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xv

Preface

Proteins are biochemical machines that participate in virtually all key processes
of biological systems. For example, enzymes catalyze biochemical reactions, and
hence control the metabolic state of the cell. Transcription factors guide RNA poly-
merase to read off the needed parts of the genome. Initiation factors tell ribosomes
what mRNAs to process. Receptors in the cell membrane sense signals from the
outside. Transporters and channel proteins mediate exchange of substances across
the cell and organelle membranes, etc. In these processes, proteins exert their
biological function by interacting with other proteins, nucleic acids, membranes,
low-molecular-weight ligands such as substrates and drugs, and so forth. In essence,
all these interactions are governed by nonbonded interactions between protein
atoms (backbone as well as side-chain atoms) and atoms of the corresponding
interaction partners, whereby the scale of these interactions differs from a handful
of involved atoms for low-molecular-weight ligands to thousands of atoms in large
protein complexes. Consequently, methods that allow studying and predicting these
interactions differ in scale.

The research field that discovers and analyzes this myriad of interactions is termed
interactomics and builds on contributions from experiments and computation. The
technologies used in this field are constantly being refined, but still lag somehow
behind the level at which individual pairwise interactions can be resolved and pre-
dicted in terms of three-dimensional structure, binding thermodynamics, specificity,
etc. One important aspect of interactomics is to integrate data from different sources.
Practically ignored so far are the effects of post-translational modifications and alter-
native splicing on interactomics (which are addressed in detail in this book, see
below). It is the aim of this book to capture the state-of-art of cellular interactomics
involving proteins and to describe existing technical and conceptual challenges that
need to be overcome in the future.

This book presents an overview of protein interactions, experimental techniques
and findings, computational tools and resources that have been developed to
study them. In its first part, we introduce the molecular basics of protein structure
(Chapter 1) and properties of protein–protein binding interfaces (Chapter 2).
Recently, new-generation sequencing methods yielded large amounts of protein
sequence data that can also be leveraged to predict protein interactions, in particular,
pairwise protein–protein interactions (Chapter 3). In parallel, classical methods
of protein–protein docking (reconstruction of pairwise protein complexes from
isolated structures of their components) have matured and nowadays successfully

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by ibrahim

 ragab - C
ochrane G

erm
any , W

iley O
nline L

ibrary on [23/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



xvi Preface

manage to incorporate additional experimental constraints and may even account
for protein conformational changes (Chapter 4). A systemic view of protein pairwise
interactions is provided by protein interaction networks, which can comprise both
experimentally resolved and computationally predicted interactions (Chapter 5).

Large protein complexes present an additional challenge due to numerous ways
in which individual protomers can interact with each other. Such complexes
can be extracted from protein interaction networks (Chapter 5) or predicted in a
combinatorial fashion or using experimental constraints (Chapter 6). Systematic
integration of many experimental constraints with structural data can provide
exciting insights into the structure and evolution of very large and complex protein
assemblies (Chapter 7).

The physics of protein interactions with different partners takes place at dif-
ferent scales, since the size of the partners and hence the number of individual
non-covalent interactions differ considerably. The second part of this book analyzes
these different interactions and ways to model them in detail. We start with com-
putational techniques to examine the kinetics and thermodynamics of interactions
between pairs of proteins (Chapter 8), followed by a chapter on Markov-state models
that statistically evaluate all transitions along association and dissociation pathways
(Chapter 9). We continue with protein–DNA interactions exemplified by transcrip-
tion factor binding to DNA (Chapter 10) and chromatin (Chapter 11), followed
by a chapter on the emerging field of protein–RNA interactions, e.g. during the
preprocessing stage of pre-mRNA and with noncoding RNAs (Chapter 12). As many
signaling and transport processes involve cellular membranes, protein–membrane
interactions are then covered in Chapter 13, followed by a discussion of how
proteins interact with low-molecular-weight ligands such as drugs (Chapter 14).

All these different kinds and instances of protein interactions crucially contribute
to the flow of matter and information in living cells. If such interactions are
modulated, this can obviously alter many cellular processes. In the third part of
this book, three important types of modulating effects are addressed, namely the
effects of genetic mutations (Chapter 15), of alternative splicing (Chapter 16),
and those of posttranslational modifications (Chapter 17). There, the main focus
is again placed on how protein–protein interactions are affected. The impact of
these types of protein alterations on other types of interactions (e.g. with small
molecules) is less well understood, although prominent examples, such as drug
resistance-associated mutations, exist. Computational methods for systematic
assessment of such changes are still to be developed.

The individual chapters were written by experts in their fields, and we are
extremely grateful to them for their time and effort they invested in this. We hope
that this book paints a complex, but versatile and instructive picture of all different
kinds of interactions that proteins engage in. Interactomics, building on combined
experimental and computational work, is an emerging discipline that bears great
promise to better understand the molecular mechanisms of life. In our view, protein
interactions hold the key to it.

Volkhard Helms
Olga V. Kalinina
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1

Protein Structure and Conformational Dynamics
Volkhard Helms

Saarland University, Center for Bioinformatics, Saarland Informatics Campus, Postfach 15 11 50,
66041 Saarbrücken, Germany

1.1 Structural and Hierarchical Aspects

1.1.1 Size of Proteins

The size of proteins ranges from very small proteins, such as the 20-amino acid
miniprotein Trp cage, to the largest protein in the human body, titin, which consists
of about 27 000 amino acids and has a molecular weight of 3 million Dalton. Gener-
ally, when speaking of typical proteins, we refer to compact proteins of about 80 to
500 amino acids (residues) in size. Tiessen et al. reported that archaeal proteins had
the smallest average size (283 aa), followed by bacterial proteins (320 aa) and eukary-
otic proteins (472 aa) [1]. Among eukaryotes, plant proteins (392 aa) had a smaller
size, whereas animal proteins (486 aa) and proteins from fungi (487 aa) were larger.

1.1.2 Protein Domains

The larger a single protein gets, the higher is the chance that it will be composed
of multiple structurally distinct “domains.” These are typically sequential parts
of the protein sequence with a characteristic length between 100 and 200 amino
acids [2]. For example, the protein Src kinase consists of an SH3 domain (that binds
to proline-rich peptides), an SH2 domain (that binds to phosphorylated tyrosine
residues), and the catalytic kinase domain, see Figure 1.1. In the inactive state, the
SH3 domain will hold on to the linker connecting SH2 and catalytic domain that
contains several prolines, and the SH2 domain will hold on to a phosphorylated
tyrosine in the C-terminal tail of the catalytic domain. Thereby, all three domains
are locked in a conformationally restricted state. Once activated by dephospho-
rylation of the tyrosine, these contacts are released, and the catalytic domain can
undergo the characteristic Pacman-type opening/closing motion of protein kinases,
enabling the binding of adenosine triphosphate (ATP). In the closed conformation,
the active site residues catalyze transfer of the terminal γ-phosphate of ATP to a
nearby tyrosine of a substrate protein bound on the Src kinase surface. The catalytic

Protein Interactions: The Molecular Basis of Interactomics, First Edition.
Edited by Volkhard Helms and Olga V. Kalinina.
© 2023 WILEY-VCH GmbH. Published 2023 by WILEY-VCH GmbH.
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2 1 Protein Structure and Conformational Dynamics

Figure 1.1 X-ray structure
(PDB code 1AD5) of human
Src kinase. The peptide
sequence starts with an SH3
domain (top left), followed
by an SH2 domain (bottom
left) and then leads to the
catalytic kinase domain
(right). ATP is bound
between small (top) and
large lobe (bottom) of the
kinase domain. Source:
Figure generated with NGL
viewer.

domain of kinases itself consists of two domain-like “lobes,” a smaller N-terminal
lobe (of about 80 aa) and a larger C-terminal lobe (of about 180 aa).

Although multi-domain proteins exist in all life forms, more complex organisms
(having a larger number of unique cell types) contain more unique domains and a
larger fraction of multi-domain proteins: eukaryotes have more multi-domain pro-
teins than prokaryotes, and animals have more multi-domain proteins than unicel-
lular eukaryotes [3].

1.1.3 Protein Composition

The composition of a protein depends on its environment and its posttranslational
modifications, such as phosphorylation and sumoylation. For example, extracellular
domains of most cell membrane proteins are often extensively glycosylated. Here,
we will focus on the varying mixture of the 20 commonly occurring amino acids
that make up most of all existing proteins. Water-soluble proteins possess a rather
hydrophobic core and a polar surface that is in contact with the cytoplasm. This
clear organizational principle provides the main driving force for the folding of
water-soluble domains via the “hydrophobic effect.”

Prokaryotic proteins contain more than 10% of leucine and about 9% of alanine
residues, but rather few (only 1–2%) cysteine, tryptophan, histidine, and methio-
nine residues [4]. Brüne et al. compared the amino acid composition of prokary-
otic and eukaryotic proteins [5]. Eukaryotes have the highest variability for proline,
cysteine, and asparagine. Amino acids showing high variability across species are
lysine, alanine, and isoleucine, whereas histidine, tryptophan, and methionine vary
the least. Cysteine is more common in eukaryotes than in archaea and bacteria,
whereas isoleucine is less abundant in eukaryotes. The authors also analyzed the
differential usage of amino acids in domains and linkers. Proline and glutamine,
but to a smaller extent, polar and charged amino acids, are more common in linkers
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1.1 Structural and Hierarchical Aspects 3

that are rather exposed to surrounding water. Globular domains contain larger frac-
tions of hydrophobic amino acids, such as leucine and valine, and aromatic ones,
such as phenylalanine and tyrosine.

1.1.4 Secondary Structure Elements

Folded proteins contain two types of secondary structure elements, α-helices and
β-sheets. α-Helices have lengths between 9 and 37 residues with a peak at 11 amino
acids [6]. β-Sheets are considerably shorter, being 2–17 residues long with a peak
at 5 residues [7]. The secondary structure content of proteins ranges from purely
helical proteins, such as myoglobin, containing six α-helices (see Figure 1.2) over
mixed α/β proteins to so-called β-barrels, such as green fluorescent protein (GFP),
see Figure 1.3, or Omp membrane pores in the outer membranes of gram-negative
bacteria. Secondary structure elements provide stability to the protein structure and
serve, e.g to anchor the catalytic residues of the active site at precise positions from
each other (see below). α-Helices are also the structural basis of coiled coils, see
Figure 1.4, because the helices can nicely pack against each other. α-Helices are fre-
quently used by transcription factors, such as GCN4, at the DNA-binding interface,
where the α-helices can intercalate in the major or minor grooves of the DNA double
helix.

1.1.5 Active Sites

Active sites of enzymes are locations where bound substrate molecules undergo
chemical modifications while being bound to the enzyme. Figure 1.5 shows the
active site of the serine protease chymotrypsinogen A with the characteristic
catalytic residues serine, histidine, and aspartic acid. In principle, discussing
enzymatic mechanisms is out of scope for this book, which mostly deals with
interactions that proteins engage in. Some multienzyme complexes having multiple
active sites assemble to enable the product of one reaction to be passed from

Figure 1.2 X-ray structure (PDB
code 1MBN) of myoglobin from
Physeter catodon. The porphyrin
cofactor is anchored between six
alpha helices. Source: Figure
generated with NGL viewer.
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4 1 Protein Structure and Conformational Dynamics

Figure 1.3 X-ray structure
of the green fluorescent
protein from Aequorea
victoria (PDB code 1EMA).
The barrel-shaped structure
is formed by 11 beta-strands
surrounding a central
alpha-helix holding the
chromophore. Source:
Figure generated with UCSF
Chimera.

Figure 1.4 X-ray structure
of GCN4 dimer from S.
cerevisiae forming a
so-called coiled coil and
bound here to DNA (PDB
code 1YSA). Source: Figure
generated with NGL viewer.
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1.1 Structural and Hierarchical Aspects 5

Figure 1.5 Catalytic triad – aspartic acid, histidine, serine – in the active site of a serine
protease. Source: European Molecular Biology Laboratory (EMBL).

one active site to other, where it becomes the substrate of a follow-up chemical
reaction. Generally, access to active sites should not be precluded by binding to
other interaction partners, although, in some cases, binding patches need to be
close to the active site, e.g. when a kinase binds its substrate on a patch on the
surface of the large lobe so that a phosphate group can be transferred from bound
ATP to a serine residue of the bound substrate as mentioned before.

Often, the active sites of enzymes are located on the protein surface, so that sub-
strates can easily bind while remaining partially solvent exposed. A frequent struc-
tural motif is a flexible protein loop that reaches over the bound substrate, e.g. in HIV
protease, see Figure 1.6. In other cases, the active site is located inside the protein,
such as for cytochrome P450 enzymes or acetylcholine esterase. There, substrates
need to pass into the protein structure through a channel that may be up to sev-
eral nanometers long, see Figure 1.7. The main purpose of such an arrangement
is to place the substrate in a low-dielectric cavity that enables complicated chemical
reactions to take place. Note that the strength of electrostatic interactions is inversely

Figure 1.6 X-ray structure
of an HIV protease dimer
(PDB code 4HVP).
A substrate peptide is bound
in the active site. Access to
the active site is controlled
by opening/closing
transitions of two flexible
loops above the peptide
(flaps). Figure generated
with NGL viewer.
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6 1 Protein Structure and Conformational Dynamics

Figure 1.7 Trimethyl ammonio trifluoroacetophenone ligand bound in the active site of
acetylcholinesterase from tetronarce californica (PDB code 1AMN). The surface contours
illustrate several pores and cavities that make up tunnels leading to the internal active site.
Source: The figure was generated with the ProPores2 web server (https://service
.bioinformatik.uni-saarland.de/propores) [8].

proportional to the dielectric constant of the environment. In a low dielectric envi-
ronment, charged protein residues can exert stronger electron-pulling or pushing
effects on the substrate. Enzyme active sites, ligand binding sites, or translocation
pores of ion channels can either reside in individual protein units or in between the
interfaces of multimers.

1.1.6 Membrane Proteins

Integral transmembrane proteins are integrated into cellular membranes whereby
their amino acid chain crosses the hydrophobic bilayer once or multiple times.
While their soluble domains have the same composition as water-soluble proteins,
the membrane-spanning parts have a so-called “inside-out” composition. These
membrane regions are very hydrophobic on the outside that is in contact with the
aliphatic lipid chains of the phospholipid bilayer and have a partially polar interior
that often contains a water-filled translocation channel for substrate molecules.
When the peptide chain crosses the bilayer, no hydrogen bonding is possible with
the aliphatic lipid chains that are in strong contrast to the situation in the water
phase. To satisfy the hydrogen bonding capacity of its backbone atoms, the chain
thus adopts either an α-helical conformation or a β-sheet conformation in the
membrane. Beta barrels consist of 8–22 β-sheets [9] but are only found in the outer
membranes of gram-negative bacteria, mitochondria, and chloroplasts. Helical
transmembrane proteins possess between 1 and around 20 alpha helices [10] that
are between 10 and 30 residues long. The majority of helical membrane proteins
possess only 1 transmembrane domain (TMD), followed by those having 2 TMDs
and smaller fractions with 3, 4, 7, and 12 TMDs [10]. Oligomerization is frequently
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1.1 Structural and Hierarchical Aspects 7

found among helical transmembrane proteins, whereby their binding interfaces
consist of roughly perpendicular α-helices. Many receptors on cell surfaces form
functional dimers. Ion channels form tetra- and hexamers, with the ion-conducting
pore between the monomers. Interactions between proteins and membranes are
further discussed in Chapter 13.

1.1.7 Folding of Proteins

Predicting the folded structure of a protein from its sequence has long been a holy
grail. In the meantime, scientists have been able to put many pieces of this puzzle
together. Important contributions to this were, e.g. the phi-value analysis experi-
ments by Fersht and coworkers that quantify the degree of native folded structure
around mutated residues in the folding transition state [11] and the theoretical
work by Wolynes, Onuchic, and others, who drew an analogy between the folding
of biopolymers and relaxation processes in spin glasses [12]. According to this
“new view” of protein folding, a polypeptide chain folds on a rugged funnel-shaped
energy landscape where the entropy is plotted on the x-axis and the enthalpy
on the y-axis. A protein reaches the lowest free energy point, its folded state, by
trading entropy for enthalpy. In this model, protein chains are not able to fold
properly either above the folding temperature (where adopting a compact folded
structure is entropically unfavorable) or below the glass-transition temperature
(where the protein dynamics essentially freeze before reaching the folded state).
The David Baker group has been leading the protein structure prediction field for
many years using their Rosetta simulation method that extensively samples the
combinatorial structural manifold made up of small structural fragments [13].
A further important advance was the brute-force molecular dynamics simulations
by the D.E. Shaw group, who were able to simulate the repeated folding and
unfolding of small globular proteins at the folding temperature [14]. Recently,
the company DeepMind successfully applied deep-learning methods to tackle the
problem of protein structure prediction [15, 16]. They trained a neural network to
make accurate predictions of the distances between pairs of residues. In the latest
Critical Assessment of protein Structure Prediction (CASP), their method termed
AlphaFold2 created highly accurate structure predictions with a median backbone
accuracy of 0.96 Å root mean square deviation (RMSD) and all-atom accuracy of
1.5 Å RMSD.

Proteins are synthesized by ribosomes either in the cytosol, close to the membrane
of the endoplasmic reticulum, or close to the bacterial plasma membrane [17]. It
is becoming more and more clear that portions of the nascent peptide chains may
already start adopting alpha-helical conformations while passing through the ribo-
somal exit tunnel. All proteins of the secretory pathway and all membrane proteins
are passed from the ribosome to the Sec translocon, an integral membrane channel
in the endoplasmic reticulum (ER) membrane. The peptide sequences of membrane
proteins are able to exit the Sec complex sideways into the membrane via a so-called
lateral gate. Proteins targeted for the secretory pathway need to translocate into the
ER, and often get glycosylated by a nearby oligosaccharyltransferase enzyme.
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8 1 Protein Structure and Conformational Dynamics

1.2 Conformational Dynamics

Thermal motion of atoms implies that proteins are not rigid objects. Yet, they can still
be fairly stiff and have a pure scaffolding function. Examples of this are the proteins
of virus capsids or the cytoskeleton. Most proteins, however, undergo some type of
conformational transition either during their catalytic cycle, when they bind and
unbind ligands, or if they are part of a signaling cascade.

1.2.1 Large-Scale Domain Motions

Proteins consisting of multiple domains or lobes (such as kinases) can undergo
large-scale conformational transitions by characteristic domain movements. Proto-
types for this are kinases and lysozyme. The first normal mode typically describes
a Pacman-type opening–closing transition of the two domains relative to each
other, see Figure 1.8. The second normal mode would then be a scissor-like motion
perpendicular to the first mode. Often, these movements are connected to biological
functions and facilitate either ligand binding and unbinding or help in catalyzing
the enzymatic reaction. Membrane transporters, such as the leucine transporter
LeuT, undergo a conformational transition between an inward-facing conformation
and an outward-facing conformation, see Figure 1.9.

Figure 1.8 Schematic illustration of the first
(lowest energy) normal mode of a two-domain
protein, such as protein kinases (left), and the
second normal mode (right).

Figure 1.9 X-ray structures of the bacterial leucine transporter LeuT in the outward-facing
conformation (left, PDB code 3TT1) and in the inward-facing conformation (right, PDB code
3TT3). The figures were again generated with ProPores2 (cf. Figure 1.7).
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1.2 Conformational Dynamics 9

Besides such large-scale dynamics, the rest of the protein structure is of course not
rigid but undergoes constant thermal motion as well. Since the 1970s, time-resolved
IR spectroscopy was used to characterize the dynamics of laser-induced CO
dissociation from the internal porphyrin ring of myoglobin [18]. The observed
multi-exponential kinetics of the time needed for CO to rebind to the porphyrin
was interpreted to reflect the intrinsic dynamics of the myoglobin matrix. Subse-
quently, Halle and coworkers showed, by NMR, that water molecules buried in the
protein bovine pancreatic trypsin inhibitor (BPTI) exchanged with bulk solvent on
time scales of milliseconds [19]. This proved that even compact globular protein
structures undergo continuous conformational breathing transitions that are large
enough to allow the passage of water molecules in and out of a folded protein.

1.2.2 Dynamics of N-Terminal and C-Terminal Tails

N-terminus and C-terminus of a protein chain are typically located on its pro-
tein surface, where they often stretch out into solution and have substantial
conformational flexibility. Probably, the functionally most important N-terminal
tails are those of histone proteins. They undergo posttranslational modifications in
many ways, and this strongly affects their interaction with double-stranded DNA
that winds around histone proteins. The C-terminal tails of proteins can function,
e.g. as recognition sites for PDZ adaptor domains.

1.2.3 Surface Dynamics

Amino acid side chains on the surface of proteins often also show considerable con-
formational dynamics [20]. Frequently, transient pockets open and close on pro-
tein surfaces on a timescale of tens of picoseconds. Thus, the protein surface rather
resembles the surface of a sponge. Another type of functionally relevant conforma-
tional motions are loop movements on the protein surface, e.g. lipases possess a
loop termed “lid” that controls access to the active site beneath. The same is the
case for HIV protease as mentioned before. Interestingly, it has been argued that
disease-associated mutations in proteins often result in flexibility changes even at
positions distal from mutational sites, particularly in the modulation of active-site
dynamics [21].

1.2.4 Disordered Proteins

X-ray crystallography and Cryo-EM are perfect structural techniques to resolve
precise conformational details of well-ordered portions of proteins. Obviously,
N-terminus, C-terminus, and surface loops extend into the solvent, and their
conformational dynamics may sometimes not yield precise electron density that
can be detected against the background. Furthermore, it came as a surprise when
NMR experiments showed in the mid 1990s that there exist numerous “disordered”
proteins that do not adopt a well-folded conformation at all. Sometimes, they
may refold when they bind to other proteins, or when they undergo a phenotypic
order-to-disorder transition, such as the prion protein that is more folded in the
non-disease state and is thought to be the origin of mad cow disease. All of us
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10 1 Protein Structure and Conformational Dynamics

contain prion proteins and we are usually just fine. According to the “protein-only”
hypothesis, the key event in the prion disease pathogenesis occurs when the
cellular prion protein (PrPC) undergoes a conformational transition from a
mainly α-helix-rich folded structure into an infectious and pathogenic β-sheet-rich
conformer (PrPSc). PrPSc possesses abnormal physiological properties, such as
resistance to proteolytic degradation, relative insolubility, and the propensity to
polymerize into scrapie agents [22].

Monzon et al. distinguished short and disordered regions (between 5 and 30
residues long) that are usually associated with flexible linkers or loops in folded
proteins and so-called long disorder regions (LDRs) that have at least 30 consec-
utive disordered residues. These LDRs were found to be enriched in charged and
hydrophilic amino acids and depleted in hydrophobic ones [23], such as the linker
segments discussed before in the context of protein domains. Disordered regions
may also have important roles in mediating protein interactions. For example,
so-called eukaryotic linear motifs (ELMs) are located in disordered regions of
proteins and mediate interactions between proteins [24].

1.3 From Structure to Function

1.3.1 Evolutionary Conservation

One important principle of evolutionary biology is that functionally important
protein regions tend to be conserved between related organisms whereas unim-
portant regions are subject to considerable variation. Functionally important
regions include, of course, active site residues. Mutations of catalytic residues may
render enzymes nonfunctional and are, therefore, rarely tolerated. Furthermore,
conservation also extends to structural elements, such as disulfide bridges and
residues in short turns.

In general, structure is better conserved than sequence. Therefore, functionally
related pairs of proteins may sometimes show very low sequence similarity, but fairly
high structural similarity. Assuming that both proteins were derived from a distant
common ancestor protein, it came about that their structures were conserved during
evolution, but their sequences were not, except for a few crucial positions.

1.3.2 Binding Interfaces

Many proteins carry out their function by binding to other proteins, small molecules,
membranes, or nucleic acids. This is actually what all of this book is about. Usually,
this involves one or more binding patches on the surface of the proteins. Binding
interfaces of two proteins have sizes ranging from 500 to 3000 Å2 [25]. Small inter-
faces are preferred for transient contacts of small hydrophilic proteins, e.g. those of
redox proteins such as the electron carrier cytochrome c. In contrast, antibodies bind
to their antigens with rather large and hydrophobic interfaces that support perma-
nent or at least long-lasting contacts. Also, permanent dimers tend to have rather
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1.4 Summary 11

hydrophobic interfaces. How much of the protein surface is part of an interface
depends on the total size of the complex. An internal protein, e.g. in the ribosome
may even be fully shielded from solvent and all of its surfaces are in contact with
other biomolecules. Protein–protein interactions and large protein complexes are
discussed in Chapters 2–7.

DNA and RNA are strongly negatively charged due to their phosphate backbones.
Hence, proteins need to possess complementary, positively charged surface patches,
to be able to bind to DNA or RNA. Such patches are typically not suitable for bind-
ing to other proteins. However, there are certain proteins that are able to mimic
nucleotide polymers. One example is the intracellular inhibitor protein barstar that
binds to the RNAse barnase and prevents it from chewing up all mRNA and other
RNA molecules inside the cell. Thus, barnase only acts extracellularly. Barstar has a
strongly negative binding patch to mimic the natural substrate RNA. Chapters 10–12
give a deeper insight into protein interactions with nucleic acids.

The topology and composition of binding interfaces will be discussed in detail in
Chapter 2.

1.3.3 Surface Loops

Surface loops are used, for example by antibodies, to bind to their antigens via
complementarity-determining regions (CDRs). As mentioned, surface loops can
also regulate the access to the active site of proteins, and they may contain cleavage
sites for restriction enzymes. Note that cleavage is almost as frequently observed
in α-helices as in regions without secondary structure, such as loops, but less in
β-strands [26].

1.3.4 Posttranslational Modifications

Often, the activity of proteins is determined by the proper placement of posttrans-
lational modifications to surface residues. For example, about 75% of all human
proteins get phosphorylated, often at multiple positions [27]. Other modifications
are glycosylation, farnesylation (e.g. of the Ras protein), etc. Ubiquitination often
ends the life of proteins because this modification targets them for transport to the
proteasome that shreds peptide sequences into small components. The modification
sites are usually located on the protein surface and the modifications are placed by
other enzymes, again involving protein interactions. Posttranslational modifications
are important markers for binding partners and may also affect protein conformation
(see Chapter 17 for further discussion).

1.4 Summary

The characterization of protein structure has become fairly routine these days. For
about 70% of all human proteins, there exist structural models either from experi-
mental determination or from homology modeling [28]. In fact, DeepMind, in coop-
eration with European Bioinformatics Institute (EBI), recently published structural
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12 1 Protein Structure and Conformational Dynamics

models produced with AlphaFold for all human proteins and proteins of several
other model organisms [29]. Some believe that even the protein folding problem
has been, at least partially, solved. Despite all the accumulated knowledge, we still
do not know the function of a considerable fraction of the human proteins, and it
is very hard to rationalize the functional effects of posttranslational modifications
or to even predict them. We have a limited understanding of what determines pro-
tein interactions, and we are rarely able to correctly predict the structures of protein
assemblies from scratch, without additional experimental evidence.
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Protein–Protein-Binding Interfaces
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2.1 Definition and Properties of Protein–Protein
Interfaces

The surface regions where proteins interact with other molecules are called
protein-binding sites. If the interaction occurs between two proteins, then
interacting binding sites form a protein–protein interface. Interfaces involve
amino acids from each side forming mainly non-covalent bonds. Interfaces might
also contain covalent bonds, such as disulfide bridges, but with lower frequency.

The physical proximity of residues from two protein chains determines the inter-
face residues in each protein. Interfaces can be described using a variety of computa-
tional methods [1]. These methods use structures of protein–protein complexes and
various metrics, such as distance between the atoms belonging to different subunits
(protein chain), or accessible surface area (ASA). Interface residues do not need to
be continuous in sequence but should be close to each other in 3D space. Here, we
present some of the commonly used methods. A distance-based approach is one of
them. Residues of an interface can be defined by the distance between their atoms.
A threshold distance is defined, usually ranging between 4 and 6 Å. If two residues of
opposing chains have heavy atoms (non-hydrogen) within the defined threshold dis-
tance, then these residues are categorized as interface residues [2, 3]. Some other
studies consider only the distances between Cα atoms to identify interface residues.
When Cα atoms are used, the threshold distance is usually greater than the ones used
with heavy-atom approaches, ranging from 8 to 12 Å [4–6]. Another distance-based
method defines the distance between two atoms using the van der Waals (VDW)
radii of the individual atoms. Two residues are defined as interface residues if they
have atoms within a distance that is smaller than the sum of their VDW radii plus a
threshold distance (usually 0.5 Å) [7, 8].

Distance-based methods are not the only ones for identifying interface regions
in protein complexes. Alternatively, ASA or relative accessible surface area (rASA)

Protein Interactions: The Molecular Basis of Interactomics, First Edition.
Edited by Volkhard Helms and Olga V. Kalinina.
© 2023 WILEY-VCH GmbH. Published 2023 by WILEY-VCH GmbH.
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16 2 Protein–Protein-Binding Interfaces

of individual residues can be used to find interface residues. ASA is the area of a
molecule that is accessible to a solvent. In ASA calculations, usually, a sphere with
the radius of a water molecule (1.4 Å) is rolled around the protein to probe its surface.
There are several available tools for calculating the ASA of residues in a protein, such
as NACCESS ([9]), POPScomp [10], or FreeSASA [11]. rASA is calculated by taking
the ratio of two states of a residue: (i) when it is in the most solvent-exposed state
(in Ala-X-Ala or Gly-X-Gly tripeptide where X is the residue of interest) and (ii) when
it is in the folded conformation of the protein.

Interface regions on complexes can be identified by considering the change in ASA
(ΔASA). The residue ASAs are calculated when the protein is in its monomeric form
and in complex form. If the difference between monomeric ASA and the complex
ASA is larger than a threshold, then the residue is identified as an interface residue.
A threshold value of 1 Å2 is generally used [12]. SPPIDER [13] is one of the avail-
able tools that uses rASA values for identification of interface residues. It uses a 4%
threshold of rASA change between the monomer and the complex andΔASA> 5 Å2.
Another study uses a threshold of 25% for rASA and ΔASA> 0 Å2 to define interface
residues [14].

There are other methods to define interfaces that are not as common as the men-
tioned ones. For example, Voronoi diagrams are used as a geometric approach for
identifying interfaces and specifying the boundaries of a given interface [15]. There
are also some studies that embrace graph-based approaches to define interface
regions [16].

Methods for defining protein–protein interfaces can be used on their own as a
single method, or as a combination of multiple methods. For example, Hadarovich
et al. defined interface residues by a 12 Å atom–atom distance cutoff between the
interacting monomers and then eliminated small interfaces that have buried surface
area<200 Å2 per chain [4]. Since distance-based calculations are compute-intensive,
Cukuroglu et al. defined interface regions first using ΔASA> 1 Å2 and then by dis-
tance criteria. They defined interface residues as contacting (Figure 2.1a) if the
distance between any two atoms of the two residues from different chains is less
than the sum of their corresponding VDW radii plus a threshold of 0.5 Å [17].

A more continuous interface structure is usually preferable. Besides the interface
residues that are in contact, the nearby (neighbor) residues can also be included in
the interface regions to make it more continuous and to preserve the secondary struc-
tures [7, 17, 18]. After identifying contacting residues, nearby residues are defined
based on the contacting residues. If a residue has a Cα atom at most 6 Å away from
the Cα of a contacting residue, then it is defined as a nearby residue (Figure 2.1b).
Nearby residues provide a supporting scaffold for contacting residues in interface
regions [7].

Interface regions can be divided into core and rim areas similar to regions in
protein globular structures. Interface cores are similar to protein cores, and interface
rims are similar to protein surfaces. Core residues contribute more to the binding
affinity and specificity [14, 19–21]. Core and rim regions are defined by the change
of ASA of residues upon complex formation. If a surface residue becomes solvent
inaccessible after complex formation, it is part of the interface core; on the other
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2.1 Definition and Properties of Protein–Protein Interfaces 17

(a) (b)

Interface region

Contacting
residues

Nearby
residues

Figure 2.1 This figure shows the structure of A and B chains of the protein with PDB ID
2WNJ. (a) Contacting residues are highlighted with blue and red on the left-hand side, and
(b) nearby residues are added with green and pink on the right-hand side of the figure. It
can be seen that the addition of nearby residues provides a more complete representation
of the interface region between these two chains.

Interface core

Interface core

Interface

supportInterface rim

Interface rim

Figure 2.2 (a) Shows the partition of an interface into two regions, core and rim. (b) shows
the partition of an interface into three regions, core, rim, and support. Regions shown in
pink are core, orange regions are rim, and green regions are support.

hand, if a surface residue remains partially solvent accessible, then it is a part of the
interface rim. Figure 2.2a shows a model interface with core and rim regions. The
comparison of interface core and rim residues shows that core residues are more
likely to be conserved, and their side chains are less flexible [20, 22]. In addition to
these regions, Levy also defined a support region [14]. Figure 2.2b shows the three
regions on the same interface.

An overview of how to partition the residues in an interface according to both
methods is given in the table below (Table 2.1).
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18 2 Protein–Protein-Binding Interfaces

Table 2.1 Definition of core and rim regions in interfaces.

Two-region (core-rim) Three-region (core-rim-support)

Core ΔASA> 0 &
ASAComplex = 0

ΔrASA> 0 &
rASAMonomer > 25% &
rASAComplex < 25%

Rim ΔASA >0 &
ASAComplex > 0

ΔrASA> 0 &
rASAComplex > 25%

Support – ΔrASA> 0 &
rASAMonomer < 25%

Source: Adapted from Levy [14].

2.2 Growing Number of Known Protein–Protein
Interface Structures

More than 170 000 structures are deposited to Protein Data Bank (PDB) [23] as of
February 2021, ranging from small monomer structures, like ubiquitin, to consider-
ably large complex structures, such as the entire HIV-1 capsid. Especially advanced
imaging methods, such as Cryo-EM, enable structural determination of large pro-
teins, and with better resolution, thanks to current experimental improvements [24].
This advancement enables obtaining large and multi-protein complex structures.
The average number of chains per deposited structure in PDB increased from 2 to
7 in the last ten years; and currently, the largest available protein complex has 1356
chains (PDB ID: 3J3Q). The number of structurally available interfaces is related
to the chain count in a given structure. The increase in the number of available
structures, as well as the growth in size of the structures deposited, in turn, helps
in determining more interface structures each year.

Figure 2.3 shows the increase in the number of interfaces identified in the
PDB throughout the years. In a previous study by Cukuroglu et al., 130 209
protein–protein interfaces were identified in the PDB in 2014 [17]. A more recent
analysis of the PDB for interfaces revealed that this number is 449 169 in 2020
[25]. Our previous interface definition is used in Figure 2.3 [7, 17, 26]. There is
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Figure 2.3 Cumulative number of interfaces in PDB through years from 1971 to 2021.
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Table 2.2 Available interface related datasets.

Tool/data set Web server
Interface identification
method Input Description

COCOMAPS
Vangone et al. [28]

https://www.molnac.unisa.it/
BioTools/cocomaps/

Atomistic Distance
Threshold

PDB ID or
PDB File

COCOMAPS is a web application to analyze and visualize the
interface of biological complexes including protein–protein,
protein–DNA, and protein–RNA complexes. The output of a
query includes contact maps of the interface, a table about the
interacting residues, and a 3D visualization of the complex

PDBParam
Nagarajan et al. [29]

https://www.iitm.ac.in/
bioinfo/pdbparam/compute-
new.html

CA or CB Distance
Threshold

PDB ID or
PDB File

PDBparam is an online tool for identifying binding sites,
inter-residue interactions between chains, secondary
structure propensities of the complex, and various
physicochemical properties, such as ASA, surface
hydrophobicity, and normalized flexibility parameters

PDBePISA
Krissinel et al. [30]

https://www.ebi.ac.uk/msd-
srv/prot_int/cgi-bin/piserver

RSA Change PDB ID PDBePISA is an online tool for calculating structural and
chemical properties of macromolecular interfaces. It provides
information on ASA

PDBSum
Laskowski et al. [31]

https://www.ebi.ac.uk/
thornton-srv/databases/cgi-
bin/pdbsum/GetPage.pl?
pdbcode=index.html

RSA Change PDB ID PDBsum provides image-based structural information on the
structures available in PDB. Prot-prot tab available on the
results page of a search shows the schematic diagrams of all
protein–protein interfaces that the structure has. It can
visualize the 3D structure of the complex, as well as it shows
the residue–residue interactions between the chains

Piface
Cukuroglu et al. [17]

https://interactome.ku.edu
.tr/piface/

VDW Distance
Threshold and CA
Distance Threshold

PDB ID, PDB
File, Pfam
Domain

PIFACE is a data set of nonredundant unique protein–protein
interfaces from PDB that are clustered according to their
structural similarity. Users can find information about size
and ASA of interfaces and chains, taxonomy information,
experimental method, and resolution. Search by Pfam
domains is also available. Full cluster information is also
available for download

(continued)
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Table 2.2 (Continued)

Tool/data set Web server
Interface identification
method Input Description

PIMA
Kaleeckal Mathew
and Sowdhamini
[32]

http://caps.ncbs.res.in/pima/ CA–CA distance
threshold

PDB File or
URL to PDB
ID

PIMA is an online tool for analyzing interactions between
chains in a protein complex. It identifies the interactions
based on features, such as total stabilizing energy, hydrogen
bonds, salt bridges, and interface contacts, and provides a
graphical representation of the interactions, along with the
energy values and queried interface residues

ProtinDB
Jordan et al. [33]

http://ailab-projects2.ist.psu
.edu/protInDb/DataSetsNew
.py

User Selected PDB ID ProtinDB is a database of protein–protein interfaces extracted
from protein complexes available in PDB. The web server
provides a visualization interface for residues that are on the
interface. It is possible to construct a data set of
protein–protein interfaces using a customized list of PDB IDs

ProtCID
Xu and Dunbrack
et al. [34]

http://dunbrack2.fccc.edu/
ProtCiD/Default.aspx

CB Distance
Threshold

PDB code,
Pfam ID
sequence, or
UniProt IDs

ProtCID provides structural information about the interaction
of proteins and individual protein domains with other
molecules. It aims to identify and cluster homodimeric and
heterodimeric interfaces seen in multiple crystal forms of
homologous proteins and their interactions with peptides and
ligands. The results of a search query include the number of
crystal forms that contain a common interface, the number of
PDB and PISA biological assembly annotations that have the
same interface, the average surface area, and the minimum
sequence identity of proteins that have the interface

3did
Mosca et al. [35]

https://3did.irbbarcelona.org/ Domain
name, Pfam
access code,
PDB ID,
motif name,
or GO term

3did provides structural templates for domain–domain
interactions of high-resolution structures in PDB. It includes
template information between globular domains and also
domain–peptide interactions. Results provided for a search
term include a graph that shows the chains of the structure
with Pfam domains, and interactions of domains between
chains, visualization of protein structure with Jmol, and a list
of the domain architectures of each chain, which also gives
detailed information about the location of the domain on the
chain, and a list of interactions that involve the given chain
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2.3 Surface Areas of Protein–Protein Interfaces 21

almost a four-fold increase in the number of structurally available interfaces in the
PDB in six years, and this is still only a fraction of all protein–protein interactions
in vivo, since not every complex can be identified structurally with our current
experimental capabilities.

This large, and fast-growing, set of 3D structures of protein–protein interfaces is an
invaluable resource to better analyze the properties of these interfaces, such as geo-
metrical properties of size and shape, structural as well as sequence conservation,
residue propensities, or complementarity of the interfaces. In addition to providing
a better analysis set, a larger number of interface structures can provide better tem-
plates for structural prediction of interfaces without known structure [27]. To take
advantage of this growing resource, several datasets are created. In Table 2.2, we
present some of the currently available interface-related datasets that can be used
for analysis at large and small scales.

2.3 Surface Areas of Protein–Protein Interfaces

The surface of a protein–protein interface is the buried area upon complex forma-
tion. The buried surface areas range from 300 to 6000 Å2 [36]. The size of one side
of an interface generally ranges between 200 and 2800 Å2 [37]. The majority of the
interfaces are within the 600–1200 Å2 range. The average size of an interface is found
as 1227 Å2. Figure 2.4 shows the distribution of interface sizes (one side) extracted
from the PDB. The number of interface residues is correlated with the buried sur-
face areas. There are on average 56.9 contacting residues in an interface, while the
largest interface has 803 residues on one side [25].

Distribution of interface size

Sample size: 365 948
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Figure 2.4 Distribution of interface sizes in structures from PDB as of January 2021.
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22 2 Protein–Protein-Binding Interfaces

2.4 Gap Volume of Protein–Protein Interfaces

Protein surfaces are not flat. This also applies to protein–protein interfaces, although
to a lesser extent. There are cavities and protruding regions that affect protein bind-
ing. The size and shape of these cavities, for example, are important for ligand bind-
ing; therefore, they have a key role in modulating protein-protein interfaces. Cavities
are one of the reasons interacting surfaces on monomers cannot fit perfectly, but they
leave gaps in some regions. The total volume of these unfilled spaces between two
interacting surfaces is termed the gap volume. Gap volume can be used as a measure
of the complementarity and the closeness of packing between the two binding sites
of an interface. The SURFNET [38] package is one of the tools that enable the inves-
tigation of cavities on proteins and gap volume of interfaces. Gap volume index is
usually used to classify tightly and loosely packed interfaces. It is the ratio of the gap
volume to the interface buried surface area. The mean gap volume index is shown
to be higher in heterodimers than in homodimers [39].

2.5 Amino Acid Composition of Interfaces

The frequencies of different residues in the interfaces may provide information
about the hydrophobic/hydrophilic character of the interface [40]. When interface
residues are compared with core residues of proteins, interfaces have more polar and
charged residues [41]. Previous studies imply that the properties of residues, such as
hydrophobicity, polarity, and electrostatics, can be used to identify interface regions
on protein surfaces [42]. Figure 2.5 shows the amino acid frequencies evaluated on
three different regions – protein core, interface, and non-interface surface regions of
protein complexes, using 22 604 interfaces from 16 181 nonredundant PDB complex
structures. Interface regions are defined as the collection of contacting and nearby

Frequency of aminoacids on core, interface, and non-interface surface regions

0.16 Cores

Interfaces

Non-interface surfaces
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Figure 2.5 Frequencies of amino acids on protein core, interface, and non-interface
surface residues of protein complexes.
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2.6 Secondary Structure of Interfaces 23

residues [17]. Core residues are non-interface residues with an ASA value of 0, and
non-interface surface residues are the ones with an rASA >25%. Frequencies are
calculated as follows:

Frequency of an aminoacid

=
{Count of the aminoacid in a given region}

{Total number of aminoacids in the given region}
Many groups analyzed the frequencies of different amino acids in three regions of

protein–protein complexes: core, interface, and non-interface surface [18, 37, 43].
When evaluated under three different regions as core, interface, and non-interface
surfaces, hydrophobic residues, Ala, Cys, Ile, Leu, Met, Phe, and Val, are more
likely to be found in the core region of a protein, whereas hydrophilic residues,
Asn, Asp, Glu, Lys, and Arg, are more likely to be found on non-interface surfaces
of a structure. The frequencies of amino acids at interface regions are usually
between the frequencies for core and non-interface surface regions [37]. These
analyses are limited to a fraction of all possible interactions found in nature, since
knowing the three-dimensional structure of a complex, and the interface region is
a must for analyzing amino acid propensities. Even though our knowledge of the
structure of protein complexes is not complete, these analyses consistently show
us that hydrophobic/hydrophilic property of an amino acid significantly affects its
frequency in different regions of a protein complex.

2.6 Secondary Structure of Interfaces

The secondary structure of proteins is an essential factor in how chains interact with
each other. One of widely used tools to assign secondary structural elements (SSE)
to protein structures is DSSP [44, 45]. SSEs on protein–protein interfaces can be
grouped into five categories: α–α, β–β, α–αβ, β–αβ, and αβ–αβ. α–α defines interfaces
that have only α-helices as SSE in both chains, apart from coils. Likewise, β–β defines
interfaces with only β-sheets as SSE in both chains. α–β and β–αβ define interfaces
that have only α-helices or β-sheets in one chain and both in the other chain, and
lastly, αβ–αβ defines interfaces with both SSEs in both chains. A recent analysis of
all interfaces available in PDB revealed that 52.5% of all interfaces are in the α–α
category, and around 11% of interfaces are in the β–β category [25]. The rest of the
interfaces have at least one αβ chain. α interfaces and αβ interfaces are more frequent
in homodimers (34% and 47%, respectively) than they are in heterodimers (22% and
31%, respectively). β interfaces are almost equally common in both homodimers and
heterodimers, 11% and 15%, respectively [46].

Previously, we showed that there are recurring architectural motifs in protein–
protein interfaces [18, 47]. We observed that although there are many motifs based
on SSEs in interfaces, some architectures are more favorable and frequently used,
and these are the ones that are also preferred in single-chain protein cores [47].
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24 2 Protein–Protein-Binding Interfaces

2.7 Protein–Protein-Binding Energy

Protein–protein-binding free energy (ΔG) can be used to assess the binding affinity
of two proteins. Both the enthalpic and entropic terms contribute to ΔG. The for-
mula, ΔG = RTln(Kd), relates the binding free energy to the dissociation constant
(Kd) and thus the binding affinity. Kd gives information about protein-binding/
unbinding processes at equilibrium. Among these terms, Kd is often reported
to describe the stability of a protein–protein complex [48]. Experimentally mea-
sured dissociation constants of some biological complexes deposited in the PDB
are curated in PDBbind and updated annually [49]. PDBbind aims to show the
correlation between the structural and energetic properties of protein–protein,
protein–nucleic acid, and protein–ligand complexes. SKEMPI 2.0 is another man-
ually curated database which presents binding affinity and other thermodynamic
properties of protein–protein complexes with a focus on the changes in the binding
energy upon mutations [50].

The shape complementarity, physicochemical properties, including electrostatic
interactions, salt bridges, hydrogen bonds, and Van der Waals interactions, con-
tribute to the binding energy/affinity between proteins [51]. Therefore, the change
in the electrostatic environment of the protein–protein-binding interface – resulting
from solvation and individual interface residue charges – contributes to the bind-
ing free energy [52, 53]. Even though both hydrophobic and electrostatic contri-
butions are important in binding, hydrophobic forces are discussed to be the main
driving forces in binding [54]. The binding affinity is related to polarity of the inter-
acting residues and the number of charged residues on the binding interface [55, 56].
High-affinity complexes exhibit more polar–polar and polar–nonpolar interactions
[55]. On a structural level, protein–protein-binding affinity is also correlated with
buried surface area of an interface [57].

2.8 Interfaces of Homo- and Hetero-Dimeric Complexes

Protein–protein interactions may occur between two or more identical or non-
identical monomers. If the monomers in a complex are the same, then it is
named as homooligomer. A complex with non-identical subunits is named as
heterooligomer. Furthermore, if each subunit in a homooligomer is contacting
through the same surface, it is more specifically named as isologous homooligomer.
The same naming convention also holds for complexes with two chains: homod-
imers and heterodimers. Homodimers are the most common protein complexes
in nature [58]. As previously discussed, interfaces formed in homodimers or
heterodimers show different SSEs [46], complementarity, and amino acid compo-
sition. It has been observed that when compared with heterodimers, homodimers
have a larger surface area, they have more hydrogen bonds at the interface,
and the interface surfaces are more hydrophobic [59, 60]. Homodimer binding
sites have an average size of 1311 Å2, while the average size of heterodimers
is 1112 Å2 [37].
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2.10 Interfaces of Transient and Permanent Complexes 25

2.9 Interfaces of Non-obligate and Obligate Complexes

Complex structures can be categorized as non-obligate or obligate complexes.
In obligate complexes, the subunits of the complex, the individual proteins that
form the complex, are not stable as independent structures in vivo. In contrast,
non-obligate complexes are formed by subunits that are also stable as separate
structures. Obligate structures are usually obligate functionally as well. Whereas
complexes that function in receptor–ligand, antibody–antigen, enzyme–inhibitor,
or intracellular signaling are usually non-obligate; therefore, they are independently
stable as well, since the subunits of such complexes may not be co-localized when
they are not interacting [61, 62].

An analysis of obligate and non-obligate interfaces for amino acid propensities
shows that amino acids such as Ile, Val, Pro, His, Gln, and Leu have a higher
propensity in obligate interfaces compared to non-obligate ones, whereas Cys,
Tyr, Asn, Glu, Asp, and Lys have a higher propensity in non-obligate interfaces.
The difference in amino acid propensities reveals that non-obligate interfaces are
more likely to be polar compared to obligate interfaces. The core and peripheral
regions, rim, or support, of obligate and non-obligate interfaces, show different
characteristics as well. Compared to the peripheral regions, the core region of
non-obligate interfaces has been shown to have a higher frequency of short
non-polar residues Ile, Val, Leu, Cys, Ala, Gly, Pro and of aromatic residues, such as
Trp and Tyr [63].

Obligatory interfaces are larger than non-obligatory interfaces. The average inter-
face area (one side) for obligatory interfaces is 492.74 Å and for non-obligatory com-
plexes is 279.55 Å [63]. Also, the number of contacts in obligatory interfaces is higher
than that of non-obligatory complexes, with 20 and 13 contacts per chain, respec-
tively. Obligatory interfaces are more evolutionarily conserved, they have a higher
geometric complementarity, and larger interface-to-surface ratio [64]. There are var-
ious tools for identifying interfaces as obligate or non-obligate. DynaFace [65] uses
the dynamic motion of the protein complex for discriminating between obligatory
and non-obligatory protein–protein interactions, whereas NOXclass [66] uses a sup-
port vector machine (SVM) classifier to differentiate between obligate/non-obligate
interfaces depending on interface properties, such as interface area, amino acid com-
position, and residue conservation.

2.10 Interfaces of Transient and Permanent Complexes

Another way to categorize complexes is based on their lifetime. Transient inter-
actions may associate and dissociate in vivo, while permanent interactions are
generally stable, and subunits involved in permanent interactions usually only exist
in the complex. The lifetime of a complex, whether the complex is transient or
permanent, depends on interaction strength between the subunits of the complex.
The interaction strength is highly affected by hydrophobic interactions, hydrogen
bonds, salt bridges, and disulfide bonds that take part in forming the complex
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26 2 Protein–Protein-Binding Interfaces

structure. Complexes that are structurally or functionally obligate are generally
permanent, while non-obligate interactions can be either transient or permanent.

Protein–protein interactions may not be categorized distinctly into one of these
types [61]. Usually, there is a continuum between obligate and non-obligate states of
interactions for complex structures, where the stability of the complexes depends on
the physiological conditions and the environment of the interaction [67]. An interac-
tion that is mainly transient may become permanent under different environmental
conditions. Even though it is not always possible to determine for certain, the loca-
tion of the subunit of the complex and the function may indicate the interaction
type between the subunit. To give an example, complex interactions that take part
in intracellular signaling are usually expected to be transient, since they need to asso-
ciate and dissociate to function [68].

In comparison with transient interfaces, permanent interfaces are more con-
served, and they have a higher tendency of having more hydrophobic residues,
whereas transient interfaces are shown to have more polar residues [64, 69]. When
the size of the interfaces is compared, permanent complexes have interfaces that
are usually larger than transient interfaces [70].

2.11 Biological vs. Crystal Interfaces

X-ray crystallography, nuclear magnetic resonance (NMR), electron microscopy, and
neutron diffraction are the most frequently used methods to determine structures.
As of February 2021, 88.2% of all structures deposited in PDB have been obtained by
using X-ray crystallography [71]. Even though it is the most commonly used method,
X-ray crystallography poses a challenge in determining which structures are bio-
logically relevant, and which are artifacts from the crystal packing [72] of proteins.
The nonbiological interfaces that are formed as a result of the crystallization pro-
cess are called crystal packing contacts, or in short crystal contacts [73]. Since these
crystal contacts are not biologically relevant, they cause a noise in the analysis of
protein–protein interfaces.

The increasing number of available three-dimensional structures of protein com-
plexes enabled the identification of different physicochemical properties between
biological and crystal interfaces [72]. These properties are beneficial for differenti-
ating the biologically relevant interfaces. Generally, biological interfaces are more
conserved in terms of amino acid composition, and they are thermodynamically
more stable. Whereas crystal interfaces are usually formed as a result of kinetically
driven associations, and they are usually nonspecific [74].

There are several tools available to help with differentiating between biological
and crystal interfaces. These tools are energy based [30, 75], empirical knowledge
based [76, 77], and machine learning based [66, 78, 79]. Correctly identifying the
biological interfaces is important for correctly identifying the biologically relevant
properties of protein–protein interfaces.
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2.12 Type I, Type II, and Type III Interfaces 27

2.12 Type I, Type II, and Type III Interfaces

Interfaces can be divided into three types according to the structural similarity of
the global structures of their monomers [18]. Usually, if two interfaces have similar
structures in two different complexes, they are derived from globally similar protein
chains. These interfaces are called Type I interfaces. Sometimes, the interfaces of
complexes may be similar, but the global folds of the proteins that form the interfaces
differ. These interfaces are called Type II interfaces. These proteins usually have dif-
ferent functions, and they may be good candidates for structural/functional studies.
The last one, Type III interfaces represent a group of interfaces with only one side
similar. This interface type suggests that proteins with different geometries can bind
to the same site [80]. Figure 2.6 presents examples of each type. The left panel shows
two complexes where the interfaces are similar. The two pairs of proteins interacting
in the complexes are homologous (i.e. 1A7Q_H is similar to 1AP2_A and 1A7Q_L
is similar to 1AP2_B). The middle panel represents two complexes where the pro-
teins are non-homologous, yet the interface architectures are similar. The right panel
shows that one protein (1AZZ_A is homologous to 1SR5_A) can bind to different
proteins using a similar interface architecture.

When compared with Type III interfaces, Type I interfaces have larger interface
areas. The average interface area for Type I interfaces is 1967 Å2, whereas it is 1235 Å2

for Type III interfaces. In addition, Type III interfaces have an average gap volume
index of 3.21 Å, whereas Type I interfaces have a much smaller gap volume index of
1.98 Å [36]. Type I interfaces are more hydrophobic compared to Type III interfaces.

Type I

1A7Q_H_L

1AP2_A_B 1CBI_A_B
1SR5_A_C

1DJ8_C_E 1AZZ_A_C

Type II Type III

Figure 2.6 In this figure two members for each type of interface are shown. As can be
seen, in Type I and Type II interfaces, interface regions of both interfaces are similar; in Type
III interfaces, only one side of the interface is similar. Both for Type II and Type III interfaces,
the globular folds of the proteins differ from each other.
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28 2 Protein–Protein-Binding Interfaces

2.13 Conserved Residues and Hot Spots in Interfaces

Protein interfaces are more conserved than the rest of the protein surfaces [81, 82].
Residues in obligate interfaces evolve at a relatively slower rate, allowing the residues
in two interacting proteins to coevolve. On the other hand, residues in transient
interfaces exhibit an increased rate of evolution thus with no evidence of corre-
lated mutations across the interfaces [64]. Therefore, evolutionary conservation is
an important feature to identify interfaces.

The conformational dynamics of conserved residues in unbound monomers illus-
trate significantly lower flexibility, suggesting that already before binding they are
constrained in a bound-like configuration [83]. Backbone torsional angle distribu-
tions of conserved residues correspond to restricted regions of space and the most
visited conformations in the bound and unbound trajectories are similar, suggesting
that conserved residues are preorganized before binding.

When two proteins bind to each other, some critical residues, called hot spots,
contribute more to the binding free energy [84]. Only a small portion of the interface
residues are hot spots, and they are essential for protein interactions [8]. Hot spots
are not randomly spread along with the protein–protein interfaces; rather, they tend
to be clustered as hot regions [85, 86].

Several studies have tried to identify and characterize hot spots on protein–protein
interfaces. Alanine Scanning Mutagenesis experiments are usually used to find hot
spots. In these experiments, every interface residue is mutated to alanine and the
corresponding changes in the binding affinity (ΔΔG) are observed. The residues,
which result in a significant reduction of the binding energy (≥2 kcal) upon alanine
mutagenesis, are considered hot spots. As this experimental procedure is resource
intensive, computational methods are used frequently for hot spot prediction [87].

Computational methods might exploit the physicochemical properties of amino
acids to find hot spots. These properties are mostly hydrophobicity, hydrophilicity,
polarity, and average ASA. A previous study revealed an inverse correlation between
binding energy and the ASA of individual residues upon complexation [20]. Previous
studies have also demonstrated that the amino acid composition of hot spots is not
random. Trp (21%), Arg (13.3%), and Tyr (12.3%) are the most frequent amino acids
found as hot spots [88].

Some studies suggested energy-based methods to predict hot spots [89]. Over
the last decade, various computational tools have been developed, including
graph-based algorithms [85] and machine-learning-based approaches [90]. These
methods use structure-based, sequence-based, and energy-based features. A com-
parison study has shown that one of the ensemble-learning algorithms, gradient tree
boosting (GTB), and combining ASA-related properties and the position-specific
scoring matrix (ASA+PSSM) achieved state-of-the-art results [91].

Figure 2.7 illustrates the importance of hot spots in pharmaceutical studies.
Interleukin-2 (IL2) bound to its receptor (ILR2) is shown in the left part of
the figure. IL2 is a cytokine that functions as a growth factor and central reg-
ulator in the immune system and mediates its effects through ligand-induced
hetero-trimerization of the receptor subunits α, β, and γ. There are three hot regions
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2.14 Conclusion and Future Implications 29

Tyr-45

Phe-44

Phe-42
Glu-62

Val-69

C30H35N5O6

IL2

IL2

IL2R

Leu-72

Figure 2.7 In the left figure, hot regions of Interleukin 2 (IL2) bound to its receptor (ILR2)
are shown. (PDB ID: 1Z92) In the right figure, a small molecule binds to hot spots of IL2 and
interferes with the PPI between IL2 and IL2R. Source: Adapted from Cukuroglu et al. [92].
(PDB ID: 1M49) Hot region information is obtained via the HotRegion server. Source:
Adapted from Arkin et al. [85].

in the complex (red, blue, and orange). A previous study has shown that a small
molecule binds to the IL2 binding site involving the residues Tyr-45, Phe-44, Phe-42,
Glu-62, Val-69, and Leu-72 and thereby blocks the interaction of IL2 and its receptor
[92].

2.14 Conclusion and Future Implications

Characterization of protein-binding interfaces is essential to understand
protein–protein interactions. The accumulated knowledge in protein–protein
interfaces is useful in various disease-related areas, such as drug discovery, pheno-
typic effects of single amino acid variations (SAVs) at interfaces, and prediction of
host–pathogen interactions using interface mimicry.

