Hence, all states are qualified in the first time slot (see Table 9.4), because Ti(0) = 0
for all i. The set of qualified states Q1 = {P1P2P3P4P5} is then ordered by their finish
time and the state P1 is selected. In the second time slot, however, T1(1) = 1 and
2 · φ1 = 1, so the state P1 cannot be selected and Q2 = {P2P3P4P5}. In each time
slot, whenever a state is selected, like in WFQ, its finish time will be increased by the
inverse of its weight.

TABLE 9.4 An Example of WFQ Algorithm

� P1 P2 P3 P4 P5 Selection

1 2 8 8 8 8 P1

2 4 8 8 8 8 P1

3 6 8 8 8 8 P1

4 8 8 8 8 8 P1

5 10 8 8 8 8 P2

6 10 16 8 8 8 P3

7 10 16 16 8 8 P4

8 10 16 16 16 8 P5
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TABLE 9.5 An Example of WF2Q Algorithm

� P1 P2 P3 P4 P5 Q� Selection

1 2 8 8 8 8 P1P2P3P4P5 P1

2 4 8 8 8 8 P2P3P4P5 P2

3 4 8 8 8 8 P1P3P4P5 P1

4 4 16 8 8 8 P3P4P5 P3

5 6 16 8 8 8 P1P4P5 P1

6 6 16 16 8 8 P4P5 P4

7 8 16 16 8 8 P1P5 P1

8 10 16 16 16 8 P5 P5

Table 9.5 provides the whole procedure of WF2Q. The final sequence is
P1P2P1P3P1P4P1P5, which is better than the sequence produced by WFQ. Another
approach to amend WFQ based on the Huffman tree is given next.

9.6.2.3 Huffman Round Robin (HuRR) Algorithm The Huffman code
[Gal78] is the optimal source code constructed from the binary probability tree, called
the Huffman tree, in a hierarchical manner. When the WFQ is applied to only two
states, the average interstate time of each state is very close to the optimum because
the two-state Huffman binary tree has only one level.

For example, consider the two states P1 and P2 with respective weights φ1 = 0.25
and φ2 = 0.75, the WFQ will produce the sequence P2P2P1P2. The interstate time
of state P1 is 4, which is exactly the reciprocal of 0.25, and state P2 has interstate
times of 1 and 2, which are the two integers nearest to 1/0.75. However, if there are
more than two states, the WFQ fails to achieve the optimality because the Huffman
tree has multiple levels.

The optimality of Huffman code is closely related to Kraft’s inequality, which
is the necessary and sufficient condition of prefix source coding. In scheduling, the
optimal smoothness L = H also implies Li = log 1/φi for all states Pi. Hence, the
equality of Kraft’s inequality holds:

K∑
i=1

2−Li = 1.

Similar to the Huffman code, the HuRR scheduling algorithm proposed in
Ref. [ChLe06] is a hierarchical scheduling algorithm synthesized from the Huffman
tree.

Consider each state of the decomposition as a symbol and the weight of the state
as its probability, then a Huffman tree can be constructed from ordered sequence of
probabilities as usual. The probability of the root node is 1, the probability of each leaf
node is the probability of the symbol represented by that leafe, and the probability of
each intermediate node is the sum of the probabilities of two successors. The HuRR
algorithm comprises the following steps.
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The HuRR Scheduling Algorithm

Step 1 Initially set the root to be temporary node PX and S = PX · · · PX to be a
temporary sequence.

Step 2 Apply the WFQ to the two successors of PX to produce a sequence T and
substitute T for the subsequence PX · · · PX of S.

Step 3 If there is no intermediate node in the sequence S, then terminate the algorithm.
Otherwise, select an intermediate node PX appearing in S and goto step 2.

The Huffman tree of the previous example is shown in Fig. 9.25; the HuRR schedul-
ing algorithm will generate the following sequences:

P1PZP1PZP1PZP1PZ → P1PXP1PYP1PXP1PY

→ P1P2P1P4P1P3P1P5.

In this particular example, the following Huffman code can be generated from the
tree depicted in Fig. 9.25:

P1 ←− 0, P2 ←− 100, P3 ←− 101, P4 ←− 110, P5 ←− 111

and the logarithm of interstate time of each state is equal to the length of its Huffman
code. The smoothness of the sequence of this example is the same as that generated
by WF2Q earlier. However, the HuRR outperforms WF2Q in general as demonstrated
by the comparison given next.