More than 645 000 disease-associated PPIs in the human interactome have been
reported [93]. Therefore, the identification of drug-like small molecules that dis-
rupt disease-related protein–protein interactions and targeting interfaces between
these disease-related proteins might have significant therapeutic potential. How-
ever, designing drug-like small molecules is a challenge as the PPI interfaces are
usually flat and do not contain deep cavities. On the other side, drug-like small
molecules tend to target specifically hot spot residues [94]. Therefore, computational
prediction of hot spots might help significantly to identify druggable sites on the
interfaces.

Missense mutations, which result in SAVs, lead to various diseases. SAVs affect
the function of the protein and protein–protein interactions, thereby causing dis-
eases [95, 96]. The studies on SAVs show that the disease-causing mutations tend
to be located at the protein–protein interfaces rather than in other regions on the
protein surface [97–101]. The location of SAVs within the binding interface is also
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30 2 Protein–Protein-Binding Interfaces

shown to be important because disease-causing SAVs tend to be located buried in the
binding interface (e.g. interface core), rather than at the not buried and relatively
solvent-accessible parts of the interface [99]. Disease-causing SAVs are also likely
to be located at the hot spots rather than in hot regions, whereas benign SAVs are
located at the non-hot spots [102]. On the other hand, for the hub proteins, cancer
mutations are located at patches and are not singletons [103].

In the course of a disease caused by a pathogen (i.e. viral, or microbial infections),
the pathogen proteins and host proteins compete to bind to the same binding
partners [104, 105]. Interface mimicry is one of the strategies that pathogens use
to compete with host proteins. Here, the binding interface of a pathogen protein
has a high similarity to the binding interface of the competed human protein.
Interface mimicry appears in both endogenous (between a human protein pair)
and exogenous (between a pathogen protein and a human protein) interactions
[106, 107]. Structurally similar binding interfaces permit proteins to interact with
the same binding partners [36, 108]. Therefore, by mimicking the binding interface
of a human protein, pathogen proteins might interact with the binding partners of
those mimicked proteins even though their global structures are different. Having
a comprehensive understanding of host–pathogen interactions and the role of
binding interfaces in this respect is crucial to develop and advance antipathogenic
therapies or drugs [104].
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3.1 Introduction

Life is organized hierarchically from the molecular level, where life is based on
biomolecules such as DNA, proteins, or RNA and their interactions, over cells and
their compartments [1] up to organs, organisms, or even whole ecosystems. At the
molecular level, biomolecules are the key players. Despite their simple buildup from
nucleic acids or amino acids biomolecules realize an incredible diversity of functions
in living organisms. Examples include the storage, handling, and readout of genetic
information in DNA, enzymatic function, molecular sensing and signaling, motion
(e.g. muscles, cell motion) or structural stability (e.g. collagen, hair, or spider silk).
To mechanistically understand biomolecular function, however, one must know
the unique biomolecular structure, i.e. the three-dimensional arrangement of all
atoms inside the biomolecule. Common experimental techniques used in structure
determination have made incredible progress but also have their limits and are often
quite involved. One of the oldest and best known method, X-ray crystallography,
requires the growth of crystals of the investigated biomolecules and subsequent
interpretation of scattering data. Nuclear magnetic resonance (NMR), in contrast,
does not require such crystals and can directly be applied to biomolecules in solution
but relies on the correct assignment of NMR shifts, which gets increasingly difficult
for larger systems. The use of cryo election microscopy (cryoEM) has skyrocketed in
the last decade, but still relies on automatized interpretation of large data sets and,
thus, involves highly optimized workflows [2]. Small angle X-ray scattering (SAXS)
is experimentally quite simple, but only provides low-resolution information which
has to be carefully interpreted [3–5]. So are there possible theoretical complements
to these experimental approaches?

In silico protein structure prediction has a long history [6–20] and can com-
plement experimental work. Commonly summed up under “structure prediction
tools”, there are many approaches tackling the challenge of predicting biomolecular
structures from protein sequence alone. Homology modeling tools rely on the

Protein Interactions: The Molecular Basis of Interactomics, First Edition.
Edited by Volkhard Helms and Olga V. Kalinina.
© 2023 WILEY-VCH GmbH. Published 2023 by WILEY-VCH GmbH.
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40 3 Correlated Coevolving Mutations at Protein–Protein Interfaces

structural similarity of evolutionary related biomolecules and use experimentally
resolved known structures as templates upon which unknown structures can
be build. If no evolutionary similar structures are known, one could predict a
biomolecular structure from its sequence alone by, e.g. identifying the global
free-energy minimum in a suitable physics-based force field. Such a global search
is challenging due to the gigantic search space. Any guidance toward the global
minimum would support the search by reducing this search space. In 2009, a
methods coined direct coupling analysis (DCA) provided such guidance by inves-
tigating the mutational patterns of coevolution in protein-protein interactions
[21] and applied this approach to blind prediction of a protein complex [22]. As
highlighted in Figure 3.1, coevolving residue pairs are considered spatially adjacent
or contacts, as evolution puts constraints on mutations due to the need to maintain
structure and function. While the general idea was already proposed in the 1990s,
earlier methods [23–25] based on mutual information were plagued by a high
number of false positive (FP) contact predictions due to only accounting for strictly
pairwise correlations while disregarding the global context of other residues. DCA
[21, 22, 26, 27] considers this global context and is based on inverse problems in
statistical physics, so-called inverse Potts models. In short, DCA mimics fitness
landscapes of proteins and drastically improves signal-to-noise ratios [28–31]. DCA
has inspired similar approaches [32–37] for tracing coevolution. In a typical inter-
pretation, such coevolving residue pairs are considered spatially adjacent contacts
and exploited as structural constraints in molecular modeling tools for proteins
[22, 32, 34, 37–44] but also for RNA [45–47]. Remarkably, the Hamiltonian can
be regarded as a fitness landscape, and thus one may infer biomolecular function
such as biological signaling [48], antibiotics resistance [30], or protein–protein
interactions [49, 50].

Evolutionary

Constraints

Statistical
Inference

Coevolution

i j

Figure 3.1 Coevolutionary analysis builds on the premise that a biomolecular 3D structure
leaves an evolutionary imprint on the sequences of a protein family or in both protein
families that form a complex, as a mutation at site i affects mutations at the spatially
adjacent sites j. Statistical analysis can therefore infer such pairs of coevolving residues,
both intramolecular (purple) or intermolecular (red). Specific functionally relevant residues
(orange) are conserved across a protein family and will not show coevolutionary signals.
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3.3 Statistical Inference of Coevolution 41

3.2 A Short Introduction into Biomolecular Modeling

A realistic theoretical description of biomolecules based on quantum mechanical
(QM) ab initio approaches to accurately model electronic properties and atomic
interactions is computationally extremely demanding. Therefore, the most common
atomistic description of biomolecules is based on classical or Newtonian force fields
and simplifies the QM interactions coarsely into molecular mechanics. Typical
energy terms are divided into short ranged bonded and long-ranged nonbonded
interactions.

Bonded interactions are named by counting the involved number of atoms as
1–2 or bond, 1–3 or angle, and 1–4 or dihedral interactions. The 1–2 interaction
is a harmonic potential VB = 𝜖B(x − x0)2 (bond constant 𝜖B, distance x of involved
atoms 1, 2 and their equilibrium distance x0). The 1–3-interaction is also harmonic
VA = 𝜖A(𝜃 − 𝜃0)2 (angle constant 𝜖A, angle between bonds of atoms (1,2) and
(2, 3), 𝜃0 equilibrium angle). The 1–4-interaction is provided by VD =

∑
z=1,3𝜖z,D(

1 − cos n(𝜙 − 𝜙0)
)

(dihedral constant 𝜖z,D, 𝜙 the angle or dihedral between the
respective planes formed by atoms (1, 2, 3) and (2, 3, 4), equilibrium dihedral 𝜃0 and
the multiplicity n).

In addition, there are typically two types of nonbonded interactions. The

short-ranged Lennard–Jones potential can be written as VLJ = 𝜖LJ

[(
𝜎

rij

)12
− 2

(
𝜎

rij

)6
]

(𝜖LJ the potential strength, 𝜎 the equilibrium distance, rij interatomic distance of
atoms i and j). Finally, the electrostatics term represents interactions resulting
from two point charges VES = 𝜖ES

qiqj

4𝜋𝜖0𝜖Rrij
(𝜖ES potential strength, qi point charge

of atom i, 𝜖0 electric constant, 𝜖R dielectric constant, rij distance between charged
atoms i and j).

The total sum of all terms for all atoms is the molecular mechanics potential or
force field. Some common force fields for biomolecular simulations are AMBER [51]
or CHARMM [52]. Given the importance of water to biomolecules [53] and their
interactions [54, 55], the solvent interactions have to be modeled as well, either
explicitly or implicitly [56–63]. In structure prediction, the global minimum of the
potential should represent the native fold and can be identified by, for example,
stochastic global optimization methods such as simulated annealing and its variants
for this task [9, 64–68].

3.3 Statistical Inference of Coevolution

3.3.1 Limitations of Local Statistical Inference

Protein interactions are the main actuator in biological signaling. Proteins need
to interact specifically to prevent unwanted cross-talk, interact sufficiently strong
to accommodate transfer of signaling molecules, and, at the same time, interact
sufficiently weak or transient to allow dissociation after functional interactions.
The main element of protein interactions is the interaction interface being stabilized
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42 3 Correlated Coevolving Mutations at Protein–Protein Interfaces

by the properties of the involved amino acids (see Chapter 2). If specific amino acids
enable chemical functions (e.g. catalytic sites), these amino acids tend to be con-
served in evolution. All other involved amino acids can more freely mutate in evolu-
tion but are still constrained by the need to maintain the overall interaction interface.

These general considerations led to the development of statistical methods to infer
such mutational constraints, e.g. by scoring substitution patterns [23] or comparing
single fi(𝛼) and pairwise amino acid frequencies fij(𝛼, 𝛽) (α,β∈{1,…,q} are typically
the q naturally occurring amino acids plus gap) [25, 69, 70]. One can calculate the
fi, fij from a multiple sequence alignment (MSA) for a protein family or from a joint
MSA for a complex. The sequences of such a protein family in a MSA are assumed
to undergo selective pressure. Commonly, mutual information (MI) is then used to
quantify coevolution of sites i, j

MIij =
∑

𝛼,𝛽∈{1,…,q}
fij (𝛼, 𝛽) ln

(
fij (𝛼, 𝛽)

fi (𝛼) fj (𝛽)

)
(3.1)

with the sum running over all the possible amino acids. Here, high values of MI cor-
relate with biological function, but MI is plagued by high numbers of false positive
signals when interpreted, e.g., as spatial adjacency when above a threshold. How can
we improve this statistical analysis?

3.3.2 Direct-Coupling Analysis – A Potts Model Based on Multiple
Sequence Alignments

Direct-coupling analysis (DCA) [21, 22, 27] frames coevolution as an inverse prob-
lem based on statistical mechanics (cf. Figure 3.2). As above, the sequences in a
protein family as found in the MSA are assumed to undergo selective pressure. Thus,
a MSA should allow inferring the evolutionary dynamics based on the marginal dis-
tributions of single sites and pairs by, e.g., a maximum-entropy approach to derive a
Boltzmann-type distribution.
[q] = {i ∈ ℕ|1 ≤ i ≤ q} is a q-letter alphabet of amino acids or nucleic acids for

RNA plus the gap position in a MSA. For the rest of this section, I will focus on
proteins, but the inference for RNA is analogous. L-tuples formed from [q] provide
protein sequences 𝝈 = {𝜎

𝜈
}L
𝜈=1, where 𝜎

𝜈
is the amino acid in position 𝜈 for a protein

of length L. An MSA is viewed as a random sampling of possible sequences 𝝈 of the
entire protein family Γ (i.e. Γ are the set of possible L-tuples formed from [q]) and
we want to infer the probability distribution. According to the maximum-entropy
principle, the distribution P that best represents the data given prior knowledge max-
imizes the entropy function

S(P) = −
∑
𝝈∈Γ

P(𝝈) ln P(𝝈) (3.2)

The distribution maximizing the entropy is of the form

P(𝝈) = 1
Z

exp{−(𝝈)} (3.3)

with the Hamiltonian function (𝝈) = −
∑N

k=1 λkgk(𝝈), the Lagrange multipliers
{λk}N

k=1, and the partition function Z =
∑

𝝈
e−(𝝈). We now need to find the Lagrange

multipliers best describing our data.
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3.4 Solving the Inverse Potts Model 43

1≤i≤L1≤i≤j≤L

eij (σiσj) + ∑∑ hi (σi)H (σ) =

Structure

prediction

Fiitness and
mutational

landscapes

Calculation
of direct
contacts

Figure 3.2 Once the inverse problem is solved, the DCA Hamiltonian can be interpreted. In
the context of structure prediction, typically the coupling parameters eij are projected on a
scalar such as the direction interaction score and high values interpreted as spatial
adjacency of the involved residues i and j. The entire Hamiltonian can also be interpreted
as a fitness landscape.

In DCA [21, 22, 27], we assume the pair-wise coupling i, j (e.g. stabilizing interac-
tions) and single-site i behavior (e.g. active sites) to be reflected in the MSA:⟨

𝛿
𝜎i ,𝛼

⟩
=
∑
𝝈

P(𝝈|𝜎i = 𝛼) (3.4)

⟨
𝛿
𝜎i ,𝛼

𝛿
𝜎j ,𝛽

⟩
=
∑
𝝈

P(𝝈|𝜎i = 𝛼, 𝜎j = 𝛽) (3.5)

Ignoring numerical stability [21, 22, 27], marginal probabilities can be estimated
from the MSA by direct frequency counts of the single sites fi(𝛼) and pairs fij(𝛼, 𝛽)
and we arrive at the Hamiltonian:

(𝝈) = −
∑

1≤i≤L
hi(𝜎i) −

∑
1≤i<j≤L

eij(𝜎i, 𝜎j) (3.6)

The matrix e of pairwise interactions is called the couplings matrix and the single
site components hi local fields. In statistical physics, this mathematical description
is called a Potts model, a generalized model of the Ising model. The Potts model
has

(
N
2

)
q2 + Nq inferred parameters, or

(
N
2

)
(q − 1)2 + N(q − 1) non-redundant

constraints upon normalization, i.e. couplings and local fields are not uniquely
defined. A common constraint is to impose gauge-fixation to reduce the parameter
space.

3.4 Solving the Inverse Potts Model

Inferring the Hamiltonian from available sequence data requires solving an
inverse problem, which was for biological sequence data first solved by Weigt and
coworkers [21, 22] by DCA. Due to the finite nature of any MSA and the fact, that
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44 3 Correlated Coevolving Mutations at Protein–Protein Interfaces

sequences in the MSA are not a random subsample of possible sequences,1 we
can only approximately solve the inverse problem. It is also common to improve
numerical robustness by including pseudo-count corrections λ in the restrictions of
the marginals [21, 22]:

f
𝜈
(𝛼) = 1

λq + M

[
λ +

M∑
a=1

𝛿
𝜎
𝜈
,𝛼

]
(3.7)

f
𝜈𝜉
(𝛼, 𝛽) = 1

λq + M

[
λ
q
+

M∑
a=1

𝛿
𝜎
𝜈
,𝛼
𝛿
𝜎
𝜉
,𝛽

]
(3.8)

(M is the size in sequences of the MSA) with minimal impact for large sample size
(M ≫ λq), sampling re-weighting [27] or other refinements of input data. Several
approaches have been developed to solve the inverse statistical problem. The original
message-passing DCA [21, 22] is based on susceptibility propagation and compu-
tationally quite expensive as it scales as O(L4q2). An improvement was mean-field
direct-coupling analysis (mfDCA) [27], which considerably lowered computational
cost. In mfDCA, the DCA Hamiltonian is decomposed into a noninteracting part
0(𝝈) = −

∑
1≤i≤Lhi(𝜎i) and a couplings sector (𝝈) = 0(𝝈) + Δ(𝝈). Then, one

introduces a trial noninteracting Hamiltonian 0(𝝈) + ⟨Δ(𝝈)⟩0 (here ⟨X⟩ stands
for the average of X over the canonical ensemble defined by the noninteracting part).
Due to the Bogoliubov inequality  ≤ 0 + ⟨Δ(𝝈)⟩0 mfDCA optimizes the local
fields to ensure that the trial noninteracting model approximates the closest free
energy to the actual system. In the first mfDCA [27] Ursell functions are calculated
from the empirical frequencies and the corresponding matrix is inverted to recover
the mean-field couplings.

While mfDCA is already computationally quite efficient, a subsequent approach
based on pseudo-likelihood maximization DCA (plmDCA) [33, 71] presents another
alternative. To infer the values of couplings and of single-site fields, the likelihood
is substituted by the product of conditional probabilities of observing the variable
𝜎

n
i given the ensemble of all the others (𝜎n

1 · · · 𝜎
n
i−1𝜎

n
i+1 · · · 𝜎

n
L ). In plmDCA, a max-

imization step proves to be the computational bottleneck, and different gradient
descent algorithms are able to tackle this challenge. The most common one is the
limited-memory Broyden–Fletcher–Goldfarb-Shanno (BFGS) algorithm [72] used
as default by many plmDCA implementations [46, 73–76]. The large redundancy
of parameters is solved by regularization [77]. A l1-block regularization was first
employed in [78]. Many plmDCA implementations use a l2-regularization by adding
l2 = λh

∑N
i=1 ||hi||2 + λJ

∑
1≤i≤j≤N ||eij||2 to the pseudo-likelihood, which leads to an

Ising-type gauge [75].
Finally, one typically takes the coupling matrices eij and condenses them into a

scalar for scoring, e.g. by the Frobenius norm [35, 46, 73, 74]:

FNij = ||eij|| =
√√√√ q∑

k,l=1
eij(𝛼, 𝛽)2 (3.9)

1 Databases tend to focus on sequences that are either experimentally easy to access as they are
from biologically relevant organisms, such as those of particular medical relevance. This leads to
phylogenetic and other biases in the sequence data.
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3.6 Inter-Monomer Interaction and Signaling 45

often combined with a averaged product correction [79] APCij = FNij −
∑

iFNij
∑

jFNij∑
i
∑

jFNij
.

The highest scoring pairs of residues are then assumed to be spatially adjacent. Alter-
native scores such as direct information [21] exist. Typically, for proteins plmDCA
provides higher accuracies than mfDCA at elevated computational costs, while for
RNA both plmDCA and mfDCA provide similar results [47, 80].

3.5 Contact Guided Protein and RNA Structure
Prediction

Experimental measurement of protein and RNA 3D structures is often quite
involved, while the sequence databases grow exponentially and can be exploited
by DCA. Here, one typically condenses the coupling matrices into a scalar Sij (see
above) and ranks or sorts them by value. These top ranked site-pairs are then
inserted as distance constraints into molecular modeling tools to predict protein
[22, 32, 38–40, 81, 82] or RNA [45, 46, 80] systems. Specific examples include
all-atom models of globular proteins [32], membrane proteins [40, 41], proteins
with multiple conformations [39, 40, 81], structural pattern in disordered proteins
[83], or combined with NMR data [82]. For RNA, DCA has improved both secondary
and tertiary structure prediction [45], which was quickly corroborated [46].

But what are the challenges? One big challenge is building a high quality MSA,
as one needs to account for phylogenetic bias, nonrandom sampling of sequence
space, etc. Also, while the top scoring contacts tend to be correct or true positive
(TP), lower scoring contacts are more likely to be false negatives and only a fraction
of all contacts can be predicted with good signal-to-noise ratios. Typically, the top L
or 2L contacts are used. Lastly, the integration of predicted contacts into molecular
modeling software is not unique and needs to be error tolerant. Also, the used mod-
eling force fields are not perfect, i.e. the lowest energy might not be the native state
of a protein.

3.6 Inter-Monomer Interaction and Signaling

Residue pair coevolution occurs also at inter-protein interfaces. Here, one typically
performs a DCA analysis of possible contacts between the interacting proteins.
These contacts are then used as constraints in docking the interacting proteins.
The abundance of sequence data makes two-component signal transduction
system (TCS) a common target of coevolutionary analysis [21, 22, 27, 48, 50]. This
abundance is likely rooted in its wide-spread appearance as signal response systems
in gram-negative and cyanobacteria. They are less frequent in eukaryotes and
archaea. In fact, the first application of DCA was a blind prediction of a specific
TCS [22, 26]. As predicting TCS exemplifies the general approach for predicting
protein complexes nicely, I will quickly go over the crucial steps in the latter study.
TCS are ubiquitous signal transduction systems in bacteria, hence even in 2009
there were many sequences available. To study this heterodimer, it was necessary
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46 3 Correlated Coevolving Mutations at Protein–Protein Interfaces

to build a concatenated MSA data of the interacting protein partners. Due to the
possible presence of paralogs, the identification of the correct non-crosstalking
interacting partner is challenging. Luckily for TCS, the two interacting partners,
sensor histidine kinase (HK) and response regulator (RR), can be usually found
adjacently within the same operon, which greatly simplifies building the common
MSA. The HK receives an extracellular signal which affects its autophosphorylation
rate. The chemical signal, i.e. the phosphoryl group, is then transduced between
a highly conserved His of the HK and an Asp of the RR. This conserved His-Asp
pair is invisible to DCA due to its immutability but provides an additional spatial
constraint for docking HK and RR. Based on the DCA contacts at the HK–RR inter-
faces and this additional contact, is was possible to blindly predict the TCS complex
within about 3.5 Å RMSD of an independently measured crystal structure [22].

For other classes of protein complexes, there are other challenges. The difficulty
to build a joint MSA is greatly diminished for homodimeric complexes where
a protein interacts with itself. Here, the challenge is to distinguish between
inter-monomeric and intra-monomeric contacts, as it is unknown whether the
coevolving contact pairs are formed within each monomer, between the copies of
the monomer, or even simultaneously within and between. Also, contacts could be
formed only in additional conformations, e.g. in conformational transitions or even
in domain-swapping. One possibility to address this challenge is assuming that
intra-monomeric contacts are not participating in the inter-monomer interaction
and signaling taking place at the interface. Thus, one can simply rank all contacts
by their score and exclude all contacts already formed within the (typically known)
monomer. The remaining contacts can then be formed at the interface [37, 44, 84]. A
problem with this approach is the large number of false positive contact predictions
at the interface [44], which needs to be addressed by the modeling tools. A large
scale study of ≈ 2000 homodimers [44] systematically identified several main
results for homodimeric interfaces.

● Higher quality MSAs lead to significantly improved signal-to-noise ratios. Large
protein families from the database could contain subfamilies with different bind-
ing modes, strongly distorting the statistical analysis.

● Larger interacting surface regions are better detected by DCA. Smaller interacting
surface regions are more difficult to detect. This is not trivial, as one could assume
that smaller interacting surfaces have stronger coevolutionary signals.

● The majority of predicted false positive contacts in the monomeric structure are in
fact true positive contacts of the homodimeric interface. Most predicted contacts
are thus formed intramonomeric, intermonomeric, or both, supporting the thesis
of spatial adjacency contributing strongly to coevolution.

3.7 Summary

Coevolutionary analysis is a powerful toolkit to quantify evolutionary effects on
biomolecular structures. Physics-driven methods such as DCA can be directly inte-
grated into molecular modeling tools to predict a large variety of structures, ranging
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from globular proteins to protein complexes and structures of RNA. Considering
the ongoing growth of both sequence data and raw computational power, these
and similar methods based on machine learning will continue to impact structural
biology and complement advances in the experimental techniques.
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Computational Protein–Protein Docking
Martin Zacharias

Technical University Munich, Physics Department and Center of Functional Protein Assemblies,
Ernst-Otto-Fischer-Str. 8, D-85748 Garching, Germany

4.1 Introduction

Proteins are essential for basically all processes in living systems including
metabolic and transport processes as well as transcription and translation of genetic
information or mediating signal transduction. Although some of the biological tasks
are processed by single proteins that can act as enzymes, for example, to catalyze
metabolic reactions, a great majority of cellular functions depend on complexes
that consist of protein subunits. These complexes are well-ordered systems that
require specific assembly of proteins but can also involve the association with other
biological molecules such as RNA or DNA [1, 2]. Understanding the function of
such assemblies requires the knowledge of the structure and the molecular details
of all involved interactions [1, 3, 4].

In recent years, the possibility to modify or design completely new artificial
protein–protein interactions and multi-protein complexes of desired function has
become increasingly attractive [1, 5, 6]. It may offer the rational creation of new
enzymes catalyzing chemical reactions not easily controllable by common chemical
approaches or allows one to construct artificial cell-like systems consisting of
designed proteins and protein–protein complexes. Both the analysis of natural
complexes as well as design of synthetic complexes require structural knowledge
and understanding of the associated molecular interactions.

The experimental determination of protein–protein complex structures is
one option and indeed the number of solved complex structures is increasing
steadily [7]. So far, most protein–protein complex structures have been determined
by X-ray crystallography [8]. The approach, however, requires the formation of
highly ordered regular crystals. It involves purification of large amounts of partner
proteins and the formed complexes need to be relatively stable for crystallization.
Often multi-protein complexes and in particular transient complexes are in a
dynamic equilibrium possibly interfering with stable crystallization [9]. Nuclear
magnetic resonance (NMR) spectroscopy [10, 11] is another experimental method

Protein Interactions: The Molecular Basis of Interactomics, First Edition.
Edited by Volkhard Helms and Olga V. Kalinina.
© 2023 WILEY-VCH GmbH. Published 2023 by WILEY-VCH GmbH.
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54 4 Computational Protein–Protein Docking

for the structure determination of mostly dimeric complexes. It is limited to the
high-resolution structure determination of protein–protein complexes of small
size (<20 kDa). However, if the structure of the partner proteins is known it can
be used to assist in structural modeling and affinity determination even of large
multi-protein complexes [11]. New developments in the area of CryoEM (electron
microscopy under cryogenic conditions) often allow rapid structure determination
in particular of large biological assemblies [12, 13]. For a structure determination
by CryoEM, a sufficient number of object images from different viewpoints but
no crystals are required. The object images are combined and averaged to obtain
a high-resolution view of the structure [13]. Structures of small particles are not
accessible because of the limited contrast relative to a noisy background.

Hence, despite great progress, in the foreseeable future, it will still be impossible
to determine experimentally all putative and transient protein–protein complexes of
a cell [4]. However, there are very rapid experimental techniques [14, 15] and coevo-
lution bioinformatics methods ([16], see also Chapter 3) to identify protein–protein
interactions and to elucidate a network of all interactions in a cell or between a
pathogen (e.g. virus) and the host cell. Techniques like yeast-two-hybrid screens
[14] or in vivo chemical cross-linking [17] can detect association between protein
partners without providing structures. Eventually, the knowledge of atomic res-
olution structures of all protein–protein interactions in a cell is desired. Hence,
accurate structure prediction and structural modeling are of importance to provide
realistic structural models of complexes [18–22]. Protein–protein docking refers
to computational methods for predicting binary protein–protein complexes or
prediction of complexes with several partners using the isolated protein structures
or structural models as input. Several docking methodologies have been developed
in recent years and with the help of the community-wide Critical Assessment of
PRedicted Interactions (CAPRI) experiment [23–25] the progress in protein–protein
docking prediction methods has been extensively monitored over more than the
last 20 years. In this challenge, participating groups test the performance of docking
methods in blind predictions of protein–protein complex structures that help to
foster progress and ideas in the field. The CAPRI consortium has also defined
useful criteria to evaluate the quality of a predicted protein–protein complex
(if the experimental structure is known) in terms of structural deviation from the
experimental reference (native complex) and number of native contacts between
atoms at the predicted interface (Table 4.1).

In general, the binding of biological macromolecules is driven by the associated
change in free energy which depends on the structural and physicochemical
properties of the binding partners. It is influenced by direct interactions between
binding partners but also by the surrounding solvent and ions and the change in
average conformation and conformational fluctuations upon association. Optimal
complementarity at binding interfaces was proposed by E. Fischer [26] as a decisive
factor to achieve high affinity and specificity of binding. In fact, the majority of
protein–protein docking methodologies consider the partner proteins as rigid
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4.1 Introduction 55

Table 4.1 Quality criteria for protein–protein docking according to the CAPRI challenge.

Quality/Criteria Incorrect Acceptable (*) Medium (**) High (***)

% Native contacts <10 ≥10 ≥30 ≥50
Ligand-RMSD – 5 Å<RMSD≤ 10 Å 1 Å<RMSD≤5 Å RMSD≤1 Å
Interface RMSD – or 2 Å<RMSD≤ 4 Å or 1 Å<RMSD≤ 2 Å or RMSD≤1 Å

The quality criteria are evaluated with respect to the experimental native complex. “% Native
contacts” indicates the percentage of predicted contacts (atoms pair with distances <5 Å) that are
also found in the native complex. RMSD indicates root-mean-square deviation with respect to the
native complex. Here, “Ligand-RMSD” refers to the RMSD of the smaller ligand protein from the
native placement after best superposition of the larger protein partner (receptor) on the native
complex. “Interface-RMSD” is the RMSD of all interface atoms (all atoms within 10 Å of the
partners in the native complex) after best superposition onto the native interface.
The stars indicate the quality of the solution, a one star (*) solution is acceptable, (**) medium,
(***) high quality solution.

structures and use optimal complementarity as the main criteria for selecting
possible binding geometries [19, 21]. It considerably simplifies the computational
search problem, and in the first section of this chapter, the principles of rigid
protein–protein docking methods will be introduced. However, binding can involve
conformational changes, and efforts to efficiently account for such changes during
docking will also be discussed. A schematic outline of the protein–protein docking
methodology and associated tasks is given in Figure 4.1. In many cases, experi-
mental data or data from bioinformatics resources are helpful to guide the docking
search or re-score docked complexes. In the subsequent sections of the chapter, the
possibility to use existing complexes as templates for docking and the refinement
and final scoring of predictions will be covered followed by a discussion of future
challenges in the field.

Figure 4.1 Schematic flow chart of
the most important steps of
computational protein–protein
docking approaches.

Protein–Protein–Docking

Input
3D structure of protein partners

(experimental structures or structural models)

Systematic search
(often using rigid partners)

Use FFT-based correlation,

surface patch matching, directed

search

Template-based

protein–protein–

docking

Clustering and first scoring

Flexible Refinement and final scoring
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56 4 Computational Protein–Protein Docking

4.2 Rigid Body Protein–Protein Docking Approaches

In case of treating protein partners as rigid units, the configurational variables
are limited to three translational and three rotational degrees of freedom for
each protein. The computational task is then to generate possible geometries of
protein–protein complexes with complementarity at putative binding interfaces.
Some degree of steric overlap between docking partners can be tolerated to implic-
itly account for conformational adjustments upon association (Figure 4.2). There
are several efficient computational methods available for the rapid generation
of putative binding geometries. It has been recognized by Katchalski–Katzir
and coworkers [27] already in the early 1990s that fast Fourier transform (FFT)
correlation techniques are well suited to efficiently locate overlaps between two
complementary protein surfaces. In the standard setting of the FFT-docking
approach, the partners are mapped onto cubic grids. In the second step, the grid
points are given different values to indicate the interior or the surface of a protein
and to mark the outside space of the protein (Figure 4.2a). With such representation,
a complementarity score can be calculated for the two proteins by calculating the

(a) Docking with FFT correlation techniques

(b) Docking by matching surface descriptors

Protein position

C
o
rr

e
la

ti
o
n

C
o
rr

e
la

ti
o
n

Protein position
Energy minimization

or Monte Carlo search

(c) Docking by multi-start search techniques

Figure 4.2 Illustration of the most common types of systematic docking methodologies.
(a) Docking based on solving a correlation task [27]: The overlap of one partner (green) with
a surface (blue) of the second partner protein (yellow) can be calculated by solving a
correlation integral. The correlation is favorable as long as the ligand overlaps with the
surface region (black line in (a)) but becomes unfavorable with increasing overlap with the
interior of the receptor (red line). Using a grid to discretize the protein the correlation can
be solved rapidly by fast Fourier transformation (FFT) and the best possible overlap for a
given relative protein orientation can be extracted. (b) Geometric hashing can be used to
match surface descriptors on both protein partners [28]. In this case, concave (blue arrows)
and convex areas (red arrows) on the protein surface are illustrated. Docking is performed
by finding best matches of concave and convex regions (other matching characteristics can
also be used). (c) Docking by systematic energy minimization or dynamics simulations starts
from thousands of different relative placements of the partner proteins (upper part of panel
(c)) to obtain locally stable putative docking geometries (lower part of the panel in (c)).
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4.2 Rigid Body Protein–Protein Docking Approaches 57

correlation or correlation integral of just the two grids representing each protein
or protein surface. The correlation can be approximated by the sum of all the pair
products of the grid entries.

Such calculation is rather time-consuming but one can make use of the Fourier
correlation theorem. Hence, the corresponding correlation integrals (or discrete
sums) can be computed easily in Fourier space. Typically, one protein partner is
termed receptor (usually the larger partner) and the other is the ligand protein.
The discrete Fourier transform for the receptor grid needs to be calculated only
once. Due to the special shifting properties of Fourier transforms, the different
translations of the ligand grid with respect to the receptor grid can be computed
by a simple multiplication in Fourier space. This process is repeated for various
relative orientations of the two proteins. Several available computer programs
for protein–protein docking use the Cartesian FFT algorithm and it is also part
of most protein–protein docking web-servers (Table 4.2). In case of the standard
Cartesian FFT methods, a FFT for each orientation of the ligand-protein relative
to the receptor is required. Rotation steps of 10–15∘ are typically used but they can
vary for different programs [35].

Instead of working with Cartesian coordinates, it is also possible to correlate in
spherical polar basis functions that represent, for example, the shape of the protein
surface [50]. Instead of solving the translation correlation task only for discrete rela-
tive orientations of the proteins in Cartesian space, it is then also possible to solve the
whole multi-dimensional (orientation and translation) search in Fourier space [51].
The FFT correlation techniques enable conducting rigid protein–protein docking
for typically sized protein partners in a few minutes on a workstation computer. It is
also possible to rank solutions with methods that allow the correlation of multi-term
potentials. In this case, the scoring function needs to be expressed in terms of spheri-
cal basis functions characterizing the surface properties of the protein partners [52].
The full partition function of the rigid docking problem can be obtained and ther-
modynamic and structural properties can be extracted [51]. One drawback of FFT
correlation methods is, however, that they can be applied to protein dimer prediction
but require sequential application when it comes to molecular assemblies consisting
of several protein partners.

Geometric hashing of surface properties is an alternative approach that can
also be used to rapidly produce putative protein–protein complex geometries
(Figure 4.2b). Typically, a set of triangles approximately representing the protein
surface are stored in a hash table. The triangles represent geometrical (concave,
convex) or physicochemical (polar, hydrophobic) features of a surface segment.
Matching of complementary triangles from the two different molecules produces
putative complex geometries. Similar matching triangles on the surface of protein
partners can be quickly identified by means of a hash key. PatchDock is an example
program employing geometric hashing [28, 49, 53].

Protein–protein docking can also be performed using directed or guided search
methods based on Molecular Dynamics (MD), Brownian Dynamics (BD), Monte
Carlo (MC) simulations, or multi-start energy minimization. It is possible to limit
the simulation degrees of freedom to translation and orientation of rigid partner
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58 4 Computational Protein–Protein Docking

Table 4.2 Protein–protein docking program examples and associated websites or web
servers.

Correlation FFT 3D Dock [29] http://www.sbg.bio.ic.ac.uk/
docking

Correlation FFT ClusPro [30] https://cluspro.bu.edu/login.php
Correlation FFT DOT [31] https://www.sdsc.edu/CCMS/DOT
Correlation FFT GRAMM-X [32] http://vakser.compbio.ku.edu/

resources/gramm/grammx
Correlation polar FFT Hex [33] http://hexserver.loria.fr
Correlation FFT MolFit [34] www.weizmann.ac.il/Chemical_

Research_Support/molfit
Correlation FFT ZDock [35] http://zdock.umassmed.edu
Correlation FFT MEGADOCK [36] www.bi.cs.titech.ac.jp/megadock
Correlation FFT F2Dock [37] http://www.cs.utexas.edu/~bajaj/

cvc/software/f2dock.shtml
Correlation FFT pyDock [38] https://life.bsc.es/pid/pydockweb
Guided: MC minimization PROBE [39] http://pallab.serc.iisc.ernet.in/probe
Guided: Multi-start Energy
minimization

ATTRACT [40, 41],
PTOOLS [42]

www.attract.ph.tum.de

Guided: Multi-start Energy
minimization

HawkDock [43] http://cadd.zju.edu.cn/hawkdock

Guided: distance restraints FroDock [44] http://frodock.chaconlab.org
Monte Carlo on a Swarm SwarmDock [45] https://bmm.crick.ac.uk/~svc-

bmm-swarmdock
Monte
Carlo+minimization

RosettaDock [46] https://www.rosettacommons.org/
software

Guided: data-driven,
MD+Energy minimization

HADDOCK [47] http://haddock.chem.uu.nl

Guided: MC minimization ICM-Disco [48] http://www.molsoft.com/icm_pro
.html

Geometric hashing PatchDock [49] https://bioinfo3d.cs.tau.ac.il/
PatchDock

Geometric hashing SymmDock [28] https://bioinfo3d.cs.tau.ac.il/
SymmDock

proteins [19]. However, the computational efforts of such approaches are higher
than FFT correlation methods or geometric hashing, but their great advantage is the
possibility to include different types of conformational flexibility already at the ini-
tial systematic search step. In addition, it is rather straightforward to extend them to
simultaneous docking of several protein partners. Coarse-grained (reduced instead
of atomistic) representations of amino acids in proteins are often employed to fur-
ther reduce computational costs [40, 54, 55]. Examples for this type of approaches
are the ATTRACT [40], HawkDock [43], RosettaDock [46, 56], SwarmDock [45], and
HADDOCK [57] programs (see also Table 4.2).
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4.3 Accounting for Conformational Changes during
Docking

The success of a protein–protein docking search is judged by two main measures.
First, it is important to obtain docking solutions that are as close as possible relative
to the real complex structure. Such solutions are usually termed best docking
prediction. Second, the predicted structures that resemble the native complex
most closely should also give the best energy or docking score (the best energy
or best-scored complex is called the top rank solution). During development of
protein–protein docking programs, it was quickly realized that docking of bound
partner structures is typically much more successful than using unbound partner
structures [19, 22, 58]. The term bound partner structures refers here to protein
structures that have been extracted from the known complex structure whereas
unbound structures have been determined in the absence of the partner (Figure 4.3).
Conformational differences between bound and unbound structures can cause
both an increased deviation of the predicted complex structure closest to the
native complex and a decrease in ranking or scoring of such near-native predicted
complex (Figure 4.3). Depending on the target difficulty indicated as a degree of
conformational changes accompanying the binding process, it is possible that none

(a) (b)

(c)

(d)

Figure 4.3 Types of conformational changes associated with protein–protein complex
formation. (a) Change in backbone loop conformation illustrated for the protein–protein
complex PDB id 1ACB with the unbound enzyme inhibitor as green cartoon and the bound
structure as blue cartoon (enzyme receptor as gray surface representation). (b) Change in
side-chain conformation (stick model) between unbound (green) and bound conformation
(blue; receptor in gray) for enzyme-inhibitor complex PDB id 2SNI. (c) Example of backbone
and side-chain conformational difference between unbound (green) and bound structure
(light blue) of one partner protein in the complex PDB id 1EFN. (d) Global backbone
changes (opening/closing motion) are observed by comparing the cartoon representation of
the Ribonuclease A inhibitor in the unbound (magenta, PDB id 2bnh) vs. the bound forms
(yellow, PDB id 1DFJ). The unbound (green) vs. bound (blue) structures of RNAseA are also
shown.
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60 4 Computational Protein–Protein Docking

of the rigidly docked complexes comes sufficiently close to the native complex to
detect it as most realistic prediction [24, 25]. Hence, especially in these cases, it
can be desirable to efficiently account for local side chains and loop transitions at
the protein surface but also account for global motions of large protein domains
already during the systematic docking search [18, 19, 22, 56]. Often experimental
partner structures are not available but only of homologs and structural models
of one or both partners need to be generated using comparative modeling. These
homology-modeled structures are typically of lower accuracy than experimentally
determined structures and can contain side chain or loop misplacements that can
also interfere with rigid docking of the partner proteins [59].

Representing the partner proteins by multiple conformations (ensemble of
structures) is a simple and straightforward approach to account indirectly for flexi-
bility [60, 61]. To limit the size of the ensemble, protein structures can be generated
along sterically allowed deformation directions (e.g. distance or orientation of
separate domains) [19, 62, 63]. It is then possible to directly employ rigid docking
approaches; however, this results in more docking solutions and possibly additional
false-positive geometries.

Several docking approaches include explicit modeling of both side chains as well
as backbone changes during a systematic search at the expense of much larger
computational efforts compared to rigid docking [40, 45, 46, 64, 65]. In many
cases, the partner proteins undergo not only local adjustments (e.g. conformational
adaptation of side chains and backbone relaxation at the interface) but also more
global conformational changes that involve domain opening–closing motions [22].
One can use MD simulations of protein partners to detect such global motions
but alternatively, very rapid elastic network models (ENM) can also be used to
detect sterically allowed global changes [66, 67]. ENM calculations are based on
modeling interactions between protein atoms by simple distance-dependent springs
and despite their simplicity are very successful in describing the global mobility
of proteins around a stable state. The predicted soft collective degrees of freedom
from such approaches overlap often well with observed global changes in proteins
[68, 69]. The soft collective normal modes can then be used as additional variables
during docking by energy minimization [68, 70] or Monte Carlo approaches [45].
It can result in improved geometry and ranking of near-native docking solutions
and can also lead to an enrichment of solutions close to the native complex structure
(illustrated in Figure 4.4).

A significant number of protein–protein interactions involve disordered protein
partners or at least the coupled folding and binding of segments of proteins. In
such cases, it is possible to employ directly MD or MC simulations for docking.
These techniques allow for full flexibility of proteins but are computationally
demanding and are therefore more frequently applied in the docking refinement
steps (see below) [19]. For prediction of interactions that involve partially disor-
dered segments which become structured only upon binding it can be useful to
employ protein–peptide docking methods. Those approaches often require only the
sequence of the peptide segment and the protein partner structure as input [71–73]
and putative binding geometries and conformations of the docked peptide segment
are generated on the fly during the docking process.
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4.4 Integration of Bioinformatics and Experimental Data for Protein–Protein Docking 61

(a) (b) (c)

Figure 4.4 (a) Inclusion of global degrees of freedom during docking [68]. Elastic network
models (ENM) allow identification of soft global collective degrees of freedom of a protein
(e.g. domain opening/closing). It is illustrated by superposition of structures (backbone
representation) deformed in the softest normal mode for the xylanase enzyme. The defor-
mation motion allows entry and binding of a xylanase inhibitor protein (gray van der Waals
spheres). (b) Best docking result of an inhibitor protein (magenta) to the enzyme using rigid
docking compared to the native binding placement (gray backbone representation).
The unbound enzyme receptor is indicated in red and the bound structure in green.
(c) Inclusion of the soft collective modes during docking results in the best inhibitor
placement (magenta) in close agreement with the native placement (gray). The slightly
opened enzyme receptor structure in the energy minimized complex is shown in orange
(experimental complex structure PDB id 1T6G).

4.4 Integration of Bioinformatics and Experimental
Data for Protein–Protein Docking

The prediction accuracy of protein–protein docking is limited due to several approx-
imations (e.g. semi-rigid partner structures, limited accuracy of scoring schemes).
Often, a docking search provides several putative solutions with similar scoring.
The inclusion of experimental or bioinformatics data on putative binding regions
or residues involved in binding can greatly improve prediction accuracy. One option
is to integrate low- or high-resolution experimental data directly during the search to
steer the docking engine toward binding geometries compatible with the additional
information [18]. These approaches are frequently termed “integrative modeling”
([4, 73–75], see also Chapter 7). Alternatively, one can also use the experimental
data to filter out false predictions at post-processing stages of an unbiased docking
search [76]. In this way, mutagenesis data on residues identified as part of the bind-
ing interface, evolutionary conserved surface residues, or coevolutionary data on
interface residues can be included in the prediction [16].

In addition, experimental data can be used to guide docking of proteins.
The chemical cross-linking of amino acid residues with compounds that contain
two chemical reactive groups at a certain distance allows one to identify neighboring
residues on protein surfaces or between surfaces of proteins forming a complex [77].
Typically, proteolytic digestion combined with mass spectrometry can be used
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62 4 Computational Protein–Protein Docking

to identify cross-link sites on protein partners. A large variety of compounds
has been developed in recent years that can also be applied in vivo to cross-link
protein–protein complexes. Identified cross-links can be included as upper bound
distance restraints during docking or for screening a set of solutions. It has been
used to assist in modeling large complexes [17, 77] or to improve the rank of
the near-native predictions and refine the structure of symmetric complexes
using cross-link distances as cutoff [78]. Several docking programs can directly
include cross-linking data as spatial restraints to guide and evaluate docking
results (e.g. ATTRACT [79], HADDOCK [57], or Rosetta docking programs [46]).
Biophysical techniques such as small-angle X-ray scattering (SAXS) in solution can
also be used for the rapid characterization of structural and dynamic properties of
protein–protein complexes at low resolutions [4]. SAXS data calculated as a form
of convolution can be used directly during sampling to guide the search stage [80].
However, most approaches use SAXS data as a filter to refine and rank the final
predictions [81–83].

The Cryo-EM method achieves often atomic detail resolution for large biomolec-
ular complexes. In case of sufficient resolution, MD-based methods are extremely
powerful and allow nowadays an almost automatic generation of Cryo-EM-based
structures. However, frequently only a low-resolution electron-density envelope
(15–20 Å resolution) can be obtained which, nevertheless, can be useful for eval-
uating the shape of the macromolecular complex. In some docking programs, the
fitting of substructures into low-resolution Cryo-EM density has been integrated as
restraint during docking. For example, the HADDOCK program or the ATTRACT
approach can include Cryo-EM data as restraints in addition to other sources
of experimental and bioinformatics data for generating putative models of com-
plexes [84]. Using ATTRACT, it was demonstrated that inclusion of low-resolution
Cryo-EM data (in the resolution range of 15–20 Å) is highly efficient to guide dock-
ing to near-native geometries for the majority of complexes in a large benchmark
set [85].

4.5 Template-Based Protein–Protein Docking

Most specific and high-affinity protein–protein interactions in living cells are medi-
ated by reoccurring domains. In case of protein structure prediction, evidence exists
that the number of protein domain fold types is limited and even already largely
covered by the present structures in the protein database. It has also been recognized
that comparative modeling methods used for structure prediction of single proteins
could also be used to predict the structure of entire protein–protein complexes
[59, 86]. There is evidence that it is also possible to represent all protein–protein
binding interfaces by a limited set of interface types mostly already available in the
protein database [86, 87]. On the other hand, a large number of antibody–antigen
interfaces and possible antigen–antibody complexes indicates that even for
one protein type an enormous variety of interface surfaces can in principle be
generated.
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4.5 Template-Based Protein–Protein Docking 63

Protein partner

structures

Template

identification

Sequence alignment:
Partner 1: …GTCPAALFAHSTS…

…ATCPA–LFSHSTS…
…FTTAGPGYKT–SEQ…
…FTSAGTGYRTTSEQ…

Partner 2:

Superposition

of partners on

template

Refinement of

model complex

Figure 4.5 Flowchart of template-based docking of protein partners. For a given pair of
interacting protein partners, an appropriate template complex is identified in most cases by
a sequence similarity search. In the next step, an appropriate superposition on the template
using either the full structures or just the interfaces produces an initial complex that can be
further refined by energy minimization or related approaches.

A prerequisite for template-based docking is the availability of homologous
template structures for the complex or at least part of it (Figure 4.5). Natural
complexes that share greater than 35% sequence identity are likely to also share
similar structures and interaction modes. Several methods have been published
recently to extend available homology modeling methods to allow modeling of
protein–protein complexes [59, 88–90] (Table 4.3, see also Chapter 6). To apply the
comparative modeling approach to more putative protein–protein interactions, it is
desirable to extend it to even remotely related protein complexes. Chen & Skolnick
developed an approach of combining a multimeric threading method to detect and
align remotely related multimeric proteins and structural refinement (M-Tasser)
[94]. The structural refinement allows for conformational change of backbone
and side chains similar to methods used to refine homology modeled single-chain
proteins. On a large test set of >200 dimers, the method was able to identify
correct templates in a large fraction of cases and showed improvement of the final
predicted structure compared to the starting template structure by on average 1.5 Å.
With a growing number of experimentally determined protein–protein complex
structures, template-based docking may have a similar impact on structural biology
as comparative modeling of monomeric proteins. With an appropriate template
available, it has been demonstrated that template-based docking outperforms
nontemplate-based approaches [59, 95].

Recently, great progress has been achieved to accurately model the structure
of proteins using artificial intelligence deep neural network methods with the
AlphaFold2 [96] and RoseTTAFold [97] approaches. In principle, such approaches
can also be counted as template-based methods; however, not only the structural
data of a single known structure but of the entire protein database is employed to pre-
dict protein structures. It has been demonstrated that AlphaFold2 and RoseTTAFold
can also be used very successfully to predict the structure of protein–protein
complexes [98].
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64 4 Computational Protein–Protein Docking

Table 4.3 Examples of template-based protein–protein docking methods.

Program Method Website

PRISM [90] PP-docking based on interface
similarity to template

http://cosbi.ku.edu.tr/prism/
index.php

IWRAP [88] PP-docking by interface
threading approach

http://iwrap.csail.mit.edu

PrePPI [89] PP-docking based on interface
similarity

https://bhapp.c2b2.columbia
.edu/PrePPI

HDOCK [91] Docking based on sequence
homology

http://hdock.phys.hust.edu.cn

KBDOCK [87] Template-based docking using
contact data

http://kbdock.loria.fr

EVcomplex [92] Does not use a template
structure but extracts PPI
information from coevolution
data based on many sequences,
which can be used to assist
docking

https://evcomplex.hms.harvard
.edu

InterEvDocks [93] Complex prediction using
evolutionary and coevolution
data of interface

http://bioserv.rpbs.univ-paris-
diderot.fr/services/
InterEvDock2

4.6 Flexible Refinement of Docked Complexes

Frequently, complex structures obtained from an initial rigid or semi-flexible
protein–protein docking or comparative template-based modeling programs are
of limited accuracy. To generate an accurate realistic structural model, further
structural refinement is required. The limitations of rigid docking strategies in com-
bination with a rescoring step have been investigated on large sets of test cases [99].
Good performance was found for proteins that undergo minor conformational
changes upon complex formation (<1 Å RMSD between unbound and bound
structures) but unsatisfactory results for cases with significant binding induced
conformational changes or applications that involved homology modeled proteins.

Hence, most protein–protein docking protocols consist of a preliminary exhaus-
tive systematic docking search followed by a refinement step for a subset of
putative complexes from the initial search (illustrated in Figure 4.6). Sometimes,
several refinement steps are involved [19]. Often hundreds or thousands of initial
solutions are refined and therefore computational efficiency of the refinement step
is critical. Most FFT-based approaches such as ClusPro [30] or ZDOCK employ
energy minimization and short MD simulations to relax structures and remove
sterical overlap [100]. Refinement steps of the HADDOCK program employ several
energy minimizations and dynamics steps in dihedral variables followed by a MD
simulation in Cartesian coordinates with the option to include explicit solvent [65].
The FireDock approach [53] uses a combination of rigid body moves and side-chain
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Figure 4.6 Docked complex structures can often be refined by short Molecular Dynamics
(MD) simulations [70]. The docking interaction score vs. deviation of the predicted complex
from the native experimental complex structure (in terms of the Ligand-RMSD) frequently
gives a “funnel-like” plot (left panel). Successful refinement can improve both the score of
the complexes and reduces the deviation from the native complex (compare red and black
dots). The right panel indicates two examples of successful refinement for the
trypsin/trypsin-inhibitor (PDB ID 1PPE) complex with the predicted structures
(receptor/ligand protein in blue/red) superimposed on the native complex (receptor/ligand
protein in green/orange). The refinement can result in a relative placement of the ligand
protein in closer agreement with the native structure than the initially docked complexes.

optimization to improve the surface complementarity of docking solutions obtained
by PatchDock [49]. Predicted protein–protein complexes can also be refined with
the Rosetta molecular modeling suite [56]. It can be used for flexible refinement of
just the side chains at the interface but also in combination with “backrub” motions
to modify the backbone geometry [101]. Standard energy minimization or short MD
simulation often does not move the partner structures significantly from the starting
geometry and results only in local relaxation of steric stress. Especially, when the
unbound protein structures differ from the conformation in the bound complex, the
initial systematic search does not result in any prediction close to the native com-
plex. Docking refinement strategies like the iATTRACT approach [102] combine
energy minimization in the global translational and rotational variables with full
atomic flexibility of only the predicted interface region. In this way, small side-chain
movements can trigger larger scale whole-body movements of partner proteins.

Progress in computer hardware offers the option to use long MD simulations
of putative docked complexes under realistic conditions including full flexibility
of partners and explicit solvent molecules for refinement. To improve sampling,
advanced methods, such as meta-dynamics or replica-exchange simulations
(REMD), with an added biasing potential to the partners in the replicas (H-REMD
or BP-REMD approach) can be used to avoid trapping nonspecific geometries and
sample a broad range of conformations [103]. This technique has shown promising
results for rapidly refining docked solutions including full flexibility of binding
partners.
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66 4 Computational Protein–Protein Docking

4.7 Scoring of Docked Complexes

Whereas simple criteria such as degree of steric overlap and surface complemen-
tarity are used in the initial stages of protein–protein docking, final re-scoring also
of refined solutions involves more sophisticated evaluations [25, 104, 105]. It can
be based on a molecular–mechanics type force field function that includes van der
Waals (VDW) interactions, electrostatic Coulomb interactions, and solvation con-
tributions. For example, the ATTRACT approach [79] (after atomistic refinement),
the HADDOCK [57], and Rosetta [46] protein–protein docking programs use such a
method, typically, assigning optimal weights to the different force field terms. These
weights are optimized on a benchmark set of known complexes and a large set of
incorrect decoy complexes.

Knowledge-based or statistical potentials for scoring docking solutions are also
available and frequently used to evaluate docking solutions [104–108]. The central
idea of a statistical potential is to look at the observed probability of finding
residues/atoms (or pairs of atoms/residues) at a protein–protein interface and relate
this to the expected probability based on a random distribution of the residues on a
protein surface (reviewed in [105]). The obtained probability ratio is often evaluated
for different distances between residues or atoms at the interface and can be related
to an effective free energy function (by taking the logarithm of the probability ratio).
Although the concept can be used to design effective multi-body potentials, in most
cases only pairwise contacts or distances between residues are considered [104].
For optimizing such potentials, machine-learning techniques are increasingly
being used [109–111]. However, a major limitation is still given by the relatively
small number of known complexes and protein–protein interfaces relative to a
large number of possible amino acid residue or chemical group combinations at
interfaces.

Instead of scoring single predicted complex structures, several techniques can
be used to account for the ensembles of solutions. In the molecular mechan-
ics Poisson-Boltzmann/Generalized Born surface area (MMPBSA/MMGBSA)
approaches an ensemble of docked conformations in the vicinity of the starting
complex is generated using MD-simulations which is analyzed using a molecular
mechanics force field (similar to the single structure scoring) combined with the
Poisson–Boltzmann or Generalized Born approach to implicitly account for solva-
tion effects. This technique is more demanding than scoring single structures but
was used quite successfully for scoring protein–protein complexes [105, 112, 113].

All the above-considered scoring methods just count for the interaction between
partners in the complex structure. However, a binding process is not only driven
by the interaction between partners but also by other energetic and entropic
contributions that together determine the binding free energy. In addition to
interactions between the proteins, the binding free energy is influenced by changes
in solvation, by the energy of deforming the unbound structures into the bound
conformations, by the entropic cost of reducing the rotational and translational
freedom of one partner relative to the other and by the change in conformational
entropy of the partners (usually a restriction of conformational mobility) [114].
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4.8 Conclusions and Future Developments 67

In principle, all these effects can be calculated in free energy simulations of
protein–protein binding using appropriate advanced sampling MD simulations
[105, 114–116]. For the calculation of the absolute binding free energy, one typically
restrains the conformations of the partners to stay close to the starting structure
in the bound (or predicted) complex and includes restraints to keep the relative
orientation of the partners. The stepwise dissociation can be achieved by addition
of an appropriate biasing potential along a distance coordinate between both
proteins and the associated free energy (work) along the dissociation path can be
extracted. Finally, simulations are performed at the bound and dissociated states to
calculate the free energy of releasing the restraints. Although computationally very
demanding, such methods can be used to evaluate single complexes [116] or a set of
complexes using a coarse-grained model [117]. The methodology was recently also
evaluated systematically on 20 test systems and including 50 decoy complexes for
each test case in combination with an implicit solvent description [118] and later
inclusion of explicit solvent [119]. The performance was found to be better than
scoring based just on interaction energies, but further developments are necessary
to improve accuracy and convergence. Several studies based on multiple MD
simulations or different advanced sampling schemes including REMD approaches
or nonequilibrium MD methods indicate promising results for identifying, scoring,
and refining putative protein–protein complexes including explicit solvent and full
flexibility of protein partners [103, 120, 121].

4.8 Conclusions and Future Developments

In recent years, protein–protein docking methods have evolved to become standard
tools for the rapid modeling and structure generation of putative complexes. In
the form of available docking programs or as docking web servers, these tools
are frequently used also by non-experts working in the field of protein–protein
interactions. Complex structures can be generated by ab initio docking but in many
cases, especially of natural protein–protein interactions, template-based docking
is the method of choice. In particular, the application of binary protein–protein
interactions is highly evolved with many available approaches and many successful
applications. A further significant extension of modeling protein–protein complexes
has been achieved by recent deep learning-based structure prediction methods such
as AlphaFold2 [96] or RoseTTAFold [97]. These techniques offer great promise
to systematically provide structural models of many important proteins and
protein–protein interactions in various organisms [98]. For many protein–protein
docking cases the inclusion of experimental information or data from bioinformat-
ics restricts the search and can further improve the prediction results. Also, the
community-wide docking challenge CAPRI is very helpful in regularly monitoring
the progress of the field and identifying and promising new developments.

Nevertheless, there are challenges in the field that are still difficult to tackle.
For example, experimental methods are available to map the protein–protein
interaction network between a virus and a host cell. Structure prediction for all
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68 4 Computational Protein–Protein Docking

these interactions using computational docking is difficult but it may become
feasible using deep neural network approaches. However, the lack of sufficiently
accurate structures of protein partners, the involvement of large conformational
changes during binding (e.g. coupled folding and binding of protein segments),
and the simultaneous involvement of several proteins in complexes formed by
multiple proteins are factors that complicate the prediction. Another important
aspect is possible weak and very transient interactions that are frequently of
significant functional importance in cellular processes. In contrast to highly stable
interactions, such weakly bound complexes are not well represented in the set of
known protein–protein complexes. Hence, current docking and template or deep
neural network-based methods, as well as scoring schemes, may not be well suited
for such types of interactions.

The integration of experimental data (e.g. from chemical cross-linking or
Cryo-EM-tomography) but also bioinformatics data offers great promise to generate
structural models of large and transient assemblies in the cell. If the structures of
individual stable parts of molecular assemblies are known to atomic resolution, the
inclusion even of low-resolution data can provide sufficient constraints to accurately
model many multi-protein complexes even in a crowed cell-type environment.

In recent years, the design of entirely new protein–protein interactions to gener-
ate synthetic protein–protein complexes with desired function has become a major
research focus. Also in this field protein–protein docking methods can contribute.
They can be used to check if the desired interaction is stable and the only possible
geometry for a set of designed or selected proteins.
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Identification of Putative Protein Complexes in
Protein–Protein Interaction Networks
Sudharshini Thangamurugan, Markus Hollander, and Volkhard Helms

Saarland University, Center for Bioinformatics, Saarland Informatics Campus, Postfach 15 11 50, 66041
Saarbrücken, Germany

5.1 Protein–Protein Interaction Networks

In biological systems, most cellular and molecular mechanisms involve the
activity of proteins. Rarely, only a single protein regulates or executes a complete
mechanism. Instead, proteins frequently bind to other biomolecules, often other
proteins, to execute cellular functions. Protein–protein interactions (PPIs) are
highly specific physical contacts between two or more proteins that are formed due
to the conformational and physicochemical properties of the involved proteins.
The molecular details of individual PPIs are discussed in more detail in Chapters 2
and 4 and will be omitted here.

While 60–70% of the makeup of biological cells consists of water, 40–55% of
the remaining dry weight consists of proteins [1]. Hence, freely diffusing cytosolic
proteins frequently collide with other cellular proteins and may occasionally remain
bound to each other for a short time as a nonspecific assembly. Only a small portion
of these contacts will involve two or more proteins that are actually meant to bind to
each other. In this book, we focus on such specific interaction pairs. Based on their
lifetime, specific PPIs can be classified as either transient or stable interactions.
Transient (specific) interactions between proteins are short-lived interactions
formed to perform functions, such as signal transduction, or that lead to further
changes (e.g. sodium–potassium pump). Stable interactions between proteins are
long-lasting and often serve the purpose of forming macromolecular machinery
(e.g. hemoglobin or RNA polymerase).

For a single protein, all its physical interactions with other proteins can be rep-
resented as a mathematical graph where the vertices represent the proteins and the
undirected edges connecting the vertices represent the physical interactions between
the proteins. Such a protein-centered network provides an idea about the protein
complexes in which the protein of interest may be involved, and about their biologi-
cal function. For example, the enzyme aspartate semialdehyde dehydrogenase from
Arabidopsis thaliana appears to be part of three different protein complexes that are

Protein Interactions: The Molecular Basis of Interactomics, First Edition.
Edited by Volkhard Helms and Olga V. Kalinina.
© 2023 WILEY-VCH GmbH. Published 2023 by WILEY-VCH GmbH.
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active either in an oxidation–reduction process, in methionine biosynthesis, or in
lysine biosynthesis [2]. In contrast, protein–protein networks (PPINs) are global PPI
graphs or networks that present an overview of all PPIs existing in an organism.
These comprehensive networks are cataloged by several established databases, such
as the Biological General Repository for Interaction Datasets (BioGRID), mentha,
the Search Tool for Retrieval of Interacting Genes/Proteins (STRING), the Molec-
ular INTeraction Database (MINT), the protein Interaction database (IntAct), and
others. Figure 5.1 illustrates the connectivity of a small toy PPIN.

In graphs, the degree of a vertex is the number of edges connected to it, and in
PPINs the degree thus measures the number of interactions involving the protein
represented by the vertex. One way of examining general connectivity and topology
of a PPIN is to compute its degree distribution, which describes the frequency of
each vertex degree occurring in the given network. Degree distributions are often
visualized in plots that display the vertex degrees on the x-axis and their respective
frequency on the y-axis. Upon analyzing multiple PPIN of different species, it
was discovered that the networks have a “scale-free” topology irrespective of the
species [3]. In scale-free networks, the degree distribution follows a power-law
with negative exponent 𝛾 , where the probability of a vertex degree k is given by
P(k) = k−𝛾 . As a consequence, the highly connected proteins, called hubs, occur at
a much higher frequency than in an exponentially decaying scenario, in which the
probability is P(k) = e−𝛾k. This scale-free nature implies that the average length of
the shortest pathway between any two vertices increases much slower as a function
of network size than expected.

Figure 5.1 Schematic representation of a protein–protein interaction network. The circles
are called the vertices of the network. Each one represents all copies of an individual
protein type. The lines connecting the vertices are called edges and represent physical
contact between two proteins. The degree of a vertex measures the number of edges
connected to it. The vertex highlighted in red has six edges connected to it or six binding
partners, and hence its degree is six. Note that this representation does not carry
information on whether multiple interactions of one protein can occur simultaneously,
potentially leading to the formation of a larger protein complex, or not.
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5.2 Integration of Various PPI Resources in Public Data Repositories 79

5.2 Integration of Various PPI Resources in Public Data
Repositories

There generally exist two kinds of protein interaction databases: primary databases
and metadatabases. Primary databases directly compile the results of multiple
experimental interaction assays. Well-known examples are the Biomolecular Inter-
action Network Database (BIND) [4], the IntAct molecular interaction database [5],
the MINT [6], the Database of Interacting Proteins (DIP) [7], and the BioGRID [8].
In contrast, metadatabases typically integrate data from multiple primary databases.
For example, the Integrated Interactions Database (IID) [9] compiles data from
BIND, BioGRID, DIP, MINT, IntAct, and a few others, while the Agile Protein
Interactomes DataServer [10] holds interactions from BioGRID, DIP, IntAct, MINT,
and the Human Protein Reference Database (HPRD) [11]. For model organisms, the
metadatabase mentha [12] integrates evidence-based interactions from BioGRID,
DIP, IntAct, and MINT. Table 5.1 provides an overview of selected primary and
meta-PPI databases.

An international collaboration of major contributors of PPI data, the International
Molecular Exchange (IMEx) consortium [13], has established guidelines to maintain
a consistent set of uniquely defined molecular identifiers and interactions. IntAct,
MINT, DIP, and BIND are a few primary databases that are active members of the
IMEx consortium. The metadatabase STRING [14] is notable since it offers interac-
tions from both the IMEx consortium and BioGRID.

Table 5.1 Overview of selected primary and meta protein–protein interaction databases.

Database Type PPI Source Species Website

BIND Primary Evidence Multiple
BioGRID Primary Evidence Multiple http://thebiogrid.org
DIP Primary Evidence Multiple https://dip.doe-mbi.ucla.edu
IntAct Primary and meta Evidence Multiple https://www.ebi.ac.uk/intact/
MINT Primary Evidence Multiple http://mint.bio.uniroma2.it
APID Meta: BioGRID,

DIP, HPRD, IntAct,
and MINT

Evidence Multiple http://apid.dep.usal.es

IID Meta: IntAct, MINT,
BioGRID, BIND,
DIP, and others

Evidence and
predicted

Multiple http://iid20.ophid.utoronto.ca

mentha Meta: BioGRID,
DIP, IntAct, MINT
and others

Evidence Multiple http://mentha.uniroma2.it

STRING Meta: IMEx
consortium and
BioGRID

Evidence and
predicted

Multiple http://string-db.org
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5.3 Protein–Protein Interaction Networks of Model
Organisms

As mentioned before, most biological processes of an organism are mediated via pro-
tein interactions. Having an overview of the interactome of an organism contributes
to deriving an understanding of which proteins and genes are associated with a
certain process or disease. This then enables a better or deeper identification and
mechanistic understanding of disease-related pathways and how they may be con-
trolled. Therefore, one important pillar of computational systems biology is to study
and compare the PPINs of one or more organisms to understand the mechanisms
and regulations of biological systems.

5.3.1 PPIN of Saccharomyces cerevisiae

In order to characterize the protein–protein interaction network of the eukaryotic
model organism S. cerevisiae, [15] used tandem-affinity purification coupled with
mass spectrometry (TAP-MS) and Uetz et al. [16] and Fields and Song [17] used
the yeast two-hybrid (Y2H) method. The results obtained by these methods yielded
PPINs with 16 000–40 000 interactions involving most of the 6000 yeast proteins.
As mentioned before, the network exhibits a power-law connectivity distribution,
i.e. only few proteins are highly connected and form hubs whereas most of the pro-
teins interact with only very few proteins. Initially, the coverage of PPIs was quite
limited in these pioneering experiments (about 10% only), and concern was raised
about whether these networks are really scale-free or simply appear scale-free as a
consequence of the low coverage [18]. However, subsequent expansion of the cover-
age showed that they, in fact, have a scale-free topology [19].

An important question is which vertices are most important in such a PPIN. One
way to define importance is to characterize whether a gene product is essential for
the cell. If one knocks out an “essential” gene from the genome, this is, by defini-
tion, lethal to the cell. In contrast, knock-out cells of nonessential genes are still
viable. Experimental studies by Winzeler et al. [20] and Giaever et al. [21], showed
that around 1120 (19%) of all protein-coding genes of S. cerevisiae are “essential.”
Gene ontology analysis of these genes showed that about 74% of them are involved
in metabolic processes and at least 14% in cell cycle regulation. These appear to be
the two essential functions for cell survival [22]. Figure 5.2 displays the connectivity
among yeast proteins based on the data in a current version of the Mentha database
(http://www.mentha.uniroma2.it), whereby proteins are colored according to their
essentiality (red) or non-essentiality (green).

Interestingly, when information about protein connectivity was combined with
information on the essentiality of genes, it turned out that highly connected
“hub proteins” are much more likely to be encoded by essential genes (ca. 60%)
than low-degree proteins (ca. 15%) [3]. This makes intuitive sense. Knocking
out a highly connected protein will likely cause a large perturbance to cellular
processes. This behavior is illustrated in Figure 5.3 that displays the fractions of
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5.3 Protein–Protein Interaction Networks of Model Organisms 81

Figure 5.2 Complete interactome of S. cerevisiae derived by us from the mentha database
and constructed using Cytoscape [23]. The interactome contains 6342 genes and 233 322
interactions. Red vertices represent essential genes (948 essential genes identified), green
vertices represent nonessential genes (3583 nonessential genes identified), purple vertices
represent conditional genes (270 conditional genes identified), and yellow vertices
represent unknown essentiality (1541 genes have unknown essentiality).
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Figure 5.3 For the degree distributions for essential proteins and nonessential proteins
(shown on the x-axis on a log scale), we color-coded the respective fractions of essential
(orange) and nonessential (blue) genes for different degrees. This analysis recovers the
previously observed enrichment of essential genes/proteins among the high-degree
vertices of the PPIN.
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82 5 Identification of Putative Protein Complexes in Protein–Protein Interaction Networks

essential vs. nonessential genes as a function of the connectivity of the proteins
encoded by them in the PPIN of yeast.

Subsequent to the initial studies based on yeast two-hybrid screens men-
tioned above, different high-throughput methods were used to determine PPIs
in S. cerevisiae such as the high-throughput mass-spectrometric protein complex
identification (HMS-PCI) technique [24], correlated mRNA expression, and in silico
predicted interactions. Overall, nowadays there exist confirmed evidence for about
80 000 interactions between proteins of S. cerevisiae [25]. When the early data were
pooled together, out of the 80 000 interactions, approximately 2400 interactions
were common for more than one high-throughput method [26]. This may be due to
certain biases in the detection assays. Some methods such as Y2H were reported
to have rather high false-positive rates (about 59%) or that they may not be able
to detect certain kinds of interactions. For example, it was observed that the yeast
two-hybrid method determined comparatively fewer proteins that regulate trans-
lation [26]. Hence, Han et al. [27] constructed a “filtered yeast interactome” (FYI)
dataset by intersecting the data from different methods. This interactome consists
of 2493 high-confidence interactions (observed commonly in at least two methods
to rule out false-positive results), 1379 proteins with an average of 3.6 interactions
per protein, and 1 large-connected component of 778 proteins. For every hub in the
FYI, an average Pearson Correlation Coefficient (avPCC) was calculated correlating
the expression levels of the hub and its binding partners under different conditions.
The hubs with a degree greater than 5 showed a bimodal probability distribution
for a few conditions. The hubs with degrees 5 or less showed a normal distribution
centered at 0.1. It was understood that the bimodal distribution suggests two kinds
of hub types, static hubs and dynamic hubs, based on their expression profiles, see
Figure 5.4. In the 91 identified static hubs, the binding partners interact at the same

Dynamic hub

(interacts at

different time or

location)

Static hub

(interacts at the

same time and

location)

Figure 5.4 Schematic
representation of static and
dynamic hubs of the network.
Proteins of the static hub interact
with each other at the same time
and location. Proteins of dynamic
hubs interact with each other at
different times or locations.
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5.3 Protein–Protein Interaction Networks of Model Organisms 83

time and are involved in the main functional part of the complex. In the 108 identi-
fied dynamic hubs, the binding partners interact with each other at different times
or in different locations and rather tend to connect separate modules of the PPIN.

To our knowledge, the distribution of essential proteins in either dynamic or static
hubs has so far not yet been analyzed. Batada et al. [28], suggested that the exist-
ing data for PPIN of S. cerevisiae is too little to conclude and differentiate hubs.
Out of the 5 conditions from the compendium, a few conditions utilized only 10
data points to differentiate the hubs which may not be enough data. Agarwal et al.
[29] reported that if avPCC was calculated for the hubs in all conditions of the com-
pendium, instead of using only five conditions, it yielded only 59 dynamic hubs using
the same degree of threshold as 5. This shows that the differentiation of the hubs
is mainly based on the expression profile and can vary with different experimental
conditions. Hence, it is questionable whether avPCC is a good parameter to differ-
entiate hubs. Also, based on functions, the hubs exhibited a spectrum of structural
roles, which makes it difficult to differentiate them as static and dynamic hubs.

5.3.2 PPIN of Human

Based on data from the GTEx consortium, 20 532 potential protein-coding human
genes have been annotated [30]. It is an enormous task to completely map the
interaction network among all these human proteins. Initially, Stelzl et al. [31]
constructed a partial human protein interaction network based on yeast two-hybrid
screening of 4456 bait and 5632 prey proteins. This yielded 3186 mostly novel inter-
actions of 1705 proteins. Recently, Agrawal et al. [32] collected network data from
studies by Menche et al. [33] and Chatr-Aryamontri et al. [34] and fifteen databases
which resulted in a large network of 342 353 interactions of 21 557 proteins.

Shin et al. [35] reviewed the identification of drug targets in the PPIN of humans.
The development of any drug begins with the identification of a drug target, i.e
a receptor protein having a druggable-binding pocket. As mentioned before, PPIs
play an essential role in regulating biological pathways, including disease processes.
It has been argued that considering the PPI network of humans is beneficial for
determining novel drug targets [36]. In the past years, approximately 40 PPIs from
the human interactome were identified as potential drug targets for drug develop-
ment [37]. New computational structure-based approaches have been presented
to determine inhibitors of PPIs that are termed Small Molecule Protein–Protein
Interaction Inhibitors (SMPPIs). For example, the Small Ubiquitin-like Modifier
(SUMO) protein forms a covalent interaction with proteins that possess a SUMO
interaction motif (SIM) by the process called sumoylation. This process regulates
general cellular processes, such as cell proliferation, chromosome winding, DNA
replication, and DNA repair, and processes that cause neurodegenerative diseases
and cancer. Considering the electrostatic similarity with the native-binding partner
protein using software called Elekit [38] led to the discovery of an inhibitor that
binds to the SUMO protein with low micromolar activity [39] and interferes with
the SUMO-SIM interaction. Figure 5.5 illustrates schematically the idea behind the
design of mimicking SMPPIs.
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SUMO

protein

Protein with

SIM motif

SUMO-SIM motif protein-protein interaction

SUMO

protein

SMPPI with

electrostatic

similarity to

SIM motif

SUMO-SMPPI protein-

protein interaction

SUMO-SIM motif protein PPI

inhibited

(a)

(b)

Figure 5.5 Overview of strategy behind blocking SUMO protein interactions. (a) Proteins
with SIM motifs (highlighted in red) interact with SUMO proteins by forming covalent bonds
through the process called sumoylation. (b) The SUMO proteins are targeted by SMPPIs
(region similar to SIM motif highlighted in red) by binding to them and hence inhibiting the
binding of proteins carrying SIM motifs.

5.4 Algorithms to Identify Protein Complexes in PPI
Networks

Protein complexes often constitute macromolecular machines that play crucial
roles in many cellular processes. For example, RNA polymerase is a protein complex
formed from 10 individual protein units. It functions as the key enzyme in gene
transcription and synthesizing a copy of mRNA from a DNA template. To the aim
of better understanding cellular mechanisms, many mathematical algorithms were
developed to identify putative protein complexes based on interactomics data.
An intuitive idea was put out whereby putative protein complexes can be identified
from a PPIN by detecting dense regions in a weighted PPIN containing many
connections or ones with large weights [40]. Below, we review several algorithms
that have been shown to be able to detect protein complexes in a PPIN.

5.4.1 Molecular Complex Detection (MCODE)

In 2003, Bader and Hogue [41] published one of the first graph-theoretic clustering
algorithms called Molecular Complex Detection (MCODE) that estimates densely
connected regions in the PPIN of an organism as putative molecular complexes. The
algorithm proceeds in three steps: (i) vertex weighting, (ii) complex prediction, and
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5.4 Algorithms to Identify Protein Complexes in PPI Networks 85

(iii) post-processing, where vertices are added or filtered out from the complex based
on certain connectivity criteria.

5.4.1.1 Definitions
Let us assume that the PPIN used as basis for finding protein complexes is given as
a graph G. In this graph, each protein is represented by a vertex v, while each edge e
represents an interaction between two proteins. V is then the set of all proteins and E
the set of all protein–protein interactions in the PPIN, giving the following definition
of G:

G = (V ,E)

In G, the total number of proteins in the network is given by |V |, and the total
number of interactions by |E|. The maximum number of possible edges |E|max occurs
in fully connected networks, where each protein is connected to all other proteins.
If the PPIN is given as a graph without self-edges, i.e. cases where proteins interact
with themselves are not considered, each protein can be connected to at most |V − 1|
other proteins. Since the direction of the interaction is generally not a factor, PPINs
are typically undirected graphs, and the resulting number of edges thus has to be
divided by 2, to not count the same edge twice:

|E|max = |V | ⋅ (|V | − 1)
2

If the PPIN includes self-edges, each protein can form |V | edges, of which the
self-edge is already unique. In other words, PPINs with self-edges have |V | additional
edges compared to PPINs without self-edges:

|E|max = |V | ⋅ (|V | − 1)
2

+ |V | = |V | ⋅ (|V | + 1)
2

The overall density dG of a graph G is commonly defined as the fraction of the
number of edges |E| over the maximum number of edges: dG = |E||E|max

. However, to
identify putative protein complexes, methods like MCODE consider local, rather
than network-wide interaction density. A subgraph g of G consists of a subset of ver-
tices V g and the subset of edges Eg that connect the vertices in V g. The local density
dg of subgraph g is defined analogously to the overall density dG:

dg =
|Eg||Eg|max

An example of such a subgraph is the neighborhood Nv of vertex v, which in
addition to v itself contains all vertices directly connected to it. The density of Nv
measures the connectivity among the direct neighbors of v.

A k-core is another type of subgraph in which all included vertices have a degree
of at least k, see Figure 5.6. The most densely connected subgraph is the k-core
with the highest possible k, called kmax. A kmax-core can also be constructed from
the neighborhood of a vertex v, see Figure 5.7, and its density is referred to as the
core-clustering coefficient dv.
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86 5 Identification of Putative Protein Complexes in Protein–Protein Interaction Networks

(a) (b)

Graph G 3-cores graph

(k = 3)

Figure 5.6 (a) Represents a
graph G. When the k-value is
set to 3, then (b) represents
the subgraph g or the 3-core
graph, in which all vertices of
g have at least a degree of 3.

Graph G Highest k-core subgraph g

Figure 5.7 For the highlighted red vertex v in graph G (left), the k-core with maximal
degree kmax = 4 is identified in the neighborhood Nv of v (right). The core-clustering
coefficient or density of v is calculated as dv = (2 ⋅ 10)/(5 ⋅ 4) = 1, showing that it is a fully
connected subgraph. The weight of v is wv = kmax ⋅ dv = 4.

5.4.1.2 Algorithm
Step 1 – Vertex weighting: Given the input PPIN as graph G, all vertices are weighted
based on their local density. For each vertex v of G, its neighborhood Nv of directly
connected vertices is constructed. In that neighborhood, the k-core with the highest
k, i.e. the kmax-core, is identified. Figure 5.7 gives an example in which vertex v has
degree 8 but none of its neighbors has a degree higher than 4. Thus kmax = 4 and the
identified kmax-core consists of v and the 4 other vertices with degree 4.

Subsequently, the core-clustering coefficient dv of v is calculated as the density of
the identified kmax-core. The core-clustering coefficient focuses entirely on densely
connected neighbors, which are assumed to be more indicative of putative protein
complexes, and is thus not negatively affected by the presence of less connected
neighbors, unlike the clustering coefficient that considers all original neighbors of v.
Finally, the weight wv of v is computed from kmax and the core-clustering coefficient,
further emphasizing local network density:

wv = kmax ⋅ dv
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5.4 Algorithms to Identify Protein Complexes in PPI Networks 87

Pseudocode

Input: graph G = (V , E)

For each vertex v in V , calculate:

Nv: set of direct neighbors
K: kmax-core of Nv with vertices V K and edges EK
kmax: highest k-value of K
dv∶

|EK ||EK |max
, density of K

wv: kmax ⋅ dv, weight of v

Step 2 – Complex prediction: In the second step, the graph with weight-annotated
vertices is considered as input. The algorithm first selects the vertex with the high-
est weight as the start vertex for constructing the first complex. Based on the ver-
tex weight percentage (VWP) parameter, the inclusion threshold for this complex
is set as the specified fraction of the start vertex weight. The algorithm traverses
through the graph and adds the neighbors of the start vertex to the current complex
if their individual weights exceed the inclusion threshold. In subsequent recursions,
the neighbors of newly added complex members are checked for the threshold as
well and added to the complex if the condition is fulfilled. Since proteins cannot be
assigned to more than one complex in this step, a vertex is not checked more than
once. Finally, this process halts when no more vertices can be added to the current
complex which is now considered complete. This process is repeated by using the
unvisited vertex with the highest weight as the start for the construction of the next
complex until no more complexes can be constructed.

Pseudocode

Input: graph G = (V , E) with vertex weights w, weight percentage p, start vertex s,
and current complex C.
If s was previously visited: return
Else:

t: ws ⋅ p, the inclusion threshold
For each neighbor vertex v of vertex s:
If wv > t: add v to C
Recursion with v instead of s

Step 3 – Post-processing: The last step removes those constructed complexes that
do not contain a single 2-core subgraph. It is optionally possible to increase the size of
complexes and allow potential overlap between them, by adding neighbors of com-
plex vertices to the complex, if the neighborhood density exceeds a “fluff” parameter
without marking these vertices as visited. The remaining complexes are assigned a
score and ranked accordingly. To favor larger and denser complexes, the score SC of
complex C is derived from the density dC of the complex subgraph and its number
of vertices |V C|:

SC = dC ⋅ |VC|
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88 5 Identification of Putative Protein Complexes in Protein–Protein Interaction Networks

The time complexity of the entire algorithm is polynomial with O(|V | ⋅ |E| ⋅ h3),
where |V | is the number of vertices, |E| is the number of edges, and h is the vertex
size of the average vertex neighborhood in the input graph, G.

5.4.1.3 Examples
MCODE can be run conveniently with the MCODE plugin of the Cytoscape software
(https://apps.cytoscape.org/apps/mcode). In the PPIN of S. cerevisiae based on PPI
data from the mentha database [12] that is shown in Figure 5.2, this results in 75
putative protein complexes when default parameters of MCODE are used (degree
cutoff set to 2, vertex score cutoff set to 0.2, k-core set to 2, loops included, and maxi-
mum depth value set to 100). When compared to the gold standard CYC2008 dataset
for S. cerevisiae compiled by Pu et al. [42], a majority of the complexes identified
by MCODE showed partial overlap with multiple CYC2008 complexes. Figure 5.8
presents two examples from these 75 complexes. The large putative complex shown
in panel (a) contains parts of several known protein complexes. It appears unlikely
that it would assemble as a physical unit at one particular time in the yeast cell. In
contrast, all vertices of the small complex shown in panel (b) belong to the known
ribonuclease MRP complex.

(a) (b)

SNM1

POP1

POP3

Figure 5.8 Two putative protein complexes constructed by the MCODE algorithm based on
the complete interactome of S. cerevisiae according to PPI data from mentha. These
complexes were then compared to the CYC2008 gold standard set. (a) Protein complex
identified by MCODE with a score of 20.984, involving 60 vertices (proteins) and 3119
interactions. In this complex, 17 vertices (green) belong to the 19/22s regulator complex
(CYC2008 lists 22 proteins for this complex), 1 vertex (purple) belongs to the 20S
proteasome complex (14 proteins in CYC2008), 1 node (orange) belongs to the ISW1b
complex (3 proteins in CYC2008), 1 vertex (red) belongs to the Noc1p/Noc2p complex
(2 proteins in CYC2008), 1 vertex (blue) belongs to the Png1p/Rad23p complex (2 proteins
in CYC2008), 4 vertices (yellow) belong to the RSC complex (17 proteins in CYC2008),
1 vertex (brown) belongs to the UTP B complex (6 proteins in CYC2008) and 1 node (cyan)
belongs to the cytoplasmic ribosomal large subunit complex (81 proteins in CYC2008).
The remaining vertices (Pink) are not annotated to any complexes in CYC2008. (b) Protein
complex identified by MCODE with score of 2.5, 3 vertices, and 14 interactions. In this
complex, all 3 vertices (green) belong to the ribonuclease MRP complex (CYC2008 lists 10
proteins for this complex).
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5.4.2 Clustering with Overlapping Neighborhood Expansion
(ClusterONE)

Subsequent to MCODE, Nepusz et al. [43] introduced the Clustering with Over-
lapping Neighborhood Expansion (ClusterONE) graph clustering algorithm that
takes a weighted PPIN as input and constructs overlapping protein complexes.
The algorithm introduced in Section 5.4.1, MCODE, detects clusters by identifying
densely connected regions of a network and assigning them to non-overlapping
complexes. However, in the case of a PPIN, proteins tend to have multiple functions
and may, depending on the situation, belong to more than one complex. ClusterONE
addresses the combinatorial nature of overlapping complexes and thus accounts
for one protein potentially participating in multiple complexes. As mentioned in
Maruyama and Kuwahara [44], the CYC2008 gold-standard data set for S. cerevisiae
contains 408 protein complexes, out of which 216 pairs of two complexes overlap
with each other. Most pairs (151) share only one protein, but 10 share 7 proteins
and 1 pair even shares 17 proteins. As an example, the same authors discovered that
the commitment complex and the U4/U6⋅U5 tri-snRNP complex that both bind to
different types of RNA share the four proteins Smb1p, Smd1p, Smd2p, and Smd3p.

The algorithm ClusterONE detects overlapping complexes in mainly three steps:
(i) The proteins are grouped based on high cohesiveness by a greedy algorithm that is
run repeatedly from different starting proteins to identify multiple and overlapping
complexes. (ii) The extent of overlap between complexes is quantified between each
pair of groups, and those groups with an overlap score above a preset threshold are
merged. (iii) Finally, all those complexes are discarded that are formed from fewer
than three proteins and those with density below a preset threshold.

5.4.2.1 Definitions
For this algorithm, the input PPIN is given as a graph G that in addition to the set
of protein vertices V and the set of protein interaction edges E also contains a set of
edge weights W :

G = (V ,E,W)

For a group of selected proteins V , one can distinguish internal edges, which repre-
sent interactions between members of V , and outgoing edges, which represent inter-
actions between members of V and proteins in the rest of the PPIN, see Figure 5.9.
The cohesiveness f (V) of the selected proteins relative to the rest of the network can
be assessed by comparing the summed weight of the internal edges win(V) to the
summed weight of the outgoing edges wout(V):

f (V) = win(V)
win(V) + wout(V) + p ⋅ |V |

Since not all existing protein interactions are known, the penalty term p ⋅ ⌈V⌉ is
added, which accounts for every member of V having p unknown outgoing interac-
tions. The cohesiveness weighs the density of physical interactions among a group
of proteins against the average density in their environment. High cohesiveness can
mean two scenarios: (i) The group of proteins V forms dense and reliable edges
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A
C

E

H

B

Group of proteins (V)

Internal edges of the group V.

Boundary edges of the group V.

D

F

G

Figure 5.9 Schematic representation of a group of proteins (vertices in the grey box)
selected within a PPIN. The blue lines represent the internal edges within the group.
The orange lines represent the edges that connect vertices inside the group to the rest of
the network. For example, with all edge weights set to 1 and p = 0, this group would have
w in(V ) = 6 and wout(V ) = 5, resulting in cohesiveness of f (V ) = 6/11 (with the penalty term
set to zero).

among themselves (high win(V)), or (ii) the group of proteins is more or less sep-
arated from the rest of the network (low wout(V)). Protein groups with cohesiveness
values above 1/3 can be considered as good candidates for putative complexes, since,
above this threshold, the internal weights start to outweigh the external weights.

5.4.2.2 Algorithm
Step 1 – Group assembly: ClusterONE employs a greedy algorithm to assemble cohe-
sive groups of proteins. Each group V initially consists of the unvisited protein with
the highest degree in the PPIN up to that point. In each step, all proteins participating
in outgoing interactions are evaluated: An external protein v is added to the group
if doing so increases the cohesiveness f (V) of the group, i.e. when f (V + v)> f (V),
whereas an internal protein is removed from the group if its removal improves group
cohesiveness, i.e. when f (V − v)> f (V). Once no further improvements to f (V) can
be made, the current group is considered to be a local optimum and the algorithm
begins assembling the next group, until all proteins have been examined. This pro-
cess is illustrated in an example in Figure 5.10.

Step 2 – Assembly of candidate complexes: Since ClusterONE allows proteins to
participate in more than one group, this step examines the overlap between the
locally optimal cohesive groups identified in the previous step. The overlap score
𝜔(A, B) of two groups A and B is computed by considering the number of proteins
both groups have in common, |A∩B|, and the total number of proteins in each group:

𝜔(A,B) = |A ∩ B|2|A||B|
All pairs of cohesive groups with overlap score 𝜔(A, B)> 0.8 are labeled as con-

nected, and all groups that are directly or indirectly connected to each other are
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(a)

(b)

(c)

(d)

Group of proteins (V)
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E

G
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V + external node H

V + external node G

F

V + external
node F

E
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B
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G

H

D F

Figure 5.10 Workflow of the ClusterONE algorithm showing the cohesive growth of
protein group V . (a) In this example, the group V consists of the five vertices A, B, C, D, and
E. Assuming that all edge weights are set to 1 and the penalty p = 0, the cohesiveness of
this group is f (V ) = 7/12 with w in(V ) = 7 and wout = 5. The group starts to grow by adding
external vertices to or removing internal vertices from V based on the resulting changes in
cohesiveness. The greedy algorithm adds an external vertex v only if f (V + v)> f (V ).
Panels (b), (c), and (d) show different options for expanding V . (b) Adding the external vertex
F would increase f (V ) to f (V + F) = 10/12. In contrast, (c) adding vertex G would lower f (V )
to f (V +G) = 8/15, and (d) adding H would similarly lower it to f (V +H) = 8/14.
The greedy algorithm thus only adds vertex F to group V and the new group cohesiveness
is f (V ) = 10/12. In the next iteration, the expansion process terminates with
V = {A, B, C, D, E, F} as a locally optimal cohesive group, since adding G or H in addition to F
would not increase f (V ) any further, with f (V +G) = 11/15 and f (V +H) = 11/14 both
<10/12. The algorithm then restarts the expansion process by selecting the yet unvisited
protein with the highest degree.
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92 5 Identification of Putative Protein Complexes in Protein–Protein Interaction Networks

merged to form candidate complexes. Cohesive groups that do not overlap with and
are not connected to other groups are classified as candidate complexes without
merging.

Step 3 – Candidate filtering: The final step assesses the size and density dC of each
candidate complex C according to the provided threshold 𝛿, with dC as defined in
Section 5.4.1.1. Only candidate complexes consisting of more than three proteins
and dC >𝛿 are retained, whereas the rest are removed.

For the same PPIN from yeast (see Figure 5.2), the ClusterONE plugin of
Cytoscape identified 842 clusters as putative protein complexes when using default
parameters (minimum size of cluster set to 3, minimum density set to auto-tuned
(0.3 for weighted graphs and 0.5 for unweighted graphs) and vertex penalty set
to 2). Figure 5.11 shows three examples of these putative protein complexes (two
are found in (a), one in (b)).

5.4.3 Domain-Aware Cohesiveness Optimization (DACO)

As mentioned earlier, ClusterONE accounts for one important characteristic of pro-
tein complexes, namely that they may overlap. However, it does not consider the

(a) (b)

Figure 5.11 Protein complex prediction based on the S. cerevisiae PPIN according to data
from mentha using the ClusterONE algorithm. (a) Cluster with quality of 0.461, p-value of
0.000 22, 57 vertices, and 4346 interactions. Green vertices belong to the 19/22s regulator
complex (22 out of 22 in CYC2008 detected by ClusterONE, MCODE only 17, see Figure 5.8a),
purple vertices belong to the 20S proteasome complex (14 detected out of 14, MCODE only
1), and blue vertices belong to the Png1p/Rad23p complex (2 detected out of 2, MCODE
only 1). As for MCODE, the cluster identified by ClusterONE contains further proteins that
are not known to be part of this complex. (b) Protein complex identified by ClusterONE with
quality of 0.613, p-value of 0.000 16, 10 vertices, and 245 interactions. The green vertices
belong to the ribonuclease MRP complex, the blue vertex belongs to the nucleolar
ribonuclease P complex. CYC2008 lists 10 proteins for the ribonuclease MRP complex.
Out of them, ClusterONE identified 9 whereas MCODE identified only 3 (see Figure 5.8b).
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5.4 Algorithms to Identify Protein Complexes in PPI Networks 93

spatial topology or physical aspects underlying the interactions. For instance, for
multiple proteins to interact, all binding partners must be expressed at the same
time, and they must not sterically overlap with other partners of the same protein
complex. This second aspect was the main motivation behind the development of
the Domain-Aware Cohesiveness Optimization (DACO) algorithm [45]. It is a com-
binatorial approach that adds a domain-level structural consideration for binding
partners to the local cohesiveness optimization of ClusterONE and is similarly based
on weighted protein interactions. The algorithm predicts protein complexes in a
given PPIN on the basis of the following inputs: (i) A probability-weighted PPIN,
(ii) a list of seed proteins, (iii) a threshold for the expansions, and (iv) a maximum
search depth to control performance. An overview is shown in Figure 5.12.

Step 1 – DDIN construction: First, the algorithm translates the given weighted
PPIN to the domain level by annotating proteins with known domains automatically
retrieved from the databases Pfam [46] and InterPro [47], as well as domain-domain
interactions queried from the databases IDDI [48] and DOMINE [49]. Once the
domain-domain interaction network (DDIN) is constructed from the given PPIN,
the algorithm executes DACO to identify putative protein complexes.

Step 2 – Greedy expansion: Similar to ClusterONE, DACO utilizes a greedy
approach to form locally optimal cohesive groups of proteins. However, the groups
are initialized with the seed proteins provided as input, not the unvisited proteins
with the highest degree in the network. Due to the inclusion of domain-level
information, the definition of incident and boundary proteins of a group differs
slightly as well (Figure 5.13).

Using the weighted protein interactions, DACO calculates in each step the
cohesiveness f (V) for the current protein group V with the formula introduced
in the previous Section 5.4.2.1 about ClusterONE. For each incident vertex v
it considers whether the inclusion of v increases the group cohesiveness, i.e.
f (V + v)> f (V), and for each boundary vertex b whether its removal leads to an
improvement, i.e. f (V − b)> f (V). In cases where removing a boundary vertex
b yields the largest increase, b is removed from V and the domains previously

Input:
PPIN, list of proteins,

threshold value, upper

bound value DDIN
protein
complexes

IDDI and

DOMINE for DDI

information

Pfam and InterPro

for domain

annotations

DACO

Figure 5.12 Workflow of the DACO algorithm.
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94 5 Identification of Putative Protein Complexes in Protein–Protein Interaction Networks

A

B

C

D

E F

Figure 5.13 Incident and boundary proteins of a protein group V . The proteins (large
circles) are annotated with domains (small circles) and connected by domain-domain
interactions (edges). Members of group V are shown in green (A, C, E, F), as are internal
edges and domains occupied by them. The blue incident vertices (B and D) are vertices
outside of V that have an edge (red) to an unoccupied domain (pink) in V . Boundary vertices
(A and F) are those members of V that have only one occupied domain.

occupied by the connections with b are marked as available. Should addition of
incident vertex v lead to the largest improvement, DACO examines the supporting
domain-domain interactions and, in the case of multiple options, selects the one
with the highest probability derived from the weights of the PPIN. The correspond-
ing domains are marked as occupied. If neither addition nor removal can improve
group cohesiveness any further, the current group is considered locally optimal,
and the algorithm continues with the next seed protein.

5.5 Summary

Protein–protein interaction networks provide an overview of the connectivity
around specific proteins of a biological cell, the protein complexes in which these
proteins are potentially involved, and the overall interactome of the organism.
For a specific organism, a complete overview of all the existing PPIs is represented
as a global PPI network. This PPIN typically has a “scale-free” topology where
the distribution of the vertex degrees follows a power law with a negative expo-
nent, leading to a higher frequency of highly connected “hub” proteins than is
expected in a random graph. Protein–protein interaction data to construct these
networks are accessible from two general kinds of public repositories, primary and
metadatabases.

Protein complexes are crucial entities for regulating cellular activity and deter-
mining the behavior of a cell. Hence, to better understand the inner workings of
cell, it is beneficial to identify protein complexes and examine how they interact
with each other. Various algorithms were developed to recognize the protein com-
plexes from PPINs. Here, we discussed three of them, MCODE, ClusterONE, and
DACO. The MCODE algorithm constructs putative protein complexes by identify-
ing densely connected areas of a PPIN. Promising seed proteins are identified by a
vertex weighting strategy based on each protein’s local neighborhood density. The
ClusterONE algorithm improves on MCODE by also detecting partially overlap-
ping protein complexes. Finally, the DACO algorithm considers whether multiple

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by ibrahim

 ragab - C
ochrane G

erm
any , W

iley O
nline L

ibrary on [23/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



References 95

interactions between one protein and other proteins can be realized simultaneously.
Obviously, this is not the case when multiple interactions would involve the same
binding interface. To resolve such cases, DACO also considers the domain nature of
the individual proteins and knowledge about all domain-domain interactions char-
acterized so far. In a formed complex, each protein domain is then only allowed to
mediate one interaction each. Similar to ClusterONE, DACO identifies putative pro-
tein complexes having high cohesiveness in the PPIN and that may partially overlap,
but also considers whether these can be physically realized when considering the
domain makeup of the involved proteins.

Initially, each experimental assay could only detect a portion of the formed PPIs,
the error rates were quite high for some methods, and the overlap between different
technologies was rather low. In the meantime, these methods have become more
mature, the datasets have expanded in size, and the coverage of the full PPINs has
increased. It is difficult to estimate how much is still missing and how much is still
to come. Over the past few years, interest has shifted to developing technologies,
both of experimental and computational nature, which enable the characterization
of condition-specific PPINs, e.g. for particular human tissues or for a particular dis-
ease condition [50]. These specific PPINs facilitate the study of interaction rewiring
events, for example between healthy and disease conditions, which may affect pro-
tein complex formation and pathways of interest.
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6.1 Protein Complex Structure

6.1.1 Protein Quaternary Structure

The sequence of amino acids in a protein forms its primary structure, local 3D
arrangement of amino acids defines its secondary structure, and structural contacts
between secondary structure elements lead to the formation of a tertiary structure
that fully describes the 3D shape of a single protein chain. However, many proteins
form assemblies of higher order, where several (identical or nonidentical) chains
come together to form a noncovalently bound protein complex. Such an assembly
is called a quaternary protein structure and may include, along with proteins,
other molecules such as metal ions or low molecular weight cofactors. Individual
protein chains in such an assembly are called protomers or subunits; if all subunits
are identical proteins, such an assembly is called a homomer (homooligomer), and
heteromer (heterooligomer) otherwise. Depending on the number of subunits in a
complex, they may be called dimers (2 subunits), trimers (3), tetramers (4), etc.

The higher-order protein complexes described above exist for a reason – their
functionality often extends beyond the sum of functionalities of their individual
units. Functions of multi-protein complexes may include co-localization of multiple
active sites that act as a conveyor belt for the synthesis of a certain molecule (e.g.
the tryptophan synthase complex, [1]), formation of a shared active site between
subunits (e.g. NADP-dependent isocitrate dehydrogenase family, [2]), combinatorial
swapping of subunits (e.g. in antibodies), and formation of large cellular structures
(e.g. actin filaments, microtubules) or of key molecular machines (ribosome,
proteasome, DNA and RNA polymerase complexes, etc.). Another example of
functional change related to complex formation is cooperative ligand binding – a
phenomenon when the number of binding sites occupied by a ligand depends non-
linearly on the ligand concentration [3]. The binding of some ligands may induce
a large-scale change in a protein structure (e.g. binding of calcium atoms switches
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102 6 Structure, Composition, and Modeling of Protein Complexes

the conformation of calmodulin from closed to open), a phenomenon known as
induced fit (see also Chapter 4). Induced fit, however, may be a consequence not
only of ligand binding but also of protein complex formation (e.g. actin/myosin
interaction, for further examples see [4]).

While some proteins exist almost solely in their complex form – such complexes
are commonly known as stable− others are only formed for short periods of time.
Such complexes are labeled as transient complexes. In this chapter, we will mainly
focus on the prediction of 3D structure of stable protein complexes that consist of
more than two subunits.

The experimental methods for protein structure elucidation include X-ray crys-
tallography, NMR spectroscopy, electron microscopy (EM), cryo-EM tomography,
and approaches that present a combination of the aforementioned main ones.
While NMR spectroscopy is better suited to the resolution of small structures, other
approaches are theoretically capable of resolving large multi-protein complexes.
However, for the most commonly used approach, X-ray crystallography, the diffi-
culty of solving the structure often correlates strongly with the size of the protein,
thus limiting its applicability in the field of protein complex structure prediction.

Like all other experimentally resolved protein 3D structures, experimentally
resolved multi-protein complexes are stored in the Protein Data Bank (PDB).
Naturally, the interest of structural biologists has been directed to multi-protein
structures that are involved in the key biochemical pathways in the cell, and a great
many of them have been resolved (see a virtual tour of the PDB1 and Chapter 5).
However, for a large (and probably unknown) number of proteins that participate
in multimeric assemblies, only structures of individual monomers have been
experimentally resolved. The methods and resources reviewed in this chapter
can be split into seven major categories: classification of protein-protein interaction
interfaces, classification of protein complexes, assignment of quaternary structure
from X-ray crystallography data, combinatorial docking, homology-based complex
reconstruction, de novo prediction of complexes from sequence, and assisted
docking (Table 6.1).

6.1.2 Classification of Protein–Protein Interaction Interfaces

At the time of this writing, the PDB contains 173 090 protein-containing structures,
of which 97 040 (56%) contain more than one protein chain in their assumed bio-
logically relevant stoichiometry (biological assembly). A nonredundant set of 19 855
structures from the PDB constructed by Marsh and Teichmann [52] contains 7972
biological monomers, 9206 homooligomers, and 2677 heterooligomers. Numerous
methods have been developed to classify this wealth of structural information. One
of the approaches is to cluster protein–protein interactions based on the evolution-
ary history and/or functional family of the interacting partners, and not on geom-
etry and biophysical properties of the interacting interfaces (although in practice
the former often implies the latter). In this context, one considers the problem of

1 https://cdn.rcsb.org/pdb101/molecular-machinery/
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6.1 Protein Complex Structure 103

Table 6.1 Overview of methods and databases.

Category Example tools Comments

Classification of
protein–protein
interaction interfaces

iPfam [5] Pfam annotations
DOMMINO [6, 7] SCOP and SUPERFAMILY annotations
PIBASE [8] SCOP annotations, clustering based on geometry
SCOPPI [9] SCOP annotations, geometric characterization of

interfaces
SNAPPI-DB [10] SWISS-PROT, SCOP, CATH, Pfam, InterPro, GO

terms annotations; structural alignment of similar
chains

DOMINE [11] Meta-method including many of above mentioned
and other tools

INstruct [12] Includes additional information from
low-resolution methods

ProtCID [13–15] Clustering based on Pfam
Classification of
protein complexes

PiQSi [16],
3Dcomplex [17]

Classification of large multimeric complexes
based on their topology

Assignment of
quaternary structure
from X-ray
crystallography data

PQS [18] Change of the solvent-accessible surface area
(Δasa) upon complex formation

PITA [19] Δasa; pairwise residue interaction potentials
PISA [20] Change of the Gibbs free energy (solvation,

contact-dependent and electrostatic interactions,
entropy)

Valdar and
Thornton [21]

Δasa, residue conservation on the interface;
one-layered artificial neural network

NOXclass [22] Δasa, interface complementarity, amino acid
composition, and conservation; support vector
machine (SVM)

DiMoVo [23] Geometric complementarity based on Voronoi
tessellations; SVM

IPAC [24] Geometric and physicochemical features; Bayes
classifier

IChemPIC [25] Physicochemical properties of the interface
contacts; random forest

Luo et al. [26] Geometric and physicochemical properties of the
interface contacts, amino acid, and secondary
structure composition, amino acid propensities;
random forest

EPPIC [27; 28] Per-residue Ka/Ks ratio
QSalign [29] Modified structural similarity score (TM-score)

for complexes

(continued)
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104 6 Structure, Composition, and Modeling of Protein Complexes

Table 6.1 (Continued)

Category Example tools Comments

Combinatorial
docking

Berchanski and
Eisenstein [30]

Symmetric homooligomeric complexes: dimers of
dimers

Berchanski et al. [31] Symmetric homooligomeric complexes
SymmDock [32] Symmetric complexes
M-ZDOCK [33] Symmetric complexes with cyclic symmetry
ClusPro [34] Symmetric complexes with cyclic, D2 and D3

symmetry
DockTrina [35] Nonsymmetric trimers
CombDock [36] Nonsymmetric complexes of any stochiometry
Multi-LZerD [37] Nonsymmetric complexes of any stochiometry
DockStar [38] Nonsymmetric star-like complexes of any

stochiometry
3D-MOSAIC [39] Nonsymmetric complexes of any stochiometry

Homology-based
complex
reconstruction

PRISM [40]

De novo prediction
from sequence

M-TASSER [41] Based on prediction of 3D structure of monomers
with TASSER

Assisted docking ATTRACT-EM [42] Leverages low-resolution electron microscopy
(EM) data

MDFF [43] Leverages low-resolution EM data followed by
molecular dynamics simulations

PRISM-EM [44] Leverages low-resolution EM data
PROXIMO [45] Restraints from radical probe mass spectrometry

(RP-MS)
Kiselar et al. [46] Restraints from hydroxyl radical footprinting
iSPOT [47] Restraints from small-angle X-ray scattering

(SAXS) and hydroxyl radical footprinting
Berchanski et al. [48] Restraints from large-scale protein–protein

interaction screens
HADDOCK [49–51] Up to six protomers, various experimental and

bioinformatics restraints

protein–protein interaction as the problem of domain–domain interactions, since
domains are the structural, functional, and, most importantly in this context, evolu-
tionary units in the protein space.

iPfam [5] does this by providing Pfam [53] annotations for every pair of interact-
ing proteins in the PDB. DOMMINO [6, 7] solves the same problem by using SCOP
[54] and SUPERFAMILY [55] annotation to this end. SCOP classification is also used
for construction of PIBASE [8], where interfaces are additionally clustered based on
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6.1 Protein Complex Structure 105

their geometry, and complexes are clustered based on their topology. SCOPPI [9]
adds GO term annotations. In 3did [56], interfaces are clustered based on geometric
similarity of the interacting monomers and their mutual arrangement. SNAPPI-DB
[10] provides SWISS-PROT, SCOP, CATH, Pfam, InterPro, and GO terms annota-
tions, as well as multiple structural alignments for pairs of interacting proteins from
the same structural or functional family. DOMINE [11] integrates a large collection
of classification and prediction tools that enable the authors to build the largest at
their time database of protein–protein and domain–domain interfaces. INstruct [12]
leverages information from low-resolution experimental protein–protein interaction
databases in combination with structure reconstruction methods similar to homol-
ogy modeling to create a high-resolution collection of protein–protein interaction
interfaces for humans and six common model organisms.

Another way to classify 3D multi-protein assemblies is to classify interaction inter-
faces between subunits using the sequence homology of the interacting partners.
This has been implemented in the ProtCID2 database [13–15]. This resource clus-
ters protein interfaces with respect to Pfam [53] families of the interacting subunits
and operates on the level of protein domains. The authors show how these clusters
can generate unexpected functional hypotheses for some oligomers.

6.1.3 Classification and Evolution of Protein Complexes

PiQSi [16] was developed as a database that stores and links the data on the
quaternary structure of homologous proteins from different organisms. As in other
databases centered around protein interactions, each subunit of a complex is viewed
as a node of a graph, and edges between the nodes represent interaction interfaces.

The first version of PiQSi was curated manually, but afterward, it became a part of
3Dcomplex3 [17], a hierarchical classification scheme of protein complexes, similar
in spirit to SCOP [54], and CATH [57]. In 3Dcomplex, protein assemblies are also
represented as graphs, which are aligned by exhaustive mapping while considering
three cost functions. The cost functions aim to represent (i) structural similarity of
the monomers (same SCOP domain composition), (ii) missing nodes in one of the
graphs, and (iii) inconsistency between edges. Symmetric complexes are also iden-
tified and classified into their respective groups. Combining the similarity of graph
topologies with different levels of sequence identity between monomers from differ-
ent complexes produces a hierarchical classification scheme used by 3Dcomplex.

A striking observation in any collection of multi-protein assemblies is that
the majority of them are symmetric. In the context of protein structures,
symmetry usually refers to rotational symmetry. In the above-mentioned
nonredundant collection of protein structures [52], 77% of all complexes
are homomeric (comprise identical proteins), and the vast majority of them
are symmetric. This can be explained by the fact that it is easier to resolve
such assemblies experimentally, and/or that symmetric homomeric com-
plexes are energetically more stable. Simulations confirm the latter option

2 http://dunbrack2.fccc.edu/ProtCiD/Default.aspx
3 http://shmoo.weizmann.ac.il/elevy/3dcomplexV6/Home.cgi
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and suggest a thermodynamic route for the emergence of symmetry, at least for
homodimers [58].

Analysis of the evolution of protein–protein interaction networks and multi-
protein complexes from different organisms further suggests that duplication of
genes that encode proteins forming homomeric complexes is the driving force
of protein complex evolution. This leads to overrepresentation of paralogous
(evolutionary related and similar in sequence and structure) subunits in protein
complexes [59, 60]. Examples of such complexes are hemoglobin or TRiC/CCT
chaperonin. Interestingly, the overall shape of the ancestral homomeric and
descendant heteromeric complexes is very similar. For example, for the TRiC/CCT
chaperonin, the ancestral complex of the archaeal thermosome from Thermococcus
sp. with 16 identical subunits was used as a template for homology modeling of the
eukaryotic TRiC complex [61].

Using electrospray mass spectrometry, it has been confirmed that the actual
dynamic assembly pathways mimic evolutionary paths for complex formation
[62–65]: for example, tetramers assemble as dimers of dimers. It was shown that
assembly and disassembly of protein complexes proceed stepwise, and often more
than one oligomeric state is possible in equilibrium. Dimerization of subcomplexes
and cyclization are the two most common mechanisms in complex assembly irre-
spective of whether homomers or heteromers are considered. Analysis of protein
complexes whose quaternary structures can be described as a subset of one another
further supports this evolutionary scenario. This creates an implicit periodic table
of protein complexes [62].

These insights provide an evolutionary footing for endeavors to classify protein
quaternary assemblies, such as 3Dcomplex [17]. 3Dcomplex is a hierarchical
classification that considers all biological assemblies from the PDB as a starting
point. Each complex is turned into a graph, in which the nodes represent individual
protomers, and edges represent interaction interfaces between them. On the highest
classification level, all graphs of the same topology are grouped together. Further,
the complexes are split into smaller groups by considering the content of SCOP
domains for each chain, the number of nonidentical chains in each complex, sym-
metry of the complex, and different levels of sequence identity between chains from
different complexes that can be mapped to each other after graph superimposition.
Altogether, 12 levels of classification are defined. At the time of construction in
2006, the classification included 21 037 groups of complexes with 192 symmetric
and 265 nonsymmetric graph topologies. More than 96% of them constituted
complexes with less than 10 subunits, and, as mentioned above, a vast majority of
them are symmetric.

6.2 Methods for Automated Assignment of Biological
Assemblies

A total of 87.6% of all structures in the PDB have been resolved by X-ray crystal-
lography. This method is based on creating crystals of the purified target protein,
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6.2 Methods for Automated Assignment of Biological Assemblies 107

i.e. repeating identical units spaced equally in three dimensions. A unit of such
crystals is called the asymmetric unit, and diffraction patterns obtained by illumi-
nating the crystal with an X-ray beam allow for reconstructing 3D coordinates of the
non-hydrogen atoms in the asymmetric unit. However, proteins often function as
multi-polypeptide chain assemblies, which in the PDB are called biological assem-
blies (see Section 6.1.2). An asymmetric unit may contain one, several, or a part of
a biological assembly, and hence a problem presents itself: How to deduce the cor-
rect biological assembly from the atom coordinates in an asymmetric unit? In this
section, we overview bioinformatics tools developed to this end. First, we consider
purely geometric tools and further present tools that use machine-learning methods
or additional evolutionary data.

6.2.1 Assignment from Crystallographic Data

One of the earliest tools developed for identifying biological assemblies from crys-
tallographic data is PQS, the protein quaternary structure file server [18]. The key
here is to calculate Δasa, the change of the surface area available to the solvent upon
complex formation. This idea has been proposed earlier [66]. First, all potential qua-
ternary assemblies are built by grouping chains in the asymmetric unit and applying
symmetry operations to it. For each candidate assembly, Δasa per chain is calculated
and a cutoff of 400 Å2 is used. This cutoff is based on the empirical observation that
in native complexes Δasa is ∼370–4750 Å2 for homo-dimers and ∼640–3230 Å2 for
heterodimers [67]. In addition, the automated classifier takes into account the num-
ber of buried residues, relative solvent accessible area in the complete assembly, and
the change of the solvation energy of folding [68] between the isolated monomer and
the assembly, calculated for each monomer separately. Virus capsids are treated dif-
ferently to account for the icosahedral structure of many capsids. This method was
further improved by including pairwise residue interaction potentials across candi-
date interaction interfaces (PITA, [19]). Other geometrical considerations, such as
Voronoi tessellations, can also be applied [23].

A long-standing de facto standard for predicting biological assemblies is PISA [20],
which is used by the PDB for the assignment of biological assemblies in cases when
this information is not provided by the authors. PISA postulates that the change of
the Gibbs free energy defines assembly stability and the interaction energy of the
interfaces and entropy upon assembly are the major factors that drive complex for-
mation, and provides a computational method that allows to assess them. Change
of the interaction energy depends on the change of solvation, spatial contacts, and
electrostatic interactions, and change of entropy can be estimated from the changes
of translational, rotational, and vibrational entropies, as well as the entropy of the
surface atoms. Candidate assemblies are identified by enumerating all combinations
of interfaces involved in interactions between two subunits in the asymmetric unit,
and the change of the Gibbs free energy upon complex dissociation ΔGdiss is calcu-
lated. The correct assembly was predicted as the one, for which ΔGdiss is greater
than 0, whereas ΔGdiss is less or equal to 0 for all other assemblies of the same
or larger size. In the original publication, PISA was tested on 218 protein–protein
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108 6 Structure, Composition, and Modeling of Protein Complexes

(ranging from monomers to hexamers) and 212 protein-DNA (ranging from dimers
to decamers) biological assemblies assigned manually, and produced correct predic-
tions in 84–100% of the cases.

6.2.2 Employing Machine-Learning Methods

With the advent of machine learning, new methods have been introduced that learn
certain properties of native assemblies from expert assignments in an automated
way and then can be applied to predicting novel assemblies from crystallographic
data. An example of a relatively simple problem that can be formulated in this
setting is to distinguish between native dimers and monomers [21]. As described
in Section 6.2.1, an asymmetric unit may not coincide with the biologically relevant
multimeric state, and thus a set of native dimers and monomers has to be con-
sidered, and symmetry operations have to be applied to create further multimeric
complexes. Two features are considered: contact area (measured as the change
of the solvent accessible area upon dimerization) and residue conservation of
the interface. A simple one-layered artificial neural network was trained to this
end and achieved an accuracy of 98.3%. More methods that leverage evolutionary
information will be considered in Section 6.2.3.

A more refined machine learning-based classification into obligate and nonobli-
gate interactions (to differentiate between stable and transient complexes), as well
as crystal contacts, was implemented in NOXclass [22]. Several features, includ-
ing buried surface area, interface complementarity, amino acid composition, and
conservation on the interface, were used to create an input, and a support vector
machine (SVM) model was trained. The method achieved an accuracy of 91.8% for
the three-class (crystal and biological complexes, monomers) classification prob-
lem. Another tool for such three-class classification represents protein complexes in
terms of properties of their Voronoi tessellations (DiMoVo, [23]). In this approach,
each residue is represented by a point in the 3D space, and a plane is placed mid-way
and orthogonal to a line between every two residues. This induces a tessellation of
the 3D space around the protein structures, whose geometric properties proved to
be useful in different problem settings. Indeed, DiMoVo reaches an accuracy of 97%
on an extended dataset, whereas NOXclass showed an accuracy of only 76%.