PY PX 0.25 0.25 

P1 

0.5 

P2 

0.125 

P3 

0.125 

P4 

0.125 0.125

P5 

PZ 0.5 

1 

FIGURE 9.25 A Huffman tree of HuRR Algorithm.
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TABLE 9.6 The Smoothness Comparison of Scheduling Algorithms

P1 P2 P3 P4 Random WFQ WF2Q HuRR Entropy

0.1 0.1 0.1 0.7 1.628 1.575 1.414 1.414 1.357
0.1 0.1 0.2 0.6 1.894 1.734 1.626 1.604 1.571
0.1 0.1 0.3 0.5 2.040 1.784 1.724 1.702 1.686
0.1 0.2 0.2 0.5 2.123 1.882 1.801 1.772 1.761
0.1 0.1 0.4 0.4 2.086 1.787 1.745 1.745 1.722
0.1 0.2 0.3 0.4 2.229 1.903 1.903 1.884 1.847
0.2 0.2 0.2 0.4 2.312 2.011 1.980 1.933 1.922
0.1 0.3 0.3 0.3 2.286 1.908 1.908 1.908 1.896
0.2 0.2 0.3 0.3 2.370 2.016 2.016 1.980 1.971

9.6.2.4 Comparison of Smoothness of Scheduling Algorithms The
smoothness of preceding scheduling algorithms is compared with random schedul-
ing in Table 9.6 to show its progressive improvement. It is clear that the sequences
generated by HuRR are, in general, closer to the entropy than the other two. The per-
formance of WF2Q is comparable to HuRR, while WFQ is not satisfactory in some
cases.

The significance of the Huffman coding scheme lies in the structure of the Huffman
tree. By the same token, HuRR, which is also implemented with the Huffman tree, can
provide the best performance in terms of smoothness among the scheduling algorithms
discussed in this section. However, HuRR has not yet been proven to be the optimal
scheduling algorithm. It is clear that the key to construct optimal scheduling is to
explore the structure of the smoothness Li of each state Pi in a frame of size F and
Kraft’s inequality that is satisfied by Li, which is mathematically equivalent to the
codeword length in the source coding theorem.

9.6.3 Two-Dimensional Scheduling

The smoothness of scheduling described in the preceding section is for a single-server
system. However, the capacity matrix decomposition of the packet switch system is
a two-dimensional scheduling aimed at multiple inputs and outputs [LiLe00]. The
generalization of the smoothness to two-dimensional scheduling is discussed in this
section.

Recall that the capacity matrix C = [cij] of a C(m, n, k) Clos network is a k × k

matrix, where cij is the average number of tokens assigned to the virtual path Vij

between input module i and output module j. If the frame size is F , then the matrix
F · C is integer doubly stochastic, such that

∑k
i cij = m,

∑k
j cij = m.

In the following discussion of two-dimensional smoothness, we will consider,
without loss of generality, capacity matrix C = [cij] and

∑N
i cij = 1,

∑N
j cij = 1 of

a crossbar switch for the sake of simplicity. The two-dimensional entropies of the
capacity matrix C are defined as follows.
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Definition 9.6. Let C = [cij] be a doubly stochastic capacity matrix; the entropy of
input module i is defined by

Hi = −
N∑

j=1

cij log cij, (9.58)

and the set of entropies of input modules is represented by the column vector

H =

⎡
⎢⎢⎢⎢⎣

H1

H2

...

HN

⎤
⎥⎥⎥⎥⎦ = [H1, H2, . . . , HN

]T
. (9.59)

Similarly, the entropy of output module j is defined by

Hj = −
N∑

i=1

cij log cij, (9.60)

and the set of entropies of output modules is represented by the row vector

H = [H1, H2, . . . , HN

]
. (9.61)

The entropy of the capacity matrix C is defined by

H(C) =
N∑

i=1

Hi =
N∑

j=1

Hj = −
N∑

j=1

N∑
i=1

cij log cij. (9.62)

The smoothness of a two-dimensional scheduling is defined by the intertoken
time in the same manner as the interstate time of single-server scheduling. Let nij

be the number of tokens assigned to the virtual path Vij within a frame F , and

y
(ij)
1 , y

(ij)
2 , . . . , y

(ij)
nij be the sequence of the intertoken times. We have

nij = cijF, (9.63)

y
(ij)
1 + y

(ij)
2 + · · · + y(ij)

nij
= F (9.64)

for all i, j = 1, . . . , N. It should be noted that the number of tokens assigned to a
virtual path Vij in a time slot can be more than one if the number of central modules

m > 1, in which case the degenerate intertoken time y
(ij)
k = 0 will be allowed. The

smoothness of two-dimensional scheduling is defined as follows.
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Definition 9.7. For a given scheduling of the capacity matrix decomposition C =∑K
i=1 φiPi, the smoothness of the virtual path Vij is defined by

dij = log

√√√√√∑nij

k=1

(
y

(ij)
k

)2

nij

. (9.65)

The smoothness of input module i is defined by

Di =
N∑

j=1

cijdij =
N∑

j=1

cij log

√∑nij

k=1(y(ij)
k )2

nij

, (9.66)

and the input smoothness is the column vector

D =

⎡
⎢⎢⎢⎢⎣

D1

D2

...