Due to the composition of the training sets, NOXclass and DiMoVo were predomi-
nantly trained to recognize native homodimers. Heterooligomers, on the other hand,
typically present a larger problem for their correct assignment. IPAC [24] devised
a training set focused specifically on heteromeric complexes larger than a dimer
and trained a Bayes classifier to detect monomers and native assemblies using a
large panel of geometric and physicochemical features. The method demonstrated
superior performance compared to PISA and PQS. The authors specifically ana-
lyzed the cases where these tools fail. When compared to NOXclass and DiMoVo,
IPAC demonstrated a consistent coverage (percent of correctly recovered quaternary
structures) of >90% irrespective of whether the validation set contained homo- or
heteromeric complexes, whereas DiMoVo failed on the heteromers. Interestingly,
NOXclass performed very well for heteromers but was inferior to IPAC for homo-
meric dimers.
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6.2 Methods for Automated Assignment of Biological Assemblies 109

A random forest with 45 input features for discrimination between biological and
crystallographic interaction interfaces was implemented in IChemPIC [25]. The
authors constructed a very large training dataset of 400 homomeric and heteromeric
interfaces. The descriptors used for these interfaces are based on intermolecular
interactions (hydrophobic, aromatic, hydrogen bond, ionic bond) between the
two selected chains. Compared to PISA, NOXclass, DiMoVo, and EPPIC ([27], see
next section for an extended discussion of this tool), IChemPIC demonstrates a
superior accuracy (75.0%) and specificity (76.0%) compared to all tools except EPPIC
(which is not surprising, since EPPIC uses additional evolutionary information).
However, NOXclass is more sensitive (87.8%) and DiMoVo more precise (85.7%)
than IChemPIC (74.0% and 75.5%, respectively).

Another random forest-based method [26] uses features derived from geometric
and physicochemical properties of the interfaces, amino acid and secondary struc-
ture composition, and amino acid propensities to different protein regions. Random
forests allow for an easy feature importance analysis, and here features related to
the tight packing of residues on the interface and their hydrophobicity proved to be
characteristic for biological interfaces. A dataset created for evolutionary analysis of
protein–protein interaction interfaces was used for training ([28], also see Section
6.2.3), and the method showed a superior performance across a wide range of statis-
tical measures compared to DiMoVo, PITA, PISA, and EPPIC.

6.2.3 Leveraging Evolutionary Information

It has been observed that homologous proteins tend to form similar assemblies.
Indeed, the geometry of interactions between homologs bears significant similarity
[69]. Hence information on quaternary structure of some assemblies can be trans-
ferred to homologous complexes from other organisms. Another evolutionary con-
sideration that can be taken into account is that amino acids on protein–protein
interaction interfaces tend to be more conserved [21]. The first consideration lays
the foundation for protein assembly classification schemes reviewed in Section 6.2.2,
and the latter is the idea for the classification of biological and crystal interfaces by
the tool EPPIC [27, 28]. The authors first showed that the per-residue Ka/Ks ratio
(the ratio between nonsynonymous and synonymous substitutions) has characteris-
tic values in the “core” of an interaction interface (the innermost tightly interacting
part that gets completely buried upon complex formation) and at its “rim” (outer
part of the interface that gets only partially buried) for native biological interfaces,
which allows to distinguish them from crystal contacts. In EPPIC, they combined
this with a geometric size of the core interface region using a set of ad hoc criteria
to optimize performance. Further, these predictions were used to identify correct
assemblies among all possible assemblies present in a symmetric unit or that can be
obtained by symmetry operations upon it [27].

Another method that uses the overall structural similarity of complexes to detect
correct assemblies is QSalign [29], which employs a modified TM-score (a widely
used measure of structural similarity) [70] developed specifically for comparing
3D structures of complexes, as opposed to 3D structures of individual chains in
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110 6 Structure, Composition, and Modeling of Protein Complexes

the original implementation. This method shows a uniform low error rate of 4%
both for dimers and higher-order complexes, whereas the error rate of other tools
(PISA and EPPIC) is larger for the latter. Separately, a version for detection of
monomers (anti-QSalign) was developed. Integrating all three tools (PISA, EPPIC,
and QSalign/anti-QSalign) produced excellent predictions for all three categories
of assemblies (monomers, dimers, and higher-order oligomers), demonstrating
complementary nature of the methods. The integrated method was implemented in
a database called QSbio, which has since also become a part of 3Dcomplex.

Further, it was shown [71] that a combination of residue conservation on the inter-
face, structural clustering of interfaces, and other interface composition descriptors
allows to improve the selection of homologous templates for complex reconstruc-
tion. Specifically, the suggested method can correctly resolve cases when several
quaternary structures are possible within one family of homologous proteins (e.g. for
fructose biphosphate aldolases, monomers, dimers, tetramers, and hexamers have
been reported). Additionally, the authors have compiled a large dataset of 807
nonredundant proteins with experimentally validated quaternary structures that
are balanced to contain both homo- and heterooligomers with varying stoichiome-
try. At the time of construction of this dataset, for all homooligomeric complexes and
for 64% of heterooligomeric complexes a homologous modeling template complex
with sequence identity <95% could be identified in the SWISS-MODEL template
library [72].

6.3 Computational Approaches to Predicting 3D
Structure of Protein Complexes

In this section, we focus on tools that predict 3D structures of multi-protein com-
plexes where the number of monomers is greater than two. These tools often utilize
pre-computed structures of dimeric assemblies that can be predicted using one of
the protein–protein docking methods reviewed in Chapter 4.

6.3.1 Combinatorial Docking

Docking methods traditionally focus on predicting 3D structure of binary protein
complexes (homo- and heterodimers, see Chapter 4). These tools involve geometric
and physicochemical compatibility of the two subunits in the 3D space that may
or may not include a certain degree of flexibility of individual protein chains.
Computationally, this problem is hard enough, due to the size of the search space
that needs to be evaluated, and different optimization techniques can be applied.
The energy potentials that are used to evaluate candidate poses are statistically
derived and known to be imprecise, such that near-native conformations may not
be scored best. With this in mind, the problem of multi-protein docking appears
to be even harder, probably intractable. However, it turns out that this complexity
can be leveraged by computational tools in the form of additional constraints that
allow for predicting complex assemblies.
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6.3 Computational Approaches to Predicting 3D Structure of Protein Complexes 111

Symmetric complexes. One type of multi-protein complexes that allow for a rel-
atively easy reconstruction are homooligomers characterized by a dihedral (Dn) or
cyclic (Cn) symmetry. In cyclic symmetry, the monomers are related by rotations by
360∘/n degrees: every such rotation in 3D produces a complex identical to the orig-
inal one. Dihedral symmetry in addition to these rotational symmetries includes a
perpendicular twofold rotation.

Protein complexes of 2n subunits are often n-mers of dimers, with D2-symmetric
homotetramers being particularly abundant [17]. This property has been leveraged
in a geometric-based tool [30], where first dimer complexes are reconstructed using
an in-house docking method MolFit [73], and then a dimer of dimers is formed
while respecting the symmetry restraints. Later, the same group of authors extended
their method to model homooligomeric complexes with Cn or Dn (n > 2) symme-
tries [31]. The authors demonstrate the applicability of their method on several pro-
tein complexes with cyclic and dihedral symmetries, including recent CAPRI targets
(see Chapter 4), achieving RMSD in low-Ångström range.

Another method for reconstruction of cyclically symmetric complexes, Symm-
Dock [32], uses a different docking algorithm to produce initial dimers, PatchDock
[74], that is based on the rigid-body representation of monomers and surface match-
ing to identify the interaction interface between them. Each matching pair defines
a symmetry axis, and the axis that allows for the best closed circle of monomers is
chosen. If a monomer can be split into a set of rigid substructures connected by flex-
ible hinges, these substructures can be considered separately and then efficiently
combined into a plausible conformation while docking. In this process, symmet-
ric complexes are constructed for each rigid substructure and then their axes are
checked for consistency. In almost all test cases, near-native conformations of the
symmetric complexes were successfully recovered. However, it must be noted that
the tests for all tools mentioned in this section were run on bound conformations
(monomers were derived from experimental structures of the bound complexes, cf.
Chapter 4); hence the performance may be overestimated.

A number of other tools use similar ideas to reconstruct cyclically or dihedrally
symmetrical complexes: M-ZDOCK [33] for cyclically symmetric complexes,
ClusPro [34] for cyclically, D2 and D3 symmetric complexes use their respective
rigid-body docking algorithms to predict conformations of dimers.

Nonsymmetric complexes. Dealing with nonsymmetric and possibly het-
eromeric protein complexes presents a larger computational difficulty. The simplest
kind of nonsymmetric complexes with more than two monomers are hetero-trimers,
and a tool DockTrina [35] aims to predict their structures. The development of a
specialized software for trimers is justified by the large number of trimers among
naturally occurring complexes (see Section 6.1.3).

For a complex of three monomers A, B, and C, the algorithm starts with pairwise
docking poses of all combinations A–B, B–C, and A–C that are generated with yet
another rigid-body docking tool Hex [75]. For each set of pairwise poses, they are
superimposed in all combinations, such that the second monomer of the last pair
is the first monomer of the first pair: For example, a pose of A–B and a pose of
B–C are superimposed on top of each other using the monomer B as an anchor.

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by ibrahim

 ragab - C
ochrane G

erm
any , W

iley O
nline L

ibrary on [23/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



112 6 Structure, Composition, and Modeling of Protein Complexes

Then a pose of C–A can be superimposed on top of this complex using the monomer
C as an anchor, which will produce a (virtual) second copy of the monomer A,
denoted A′ , in the complex. If we denote transformations associated with these
individual docking poses TAB, TBC, and TCA, the coordinates of A′ can be expressed
as A′ = TAB ⋅TBC ⋅TCA ⋅A. Ideally, if all used docking poses correspond to the actual
conformations of the dimers in the sought trimer, A′ should coincide with A. In real-
ity, one can measure the deviation, for example as RMSD between the coordinates
of A and A′ , which provides a measure of internal consistency of the candidate
complex. All candidate trimers generated in this way are then scored with a score
Score = ScoreAB + ScoreBC + ScoreCA + 0.25 Scoremax

RMSD
, where ScoreAB, ScoreBC,

ScoreCA are the scores of the corresponding docking poses, Scoremax is the sum
of maximum scores of the three dimers, and RMSD is the RMSD between the
coordinates of A and A′ . The last term penalizes large RMSDs and favors complexes
where A and A′ overlap nicely.

DockTrina was tested on a large set of over 200 symmetric and asymmetric
complexes including seven unbound ones (i.e. in these cases the monomers came
from experimental structures other than of the sought trimer). In more than a
half cases, DockTrina was able to reconstruct a complex with all selected pairwise
docking poses having RMSD< 3 Å from the native conformation. Importantly, for
the unbound cases, the tool produced near-native complexes (all pairwise docking
poses with RMSD< 3 Å) in two cases and acceptable complexes (all pairwise
docking poses with RMSD< 10 Å) in four cases. For two more cases, the underlying
pairwise docking tool was not able to produce near-native poses. The overall quality
of trimer reconstruction of DockTrina is thus remarkably good.

A similar idea can be extended to complexes with the number of monomers greater
than three: pairwise docking poses of monomers can be predicted and combined in
an optimal way. Unfortunately, the number of combinations of docking poses hereby
increases exponentially with the number of monomers. Indeed, for a complex of N
subunits and K docking poses per pair, in a naïve approach one needs to assess K

N(N−1)
2

candidate complexes. Hence, heuristic and optimal algorithms are necessary.
The overall workflow for all combinatorial docking algorithms of this class is

similar and consists of three steps (Figure 6.1): (a) generation of pairwise docking
poses; (b) combinatorial complex assembly and (c) final scoring of the candidates.

Int1

Int2 Int3

Int4

Int1ʹ
Int2ʹ

Int3ʹ

Score1 = Int1 + Int2 + Int3 + Int4

Score2 = Int1ʹ + Int2ʹ + Int3ʹ

(a) (b) (c)

Bovine hemoglobin complex

(PDB id 1HDA)

Figure 6.1 Workflow of combinatorial docking algorithms. (a) Pairwise docking poses are
generated and scored. (b) Full complexes are assembled in a step-wise fashion.
(c) Assembled complexes are scored based on the pairwise docking scores of their subunits.
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6.3 Computational Approaches to Predicting 3D Structure of Protein Complexes 113

Examples of the methods that implement this idea are CombDock [36], Multi-LZerD
[37], DockStar [38], and 3D-MOSAIC [39].

In CombDock and Multi-LZerD, the sought complex is represented as a spanning
tree in a graph where vertices represent subunits and edges possible docking poses
between them (for K docking poses, there are K edges between a pair of vertices).
Edges are weighted proportionally to the docking scores of individual poses, and
the optimal assembly corresponds to the heaviest spanning tree. In an exhaustive
search, NN − 2KN − 1 spanning trees have to be assessed (the number of spanning
trees in a complete graph with no parallel edges is NN − 2 [76]). CombDock reduced
this number by hierarchical construction of the spanning tree with greedy selection
of subtrees. Multi-LZerD employs a genetic algorithm for the search. CombDock
scores the resulting complexes based on the shape compemetarity of the pro-
duced inter-subunit interfaces and the buried nonpolar surface area. Multi-LZerD
implements a physics-based score that is a linear combination of Van der Waals,
electrostatics, hydrogen and disulfide bond, solvation, and knowledge-based atom
contact terms.

DockStar uses another graph-based representation: a single monomer is chosen
as an anchor subunit, and all other monomers are assigned transformations into
the anchor frame of reference using the docking poses. The graph is N-partite (N is
the number of subunits in the complex), where each set of vertices corresponds to a
subunit, and for each transformation, there is a vertex in the corresponding vertex
set, and each pair of vertices is joined by an edge with a weight proportional to the
corresponding docking score. Then a candidate complex corresponds to choosing
one vertex per set, and the optimization problem can be formulated as an integer
linear programming (ILP) problem. DockStar efficiently reconstructs star-shaped
complexes, and the resulting score is the sum of the pairwise docking scores for the
individual docked pairs along the edges in the star-shaped graph. Arbitrary com-
plexes are split into a set of overlapping star-shaped sub-complexes.

3D-MOSAIC implements a greedy assembly strategy, where monomers are added
sequentially to an arbitrarily chosen start subunit, and the score is collected on the
go as the sum of the scores of the docking poses already included in the complex.
In addition to that (and in contrast to DockStar), if adding a subunit induces
additional interfaces with other previously added subunits that are similar to a
pre-computed docking pose, the score of that docking pose is added to the score
of the complex. At each iteration step, high-scoring candidates are clustered, and
a user-defined number of clusters is retained for further iterations. Symmetric
complexes are further optimized using symmetry operations. It must be empha-
sized that in order to constrain the solution space, certain knowledge of interaction
interfaces between the monomers was assumed in the main application scenario,
in that RosettaDock’s [77] local docking mode was used that produced candidate
poses close to the experimentally observed dimers.

3D-MOSAIC has been extensively tested using a dataset of 308 complexes,
both bound and unbound. The predictions are evaluated using tRMSD (“topology
RMSD”) – a measure introduced by the authors to assess the correctness of complex
topology rather than deviations of individual residues. It is similar to iRMSD
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114 6 Structure, Composition, and Modeling of Protein Complexes

(“interface RMSD”, [69]), a measure introduced earlier to assess the similarity
between protein–protein interaction interfaces. In this measure, each subunit is
represented by six dots equally distant from its center of mass plus the center of
mass itself, and RMSD is measured between the coordinates of these points after
an optimal superimposition of each pair of interacting monomers. For 267 of 308
complexes, there was a combination of parameters for 3D-MOSAIC that yielded a
tRMSD <2.5 Å, which represents a very close to reality complex conformation.

3D-MOSAIC was compared to CombDock and ClusPro for the complexes where
the respective assemblies were available (for ClusPro, 17 cases, in 12 cases also
reconstructed with 3D-MOSAIC) or could be reconstructed by running the tool
(CombDock, 190 cases). To make the comparison with CombDock fair, the authors
performed global docking refraining from using additional information on the
location of interaction interfaces. Under a relaxed threshold of tRMSD< 5 Å, 2 com-
plexes were reconstructed correctly with CombDock vs. 19 with 3D-MOSAIC, with
a general trend of 3D-MOSAIC to produce lower tRMSD values. Still, 3D-MOSAIC
could reconstruct none of the complexes with tRMSD under the strict threshold of
2.5 Å, while CombDock could reconstruct one.

6.3.2 Homology-Based Complex Reconstruction

As we have seen in the previous section, multi-protein assembly reconstruction tools
are severely limited by the quality of the structure of dimer complexes, on which they
operate. Any additional data on interaction interfaces can thus alleviate this problem
and increase the quality of the final assembly. In this section, we will consider a
group of methods that, similarly to template-based modeling of protein 3D structure,
leverage the information from homologs to this end. The idea behind them is that
proteins with similar sequences and structures tend to interact similarly and build
similar dimers [69], and hence it is possible to use pairwise complexes of homologs
as a starting point for reconstruction of multi-protein assemblies.

A large number of tools employ sequence and structural homology for reconstruc-
tion of pairwise complexes, that is regular protein–protein docking ([78–80], see also
Chapter 4), but only few were developed further for reconstruction of multi-protein
assemblies [40]. One such tool is based on one of these pairwise homology-based
methods, PRISM (Protein Interactions by Structural Matching, [79, 81, 82]), which
detects experimentally resolved dimers that contain regions near the interaction
interface that are similar to certain regions in the target pair of proteins. Similarity,
in this case, is represented as a combined sequence- and structure-based similarity
score, computed individually for each candidate interaction partner. If some
monomers have homologs in different conformations, they are all retained.

For predicting multi-protein assemblies using PRISM [40], all pairwise complexes
are first detected, and thus are homologous to some experimentally resolved
dimers. Interfaces for all interacting pairs are extracted and clustered according
to their structural similarity, their interaction energy is measured with FiberDock
[83], and only low-scoring (biologically favorable) pairs are retained. Importantly,
unlike in case of the tool described in Section 6.3.1, not all pairs of monomers here
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6.3 Computational Approaches to Predicting 3D Structure of Protein Complexes 115

are considered as potentially interacting, but only those that have experimental
support from homologous complexes. In the second step of the algorithm, dimers
are assembled together into higher-order complexes based on the superimposition
of the shared subunits. One protein is added at each iteration, and nonredundant
biologically favorable sub-assemblies are filtered. All combinations are explored,
and partial assemblies are discarded if clashes occur or no protein can be added with
a sufficiently low interaction energy. Finally, candidate assemblies are clustered
based on RMSD of the backbone non-hydrogen atoms. The method was tested
on a number of protein complexes, including eight that can be assembled from
unbound components, with the RMSD of the predicted complex < 6 Å from the
experimentally resolved structure.

6.3.3 Prediction from Sequence

Similar to protein tertiary structure, protein quaternary structure can also be pre-
dicted directly from sequence. As we have seen in the previous section, homology
modeling can be helpful to this end but is naturally limited by the availability of
relevant structural templates. Just as in methods for protein structure prediction,
one can attempt to predict 3D structure of complexes even in the absence of such
information, but the algorithms for this task become increasingly complex, and the
solutions decreasingly reliable. The problem considered here is fundamentally dif-
ferent from the one described in the previous sections, since here neither structures
of pairwise complexes nor of individual monomers are available.

In predicting 3D structure of individual proteins, when no homologous template
is available, one resorts to template-free methods, and TASSER [84] is one of the
very successful methods in this field. It employs threading, assembly, and clustering
techniques to reconstruct protein 3D structures in the absence of templates with
significant sequence similarity. M-TASSER [41] leverages this tool, along with
another threading method PROSPECTOR_3 [85] to reconstruct 3D structures of
multi-protein assemblies.

In M-TASSER, first 3D models of all chains in the assembly are built using the two
threading methods. In this process template monomers (probably without signifi-
cant sequence similarity) are identified, and multimeric complexes are identified,
in case these monomers are a part of a multi-protein assembly. From each such
complex, dimers that include the template monomers are extracted, and models of
dimers from the sought complex are built and refined. This method does not attempt
to build complexes of higher order than dimers but potentially can be combined with
combinatorial methods discussed in Section 6.3.1 or with assisted docking methods
from Section 6.3.4.

Another way to approach this problem is to try to predict the multimeric state of a
protein without predicting its actual 3D structure. An early attempt in this direction
involved classifying protein sequences into ones that form homodimers and ones
that do not based on amino acid properties using a decision tree [86]. The rationale
here is that protein–protein interaction interfaces have different physicochemical
properties than the rest of the protein surface, and this can be detected by a
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116 6 Structure, Composition, and Modeling of Protein Complexes

machine-learning classifier trained on an appropriate dataset (cf. Section 6.2.2 for
machine-learning tools involving known protein three-dimensional structure).
Another study that employed SVMs [87] showed superior performance compared
to the decision trees. Homodimers considered in these methods can be of course a
part of higher-order structures, but the algorithms make no attempt to predict the
actual stoichiometry.

6.3.4 Assisted Docking

As we have seen above (Section 6.3.1), information about approximate location of
interaction interfaces can dramatically improve the quality of complex reconstruc-
tion. For 3D-MOSAIC, for example, including information on one single interacting
residue pair (along with up to ten nonnative contacts to mimic experimental errors)
between every two subunits allowed to reconstruct 7 out of 10 test complexes [39].
This indicates that even noisy experimental data could be critical for prediction
success. Such experimental data could come in form of low-resolution EM and
cryoelectron tomography maps, cross-linking, small-angle X-ray scattering (SAXS),
or Förster resonance energy transfer (FRET) experiments. Computationally, incor-
poration of such restraints can be implemented in form of a weighted docking
algorithm ([88], cf. Chapter 4), where certain surface residues receive an additional
weight to favor docking poses that involve them, or subsequent filtering of the dock-
ing poses can be performed. Alternatively, one can fit high-resolution structures
of subunits directly into low-resolution EM maps [89–94] by performing more or
less exhaustive searches. Other methods first segment the EM volumes [95], and fit
individual subunits simultaneously [96].

ATTRACT-EM (Vries and [42]) has been specifically established to assemble large
multi-protein complexes with the help of EM maps based on an earlier docking tool
ATTRACT [97], an efficient algorithm with simplified side-chain representation,
and aims to perform flexible multi-protein docking. Starting structures are gener-
ated by random placement of subunits or are an output of another rigid assembly
method. The initial assembly is performed by placing the starting structures into the
EM maps using a Gaussian overlap model. Then refinement takes place that favors
both favorable interactions between the subunits (from the ATTRACT force field)
and the agreement with the EM map.

A similar approach has been adopted in the MDFF method [43], where the fit to
the EM maps is further improved with all-atom molecular dynamics (MDs) simula-
tions. This tool has been successfully applied for reconstruction of the HIV-1 capsid
at atomic resolution [98].

A version of the described above method PRISM, PRISM-EM [44], leverages EM
maps combined with information from complexes of homologs for multi-protein
assembly prediction. As in PRISM, subunits are added to a growing complex one
by one, taking the pairwise poses from homologous complexes and fitting them into
the EM map with the Situs software [99] that was previously developed for fitting
atomically resolved 3D structures into EM maps. Candidate subcomplexes are fil-
tered based on the interaction energies between the subunits, clashes, and their fit
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6.4 Conclusion and Outlook 117

in the EM map. Situs provides a score of how well the eventual assembly fits into the
given EM map that is adopted by PRISM-EM.

PROXIMO [45] leverages a different type of experimental constraints – the ones
coming from the radical probe mass spectrometry (RP-MS) experiments. In this
method, oxidizing agent is sprayed on the protein surface [100], and thus on a pro-
tein complex surface residues shielded from the solvent by other complex subunits
can be identified, which can be used as a source of experimental constraints on pair-
wise interactions between protein residues. PROXIMO uses a widely-used geometric
fit method [73] in combination with this information to constrain the complex
conformation space. A number of other methods use different labeling techniques
coupled with mass spectrometry as a source of similar geometric restraints [46, 47].

Experimental data on pairwise protein–protein interactions from high-throughput
screens, such as yeast two-hybrid (Y2H) or tandem-affinity purification coupled
with mass spectrometry (TAP-MS) assays, can also be used as additional restraints
for reconstruction of multi-protein assemblies [48]. Another source of such
restraints are crosslinking experiments [101, 102].

Finally, one of the most powerful and modern docking tools, HADDOCK [103]
also has a mode that allows for assembly of multi-protein complexes [49–51].
A feature that ensures HADDOCK’s success over the years is an ability to include
various constraints in the form of Ambiguous Interaction Restraints (AIRs) that
can be seamlessly incorporated into the docking process by differentiating between
the active residues (those believed to participate in the interface) and the passive
residues (those believed not to, cf. Chapter 4). The multi-protein mode of HAD-
DOCK allows to dock up to six subunits simultaneously using experimental or
bioinformatic (e.g. derived from a consensus interface prediction server CPROT
[104]) restraints. It can detect and optimize complexes exhibiting cyclic and
dihedral symmetries. These efforts can be further extended to create integrated plat-
forms for reconstruction of large macromolecular assemblies leveraging multiple
experimental restraints (e.g. [105], see also Chapter 7).

6.4 Conclusion and Outlook

Detailed resolution of multimeric protein complexes presents a challenge to
both experimental and computational approaches. Numerous studies have been
performed over the years to classify and predict such assemblies. With X-ray
crystallography still being the prime method of structural biology, a separate branch
of methods emerged to detect biologically relevant assemblies in its experimental
results. With the advent of cryo-EM methods, hybrid methods arose and gained
importance. It is to be expected that resolution of cryo-EM will get better with time,
eventually reaching atomic in the near future, and hence methods for interpreting
cryo-EM results, rather than fitting of structures resolved with other methods or
modeled computationally will get more attention.

On the computational side, with computing resources getting more easily avail-
able, it gets easier to run large docking or molecular dynamics experiments. Deep
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118 6 Structure, Composition, and Modeling of Protein Complexes

learning-based approaches also enter the field. Computational tools leveraging
the immensely successful AlphaFold pipeline [106] are also emerging for protein
complex reconstruction, but so far, in case of complexes with more than two
proteomers, are largely limited to small homomeric assemblies, such as trimers and
tetramers [107].
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7.1 Introduction

The cell machinery is organized in interconnected proteins that assemble into
protein complexes and functional networks. Structural information about these
protein assemblies in their native environment is crucial to understand the mech-
anisms that regulate cellular processes. Mapping molecular assemblies into highly
detailed models (at atomistic scale) will provide a meaningful description of the
functional mechanisms that orchestrate the cell biology. However, this challenge
cannot be addressed by any of the available techniques due to their intrinsic
limitations (Figure 7.1). In the last decades, in vitro approaches have dominated
most of structural biology. X-ray crystallography and Nuclear Magnetic Resonance
(NMR) spectroscopy have long been the standard methods used to obtain numerous
protein structures at atomic level, shedding light for the first time on unresolved
questions in molecular and cell biology. More recently, cryo-electron microscopy
(cryo-EM) has shown its potential to provide protein structures at high resolution
without the need for obtaining crystals, which has sped up the process considerably.
Despite great advances in resolving protein structures, these methods require
the isolation of the sample from its native environment (in vitro), and cannot
assess functionality under physiological conditions. Within the cell, proteins adopt
various conformations to establish transient interactions with other biological
molecules that are necessary for their function. Although in vitro techniques can
resolve structures at atomic level, they are biased toward conformations that can
be homogeneously isolated, thus underestimating the subpopulations of transient
dynamic states and limiting the mechanistic insight that can be derived.

Establishing a relation between structural features determined in isolation and
the functional activity of proteins in a native context is not trivial. To complement
the gap between resolution and functionality, in situ approaches are on the rise
to provide high-resolution measurements in a near-to-physiological context.

Protein Interactions: The Molecular Basis of Interactomics, First Edition.
Edited by Volkhard Helms and Olga V. Kalinina.
© 2023 WILEY-VCH GmbH. Published 2023 by WILEY-VCH GmbH.
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Figure 7.1 Techniques used in structural biology. Overview of the main methods used to
gather structural information of biomolecules. Only in vitro methods (gray) can achieve
atomistic resolution. In situ approaches (green) and observations in solution (purple) can
provide data in a functional context. Integrative structural biology (orange) can combine
information from both in vitro and in situ methods to achieve physiological data with a
better resolution.

In situ structural biology provides structural data of proteins or macromolecular
complexes without extracting them from their cellular environment (the term
in cellulo structural biology is also used).

In situ approaches can resolve heterogeneous populations of conformations and
they can explore the interplay with other components of the cell, such as the subcel-
lular localization, interaction with other biomolecules, and dynamics of assembly.
However, resolving protein complexes in their native environment is challenging.

Different in situ approaches have been developed to study the cell proteome
such as crosslinking mass spectrometry (CL–MS) and cryo-electron tomography
(cryo-ET). CL–MS uses chemical reagents to label peptides in close proximity. This
method can define the interface of short-lived protein–protein interactions and
conformational dynamics occurring in the cell. Cryo-ET applies EM to obtain 3D
reconstructions (tomograms) of cryopreserved biological samples. These recon-
structions are calculated from a set of 2D projection images of the same object,
separated by defined tilt angles. Multiple cryo-ET subtomograms capturing several
copies of the studied protein complex can be aligned and averaged to increase the
resolution of resolved structures. Unfortunately, inherent technical limitations
(e.g. chemical reactions and cryo-preservation) continue preventing CL–MS and
cryo-ET to visualize the dynamics of the cell machinery in vivo.
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7.2 Structural Biology Using Light Microscopy Methods

Light-based microscopy involves a broad family of techniques that have been
successfully used to study the structure of molecular assemblies. Although the
diffraction limit prevents light microscopy from spatially resolving two molecules
separated by less than ∼300 nm, different strategies have pushed the limits of these
methods to a resolutive power that is relevant for structural biology. For instance,
optical tweezers offer the possibility of measuring conformational changes at
the single-molecule level by the application of forces in the order of piconewton
scale [1]. Fluorescence microscopy techniques take advantage of fluorescent tags
to identify and track proteins directly in the cellular milieu. Interactions between
molecules can be studied through Förster resonance energy transfer (FRET),
which is able to measure distances between spectrally different fluorophores in the
range between 2 and 10 nm and a temporal resolution of a few milliseconds [2, 3].
Therefore, FRET is able to resolve structural dynamics between predefined labeled
elements of the assembly but it is not suitable to generally resolve 3D architectures
de novo. Localization microscopy identifies the centroid position of spectrally
different fluorophores in the image and estimates their separation. This method
can measure distances with a precision of 1 nm and essentially no upper limit in
the separation between fluorophores [4]. Localization microscopy allowed to map
the organization of the kinetochore subunits during metaphase [5]. The so-called
super-resolution microscopy methods have pushed the resolving power of light
microscopy to resolve fluorophores as close as 2 nm [6]. Localization microscopy
and super-resolution microscopy in general have succeeded to resolve large cellular
complexes with a 10–20 nm resolution [7, 8]. However, the relatively long time
needed for the acquisition of images and the inherent dynamics of the cellular
machinery prevented these approaches from being generally used to study protein
structures in living cells.

Live-cell fluorescent microscopy presents a unique ability to analyze the structure
of biomolecules in vivo. PICT (Protein interactions from Imaging of Complexes after
Translocation) is a live-cell imaging method that was originally developed to detect
and quantitatively characterize protein interactions by combining both live-cell
imaging and cell engineering. PICT is based on chemically induced translocation
of a protein complex of interest to a static intracellular anchor site [9]. It uses the
heterodimerization of FK506-binding protein (FKBP) and FKBP-rapamycin binding
domain (FRB) induced by the drug rapamycin for the recruitment of a FRB-tagged
bait protein (bait-FRB) to the platform defined by the RFP-FKBP-tagged anchoring
protein (anchor-RFP-FKBP) [10]. If the bait-FRB interacts with the GFP-tagged
prey (prey-GFP), dual-color fluorescent microscopy will detect an increase in the
colocalization of GFP and RFP signals upon rapamycin addition. PICT can be
integrated in sophisticated workflows to infer additional structural information of
large protein complexes.
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130 7 Live-Cell Structural Biology to Solve Molecular Mechanisms

In a recent work, a method based on PICT and localization microscopy was
developed to determine de novo the 3D architecture of protein assemblies [11]. The
dynamics in the cellular milieu challenge the structural characterization of cellular
complexes in vivo. To circumvent this, the PICT method employs engineered yeast
cells that harbor immobile anchoring platforms where the studied protein complex

1. Distance measurements  by PICT

Distance
measurements

as restraints

N iterations 

Clustering

y

z
x

y

z
x

y

z
x

2. Assigning random positions 3. Conjugate gradients optimizaion

d1

d2

d3

Figure 7.2 Positioning fluorescent tags using PICT. (1) The PICT method allows measuring
distances between fluorophores flagging the anchor site (RFP, red) and the termini of the
prey-GFP (green) from different orientations using fluorescence microscopy (created with
BioRender.com). (2) Tags are represented as spheres and randomly positioned in space.
(3) The conjugate gradients algorithm is used to trilaterate tag positions using the set of
distance measurements as restraints. This sampling step is iterated to explore the whole
space of solutions, each time starting from a random initial configuration. (4) The best
scoring solutions that fulfilled all restraints are filtered and superimposed to analyze the
ensemble of refined models. Solutions cluster in two populations of solutions that are the
mirror image of each other (bottom).

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by ibrahim

 ragab - C
ochrane G

erm
any , W

iley O
nline L

ibrary on [23/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://biorender.com


7.3 Hybrid Methods: Integrative Structural Biology 131

is recruited. Upon recruitment, PICT is capable of measuring the distance between
the RFP-labelled anchoring platforms and a subunit fused to GFP (prey-GFP) with
a precision of up to 2 nm by localization microscopy (Figure 7.2, Step 1) [9].

Depending on its position within the assembly, each of the bait-FRB used fixes
the complex in a specific orientation with respect to the anchoring platform
(Figure 7.2). The anchor-RFP-FKBP, which forms reproducible platforms inside the
cell, provides a spatial reference across samples. This reference and the controlled
anchoring orientation enables integrating the distance measurements to estimate
the 3D organization of the complex subunits (tagged to GFP) by trilateration.
Trilateration uses distances to a set of reference points to determine the location
of an object. The conjugate gradient optimization allows scouting all the possible
locations of the fluorophores (prey-GFPs) that are compatible with the distances to
the anchor-RFP-FKBP measured upon induced recruitment (Figure 7.2, Step 2).

While sampling, each tested model is scored according to the degree of match
with the input data. This allows filtering out the representative subpopulation of
best-scoring solutions compatible with all imposed restraints for a posterior analy-
sis and validation [11]. In comparison to X-ray crystallography, NMR, or cryo-EM,
the technical requirements and cost to perform PICT are few and widely available.
However, the method is restricted to those protein assemblies that can be efficiently
tagged and immobilized to the anchoring platform. In addition, although it is able to
study the spatial organization of complexes and their relationship with other struc-
tures in living cells, light microscopy can only detect and characterize fluorescent
labels. Because fluorescent tags are normally attached to the amino-termini (N-)
and carboxy-termini (C-) of proteins, light microscopy cannot directly inform about
other structural features such as secondary structure or folding of the studied pro-
teins. For instance, PICT can reconstruct an accurate 3D map of the fluorescent tags
that label the N- and C- termini of the anchored protein complex (Figure 7.2, Step 2),
but it cannot reconstruct the 3D structure of the assembly. In addition, trilateration
of the fluorescent tags results in two possible spatial configurations that are mirror
images of each other and equally in agreement with the distance measurements.
Measurement of distances cannot resolve this ambiguity (Figure 7.2).

Since each method has its own limitations, hybrid approaches that combine
in vitro and in situ structural information are becoming necessary to cross current
technical frontiers and to push further knowledge in cell biology.

7.3 Hybrid Methods: Integrative Structural Biology

Computational methods open up the opportunity to further analyze and integrate
larger amounts of data generated by life sciences. Integrative structural biology
combines data from different experiments to build a more informative depiction of
molecular assemblies. By using different sources of information one can represent
and describe the assembly with more accuracy and precision than with models
based on the individual experiments. The integrative structure determination is
a powerful approach for exploring and modeling molecular structures based on
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132 7 Live-Cell Structural Biology to Solve Molecular Mechanisms

theoretical methods and experimental data, with implications for our understanding
of cell biology [12].

To comprehend the integrative structure determination workflow, it is necessary
to understand what “model” and “modeling” means. Model is a representation of a
real-world assembly that is more informative than the input information on which it
is based, which allows extracting detailed features and making testable predictions
about future experimental observations. Consequently, modeling is a process of con-
verting some input information into a depiction (model) and its uncertainty [12].
Hence, modeling can be understood as an optimization problem that tries to maxi-
mize the accuracy and precision of the model while maintaining the complexity cost
of calculation. However, no modeling process can resolve an entire assembly without
some degree of uncertainty. Therefore, when modeling it is important to include in
the model the propagation of the uncertainty of the input data to measure accuracy.
This has been achieved robustly by exploring the conformational space of solutions
(models must be consistent with the input information) and not only the model that
fits the best with the input data.

The Integrative Modeling Platform (IMP) [13] is an open-source software
developed to model the structure of molecular assemblies, by integrating data
from diverse biochemical and biophysical experiments. The IMP software package
facilitates the scripting of integrative modeling applications, offering a set of tools
to develop new model representations, scoring functions, sampling schemes,
and analysis methods. Briefly, IMP divides the modeling workflow in four steps:
(i) gathering of data; (ii) model representation; (iii) finding models that satisfy the
constraints derived from the input data (sampling); (iv) analyses of resulting models
and validation. More information about how to model using IMP can be found at
the IMP website (http://integrativemodeling.org/).

Several methods based on docking have been also developed over the past few
years to study protein complexes. By performing computational docking experi-
ments it is possible to predict or to model the 3D architecture of a biomolecular
complex, starting from the structures of the individual molecules in their free,
unbound form [14, 15] (see also Chapters 4 and 6). For example, a recent work using
molecular docking modeled antibody–antigen complexes by using information
from complementary-determining regions and binding epitopes [16]. This workflow
was applied to a dataset of 16 complexes and benchmarked its performance by
comparing four different docking software suites (ClusPro, LightDock, ZDOCK,
and HADDOCK). Other docking-based works have shown its potential to model
membrane-associated protein assemblies [17] or to combine several bioinformatic
approaches of homology modeling and docking to model the structures of protein
complexes identified in protein interaction networks [18, 19].

Different integrative modeling strategies have been implemented when single
experiments were not enough to explain the assembly of study. For instance, the
molecular architecture of the 26S proteasome was determined by combining data
from cryo-EM, X-ray crystallography, and proteomics data about its subunit com-
position and comparative protein structure models of the component proteins [20].
Another example where the value of integrative modeling is illustrated was the
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7.4 Integrative Modeling: The Case of the Exocyst Complex 133

reconstruction of the topology and structure of the yeast nuclear pore complex
(NPC), a large assembly that includes more than 30 types of different proteins
[21–23] and more than 450 individual proteins in total. To determine the NPC
structure, data from multiple experiments were combined, including stoichiometry
from protein quantification, protein proximities from subcomplex purification and
CL–MS, protein positions from immuno-EM, and the overall NPC shape from
cryo-ET. These models provided fundamental new insights into the function of the
NPC controlling the entry and exit from the nucleus of macromolecules, and also
shed light on its evolution [22, 24].

Section 7.4 is dedicated to a practical case in which the integrative modeling pro-
tocol was applied to reconstruct de novo the 3D architecture of the exocyst complex
in living cells [11].

7.4 Integrative Modeling: The Case of the Exocyst
Complex

Exocytosis is a vesicle trafficking pathway that delivers cargo to the plasma mem-
brane and the extracellular space (Figure 7.3). This cellular pathway is highly
conserved across all eukaryotes and it is essential for cell survival, mediating
fundamental processes such as cell growth, cell migration, neural development,
and tumor invasion [25, 26]. The exocyst is a hetero-octameric protein complex that
mediates the tethering of post-Golgi secretory vesicles to the plasma membrane
during exocytosis [27–29]. The exocyst consists of eight conserved subunits: Sec3,
Sec5, Sec6, Sec8, Sec10, Sec15, Exo70, and Exo84. This protein complex promotes
the assembly of the exocytic soluble N-ethylmaleimide-sensitive factor attachment
protein receptor (SNARE) proteins complex, which in turn induces membrane
fusion and the pore formation for the cargo to be released [30, 31]. Mutations of

Transport Tethering Fusion Recycling

Exocyst

Intracellular

Extracellular

1

2

3

4

Figure 7.3 Main steps of exocytosis. Representation of the main steps of exocytosis:
(1) vesicle transport from the Golgi apparatus to the cell membrane; (2) vesicle tethering to
the membrane by the exocyst complex; (3) fusion pore formation and cargo delivery;
(4) vesicle recycling (created with BioRender.com).
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134 7 Live-Cell Structural Biology to Solve Molecular Mechanisms

exocyst subunits result in the accumulation of exocytic vesicles in the cell, and
its malfunction has been associated with a number of human pathologies includ-
ing cancer, Joubert Syndrome, and Polycystic Kidney Disease [32–34]. Despite
the importance of the exocyst, the lack of structural information has prevented
addressing the molecular mechanisms of exocyst function and regulation.

In a recent study, PICT and structural modeling were combined to map, in living
cells, the functional 3D architecture of the exocyst complex bound to a vesicle [11].
In each PICT measurement, one of the exocyst subunits was tagged at its N- or
C-terminus with GFP. Therefore, N- and C-termini of the exocyst subunits were
imaged with respect to the static anchoring sites, also tagged with RFP, subsequent
to recruiting the ensemble in all possible orientations (i.e. using a different bait-FRB)
(Figure 7.2, Step 1 and Figure 7.4, Step 1). Then, using localization microscopy, the
distances between the anchor-RFP-FKBP and the GFP tags were estimated with a
precision below 5 nm. Taking advantage of the IMP conjugate gradient optimization
algorithm, distance measurements obtained by PICT allowed positioning of the flu-
orescent tags in the 3D space by trilateration (GFP fused to the exocyst subunits; RFP
fused to the anchoring platform) (Figure 7.2). The selected solutions were clustered
according to their similarity, and as expected, they converged in two populations of
solutions that were the mirror images of each other and that fulfilled the distance
measurement restraints (Figure 7.2, Step 3). Consequently, only one of the two clus-
ter solutions was arbitrarily selected for further progress in the modeling pipeline.

As explained earlier, PICT distance measurements alone can only describe the
relative position of the fluorescent tags that have been imaged. The architecture
of the assembly was modeled by integrating additional structural information
for each subunit (Figure 7.4, Step 1). At this point, as atomic structures were not
available for most of the exocyst subunits, each subunit was represented as a flexible
string of beads (Figure 7.4, Step 2). Structural features of the subunits retrieved

Figure 7.4 Integrative modeling workflow to compute the 3D architecture of the exocyst.
(1) Fluorescent tag positions derived from PICT data were used to position the termini of
the exocyst subunits they were fused to. Structural information of exocyst subunits was
used for the model representation (made with https://predictprotein.org/). (2) Each subunit
was represented as a flexible string of beads, where the length and spacing between beads
varied according to the structural features derived from each subunit sequence. Source:
Adapted from Picco et al. [11]. (3) Initially each bead was randomly positioned in space
(left). Each subunit was imposed to be a concatenated string of beads, whose termini
localized according to the positions of the fluorescent tags as derived from the PICT data.
Clashes between beads were penalized by using excluded volume restraint. The positions
of the beads within each subunit were optimized several times using conjugate gradients,
resulting in an optimized model of the exocyst architecture (right). This process was
iterated N = 50,000 times to cover all the space of possible solutions that were in
agreement with the input restraints. (4) Solutions for the exocyst architecture were filtered
to identify those models with best IMP score and that fulfilled all the input restraints.
Exocyst subunits are represented as bundles to help visualize the resulting ensemble of
solutions (left). Analysis and validation were performed by assessing biochemical data (such
as protein–protein interactions between the C-termini of Exo70-Sec6 and Sec3-Sec8)
(center). Structural comparison of models was performed by hierarchical clustering (right).
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from deposited X-ray structures, homology modeling, and secondary structure pre-
dictions, were considered to define the number of beads representing each subunit
(Figure 7.4, Steps 1 and 2). To determine the 3D architecture of the exocyst bound to
the vesicle, tag positions were used as scaffold to locate the termini of each subunit
in the 3D space (Figure 7.4, Step 3). Again, the modeling workflow was iterated to
exhaustively explore the possible space of conformations for the subunits. After fil-
tering best scoring models, it was possible to build the ensemble of best solutions
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136 7 Live-Cell Structural Biology to Solve Molecular Mechanisms

and reconstruct the 3D architecture of the assembly (Figure 7.4). The in situ 3D
architecture of the exocyst complex provided relevant insights into the tethering
of secretory vesicles. When it binds a secretory vesicle, the exocyst subunits adopt
an extended conformation that allows them to interact with one of the termini at
the core of the complex and to bind the vesicle with the other termini of Sec10 and
Sec15. Given the position of those exocyst subunits that bind molecular landmarks
(lipids and proteins) in the plasma membrane (i.e. Sec3 and Exo70), the model sug-
gested that the vesicle establishes direct contact with the plasma membrane while
it is sustained by the exocyst. At the same time, this work is a practical example of
integrating live-cell imaging with other methods to overcome unresolved questions
in cell biology. Unfortunately, data obtained by PICT cannot determine which of
the mirror images correspond to the true architecture of the cellular exocyst com-
plex. Additional hybrid approaches combining both in situ and in vitro are needed
to overcome such technical limitations.

7.5 Comparing the In Situ Architecture of the Exocyst
with a High-Resolution Cryo-EM Model

Consecutive to the exocyst reconstruction using PICT, another study combined
cryo-EM, CL–MS, and in silico comparative modeling to build a reconstruction of
the purified exocyst complex [35]. This approach captured structural features of
the exocyst at a near-to-atomic resolution, including folding of the subunits and
organization within the complex. For instance, this in vitro model showed that
eight exocyst subunits fold in helical bundles and are organized in two modules
of four subunits each (tetramers), in agreement with previous studies [27, 36].
While it was not possible to assess the functional state of the purified exocyst,
the in vitro reconstruction allowed us to discern the mirror image ambiguity of
the reconstruction in living cells (Figure 7.5A,B). This allowed exploiting the
complementarity between the in vitro and in situ models to gain insight into the
molecular mechanism of the exocyst [37].

The location and organization of the two tetrameric modules in the recon-
struction done by PICT are in agreement with previous biochemical data and the
cryo-EM structure (Figure 7.5B). Nonetheless, superimposition of both the in situ
and the in vitro models showed relevant differences. Although both tetrameric
modules superpose well with their counterpart, there is a significant deviation of
their relative position. The reconstruction of the isolated exocyst shows a compact
“closed” conformation with the two modules packed against each other, while
the live-cell architecture of the exocyst bound to a vesicle presents an “open”
conformation where module II has rotated about 69∘ with respect to the “closed”
conformation found in vitro (Figure 7.5C). These differences in the arrangement
of the two modules suggest that conformational dynamics are necessary for the
exocyst to become functional. For instance, although Exo70 and Sec10 occupy
equivalent locations within the in vitro and the in situ reconstructions, the two
subunits adopt different conformations in each model. This suggests that, in
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Figure 7.5 Comparative analysis of the exocyst architecture in situ and in vitro. (A) The two
mirror images of the exocyst architecture (a, c) obtained from in situ PICT data [11] and the
cryo-EM model (b) obtained in vitro [35]. (B) Representation of the exocyst complex with
module I (green) and module II (gray) (a). The cryo-EM model identified the correct mirror
image for the exocyst architecture reconstructed in situ (b). (C) Sec6 and Sec8 were used to
superimpose in situ and in vitro models. Module II is rotated by 69∘ when comparing the
two architectures.
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138 7 Live-Cell Structural Biology to Solve Molecular Mechanisms

addition to the rotation of one module, the tethering of secretory vesicles involves
structural dynamics of Exo70 and Sec10. This hypothesis was further supported by
a mutagenesis analysis that showed that Exo70 undergoes a conformational change
necessary for the exocyst activation [38]. Furthermore, a recent integrative study
corroborated fluctuations in some exocyst subunits, such as Sec6 and Exo70, when
comparing their density model with the cryo-EM structure, suggesting that these
subunits undergo conformational dynamics [39].

The analysis of the exocyst illustrates the complementarity between in vitro and
in situ approaches and the mechanistic insight that can be derived from integrative
methods. Together, the near-atomic structure of the isolated exocyst and the in situ
architecture of the exocyst bound to a vesicle, suggest that the activation of the com-
plex requires structural switches involving the rotation of one tetrameric module
with respect to the other one and the rearrangement of Exo70 and Sec10 subunits.

7.6 Discussion and Future Perspectives

Our understanding of the cellular machinery relies on gathering sufficient data
that are capable of capturing molecular mechanisms in detail. On the one hand,
although in vitro techniques have succeeded in revealing the structure of large
protein complexes, intrinsic limitations of these methods still prevent atomic-level
observations in a near-physiological context. On the other hand, those techniques
allowing to study cellular processes under near-to-native conditions (in vivo and in
situ methods) do not provide enough structural detail to decipher the basis of molec-
ular mechanisms (Figure 7.1). Approaches capable of bridging the gap between
resolution and biological relevance remain to be discovered. Exploring the structure
of protein complexes and their behavior in the cellular context may be achieved by
combining different techniques. Integrative approaches have a number of advan-
tages over traditional methods to resolve functional molecular mechanisms with
detailed information. In the last decade, significant improvements in cryo-EM have
revolutionized the way to obtain molecular structures at remarkable resolution.

Simultaneously, cryo-ET reconstructions and subtomogram averaging have
permitted the structural analysis of complex structures in the cell, providing rele-
vant contextual information of the studied proteins. These two techniques can be
combined with light-based methods such as fluorescence microscopy and live-cell
imaging, which complements high-resolution structures with quantification of the
dynamics of cellular events in situ. Thus, the development of new hybrid techniques
can be a good alternative in the absence of in vivo high-resolution data.

Despite integrative methods having the advantage of combining available infor-
mation about the system of study, obtaining the best depiction is not always trivial.
When combining information from different sources, the challenge remains in
deciding which data should be included in the modeling process and in which way
to avoid misinterpretations in the posterior analysis. Currently, we are placed at an
inflection point where computational methods are representing an important piece
in biological research. In the past decade, several initiatives have formed to provide
user-friendly frameworks to easily perform integrative modeling pipelines, such as
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IMP and HADDOCK. Further improvements in computing, optimizing, scoring,
validating, visualizing, and dissemination must be achieved.

The accelerated improvement of machine learning-driven alignments, classifica-
tion, and segmentation methods are opening new avenues to tackle the limitations in
structural biology from innovative perspectives. Recent protein structure prediction
approaches based on artificial intelligence (AI) have solved some challenges such
as the problem of ab initio fold prediction. In the last biennial global competition
called Critical Assessment of protein Structure Prediction (CASP), the last version
of the deep-learning-based approach AlphaFold2 ([40] – DeepMind Technologies)
succeeded to determine protein structures with an average error (root mean square
deviation [RMSD]) of approximately 1.6 Å. This breakthrough may represent a
revolution in the way of obtaining atomic models of protein complexes. However,
machine learning approaches rely on learning datasets that are built from static in
vitro structures, missing the dynamics of biological structures and the flexibility of
large complexes. A single methodology is unlikely to time-resolved dynamic and
short-lived protein assemblies at atomic resolution. Technical innovations, together
with the development of novel hybrid approaches, will be the key to deciphering
the molecular bases that orchestrate the cellular machinery in its entire form.

The case of the exocyst is a clear example of how integration of in situ and in vitro
data may provide relevant insights on the structural dynamics that drive cellular
processes, but also on the technical gaps that remain to be filled. Integration of in
situ and in vitro structures proved to be efficient in retrieving mechanistic insight
such as the conformational switches that mediate the activation of the exocyst.
These are fundamental mechanistic details to understand the chain of events that
control exocytosis. Nevertheless, the exocyst is a component of the larger protein
network that regulates this process. The coordinated action of tens of proteins
controls the transport, tethering, fusion, and subsequent delivery of biomolecules
to the cell membrane and extracellular space. The structural basis that dictates the
interplay between the exocyst and this complex and dynamic exocytic machinery
remains to be elucidated. Integrative approaches capable of combining the latest
technical advances in different fields of research will become indispensable to shed
light on underlying mechanisms that explain cell biology, from exocytosis to all
other cellular processes.
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Kinetics and Thermodynamics of Protein–Protein Encounter
Nicolas Künzel and Volkhard Helms

Saarland University, Center for Bioinformatics, Saarland Informatics Campus, Postfach 15 11 50, 66041
Saarbrücken, Germany

8.1 Introduction

This chapter follows up on two excellent ground-breaking review articles. In 1997,
Gilson and colleagues laid out the statistical-thermodynamic basis for the computa-
tion of biomolecular binding affinities. These fundamental principles apply equally
well to complexes where small molecules (e.g. drugs) bind to proteins and larger
ensembles when two or more proteins bind to each other [1]. In 2009, Schreiber
and colleagues focused their review on protein–protein association and discussed
computational as well as experimental techniques and concepts [2]. All that con-
tent would be worth repeating here, but this is obviously not possible due to space
constraints. Instead, this chapter reviews modern methodological developments and
their application to study the energetics and kinetics of protein–protein association
and dissociation.

8.2 Thermodynamic Ensembles and Free Energy

This section gives an introduction in the concept of thermodynamic ensembles
and their connected state functions, the free energies. The focus is placed on the
isothermal–isobaric ensemble in which most biological experiments are performed.
Afterwards, the Jarzynski equality is explained that is a special equation allowing
to calculate equilibrium free energies from non-equilibrium work values which are
later on used when analyzing the performed alchemical simulations.

The field of statistical mechanics links the classical microscopic states of a sys-
tem to the macroscopic observables which can be measured in experiments. These
can be thermodynamic, structural, and dynamical properties. A key concept of sta-
tistical mechanics is thermodynamic ensembles [3] that characterize the probabil-
ity distribution for all possible microscopic states of a system [4]. Ensembles can
be defined for any possible set of external constraints. The best-known ones are
the microcanonical (fixed number of particles N, volume V , and total energy E),

Protein Interactions: The Molecular Basis of Interactomics, First Edition.
Edited by Volkhard Helms and Olga V. Kalinina.
© 2023 WILEY-VCH GmbH. Published 2023 by WILEY-VCH GmbH.
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144 8 Kinetics and Thermodynamics of Protein–Protein Encounter

canonical (fixed N, V , and temperature T), the isoenthalpic-isobaric (fixed N, pres-
sure P, and entropy S), the isothermal–isobaric (fixed N, P, T), often called NPT, and
the grand canonical (fixed V , T, and chemical potential 𝜇) ensembles. Because most
experiments are performed in the isothermal–isobaric ensemble, we will focus on
this one in the following.

As a start, we briefly summarize the laws of thermodynamics. The first law states
that the internal energy change ΔU

ΔU = Q + W (8.1)

results from the work W the surrounding performs on the system and the heat Q
that is added to the system during a process. This first law basically describes energy
conservation, i. e. energy is only transformed from one form to another but can never
be destroyed or created.

The second law of thermodynamics discusses the total entropy S (a state variable),
also called disorder, of a system. It states that S cannot decrease in isolated systems,
i. e. when there is no exchange of energy or matter with the surrounding. Another
wording is that the heat from a warmer body will naturally flow to a colder one. The
second law reads

ΔS ≥
Q
T

(8.2)

where T is the temperature. This means that the change in entropy equals the
amount of heat Q added to the system with respect to the temperature for reversible
processes. For irreversible processes the entropy exceeds it.

8.2.1 The Isothermal–Isobaric Ensemble and the Gibbs Free Energy

One can think of isobaric systems as being coupled to external pistons that enable
to compress or expand the volume of the system to keep the internal pressure P con-
stant. Analogously, isothermal systems can be viewed as being coupled to external
thermal reservoirs exchanging heat with the system to keep the internal tempera-
ture T constant. The respective state function or thermodynamic potential of the
isothermal–isobaric ensemble is the Gibbs free energy G(N,P,T) that is connected to
the particle number N, the pressure P, and the temperature T via

dG = 𝜇dN + VdP − SdT (8.3)

where 𝜇 is the chemical potential, V is the volume, and S is the entropy. G is labeled
“free” energy because it denotes the amount of energy that is “free” to perform work
at a constant temperature T and pressure P [5]. The term was coined by Hermann
von Helmholtz [6]. The Gibbs free energy is related to the isothermal–isobaric par-
tition function Δ by

G(N,P,T) = − 1
𝛽

lnΔ(N,P,T) (8.4)

where 𝛽 = 1∕(kBT) is the inverse temperature with the Boltzmann constant kB. For
a mathematical derivation and further background on ensembles, their partition
functions and their interconnection using Legendre transformations, the reader
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8.2 Thermodynamic Ensembles and Free Energy 145

is referred to [3]. Knowing the Gibbs free energy G and its change ΔGAB between
two system states A and B directly enables one to calculate many macroscopic
observables of a given isothermal–isobaric system and is thus key to understand-
ing macroscopic systems and processes. These are, for example, the enthalpy
H = −𝜕 ln(Δ(N,P,T))∕(𝜕𝛽), the heat capacity CP = 𝜕H∕𝜕T, and the chemical
potential 𝜇 = (𝜕G∕𝜕N)P,T to name just a few.

The change in free energy (the free energy difference) can tell if energy must be
added to the system in order for a reaction to happen or if it occurs spontaneously.
The free energy difference tells, for example, if a chemical compound is a promising
drug candidate [3] or if two protein domains form a stable interaction. The stan-
dard binding free energy differenceΔG0

bind is also directly connected to experimental
observables, such as the equilibrium dissociation constant KD

ΔG0
bind = −kBT ln(c0KD) (8.5)

with the standard concentration c0 = 1 mol l−1 ≈ 1∕1661 Å−3.
It is possible to express the free energy as a function of reaction/generalized

coordinates of the system, often also called collective variables (CVs). Depending
on the process one is interested in, these can be, for example, angles, distances,
and root mean squared deviations (RMSDs), or also a parameter of the system
Hamiltonian, such as Lennard-Jones interactions. These coordinates spanfree
energy hypersurfaces, which contain information about stable conformers of the
system (with respect to the chosen coordinates) and their relative stability, barriers,
and minimum-free-energy paths in-between them. The derivative of the free energy
along with a CV is the ensemble-averaged force [7], i.e. the force along with a CV
averaged over all configurations of a system, whereby the free energy along with a
CV is often called potential of mean force (PMF). The average force is the first part of
the instantaneous force acting along with the CV, the second part is a random force
with zero average. It includes the fluctuations of all additional degrees of freedom
and thus enforces the progression of the CV. These dynamics take place along with
the time-independent PMF [8]. Generally, one can obtain the free energy along
with a reaction coordinate 𝜉 from the probability density function P(𝜉) of the CV
using [9]

G(𝜉) = −kBT ln P(𝜉) (8.6)

if the sampling of the phase space is sufficient, i.e. the simulation is sufficiently long
and was not trapped inside local free energy minima. However, this does not mean
that the resulting free energy is a meaningful quantity. If 𝜉 was chosen poorly then
G(𝜉) will be meaningless in terms of describing the actual system states. There are
two major requirements for CVs in molecular dynamics simulations. The relevant
metastable states as well as the transition states between them have to be distinct
regions in CV space. Thus, they have to be energetically separate regions in the cho-
sen space. In contrast, if different metastable states are projected onto the same CV
space, energy barriers are integrated out and major sampling problems occur when
using CV-based sampling methods discussed below [10].
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146 8 Kinetics and Thermodynamics of Protein–Protein Encounter

8.3 Overview of Computational Methods to Determine
Binding Free Energies

In this section, we will introduce several computational methods to determine bind-
ing free energies of protein complexes. These are, often, also applicable to studying
the binding of small molecules and peptides to proteins or DNA. If you are interested
in a specific discussion of the binding of small molecules to proteins, please refer
to Chapter 14 by Michael Hutter. Furthermore, we will concentrate on methods to
determine binding free energies for complexes where the binding modes are already
known. For methods to determine binding modes by molecular docking please refer
to Chapter 4 by Martin Zacharias.

In principle, it is possible to obtain binding free energies using unbiased long
molecular dynamics (MD) simulations. Most commonly, however, the time scales
of binding and unbinding are too long to be sampled on common simulation
hardware. In recent years, specialized hardware was developed that allowed
to conduct millisecond long trajectories [11, 12] of solvated protein systems in
atomistic detail. Notably, such simulations have been recently applied to study
the reversible association and dissociation kinetics of the five protein–protein
complexes; barnase–barstar, insulin dimer, ras-raf RBD, RNase HI-SSB-Ct, and
TYK2-pseudokinase by atomistic MD simulations in explicit solvent [13]. The
authors performed dozens of conventional MD simulations with aggregated simu-
lation times of hundreds of microseconds. In addition, they performed “tempered”
binding simulations, whereby “the strength of interactions between the protein
monomer atoms, and sometimes between the protein monomer and solvent atoms,
[was] scaled at regular time intervals using a simulated Hamiltonian tempering
framework” [13]. This scaling was adjusted to allow dissociation from long-lived
bound states to occur within hundreds of microseconds rather than days. Observing
reversible binding and unbinding events yielded the following general picture. One
may have thought that associating proteins could in principle form an encounter
complex at an arbitrary interface and proceed from there to the native interface
without dissociating by means of an extensive search [13]. Instead, the authors
observed that “in successful association events the encounter complexes tended to
form rather close to the native interface.” On the other hand, encounter complexes
that would not later reach the native interface formed in a wide variety of relative
orientations. At present, this specialized hardware is too expensive for the normal
scientist to work with and other methods have been developed to deal with the
sampling problem. In the following, we will give an overview of different simula-
tion methods, so-called enhanced sampling methods, which allow the system to
overcome barriers in free energy, thus moving out of local or the global minima,
which then enables one to calculate binding free energies in silico.

In comparison to association and dissociation of protein–small molecule,
protein–peptide, or protein–RNA complexes, the association and dissociation
of protein–protein complexes formed from globular monomers often have the
advantage that the individual proteins have relatively stiff overall structures. Thus,
fewer degrees of freedom have to be sampled to obtain reasonable binding free
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8.3 Overview of Computational Methods to Determine Binding Free Energies 147

energies from simulations. Yet, in recent years, more and more interactions between
intrinsically disordered regions of proteins with other proteins have been detected,
which leads to a much greater number of degrees of freedom that have to be
sampled. A further disadvantage is the size of the system that has to be simulated
leading to larger simulation boxes and thus more particles have to be taken into
account.

There exist two major forms of binding free energy methods. Methods that are
used to calculate absolute binding free energies, i. e. the change in free energy that
results when a ligand binds to a receptor, and methods used to calculate relative
binding free energies, i. e. the difference in absolute binding free energy between
two ligands binding to the same receptor. Even though both are usually called free
energies, the former is a free energy difference between the bound and unbound
states and the latter is even a difference of free energy differences.

8.3.1 Coarse Graining

One way to speed up simulations is to reduce the number of degrees of freedom of
the system. This is the reason behind coarse-grained simulations, where a single
particle imitates the physicochemical properties of a group of atoms [14] thus
reducing the amount of particles in the system and additionally lowering the bond
vibration frequencies enabling to use a larger time step in the simulations. In
the popular Martini force-field [15, 16], four non-hydrogen atoms are combined
into one particle [17]. Such force fields exist for proteins, biomembranes, nucleic
acids and carbohydrates. An important shortcoming of coarse-grained models is
that they are insufficient in describing atomic details and can, thus, not explain
certain detailed aspects of protein–ligand as well as protein–protein binding even
though coarse-grained force fields are getting better in describing these interactions
allowing to also study protein–ligand interactions [18]. A common coarse-graining
method is called Brownian Dynamics (BD) and will be explained in Section 8.3.1.1.

8.3.1.1 Brownian Dynamics
At large separation distances, the relative motion of two proteins can be described as
diffusive motion subject to their relative interaction. The Brownian Dynamics (BD)
method is a suitable method to describe the diffusive motion of multiple interacting
particles by iteratively propagating the Ermak–McCammon algorithm [19]. Here,
the translational Brownian motion of two or more interacting proteins is simulated
as the displacement Δr of the particle positions r during a time step Δt according to
the relation

Δr = DΔt
kBT

F + R, with ⟨R⟩ = 0 and ⟨R2⟩ = 6DΔt (8.7)

where F is the systematic interparticle force, kB is the Boltzmann constant, T is
the temperature, and R is the stochastic displacement arising from collisions of the
proteins with solvent molecules that are not represented explicitly. Analogous
formulas

Δwi =
DiRΔt

kB
Tij + Wi, with ⟨Wi⟩ = 0 and ⟨W2

i ⟩ = 6DiRΔt (8.8)
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148 8 Kinetics and Thermodynamics of Protein–Protein Encounter

are used to generate the rotational motions of the two proteins in terms of rotation
angle wj = (w1j,w2j,w3j), torque Tij acting on protein i due to protein j, and rota-
tional diffusion constant DiR of each protein i (i, j = 1,2, i ≠ j), where Wi is again a
stochastic term. The BD method was adapted by the McCammon and Wade groups
to study the relative motion of one protein around another protein that is kept fixed
as a diffusive motion of a rigid body subject to external forces [20, 21]. A popular
software package for performing BD simulations is the SDA package by the Wade
group [22].

From the observed dynamics, one computes association rates for the diffusive
encounter of two particles using

k = k(b)𝛽∞ (8.9)

with the rate k(b) at which the reacting particles reach a distance b for the first
time [23]. This distance is taken large enough so that the potential of mean force U(r)
between the two particles is only a function of their distance, not of their orientation.
In this case, k(b) can be determined straightforwardly from

k(b) = 4𝜋D
[
∫

∞

b

dr
r2 exp

[
U(r)
kBT

]]−1

(8.10)

The factor 𝛽∞ indicates how many of the particles located on a spherical surface
with distance b to the binding interface will actually bind. It can be derived from
explicit BD simulations. In principle, the kinetics of protein–protein interaction is
determined by their diffusive properties. On the other hand, proteins that carry elec-
trostatically complementary charges or dipoles may reach 100–1000 times higher
association rates kon than what is expected from the Smoluchowski equation for a
purely diffusive motion. This behavior is termed “electrostatic steering”.

BD has been shown to successfully reproduce experimental kon rates for the asso-
ciation of electrostatically complementary protein–protein pairs [24]. In this regard,
a successful binding event is typically detected as soon as 2 – 4 out of a given set of
critical inter-protein contacts are established [24]. Commonly, BD techniques apply
a continuum model for the solvent and explicitly treat intermolecular electrostatic
interactions between the diffusing particles. To be able to describe subtle effects
resulting from the molecular fine structure of the solvent at close distances from
the diffusing particles, the SDA package also implements terms for short-range
electrostatic desolvation interactions and for short-ranged hydrophobic desolvation
interactions.

Using a large ensemble of BD trajectories, one may characterize the underlying
protein–protein interaction free energy landscape by post-analysis of the trajec-
tories. The basic procedure was presented in ref. [25] and then applied to the
association of wild-type and mutant barnase–barstar complexes [26]. The method
was also implemented into the SDA package. Recently, Ötztürk and Wade have pre-
sented BD simulations of the diffusional association of wild-type and mutants of the
globular domain of the linker histone H1 from mouse to a nucleosome [27]. From
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8.3 Overview of Computational Methods to Determine Binding Free Energies 149

these simulations, they reported bimolecular association rate constants (kon), the
Gibbs binding free energy (ΔG), and the dissociation rate constant (koff) for the
formation of a diffusional encounter complex between the nucleosome and the his-
tone. They found that the BD simulations were able to help in predicting the relative
effects of single point mutations on fluorescence recovery after photobleaching
(FRAP) recovery times related to protein binding.

The BD method can of course also handle more than two proteins. For example,
McGuffee and Elock applied BD simulations to study diffusional dynamics of more
than 1000 proteins reflecting the most abundant macromolecules of the Escherichia
coli cytoplasm [28]. By calibrating the BD simulations to reproduce the translational
diffusion coefficients of green fluorescent protein (GFP) observed in vivo, the
authors used snapshots of the simulation trajectories to compute the cytoplasm’s
effects on the thermodynamics of protein folding, association, and aggregation
events and found that their simulation model successfully described the relative
thermodynamic stabilities of proteins measured in E. coli. Subsequently, the group
of Michael Feig has pushed brute-force all-atom explicit solvent MD simulations
to study systems of related size (100 million atoms and more) on timescales of
hundreds of nanoseconds [29].

The benefits of BD simulations over atomistic simulations today are the ability to
generate superior sampling of relative particle positions and orientations, the abil-
ity to extend system sizes to dimensions that are currently not reachable in explicit
solvent simulations, and the beauty of a simplistic description that can well describe
many interesting biological phenomena.

8.3.2 Endpoint Methods

So-called endpoint methods sample the bound and unbound states of a system and
then calculate the binding free energy difference between these two states using
approximations of the system energy. The simplest method is the linear response
approximation or linear interaction energy (LIE) [30, 31]. It is usually applied
to obtain protein–ligand free energies and is not discussed further here. Popular
methods for evaluating protein–protein and protein–ligand binding free energies
are the molecular mechanics with Poisson–Boltzmann and surface area solvation
(MM/PBSA) [32, 33] and the molecular mechanics generalized Born surface area
(MM/GBSA) [32, 33] methods, which will be explained in Section 8.3.2.1.

8.3.2.1 MM/PBSA/MM/GBSA
The MM/PBSA [32, 33] and MM/GBSA [32, 33] methods combine molecular
mechanics force fields with continuum solvation models to estimate protein–protein
and protein–ligand binding affinities. The free energy of a system state is evaluated
using [32–34]

G = Ebonded + Eelectrostatic + EvdW + Gpolar + Gnon-polar − TS (8.11)
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150 8 Kinetics and Thermodynamics of Protein–Protein Encounter

The terms Ebonded (bond, angle and dihedral energy), Eelectrostatic (electrostatic
energy), and EvdW (van der Waals interactions) are the corresponding standard
molecular mechanics (MM) energy terms. Gpolar and Gnon-polar form the solvation
free energy. The distinction between MM/PBSA and MM/GBSA is that the former
one uses the Poisson–Boltzmann (PB) equation and the latter the generalized Born
(GB) model to estimate the polar solvation term. The non-polar solvation is esti-
mated using the solvent-accessible surface area (SASA). The last term includes the
system temperature T as well as the entropy S. This is analyzed using normal-mode
analysis of the systems vibrational frequencies for a standard state to be comparable
to experimental values [35]. To obtain binding free energies, it is necessary to
calculate the free energies of the complex, the unbound ligand and the unbound
receptor based on (8.11) [36]. Commonly only the complex is simulated and the
ensemble averages for the free ligand and free receptor are obtained by removing
the relevant atoms from the system before the analysis. This leads to

ΔGbind = ⟨Greceptor+ligand − Greceptor − Gligand⟩receptor+ligand . (8.12)

and to more precise results due to cancellation of intramolecular terms and reduces
the required simulation time but ignores the energetic effects of relevant structural
changes of the receptor and/or ligand upon binding [34].

Overall, MM/PBSA and MM/GBSA often give better results than LIE, docking,
and scoring, but worse ones compared to more advanced techniques, e.g. pathway
methods. Depending on the system, reasonably good binding free energy values
can be obtained, but for some systems, the methods fail. It has been shown that
reasonable results can already be achieved using less than 100 repeated simulations
with a length of around 200 ps each [34, 37] and therefore much faster than using
pathway methods discussed below. The overall coefficient of determination for
the whole PDBbind database was shown to be r2 = 0.3 but the individual results
differed strongly, r2 = 0.0 − 0.8 [34, 38]. MM/PBSA and MM/GBSA highly depend
on the choice of the dielectric constant for the electrostatic energy and the used
force field. Additionally, the binding free energy is calculated as a difference of
large values, and therefore, the precision of the result is very low when the standard
deviations of the individual terms are high and ligands with similar binding affini-
ties cannot be compared successfully. For a deeper discussion of the MM/PBSA
and MM/GBSA methods, their application and possible issues, the reader is
referred to [34].

8.3.3 Potential of Mean Force/Pathway Methods

Contrary to the just discussed endpoint methods, free energies of protein–protein
binding can also be computed using so-called pathway methods where the free
energy is expressed as a function of geometrical reaction coordinates. Such simu-
lations involve a considerably larger computational effort. In most cases, they are
more accurate than the former. Most of the following methods are not only used to
accelerate binding and unbinding processes but are, often, also used in simulations
of protein folding.
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8.3 Overview of Computational Methods to Determine Binding Free Energies 151

Multiple reviews for these methods and their comparison have been published
[10, 39–41].

8.3.3.1 Thermodynamic Integration
One of the oldest pathway methods is the so-called thermodynamic integration
(TI) [42], which overcomes barriers in free energy by freezing the chosen CV at
different values while sampling along all other degrees of freedom at these fixed
points along with the reaction coordinate. A free energy profile or PMF is obtained
by integrating the mean force, i.e. the derivative of the free energy with respect to
the CV [43]. It is possible to slowly move the constraint instead of simulating the CV
at fixed values. This is called slow growth [44]. Both methods need comparably long
simulation times to reach sufficient sampling along with the degrees of freedom
of the system and thus a converged PMF. In these methods, the momentum in
the direction of the reaction coordinate is constrained, and thus, they do not fully
sample the momentum space.

8.3.3.2 Umbrella Sampling (US)
Umbrella sampling (US) [45] differs from TI by replacing the fixed constraints using
restraining biasing potentials, allowing to sample the full momentum space [43].
Here, a series of windows is selected along with the CV of interest so that the window
distributions overlap sufficiently. Usually, one uses harmonic potentials of the form

wi(𝜉) =
ki

2
(𝜉 − 𝜉

ref
i )2 (8.13)

with center points 𝜉ref
i and spring constants ki as biasing restraints for umbrella sam-

pling, but other choices can be imagined. It is also possible to choose an adaptive
bias that tries to match the negative of the free energy at each point of the CV 𝜉.
This method is, thus, called adaptive umbrella sampling [46]. It can be extended to
periodically interacting with multiple walkers and on-the-fly resampling to sample
neglected (undersampled) regions. The method is then called adaptive biasing force
(ABF) [47] and will be discussed below. If the bias potential is moved or pulled along
with the CV instead of using a finite number of fixed windows, the method is called
steered MD (SMD) or force-probe MD [43, 48]. It will be explained in more detail in
Section 8.3.3.3.

The most critical part of umbrella sampling is the correct choice of the CVs and the
spring constants ki defining the strength and thus the width of the biasing potentials.
They have to be chosen in advance of the simulations. An advantage of umbrella
sampling is that the MD simulations of different windows are completely indepen-
dent of each other so that they can be executed in parallel. It is even possible to
later insert additional windows with larger spring constants if the overlap between
originally chosen windows is not sufficient.

Results from umbrella sampling simulations are usually combined either by the
umbrella integration [43, 49] or by the popular weighted histogram analysis method
(WHAM) [50].

For a more detailed description of umbrella sampling and its analysis, the reader
is referred to [43].
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152 8 Kinetics and Thermodynamics of Protein–Protein Encounter

When it comes to studying the assembly or dissociation of protein complexes,
simple umbrella sampling simulations are potentially facing huge sampling prob-
lems due to the sheer number of possible relative orientations of the two binding
partners, which have to be sampled in every window of the simulation [51]. This
is less of a problem if the two proteins each have strongly dipolar character so that
they will adopt a preferred orientation relative to each other during association
and dissociation processes. The Brownian Dynamics simulations of Spaar et al.
discussed above showed that this is the case, for example, for the barnase–barstar
complex. When barstar binds to barnase, it approaches barnase “from the right side”
due to favorable electrostatic interactions. Also, its binding interface is pre-oriented
toward the binding interface like a spaceship that plans to land on the moon. In
such cases, it appears plausible to employ a one-directional reaction coordinate to
describe protein–protein association and dissociation, e.g. the distance between the
proteins’ center of masses. The direction of approach can be taken parallel to the
vector connecting the COMs in the bound complex assuming that this is known
either from structural studies or from docking. When comparing the unbinding
of the three complexes barnase–barstar, cytochrome c – cytochrome c peroxidase,
and enzyme 1 – histidine phosphocarrier, it turned out that the PMF computed via
umbrella potential simulations had a monotonous uphill profile without transition
states [52] (Figure 8.1). In all cases, the two proteins attracted each other up to
distances of about 1.4–1.5 nm. Afterward, the PMF curve was flat reflecting that the
protein interaction was shielded by the solvent. Beyond such distances, the relative
orientation of the two proteins is not relevant anymore. The same calculations were
also performed for a dissociation process starting from a nonspecific short-lived
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Figure 8.1 Potential of mean force obtained from umbrella sampling simulations, see [52].
Colored in red is the PMF for the formation of the specific Barnase: Barstar complex, in blue
that of Cytochrome c: Cytochrome c peroxidase, and in magenta that for the complex
between the N-terminal domain of enzyme I: histidine-containing phosphocarrier. In each
case, the left dashed line parallel to the y-axis represents the center of mass (COM) distance
in the specific complex and the right dashed line indicates the cutoff distance that
separates the bound region from the unbound region (right), respectively. Source: Adapted
from Ulucan et al. [52].
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8.3 Overview of Computational Methods to Determine Binding Free Energies 153

contact of the same protein pairs [53]. In that case, the PMF profiles had the
same shape, but a shorter attraction basin of only about 0.8 nm, and the contact
conformation was only about half as stable as the specific complex.

In order to treat sampling issues it is possible to use additional external restraints.
Gumbart et al. [51, 54] applied geometrical and conformational restraints that are
enforced on the overall relative protein motions and also to constituent amino acids
forming the interface region. They showed that the resulting binding free energy of
the studied barnase–barstar complex compares well to the experimental value and
that the statistical error of the method is low for a system of this complexity. The
time the method needs to reach convergence is also much lower than for umbrella
sampling without additional restraints. One has to note that the contributions of
the external restraints to the overall binding free energy difference were calculated
using the adaptive biasing force method. Only the main separation PMF was
calculated using umbrella sampling. In a recent study Suh et al. [55] showed that
various advanced methods including their newly developed “String Method for
Protein–Protein Binding Free-Energy Calculations” can lead to converged results
far off from the experimental binding free energy of barnase–barstar. They discuss
this in much detail and compare these results to the one obtained by Gumbart
et al. [51, 54].

Another recent example of restraint umbrella sampling simulations of protein–
protein interactions is found in [56].

8.3.3.3 Steered MD (SMD)
As already described, steered molecular dynamics (steered MD) or force-probe MD
utilizes moving bias potentials to push the simulation system over barriers in the
free energy. The mean force and thus the PMF can be sufficiently sampled and thus
estimated if the movement of the potential is slow compared to the relaxation times
of the system [43]. Thus, usually, very slow movements have to be chosen that drasti-
cally increase the amount of sampling to converge these simulations. An interesting
feature of SMD is its equivalency to atomic-force microscopy [43]. Fast SMD is often
used to obtain approximate starting positions for umbrella sampling simulations.
If the results of steered MD are evaluated using nonequilibrium analysis methods,
such as the Jarzynski equality [57] or the Bennet acceptance ratio (BAR) [58], the
movement of the potential can be performed much faster than the relaxation time
scales of the system. In order to obtain a suitable ensemble average of the PMF, these
simulations have to be performed repeatedly. A few examples for the usage of steered
MD to obtain protein–protein binding free energies are given in [59, 60].

8.3.3.4 Metadynamics
Metadynamics [61], like all other related methods, strongly depends on the choice
of the used reaction coordinates. An advantage of metadynamics is the fact that it is
possible to sample multiple CVs at the same time, which is not as easily possible in
other methods. Usually, only two or three CVs are chosen because larger numbers
would necessitate much more sampling.
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154 8 Kinetics and Thermodynamics of Protein–Protein Encounter

In order to overcome barriers in free energy and to escape minima on the free
energy surface, metadynamics uses history-dependent bias potentials, which
are often called hills. These are Gaussian functions dependent on the CVs
𝝃(x) = (𝜉1(x), · · · , 𝜉n(x)) which themselves depend on the coordinates x of the
system. These are added to the potential energy V of the study system at a chosen
frequency. The overall resulting bias potential is

VG(𝝃(x), t) =
∑
t′<t

W(t′) exp

(
−

n∑
i=1

(𝜉i(x) − 𝜉i(xG(t′)))2

2𝜎2
i

)
(8.14)

where t′ = 𝜏G, 2𝜏G, 3𝜏G, · · · are multiples of the hill-deposition time 𝜏G, where
𝜉(xG(t)) is the trajectory of the system subject to the action of V + VG, where W
is the height of the Gaussian potentials, and where the 𝜎i are the widths of the
Gaussian potentials in the respective CV [17, 61, 62]. As is clear from (8.14) the hills
are adding up during the course of the simulation and thus fill up the free energy
minima over time. Higher and wider hills increase the speed of convergence but
reduce the sharpness of details on the free energy surface.

In metadynamics, the free energy surface cannot be calculated from (8.6) because
canonical sampling is hindered by the bias potential and thus it has to be calculated
differently. After a certain time, the biasing potential has completely filled all min-
ima on the free energy surface and the effective potential becomes flat. At this point,
convergence is reached. The free energy surface is then simply the negative of the
biasing potential

G(𝜉(x)) = −VG(𝜉(x)) . (8.15)

Advancement of the original metadynamics approach is the so-called
well-tempered metadynamics [63]. Here, the height of the hills is decreased
while the bias potential is accumulated, resulting in high hills at the beginning
and lower hills at the end of the metadynamics simulations [17], thus strongly
improving convergence speed while keeping the sharpness of details on the free
energy surface. Furthermore, the well-tempered metadynamics approach leads
asymptotically to an exact free energy surface [64], which is highly advantageous
over the original approach.

Various extensions to the metadynamics method have been developed since it was
first published. These are, for example, funnel metadynamics [65], volume-based
metadynamics [66], multiple walkers metadynamics [67], and flux-tempered meta-
dynamics [68], to name just a few [69]. By using a method called infrequent meta-
dynamics [70, 71], it is possible to also calculate the dynamics of a given system, e.g.
the kinetic rate constants [69] kon and koff.

Metadynamics in combination with parallel tempering [72] has been successfully
used for protein oligomerization/dissociation studies [73, 74].

There is also a range of other methods utilizing history-dependent potentials. One
example is the accelerated weight histogram method [75].

For recommendable tutorials on how to perform metadynamics simulations and
to choose collective variables, the reader is referred to articles describing the tool
Plumed [76, 77].
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8.3 Overview of Computational Methods to Determine Binding Free Energies 155

8.3.3.5 Adaptive Biasing Force (ABF)
The adaptive biasing force (ABF) method [47] tries to retain the dynamics of the sys-
tem along with the PMF, including the random force described in Section 8.3, while
additionally leveling the PMF to easily move along with the PMF, because barriers
in free energy are removed. This leads to an acceleration of the passage between the
relevant states along with the CV [8] and thus improves sampling along with the
CV. This is achieved by calculating the mean force along with a reaction coordinate
𝜉 and removing it via an external biasing force, which is exactly the negative of the
current estimate of the mean force. This results in uniform sampling along 𝜉 [9].
ABF has been successfully used to obtain reasonable protein–protein binding free
energies, e.g. in [51] and [78]. For a detailed explanation of the ABF method, a suit-
able choice of the reaction coordinates, error analysis, and extended methods the
reader is referred to [8].

8.3.4 Replica-Exchange Methods

In replica-exchange methods for molecular dynamics [79], the system is simulated
in different system states at the same time. At regular time intervals, individual
simulations may exchange properties, such as temperature or coordinates at
certain steps so that barriers in free energy can be overcome more easily. Subse-
quently, replica-exchange methods were combined with pathway methods to be
used in the calculation of free energies and PMFs. A great advantage of many
parallel/replica-exchange methods is the possibility of simulating in parallel on
multiple computer nodes because the interconnection is only required for the
exchange steps for which one does not need high-speed connections between the
individual nodes.

8.3.4.1 Parallel Tempering
Increasing the simulation temperature is an obvious way to more easily overcome
the free energy barriers along with the CVs. Arrhenius law tells us that reaction rates
increase with temperature because an increased number of particles have an energy
greater than the minimum energy needed for the reaction at increased tempera-
ture [10]. Usually, simulated tempering methods [80] are performed as follows: First,
the system is propagated at a fixed temperature Ti for a number of time steps. Second,
the acceptance for switching between two temperatures Ti and Tj is evaluated as a
Monte Carlo step with the acceptance probability of

𝛼 = min

(
1,

Zj

Zi
exp

[
−U(x)

kBTj
+ U(x)

KBTi

])
(8.16)

where i is the index of the present temperature and j the temperature of the new one.
In general, it is nontrivial to choose the weights Zi in a suitable way so that all values
of i are equivalently sampled [10].

In order to overcome the issue of finding the correct weights, it is possible to sim-
ulate multiple replicas of the system at the same time at different temperatures.
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156 8 Kinetics and Thermodynamics of Protein–Protein Encounter

Here not the temperature of a single system is changed but rather the coordinates of
two replicas are exchanged with the acceptance probability

𝛼 = min

(
1, exp

[(
1

kBTj
− 1

kBTi

)(
U(xj) − U(xi)

)])
(8.17)

which is independent of the weights Zi and Zj. Equal sampling of each index i is
achieved by only allowing pairwise swapping [10].

One example of a pathway method extended with parallel tempering is the combi-
nation of metadynamics with parallel tempering [72], which has been used in refs.
[73, 74] to study protein oligomerization/dissociation. For further information on
parallel tempering, the reader is referred to refs. [10, 81].

8.3.4.2 Generalized/Hamiltonian Replica-Exchange Methods
In the Section 8.3.4.1, the replicas differed in temperature. It is, however, also
possible to change other parameters of the system, such as parts of the Hamilto-
nian [82], or combine various changes, e.g. replicas can have different temperatures
and Hamiltonians at the same time and their acceptance probability then
reads [10].

𝛼 = min

⎛⎜⎜⎜⎜⎜⎝
1,

exp

[
−

(
Ui(xj)
kBTi

+
Uj(xi)
kBTj

)]

exp

[
−

(
Ui(xi)
kBTi

+
Uj(xj)
kBTj

)]
⎞⎟⎟⎟⎟⎟⎠
. (8.18)

8.3.5 Additional Pathway Methods

The methods explained in Sections 8.3.3 to 8.3.4 are just a brief summary of
the most popular computational methods to calculate binding free energies of
protein–protein interactions. Many more interesting methods, combinations of the
aforementioned ones, as well as combinations with machine learning techniques
have been successfully used to study association and dissociation of protein–protein
systems. It was also beneficial to combine pathway methods with or derive CVs
from experimental data, such as in small angle X-ray scattering (SAXS)-guided
metadynamics [83].

8.3.6 Relative Binding Free Energies

In principle, it is also possible to calculate relative binding free energies for
protein–protein interactions. Usually, one is interested e.g. in computing the free
energy difference between two different charge states of a protein, or between
wild-type and an amino acid mutation, etc. Various methods that were specifi-
cally established to compute relative binding free energies often used so-called
alchemical approaches. An example is found in [84].
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Markov State Models of Protein–Protein Encounters
Simon Olsson

Chalmers University of Technology, Department of Computer Science and Engineering, Rännvägen 6,
41258 Göteborg, Sweden

Notation

Symbol Explanation
ℙ[x] the probability of an event x
p(x) a probability density function
x ∣ y event x given y. This may occur in probability densities or probabilities

of events

𝜏

Markov Propagator. A “continuous space equivalent” of a Markov
state model⟨⟩ Ensemble average with respect to the stationary distribution (Boltzmann
distribution)

𝜇(x) Boltzmann distribution

9.1 Introduction

The encounter of proteins is critical to countless biological processes and may span
several lengths- and time-scales [1]. For example, insulin binds the 𝛼-subunits
of insulin receptors, thereby activating the tyrosine-kinase 𝛽-subunit auto-
phosphorylation triggering a signal transduction cascade, leading to a broad range
of responses from the molecular, over cellular, and to the physiological scales [2].
Every step along this cascade involves protein–protein interactions between differ-
ent proteins or multiple copies of the same protein chain. This example is just one
of many illustrating why mapping out the details of protein–protein encounters
at the atomistic and molecular scale is critical to understanding these processes,
what goes wrong in disease states, and inform intervention strategies to remedy or
reverse pathological conditions [3].

Indeed, massive-scale efforts have attempted to characterize protein–protein
interaction networks using high-throughput experimentation [4], and insights
gained from these endeavors have undoubtedly been incredibly impactful [5, 6].

Protein Interactions: The Molecular Basis of Interactomics, First Edition.
Edited by Volkhard Helms and Olga V. Kalinina.
© 2023 WILEY-VCH GmbH. Published 2023 by WILEY-VCH GmbH.
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164 9 Markov State Models of Protein–Protein Encounters

However, the strengths of these proteomic approaches lie in their broad scope
but not in their resolution. Currently, only biophysical and molecular simulation
techniques allow us to dissect the intimate structural, thermodynamic, and kinetic
details [7–12]. For example, cryogenic electron microscopy and X-ray crystallogra-
phy may potentially give us high-resolution snapshots of the encounter process at
various stages [11, 13, 14]. Single-molecule fluorescence resonance energy transfer
(FRET) spectroscopy can give structural and kinetic insights into protein–ligand
binding [15]. Finally, nuclear magnetic resonance (NMR) spectroscopy enables
detailed characterizations of protein–protein encounters, possibly giving us struc-
tural, thermodynamic, and kinetic insights, given favorable experimental conditions
[7, 16–18]. Molecular dynamics simulations with explicit solvation uniquely give
us a fully spatiotemporally resolved view of protein dynamics [19–26] including
the encounter mechanism [27–31]. Advances in software and hardware technology
enable us to routinely reach aggregate simulation timescales that overlap with
experimental timescales for small protein–protein systems, especially when using
kinetic modeling approaches, such as Markov state models (MSMs) [32–34].

This chapter will outline how molecular dynamics simulations, experimental
data, and MSMs can synergize to map out the mechanism of protein–protein
association and dissociation. Further, I will discuss whether we can currently
estimate accurate rates and thermodynamics of critical metastable states. First,
I motivate MSMs in the light of molecular dynamics theory. Then I outline the
practical aspects of applying MSMs to studying protein–protein encounters and
show some successful examples from the literature. I will further discuss how to
use experimental data to validate and augment MSMs estimated from molecular
simulation data. I will close with a few examples of emerging technologies that may
improve the computational study of protein–protein encounters in the future.

9.2 Molecular Dynamics and Markov State Models

When applying molecular dynamics simulations, we aim to understand biomolecu-
lar processes. Ideally, our understanding must build on statistically robust scientific
observations. The key observables of interest are:

1. Important structures,
2. their thermodynamic weights,
3. and the transition probabilities amongst them, or their interconversion rates.

Robust identification of these three properties allows us to directly connect MD
results to experimental data, including NMR spectroscopy and single molecule
FRET (sm-FRET) [35–38]. Comparisons such as these may serve as an important
complementary means of validating the simulation models and can help drive
robust scientific hypotheses and models.

Analysis of MD simulations, however, often relies on visually inspecting simu-
lation trajectories one by one. Alternatively, we follow the simulation trajectories
projected onto a few order parameters (or collective variables) derived from chemical
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9.2 Molecular Dynamics and Markov State Models 165

intuition about the process of interest or some global structural property [39–43].
Inspecting structures and following certain order parameters is an integral part of
any analysis of molecular dynamics simulations. However, these strategies alone do
not guarantee a statistical relevance of events observed, and the overall approach
becomes increasingly time-consuming with growing datasets. Furthermore, limit-
ing ourselves to these analyses may still overlook rare events important for biological
function. So ultimately, conclusions drawn from these kinds of analyses may be mis-
leading [32].

Statistical models to analyze data from MD simulations are enjoying increased
attention in recent years [44–52]. This popularity is a necessary consequence of
growing datasets enabled by improvements in software efficiency and large-scale
investment into consumer-grade GPU (graphical processing units)-based compute
resources by many academic groups. Another important factor is community-
driven, cloud-based supercomputers such as Folding@Home [53] and GPUgrid
(www.gpugrid.net) that generate enormous volumes of simulation data whose
analysis critically relies on a systematic and principled framework. Markov state
models (MSMs) are one prominent example of statistical models for analyzing
molecular dynamics simulation, which fits the bill [32, 44, 46, 54].

This section will briefly discuss the motivation and theoretical basis of MSMs and
some important mathematical properties of MSMs. With this text, I do not attempt
to discuss these topics comprehensively but instead, provide a guiding primer and
to enable the reader to build some intuition about the theory – in general, the text is
based upon the references cited in this section. However, I intentionally minimize
technical language and equations and avoid specific details in the notation for clarity.
For a more detailed MSM theory treatment, I refer to the excellent review by Prinz
et al. [32]. For a more comprehensive historical overview of MSMs, I refer to the
review of Husic and Pande [33]. A recent tutorial for step-by-step MSM building is
also available [34].

9.2.1 Markov State Models: Theory and Properties

Above, I outlined how we need to minimize the subjectivity going into analyzing
data from MD simulations. Such subjectivity may stifle our ability to detect transient
intermediate, or off-pathway, states, parallel protein–protein association pathways,
and other intricate kinetic features. Consequently, we need simplification of the con-
formational space to enable human interpretation of the results. However, we should
achieve this in a manner that supports our goals to extract as much kinetic and
thermodynamic information from our simulation data as possible. MSMs provide
a framework for achieving this goal.

But what is a MSM? – A MSM is an N × N matrix where each element encodes the
conditional probability of ending in a state i from state j after a constant time, 𝜏 [44].
The N states each represent a different disjoint segment of the configurational space.
Therefore, the MSM gives us an ensemble view of the molecular dynamics, where
each trajectory corresponds to a sample from a distribution of dynamics trajectories
[32] (Figure 9.1). This view is exactly analogous to that taken in statistical mechanics
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Figure 9.1 Illustration of the relationship between the ensemble view of dynamics and
the individual realizations we obtain from molecular dynamics simulations.

and thermodynamics: the accuracy at which we can characterize the important
properties of a molecular system is limited by how well we can estimate the
statistical distribution of the system’s dynamics. Any given trajectory will typically
be too short to be representative of the full system dynamics. However, estimating
this statistical distribution would allow us to pinpoint important structures and
compute their thermodynamic and kinetic properties. The statistical distribution
further allows us to predict how a nonequilibrium initial condition — prepared
in an experiment — relaxes back to equilibrium or to predict experimentally
measurable spectroscopic observables [35–37].

At first glance, estimating this statistical distribution may seem completely infea-
sible: the distribution domain is all possible temporal trajectories of a molecular
system with all-atom detail. To make this estimation tractable, we rely on the fol-
lowing assumptions:

1. Time-homogenous Markovian dynamics
2. Ergodicity
3. Reversibility.

The first assumption restricts the dynamics we can consider to one where the
transition probabilities from xtM−t to xtM

after some time t are independent of what
happened before. These transition probabilities do not change with time. More for-
mally, we can simplify the conditional probability of arriving in xtN

given all prior
states, xt0

,… , xtM−t, by,

ℙ[xtN
∣ xt0

,… , xtM−t, t] = ℙ[xtM
∣ xtM−t, t]

that is, the probability of arriving in a state at time tN only depends on the
state the system was in at tM − t and that this probability is invariant to a
time-shift – homogeneous. A trajectory of a systems dynamics is represented here
by the states the system adopts xt0

,… , xtM−t at a sequence of time points sampled
uniformly in time t0,… tM − t.

The second assumption tells us that we can reach any point in configuration space
from any other point in configuration space within some finite time. There is a non-
vanishing probability of arriving at any state x′ from any other state x in a finite time.
This assumption ensures the configuration space to be dynamically connected.
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9.2 Molecular Dynamics and Markov State Models 167

The final assumption ensures that the probability flux between points x and x′ in
configuration space is the same in either direction. In physical terms, this means
that energy is not extracted or generated in any state. Formally, this corresponds to
the fulfillment of the detailed balance condition

ℙ[x′]ℙ[x ∣ x′] = ℙ[x]ℙ[x′ ∣ x]

where ℙ[x] is the stationary — equilibrium – probability of state x, typically given
by the Boltzmann probability −1 exp(−𝛽U(x)) for molecular systems at thermal
equilibrium. I have suppressed the time dependence of the conditional transition
probability for notational brevity. Strictly, this final assumption is unnecessary as
many simulation setups involve doing work on the molecular system. In such sce-
narios, other factors will drive the system beyond the thermal fluctuations, and,
in general, the system will not be in thermal equilibrium. Nevertheless, the fulfill-
ment of the detailed balance condition leads to the symmetry of the joint probability
ℙ[x, x′] = ℙ[x′, x], which we will see allows for a more statistically efficient estima-
tion of MSMs in many cases.

Are all of these assumptions fulfilled in any practical cases? – Yes!Most of the com-
mon thermostatting algorithms used are consistent with the assumptions I outline
above in molecular simulations. Prinz et al. discuss notable exceptions [32].

Remember, our original goal was to arrive at an ensemble view of molecular dynam-
ics. This view describes the time evolution of many copies of the same molecular
system. The copies are independent, and do not interact with each other, and are
distributed according to the Boltzmann distribution, when at equilibrium, 𝜇(x) =
−1 exp(−𝛽U(x)).  is the partition coefficient, U(⋅) is the system potential energy
at the experimental conditions, and the inverse temperature 𝛽 = 1∕kBT, with kB and
T being Boltzmann’s constant and the system temperature, respectively. There is
a rigorous theoretical framework to treat systems in such a way, however, we will
here limit the discussion to the time-discrete cases, as these most directly relate to
the MSM framework. Time-continuous models discussed elsewhere e.g. in Ref. [47],
have analogous results [32].

The object of interest here is a propagator, 
𝜏
. The propagator is an “inte-

gral operator,” that acts on a probability density function, pt(⋅), over – in our
case – conformational space and returns the resulting probability density function
on the same space after a time, 𝜏. Formally,

pt+𝜏 (x) = [
𝜏
pt](x) = ∫

p(x ∣ x′, 𝜏)pt(x′) dx′

where, p(x ∣ x′, 𝜏) is the transition probability density function from x′ to x after a
time 𝜏. If pt(x) is equal to the equilibrium distribution (Boltzmann distribution),
then pt+𝜏 (x) = pt(x) = 𝜇(x). In general, if we apply the propagator to some initial
distribution p0(x) infinitely many times we arrive at the distribution p∞(x) = 𝜇(x).
In other words, the propagator describes how an initial condition, p0(x), relaxes to
equilibrium.

This observation reminds us of an eigenvalue problem, where the Boltzmann
distribution is a solution (eigenfunction), with the corresponding eigenvalue 1.
Indeed, the propagator has infinitely many eigenfunctions, 𝜙i, whose eigenvalues

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by ibrahim

 ragab - C
ochrane G

erm
any , W

iley O
nline L

ibrary on [23/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



168 9 Markov State Models of Protein–Protein Encounters

are bounded 1 > |λi| for reversible dynamics. Ergodic dynamics further ensure
that only one eigenfunction has eigenvalue 1: namely the Boltzmann distribution
𝜙1 = 𝜇.

The eigenvalues of 
𝜏

are the autocorrelations of the eigenfunctions 𝜙i, which
follow single-exponential decays c

𝜙i
(𝜏) = λi = exp(−𝜅i𝜏), as 

𝜏
is first-order

Markovian. 𝜅i ≥ 0 are exchange rates, and 1∕𝜅i is often referred to as an implied
timescale (ITS) [32]. We immediately notice that the implied timescale for 𝜇

is equal to ∞, which is consistent with our understanding that the Boltzmann
distribution is stationary: it does not change with time under fixed conditions.
Simultaneously, this observation suggests that all λi < 1 approach 0 for large 𝜏,
meaning that they – together with their corresponding eigenfunctions – encode
information about the dynamics of our molecular system. These eigenfunctions (for|λi| < 1) describe what regions of conformational space exchange, on the timescale
1∕𝜅i. The negative and positive signs of an eigenfunction, 𝜙i, define two regions of
conformation space that are exchanging on the timescale 1∕𝜅i.

So, the more eigenfunction-eigenvalue pairs we know the more we know about
the ensemble thermodynamics (𝜇) and dynamics (𝜙i>1, λi>1) of our system – but
how do we deal with the infinite amount of these pairs? — This question is key to
a central assumption made when using MSMs: we are only interested in a small
number, M, of pairs that correspond to those with the M largest eigenvalues. The
larger the eigenvalue the slower the timescale – consequently, we focus our atten-
tion on slow dynamics. Immediately, this focus makes a lot of sense, since long
timescales often are associated with biological function, including allosteric regu-
lation and protein–protein binding. Simultaneously, long timescales remain chal-
lenging to study with unbiased MD compared to fast dynamics. The success of this
approach lies in how representative the M largest eigenvalue-eigenfunction pairs are
for the dynamics as a whole. Fortunately, for many systems, there are only a handful
of eigenvalues that are close to 1, while the rest are close to 0.

Recall that the dynamics in the continuous space is Markovian by construction.
To approximate the dynamics of a system from finite MD data, it is an advantage to
discretize conformational space. The Markov state model (MSM) approach emerges
naturally from this approximation. An MSM aims to approximate continuous space
dynamics via a discrete space jump-process on a partition of the configuration space
into N disjoint segments. The discretization of the space and the N × N transition
probability matrix, T

𝜏
, describing the “jump-process” constitutes the approximation.

Since T
𝜏

is an approximation of the continuous space dynamics, its eigenvectors and
eigenvalues will—if properly built—approximate their corresponding quantities in
the continuous space dynamics. The eigen-decomposition of T

𝜏
, takes the form

T
𝜏
=

N∑
i=1

λil
⊤

i ri (9.1)

where li and ri are orthonormal left and right eigenvectors, respectively. The left
eigenvectors are given by li = 𝝁∘ri, and ∘ is the element-wise product between two
vectors. In this expression, we see more explicitly how eigenvectors with smaller
numerical eigenvalues (faster timescales) contribute less numerically to the transi-
tion probability matrix.
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9.3 Strategies for MSM Estimation, Validation, and Analysis 169

Key message: The full-space dynamics contain essential thermodynamic and
kinetic information that we need to characterize, for example, a protein–protein
encounter process. How well we reduce the full-space into a set of discrete states
controls the quality of our model. A sound reduction of the full-space minimizes
the error of the eigenfunction corresponding to the largest eigenvalues of 

𝜏
.

9.3 Strategies for MSM Estimation, Validation,
and Analysis

As we saw above, building MSMs relies on discretizing conformational space into N
disjoint segments. These segments need to provide a good basis for approximating
the propagator eigenfunctions to ensure that we achieve the best possible approx-
imation of the full space dynamics. The continuous space dynamics is typically
high-dimensional, for all but the simplest systems, so it is not practical to place a
fine grid on all dimensions. Placing such a grid would require enormous computer
memory and simulation data to be successful. We are facing what in statistics is
called the curse of dimensionality. In practice, building a MSM involves a sequence
of four steps [34],

● Featurization – selecting a suitable representation of the molecular system
● Dimension reduction – reducing the representation of the molecular system
● Clustering – discretization of the representation
● Transition matrix estimation – estimation of the MSM.

9.3.1 Variational Approach for Conformational Dynamics and Markov
Processes (VAC and VAMP)

When we build MSMs, we express the molecules’ thermodynamic and kinetic
properties on a discrete set of disjoint states. Adopting this strategy means that
we approximate the eigenfunctions using a combination of indicator functions –
functions that return one if we are in a certain area of configuration space and zero
everywhere else. However, this is just one way of approximating the eigenfunctions,
and we are free to approximate them with any function we like. The variational
approach for conformational dynamics (VAC) [55, 56] gives us a principle to select
the function that best approximates a molecular system’s slow dynamics from a set
of trial functions. Here, I briefly outline the idea – more detailed treatments are
available elsewhere.

VAC uses that the eigenvalues of 
𝜏

are bounded and the eigenfunctions form an
orthonormal basis. Consequently, if f

𝛼
is an approximation of the 𝛼’th eigenfunction

of 
𝜏

the autocorrelation is given by

c
𝜏
(f
𝛼
) =

∫
f
𝛼
(x)𝜇−1(x)

𝜏
f
𝛼
(x) dx ≤ λ

𝛼

where the equality holds if and only if f
𝛼
(x) is exactly the 𝛼’th eigenfunction of 

𝜏
.

Hence the variational principle tells us that we will always approximate the auto-
correlation of an exact eigenfunction 𝜙

𝛼
(x) from below. Practically, this means we
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Figure 9.2 Flow-chart of Markov state modeling from molecular dynamics simulations to
final model and analysis. Boxes are colored to indicate data collection (cyan), data
processing and model estimation (black), and analysis and validation (magenta). I highlight
steps that may benefit from specific techniques or experimental data by colored pins.

can devise algorithms to approximate a set of orthonormal approximations of the
eigenfunctions of 

𝜏
.

A more general variational approach for Markov processes (VAMP) [57] extends
VAC to nonreversible dynamics, nonequilibrium data, and allows us to define scores
that can be used for hyperparameter optimization, cross-validation, and model
selection when building MSMs. These VAMP-scores summarize the autocorrela-
tions on a set of basis functions (features), which best approximate the underlying
dynamics, and therefore how well they represent slow dynamics. We can use the
VAMP-scores at every step of the MSM building process to evaluate how well our
modeling decisions will allow us to represent the slow dynamics of a molecular
system.

9.3.2 Feature Selection

To facilitate the estimation of MSMs, we will need to arrive in a sufficiently
low-dimensional space to enable effective discretization. However, the space has
to include sufficient detail to capture the interesting slow processes in our dataset.
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9.3 Strategies for MSM Estimation, Validation, and Analysis 171

Fortunately, we frequently have a clear idea of what kinds of processes we are
interested in resolving, or more specifically, what features we are not interested in
resolving. For example, in many cases, we are not directly interested in studying the
influence of solvation or the rotational and translational motion of the solutes. This
focus leaves us with studying different internal coordinates or intermolecular coor-
dinates when selecting features for building MSMs. These internal coordinates – or
features – typically include contacts, distances, angles, and torsions between atoms
or atom groups.

While the considerations outlined above refine our choice of possible structural
features to use in our model building, it still leaves open an enormous set of potential
structural features. To further narrow down this ambiguity, there are two different
strategies:

1. Manual feature selection by selecting features based on chemical, biological, or
physical insights that give us some information about possible slow processes

2. Algorithmic feature selection strategies.

It is difficult to approach the first strategy in a general and systematic way. Typically,
this strategy involves manually refining the selection of features such that the model
is robust and provides the necessary predictive and descriptive power envisaged for
the project. The second approach is typically more systematic and generalizable and
will normally be the best choice if we know little about the system beforehand. Sev-
eral methods provide automated feature selection specifically designed with MSM
building in mind: Scherer et al. illustrate use of VAMP in this respect [58], and Chen
et al. use a genetic algorithm-based method for feature selection [59]. The former
method works directly on the features, whereas the latter approach relies on subse-
quent modeling steps and their associated hyperparameters to evaluate the selected
features. Therefore, the latter method is sensitive to model decisions beyond the fea-
ture selection, and special care must be taken when using this approach.

9.3.3 Dimensionality Reduction

Usually, preselecting several features (distances/contacts, angles, features, etc.)
using the strategies outlined above is insufficient to sufficiently reduce the space to
enable effective discretization of the conformational space. Alternatively, we may
not know much about the system before starting our analysis, and we may want
to identify structural features that characterize the molecular dynamics well. To
face this problem, we can use dimensionality reduction techniques. These methods
remove dependencies in the input data through linear (or nonlinear) combinations
learned utilizing a range of different optimality criteria, thereby allowing us to rep-
resent the original data in a lower-dimensional space while keeping the optimality
criteria used as small as possible. Dimensionality reduction techniques have their
origin in machine learning and statistics in a branch which is now broadly referred
to as unsupervised learning.
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172 9 Markov State Models of Protein–Protein Encounters

In the context of MSM, principal component analysis (PCA) [60–63] and
time-lagged independent component analysis (TICA) [64–66] are the most widely
used. Here I limited the discussion to these two.

PCA seeks to define a linear projection,

Y = XW

of the set of input features, X ∈ ℝNnumframes×Nnumfeats , to maximize the variance of each of
the dimensions of Y ∈ ℝNnumframes×Nreduceddim , by learning W ∈ ℝNnumfeats×Nreduceddim , subject
to an orthonormality constraint on the columns of W to ensure that each dimen-
sion in Y is uncorrelated and normalized. Consequently, PCA gives us a new set of
features that best capture the variance of our input features and is an appropriate
choice if we are interested in studying processes characterized by large-scale struc-
tural fluctuations.

TICA similarly seeks to find a linear projection as for PCA. However, instead of
maximizing the variance, TICA uses the variational principle of conformational
dynamics to determine projections with the slowest auto-correlation. Consequently,
TICA is the appropriate choice if slow motions are of interest when studying a
molecular system. Recall, slow dynamics is what constitute the dominating part of
the propagator. Practically, we compute TICA by solving the generalized eigenvalue
equation (subject to appropriate normalizations),

ℂ
𝜏
wi = ℂ0λi,𝜏wi

where ℂ
𝜏
= 1

Nnumframes−𝜏
X⊤

∶numframes−𝝉X
𝜏∶ and ℂ0 = 1

Nnumframes
X⊤X are the time-lagged

and instantaneous covariance matrices, respectively. ℂ
𝜏

computes the covariance
between features spaced in time by 𝜏 and the indices ∶ numframes − 𝜏 and 𝜏 ∶mean
all but the last 𝜏 frames and the all but the first 𝜏 frames, respectively. At this point,
𝜏 is an integer with a time unit of the spacing interval between the frames in your
MD trajectory data. We can use the independent components, wi, which solve this
equation and correspond to the largest eigenvalues |λi,𝜏 | < 1 to project the data on to
a lower-dimensional space, yi = Xwi, which conserves the slowest dynamic modes
in the system. We use the total kinetic variance 𝜍2

𝜏
to quantify how much dynamic is

preserved in the d-dimensional projection (d < Nnumfeats),

𝜍
2
𝜏
=

∑d
i=2 λ

2
i,𝜏∑Nnumfeats

j=2 λ2
j,𝜏

.

Both PCA- and TICA-based dimension reduction methods are part of the major
MSM software packages PyEMMA [34, 67] and MSMBuilder [68].

Recent surveys discuss the use of nonlinear dimensionality reduction techniques
in the context of MSM estimation. While promising, these methods have not seen
broad adoption so far.

9.3.4 Clustering

MSMs rely on discretizing the configurational space into disjoint configurational
states – micro-states. Clustering is the step where the grouping of molecular
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9.3 Strategies for MSM Estimation, Validation, and Analysis 173

configurations into discrete states happens. The most commonly applied algorithm
towards this purpose is k-means clustering, yet several other methods perform
this task with a variety of different strategies [69]. As for feature selection, we can
use VAMP scores and cross-validation to evaluate our clustering quality. Below, I
expand on other considerations that are important for clustering the states when
studying protein–protein encounters.

9.3.5 Model Estimation and Validation

Following clustering, we can assign every molecular configuration to a Markov state.
Trajectories now realize a jump process on a set of, N, discrete states, each of the
states are connected back to a molecular configuration. We call these discrete trajec-
tories, D = {d1,… , dM}. The task of estimating a Markov state model corresponds to
computing the most likely transition probabilities, tij,𝜏 between any two states i and j
after a lag-time of 𝜏. Recall, we assume the dynamics are Markovian, so the likelihood
of observing our data, D, is equal to the product of all the transition probabilities,

𝓁(T
𝜏
∣ D) =

∏
d∈D

p(d[𝜏] ∣ d[0], 𝜏)p(d[2𝜏] ∣ d[𝜏], 𝜏)… p(d[M] ∣ d[M − 𝜏], 𝜏)

=
∏
d∈D

td[0]d[𝜏],𝜏 td[𝜏]d[2𝜏],𝜏 … td[M−𝜏]d[M],𝜏

=
∏

ij
tC(𝜏)ij

ij,𝜏

C(𝜏) is the count matrix where each element C(𝜏)ij is the number of transitions
between states i and j, with a time lag, 𝜏, observed in all the trajectories, D. Estimating
a MSM then corresponds to finding the transition probabilities, given the observed
transition counts in the count matrix, C(𝜏). We can either do maximum likelihood
estimation [32, 70], or Bayesian posterior sampling of the transition probabilties
[38, 71]. The first approach gives us the one most likely model, whereas the latter
approach gives us a distribution of models that we can use to compute properties as
well as their uncertainties.

Major MSM software packages implement algorithms to perform inference via
either mode, with options to enforce constraints such as detailed balance [38, 71] or a
fixed stationary distribution [72]. As outlined above, the detailed balance constraint
ensures that a reversible MSM is estimated and reduces the number of degrees of
freedom to be estimated. Adding constraints to the estimation when possible is often
desirable, as it may increase robustness of the results.

We can estimate a reversible MSM of a slow process even if we only have data
reversibly sampling transitions between intermediate steps. Consequently, we can
get quantitative information about very slow processes by partitioning them into
multiple faster sequential steps. However, this may not always be possible.

Choosing the lag time when building a MSM decides the effective time-resolution
of the resulting model [73]. Consequently, we want to keep this number small, to pre-
serve as much of the information in our data as possible. However, since we reduce a
high-dimensional space down to a lower-dimensional one to enable discretization,
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174 9 Markov State Models of Protein–Protein Encounters

there is no guarantee that the projected dynamics will be Markovian at short lag
times [74–76]. We check the “Markovianity” of the projected dynamics by comput-
ing the ITS as a function of lag time and ensuring no systematic change in the ITS
as a function of lag time considering the statistical uncertainty. A good choice of lag
time is then one which is as short as possible, yet shows no significant change in the
ITS when increased or decreased slightly. This analysis is typically facilitated by an
ITS plot, showing the ITS as a function of lag time.

Having selected an appropriate lag time, we can test the resulting MSM for
self-consistency with the simulation data via the Chapman–Kolmogorov (CK) test
[20, 32]. This test makes use of the time-discrete Chapman-Kolmogorov equation

Tk𝜏 = Tk
𝜏

which predicts that the transition probabilities of a model estimated with a lag time
k𝜏 should be equal to the transition probabilities of a model estimated with a lag
time 𝜏 to the power of k. We typically visualize the CK test by comparing the values
on either side of the equation with error bars as a function of integer multiples of
the MSM lag-time. As for the ITS analysis, we here aim to see agreement within sta-
tistical uncertainty. Usually, only a reduced set of states, or a coarse-grained model,
is used to facilitate analysis.

9.3.6 Spectral Gaps and Coarse-Graining

It is not uncommon that MSMs end up having hundreds or thousands of microstates.
The large number of microstates helps us to bring down the error when approximat-
ing eigenfunctions. However, it can stifle the subsequent analysis. Consequently,
we often coarse-grain the MSMs into a handful of metastable macrostates, which
summarize the slow dynamics. Coarse-graining here should not be confused with
coarse-grained simulations, where beads represent multiple atoms. We have to
decide how many states, and that number may not be evident from the start. In
many cases, we can use the spectral gap in the eigenvalue spectrum of the MSM to
decide on how many states we need to coarse-grain a MSM to, to ensure that we
represent the slow dynamics.

Suppose we sort the eigenvalues-eigenvectors pairs of a MSM by the amplitude
of the eigenvalue, and plot them. In that case, we often see one or more drops in
the amplitude with increasing index (decreasing eigenvalue). These drops are spec-
tral gaps and pinpoint separations between fast and slow dynamics in the molecular
system represented by the MSM. We can use these spectral gaps to decide on how
many states to use for a coarse-graining, as every eigenfunction specifies what two
regions of conformation space are exchanging on the ITS that can be computed from
the eigenvalue. Consequently, if we have n eigenvalues that are less than 1 above a
spectral gap, a n + 1 state coarse-graining will be appropriate.

Perron Cluster–Cluster Analysis (PCCA) [77, 78] is a method that groups together
microstates based on the sign structure of the eigenvectors of a MSM. It is the most
common way to identify important metastable macrostates sampled during molec-
ular dynamics simulations. Two related algorithms, PCCA+ and PCCA++, find
an optimal linear transformation of the eigenvector coordinates onto a probability
simplex [79].
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9.3 Strategies for MSM Estimation, Validation, and Analysis 175

Hidden Markov state models (HMMs) are an alternative to both MSMs and
PCCA [80]. HMMs avoid the assumption of MSMs of Markovian dynamics in
the reduced space by estimating a “hidden” Markov chain observed indirectly
via the trajectory data on the discrete microstates. A HMM, therefore, estimates
a transition probability matrix, and an “emission matrix”, E. The first matrix
is responsible for modeling the dynamics, and the latter models the observa-
tion process: given we are in hidden state i, we will be in microstate j with
probability p(j ∣ i) = Eij. Consequently, the emission matrix tells us what states
exchange rapidly, given we are in a specific metastable configuration. We can
use this to simplify the many states into just a few states. HMMs have a range
of other theoretical advantages but are also more challenging to estimate than
MSMs. There are other alternatives to defining lower-dimensional models to
facilitate analysis of slow dynamics in terms of a few metastable states. How-
ever, their performance in the context of protein–protein encounters is currently
unknown [81, 82].