DN

⎤
⎥⎥⎥⎥⎦ = [D1, D2, . . . , DN

]T
. (9.67)

Similarly, the smoothness of output module j is defined by

Dj =
N∑

i=1

cijdij =
N∑

i=1

cij log

√∑nij

k=1(y(ij)
k )2

nij

, (9.68)

and the output smoothness is the row vector

D = [D1, D2, . . . , DN

]
(9.69)

The smoothness of the two-dimensional scheduling is defined by

D =
N∑

i=1

Di =
N∑

j=1

Dj =
N∑

j=1

N∑
i=1

cijdij. (9.70)

The properties of two-dimensional smoothness are similar to that of single-server
scheduling. The proof of the following theorem is the same as that of Theorem 9.9.

Theorem 9.11. For capacity matrix decomposition C =∑K
i=1 φiPi with frame size

F , any scheduling satisfies the following smoothness inequalities:
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1. The matrix Kr = [2−dij
]
, called Kraft’s matrix, is doubly substochastic such

that
N∑

i=1

2−dij ≤ 1,

N∑
j=1

2−dij ≤ 1. (9.71)

2. For input module i = 1, . . . , N, we have

Di ≥ Hi. (9.72)

3. For output module j = 1, . . . , N, we have

Dj ≥ Hj. (9.73)

4. The overall smoothness is bounded by

D ≥ H(C). (9.74)

The above equalities hold when y
(ij)
k = 1/cij , for all i, j = 1, 2, . . . , N and k =

1, 2, . . . , nij .

The difference between smoothness and entropy can be considered as the distor-
tion of delay jitter introduced by scheduling. For circuit switch, the capacity matrix
C is a permutation matrix, in which case we have H(C) = D = 0. Another extreme
case is the scheduling of uniform capacity matrix C = [ 1

N
] = 1

N

∑N
i=1 Pi with frame

size F = N. In this case, the entropy H(C) = N log N is also equal to the smooth-
ness D = N log N because intertoken time y

(ij)
k = N, for all i, j = 1, 2, . . . , N and

k = 1, 2, . . . , nij for any scheduling, in which case the entropy H(C) is the maxi-
mum because the capacity matrix is completely uniform, and the smoothness of any
scheduling cannot make it any worse.

It is clear that if the Kraft matrix

Kr =
[
2−dij

]
is doubly stochastic, then the two-dimensional scheduling is optimal. However, the
existence of the optimal scheduling that can reach the entropy H(C) of any capac-
ity matrix C is still an open issue. Nevertheless, a rule of thumb is to minimize K,
the number of permutation matrices in the decomposition [KKLS05], since the max-
imal delay bound is on the order of O(K) for most known scheduling algorithms
[Sha49,ChLe03].

For example, given a doubly stochastic matrix C

C =

⎡
⎢⎢⎢⎣

0.75 0 0.125 0.125

0.125 0.5 0.375 0

0.125 0.125 0.5 0.25

0 0.375 0 0.625

⎤
⎥⎥⎥⎦ .
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The input entropy H and output entropy H of matrix C are given, respectively, by

H = [1.0613 1.4056 1.7500 0.9544
]T

and

H = [1.0613 1.4056 1.4056 1.2988
]
.

The entropy of the capacity matrix C is H(C) = 5.1714. One possible decomposition
is given by

8 · C =

⎡
⎢⎢⎢⎣

6 0 1 1

1 4 3 0

1 1 4 2

0 3 0 5

⎤
⎥⎥⎥⎦ = 4

⎡
⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎣

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣

1 0 0 0

0 0 1 0

0 0 0 1

0 1 0 0

⎤
⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎣

0 0 1 0

1 0 0 0

0 0 0 1

0 1 0 0

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣

0 0 0 1

0 0 1 0

1 0 0 0

0 1 0 0

⎤
⎥⎥⎥⎦

in which K = 5 and the permutation matrices are denoted by {P1, P2, . . . , P5}, re-
spectively. If the WFQ scheduling algorithm is applied to this set of permutation
matrices, the resulting sequence is

P1P1P1P1P2P3P4P5,

which gives rise to the following two-dimensional scheduled tokens:

a a a a a a b c

b b b b c d d d

c c c c b b a b

d d d d d c c a

where each row corresponds to an output module and the symbols a, b, c, and d

represent the respective tokens assigned to input modules 1–4. The input smoothness
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of this scheduling is given by