9.3.7 Adaptive and Enhanced Sampling Strategies

The quality of the molecular dynamics simulation data ultimately determines the
quality of the estimated MSMs. Here, quality means the number of transitions
sampled between configurational states of interest for the molecular system. An
advantage of MSM analysis is that we do not necessarily need to sample transitions
between all states of interest in every trajectory but sample only a subset of the
possible transitions. However, in practical cases, we still have to make the most of
limited resources – blindly or naively running numerous simulations may not be
the most effective.

Adaptive sampling strategies (semi) automatically decide how multiple simula-
tions run in parallel and over several “epochs”. These strategies have to balance
exploration and exploitation: sampling new states and refining sampling statistics
between previously visited states [83–85]. Several groups have proposed strategies
using different assumptions about what is important for characterizing molecular
systems [27, 49, 83, 86–90]. A complementary set of strategies aim to sample tran-
sitions between known states [91–93]. However, due to the relatively high compu-
tational cost of studying protein–protein encounters, these methods are yet to be
compared in rigorous benchmarks.

Enhanced sampling methods bias molecular dynamics simulations intending
to speed up sampling processes of interest, such as protein–protein binding and
unbinding [39, 41, 94, 95]. Unfortunately, introducing the right biases to enhance
the sampling of a process of interest remains a labor-intensive process. Nevertheless,
methods are available to recover stationary properties from biased simulations, yet
proving more difficult for dynamic properties. However, combining unbiased and
biased simulation data via recent MSM estimation techniques can significantly
improve the estimated models’ robustness [29, 96–100]. In Section 9.4 we high-
light the successful use of adaptive and enhanced sampling techniques to study
protein–protein binding-unbinding equilibria.
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176 9 Markov State Models of Protein–Protein Encounters

9.3.8 Practical Consideration for Studying Protein–Protein Encounters

The procedures outlined above generally apply to molecular systems. However,
there are additional aspects that we need to take into account when modeling
protein–protein encounters.

We can use macroscopic variables, including concentration, temperature, pres-
sure, and mutations, to control the molecular system’s ensemble, including the pop-
ulation of bound and unbound states and their kinetics of exchange. As we have
discussed, when following experimental observables as a function, these variables
allow us to quantify essential properties such as affinities, rate constants, and struc-
tural information about the complex formation process.

Computationally, we often have to settle on a single – or a few – macroscopic set-
ting(s) of variables to study. This limitation is due to the large computational require-
ments associated with sampling each condition, even using the advanced simulation
strategies, including those outlined above. A notable exception is the temperature,
which is leveraged in enhanced sampling techniques to improve sampling efficiency.
When analyzed together with regular MD simulation data using appropriate statis-
tical estimators, they may improve MSM estimation. However, using these data on
their own makes it challenging to get insights about exchange kinetics between con-
formational states.

The primary differences we face when studying protein–protein encounters, com-
pared with studying the molecular dynamics in a single protein molecule, are sto-
ichiometry and concentration. Practically, the simulation volume is limiting: when
we increase the volume, we need to simulate larger systems, usually comprising
an increasing number of water molecules. This fact makes simulations with high
protein concentrations the only computational viable strategy currently.

A high concentration in molecular dynamics has some practical consequences
that may make it practically difficult to study certain mechanisms of protein–protein
encounters. Let us consider a case of the conformational selection mechanism,
where a low-population state A∗ of unbound protein A binds the protein B to form
the complex A∗ ∶ B in the following reversible chemical kinetic relation

A ⇄ A∗ + B ⇄ A∗ ∶ B

where kA→A∗ ≪ kA∗→A with both rates being independent of concentration.
We assume that the protein B does not undergo conformational changes, which
perturb this relation directly. The on-rate, kA∗+B→A∗∶B, is proportional to the protein
concentration and the population of the unbound state of A∗. So as concentrations
increase, the probability of observing binding events increase. In an alternative
binding mechanism (induced fit) binding happens before conformational change
in the protein A,

A + B ⇄ A∗ ∶ B.

Here, the on-rate (the rate of binding), kA+B→A∗∶B, depends on the protein con-
centration and the population of the highly populated state of protein A. In many
reported cases both mechanisms are possible, consequently, we seek to understand
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9.3 Strategies for MSM Estimation, Validation, and Analysis 177

the balance of these two mechanisms – more generally, we seek to characterize
the association–dissociation path ensemble [101, 102]. However, since we are at
high concentrations we may have kA∗+B→A∗∶B ≪ kA+B→A∗∶B, and we may even have
kA→A∗ ≪ kA∗→A ≪ kA+B→A∗∶B. So with only finite MD simulation data, we may
severely undersample or completely miss certain mechanisms, even if they are
important. In other words, high protein concentrations in MD simulations may
increase the free energy of the unbound state to the point where the association is
barrier free, and the unbound state is not metastable [8].

More concretely, given the competition between these mechanisms, sampling the
induced-fit mechanism is much more likely than sampling the conformational selec-
tion mechanism. Even conformational sampling of protein A is much less likely than
sampling binding via induced fit. Practically, these conditions mean that we will
have an intrinsic preference to observe a certain biophysical binding mechanism and
may over-sample mechanisms that are not relevant at physiological protein concen-
trations, including unspecific binding events. As a result, we would need to acquire
more simulation data to ensure statistically sufficient sampling of alternative bind-
ing mechanisms and conformational mixing of the unbound states.

The fast on-rates at high concentrations may also influence our ability to distin-
guish unbound and bound states automatically. The timescale, ti, of a process, i,
between states ai and bi depends on the geometric average of the rates of the for-
ward and backward process ti =

1
𝜅i
= 1

kai→bi
+kai→bi

, which is numerically dominated
by the faster (larger) rate. As a result, the timescale of the binding–unbinding pro-
cess will be fast. Therefore, dimension reduction techniques resolving coordinates
with slow exchange rates, may not resolve it. Consequently, a MSM based on a clus-
tering defined only in this space will miss the process altogether. However, we can
overcome this problem by explicitly separating bound and unbound states, such as
a molecular feature that clearly distinguishes the unbound and bound states.

A final complication we face when studying protein–protein encounters is the
choice of an appropriate force field model. This choice may significantly affect the
sampled binding mechanisms and may be prone to deficiencies, such as strong
unspecific binding [103]. Although efforts continuously improve these force field
models and address their outstanding limitations, we often do not know how well a
given force field will represent a new system of interest before we start simulations.
In Section 9.4, we discuss strategies to validate MSMs built using potentially
imperfect force-field models and possibly overcome some of the limitations.

9.3.9 Analysis of the Association–Dissociation Path Ensemble

The “mechanism” of binding is ultimately governed by the statistical distribution
of different paths from the unbound state to the bound state. The importance of
the different paths between the unbound and bound states is governed by the flux
along that path. Transition path theory (TPT) [20, 37, 101, 102] provides us with a
theoretical framework through which we can compute reactive flux-matrices from
MSMs of protein–protein encounters. The “reaction” here refers to the transition
from a set of “reactant states” (unbound) A to a set of “product states” B (bound).
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178 9 Markov State Models of Protein–Protein Encounters

TPT gives us tools to assign all intermediate states I (not bound, and not unbound),
committor probabilities, q+ and q−, which gives us the probability of reaching the
state B before A from an intermediate state i ∈ I via forward committor q+

i and vice
versa for the backward committor q−

i . We can further use this framework to com-
pute mean first passage times (MFPT), for example, the average on- and off-rates,
as well as to dissect all the possible pathways from unbound to bound states. TPT is
therefore an important tool for analysis of MSMs, in particularly when we want to
understand a specific process. Major MSM softwares implement TPT analyses and
plotting functions to visualize the results [34, 67, 68].

9.4 The Connection to Experiments

In favorable cases, appropriately validated MSMs predict molecular mechanisms
with high temporal and spatial resolution. These insights can, of course, guide our
understanding of important molecular phenomena associated with, for instance,
protein–protein binding. However, so far, we have only discussed validation as sta-
tistical self-consistency and minimizing projection errors (optimizing variational
scores). Since we generate the simulation data that we use to drive the estimation
MSMs with imperfect classical empirical force field models, agreement with experi-
mental data is not a given. In this section, I will outline how we can predict important
biophysical observables to check for agreements, the limitations of these compar-
isons, and how we may integrate experimental data into the estimation of MSMs
using the augmented Markov model framework, to bring experiment and simulation
into alignment.

9.4.1 Experimental Observability, Forward Models, and Errors

What is an observable? – In our context, an experimental observable is a function
of state; that means a function of the configurations adopted by a molecular system
at specific experimental conditions. The definition encompasses both bulk experi-
ments, where the cumulative signal of a very large number (∼1023) of copies of iden-
tical systems are measured, and experiments where time-resolved trajectory signals
from single molecules are measured. The manifestation of a particular observable is
described by a physical model, f (⋅), describing the relationship between a configura-
tion of the system, x, and the observed signal, o. Simple examples of f may be a ruler
measuring the Euclidean distance between two atoms in a molecule, or a function
computing the potential energy of the system configuration, x.

In a stationary bulk experiment at equilibrium we measure an expectation value
of f (⋅) under the Boltzmann distribution,

⟨Of ⟩ =
−1

∫
f (x) exp(−𝛽U(x)) dx

=
∫

f (x)𝜇(x) dx

= 𝔼
𝜇(x)[f (x)].

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by ibrahim

 ragab - C
ochrane G

erm
any , W

iley O
nline L

ibrary on [23/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



9.4 The Connection to Experiments 179

We use p(x) as shorthand for the normalized Boltzmann distribution for a given 𝛽,
and the bracket to denote ensemble averages.

In an ergodic, dynamic bulk experiment at equilibrium we measure the autocor-
relation,

⟨Of (0)Of (Δt)⟩ =
∫ ∫

f (x′)p(x′ ∣ x; Δt)p(x)f (x) dxdx′

= 𝔼p(x)[𝔼p(x′∣x,𝜏)[f (x′)f (x)]]

where p(x′ ∣ x; Δt) is the transition probability. Note that we may analogously define
cross-correlation experiments by using two different models for the observables,

⟨Ofa
(0)Ofb

(Δt)⟩ = 𝔼p(x)[𝔼p(x′∣x,𝜏)[fb(x′)fa(x)]].

Some experimental setups will allow us to initialize an ensemble in a nonequilib-
rium ensemble p0 and follow the relaxation process back to equilibrium [20, 37].
Such experiments include pressure and temperature jump, as well as stopped
flow. Cross-correlation functions measured in such relaxation experiments can be
expressed as

⟨Ofa
(0)Ofb

(Δt)⟩p0
=
∫ ∫

fb(x′)p(x′ ∣ x; Δt)
p0(x)
p(x)

fa(x) dx′dx.

In single molecule experiments, observables are followed over time as trajectories,
with some time resolution Δt, in its simplest form:

Of = {f (x(0)), f (x(Δt)),… , f (x(NΔt))}.

9.4.1.1 Sources of Errors and Uncertainty
In a typical setting, we have some set of experimental data, which may include any
combination of the classes above, and we wish to compare these observables to the
corresponding predictions made for stationary and dynamic properties of the molec-
ular system represented by our computational model. Several sources of uncertainty
and error may arise in this setting that we will have to be mindful of:

1. Experimental noise (thermal noise, shot noise, etc.)
This category includes all contributions of stochastic noise due to limitations
in the experimental setup, involving, e.g., imperfections in instrumenta-
tion measurements or sample (labeling) stability. In many cases, theoretical
analyses of experiments are available, which may help decide how this error
should be modeled.

2. Systematic experimental errors/biases
These errors and biases arise due to imperfect referencing — in the case
of, for example, relative experimental measurements — or unknown, or
imprecise experimental conditions (temperature, concentrations, pressure,
etc) or fluctuations of these parameters during data acquisition. This source
of error is typically more challenging to systematically model or perfectly
compensate for and often requires substantial knowledge of the experimental
setup.
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180 9 Markov State Models of Protein–Protein Encounters

3. Systematic error in the computational model of the molecular system
dynamics
Computational models of p(x) and p(x′ ∣ x,Δt) are typically estimated using finite
simulation data obtained from empirical force field models. The quantitative
agreement of these with experiment is ever improving, however, still suffers
significantly from systematic errors. The errors may arise from the classical
approximations made of quantum mechanical interactions, to make simulations
computationally tractable, or other approximations. Our efforts to compare
simulation models to experiments are typically driven by the recognition of these
issues, and a desire to understand the limitations and merits of a given moded.
Another systematic error encompassed in this section is the sampling error,
where we simply do not have enough simulation data to accurately estimate p(x)
and p(x′ ∣ x,Δt).

4. Modeling error of observable functions f (⋅)
Like simulation models, the forward prediction of instantaneous (time-
independent) experimental observables approximates complicated experimental
setups or quantum mechanical phenomena in a computationally efficient
manner. In many cases, quantifying errors and biases in these models is
challenging.

9.4.2 Predicting Experimental Observables Using MSMs

The expressions given above for the experimental observables are general for any
ergodic, Markovian dynamics, at, or relaxing to, a time-invariant equilibrium state.
However, for molecular systems, these expressions involve intractable integrals over
the configuration space. Fortunately, for MSMs, these integrals simplify to standard
linear algebra operations, which we can compute efficiently.

The discretization of configurational space,  = {S1,… , SN}, associated with
the MSM, leads to a discretization of the instantaneous experimental observable
(predicted via f (⋅)) as the vector a ∈ ℝN , with elements,

ai =
1

∫x∈Si
p(x) dx∫x∈Si

p(x)fa(x) dx ≈ 1
NSi

∑
j∈Si

f (xj)

where Si is a configurational space segment, or its finite sample approximation with
NSi

samples. We can extend this expression to vector-valued observables. Since this
discretization replaces a function, which takes on arbitrary real valued numbers for
different conformations, by a piecewise constant function, we hope to minimize the
variance of f (x) within each Si to ensure a good approximation.

We use the stationary distribution 𝜋, of the transition matrix T
𝜏
, along with dis-

cretized feature vector a to compute stationary bulk experimental observables as

⟨Ofa
⟩ = 𝜋 ⋅ a =

N∑
i=1

𝜋iai.

The expression for dynamic bulk experiments can be formulated using the transition
matrix,⟨Of (0)Of (N𝜏)⟩ = a⊤𝚷T(𝜏)N a
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9.4 The Connection to Experiments 181

where 𝚷 = diag(𝜋) is a matrix with stationary probabilities on the diagonal, and
zeros elsewhere. N is an integer that expresses time in multiples of the MSM lag-time
𝜏. Cross-correlation experiments can similarly be expressed as

⟨Ofa
(0)Ofb

(N𝜏)⟩ = b⊤𝚷T(𝜏)N a

where b is defined as a, but for an observable predicted by fb(⋅). In general, MSMs
predict auto- and cross-correlation function as mixture of exponential decays. We
see this more directly by considering the spectral decomposition of the transition
matrix,

⟨Of (0)Of (N𝜏)⟩ = a⊤𝚷
( N∑

i=1
λN

i l⊤i ri

)
a

=
N∑

i=1
λN

i
(
a⊤ ⋅ l⊤i

) (
li ⋅ a

)
=

N∑
i=1

exp
(
−N𝜏

ti

)(
li ⋅ a

)2

= (𝜋 ⋅ a)2 +
N∑

i=2

(
li ⋅ a

)2 exp
(
−N𝜏

ti

)
.

Similar expressions can be written down for cross-correlation and relaxation
experiments [37, 104]. This simple form of the auto- and cross-correlation functions
from MSMs facilitates analytical expression of several experimental observables
including those from NMR spectroscopy, dynamic neutron scattering, and FRET
spectroscopy.

9.4.3 Integrating Experimental and Simulation Data into Augmented
Markov Models

As mentioned above, systematic errors in the empirical force field models used for
molecular simulations to build MSMs lead to statistically robust yet systematic errors
in our predictions. Using the equations above, we can quantify, but not remedy,
these biases. A wealth of methods have been introduced to bias MD simulations
[105–112], or reweight simulation data a posteriori [111, 113–119], to match exper-
imental data, using different inference philosophies – several excellent reviews dis-
cuss these approaches in more detail [120–122]. In the context of MSMs, we already
have simulation data available or are in the process of adaptively acquiring it. Conse-
quently, adopting an approach that would alter the ensemble of our MD simulations
is undesirable – excluding the use of experimental data to bias simulations. On the
other hand, reweighing MD trajectories generally sacrifices the dynamic informa-
tion from our simulation data.

The augmented Markov models (AMM) [115] framework allows us to balance
experimental and simulation data when building Markov models of molecular kinet-
ics. AMMs, therefore, achieve better agreement with experimental data while pre-
serving the dynamic information from molecular simulations. To estimate AMMs
the log-likelihood function of MSMs is augmented with a term to balance systematic
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182 9 Markov State Models of Protein–Protein Encounters

discrepancies between experimental and simulation data via a set of Lagrange mul-
tipliers 𝝀,

𝓁(T
𝜏
,𝝀 ∣ C(𝜏),O,𝝈) ∝

∑
ij

cij log tij,𝜏 −
∑

k

(m̂k − ok)2

2𝜎2
k

(9.2)

where tij,𝜏 is the i, j’th element of T
𝜏
, cij the corresponding element in the count

matrix C(𝜏), and ok and 𝜎k are the k’th experimental observable and its experimental
uncertainty respectively. The prediction of the experimental expectation value from
T
𝜏

is m̂k = ak ⋅ �̂� where

�̂�i =
𝜋i exp(

∑
vλvavi

)∑
j𝜋j exp(

∑
vλvavj

)

models the experimental Boltzmann distribution via a maximum entropy perturba-
tion of the simulation ensemble 𝜋 computed from T

𝜏
. λv is the v’th Lagrange mul-

tiplier corresponding to experimental observable ov and its back-prediction for a
Markov state i as avi

. Optimizing Eq. (9.2) subject to detailed balance constraints
yields an AMM.

We motivate the use of a maximum entropy perturbation as it provides a model
as close as possible – in the Kullback-Leibler sense – to the simulation ensemble.
The critical assumption is therefore that the simulation ensemble provides a reason-
able starting point to model the experimental data, including covering all metastable
configurations necessary to accurately predict the experimental observables.

Other approaches similarly allow for the integration of experimental data into
MSM estimation. One approach enables the gradual adjustment of MSM station-
ary distributions against target observables [123]. Matsunaga and Sugita present a
method to integrate single-molecule FRET data and molecular simulation using a
stepwise HMM estimation procedure [124]. Brotzakis et al. propose a maximum
entropy and maximum caliber approach to reweigh trajectory ensembles against
bulk observables [116].

Although the integration of experimental data and simulation data has been
an active area of research for several decades, several problems remain open.
In particular, some data still cannot be included in the AMMs framework, including
single-molecule FRET trajectories or dynamic bulk observables.

9.5 Protein–Protein and Protein–Peptide Encounters

Several groups have reported kinetic models of protein–protein and protein–peptide
encounters using molecular dynamic simulations and MSMs. As yet, tightly binding
complexes (small dissociation constants, KD) with slow association–dissociation
kinetics dominate the literature, as they constitute the biggest challenge for
molecular simulations. While slow macroscopic kinetics and large free energy
differences characterize these systems, microscopically, these protein–protein and
protein–peptide encounters may happen via multistep processes. Consequently,
we can sample rare events on the seconds to minutes timescale by connecting the
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9.5 Protein–Protein and Protein–Peptide Encounters 183

bound and unbound states via sampling the much more likely transitions between
intermediate states. MSMs excel in cases such these: transitions sampled between
intermediate steps along binding–unbinding paths can be combined into a model
that predicts the slow macroscopic dynamics of the full binding–unbinding process
inaccessible for direct simulation.

The first reported MSM study of a fully reversible protein–protein binding by
all-atom molecular dynamic simulations was for the inhibitory complex of ribonu-
clease barnase and barstar. The barnase:barstar complex is an excellent benchmark
system due to its extensive experimental charaterization by multiple biophysical
methods. Plattner et al. collected molecular simulations with 2 ms of aggregate
simulation length [27]. The data was distributed between 1.7 ms of independent
simulations initiated from dissociated states and 0.3 ms using adaptive sampling.
The adaptive scheme enabled the authors to sample barnase:barstar association
with a few microseconds of aggregate simulation time, while the equilibrium
binding rate is tens of microseconds. Unbinding similarly benefitted from adaptive
sampling, with unbinding events being sampled in a few hundred microseconds,
while the equilibrium off-rate is expected to be on the hours timescale. The authors
estimated a HMM to compute the thermodynamics, kinetics, and important struc-
tural states of the protein–protein encounter process. They compared predictions
of macroscopic thermodynamics and kinetic observables against experiment:
binding free energy 12–19 kcal/mol against the experimental 16.8 kcal/mol and the
dissociation rate 3 × 10−6 to 10−1 compared to the experimental range of 8 × 10−5

to 5.0 × 10–4 s–1. The large uncertainties illustrate how MSMs and HMMs quality,
accuracy, and precision for these parameters critically rely on the number of binding
and unbinding events sampled in the aggregate simulation data. Nevertheless, the
on-rate could be predicted with high accuracy and the most stable state coincided
with the crystallographic structure (pdb: 1BRS). Further, perturbation theory
allowed for accurate prediction of binding free energy changes upon mutation
within statistical uncertainty. The resulting barnase:barstar HMM predicts a
binding mechanism, where barstar can associate to all points of barnase’s surface,
early intermediates preferably bind opposite to the native binding groove, and
late intermediates states and a “trap” state bind close to the binding grove, but in
non-native orientations. Later still in the process, the complex passes through late
intermediates into a prebound, loosely bound, and then finally the native bound
state. The rate-limiting step is the prebound state that is stabilized by electrostatic
and hydrophobic interactions between the two protein domains.

Two studies report MSMs of protein–peptide encounters involving the
p53-antagonist MDM2 [29, 125]. The first study investigated one antagonistic
pathway of MDM2 via its binding of the p53 transactivation domain (TAD) [125].
The study modeled this interaction via a TAD peptide and uses extensive, unbiased
molecular dynamics simulations, as for the barnase:barstar study discussed above.
The second study instead reported the binding of MDM2 to an inhibitory peptide
PMI via integrating unbiased simulations and data from enhanced sampling [29].
The first study reported a MSM that predicts quantities with an accuracy compa-
rable or worse than that observed for the barnase:barstar case above. Qualitatively
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184 9 Markov State Models of Protein–Protein Encounters

accurate on-rates, yet off-rates do not agree with experiments – this is likely due to
the relatively small data set used here of 831 μs in aggregate length and force field
inaccuracies. Nevertheless, the authors can identify important structural states and
investigate possible binding mechanisms. Their model favors an induced fit binding
mechanism, where TAD first binds MDM2 and then folds into the native complex
structure.

For the second study [29], and in a follow-up study, the authors used multi-
ensemble Markov models (MEMMs) to quantitatively predict binding thermody-
namics and kinetics of MDM2 to the PMI peptide with high precision. MEMMs
define MSMs over multiple thermodynamic states, such as those used in enhanced
sampling techniques, including replica exchange and umbrella sampling. The
advantage of this approach is that it relies on less simulation data (approximately
102 μs of Hamiltonian replica exchange and 500 μs of unbiased MD). This advantage
depends on designing an effective enhanced sampling strategy for the system of
interest, which may be challenging to achieve without substantial trial-and-error
and extensive human intervention.

To summarize, MSMs and related kinetic modeling approaches are currently the
only available strategy to gain comprehensive microscopic insights into the thermo-
dynamics and kinetics of protein–protein and protein–peptide encounters. These
analyses can help us to distinguish between different binding mechanisms, and,
combined with perturbation approaches, offer qualitative insights into the influ-
ence of point mutations on the binding. However, collecting sufficient data remains
a serious challenge when applying these methods in practice. At simulation rates
of around 400–500 ns per day and GPU collecting millisecond-sized datasets may
take GPU-years to complete. New adaptive sampling strategies and the integration
of experimental data and enhanced sampling simulations may help to lower the
demands on unbiased simulations. Nevertheless, studies have focused on relatively
small protein–protein and protein–ligand systems and interactions with high affin-
ity. Further improvements in computing power, simulation, and analysis methods
are needed to ensure that these analyses can benefit structural biology more broadly.
Finally, how these approaches will fare on low-affinity complex systems with a less
clear separation of timescales also remain to be understood.

9.6 Emerging Technologies

As we saw above, Markov state models are emerging as an important tool in char-
acterizing the thermodynamics and kinetics of protein–protein encounters, in ideal
cases providing detailed mechanistic models at atomic resolution. We are steadily
progressing towards better methods for featurization, dimension reduction, cluster-
ing, and adaptive sampling strategies; these advances contribute to minimizing the
computational and labor effort needed to build high-quality MSMs. However, we
remain reliant on access to state-of-the-art computing resources and, in many cases,
the extensive manual intervention of highly skilled researchers. Simultaneously,
our ambitions are increasing, and we want to study larger and larger systems—our
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9.6 Emerging Technologies 185

growing ambitions introduce two challenges: simulating enough to establish
statistically sufficient models and increasingly expensive simulations. A broad
range of machine learning methods is currently emerging that directly address the
challenges faced by MSMs.

Recall, the fundamental use of MSMs is to build a low-dimensional approximation
of an infinite-dimensional molecular dynamics operator. This task relies on several
preprocessing steps in sequential succession: featurization, dimension reduction,
clustering, and model estimation. The success at each stage depends on the careful
adjustment of hyperparameters against an optimality criterion. An error or subopti-
mal choice made early on in the sequence may negatively impact our final model’s
quality. Yet, identifying and resolving such problems is often not straightforward
and relies on extensive testing and manual intervention. With VAMPnets, Mardt
et al. illustrate how we may, in principle, replace the entire sequence of preprocess-
ing steps and the model estimation by an artificial neural network [126]. The key
idea is to input all-atom coordinates into a neural network that outputs a categorical
distribution representing a conformation membership to N metastable states. The
optimization objective of the neural network is a VAMP score computed between
pairs of simulation frames with a time lag of 𝜏. The neural network learns the
complicated function from molecular dynamics trajectories to a molecular kinetics
model in a single step through this procedure. Extensions of VAMPnets are already
emerging to improve data efficiency and impose further constraints on the modeled
dynamics.

The number of states a molecular system may potentially adopt grows exponen-
tially with its size. So, in addition to declining simulation rates with system size,
we must sample a much larger conformational space. In other words, our simula-
tions get slower, and we have to simulate more to ensure statistically sufficient mod-
els. The latter of these two problems arises from how we represent the metastable
states as global configurations. Consequently, we need to explicitly account for every
metastable state, even if differences between these states are only minor structural
changes.

Dynamic graphical models (DGM) replace the global representation of metastable
states with local sub-systems [127]. These subsystems are spatially localized and
can be a sidechain rotamer or a whole protein domain. A DGM aims to encode
the conformational states of all the subsystems and how they influence each other’s
evolution in time. Like MSMs, DGMs approximate the transition probability den-
sities between all possible configurations of our subsystems, yet without the need
to enumerate them all explicitly. Their indirect representation of global configura-
tions allows DGMs to rely on fewer parameters than MSMs, lowering simulation
data demands. A recent study shows that this strategy can be very effective when
modeling molecular dynamics, quantitatively predicting the thermodynamics and
kinetics of molecular systems [127]. As DGMs are generative models, we may also
predict realistic metastable states not seen during the model’s estimation.

MSMs have come a long way. We now see regular application of this methodology
to the quantitative study of complex problems such as protein folding, protein–
protein interactions, and conformational dynamics. The growing community of
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186 9 Markov State Models of Protein–Protein Encounters

researchers, together with making improvements in simulation methodology and
hardware, is rapidly expanding the scope of systems we can address. With the advent
of powerful machine learning we can expect to see these developments accelerate
further. These developments and their extensions bode well for Markovian models’
future in the quantitative study of protein–protein encounters.
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Transcription Factor – DNA Complexes
Volkhard Helms

Saarland University, Center for Bioinformatics, Saarland Informatics Campus, Postfach 15 11 50,
66041 Saarbrücken, Germany

10.1 Introduction

Specific binding of proteins to DNA is a central step in many important processes
in biological cells. Many different types of proteins can bind specifically to DNA
involving transcription factors (TFs) with activating or repressive effects on gene
expression, enzymes that pack or unpack chromatin structure, enzymes function-
ing in DNA repair or that place or remove chemical (epigenetic) modifications
on and from DNA, topoisomerases that contribute DNA supercoiling or to unzip
double-stranded DNA, etc. In this chapter, we will focus on the binding of eukary-
otic TFs to DNA. Chapter 11 by Fischle and coworkers will discuss further enzymes
involved in epigenetic processes.

Generally, two types of physicochemical interactions contribute to stabilizing
protein–DNA interactions. On the one hand, protein–DNA contacts always involve
an underlying electrostatic attraction between positively charged amino acids that
are enriched at the protein-binding interface and the negatively charged phosphate
backbone of DNA. As these interactions only involve atoms of the DNA backbone,
they are not sequence specific. On the other hand, specific polar as well as nonpolar
contacts are formed between some nucleotide bases of the DNA-binding motif and
protein residues.

As TFs one generally considers proteins that may bind to DNA in a sequence-
specific manner and regulate transcription [1]. To this end, eukaryotic TFs always
contain one of about 100 known eukaryotic DNA-binding domains that are cata-
loged in the databases Pfam [2], SMART [3], or Interpro [4] together with hidden
Markov models characteristic for these domain families. TFs usually contain at least
one further structural domain, often an activation or effector domain that is sensi-
tive to environmental or cellular conditions, such as the concentration of ions or
cyclic AMP [5], and that may also bind to further proteins. For human, a recent
compendium cataloged 924 effector domains belonging to 594 human TFs [6]. In
this manner, the TFs enable fine-tuned regulation of gene expression depending on
the respective condition of the biological cell. In eukaryotes, TF-binding motifs are

Protein Interactions: The Molecular Basis of Interactomics, First Edition.
Edited by Volkhard Helms and Olga V. Kalinina.
© 2023 WILEY-VCH GmbH. Published 2023 by WILEY-VCH GmbH.
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196 10 Transcription Factor – DNA Complexes

Figure 10.1 Top row: (left) Kruppel-like factor 4 (KLF4) bound to methylated DNA. KLFs
belong to the family of C2H2-type Zinc-finger transcription factors, PDB code 4M9E, (right)
WUS- Homeodomain from Arabidopsis thaliana bound to TGAA DNA. PDB-code 6YRD.
Bottom row: (left) the Mad-Max dimer belongs to the family of basic helix-loop-helix TFs,
PDB-code 1NLW. (right) C/EBP basic leucine zipper, PDB code 1NWQ. Source: Adapted from
Sehnal et al. [8].

found both in the enhancer and promoter regions of their target genes. TFs con-
tribute to either attracting or repelling RNA polymerase to or from a transcription
start site so that the expression of the respective gene is either up- or downregulated.

Over the past decades, atomistic structures of many TFs could be determined
both by X-ray crystallography and NMR [7]. Figure 10.1 illustrates several fre-
quently observed structural topologies of eukaryotic TFs [9, 10], namely, the
C2H2-zinc-finger proteins (ZF), basic helix-loop-helix (Bhlh) proteins, basic leucine
zipper (Bzip), and the homeodomain.

Most organisms possess between a few hundred and a few thousand TFs. An
upper estimate is set by identifying all protein-coding genes in the respective
genome that have a DNA-binding domain. As just described, only a certain
fraction of these proteins are TFs. For example, the genome of Saccharomyces
cerevisiae contains 245 genes with known DNA-binding domains (about 4% of all
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10.2 Principles of Sequence Recognition 197

yeast genes). In the human genome, about 2600 genes contain one of the known
DNA-binding domains (representing 11.8% of all human genes). Out of these, about
three-quarters have been annotated with TF functionality [1]. Sonawane et al.
analyzed the expression of a subset of 644 human TFs in 38 different tissue types
sampled by the GTEx consortium [11]. They found that about one-third of them
showed tissue-specific expression, which is a lower fraction than the average of all
genes (41.6%). Hence, they suggested that TF expression is not the primary driver of
tissue-specific functions. Besides recruiting RNA polymerase and thus promoting
active transcription, TFs can also directly negatively affect transcription by blocking
other proteins from binding to the same site. In most cases, eukaryotic TFs appear
to recruit further cofactors as coactivators or corepressors.

Malfunction of transcription is known as one important driver of diseases. We
will illustrate this here briefly on the example of the transcription factor p53, which
is known as the “guardian of the cell.” In case of DNA damage, p53 stops progres-
sion of the cell cycle and stimulates DNA repair processes. If the damages are too
severe, p53 induces apoptosis. An X-ray structure of the p53 core domain bound
to ds-DNA determined by the group of Nicola Pavletich revealed specific hydrogen
bonding between several arginine residues of the protein and DNA bases (PDB-code
1TSR) [12]. Three of these arginine residues at the binding interface are indeed
among the most frequently mutated p53 residues in cancer. Hence, the structural
view of the binding mode perfectly matches the findings from mutagenesis analysis.
Further examples of tumor mutations affecting transcription factors are described
in detail in ref. [13].

10.2 Principles of Sequence Recognition

Figure 10.1 illustrates that many TF families interact with DNA via α-helices at
their binding interfaces. The overall shape and dimensions of an α-helix can be
accommodated in the major groove of DNA in multiple different ways. As mentioned
before, establishing sequence-specific contacts with the DNA bases enables recogni-
tion of specific sequence motifs. Structural studies showed that contacts may involve
direct hydrogen bonds between protein side chains and nucleic bases or between the
polypeptide backbone and the bases, hydrogen bonds bridged by mediating water
molecules, as well as hydrophobic contacts. About half of all hydrogen bonds involve
atoms of the DNA backbone.

Subsequent to the seminal theoretical work of Berg et al. [14], experimental as
well as computational and theoretical work showed that TFs find their specific
binding motifs on the DNA by a mixture between times of free diffusion around
the DNA strand and times where they bind nonspecifically to DNA. In the latter
case, they may also slide along (scan) the DNA chain. Among the different options
of either three-dimensional diffusion (jumping regime), one-dimensional motion
(random-walk regime), or a combination of 3D and 1D motions (sliding regime),
a theoretical analysis found that an optimal search dynamics results when the
TFs explore both 1D and 3D pathways during the search for optimal-binding sites

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by ibrahim

 ragab - C
ochrane G

erm
any , W

iley O
nline L

ibrary on [23/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



198 10 Transcription Factor – DNA Complexes

on the DNA [15]. Munoz and colleagues recently showed by fluorescence corre-
lation spectroscopy [16] that the transcription factor Engrailed from Drosophila
melanogaster tracks its specific-binding sites on the DNA with the help of “DNA
antennas” in the vicinity of these binding sites. The initial puzzling finding was
that introducing severe mutations of the TAATTA recognition motif resulted in
much smaller drops of the binding affinity than expected. This discrepancy could be
resolved by assuming that EngHD also binds promiscuously to the flanking DNA
sequence, thereby buffering the effect of mutations or even removal of the binding
motif. This nonspecific buffering then showed an expected dependence on the ionic
strength of the solution.

10.3 Dimerization of Eukaryotic TFs

The expression of a particular gene is typically regulated by the binding of mul-
tiple TFs whereby their binding sequence motifs are organized into so-called
cis-regulatory modules. The simplest combinatorial element is the formation of
homotypic dimers by many TFs of the bZIP, bHLH, MADS-box, NR, STATs, HD-ZIP,
and NF-κB families [17]. In this way, TFs are able to form dimers having distinct
biological properties (more than 500 dimers in humans and up to 2500 when
alternative splicing is taken into consideration). However, as one TF monomer can
in effect have several binding partners, it can form TF dimers with diverse proper-
ties and distinct regulatory effects. Which one of these dimers is established often
depends on the levels of posttranslational modifications of the TFs and their binding
affinities with each other. As an example, we will mention the pair of heterodimers
Myc-Max and Mad-Max that both involve the ubiquitously expressed protein Max
[17, 18]. When a Myc–Max heterodimer is assembled at the promoter element of
one of its target genes, it will either recruit the SWI/SNF nucleosome remodeling
complex or histone acetyltransferases (HATs). The SWI/SNF complex is known to
break up the nucleosome structure, whereas HATs acetylate strongly conserved
lysine residues in the disordered N-terminal tails of histone proteins. In both cases,
the binding motifs of further TFs become exposed in the promoter region of the
target gene. Instead, binding of a Mad–Max heterodimer will downregulate the
target genes by recruiting histone deacetylases (HDACs) to the promoter element
where it is bound. HDACs obviously play an inverse role to HATs.

In principle, N genes of a given TF family can give rise to N homodimers+
N (N − 1)/2 unique heterodimers, whereby we neglect potentially cooperative
binding of the monomers, any cell-specific expression patterns, or splicing effects.
Thus, the 51 human bZIPs, 118 bHLHs, and 48 NRs existing in humans could in
principle form 1326, 7021, and 1176 unique dimers, respectively. Due to practical
constraints of the involved binding interfaces, however, only certain specific
monomer–monomer binding options are actually realized. For example, results
from protein-array experiments led to an estimate of ∼350 unique bZIP dimers
that are being formed, which is roughly a quarter of the theoretically possible
combinations [17].
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10.4 Detection of Epigenetic Modifications 199

10.4 Detection of Epigenetic Modifications

It has been shown in mammals and plants that chromatin conformation is closely
linked to the degree of CpG methylation [19] and the nature of epigenetic modifica-
tions placed on the nucleosomal histone proteins [20]. As illustrated in Figure 10.1,
TFs typically pack tightly either into the major or minor groove of double-stranded
DNA. As they have a non-negligible volume, it is reasonable to assume that TFs can
best bind to dsDNA adopting an open chromatin conformation.

However, there also exist so-called pioneer transcription factors that may
bind to condensed chromatin as well [21]. Taipale and colleagues systemati-
cally explored interactions between the nucleosome and 220 TFs representing
diverse structural families by an adapted SELEX strategy [22]. In agreement
with earlier findings, they observed that most of the studied TFs cannot access
DNA that is wound around nucleosomes as easily as free DNA. The binding
motifs derived from TFs that were either bound to nucleosomal or to free DNA
were overall quite similar. However, in the steric context of the nucleosome,
sequence motifs are only accessible from certain angles and locations, which
places certain restrictions on the positioning of binding motifs. In fact, many
pioneer TFs were found to bind near the ends of nucleosomal DNA. For example,
competitive nucleosome-binding assays showed that the pioneer factor TP53 has a
strong preference for sites outside the 100 bp region surrounding the nucleosome
dyad [23].

Besides its effect on DNA conformation [24] that indirectly affects TF binding,
DNA methylation at the C5 position in a CpG context may also directly facilitate
TF binding by providing additional hydrophobic methyl groups as contact sites or
repress TF binding by sterically blocking the original contacts with unmethylated
cytosine bases. For example, the MBD domain of the human transcription factor
MeCP2 binds specifically to cytosine-methylated DNA via an interplay of hydrogen
bonding and cation–π interactions between two MBD arginines and the methylated
cytosine bases. Schulten and coworkers [25] studied this complex through molec-
ular dynamics simulations and showed that methylation favors binding of MBD to
mDNA by increasing the hydrophobic interfacial area of mDNA and stabilizing the
interaction between mDNA and MBD proteins. Shanak et al. studied the same com-
plex and suggested that C5-cytosine methylation entropically favors binding of the
MBD domain to the human MeCP2 protein, whereas binding enthalpy made no
noticeable contribution [26].

Regulatory effects of DNA methylation on TF binding are actually quite
widespread. Taipale and colleagues [27] studied the binding of 542 human TFs to
unmethylated vs. CpG-methylated DNA by using a methylation-sensitive systematic
evolution of ligands by exponential enrichment (SELEX) protocol. They found that
mCpG inhibited binding of most major classes of transcription factors to DNA,
including Bzip, HLH, and ETS. Contrary to this, some other transcription factors,
e.g. belonging to the POU, homeodomain, and NFAT domains showed a higher
propensity for binding to methylated DNA.
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200 10 Transcription Factor – DNA Complexes

Figure 10.2 X-ray structure of Lac
repressor from E. coli bound to 20-base
pair symmetric operator segment of DNA
and the anti-inducer
orthonitrophenylfucoside (ONPF),
PDB-code 1EFA.

10.5 Detection of DNA Curvature/Bending

The association of some TFs with DNA may result in strong bending of the DNA
away from its canonical straight shape of B-DNA. Actually, different sequence
contexts have different intrinsic stiffness against bending [28]. Hence, binding of
TFs to bent DNA is another means to read out sequence-related aspects of the
respective DNA segment besides any specific contacts established with nucleic
acids mentioned above. Also, certain TF dimer pairs may only be able to bind to
specifically bent DNA.

For example, X-ray crystallography showed that binding of a LacI dimer induces
a 36∘ bending in DNA, see Figure 10.2. Liao et al. performed MD simulations of
free LacI dimer and when it is complexed either to bent DNA as found in the X-ray
structure of the complex, or to straight DNA (started from a modeled geometry) [29].
Even when LacI was modeled as close as sterically possible to straight DNA, the sim-
ulations did not show characteristic clamping of the LacI-binding helices around
DNA, presumably due to steric clashes between LacI and the straight DNA. Further-
more, after LacI established contact with straight DNA, it started to slide along the
DNA, reminiscent of a searching motion for a better position. The authors suggested
that while the search process of a nonspecifically bound TF likely takes place along
straight DNA, bending of the DNA promotes formation of a tightly bound specific
(and possibly also nonspecific) LacI–DNA complex.

10.6 Modifications of Transcription Factors

Like most other cellular proteins, TFs may be subject to alternative splicing that
often affects their activity levels and may even alter the direction of their activity. For
example, Belluti et al. reviewed cases where alternative splicing isoforms of the TFs
NFYA, STAT3, TCF4, and WT1 directly regulate specific transcriptional programs,
leading to opposite cell fates [30]. Also, it was shown that two different isoforms of
the transcription factor MeCP2 either promote pluripotency or drive stem cells into
differentiation [31].

Adding and removing posttranslational modifications is another well-known
mechanism to control the activity of cellular proteins. In effect, more than
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10.8 Experimental Detection of TFBS 201

two-thirds of the 21 000 proteins encoded by the human genome have been shown
to be subject to phosphorylation [32]. Hence, phosphorylation is also a frequently
used mechanism to link the activity of signaling pathways to the control of gene
expression patterns [33]. For example, casein kinase I phosphorylate the pluripo-
tency factor NANOG and thereby regulates self-renewal of embryonic stem cells
[34]. Phosphorylation of retinoblastoma protein (Rb) drives the cell cycle [35]. Also,
p53 can be modified by phosphorylation by a broad range of kinases, including
ATM/ATR/DNA-PK and Chk1/Chk2 [36, 37].

10.7 Transcription Factor Binding Sites

DNA segments that establish specific physical interactions with individual TFs are
named transcription factor binding sites (TFBSs). These commonly have a length
between 8 and 20 base pairs (bp) and possess a core region of 5–8 bps of evolution-
ary highly conserved nucleotide bases. Neighboring positions around the core region
may be more divergent. Double-stranded DNA has a periodicity of 10 bp. Hence,
such core regions of short TFBS motifs are slightly longer than half a turn of dsDNA.
TFs may also bind specifically to similar, but not identical DNA sequences that differ
in a few nucleotide positions. Some TFs bind specifically to hundreds or even thou-
sands of locations in the genome. As an example, Figure 10.3 shows the sequence
motif preferred by TF Gata1. Such sequence logos are a convenient means to graph-
ically display the degree of degeneracy in the TFBS.

10.8 Experimental Detection of TFBS

Still in use are several well-established experimental small-scale in vitro techniques
to discover and analyze instances where a protein binds specifically to DNA or RNA.
These methods include, for example, the electrophoretic mobility shift assay (EMSA)
and the DNAse footprinting assay.
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Figure 10.3 Binding motif of the human transcription factor Gata1 (according to www
.factorbook.org. Source: Adapted from Wang et al. [38].

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by ibrahim

 ragab - C
ochrane G

erm
any , W

iley O
nline L

ibrary on [23/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.factorbook.org
http://www.factorbook.org


202 10 Transcription Factor – DNA Complexes

10.8.1 Protein-Binding Microarrays

One option to upscale these in vitro experiments to large numbers of DNA vari-
ants is protein-binding microarrays (PBMs) [39]. This DNA microarray technology
enables one to measure under in vitro conditions one by one but in parallel the
binding characteristics of multiple DNA-binding proteins. For this, one employs a
microarray carrying different putative-binding motifs of double-stranded DNA in
different wells, see Figure 10.4. The protein of interest is expressed and purified
with an epitope tag and then added to the microarray. In a washing step, nonspecif-
ically bound protein is removed from the solution. Then, all wells containing bound
protein are read out in a labeling step by adding a fluorophore-conjugated anti-
body that binds specifically to the epitope tags exposed in populated wells. In this
way, all spots carrying a significant amount of protein are identified. Based on the
DNA sequences associated with these spots, one determines which DNA-binding
site motifs are found to be enriched for the considered DNA-binding protein.

Biochemical solution assays, such as EMSA, DNAse footprinting, or protein-
binding assays, are suitable to identify particular DNA motifs to which an indi-
vidual TF prefers to bind. Based on the results, one generates a sequence logo
(see Figure 10.3) or a position-specific scoring matrix (PSSM) for this TF (this will
be explained below) and scans the genome sequence or parts of it for favorable
binding positions based on the match of the considered segment to this TFBS motif.
Unfortunately, such motifs have an overall quite short length and contain only few
invariant positions. Hence, some motifs will be detected millions of times in the
genome. Thus, although a TF could theoretically bind to any such motif instance
in vivo, it is found only at about 1 in 500 sites in organisms having large genomes.
For example, the mouse genome contains about 8 million segments with similarity

Calculate normalized PBM data

GST

SYBR green

Double-stranded

DNA microarrays

Bind epitope-tagged TF

to dsDNA microarrays

Scan triplicate

microarrays

Label with fluorophore-tagged

anti(epitope) antibody

Figure 10.4 Main principles of protein-binding-microarray technique.
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10.8 Experimental Detection of TFBS 203

to the binding site motif of GATA-binding factor 1 (see Figure 10.3). However, in
erythroid cells, GATA-1 was found to bind at only about 15 000 of them [40].

10.8.2 Chromatin Immunoprecipitation Assays

To overcome the drawbacks of in vitro assays just mentioned, modern parallel meth-
ods, such as ChIP-chip and ChIP-seq, are able to identify TF-binding sites in vivo.
As indicated by their names, these methods utilize either DNA microarrays or new
sequencing techniques, respectively.

A ChIP-seq experiment, see Figure 10.5, starts by purifying a cellular extract with
the help of an antibody that binds to a particular TF. Then, the DNA sequences com-
plexed to the TF are processed with a restriction enzyme. All leftover DNA can be
assumed to be tightly coordinated by the respective TF. This TF is washed again
from the DNA followed by sequencing of the DNA. All identified DNA reads belong
to DNA segments that were bound to the TF before. Then, one uses a motif-search
package, such as MEME [41], to characterize enriched sequence motifs among those

Add bead-
attached
antibody to
purify

Shear DNA

Crosslink
proteins to
DNA

ATGCCTTAAGC

Precipitate,
unlink protein,
sequence DNA,
map to genome

Figure 10.5 Main steps of a ChIP-seq experiment.
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204 10 Transcription Factor – DNA Complexes

sequences. The resulting binding motif can be represented either as a PSSM or graph-
ically as a sequence logo.

10.8.3 DamID Profiling of Protein–DNA Interactions

DamID profiling relies on the expression of Escherichia coli DNA adenine methyl-
transferase (abbreviated as Dam) that is fused with a chromatin interacting protein
of interest (e.g. a TF) [42]. In a DamID-experiment, one monitors what adenine
positions in the DNA get methylated to a significant extent compared to a control
experiment where Dam is not present. Comparing the two outcomes then reveals
to which DNA segments the chromatin interacting protein was bound (so that the
fused Dam enzyme could methylate adenine bases in its spatial vicinity).

10.9 Position-Specific Scoring Matrices

A position-specific scoring matrix (PSSM) is often used to represent motifs (patterns)
in biological sequences. In the case of TF-binding motifs, one identifies a number of
DNA sequences able to bind a particular TF. Then one computes the frequency nj

i of
the 4 nucleotides in all relevant positions i, and from this the score matrix

sj
i = ln

(
nj

i + pi

)
∕(N + 1)

pi

with N being the number of considered sequences. Adding the frequencies pi
in the numerator and dividing by N + 1 resolves mathematically problematic
cases where nj

i = 0. A score sj
i = 0 is assigned to all positions where the observed

frequency matches what is expected randomly. Positive scores indicate enrichment
of particular bases at these positions and negative scores vice versa.

Setting up a PSSM model implicitly assumes that there is no cooperativity between
neighboring positions and each sequence position makes an independent contribu-
tion to the binding affinity that is approximated as a binding score. This is certainly
a compromise. In reality, adjacent bases may clearly affect each other either directly
or by affecting the local DNA conformation.

10.10 Molecular Modeling of TF–DNA Complexes

Molecular dynamics (MD) simulations described in Chapter 8 can also be used to
study protein–DNA complexes. Such simulations provide detailed insight into the
attractive interactions that drive the binding partners toward each other and that
stabilize the atomic contacts formed in the specific complex. For example, Beuerle
et al. reported that a copy of the transcription factor ERG that was laterally dis-
placed by 2.3 nm from the DNA found its specific-binding site on the DNA sequence
within 60 nanoseconds (ns) of simulation [43]. Huertas et al. studied the conforma-
tional dynamics of entire nucleosomes in MD simulations. They observed that the
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10.11 Cis-Regulatory Modules 205

DNA sequence segments containing binding sites for the pioneer TF Oct4 displayed
increased local structural flexibility, which should essentially facilitate binding of
Oct4 [44].

As described in Chapter 8, there also exist technologies to perform alchemical
mutations within MD simulations, so that one nucleotide base can be mutated
into another one, and the resulting binding free energy change can be reported.
Gapsys and de Groot [45] utilized so-called free energy perturbation calculations
to predict alterations of binding affinity upon 397 cases of nucleotide mutations
that were experimentally reported for 16 different protein–DNA complexes. The
authors reported that the computed binding affinity differences for single mutations
deviated from experimentally measured binding affinities only by 5.6 kJ/mol on
average with a correlation coefficient of 0.57. Hence, MD simulations can essentially
be used to predict DNA mutation effects on TF-binding affinities in a quantitative
manner.

Molecular dynamics simulations can also provide insight into larger-scale mobil-
ity. For example, Yu and colleagues [46] observed in all-atom MD simulations of
the plant-transcription factor WRKY domain protein that the TF was able to pro-
cess laterally on the DNA on a timescale of a few microseconds. Such simulations
will eventually be able to pinpoint mechanistic details about TF–DNA recognition.
Also, if combined with tailored force fields, molecular dynamics simulations can be
applied to study partially disordered systems, such as the p53 complex [47], which
are not easily amenable to structural biology.

10.11 Cis-Regulatory Modules

Although a typical eukaryotic cell expresses hundreds of TFs, a transcriptional code
where individual TFs bind one by one to the promoter segments of target genes
would not be sufficient to implement the required complex expression patterns of
thousands of genes. Instead, expression of eukaryotic genes is typically controlled
by simultaneous binding of multiple TFs to their promoter regions. Sometimes, the
TFs can establish direct structural contacts among each other, e.g. illustrated in the
X-ray structure of the Oct4-Sox2 dimer bound to DNA, see Figure 10.6. In such cases,
it is well plausible that their mutual binding affinities are affected in a cooperative
manner. For steric reasons, the distance between the TFBSs of adjacent TFs must
then be restricted to a certain range.

Only in few cases, structural biology was able to capture the simultaneous binding
of multiple TFs to nearby DNA segments. One such case involves the regulation
of the interferon-beta (IFN-beta) gene. The expression of IFN-beta is initiated
once the TFs ATF-2/c-Jun, IRF-3/IRF-7, and NFκB assemble cooperatively into a
TF complex termed “enhanceosome” at the IFN-beta enhancer region [48]. This
complex subsequently recruits further coactivators and chromatin-remodeling
proteins to this sequence segment. Harrison and colleagues determined an X-ray
structure of the DNA-binding domains of IRF-3, IRF-7, and NFκB, bound to
one-half of the enhancer segment. Together with a previously determined structure
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206 10 Transcription Factor – DNA Complexes

Figure 10.6 Two pluripotency factors, Oct4
(green) and Sox2 (violet), bound to a
nucleosome (PDB structure 6YOV).

AFT‒2

ReIA

c-Jun

p50

IRF‒7B

IRF‒3A
IRF‒3C

IRF‒7D

Figure 10.7 Structural model of an interferon-beta “enhanceosome” involving the
transcription factors (c-Jun, AFT-2, IRF-3, IRF-7, p50, and Rel A). The model was generated
by superposing chain B of the ATF-2/c-Jun/IRF-3/DNA complex (PDB-entry 1T2K) and chain
F of another structure that includes four IRF-3 DNA-binding domains (2O6G). Afterward,
parts of chain A of a structure of NFκB:IRF-7:IRF-3:DNA (2O61) were superposed with
chains G and H of 2O6G. Of all doubly occurring proteins and DNA strands, one copy each
was deleted. The superpositions and the graphics were created using UCSF ChimeraX [49].

of another assembly, this enabled them to generate a structural model of the
complete enhanceosome architecture involving eight proteins in the vicinity of
DNA. The model shown in Figure 10.7 reveals only few direct protein–protein
contacts that led the authors to suggest that cooperative occupancy of the enhancer
is due to binding-induced changes in DNA conformation on the one hand and
interactions with additional proteins, such as CBP, on the other hand.

Such a cluster of multiple TFBS sites is termed a cis-regulatory module (CRM).
Some regions of a CRM may promote binding of one or more TF complexes. In
metazoans, a CRM may commonly extend more than 500 bp and may contain 10–50
TFBSs where between three and 15 different sequence-specific TFs may bind [50].
In case it contains multiple similar binding sites for an individual TF, this increases
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10.12 Relating Gene Expression to Binding of Transcription Factors 207

the sensitivity for this TF, yields a more robust transcriptional response, or may sim-
ply favor the binding of a homo-oligomeric TF (e.g. NF-κB or p53). Some TF pairs
have well-known binding partners, such as the TF pair Sox 2 and Oct4, illustrated in
Figure 10.6. The ENCODE project mentioned in the next subsection found that 114
out of the 117 considered human TFs participate in about 3300 pairs of statistically
co-associated factors. Given that 117 TFs could potentially form 117× 117/2≈ 6000
complexes, the finding that more than half of these actually exist in Nature is quite
remarkable. These pairs included expected combinations, such as that of Fos and
Jun, but also some unexpected novel combinations.

When a TF forms a complex with another TF of the same type, this is named
a homotypic interaction. The Lac repressor dimer shown in Figure 10.2 is a
well-studied example of such a homotypic assembly. Heterotypic interactions
describe situations when one TF binds to another TF of a different type. Besides,
DNA-binding TFs may also bind indirectly to other DNA-binding TFs by involving
additional cofactors or bridge proteins. Chapter 5 explains the DACO algorithm for
construction of protein complexes. One application scenario of this software is the
identification of putative protein complexes that contain one or more transcription
factors. When using TF complexes of S. cerevisiae as seed proteins, we identified
a number of protein complexes containing two or three TFs [51]. We argued that
binding of such multivalent complexes to the promoter regions of target genes may
enable a much finer transcriptional regulation than binding of individual TFs.

10.12 Relating Gene Expression to Binding
of Transcription Factors

As mentioned before, several experimental techniques can be used to detect bind-
ing of TFs to DNA segments. Depending on how comprehensive these data are, it
enables setting up linear or nonlinear mathematical models of how the expression
of a particular gene, a set of genes, or even all genes of an organism depend on the
concentration levels and activation states of the available TFs.

A major advance in this field is due to the activities of the large-scale ENCODE
consortium (short for Encyclopedia of DNA Elements) that was funded between
2003 and 2012. Based on large-scale ChIP-seq experiments, functional regulatory
elements were identified in the sequence of the human genome for a representa-
tive set of 147 different human cell types. In its main paper, ENCODE characterized
the binding locations for 119 human DNA-binding proteins involving 87 of the 1600
known human sequence-specific TFs [52]. If one concatenates all identified tran-
scription factor binding site motifs, 4.6% of the entire sequence is covered. Turned
around, 95% of all genomic locations are located within 8 kb of a DNA-TF contact
detected by ENCODE based on ChIP-seq. Furthermore, by classifying the genome
into seven distinct chromatin states with the tool ChromHMM, the authors iden-
tified 400 000 regions having enhancer-like features and about 70 000 regions with
promoter-like features, as well as hundreds of thousands of quiescent regions.
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The detected gene expression levels spanned a wide dynamic range from 10−2 to
104 reads per kb per million reads (r.p.k.m.) for polyadenylated RNAs, and from 10−2

to 103 r.p.k.m. for non-polyadenylated RNAs. Several research groups, including the
ENCODE team, presented linear regression models that relate the expression levels
of individual genes to the occupancy of adjacent TFBSs. E.g for K562 cells predicted
and observed expression levels predicted by the ENCODE team showed a Pearson
correlation of 0.81 [52]. As the binding of TFs and epigenetic modifications are inter-
related, linear regression models either based on TFBS occupancies or epigenetic
modifications achieved similar predictive performance.