D = [1.2084 1.6997 2.0323 1.3118]
]T

,

and the output smoothness is

D = [1.2084 1.7636 1.6997 1.5805
]
,

which sum up to D = 6.2522. When the HuRR scheduling algorithm is applied to
the same set of permutation matrices, the resulting sequence is

P1P2P1P4P1P3P1P5,

which gives rise to the following two-dimensional scheduled tokens:

a a a b a a a c

b c b d b d b d

c b c a c b c b

d d d c d c d a

This result is obviously smoother than the previous one as evident by the following
smoothness measures:

D = [1.1250 1.4375 1.7902 1.0267
]T

and

D = [1.1250 1.4375 1.4375 1.3794
]
,

which sum up to D = 5.3794, an improvement consistent with the comparison of
single-server scheduling described in the preceding section.

Suppose we consider another capacity matrix decomposition

8 · C =

⎡
⎢⎢⎢⎣

0 0 1 0

1 0 0 0

0 1 0 0

0 0 0 1

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣

0 0 0 1

0 0 1 0

1 0 0 0

0 1 0 0

⎤
⎥⎥⎥⎦

+2

⎡
⎢⎢⎢⎣

1 0 0 0

0 0 1 0

0 0 0 1

0 1 0 0

⎤
⎥⎥⎥⎦+ 4

⎡
⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎦
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in which the number of permutation matrices K = 4 is reduced. Again, applying the
HuRR scheduling, the resulting sequence is

P1P4P3P4P2P4P3P4,

which gives rise to the following two-dimensional scheduled tokens:

b a a a c a a a

c b d b d b d b

a c b c b c b c

d d c d a d c d

The smoothness measures of this two-dimensional scheduling are given by

D = [1.1250 1.4375 1.7500 1.0267
]T

and

D = [1.125 1.4375 1.4375 1.3392
]
,

which sum up to the overall smoothness D = 5.3392. By comparing the output
smoothness D with that of the previous decomposition, we find some improvement
in the fourth output. Similar improvement can be found at input module 3, where
the optimal smoothness D3 = 1.7500 = H3 is achieved. The overall smoothness
D = 5.3392 is also better than the previous D = 5.3794 but still greater than the
entropy of capacity matrix H(C) = 5.1714.

Preceding examples indicate that the performance of path switching depends not
only on the scheduling algorithm but also on the number of permutation matrices
in the capacity matrix decomposition. As we mentioned above that the number of
permutation matrices in the case of uniform capacity matrix with maximal entropy is
K = N, and the worst delay bound is on the order of O(K) for most known scheduling
algorithm, it is therefore reasonable to arrive at the conjecture that K is on the order
of O(N) for the optimal decomposition of any capacity matrix, even though the
known bound of K in the Birkhoff–von Neumann decomposition is N2 − 2N + 2.
The Kraft matrix and the smoothness measure introduced in this section will provide
the objective of optimal two-dimensional scheduling to be explored in the future,
which is expected to be a very hard problem because of the large number of possible
combinations.

9.7 CONCLUSION

The parallels between packet switch subject to the contention and transmission chan-
nel in the presence of noise are consequences of the law of probability. Input signal
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to transmission is a function of time, the main theorem on noisy channel coding be-
ing based on the law of large number. On the other hand, the input signal to switch
is a function of space, and both theorems on deflection routing and smoothness of
scheduling are proved on the ground of randomness. In both systems, the random
disturbances are tamed by means of similar mathematical tools aimed for reliable
communication.

The communication network has gone through two phases of quantization in the
past century. The first phase was the quantization of transmission channels, from
analog to digital, based on the sampling theorem of bandlimited signal. The second
phase is the quantization of the switching system, from circuit switching to packet
switching. The comparisons provided in this chapter demonstrate that the scheduling
based on capacity matrix decomposition serves the same function as the sampling
theorem to reduce the complexity of communication.

The concept of path switching can be further extended to the network level to cope
with resource contentions. A connection-oriented subnetwork with predetermined
topology and bandwidth can be embedded in the current IP network for supporting
QoS of real-time services such as voice or video over IP. The scheduling of path
switching in conjunction with the routing scheme of multiprotocol label switching
(MPLS) will provide a platform to support different traffic classes of differentiated
services (DiffServ) [Law01,TAPF01]. The predetermined paths of label switched
subnetwork are similar to the subway system embedded in the public transportation
network. It will provide a coherent end-to-end QoS solution to the multilevel resource
allocation [LeLa97] issues arising from real-time services. First, the predetermined
connection patterns at each router are contention-free at the packet level. Next, the
periodic connection patterns are frame based, and the bandwidth assigned to each
session is fixed at burst level within each frame. Finally, the stable capacity of each
session is guaranteed at call level. The traffic engineering of this Internet subway
system could be a challenging networking research area in the future.
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