10.13 Summary

Protein–DNA interactions are among the most crucial biomolecular interactions in
cells. Over the past decades, structural techniques, such as X-ray crystallography
and NMR, were able to determine structures of the complexes of many transcrip-
tion factors or other DNA-binding proteins when specifically bound to DNA. Their
binding preference on the genome can be unraveled both by experimental in vitro
assays or in vivo by ChIP-seq experiments. We discussed in this chapter how the bind-
ing affinity of transcription factors to linear DNA sequence motifs is modulated by
conformational distortion of linear DNA, epigenetic modifications, and organizing
multiple TFs into protein complexes that show cooperative binding to cis-regulatory
sequence modules.
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The Chromatin Interaction System
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Engineering, Laboratory of Chromatin Biochemistry, Thuwal 23955-6900, Saudi Arabia

11.1 Chromatin Is a Special Interaction Platform

Inside the nucleus of each cell, genetic information in the form of DNA is packaged
into chromatin. Various cellular pathways of homeostasis and responses to envi-
ronmental stimuli are integrated on chromatin as an important signaling platform
culminating in regulation of all DNA-dependent processes (e.g. transcription,
replication, and repair). Nucleosomes are the repeating units of chromatin. These
are nucleoprotein complexes of two copies each of the core histone proteins H2A,
H2B, H3, and H4, wrapped by 147 bp of DNA, and connected to each other by
linker DNA (Figure 11.1A). The canonical core histones are very basic (i.e. rich
in amino acids lysine and arginine), globular proteins of 11–15 kDa. These have
extended N- and C-terminal tails of 12–39 amino acids, which protrude from the
nucleosome core particle. In addition to linker histones of the H1 type that associate
with linker DNA, an extended view of chromatin also contains nonhistone proteins,
RNAs, and small molecules, which are more or less tightly associated with the
genetic material.

With its unique and complex composition, chromatin represents a special envi-
ronment for protein interactions with a plethora of other molecules (Figure 11.1).
Beyond the generic composition of chromatin, the number of possible distinct
interactions is increased by several orders of magnitudes due to the locally restricted
exchange of the canonical histones for so-called histone variants (distinct func-
tionalities due to sequence variation) and not least by highly abundant chemical
modifications of histones, nonhistone proteins, and nucleic acids (Figure 11.1A).
These control local protein–chromatin interactions, affect enzymatic activities, and
modulate protein structures.

In addition to its unique molecular and biochemical composition, chromatin
also has special biophysical properties and is a hotspot for phase separation events.
It is thought that these can have significant effects on protein interactomics.

Protein Interactions: The Molecular Basis of Interactomics, First Edition.
Edited by Volkhard Helms and Olga V. Kalinina.
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11.2 Interaction of Proteins with Histone Posttranslational Modifications 215

Figure 11.1 Introduction to the chromatin interaction system. (A) Schematic representation
of the complex chromatin interaction platform and its components. The system comprises
multiple protein–protein and protein–nucleic acid interactions. Many of these interactions
are controlled by posttranslational modifications (PTMs) of the histone proteins and
chemical modifications of RNA and DNA. The concept of protein- and/or nucleic acid-driven
phase separation can explain the existence of subnuclear chromatin compartments
containing specific proteins and exerting specialized functions (e.g. splicing, transcription,
etc.). (B) Common PTMs of amino acids in histone proteins. (C) Complexity of PTMs on the
N-terminal tails of histones. The panel is not exhaustive and new marks are still being
discovered. (D) The combination of chromatin modifications forms a code that is instructive
for protein interactions and thus functional outputs. Positive crosstalk (top): Proteins with
multiple reader domains recognize combinations of modifications. Negative crosstalk
(bottom): Inhibition of interaction of a protein with a chromatin modification by a
neighboring modification. (E) Structural studies facilitate the understanding of
protein–histone tail and nucleosome recognition. Crystal structure of TRIM33 PHD and
Bromo domains binding H3K9me3K18ac in a coordinated manner (PDB ID: 3U5O) (left).
Cryo-EM structure of the FACT chaperone interacting with a partial nucleosome (PDB ID:
6UPK) (right). This figure was generated with Biorender.com.

Liquid–liquid phase separation (LLPS) is defined as the spontaneous, reversible
unmixing of a solution into two distinct liquid phases: one concentrated, condensed
and one dilute phase. Proteins and RNAs with low-complexity regions that display
multivalent interactions with each other can form supramolecular clusters and
induce LLPS [1]. Interaction of proteins with distinct modifications on chromatin
can stimulate this process by increasing the local concentration of phase-separating
proteins. Polymer–polymer phase separation (PPPS) occurs when proteins bridge
different chromatin fibers, which become a densely packed globule surrounded by
more solvent exposed regions (Figure 11.1A). While it is not yet fully resolved which
processes, LLPS or PPPS, are most relevant for chromatin biology, both scenarios
result in certain molecules becoming enriched in or depleted from one of the two
phases [2].

11.2 Interaction of Proteins with Histone
Posttranslational Modifications

11.2.1 The History of Histone Posttranslational Modifications and the
Histone Code

Initially, histones were thought to be mere accessory proteins that facilitate the
packaging and compaction of DNA inside the cell nucleus by providing a static
scaffold. Now, it is known that histones and histone posttranslational modifications
(PTMs) play important regulatory roles in all cellular processes that depend on
DNA. A large number of PTMs – and certainly the best studied ones – are found in
the exposed N- and C-terminal histone tails (Figure 11.1B,C). Based on their topol-
ogy, it is easy to envision these serving as docking sites for multiple proteins. PTMs
are also found in the histone globular domains, where they regulate nucleosome
assembly, stability, and neighboring internucleosomal contacts [3–6].
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216 11 The Chromatin Interaction System

Acetylation of lysine residues in the N-terminal tails of histones was first described
in 1963 [7]. A year later, histone acetylation was shown to stimulate transcription
in cell-free calf thymus extracts, suggesting that this PTM might directly influence
histone-DNA interactions [8]. In 1964, lysine methylation of histones was first
detected [9], and in 1966 the incorporation of 32P into histones was discovered
in rats, implying protein phosphorylation [10]. In recent years, the types of his-
tone PTMs identified have exploded to include ADP-ribosylation, ubiquitylation,
sumoylation, and various types of acylation, glycosylation, and serotonylation (see
Table 11.1) (reviewed in [11]).

The vast complexity of the histone PTM system originates not only from the many
types of chemical modifications: (i) Certain sites in the various histones are targeted
by different modifications (for example, the lysine 9 residue of histone H3 can be
methylated, acetylated, acylated, or ubiquitylated). (ii) The same modifications can
occur on different sites of the various histones (for example, histone H3 can be
acetylated on residues lysine 4, lysine 9, lysine 14, etc.). (iii) Methylations occur
in different stages (i.e. lysines can be mono-, di-, or tri-methylated; arginines can
be monomethylated as well as symmetrically or asymmetrically dimethylated).
(iv) Lastly, complex patterns of modifications with multiple sites in individual
histones or different histones within a nucleosome or a stretch of the genome likely
exist (Figure 11.1B,C) [12]. Over 500 unique histone marks (different site-specific
modifications) have been described to date (reviewed in [11]). Uniformly, histone
modifications are annotated by (i) type of histone, (ii) site of modification, (iii) type
of modification, and (iv) modification level; for example, H3K9me3 refers to histone
H3 modified on the lysine 9 residue by trimethylation.

As electrostatic forces between positively charged histones and negatively
charged DNA are a main component of histone-DNA binding, it was proposed early
that PTMs could modulate nucleosome stability and internucleosomal contacts.
However, several types of modifications do not have charge changing properties.
Their functional mechanisms were revealed when the first proteins that specifically
recognize histone modifications were identified on the basis of rational guesses
derived from cellular and genetic experiments [13–15]. Such factors are commonly
referred to as reader proteins. These contain specialized domains that recognize his-
tone residues carrying PTMs in sequence-specific contexts, generally within short
linear peptide motifs (5–10 amino acids) (Figure 11.1D,E and refer to Table 11.2)
[15–24]. Reader proteins may contain multiple reader domains or may be part of
multiprotein complexes, including other reader proteins. Often, readers recruit, or
are part of, chromatin-modifying enzymes that write or erase certain modifications,
or that remodel chromatin (Figure 11.1).

With the discovery of many histone PTMs and the elucidation of their molecular
working mechanisms, it was proposed that distinct histone PTMs can act in com-
bination or sequentially to function as a “histone code” that controls fundamental
chromatin-mediated processes [25, 26]. In agreement with this hypothesis, we now
know that different regions of the genome (e.g. enhancers, promoters, and repetitive
elements) are decorated by specific patterns of histone PTMs. These appear to be
instructive for the fate of such regions (see Figure 11.1D).
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Table 11.1 Types and examples of chromatin modifications.

Modified
residue Modification Effector function Examples Effect on chromatin processes

Histones
Lysine Monomethylation Docking sites for chromatin binding

domains
H3K4me1 Marks active and inactive enhancers
H4K20me1 DNA repair, chromatin condensation, gene

expression
Dimethylation H3K27me2 Enhancer silencing

H3K36me2 Preventing the spread of repressive H3K27me3,
modulating DNA methylation

Trimethylation H3K4me3 Activation of gene expression
H3K9me3 Repression of gene expression, heterochromatin

formation
H3K36me3 Repression of transcription initiation, splicing

regulation
Acetylation Charge neutralization (hydrophobic

group), docking sites for chromatin
binding domains

H2BK5ac Active promoters
H3K27ac Active enhancers and promoters
H4K5acK8ac Chromatin remodeling, activating gene expression

Formylation ? ?
Propionylation H4K16pr ?
Butyrylation H4K5acK8bu Chromatin remodeling, activating gene expression
Crotonylation H3K9cr Gene expression

H3K14cr Spreading of acylation, open chromatin
2-Hydroxyisobutyrylation Charge neutralization (polar group),

docking sites for chromatin binding
domains

H4K8hib Associated with highly transcribed genes
β-Hydroxybutyrylation H3K9bhb Activation of gene expression

(continued)
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Table 11.1 (Continued)

Modified
residue Modification Effector function Examples Effect on chromatin processes

Malonylation Charge reversal (acidic group),
docking sites for chromatin
binding domains

H2AK119ma Inhibition of H2AS121 phosphorylation,
regulation of chromosome segregation?

Succinylation H3K122succ Activation of transcription?
Glutarylation H4K91glu Destabilization of nucleosome, activation of

transcription, DNA damage repair
Ubiquitylation Sterical interference H2BK34ub Nucleosome destabilization, transcriptional

elongation
Docking sites for chromatin
binding domains

H2AK119ub Transcriptional repression
H3K18ubK23ub DNA maintenance methylation

SUMOylation Sterical interference, docking site
for chromatin binding domains

H4K12su Inhibition of chromatin compaction, gene
repression

Poly-ADP-ribosylation Charge reversal, sterical
interference, docking sites for
chromatin binding domains?

H3K27par,
H3K37par,
H4K16par

Chromatin decompaction

5-Hydroxylation ? ? Inhibition of acetylation, gene repression?
Arginine Monomethylation Docking sites for chromatin

binding domains
H3R2me1 Enriched on active promoters

Symmetric dimethylation H3R8me2s Transcriptional repression or activation
H3R2me2sR8me2s Transcriptional activation
H4R3me2s Transcriptional repression

Asymmetric
dimethylation

H3R2me2a Transcriptional repression
H3R8me2a Inhibition of heterochromatin formation

Mono-ADP-ribosylation ? H3R117mar Activation of gene expression
Poly-ADP-ribosylation ? ? ?
Citrullination Charge neutralization, inhibition of

protein binding, inhibition of
methylation

H3R8cit, H3R26cit Activation of gene expression
H3R17cit Inhibition of gene expression
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Serine Acetylation ? H3S10ac ?
Phosphorylation Docking sites for chromatin

binding domains, addition of
negative charge

H2A.XS139ph DNA damage repair, chromatin decompaction
H3K9acS10ph Activation of transcription
H3S10ph Mitotic chromatin compaction

N-Acetylglucosaminyl-
ation

? H2AS40gc DNA damage repair
H2BS112gc Enriched near active genes

Competition with other
modifications

H3S10gc Co-occurrence with active and repressive
marks

Poly-ADP-ribosylation ? H3S10par DNA damage repair
Threonine Acetylation ? H3T22ac ?

Phosphorylation Docking site for chromatin
binding domains, addition of
negative charge

H3T3ph Chromosome segregation, transcriptional
repression, heterochromatin formation

H3T6ph Activation of gene expression
N-Acetylglucosaminyl-
ation

? H3T32gc Inhibition of mitotic entry

Tyrosine Acetylation ? ? ?
Phosphorylation Docking site for chromatin

binding domains, addition of
negative charge

H3Y41 Heterochromatin decompaction, activation of
transcription

H4Y51 DNA damage repair
Hydroxylation Affect internucleosomal

interactions?
H3BY83oh,
H4Y88oh

Alteration of chromatin structure?

Histidine Phosphorylation ? H4H18ph ?

(continued)
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Table 11.1 (Continued)

Modified
residue Modification Effector function Examples Effect on chromatin processes

Glutamate Mono-ADP-ribosylation ? H2BE18marE19mar DNA damage repair
Poly-ADP-ribosylation Docking site for chromatin binding

domains
H2AXE141par DNA damage repair

Sterical interference, docking site
for chromatin binding domains?

H2BE2par Chromatin decompaction

Glutamine Methylation Inhibition of protein binding H2AQ104me Inhibition of nucleosome deposition,
RNAPI transcription

Serotonylation Docking site for chromatin binding
domains

H3K4me3H3Q5ser Activation of transcription

DNA
Cytosine 5-Methylation Nucleosome compaction, docking

site for chromatin-binding domains,
inhibition of protein binding

mCpG Repression of transcription, heterochromatin
formation

5-Hydroxymethylation Docking site for chromatin-binding
domains

hmCpG Regulation of transcription, DNA repair

5-Formylation Docking site for chromatin-binding
domains, alteration of DNA
structure

fCpG Regulation of transcription, DNA repair,
repression of transcription elongation

5-Carboxylation Docking site for chromatin-binding
domains

caCpG Regulation of transcription, DNA repair,
repression of transcription elongation

RNA
Adenosine N6-methylation Docking site for protein domains,

structural changes
RRm6ACH
(R = G/A and
H = A/C/U)

Enhancement of translation, regulation of
RNA stability
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11.2 Interaction of Proteins with Histone Posttranslational Modifications 221

Table 11.2 Chromatin modifications and their protein binding domains.

Modification recognized Reader domain Example (reader – modification)

Histones
Lysine methylation Chromo HP1 – H3K9me3

PHD KDM5B – H3K4me3
Tudor PHF1 – H3K36me3,

UHRF1 – H3K9me2/3
MBT L3MBTL – H4K20me1
ZF-CW ZCWPW1 – H3K4me3,

ASHH2 – H3K4me1
PWWP NSD2 – H3K36me2,

BRPF1 – H3K36me3
ADD ATRX – H3K9me3
Ankyrin repeats G9A, GLP – H3K9me1/2
WD40 EED – H3K27me3
BAH BAHD1 – H3K27me3

Lysine acetylation and acylation Bromo BPTF – H4K5acK8ac
Double PHD MOZ – H3K14cr
YEATS AF9 – H3K9cr

Lysine ubiquitylation UBDs DNMT1 – H3K18ubK23ub,
RAD18

Lysine SUMOylation SIMs CoREST – H4K12su
Arginine methylation Tudor TDR3 – H3R2me2a

WD40 WDR5 – H3R2me2s
Serine phosphorylation 14-3-3 14-3-3ζ – H3K9acS10ph or

H3S10phK14ac
BRCT MDC1 – H2AXS139ph

Threonine phosphorylation 14-3-3 ?
BIR Survivin – H3T3ph

Tyrosine phosphorylation SH2 ABL1 – H4Y51ph
Glutamate
poly-ADP-ribosylation

zf-GRF NEIL3 – H2AXE141par

Glutamine serotonylation PHD TAF3 – H3K4me3Q5ser

DNA
5-Methylcytosine MBD MBD1 – symmetric mCpG

SRA UHRF1 – hemimethylated mCpG
ZF ZFP57 – TGCmCGC

(continued)
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222 11 The Chromatin Interaction System

Table 11.2 (Continued)

Modification recognized Reader domain Example (reader – modification)

5-Hydroxymethylcytosine MBD MeCP2 – symmetric and
asymmetric hmCpG

SRA SUVH5 – symmetric hmCpG,
UHRF2 – hmCpG

5-Formylcytosine MBD MBD4 – symmetric or
asymmetric 5fCpG

5-Carboxylcytosine MBD MBD3 – symmetric caCpG
SRA UHRF1 – symmetric caCpG
ZF WT1 – GmCGTGGGGcaCG

RNA
N6-methyladenosine YTH YTHDF2 – Gm6ACU/A

KH IGFBPs – UGGm6AC
RGG HNRNPG – AGGm6AC

11.2.2 Peptides and Nucleosomal Templates for Studying Histone
PTMs

As the majority of histone PTMs work via reader domains and as the interaction
motifs are short and linear, peptides have become central for studying the readout of
histone marks. Nowadays, solid phase synthesis methods provide straight-forward
access to histone peptides of various modification types. The peptides can be
functionalized, for example, via biotinylation for immobilization on solid support or
fluorescently tagged to measure binding affinities of reader domains [27]. Peptides
can also be derivatized to display reactive C-termini for protein engineering [28], or
modified to contain unnatural amino acids or photo-reactive cross-linkers such as
benzophenone and diazirine (Figure 11.2A) [29, 30].

For capturing the complexities of the histone modification system, more elaborate
substrates are required. This includes the study of crosstalk of distant histone mod-
ifications and, in particular, in different histone proteins, the interplay of histone
and DNA modifications, as well as the analysis of downstream effects (deposition
of new marks, nucleosome remodeling, etc.) (Figure 11.1E). To this end, several
methods for incorporating PTMs directly into histone proteins have been put
forward. These include derivatization of non-native cysteine residues incorporated
at sites of modification via mutagenesis [31] or of chemical precursors introduced
into the histone sequences via genetic code expansion [32, 33]. In a semisynthetic
manner, modified histone tail peptides are conjugated with recombinant histone
core proteins through enzymatic conjugation [34], native chemical ligation [35, 36],
protein trans-splicing [37], or chemoselective ligation [38]. To obtain “designer
chromatin” for various experimental studies, the obtained modified and purified
histones are incorporated into mononucleosomes or nucleosomal arrays using

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by ibrahim

 ragab - C
ochrane G

erm
any , W

iley O
nline L

ibrary on [23/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



11.2 Interaction of Proteins with Histone Posttranslational Modifications 223
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Figure 11.2 Analysis of histone PTM readout using synthetic peptide and nucleosome
templates. (A) Examples of functionalized histone tail peptides used in various applications.
(B) To obtain “designer chromatin”, modified histone tails are conjugated with recombinant
tailless histones either before or after nucleosome assembly. (C) Histone peptides and
“designer chromatin” are used to quantitatively or qualitatively characterize binding
specificities of known reader proteins in solution (FP, MST, ITC) or on solid support (SPR,
peptide arrays) (left). Bead-bound chromatin ligands enable the study of known readers in
plate format or the identification of novel readers from cell extract using mass
spectrometry (right). This figure was generated with Biorender.com.
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224 11 The Chromatin Interaction System

salt-dialysis methods in conjunction with DNA templates that facilitate nucleosome
positioning [39, 40]. Alternatively, modified tail peptides can be directly ligated to
tailless histones post nucleosome assembly (Figure 11.2B) [38].

11.2.3 Qualitative Analysis of Histone PTM Readout

Affinity enrichment experiments capture interactions between ligands and target
proteins. In these schemes, the unmodified and modified ligands (histone peptides,
mononucleosomes, or nucleosome arrays) are immobilized on solid support (beads,
membranes, and glass surfaces) and used as baits to recover recombinant or native
reader proteins. Affinity purification experiments are mostly used as preliminary
screening tools, as these only offer qualitative information of the interaction between
a reader and its target binding site.

11.2.3.1 Characterizing Binding Specificities of Known Readers
Classical pull-down experiments are employed to routinely screen for binding
preferences of readers to several targets in parallel. In these experiments, immobi-
lized histone peptides or nucleosomal baits are incubated with the recombinant or
native reader protein. Recovery of the reader on the bait is usually detected using
SDS-PAGE followed by staining or western blotting [41].

The main drawback of this approach is the limited number of interactions that can
be assessed at a time. Therefore, more comprehensive high-throughput screening
alternatives using a large number of baits have been developed. These include
arrays of many histone peptides and nucleosomes. The multiple binding targets are
spotted onto membranes, coupled to multi-well plate surfaces or libraries that are
generated by combining large numbers of individually bait-coupled beads. Binding
of the reader is mostly detected using primary and secondary antibodies, and
fluorescence or chemiluminescence readout (Figure 11.2C) [38, 42]. In the opposite
scheme, readers are immobilized and exposed to libraries of soluble peptides or
mononucleosomes. Interactions are monitored, for example, using fluorescently
labeled peptides [43], or via barcoded nucleosomes and DNA sequencing [44]. The
library-based assays can be used to explore binding preferences (i.e. modification
specificity and dependence on sequence context) of known chromatin readers to
histone PTMs [38, 45–49], to characterize readers found by sequence homology
[50, 51] or to validate the specificity of antibodies raised against defined histone
PTMs [48, 50–52].

Histone peptide arrays have been described that contain hundreds [53, 54],
thousands [47], or close to ten thousand synthetic histone peptides [45]. Increasing
the dimension of libraries up to one million unique peptides has been achieved
by using spectrally encoded beads that are linked to specific peptides. These beads
are generated by incorporating fluorescent lanthanide nanophosphors into the
bead structure. Varying the ratios of different fluorophores added to individual
beads can theoretically produce 106 distinguishable codes [55–58]. In contrast to
peptide libraries, the nucleosome libraries described to date only contain 100–300
members. However, with the recent generation of ligation-ready nucleosomes,
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11.2 Interaction of Proteins with Histone Posttranslational Modifications 225

it has become possible to generate larger numbers of modified nucleosomes at
once [38].

11.2.3.2 Identification of New Reader Proteins
Affinity purification using baits of histone peptides, mononucleosomes, or nucle-
osomal arrays can be used to identify new histone PTM readers from cell extracts
using mass spectrometry (MS) (Figure 11.2C). Such experiments are now routinely
performed, thanks to advances in separation of complex protein mixtures by affinity
purification, gel electrophoresis, reverse phase HPLC and ion mobility, and due to
improvements in the sensitivity and resolution of mass spectrometers. Comparing
unmodified and modified baits is instrumental in this undertaking to filter true
positive from false positive interactions, which can result from highly abundant
and/or sticky proteins [59]. Typical histone peptide or chromatin affinity purification
experiments result in the identification of around 2000 proteins, of which approx-
imately one to two percent are ultimately found to be significantly enriched on the
modified substrate compared to the control substrate [59–61]. To quantify enrich-
ment, the differences between a protein’s interaction with modified and unmodified
baits need to be determined. This is done using SILAC labeling schemes or isobaric
tags post purification [62–64]. In addition, improved data analysis tools have made
it possible to carry out label-free quantification of enrichment ratios [65, 66].

Many experiments have now been described that use peptides to study several
single or combinatorial marks on the same histone tail [60, 61, 67–73]. To inves-
tigate combinatorial chromatin modifications (on histones and DNA or different
histones), nucleosome baits are used. These, in contrast to peptide baits, facilitate
recruitment of multisubunit complexes and DNA-binding factors [34, 61, 74–76].

An extension to analyzing histone PTMs as the basis for protein interactions is the
study of nucleosome surfaces that interact with chromatin proteins. Mutagenesis
has been employed to disrupt charges of the solvent-exposed protein surface
on recombinant nucleosomes, which were then used for pulldowns with cell
extracts [77].

Most histone PTM readers bind their preferred modification in the mid-
micromolar range [75]. Weaker interaction partners (dissociation constants up
to 100 mM) can be recovered in the histone peptide pull-downs and on histone
peptide arrays by adjusting the washing conditions that remove unspecifically
bound proteins at the cost of increasing the chance of false positive identifications
[42, 75]. To avoid the problem of false discovery in the study of weak or transient
interactions, as well as to identify enzymatic activities that remove the modification
of interest, histone peptides containing photo cross-linkable residues are used.
To this end, samples are exposed to UV light for cross-linking after only a very
brief incubation with the cell extract. As before, retained proteins can then be
identified by MS [29, 30, 78]. Another strategy makes use of the self-assembled
multi-valent photo-cross-linking technique, in which a histone peptide and a
PEG-linked photo cross-linker are assembled on the same nanoparticle. In this
approach, binding proteins are photo-cross-linked outside their binding region,
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226 11 The Chromatin Interaction System

thereby avoiding any interference of the cross-linkable moiety with the binding
reaction (Figure 11.2C) [79].

11.2.4 Molecular Parameters of Histone PTM–Reader Interaction

For determining binding parameters of histone–PTM interaction pairs, multiple
methods have been described. Their applicability depends on the nature of the
interaction (weak vs. strong, fast vs. slow), size difference of the interaction part-
ners (peptide vs. protein), availability and accessibility of the reaction partners,
possibility of introducing labels such as fluorophores, as well as other parameters.
The quantification schemes generally rely on different readout methods of physical
parameters that change with the titration of the interaction partners, that is from
the unbound to the bound state.

Semiquantitative information with respect to histone PTM reader–ligand inter-
actions can be obtained from several experiments such as electrophoretic mobility
shift assays (EMSAs), analytical gel filtration, or analytical ultracentrifugation
as long as the molecular volume or the hydrodynamic radius of the result-
ing reader–ligand complex can be discriminated from that of the individual
components [80].

Surface plasmon resonance (SPR) enables the analysis of the binding kinetics
(on- and off-rates) of histone peptides and nucleosomes with reader proteins [81].
When doing titrations, affinity parameters are also accessible. Traditionally, SPR
measurements were performed with one histone peptide bound to the surface of the
sensor chip via an affinity tag and one target reader domain at a time [82, 83]. More
recently, modifications to the detection method have allowed the simultaneous
imaging of different areas on the surface of the sensor chip [84, 85]. This way, SPR
imaging can be coupled with peptide spotting onto the chip to interrogate reader
interactions with over 100 different peptide baits (Figure 11.2C) [86].

Techniques with immobilized ligands can suffer from under- or over-estimation
of binding strengths between readers and ligands due to probe orientation bias
and background binding associated with the solid support. Thus, in-solution
methods are most widely used to quantify thermodynamic parameters (dissociation
constants) of the reader–ligand (peptides, nucleosomes) interaction. Tryptophan
fluorescence spectroscopy measures changes in intrinsic fluorescence of tryptophan
residues in the reader as a function of increasing ligand concentration [87]. The
method can detect small conformational changes in the reader in the nanomolar
regime and requires neither the ligand nor the reader to be labeled with fluo-
rophores. However, the reader domain must contain a tryptophan residue directly
involved in the binding event. This limits the application of the method [88].

Fluorescence polarization (FP) assays require the introduction of an external flu-
orescent tag to the smaller interaction partner, usually the ligand [27]. The method
has been applied to investigate several interactions between histone peptides and
reader proteins [3, 89–92]. Technological advances allow for high-throughput
anisotropy imaging where more than 2000 different histone peptide–reader pairs
can be screened in parallel [91]. FP relies on the size differences of ligand and reader
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11.2 Interaction of Proteins with Histone Posttranslational Modifications 227

and is limited to smaller interaction pairs (i.e. peptides and protein domains).
Microscale thermophoresis (MST), in contrast, can be used for studying interactions
between readers and full-length histones or nucleosomes, either of which needs
to be fluorescently labeled for detection (Figure 11.2C) [93–96]. High-throughput
readout is possible when automated capillary handling robots are used.

Affinity tags and fluorescent labels may interfere with ligand–reader interactions
[97, 98]. Isothermal titration calorimetry (ITC) is a label-free method that directly
measures the enthalpy changes in the course of forming a ligand–reader complex.
ITC has been used to quantify the binding events between modified histone
peptides, mononucleosomes and nucleosomal arrays with isolated reader domains,
and reader protein complexes [41, 81, 83, 99–101]. Automated systems can be used
for high-throughput analyses.

With the introduction of highly sensitive MS instruments, a method for the
quantification of histone PTM–reader interactions that does not require purified
reaction components has recently been put forward. On the basis of affinity purifi-
cation schemes, apparent binding affinities can be calculated from quantitative
MS experiments, where increasing concentrations of immobilized peptides or
nucleosomes are titrated against a constant amount of cell extract [63].

11.2.5 Cellular Assays to Characterize Histone PTM–Reader
Interactions

While informative, the in vitro experimentation on isolated components and cellu-
lar extracts falls short in recapitulating the complex cellular chromatin-signaling-
pathways of histone PTMs. Different approaches have been taken to study histone
PTM–reader interactions in cellular context.

11.2.5.1 Visualizing Histone–Reader Interactions
Immunofluorescence (IF) allows analyzing the co-localization of histone PTMs and
reader proteins in cellular context. In classical fluorescence microscopy, the limit of
spatial resolution is about 200 nm. Various methods for super-resolution imaging
have been introduced during the last years that overcome this diffraction-based bar-
rier [102]. While IF cannot provide direct evidence for physical interaction between
histone PTMs and readers, the close cellular co-localization is, nonetheless, very
informative (Figure 11.3A). Also, IF based approaches such as fluorescence recov-
ery after photobleaching (FRAP), fluorescence correlation spectroscopy (FCS),
and Förster resonance energy transfer (FRET) can provide information about
the dynamics and kinetics of cellular association [103–105]. High-throughput
analyses of histone modification readout in live cells have been accomplished using
automated single-cell imaging. This technique has been applied, for example, to
visualize the distribution and abundance of histone variants and histone PTMs
in isolated nuclei and in fixed cells [106–108]. While these reports were not
directly aimed at visualizing reader-modification interactions, the high-throughput
methodologies pave the road for such analyses in the future.
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11.2 Interaction of Proteins with Histone Posttranslational Modifications 229

Figure 11.3 Cellular assays to identify and characterize histone PTM readout.
(A) Co-immunofluorescence using two or more distinct fluorescence signals establishes
proximity of the labeled targets (left). In proximity ligation assays (PLA), a fluorescence
signal will only be generated if the detected components are less than 40 nm apart, as
this enables rolling circle amplification of DNA for labeling (right). (B) Chromatin
immunoprecipitation (ChIP) followed by sequencing (ChIP-seq) deduces the genome-wide
distributions of chromatin modifications and chromatin interacting proteins.
(C) A TAP-tagged protein library is expressed in yeast strains carrying distinct barcodes at a
specific locus. TAP purification of pooled samples, barcode amplification and sequencing
inform about the pool of proteins interacting with the locus of interest. (D) Protein factors
associated with a specific feature of interest are traditionally identified by
mass-spectrometry-based methods. To capture native and transient interactions,
crosslinkers are introduced into histone proteins using in situ ligation methods (top).
Another approach to identify transient interactions or interaction partners of proteins, for
which antibodies are not available, is proximity labeling using biotin ligase fusion
constructs (middle). Factors interacting with a specific genomic region can be detected
after purification of the locus using unique guide RNA and tagged dCas9 (1), tagged locked
nucleic acids (2), or by engineering the locus with exogenous binding sites for factors like
LexA (3). Purification of the locus can be circumvented by employing biotin ligase-fused
dCas9, which biotinylates the local interactome (4) (bottom). This figure was generated with
Biorender.com.

Proximity ligation assays (PLA) capture interactions between epitopes that are
less than 40 nm apart. This is roughly the distance separating four consecutive
nucleosomes. In PLA, specific primary and secondary antibodies are used to
target a distinct reader protein and a particular histone modification. The sec-
ondary antibodies are linked to distinct DNA oligonucleotides, which anneal to
connector oligonucleotides. If the two different secondary antibodies are in close
proximity, these connector oligonucleotides can be ligated, amplified, and labeled
with fluorescent probes, resulting in a hundred-fold increase in the interaction
signal to visualize single-molecule interactions (Figure 11.3A) [109, 110]. Recently,
high-throughput proximity ligation assay (hiPLA) was used to study interactions of
(modified) histones with the nuclear lamina [111].

11.2.5.2 Chromatin Immunoprecipitation
Chromatin immunoprecipitation (ChIP) is a straightforward method to assess
the local or global distribution of histone PTMs and reader proteins. In this
approach, specific antibodies are used in affinity purification schemes to recover
genomic material associated with a particular chromatin feature (Figure 11.3B)
[112–115]. Since antibodies need to be of a specific quality for working in ChIP
experiments, various consortia have established criteria and comprehensive lists of
ChIP-verified reagents [116, 117]. Besides specific antibodies against the protein
of interest, tagging in combination with well-characterized anti-tag antibodies can
be used in the case of reader proteins. Examples include EGFP [118], the tandem
affinity purification (TAP) tag [119], the localization and affinity purification tag
[120], the hexahistidine and biotinylation signal tag [121], or the triple FLAG
tag [122]. High-throughput recombination in yeast [119], or in mammalian cells
[120], as well as the application of targeted genome-editing techniques such
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230 11 The Chromatin Interaction System

as zinc finger nucleases or CRISPR/Cas9 [123–130] have facilitated large-scale
tagging and analysis of modification readers and DNA-binding factors. Recently,
protein trans-splicing was used to fuse cellularly expressed, truncated histones with
modified, HA-tagged histone peptides intracellularly [37]. This approach could
theoretically be used to ChIP an engineered histone carrying a defined modification.

When interrogating readers by ChIP, formaldehyde cross-linking is normally
used to fix the chromatin association. In contrast, histone PTM ChIPs are often
performed under native, non-crosslinked conditions. To obtain locus specific infor-
mation with high resolution, chromatin is fragmented by sonication or enzymatic
digestion (MNase-ChIP, ChIP-exo) before immunoprecipitation [112, 113, 131, 132].
Fragmenting chromatin and recovering genomic elements are major bottlenecks
of ChIP experiments. Different approaches where enzymatic activities for cleaving
the DNA (CUT&RUN, [133]) or for cleaving and tagging the DNA (CUT&TAG,
[134]) are fused to the antibodies used in ChIP have been developed to overcome
these hurdles. When testing the association of a chromatin feature with a defined
genomic element, the readout of a ChIP experiment is done by directed, quanti-
tative (real-time) PCR (ChIP-PCR). Alternatively, the recovered DNA is globally
sequenced by next generation sequencing (NGS) methods (ChIP-seq) [135]. This
establishes so called landscapes of epigenetic features (Figure 11.3B).

Specificity in ChIP experiments is probed by using a different antibody against
the same target. Further validation can be obtained by using chromatin prepara-
tions from cells lacking the reader or the enzyme(s) depositing the histone PTM of
interest [117, 122, 136].

ChIP and related schemes provide only indirect information about a reader’s
association with certain chromatin marks, since the two features are assessed
in independent experiments with a relation via the identified, associated DNA
sequence. In the classical approach, the local (ChIP-PCR) or global (ChIP-seq)
signals of the reader are compared with those for histone modifications. A plethora
of histone PTMs and reader proteins have been and are being mapped in different
experimental systems (organisms, cell types, and cell lines). The data are available,
for example, via the ENCODE and ROADMAP projects, or the Cistrome and
NIH databases [137–139]. Sequential ChIP applies IP of one chromatin feature
after the other and therefore allows unambiguous analysis of histone PTM reader
co-distribution and interaction [140].

ChIP-MS is an extension of the classical ChIP protocol to define – besides the
stretches of genomic DNA – proteins and complexes that are associated with a
particular histone PTM or reader, either directly via protein–protein interaction
or indirectly via co-association with a common chromatin element [67, 141, 142].
In ChIP-MS, the chromatin IPs are analyzed by MS (Figure 11.3B). The defined
protein complexes originate from a mixture of genomic loci. To identify protein
complexes that are found at a particular genomic locus, different chromatin affinity
purification methods were developed: (i) The genomic locus of interest can be edited
to contain protein-binding sites, for example, a LexA operator cluster. This enables
affinity purification of the proteome associated with the edited locus via a protein
that binds to this site (e.g. LexA-TAP, [143]). (ii) Nucleic acids complementary
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11.3 Interaction of Proteins with Modified Nucleic Acids 231

to a locus of interest, for example desthiobiotin-immobilized locked nucleic acid
oligonucleotide probes, can be used to enrich the proteome of a target element
[144]. (iii) Specific guide RNAs of the CRISPR/Cas9 system can be used to target a
tagged (e.g. Protein A, biotin or FLAG) inactive Cas9 (dCas9) to a locus of interest,
which is then affinity purified (Figure 11.3F) [145–147].

To identify the interactome of certain genomic features without the need for MS,
a yeast library, in which each yeast strain contains a single TAP-tagged protein, as
well as a synthetic genetic array integrated into a specific locus and labeled with
unique barcodes, has been used to study the general and specific chromatin inter-
actome of the promoter and terminator region. After pooling the different yeast
strains, TAP-ChIP is performed and the barcodes are sequenced to identify which
proteins bind to the locus (Figure 11.3C) [148].

11.2.5.3 Cellular Labeling and Affinity Enrichment
Weak, transient, or erasing interactions between histone PTMs and their readers
can be studied by introducing unnatural amino acids with photo-cross-linking
potential into cells. For example, cells grown in medium containing photo-lysine
as the sole source of lysine have been used to identify histone-interacting proteins
after UV cross-linking followed by histone isolation and MS [149]. In cellulo
genetic code expansion can be used to site-specifically incorporate modified,
photo-cross-linkable amino acids into a histone, thereby enabling the identification
of more localized interaction partners of either the soluble or chromatin-bound pool
[150]. Both methods are not specific for the interactome of distinct PTMs, as these
are established post cross-linker incorporation. To overcome this issue, synthetic
histone tails harboring photo-cross-linkers next to defined histone modifications
have been used in protein trans-splicing in isolated nuclei. This allowed trapping
of transient reader-modification interactions that could not be recovered in native
affinity purification schemes (Figure 11.3D) [78].

Another approach to enrich for transient interactions is proximity labeling. In
this scheme, a protein of interest is fused to a biotin ligase that biotinylates proteins
within a 10–20 nm radius. The tagged interactome of the target factor can then be
isolated by affinity purification and analyzed by MS (BioID, APEX). When fused
to a reader protein of interest, the histone PTM target pattern of the bait and/or
factors associated with the alleged main target PTM of the factor can be identified
(ChromID) (Figure 11.3E) [151, 152]. The scheme has also been used to identify pro-
teins interacting with particular genomic loci, for example, repeat regions or specific
promoters by fusing the biotin ligase to dCas9 that is recruited to the target regions
by specific guide RNAs (Figure 11.3F) [153, 154].

11.3 Interaction of Proteins with Modified Nucleic Acids

11.3.1 Discovery of DNA Methylation and the First Reader Proteins

Mammalian DNA is preferentially methylated on the 5 position of cytosine
residues within CpG dinucleotides (5mCpG). Generally, the modification is found
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232 11 The Chromatin Interaction System

symmetric on both DNA strands, and after DNA replication the originating
hemimethylated state (only one strand of DNA in each daughter DNA molecule
methylated) is converted to the fully methylated state due to the palindromic nature
of the CpG sequence. In mammals, CpG dinucleotide sequences are generally
underrepresented in the genome, but cluster (i.e. appear with higher than random
frequency) in so called CpG islands of few hundred base pairs upstream of many
housekeeping genes [155, 156]. Non CpG-directed methylation of cytosines also
exists with various abundance in different mammalian cell types [157, 158], and in
particular in plants [159]. While DNA methylation is abundant in some organisms
(e.g. mammals, plants), it is of low frequency in other species.

The presence of 5mC in DNA was described as early as in 1925 in Mycobacterium
tuberculosis [160] and 1948 in mammals [161]. In mammals, DNA methylation is
established by the DNMT3A and B and maintained by the DNMT1 enzymes. The
modification is not directly reversible but is removed via the oxidizing activities
of TET enzymes (intermediates are 5-hydroxymethyl C [5hmC], 5-formyl C [5fC],
and 5-carboxyl C [5caC]), deglycosylation, and base excision repair (Figure 11.4A)
[162]. Methods to detect the different forms of DNA methylation with single
base-pair resolution (bisulfite sequencing, BS-seq, and related approaches) have
enabled the precise mapping of whole-genome DNA methylation patterns. The
effects of DNA methylation, which include transcriptional repression, regulation of
splicing, alterations in chromatin structure, and the activation of DNA repair, are
mediated through effects on nucleosomal DNA wrapping [163] and on interacting
proteins, highlighting the importance for studying and understanding the mCpG
proteome [164].

Figure 11.4 Studying interaction partners of modified DNA and RNA. (A) In mammalian
cells, cytosine in the palindromic CpG dinucleotides is symmetrically 5-methylated by
DNMT3. Active demethylation is oxidatively performed by TET enzymes via
5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxylcytosine followed by DNA
damage repair. DNA replication results in the generation of hemimethylated DNA
(methylated parent, unmethylated daughter strand). DNMT1 targets hemimethylated DNA,
converting it to fully methylated DNA. (B) Specific adenine residues in RNAs are targeted by
the METTL3/14 complex. Methylation at N6 can result in changes of the RNA secondary
structures. (C) RNA modifications can be introduced during chemical solid-phase
oligonucleotide synthesis. (D) Differently methylated DNA is generated by several methods
that result in site-specific incorporation (annealing of synthetic ssDNA oligonucleotides),
methylation of all CpG sites (enzymatic methylation by M.SssI), or all Cs in the sequence
(PCR with modified dCTP). Hemimethylated DNA is either generated by one-cycle PCR, or
through annealing of a methylated and a non-methylated DNA oligonucleotide.
Functionalization (e.g. biotin or fluorescent tags) is accomplished via DNA oligonucleotide
synthesis (used for PCR or in annealing reactions). Modified DNA can be incorporated into
“designer chromatin” analogous to unmodified DNA. (E) DNA oligonucleotides are used to
determine the binding specificities of known readers on (methylated) DNA microarrays or in
methylation-sensitive SELEX approaches in solution. Bead-bound DNA, RNA, and
nucleosomes are used as baits for identifying novel modification interactors using mass
spectrometry. This figure was generated with Biorender.com.
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234 11 The Chromatin Interaction System

Initial evidence for specific mCpG-binding proteins came from nuclease pro-
tection assays. Methylation-insensitive restriction enzymes did not cleave most
mCpG-containing motifs in intact nuclei, but behaved like methylation-sensitive
nucleases, indicating that protein factors protect mCpG sites [165]. The first reader
protein for mCpG, MeCP1, was then described on the basis of EMSA and com-
petition experiments using methylated and unmethylated oligonucleotide probes
[166]. It later became apparent that MeCP1 is a nine-subunit protein complex
(MBD2-NuRD) [167–170]. MeCP2 was incidentally discovered after performing
southwestern blotting (probing a protein blot membrane with methylated and
unmethylated DNA oligonucleotides) in an attempt to further characterize MeCP1
[171]. Other mCpG-binding domain (MBD)-containing proteins were identified by
homology searches [172, 173]. Several proteins have now been described that can be
specifically recruited to, or are repelled by, symmetrically methylated, hemimethy-
lated, or unmethylated CpG, as well as by the products of 5mC oxidation, 5hmC,
5fC, and 5caC [174–177].

11.3.2 RNA Modifications

The first modified RNA base, pseudouridine, was detected in 1957 and charac-
terized in 1959 [178–180]. Until today, more than 150 RNA base modifications in
mRNAs and in ncRNAs have been described [181] (see for example MODOMICS
database [182]).

For mRNAs and transcriptional regulation (epitranscriptomics), the most exten-
sively studied modification is N6-methyladenosine (m6A) [183]. The METTL3/14
complex has been identified as the methyltransferase mediating m6A in RNA [184].
Similar to mCpG, the m6A modification is not directly reversible but is removed via
stepwise oxidation to hm6A and f6A [185]. m6A and other RNA modifications elicit
their functions through the modulation of protein–RNA interactions. Besides this,
modified RNA bases might influence the relative abundance of RNA secondary
structures by affecting base pairing energies [186]. This may in turn impact on
protein–RNA interactions and RNA functions (Figure 11.4B).

11.3.3 Modified DNA and RNA Templates

Methylated or otherwise modified libraries of random DNA or RNA sequences
are generated by using modifying enzymes (for example by M.SssI for mCpG)
or via incorporation of modified dCTP in PCR amplification. These schemes
result in modification of all CpG sites or all Cs, respectively. Site-specific methyla-
tion is accomplished via incorporation of modified nucleotides during solid-phase
oligonucleotide synthesis [187, 188]. Oligonucleotides can further be specifically
labeled with affinity or fluorescent tags for pulldown, thermodynamic, or kinetic
studies. Hemimethylated DNA is generated either by annealing-based techniques of
complementary methylated and unmethylated single-stranded DNA or by one-cycle
PCR of fully methylated double-stranded templates [188, 189]. Modified DNA can
be assembled into designer chromatin (mononucleosomes, nucleosomal arrays)
(Figure 11.4C,D).
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11.3 Interaction of Proteins with Modified Nucleic Acids 235

11.3.4 In Vitro Assays for Identifying Readers of Nucleic Acid
Methylation

11.3.4.1 Affinity Purification to Identify Novel Modification Readers
Synthetic DNA or RNA oligonucleotides, mononucleosomes, and nucleosomal
arrays carrying distinct modifications (e.g. CpG symmetrically methylated or
hemimethylated, templates containing oxidation products of 5mC or m6A) have
been used as baits to pull down proteins from cell or tissue extracts to identify
novel interactors [74, 175, 187, 190–195]. After purification and for identification,
proteins are subjected to LC-MS/MS (Figure 11.4E) [196]. In a wider approach,
libraries of baits have been screened in plate format to determine the effect of
sequence variation on DNA–protein interaction [197]. Also, an MS-based method
for determining the apparent Kds for the interaction of hundreds of proteins with
DNA on a proteome-wide scale has been developed [63]. For these experiments,
nucleotide sequences are chosen randomly or can be modeled after cellular
sequences (e.g. specific CpG islands, promoters).

Affinity purification studies generally identify different types of reader proteins:
(i) proteins that specifically associate with one or more of the modifications, (ii) pro-
teins that are repelled by the modification(s), and (iii) proteins that are recruited
to the modification in specific contexts (e.g. specific sequences, symmetrically
methylated, or hemimethylated DNA) [196].

11.3.4.2 Characterizing Binding Specificities of Known Readers
To define methylation-dependent binding specificities and to identify methylation-
sensitive sequence motifs of known (DNA- and RNA-binding) proteins, in vitro
selection of modified or unmodified oligonucleotide libraries or purified nucleic
acids has been employed. Single to hundreds of individual recombinant proteins,
either on microarrays or in solution, are incubated with DNA or RNA libraries.
Protein-associated oligonucleotides are isolated and processed for identification
by sequencing or MS (Figure 11.4E) [198–200]. Alternatively, DNA microarrays
are methylated and bound recombinant (tagged) proteins can be detected using
immunostaining (Figure 11.4E) [177].

Methylation-sensitive SELEX (systematic evolution of ligands by exponential
enrichment) has been applied to enrich for high-affinity binding sequences contain-
ing meCpG [198]. Proteins are incubated with DNA libraries as described above,
but instead of sequencing the DNA directly, it is amplified and re-methylated. This
enables repeating the cycle of protein binding, purification, and PCR amplification
to sequentially enrich high affinity ligands.

Using SELEX to analyze methylated and unmethylated sequences as separate
pools can mask the effect of methylation on binding if a factor absolutely requires a
CpG in its binding motif. Different techniques have been developed to overcome this
limitation: (i) In bisulfite SELEX, the selected libraries are pooled, subjected to one
more round of selection, and sequencing of the initial pool as well as the selected
pool informs about a factor’s methylation specificity [198]. (ii) EpiSELEX-seq and
(iii) Methyl-Spec-seq make use of two distinctly barcoded libraries for methylated
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236 11 The Chromatin Interaction System

and unmethylated sequences. These are pooled, incubated with the protein of inter-
est, and EMSAs are used to isolate bound DNA for sequencing (Figure 11.4E, bottom
panel 2). The effect of methylation on binding is then derived from the relative
fold-enrichments between input, or unbound, and bound fractions [201, 202].

11.3.5 Cellular Assays for Identifying Readers of Nucleic Acid
Modifications

Analogous to comparing ChIP-seq tracks of histone marks and of chromatin-binding
proteins for deducing associations of proteins with specific marks, results
from different NGS-based methods can be aligned to predict DNA and RNA
modification-binding proteins [177, 194, 203–206]. DNA and RNA modifications
are mapped genome-wide using BS-seq or antibody-dependent DNA and RNA mod-
ification sequencing methods [207]. Protein binding sites are identified through
ChIP-seq, RNA immunoprecipitation-based methods (RIP), and DNA or RNA
accessibility (DNase hypersensitive sites [DHS], ATAC-seq, and RNase footprinting)
(Figure 11.5A) [208–211]. Publicly available datasets for these kinds of studies can
be downloaded from the ENCODE or ROADMAP project databases.

More direct evidence of modification-sensitive binding can be obtained when
such assays are combined with disruption of the modification by pharmacological

Figure 11.5 Identifying interaction partners of modified nucleic acids in vivo. (A) Different
methods that determine the genome-wide distribution of factors and modifications in wild
type (top) or mutated/depleted (bottom) conditions are compared and integrated to predict
factors that may interact with, or be repelled by modified DNA or RNA bases. BS-seq:
bisulfite sequencing (distribution of 5mC); DNase-seq: DNase hypersensitive sites
(chromatin accessibility); ATAC-seq: assay for transposase-accessible chromatin using
sequencing (chromatin accessibility); ChIP-seq: chromatin immunoprecipitation with
sequencing (distribution of chromatin modifications and factors); m6A-seq (distribution of
m6A); RNase footprinting (RNA accessibility); icSHAPE: in vivo click selective 2-hydroxyl
acylation and profiling experiment (RNA secondary structure); CLIP: cross-linking
immunoprecipitation (distribution of RNA-binding factor). (B) The methylation-sensitive
yeast one-hybrid system makes use of the absence of DNA methylation in S. cerevisiae and
allows expression library screening of CpG methylation binding factors via a gene
expression and colony growth readout. (C) A construct of mCpG-interacting MBD domains
fused to biotin ligase enables proximity labeling and subsequent identification of factors
bound to mCpG-associated loci. (D) Different ChIP-based approaches allow deducing
whether a protein interacts with methylated or unmethylated loci. (1) Bisulfite sequencing
determines if the DNA sequences ChIPed with the protein of interest are methylated or
unmethylated. (2) Locus-specific methylation at CCGG sites can be assessed via PCR after
differential restriction enzyme digest using HpaII (methylation-sensitive) and MspI
(methylation-insensitive). (3) hmCpG in CCGG sites can be detected after specific enzymatic
glucosylation of hmC that inhibits MspI-digestion. (E) To determine whether a factor
directly interacts with modified RNA, sequential immunoprecipitations (IPs) for the protein
and the modification of interest are performed, followed by RNA sequencing. Alternatively,
protein IP can be done on cross-linked samples and the RNA modification is detected in
western blot. This figure was generated with Biorender.com.
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238 11 The Chromatin Interaction System

inhibitors (for example 5-aza-deoxycytidine for CpG methylation), knockdown,
knockout, or overexpression of modifying enzymes (e.g. DNMTs or regulatory
factors) (Figure 11.5A) [212–216]. Using DNA methylation-deficient TKO cells
(i.e. devoid of DNMT1, DNMT3A, and DNMT3B), sequence motifs and their
corresponding methylation-sensitive transcription factors were deduced by ana-
lyzing DHSs unique to these cells as compared to wild type [217]. In a similar
manner, cellular differentiation can inform about methylation-sensitive binding
factors of the genome. During differentiation, DNA methylation changes at spe-
cific loci and absence or presence of candidate factors at these sites can indicate
methylation-sensitive recruitment [218, 219].

Another direct approach for screening for factors that bind chromatin in a DNA
methylation-sensitive manner is the use of a yeast one-hybrid system. Since S. cere-
visiae is deficient in DNA methylation, targeting of the methyltransferase M.SssI
to a bait sequence leads to specific CpG methylation of this region (Figure 11.5B).
Whole cDNA libraries can then be screened for binding to the methylated bait
sequence [220].

As described for histone PTMs, proximity labeling (ChromID) can be used to
identify the interactome of meCpG containing regions of the genome. In this
case, a protein containing an MBD domain (e.g. MBD1) is fused to the biotin
ligase for recovering interacting proteins (Figure 11.5C) [151]. Also, chromatin
enrichment for proteomics (ChEP) that monitors the global chromatin proteome
has been put forward [221]. The scheme can be combined with perturbations of the
DNA methylome to identify factors that potentially interact with chromatin in a
methylation-dependent manner.

To determine the level of DNA methylation associated with a given factor,
DNA recovered by ChIP can be subjected to bisulfite conversion before sequencing
[222–225]. Another approach utilizes methylation-sensitive restriction enzymes to
digest DNA after ChIP. The isoschizomeric enzymes MspI (not methylation-sensitive)
and HpaII (methylation-sensitive) are widely used. If a candidate factor coprecip-
itates unmethylated DNA, it will be digested in both reactions. In consequence,
and different from a factor binding methylated DNA, no PCR amplification or
sequencing will be possible [226]. Using the same assay, hmC can be detected after
selective enzymatic glucosylation, which makes the hmCpG site resistant to MspI
digestion. hmC-containing DNA can thus be specifically amplified after enzymatic
treatment (Figure 11.5D) [227].

For RNA modification, sequential IPs for the protein of interest and the nucleic
acid modification followed by sequencing have been performed (PAR-CLIP-
MeRIP, [216]).

RNA crosslinking and immunoprecipitation of the protein of interest followed
by detection of the RNA modification in western blot can be applied to investigate
the interaction of a protein with an RNA modification independent of identifying
the specific RNA it interacts with (Figure 11.5E) [204]. The reverse approach,
RNA pulldown to identify interacting proteins (eRIC [enhanced RNA interactome
capture]), has been used to characterize the poly-A RNA-binding proteome [228].
Indirect effects of modifications mediated via RNA structural changes or a newly
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11.4 UHRF1 as an Example of a Multidomain Reader/Writer Protein of Histone and DNA Modifications 239

available motif are assessed using icSHAPE (in vivo click selective 2-hydroxyl acyla-
tion and profiling experiment) and can be integrated with cross-linking IP (CLIP)
data [229]. By combining these methods with perturbations in m6A levels (e.g. via
knockout of METTL3/14 or oxidase inhibitors) and m6A-seq, the m6A-dependent
RNA-interactome was probed [228].

11.4 UHRF1 as an Example of a Multidomain
Reader/Writer Protein of Histone and DNA Modifications

There is ample interplay within and between the different histone PTM and nucleic
acid modification systems [71, 230–232]. These do not only interface functionally
(i.e. mediating similar or opposing effects) but also biochemically. Many chromatin
modification enzymes are highly sensitive to the preexisting modification status
(i.e. stimulating or repressive effects). Also, multivalent binding proteins and
multiprotein complexes exist that have the ability to recognize different chromatin
modifications simultaneously (i.e. patterns of modification). We use the example of
the ubiquitin-like containing PHD and RING finger domains 1 protein (UHRF1) to
illustrate the intricacies of chromatin modification crosstalk with particular focus
on the experimental approaches that have uncovered the working mode of this
epigenetic regulator.

UHRF1 is an essential protein, which is required for DNA maintenance methy-
lation and embryonic development. The factor consists of five distinct domains:
a ubiquitin-like (UBL) domain, a tandem tudor domain (TTD), a plant homeo
domain (PHD), a SET and RING-associated (SRA) domain, and a really interesting
new gene (RING) domain with E3 ubiquitin ligase activity (Figure 11.6A). Initially,
cellular fractionation, co-IP, and far western blotting using purified histones and
polynucleosomes identified UHRF1 as a chromatin-associated protein with binding
preference for, and ubiquitination activity toward H3 (Figure 11.6B) [233]. Later, dif-
ferent experimental approaches characterized its SRA domain as a hmCpG-binding
domain with additional affinity toward symmetric caCpG: (i) pulldowns with a
PCR-amplified and M.SssI-methylated endogenous target, (ii) EMSAs, including
EMSA-western analysis, EMSAs with radioactively labelled DNA, and competition
EMSAs with fluorescently tagged oligonucleotides, (iii) colocalization studies by
IF, (iv) crystallization of the SRA domain-DNA complex, (v) molecular modeling
and dynamics simulations, and (vi) biochemical assays, including MST with
oligonucleotides (Figure 11.6C) [174, 234–242].

In an unbiased pulldown screen using H3K9me0/2 peptides immobilized on
beads, nuclear extracts and MS, UHRF1 was identified as an H3K9 methylation
reader [243]. Several follow-up studies established that the protein’s TTD domain
recognizes H3K9me, whereas the PHD domain interacts with the very N-terminus
of unmodified H3. The two domains can synergize in binding the H3 tail in a man-
ner that is regulated by UHRF1 posttranslational modification, allosteric ligands,
and alternative RNA splicing. The insights into the chromatin binding modes were
derived from: (i) structural studies, including crystallization of the domains in

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by ibrahim

 ragab - C
ochrane G

erm
any , W

iley O
nline L

ibrary on [23/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense
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Figure 11.6 Summary of methods used to characterize the multidomain chromatin reader
protein UHRF1. (A) Schematic representation of the domain structure of UHRF1 and known
functions of the individual domains. (B) Methods used to identify UHRF1 as a chromatin-
and H3-binding protein. (C) Methods used to identify UHRF1 as an mCpG-binding protein
with preference for the hemimethylated state. Structure of the SRA domain in complex with
hemimethylated CpG sites (PDB ID: 3F8I). (D) Methods used to identify UHRF1 as an
H3K9me binding factor. Structural studies showed how the combined TTD-PHD module
interacts with the H3K9 methylated tail peptide (PDB ID: 4GY5). (E) To understand UHRF1
functions, its enzymatic activity was probed in ubiquitylation assays with a variety of
substrates. Maintenance of DNA methylation is the main function of UHRF1 described in
the literature. Loss of UHRF1 or mutation of its domains are associated with a loss in DNA
methylation as assessed by bisulfite sequencing or microarray. This figure was generated
with Biorender.com.
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11.5 Histone Chaperones and Chromatin Remodeling Complexes 241

complex with H3K9me3 peptides, molecular modeling, NMR, and SAXS studies,
(ii) peptide pulldowns and peptide arrays with hundreds to thousands of peptides
carrying single and combinatorial modifications using full-length protein, isolated
domains, or deletion constructs, and (iii) biochemical assays, including native gel
electrophoresis, FP, ITC, co-IP, and MST (Figure 11.6D) [23, 97, 244–255].

To understand UHRF1 functions in the cell, interaction partners were identified
in high-throughput assays, including yeast two-hybrid screens [256] and UHRF1
pulldown experiments [257]. Further, a plethora of functional assays using wildtype
and mutant proteins or protein domains were performed: (i) co-localization with
specific chromatin features by IF, (ii) association with chromatin by fractionation
or FRAP experiments, (iii) altering the availability of UHRF1 binding partners by
overexpression of methyltransferases, demethylases, by introducing blocking pep-
tides or by knockdown, (iv) analysis of DNA methylation by dot blot, ELISA, or BS
methods, and (v) in vitro ubiquitylation assays (Figure 11.6E) [97, 98, 243, 244, 257–
266].

The overall picture emerging from the different lines of investigation is that in
DNA maintenance methylation (i.e. after DNA replication), UHRF1 senses
hemimethylated DNA via its SRA. Via unknown mechanisms, this activates the
protein’s H3 ubiquitin ligase activity [98]. H3ub is a signal for recruitment and
activation of DNMT1 [267]. To what degree H3K9me recognition is interfacing
with this pathway is not fully clear. Also, the role of UHRF1’s chromatin modifi-
cation sensing and modifying activities in DNA damage repair and transcriptional
regulation are still intensively investigated.

11.5 Histone Chaperones and Chromatin Remodeling
Complexes

11.5.1 Chromatin Assembly and Remodeling

Histone chaperones and ATP-dependent chromatin remodeling complexes work
together to assemble, organize, and position nucleosomes along the DNA sequence.
Nucleosomes are assembled in a step-wise manner, with the H3-H4 tetramer
associating with DNA before addition of the H2A-H2B dimers, which can thus be
more easily removed from the nucleosome (Figure 11.1A).

Chaperones are proteins that associate with free histones to neutralize their pos-
itive charge in order to prevent nonspecific interactions (Figure 11.1A). In vitro,
all histone chaperones stimulate ATP-independent nucleosome assembly without
being part of the final complex; in vivo, some chaperones only facilitate histone
storage or transport [268].

Chromatin remodelers are enzymes that modulate the position of nucleo-
somes (sliding), change the composition of nucleosomal histones (i.e. incorporating
histone variants), or orchestrate disassembly and reassembly of nucleosomes at non-
adjacent positions (transfer). All known chromatin remodeling complexes contain
an ATP-dependent helicase/translocase of the Snf2 family to facilitate translocation
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242 11 The Chromatin Interaction System

of DNA around the histone core. Additional domains or proteins regulate the
ATPase and mediate specific targeting, for example, via recognition of chromatin
modifications [269, 270].

11.5.2 Discovery of Histone Chaperones and Chromatin Remodelers

Analysis of supercoiling of circular DNA is the most widely used assay to study
nucleosome assembly and thus chaperone and chromatin remodeler activity. Cir-
cular, supercoiled DNA is relaxed by the addition of topoisomerase I. When nucleo-
somes are assembled on the DNA, enzyme-mediated relaxation is incomplete. The
number of superhelical turns remaining in the purified DNA is indicative of the
number of nucleosomes assembled. Differently supercoiled species (topoisomers)
are separated by 1D or 2D gel electrophoresis [271, 272]. Specific MNase, DNase, and
restriction enzyme digestion patterns can also be used to probe nucleosome assem-
blies (Figure 11.7D).

When purified DNA and histones are directly mixed at physiological ionic
strength, they form insoluble precipitates. Assembly into nucleosomes is, how-
ever, possible by mixing DNA and histones at 2 M salt and slowly dialyzing to
physiological salt concentrations [273] or when negatively charged molecules like
pectin, polyglutamic acid, or RNA are added [274, 275]. Also, it was found that
addition of cell-free Xenopus laevis egg extract to mixtures of DNA and histones
facilitates rapid de novo nucleosome assembly [276–278]. Nucleoplasmin was
the first component identified in this experimental system that is required for
chromatin assembly [279]. This was followed by the characterization of several
other chaperones in Xenopus egg extracts [280–283] and from other sources that
promote nucleosome assembly in vitro in a constitutive or replication-dependent
manner [284–288].

Figure 11.7 Studying histone chaperones and chromatin remodeling enzymes.
(A) Overexpression of tagged histone (variants) is used to identify chaperones by
coprecipitation and mass spectrometry. (B) Chromatin remodeling can be studied in vitro
using recombinant mono- or oligonucleosomes. Nucleosome sliding and histone eviction
can be measured by electrophoretic mobility shift assays (EMSA), by single-molecule
Förster resonance energy transfer (FRET), and by MNase, DNase, or restriction digest.
(C) To study effects of histone modifications or mutations on remodeler activity, barcoded
nucleosome libraries containing restriction sites that only become accessible after
remodeling are used. (D) Chromatin assembly by chaperones is studied on linear or circular
DNA templates in combination with gel electrophoresis. Native gel electrophoresis
distinguishes different levels of chromatin assembly directly (top), while supercoiling assays
provide an indirect readout via topoisomerase activity (bottom). (E) Chaperone function in
cells can be studied using pulse-chase experiments of SNAP-tagged histones that are
incorporated into chromatin and labeled with fluorescent ligands (top). Remodeler activity
is assessed in cells engineered to contain two loci with DNA binding sites for fluorescent
reporters (e.g. LacI, TetR) on either side of a region of interest, for example a promoter. The
distance of the reporters informs about chromatin decompaction and remodeling activity
(wild type compared to inhibited or knock down (kd) conditions). This figure was generated
with Biorender.com.
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244 11 The Chromatin Interaction System

The first chromatin remodeler was initially described in yeast as a gene impor-
tant for mating-type switching (SWI) and sucrose fermentation (SNF) with general
activating function on transcription [289]. Later, a multi-subunit SWI/SNF com-
plex was chromatographically purified from cell nuclear extract and characterized as
an ATP-dependent chromatin remodeling complex. Nucleosome-disrupting activity
was demonstrated in various assays. (i) Reconstituted nucleosomes were incubated
with the purified SWI/SNF complex and treated with DNase I; in the presence of
ATP, the DNase I digestion pattern changed. (ii) Supercoiling assays followed by 2D
gel electrophoresis indicated a SWI/SNF- and ATP-dependent loss of nucleosomes
from circular DNA. (iii) DNase foot-printing showed 10- to 100-fold enhancement
of transcription factor binding to nucleosomal DNA in the presence of SWI/SNF and
ATP [290].

In the following years, other chromatin remodeling enzymes were described based
on homology to the Snf2 helicase domain [291–296]. Interestingly, some of these
factors were independently identified in genetic screens for factors involved in the
regulation of specific phenotypes implying that these factors are important regula-
tors of genome readout [297–300].

11.5.3 Methods for Identifying Histone Chaperones and Remodeling
Factors

11.5.3.1 Immunoprecipitation Assays
To identify histone chaperones and remodeling factors, including factors specific
for distinct histone variants, endogenous histones have been singly or dually tagged,
for example with EGFP, FLAG-HA, or the TAP tag, followed by single or sequen-
tial affinity purification under native or crosslinking conditions (Figure 11.7A)
[301–307]. Also, histone complexes, for example H3-H4, have been used as affinity
baits for enrichment of candidate factors [308, 309]. To identify chaperones and
remodelers that interact with different histone variants in a chromatin environment,
chromatin is fragmented (native or crosslinked) and tagged histones are pulled
down [305]. In the reverse approach, factors of interest are immunoprecipitated
from cell extract after chromatin fragmentation. Associated histones (and other
interacting proteins) can be detected by MS or western blot [310, 311].

11.5.3.2 Computational Methods
Chaperones may be predicted based on functional requirements: DNA replica-
tion, repair, and transcription require nucleosome eviction and assembly, and
thus chaperones. This assumption resulted, for example, in the identification of
MCM2-FACT as a histone chaperone complex in the eukaryotic replisome [312] and
the histone fold-containing subunits of POLε and RPA as replication-dependent
H3-H4 chaperones [313–315].

Since all known remodeling factors contain an enzymatic ATPase subunit of the
Snf2 family within the helicase superfamily 2, homology searches have been the
main tool to identify new proteins with this chromatin modulating activity. Whereas
more than 1300 Snf2 family proteins, divided into 24 subfamilies, were identified
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from protein sequence data (UniProt, UniRef100) of eukaryotes, eubacteria, and
archaea [316], not all Snf2-type ATPases are functional in nucleosome remodel-
ing [317].

11.5.4 Assays to Study Chaperone and Remodeler Activities

In vitro remodeling assays with ATP-dependent complexes and/or chaperones
can be performed on nucleosome or chromatin array substrates: (i) the distinct
electrophoretic mobility of differently positioned nucleosomes can be analyzed
by EMSA, (ii) the accessibility of restriction sites or general DNase accessibility
of nucleosomal DNA can be assessed, (iii) MNase digest reveals nucleosome
positioning on chromatin arrays, and (iv) single molecule FRET assays, with one
fluorophore of the FRET pair attached to the DNA and the other to one of the
histones, and (v) FP assays with the fluorophore attached to the end of the DNA,
can inform about nucleosome sliding and histone eviction (Figure 11.7B) [318–328].
These kinds of assays can also be used for high-throughput screening.

Barcoded nucleosome libraries containing differently modified or mutated
nucleosomes, as well as nucleosomes containing histone variants, can be designed
with a restriction site in the nucleosomal DNA that becomes only accessible upon
nucleosome remodeling. The library is simultaneously incubated with chromatin
remodelers and a restriction enzyme, and DNA is isolated and sequenced at differ-
ent time points to inform about remodeling kinetics and remodeler preferences for
certain nucleosome modifications (Figure 11.7C) [329].

To confirm nucleosome assembly, and thus chaperone activity in vitro, purified
chaperones, histones, and DNA, or intermediate complexes of nucleosome assembly
are incubated together. DNA-histone complexes can be identified by gel filtration,
EMSA-type experiments, the analysis of MNase digest, or the plasmid supercoiling
assay described above (Figure 11.7D) [309, 313, 315, 330, 331].

11.5.5 Cellular Assays

Chaperones are defined as having chromatin assembly activity in vitro. As this
does not necessarily translate into in vivo function, it is important to study their
effects in cellular systems. Histone ChIP and ChIP-seq studies have been combined
with chaperone knockout to assess the effect of chaperones on preventing
or facilitating histone-DNA interactions/incorporation into nucleosomes
[304, 307, 311, 332–334]. ChIP can also inform about genomic targets of spe-
cific chaperones [307, 311, 335, 336]. To assess chromatin remodeler and chaperone
function, mutations, knockdown, knockout, or specific protein degradation are
combined with studies of chromatin accessibility (MNase-seq, ATAC-seq) and
ChIP(-seq) for the proteins of interest [337–339].

To assess histone deposition in vivo, affinity- or fluorescence-tagged histones can
be transiently expressed, or SNAP- or CLIP-tagged histones can be used for flu-
orescent pulse-labeling and chasing [340, 341]. Global histone incorporation into
DNA is measured by western blot or by fluorescence microscopy after detergent
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246 11 The Chromatin Interaction System

washes to remove free histones (Figure 11.7E). Histone mobility can be measured
by FRAP. Combining these assays with the knockdown of chaperones or remodel-
ers provides information about the role of individual proteins/complexes for histone
incorporation [342]. The histone residues required for specific histone-chaperone
interaction have been probed by expression of histone mutants and assessment of
their interaction with histone chaperones by pulldown and western blot [305, 343].

In yeast cells, MNase-ChIP-seq revealed nucleosome-specific positions of remod-
elers genome-wide, highlighting that some complexes associate preferentially
with the 5′ or 3′ ends of genes, with specific genic nucleosomes (−2, +1, +2 to
+4 positions, etc.), and with specific genomic regions [344]. Combining this assay
with knockout studies of individual remodeler subunits can be used to assess the
effects of specific remodelers on the positioning of individual nucleosomes. ChIP
experiments in combination with exonuclease digest (ChIP-exo) have been used
to precisely map remodeler-DNA contacts at base-pair resolution. Together with
molecular modeling, this approach predicted how the ISW2 ATPase is oriented
on the nucleosome relative to the nucleosome-free region [344, 345]. Integrating
remodeler ChIP-seq with histone modification and chromatin factor ChIP-seq,
BS-seq, DNase-seq, as well as genome organization data have enabled prediction of
binding preferences and effects of binding in vivo [337, 346, 347]. Combining such
studies with factor knockout provides more direct insights into remodeler functions
[348].

Locus-specific effects of chromatin remodelers can be studied microscopically
using a reporter system consisting of LacO and TetO repeats, which is visualized by
fluorescently tagged LacR and TetR, on either side of an inducible locus in yeast.
The distance between the fluorescent signals is indicative of the chromatin com-
paction state and loss of either Snf2 or FACT prevented chromatin decompaction
upon induction (Figure 11.7E) [349]. In related approaches, mammalian cells have
been engineered to carry an inducible transgene array with repetitive LacO and
TRE sequences to allow for visualization and transcriptional activation of the array.
In this controlled system, chromatin remodeling processes can be studied before
or after activation of the array [350]. It is also possible to target chaperones to such
repetitive arrays by LacI fusion, and their colocalization with histone variants can
be assessed microscopically [351].

Studying the exact mechanism of chromatin remodeling in vivo is challenging.
Initially, remodeling was studied in yeast strains harboring recombinase sites
upstream and downstream of a specific, inducible promoter, so that recombination
results in circularization of this element. As outlined previously, the amount of
supercoils in such DNA informs about the number of nucleosomes in the promoter
region before and after induction [352]. However, remodelers can generate acces-
sible chromatin either by sliding or by disassembly of nucleosomes. An evolved
system is able to distinguish these two possibilities. If circularization is induced
before activation of the promoter, this results in either retention of all nucleosomes
on the plasmid (sliding) or loss of nucleosomes (disassembly). Using such assay
in combination with remodeler knockout strains, the responsible remodeling
complexes have been identified [353].
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11.6 Challenges in Chromatin Interactomics 247

11.6 Challenges in Chromatin Interactomics

The study of chromatin biology and of interactions within the chromatin regulatory
network has come a long way. Initially, the main focus was on defining different
modifications of chromatin and with particular focus on histone proteins. Several
types of protein modifications were first described on histones and new ones are still
being uncovered. The number of modifications that single sites, individual histones,
distinct nucleosomes, and stretches of chromatin putatively can display is stagger-
ing. A second phase of chromatin study was devoted to defining the modification
enzyme systems, the readout and translation mechanisms of the modifications, and
the protein complexes that govern chromatin assembly and remodeling. Over the
last two decades, the field has seen major progress in understanding the working
mode of these factors and, in particular, their functional domains in isolation and
on the molecular level.

While advances have been made in comprehending the interplay of few chromatin
modifications, it is not fully clear which patterns of marks really exist. Only for few
combination pairs, coexistence has been verified on a molecular level. MS-based
approaches seem capable to resolve the issue. However, the hurdle of fragmenta-
tion and separation of chromatin components for analysis needs to be overcome.
While epigenetic landscapes established by ChIP approaches suggest coexistence of
marks and chromatin factors, this is not necessarily the case in molecular terms as
the experiments average over large cell numbers (i.e. one cell might have one mod-
ification at a certain position of the genome and another cell might have another
mark there; then the ChIP composite would list both modifications present in the
population at the given region). While single-cell experiments address the ensem-
ble issue, only one chromatin feature can be detected in a single cell at a time. New
methodologies need to be developed that allow mapping of the full complexity of the
chromatin interactome at a given site of the genome and at a defined cellular state.

As illustrated on the example of UHRF1, a single reader can have multiple
domains that recognize distinct chromatin modifications. Similarly, protein com-
plexes contain multiple reader domains that putatively can interact with combi-
natorially modified chromatin regions. Chromatin remodelers work on nontrivial
substrates and chaperones function in complex chromatin assembly. The biochem-
ical analysis of these systems requires efficient and widely accessible methods
for making compound substrates (going from peptides to histones and nucle-
osomes/nucleosomal arrays containing different histone variants, chromatin
modifications, and nucleosome status) in high throughput. Further, methodologies
need to be developed that enable the simultaneous study of multiple properties,
interactions, and functions of complex “designer chromatin” with multiple factors
and with high sensitivity.

On a reader level, it is still unclear how multivalent or synergistic interactions
with multiple chromatin marks affect protein/chromatin interaction and function.
Is simultaneous interaction with all marks required for chromatin targeting? Are
specific marks regulating enzymatic activities rather than localization? Are interac-
tions constitutive or regulated and how are these controlled on a molecular level?
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248 11 The Chromatin Interaction System

Another level of complexity is brought about by the nature and dimension of
the complex cellular chromatin environment, in which different chromatin fibers
influence each other through sub-compartment formation and phase separation.
As these events are still incompletely understood and difficult to manipulate, it is
challenging to study the effects of 3D chromatin organization on protein–chromatin
interactions.

Cellular chromatin does not merely contain nucleosomes and interacting proteins
but also a plethora of RNAs and small molecules. More elaborate in vitro systems
and in vivo approaches are needed to study the combined effects of all aspects of
chromatin on the interactome.

Both chromatin-interacting protein complexes and chromatin states are dynam-
ically regulated in vivo in developmental, cell type, or cell state-specific contexts.
The chromatin interactome has traditionally been characterized in few trans-
formed/cancer cell lines. However, it is becoming increasingly important to study
it in different physiological contexts. Reader complexes, chaperones, and chro-
matin remodelers can exist in a number of variant assemblies depending on the
developmental stage or the cell type analyzed. For the most part it is not clear
how these are regulated or what the functional differences are. Also, multiple
dynamic interactions of modifying enzymes, modification readers, chaperones, and
remodeling complexes exist within the chromatin interactome. These are clearly
essential for the sequential generation and removal of chromatin marks and all
chromatin-mediated processes.

There is clearly plenty of work left to do before the chromatin interaction and
regulatory system is comprehended. It is expected that the chromatin biology field
will carry on to draw from many other research areas of interactomics, but at the
same time will continue to stimulate research in related fields with the richness of
first-time discoveries of basic phenomena made in its study.
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12.1 Introduction

In all living cells, the genetic material is stored in the form of deoxyribonucleic
acid (DNA), a relatively static biomolecule that serves a single purpose: acting as
a stable repository of hereditary information. That information is made available
through the act of transcription, during which the DNA template is copied into
a ribonucleic acid (RNA) transcript. Depending on cell type and DNA locus, the
amount of transcript can range from <1 copy per cell (with the RNA present in only
a few cells within a population) to thousands of copies per cell. The median half-life
of mRNAs is roughly proportional to the length of the cell cycle: on the order of
minutes in prokaryotes such as Escherichia coli, but approaching several hours in
cultured mammalian cells [1–3]. Within organisms, RNA half-lives vary by orders
of magnitude, ranging from seconds (for ephemeral noncoding RNA species that are
only detected in the absence of the nuclear RNA decay machinery) to several days
(for ribosomal RNAs) [3–6]. In eukaryotes, in particular, RNAs undergo a host of reg-
ulatory interventions [7]: After transcription, RNAs are processed through capping,
splicing, and tailing reactions; some are edited, chemically modified, or subjected
to partial ribonucleolysis. RNAs are then exported from the nucleus, and may be
actively transported to a specific subcellular localization – an early Drosophila screen
reported transcript-specific localization patterns for 71% of all mRNAs analyzed [8].
The vast majority of cellular RNAs then partake in protein biosynthesis, be it as
a template, or as part of the machinery. In the end, all RNAs are degraded, either
through constitutive decay pathways or because they trigger one of a variety of spe-
cialized quality control mechanisms [9]. All of these events are subject to regulation
and critically depend on proteins that interact with RNA. Such RNA-binding pro-
teins (RBPs) either target specific transcripts, groups of transcripts (“regulons”), or
affect RNAs globally. Altogether, the number of proteins known to regulate aspects
of primary RNA metabolism through direct interaction with RNA is vast. In the last
decade, the emerging field of RNA–protein interactomics has expanded the list of
known RBPs considerably, with new estimates considering between 1 in 6 and 1 in 12
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of all proteins capable of interacting with RNA at least transiently [10–12]. Not all of
these proteins have an RNA-directed function. Sometimes, it is the RNA that acts as
a regulator, a scaffold, a protein sponge, or a guide [13].

This chapter will begin with some initial considerations on the nature of
RNA–protein interactions and a short overview of the various functional roles
these can play in the cellular context. Next, I will describe two basic experimental
building blocks that are very frequently applied in the field and form the basis
for many interactomics methods: metabolic RNA labeling and RNA–protein
crosslinking. I will then introduce state-of-the-art methods that were developed
to assess RNA–protein interactions. The focus will be on exploratory, larger-scale
experiments (“interactomics”), which come in two flavors: Copurification or
proximity-dependent labeling methods. As is advisable for all high-throughput
data, RNA–protein interactions identified in such screens should be verified by
direct experimental validation. There is a collection of methods that can be used to
assay association of a specific protein with RNA, which include – but are not limited
to – electrophoretic mobility shift assays (EMSA), polynucleotide kinase assays
(“test-CLIPs”), fluorescence RNA-binding assays, and nuclear magnetic resonance
(NMR) titration. Such methods have been described in detail elsewhere [14–18].

12.2 Interactions of Proteins with mRNA and ncRNA

RNA–protein interactions are very abundant. They are required for the
RNA-directed functions of proteins that act on RNA – such as translation reg-
ulators or RNA-directed enzymes – and for protein-directed functions of RNAs that
regulate protein activity, for example, long noncoding (lnc)RNAs that recruit silenc-
ing factors to the chromatin. A priori, we are inclined to assume that protein–mRNA
interactions (where the “function” of the RNA, which primarily evolved as a tem-
plate, is clearly defined) regulate translational output of the mRNA, whereas we
consider it more plausible that protein–ncRNA interactions coordinate the function
of proteins. Most likely, that distinction is arbitrary and the boundaries fluid.

For lncRNA, many different functions have been reported [13]. They can serve
as scaffolds that bring proteins together or help to drive the formation of molecular
condensates, thereby creating locations with a high local concentration of specific
factors. Examples are NEAT1, which drives the assembly of paraspeckles [19, 20],
or Xist RNA, which recruits silencing factors to the inactive X chromosome, where
they modify histones to silence gene expression [21–24]. LncRNAs can also function
as RBP sponges that suppress RBP function, like meiRNA, which sequesters the
meiosis inhibitor Mmi1 at the onset of meiosis in fission yeast [25]. In addition, RNA
can regulate protein activity either through allostery or by occupying enzymes’
active centers in an act of molecular mimicry. Bacterial 6S RNA, for example,
mimics B-form promoter DNA and the transcription bubble to block activity of
the RNA polymerase holoenzyme [26]; Polycomb repressive complex 2 (PRC2), a
histone methyltransferase, is inhibited by RNA through an allosteric mechanism
[27]; Rossman fold domains, which are commonly found in metabolic enzymes and
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12.3 The Basic Toolbox 273

bind nucleotide cofactors such as nicotinamide adenine dinucleotide (NAD), have
a propensity to interact with RNA; here, RNA and cofactor binding can be either
mutually exclusive or not [28, 29].

When we consider typical RNA–protein interactions in vivo, two very different
binding modes come to mind: One of them is the stable, highly specific interaction
of an RBP with a defined RNA sequence or structure. This is likely to involve a
classical RNA-binding domain (RBD) – for example an RNA recognition motif
(RRM), a double-stranded RNA-binding domain (dsRBD), or a Pumilio homol-
ogy domain [30]. The YTH domain-containing protein Mmi1, which recognizes
TNAAAC motifs and triggers selective RNA decay, is an example of such an
interaction [31, 32]. Structures of stable RNA–RBP complexes abound (e.g. [33]).
On the other hand, there are the rather more fluid interactions of RBPs and
RNA within biomolecular condensates [34]. RNA has a propensity to trigger
disorder-to-order transitions via weak, multivalent interactions; this can result in
liquid–liquid phase separation (LLPS) and create subcellular domains with high
local concentrations of RBPs and RNA. Many RNA-rich compartments constitute
RNA coacervates – viscous, membrane-less organelles that are formed by LLPS
and include the nucleolus, nuclear speckles, heterochromatin domains, and stress
granules [35–39]. While some RBPs are drivers – or scaffolds – of phase separation,
others are recruited as “clients” that partition to existing LLPS granules [34]. Often,
intrinsically disordered regions (IDRs) are required for the localization of proteins
to RNA granules (such as P-bodies) and can induce LLPS in vivo and in vitro
[40–42]. Notably, IDRs are significantly enriched in RBPs and abundantly crosslink
to RNA [10, 11, 29, 43]. For most RNA interactomics approaches described in this
chapter, it does not matter whether an RNA–protein interaction occurs in isolation
or in a more crowded RNA/RBP-rich environment – they will identify either one.
By design, proximity-dependent labeling methods like APEX-Seq, which seeks
to identify RNAs that are enriched in a specific subcellular compartment, are
particularly useful for studying RBPs that localize to RNA-rich domains (e.g. [44]).

12.3 The Basic Toolbox

12.3.1 Metabolic RNA Labeling with Modified Nucleobases

RNA biologists frequently make use of chemical modifications on nucleobases
that confer certain desired characteristics to the labeled RNA, in the best case
without interfering with base pairing and normal RNA function. In the field of RNA
interactomics, two classes of modifications have proven particularly useful: (i) pho-
toreactive nucleosides, such as 4-thiouridine (4sU) and 6-thioguanosine (6sG), that
allow selective RNA–protein crosslinking after irradiation with UV light at 365 nm
wavelength [10, 11, 45, 46], and (ii) azide- or alkyne-modified nucleosides, partic-
ularly 5-ethynyluridine (5EU), that allow selective isolation of labeled RNAs on a
streptavidin resin after linkage to biotin in a bioorthogonal click-chemistry reaction
[47, 48].1
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274 12 RNA–Protein Interactomics

Cellular RNA polymerases can utilize a range of modified uridines, many of
which can be used to label RNA in vivo with little toxic side effects. In eukaryotes,
incorporation of 4sU is considered to be “nonperturbing”: it was shown to lead to
only moderate changes in gene expression and – in contrast to 6sG – to have little
impact on cell proliferation rates, although it can disrupt rRNA biogenesis at higher
concentrations [49, 52–54]. Similarly, few adverse effects have been reported after
5EU labeling; here, longer labeling times can lead to reduced growth rates [6, 48].
Note that the extent to which their incorporation perturbs cellular processes has
not been rigorously tested for all modified nucleosides that are currently in use.
In general, modified uracils tend to be cheaper than the corresponding modified
nucleosides. The choice of uridine over uracil largely depends on the organism,
specifically on whether key enzymes of the pyrimidine or nucleoside salvage path-
ways are present: higher eukaryotes, including insects and mammals, do not have
a functional uracil phosphoribosyltransferase (UPRT) [55] and cannot incorporate
externally provided labeled uracil into nucleic acids; here, labeled uridines are
the only choice. However, uracil incorporation can be enabled by heterologous
expression of UPRT from other species, for example, UPRT from the protozoan
Toxoplasma gondii [50]. UPRT deficiency has even been turned into an advantage:
cell-type-restricted expression of UPRT has been exploited to selectively label RNA
in a subset of cells within complex tissues of various UPRT-deficient organisms,
including Drosophila, zebrafish, and mouse [56–59]. Similarly, RNAs produced by
virus-infected cells have been selectively labeled using engineered cytomegalovirus
that encodes UPRT [60]. Yeasts, plants, and the nematode Caenorhabditis elegans
have functional UPRT, so do archaea [55]. These organisms will incorporate uracil
or uridine into RNA [4, 61–65]. Modified nucleoside uptake can be moderate, but
has been improved by expression of the human equilibrative nucleoside transporter
(hENT) in both Saccharomyces cerevisiae and Schizosaccharomyces pombe [52, 66].
In S. cerevisiae, uptake of 4-thiouracil could be genetically enhanced by overex-
pression of the uracil permease FUI1 to enable very short labeling pulses [67].
More evolved targeting strategies have been developed for multicellular organisms,
including treatment with a cytochrome P(450) 3A-activated prodrug that can only
be converted to 5EU by cells that express CYP3A4, namely hepatocytes [68]. In
Drosophila, combined expression of UPRT and cytosine deaminase (CD), which
converts 5-ethynylcytosine (5EC) to 5EU, has been used to allow cell-type selective
5EU labeling (“EC-tagging”) [69].

Commonly used modified nucleosides like 4sU or 5EU have not been used with
great success in prokaryotes, where they can be very toxic. Recently, incorporation
of clickable 2′-deoxy-2′-azidonucleosides (2AzU) was suggested to constitute a
superior alternative in bacteria [70] (Table 12.1).

12.3.2 RNA–Protein Crosslinking

Exposure to 254 nm UV light induces covalent crosslinking of RNA and proteins at a
short, “zero-length” distance [79, 80]. The chemistry is complex. Irradiation of nucle-
obases generates short-lived radicals that can form photoadducts with most amino
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12.3 The Basic Toolbox 275

Table 12.1 Survey of modified uracils and uridines that have been successfully employed
for metabolic RNA labeling in various organisms.

Organism Modified uracils Modified uridines

S. cerevisiae 4sU [71, 72], 4sU [FUI1] [67] 4sU [hENT1] [52]
S. pombe 4sU [73, 74] 4sU [75]
Mammals 4sU [UPRT] [58], 5EU [UPRT] [76] 4sU [10, 46], 5EU [47, 48]
C. elegans 4sU [63]
Drosophila 4sU [UPRT] [56], 5EC [UPRT, CD] [69] 4sU [77], 5EU [78]
Plants 4sU [65] 5EU [64]
Archaea 4sU [61]
Prokaryotes 2AzU [70]

Genetic modifications that are required to ensure efficient labeling are given in square brackets.
4sU: 4-thiouracil/uridine; 5EC: 5-ethynylcytosine; 5EU: 5-ethynyluridine; 2AzU:
2′-deoxy-2′-azidouridine.

acid side chains (with uracil being most reactive), but cysteine, lysine, phenylala-
nine, tryptophan, and tyrosine are particularly prone to crosslink [81, 82]. In vivo,
RNA crosslinks are better than DNA by orders of magnitude. However, even for
RNA, the efficiency of UV crosslinking is low. Under typical irradiation settings, only
a low percentage of RNA–protein interactions will be crosslinked [83]. This low effi-
ciency of UV crosslinking is offset by its high specificity for nucleic acid interactions
and the irreversible, covalent nature of the crosslink: because the linkage is stable,
nonspecific background can be very effectively removed through stringent washes
during the purification of crosslinked RNA–protein complexes [10, 84].

The advent of photoactivatable nucleoside-enhanced (PAR-)crosslinking of
metabolically labeled 4sU- or 6sG-containing RNA at 365 nm UV light offered addi-
tional advantages: (i) irradiation at 365 nm does not activate DNA bases; therefore,
cells are less likely to activate DNA damage pathways; (ii) compared to conven-
tional 254 nm crosslinking, the efficiency of PAR-crosslinking is greatly enhanced
(100–1000 fold) [46]; (iii) because metabolic labeling can be spatially and temporally
controlled, selective crosslinking of RNA subpopulations is possible. Similar to nat-
ural nucleobases, 4sU will crosslink promiscuously upon irradiation, but aromatic
amino acids – and particularly histidine – are most reactive [12]. UV crosslinking
has the advantage of being very selective for RNA, but the procedure can be
cumbersome and lengthy: cell culture media generally absorb UV light and have to
be exchanged for an inert buffer prior to crosslinking. For PAR-crosslinking, doses
of 3–12 J/cm2 are not uncommon, and unless your lab has access to a high-density
crosslinker, irradiation can take 15 minutes or longer. Because the material heats
up during exposure, crosslinking is routinely performed on ice. Especially for
dynamic interactomes (for example, to monitor RNA interactome remodeling in
response to stress), alternative crosslinking procedures can be desirable that can
be applied directly to the growing culture and freeze RNA–protein interactions
more rapidly. For this reason, conventional formaldehyde (FA) crosslinking is also
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276 12 RNA–Protein Interactomics

widely applied in the field of RNA interactomics (e.g. [22, 85]). FA forms reactive
adducts with nucleophilic amino acids, particularly lysine and arginine, and all
four RNA nucleobases, particularly adenine [86, 87]. The reactions of these adducts
are complex and can form covalent intramolecular linkages through various
chemistries, including methylene bridges. FA crosslinking is reversible at high
temperature [86–88]. Because FA readily crosslinks protein–protein interactions
as well, FA crosslinking is more likely to stabilize large RNPs and – in contrast to
UV crosslinking – will facilitate capture of subunits that are not in direct contact
with the RNA. To limit the extent of protein–protein linkages, the samples can
be subjected to very mild crosslinking conditions, e.g. 0.05% FA for 10 minutes,
but more extensive treatment of up to 3% formaldehyde for 30 minutes has been
successfully employed, and conditions should be optimized for each experiment
[22, 85, 89]. A variety of alternative chemical crosslinkers can be used to fix
RNA–protein interactions, including glutaraldehyde [90, 91], but have not been
as popular as FA in the field.2 As a consequence of the experimental setup, all
data derived from crosslinked material are subject to sampling biases because the
crosslinkability of RNA–protein interactions can vary with the method.

12.4 RNA–Protein Interactomics

12.4.1 What Proteins Are Bound to my RNA (or RNA in General)?

12.4.1.1 Cataloging the RBPome
Not all RBPs possess an easily recognizable RBD; for example, we now know that
IDRs frequently contribute to RNA binding [29, 43]. This made it very challenging to
predict RNA binding based on protein sequence alone and fueled the development
of experimental approaches that aim to inventory all RNA–protein interactions
within the cell.3 The classical RNA interactome capture (RIC) method relies on UV
crosslinking of RNA–protein complexes, followed by enrichment of polyadenylated
RNA on oligo-d(T) beads and identification of copurified RBPs by mass spectrometry
(MS) [10, 11] (Figure 12.1a). RIC has been applied to many different cell types under
many different conditions, and detailed methods protocols have been published for
various organisms [73, 97–100]. Adaptations include the inclusion of an additional
proteolysis step to co-purify only the RNA-interacting regions (rather than the
entire RBP) to more precisely map RNA-binding sites (“RNA-binding domain map-
ping”, RBDmap; “Crosslinked and Adjacent Peptides-based RNA-binding domain
Identification”, CAPRI)4 [29, 43] (Figure 12.1b). For some areas of research, a focus
on polyadenylated RNA is a severe limitation, since nascent transcripts as well as
many noncoding RNAs will not be recovered; it is also not applicable to prokaryotes.
Total RNA RIC protocols either employ 5EU labeling and click-chemistry-assisted
biotinylation to enrich RNA by streptavidin pull-down (“RNA interactome capture
using click chemistry”, RICK; “click-chemistry-assisted RIC”, CARIC) [47, 93], or
aim to selectively enrich crosslinked RNA–protein complexes based on the unique
physicochemical attributes of crosslinked material (Figure 12.1c,d). Here, existing
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Figure 12.1 Simplified workflows of different global RNA interactome capture methods. (a) In the classical poly(A)+RNA interactome capture (RIC)
protocol, RNA–protein complexes are UV crosslinked in vivo and polyadenylated RNA–protein complexes are enriched on oligo-d(T) beads after cell lysis.
The RNA component of eluted RNPs is removed by RNase digestion and RNA-interacting proteins are identified by mass spectrometry. Source: Adapted
from [10, 11]. (b) RBDmap and CAPRI add a limited proteolysis step to the RIC workflow to identify protein domains that mediate RNA binding. In the
adapted protocol, those fragments of RNA-interacting proteins that directly crosslink to RNA will be retained during oligo-d(T) selection, while parts of
the protein that are not in contact with the RNA will be removed by stringent washes. Source: Adapted from [29, 43]. (c) Click-chemistry-assisted RIC
(CARiC) captures protein interactors of RNA that are metabolically labeled with 5-ethynyluridine (5EU). After UV crosslinking and cell lysis, 5EU-labeled
RNA–protein complexes are biotinylated via a copper-catalyzed azide–alkyne click chemistry reaction and captured on streptavidin beads.
RNA-interacting proteins are eluted by RNase digestion and identified by mass spectrometry. When labeling times are short, CARIC will selectively capture
newly synthesized RNA. Source: Adapted from [47, 93]. (d) In total RNA RIC, UV-crosslinked RNA–protein complexes are isolated from the interphase after
extraction with phenol-based organic solvents; free RNA will partition to the aqueous phase, while most unbound proteins will be partitioned into the
organic phase. Additional extraction steps help to enrich RNA–protein complexes and efficiently remove unbound protein. After RNase digestion,
RNA-interacting proteins are identified by mass spectrometry. Source: Adapted from [94–96].
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278 12 RNA–Protein Interactomics

protocols rely either on organic phase separation or on solid-phase extraction
(“orthogonal organic phase separation”, OOPS; “phenol toluol extraction”, PTex;
“protein-crosslinked RNA extraction”, XRNAX; “total RNA-associated protein
purification”, TRAPP) [16, 94, 95, 101, 102]. PTex, for example, has been used to
determine the RNA interactome of Salmonella typhimurium [16]. Because of their
sheer abundance, the majority of observed RNA–protein interactions in total RNA
RIC will be derived from ribosomes. RIC is semiquantitative and can – depending
on the mode of normalization – provide estimates of both the average load of an
RNA-interacting protein on RNA and the proportion of an RBP that is bound to
RNA; this makes it a suitable method to monitor dynamic changes in the RNA
interactome [103, 104]. Among others, comparative RIC has been used to assess
RBPome remodeling during embryonic development, and in response to viral
infection [105–107].

12.4.1.2 Interactomes of Specific RNAs
Often, researchers want to identify RBPs that are recruited to a specific RNA
species – this could, for example, be a long noncoding (lnc)RNA that acts as a
scaffold, or an RNA virus that has infected a cell. Biotinylated antisense oligos
(ASOs) have been used to selectively capture lncRNAs like Xist, NEAT1, and
MALAT1, or viruses like SARS-CoV-2, followed by identification of crosslinked
proteins by MS (“capture hybridization analysis of RNA targets,” CHART-MS;
“comprehensive identification of RNA-binding proteins,” ChIRP-MS; “identifi-
cation of direct RNA-interacting proteins,” iDRiP; “RNA antisense purification,”
RAP) [21–23, 108, 109] (Figure 12.2a). For Northern blots or in situ hybridiza-
tion, long hybridization probes (several hundred bases) can be used to maximize
sensitivity and specificity, but long probes are not compatible with interactomics
approaches. Instead, many protocols use multiple ASOs that tile the length of the
RNA [21–23, 108, 109]. In addition, the locked nucleic acid (LNA) technology can
facilitate the design of probes that hybridize with high affinity [104, 112–114].
LNAs are nucleic acid analogs with a methylene bridge that connects the C-4′

carbon of the ribose with the oxygen atom at C-2′. This modification constrains the
conformation of the ribose and significantly stabilizes duplex formation. For all
RNA antisense purification experiments, crosslinking of RNA–protein interactions
is highly advisable. Because nucleic acids are poly-anions, the stability of a nucleic
acid double helix depends on the presence of counterions that shield the negative
charges of the phosphates in the backbone. Thus, the specificity with which an
ASO hybridizes to its target RNA increases with decreasing salt concentration;
this behavior is described by the Schildkraut–Lifson equation [115]. RNA–protein
interactions, on the other hand, often involve salt bridges between positively
charged amino acids and the phosphate backbone. While higher salt concentra-
tions can serve to screen electrostatic interactions, RBPs tend to be sticky under
conditions where ASO hybridization is highly selective. On crosslinked samples,
stringent prewashes at higher salt concentrations can be included which will reduce
background binding.
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Figure 12.2 Simplified workflows of different RNA-specific RNA interactome capture
methods. (a) RNA antisense purification protocols use biotinylated antisense oligos (ASO) to
selectively capture an RNA of interest. RNA–protein interactions are stabilized by UV or
formaldehyde crosslinking prior to lysate generation. After hybridization of the ASO,
RNA–protein complexes are captured on streptavidin beads. RNA-interacting proteins are
eluted by RNase digestion and identified by mass spectrometry. Source: Adapted from
[21–23, 108, 109]. (b) MS2-Trap is an RNA-tagging-based approach that can be used to
purify an RNA of interest. It requires heterologous expression of the phage-derived MS2
coat protein and the insertion of an aptamer sequence – in this case, MS2
stem-loops – into the RNA that is to be captured. After crosslinking and lysate preparation,
tagged RNA–protein complexes can be selected via affinity tag purification. The RNA
component of eluted RNPs is removed by RNase digestion and RNA-interacting proteins are
identified by mass spectrometry. Source: Adapted from [110]. (c) RaPID combines the
MS2-Trap technology with proximity-dependent protein labeling. Here, a fusion of the MS2
coat protein to the biotin ligase BirA is recruited to an RNA that carries an MS2 stem-loop
structure. BirA generates activated biotin- 5′-AMP-esters that will biotinylate proteins in
the immediate vicinity. After lysate preparation, biotinylated proteins are captured on
streptavidin beads and identified by mass spectrometry. Source: Adapted from [111].

As an alternative to RNA antisense purification, various genetic RNA tagging
approaches have been developed [116]. These include classical bacteriophage-
derived systems that exploit the ability of the MS2 or PP7 phage coat protein to
capture the RNA phage genome. The interaction relies on the recognition of a spe-
cific RNA hairpin structure present in the phage genome. If this hairpin structure
is inserted into an RNA of choice, e.g. in the 3′ untranslated region of an mRNA,
the RNA can be efficiently captured by a heterologously expressed, affinity-tagged
coat protein [110] (Figure 12.2b). In addition, in vitro selection has enabled the
creation of a range of RNA aptamers with stable folds that selectively bind proteins
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280 12 RNA–Protein Interactomics

like streptavidin and GFP, or small molecules like tobramycin or thiazole orange
[117–119]. After RNA pulldown, specific protein interactors can be identified by
MS. RNA tagging has also been combined with proximity-dependent labeling. For
this, different stem loop-binding proteins are fused to a biotin ligase to biotinylate
proteins in the immediate vicinity of the tagged RNA; biotinylated proteins are then
enriched on streptavidin beads and identified by MS (“RNA–protein interaction
detection”, RaPID) [111, 120] (Figure 12.2c). For example, this strategy has been
used to identify proteins associated with ß-actin mRNA, which localizes to protru-
sions in migrating fibroblasts [120]. Because RNA tagging can alter the function of
RNA molecules, any strains generated for RNA tag-dependent purification should
be assayed for functionality in vivo prior to the experiment.

12.4.2 Which RNA Species Are Bound by my RBP?

12.4.2.1 Copurification Methods: CLIP and Derivatives
To map the RNA-binding sites of a specific RBP across the transcriptome, derivatives
of the crosslinking and immunoprecipitation (CLIP) protocol are the method of
choice [84, 121]. As in RIC, RNA–protein complexes are first crosslinked in vivo
using conventional UV or PAR-crosslinking [46, 84]. After cell lysis and partial
RNA digestion, the RBP is enriched by affinity purification. The crosslinked RNA
is then end-labeled and RNA–protein complexes are purified by gel electrophoresis
and membrane transfer. After proteinase digestion of the RBP, the recovered RNA
fragments are converted into a cDNA library for high-throughput sequencing
(Figure 12.3a). Base conversions and frequent stalling of the reverse transcriptase
at crosslink sites allow to map RBP binding at individual nucleotide resolution
[46, 127]. While the original protocol was not the type of experiment you would
want to hand to an inexperienced graduate student, newer versions of the protocol,
such as enhanced CLIP (eCLIP) or iCLIP2, are faster and more robust [122, 123].
eCLIP is part of the methods portfolio of the ENCORE project within ENCODE,
which aims to identify RNA-binding elements for all human RBPs in K562 and
HepG2 cell lines (www.encodeproject.com). Regardless of the protocol used,
high-quality CLIP data are dependent on the availability of either a good antibody
or a well-behaved RBP fusion to an affinity tag.

12.4.2.2 Proximity-Dependent Labeling Methods
Proximity-Dependent RNA Editing TRIBE (“targets of RBPs identified by editing”) was
developed as a crosslinking- and immunoprecipitation-independent alternative to
CLIP [124, 125]. Here, the RBP of choice is expressed as a protein fusion to the
catalytic domain of the RNA-editing enzyme adenosine deaminase (ADAR), which
converts adenosine to inosine; this fusion protein will edit transcripts bound by the
RBP (Figure 12.3b). After RNA sequencing, editing sites can be identified as A to
C conversions and quantified relative to control to identify RNA targets. Use of a
hyperactive version of ADAR further improves sensitivity (HyperTRIBE) [125]. For
example, HyperTRIBE was used to identify mRNAs bound by MUSAHI-2, an impor-
tant regulator of human hematopoiesis [128]. TRIBE works in an analogous fashion
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to DamID, which employs a DNA adenine methyltransferase (Dam) fusion to map
DNA-binding sites of a protein across the genome [129], and mirrors its advantages
and disadvantages: ADAR fusions can be toxic if they lead to excessive editing that
interferes with RNA function. If that is not the case, TRIBE is very sensitive and easy
to implement. However, as A to I editing is irreversible, the method is not well suited
to observe dynamic changes in RNA–protein interactions.

Proximity-Dependent Biotinylation Proximity labeling approaches have been devel-
oped to map transient protein–protein interaction networks [130]. They employ
genetic fusions to an engineered enzyme that converts a biotin-containing substrate
to a short-lived reactive species with a limited diffusive range that readily attaches to
proteins in vivo. Two classes of enzymes are most commonly used: (i) Biotin ligases,
which convert ATP and biotin to an activated AMP-ester, such as TurboID [131];
and (ii) peroxidases, which generate reactive radicals from exogenously supplied
substrates like biotin–phenol in the presence of H2O2, such as the engineered
ascorbate peroxidase APEX [132]. If APEX is attached to an RBP or a component
of RNA granules, APEX-generated radicals will also biotinylate RNAs in a spatially
restricted manner. These can be captured by streptavidin pulldown and sequenced,
thereby identifying RNAs that are enriched in specific compartments (APEX-Seq)
[44, 126] (Figure 12.3c). Alternatively, proximity-dependent biotinylation of pro-
teins can be combined with RNA–protein crosslinking and streptavidin pulldown
to isolate RNAs that are enriched at a certain subcellular location (APEX-RIP,
proximity CLIP) [133, 134]. Both APEX-Seq and APEX-RIP have been used to
map mRNA localization to various intracellular organelles [126, 133]. Because
peroxidases like APEX or APEX2 require very short labeling times (<1 minute),
proximity labeling approaches can be used to study highly dynamic processes.

12.5 Outlook

By harnessing the increased sensitivity of mass spectrometry instrumentation and
the advances in high-throughput sequencing technologies, the field of RNA–protein
interactomics has evolved rapidly in the last decade. As a consequence, our view
of RNA–protein interactions has diversified: We now realize that (i) depending on
the conditions, proteins with primary functions outside of RNA metabolism can
significantly contribute to RNA–protein interactions; (ii) RNA can play an impor-
tant role in scaffolding protein assemblies and coordinating their function. Because
we now have a wealth of comparative RNA–protein interactomics data available
that were generated with the methods described in this chapter, we know that the
RNA–protein interaction landscape is highly dynamic. In the future, we will likely
see the development of novel methodologies that help us to monitor the remod-
eling of RNA–protein interactions on shorter timescales. We also expect to see an
increase in approaches that are sensitive to the presence of posttranslational modi-
fications on RBPs and attempt to link these to change in RNA-binding activity on a
proteome-wide scale, building on the versatile toolbox that is already available.
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Notes

1 Biotinylation of 4sU-labeled RNA with HPDP-biotin or MTS-biotin has been used
with great success in the field of transcriptomics [49–51]; however, the prevalence of
thiol groups in proteins severely limits the usefulness of thiol-directed biotin
conjugation for interactomics studies.

2 Wherever crosslinked RNA is to be sequenced in the course of the experiment,
concentrations of irreversible crosslinkers should be kept low and incubation times
short, because nucleobase adducts will interfere with reverse transcription.

3 Based on the extensive experimental data now available, machine-learning-based
algorithms are able to more faithfully predict RNA binding, for example by scoring
the presence of short linear motifs [92].

4 Researchers in the transcriptomics field have an inordinate fondness for method
acronyms. Sometimes, different acronyms are used by different labs for what is
arguably the same (or a highly related) method. In other cases, a new acronym can be
an optimized version of an older protocol. In this chapter, we group methods that are
conceptually similar. Readers are referred to the primary literature to identify
advantages and disadvantages of the individual protocols.
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13.1 Introduction

The survival of every cell is dependent upon the maintenance of membrane home-
ostasis, an actively controlled process of regulating membrane composition, struc-
ture, and dynamics. The cell membrane is the boundary that separates a cell from its
surroundings and shields the contents of internal organelles. Specifically, the plasma
membrane is a semipermeable protective envelope of cells and plays critical role
in the regulated movement of material between the interior of the cell and its sur-
roundings. Similarly, internal or endomembranes compartmentalize intracellular
cell components into various organelles, such as the Golgi apparatus, endoplasmic
reticulum, and the nucleus. Membranes also serve as vesicles to transport cargo
across the cytosol, as well as into and out of the cell, as two-dimensional structural
frameworks to host and organize proteins involved in substrate transport, signaling,
and other functions. The focus of this chapter is on the fundamental interactions
responsible for the targeting and stability of these proteins in membranes.

The topic of the interactions of proteins with biological membranes is too broad
to cover in full in a single chapter. Therefore, we will focus on two major classes of
proteins, peripheral and integral membrane proteins, and describe in general terms
the most common mechanisms of targeting, stabilizing, and reorganizing these
proteins inside or on the surface of membranes. Moreover, most of our discussion
will focus on the plasma membrane, with only occasional references to endomem-
branes. This is because, while the plasma membrane and endomembranes differ
in lipid composition and protein content, the fundamental interactions relevant
to the structural integrity and function of membranes and membrane proteins are
conserved.

Protein Interactions: The Molecular Basis of Interactomics, First Edition.
Edited by Volkhard Helms and Olga V. Kalinina.
© 2023 WILEY-VCH GmbH. Published 2023 by WILEY-VCH GmbH.
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294 13 Interaction Between Proteins and Biological Membranes

The chapter is organized as follows. First, an overview of the structure, com-
position, and function of the plasma membrane is provided, followed by a short
review of its structural heterogeneity and the key factors responsible for its dynam-
ics. Then, a somewhat detailed description of peripheral membrane proteins is
provided, with emphasis on the protein-based and lipid-based targeting motifs that
are responsible for their interaction with membrane. Turning to the larger family
of transmembrane proteins, some examples are used to discuss the key roles of
membrane and membrane lipids for the structural integrity and conformational
changes that drive function in both single-pass and multi-pass transmembrane
proteins that are most common in the plasma membrane of eukaryotic cells. This
is followed by a brief discussion of antimicrobial peptides as an example of proteins
that are conditionally peripheral or transmembrane and closes with a summary of
the main points discussed in the chapter.

13.2 The Plasma Membrane: Overview of Its Structure,
Composition, and Function

The primary constituents of the plasma membrane are lipids. While there are thou-
sands of lipid species in every cell, the most abundant lipids in the plasma membrane
are phospholipids. When mixed with water, phospholipids spontaneously assem-
ble into bilayers due to the opposing forces from their “water-loving” (hydrophilic)
head group and “water-hating” (hydrophobic) tails. The resulting nonbonded
phospholipid–phospholipid interactions in bilayers are weak, making membranes
fluid-like (i.e. they have structural integrity while being flexible). Beyond their
structural role, phospholipids in the plasma membrane are the “pickets” that form
a “fence” around the cell, with the hydrophobic interior (core) of the membrane
forming a barrier for water-soluble substances to maintain different mixtures and
concentrations of solutes inside and outside of the cell.

Other major constituents of the plasma membrane are cholesterol, carbohydrates,
and proteins. Cholesterol tucks in-between phospholipid molecules and contributes
to both the fluidity and stability of the plasma membrane, while carbohydrates,
which serve as self-identification markers of cells, “sugar coat” the outer surface
by attaching to proteins and lipids. The plasma membrane is also rich in proteins.
In fact, while lipids are about 50 times more numerous, the more massive proteins
account for nearly half of the total mass of the plasma membrane. Cells differ in
the number, distribution, and activity of the proteins they possess, and proteins are
continuously recycled into and from the plasma in a controlled manner. There are
two types of membrane proteins: integral or transmembrane proteins (TMPs) and
surface-bound or peripheral membrane proteins (PMPs).

As the name suggests, TMPs span the entire thickness of the host membrane and
perform many diverse functions. Some serve as highly selective water-filled passage-
ways or channels that transport specific ions across the plasma membrane (e.g. Na+
and K+ channels). TMPs also serve as: (i) carriers to transport specific substances
that cannot cross the membrane core on their own (e.g. iodine is transported from
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13.3 Lipid-Based and Protein-Based Sorting of Plasma Membrane Components 295

blood into thyroid gland cells by carrier proteins); (ii) receptors to recognize and
bind specific molecules in the cell’s environment (such as hormones in the blood
stream); (iii) cell-adhesion molecules to link the extracellular surroundings of the
cell with the intracellular cytoskeleton (e.g. integrins); (iv) some TMPs protrude
from the cell surface and form loops or hooks by which cells grip each other
(e.g. cadherin zippers holding cells between tissues and organs). Unlike TMPs,
peripheral membrane proteins are attached to one side of the plasma membrane.
However, just like TMPs, PMPs have various important functions, including roles
as enzymes, scaffolding proteins, and regulators of cell signaling events. In fact,
many kinases, phosphatases, and GTPases are PMPs. Other PMPs serve as docking
markers for secretory vesicles.

13.3 Lipid-Based and Protein-Based Sorting of Plasma
Membrane Components

The plasma membrane is highly dynamic, capable of rapidly reorganizing to form
local substructures in response to generalized or local changes in the interior content
or external environment of the cell. Membrane substructures range from nanometer
to micrometer in size and function as transient signaling platforms or more per-
manent immunological synapses. At the fundamental level, membrane structural
heterogeneity arises from variations in lipid composition and content or activity of
specific membrane proteins. Therefore, despite the complexity of the plasma mem-
brane, basic properties of its substructures or domains can be studied by using much
simpler model membranes made up of, for example, specific phospholipids, sterols,
and selected membrane proteins. Based on such studies, two broad mechanisms
of domain formation have been described: lipid-based and protein-based sorting.
Below, the molecular interactions that underlie these sorting mechanisms, operating
either independently or in tandem, are briefly reviewed.

13.3.1 Lipid-Based Sorting and Domain Formation

A fundamental property of biological membranes is phase separation. Phase
transition is a process of lipid sorting that occurs at temperatures characteristic
of the constituent lipids and allows for the formation of co-existing membrane
domains (or substructures) characterized by distinct biophysical properties. The
most common lipid phases are gel or solid ordered (So), liquid disordered (Ld),
and liquid ordered (Lo). In the So phase, lipids are tightly packed and have reduced
lateral mobility, whereas, in the Ld phase, lipids are loosely packed and have
faster lateral mobility. The Lo phase shares tight lipid packing with So and high
lipid diffusion with Ld. Two or more of these phases can co-exist in bilayers of
mixed lipids. For instance, in model membranes composed of sphingomyelins,
unsaturated phosphatidylcholine (PC), and 10–30% cholesterol, Lo and Ld phases
co-exist with the Lo phase enriched in cholesterol and sphingomyelin, and the Ld
phase enriched in the unsaturated PC. The molecular basis of this process can be

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by ibrahim

 ragab - C
ochrane G

erm
any , W

iley O
nline L

ibrary on [23/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



296 13 Interaction Between Proteins and Biological Membranes

studied using a mixture of saturated PC and cholesterol. The total area occupied
by this mixture is smaller than would be expected from the sum of the constituents
because cholesterol “condenses” the PCs. The condensing effect of cholesterol is
related to its spontaneous negative curvature [1] as well as its reversible interactions
with PC to form condensed complexes of defined stoichiometry [2]. In such
complexes, PCs pack more tightly to shield the hydrophobic cholesterol from the
hydrophilic membrane–water interface [3]. Molecular dynamics (MD) simulations
of cholesterol/sphingomyelin/phosphatidylcholine mixtures [4–6] have shown
that cholesterol localizes at the interface between sphingomyelin-enriched and
PC-enriched regions [6], with the saturated sphingomyelin acyl chains packing
against the smooth α-face of cholesterol, while the disordered acyl chains of
PCs pack more easily against the methylated and hence rougher β-face of the
cholesterol.

13.3.2 Protein-Based Sorting and Membrane Curvature

Many plasma membrane proteins partition to nanoscopic lipid domains called
lipid rafts, roughly defined as Lo domains surrounded by Ld domains [7–9]. Char-
acterized by unique biophysical and thermodynamic properties, lipid rafts recruit
specific lipids and proteins to facilitate cell signaling and other functions [9]. Along
with palmitoylation (discussed later), the hydrophobicity and size of transmem-
brane domains in TMPs are key determinants of raft affinity [10, 11]. Also, many
PMPs have an intrinsic preference for specific membrane substructures or cause
curvature via one or more of three mechanisms: (i) mechanical bending: caused by
a protein or network of proteins with a rigid tertiary structure and a curved surface;
(ii) local deformation: caused by proteins that embed amphipathic helices into a
monolayer; and (iii) area difference between leaflets: caused by protein domains
that penetrate only one leaflet.

An example of mechanical bending is that caused by the Bin-Amphiphysin-Rvs
(BAR) domains that arrange on the membrane surface in various ways to generate
distinct membrane curvatures. Mechanical bending is often complemented by
interactions of basic amino acids with membrane lipids, or by the action of an
amphipathic helix causing local deformation of a monolayer (mechanism ii).
Amphipathic helices tend to lie on the membrane surface with the hydrophobic
face partitioning into the membrane core and the polar face interacting with
lipid head groups and solvent, thus causing a local disruption of lipid packing.
For example, in proteins containing a particular BAR domain, N-BAR, sens-
ing of membrane curvature involves a dimeric BAR domain plus a disordered
N-terminus from each protomer forming an amphipathic helix upon binding to
membranes containing negatively charged phospholipids [12]. Finally, membrane
curvature and domain formation through inter-leaflet surface area difference can
be exemplified by the action of caveolins, a family of proteins that insert helical
hairpins into the inner leaflet and generate nanometer-sized plasma membrane
pits [13].
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13.4 Interaction of Peripheral Membrane Proteins with Membrane Lipids 297

13.3.3 Proteolipid Sorting and Membrane Domain Stabilization

Domain formation in biological membranes, including the plasma membrane,
typically involves a combination of both lipid-based and protein-based sorting
processes. An illustrative example of such proteolipid sorting is provided by Ras
proteins, a group of post-translationally lipid-modified signaling proteins that
form nanometer-sized protein–lipid clusters on the plasma membrane ([14] and
references therein). MD simulations of Ras tethered to various lipid bilayer models
provided insights into the physical basis for the clustering and nonoverlapping
distribution of Ras isoforms in membrane domains [15–17]; it was found that
the nature of the lipid modification dictates lateral organization of Ras proteins.
Specifically, simulations of the dually palmitoylated and farnesylated lipid anchor
of H-Ras in a bilayer made up of dipalmitoylphosphatidylcholine (DPPC), dili-
noleoylphosphatidylcholine (DLiPC), and cholesterol [15] showed that the peptides
spontaneously assemble into clusters of 4–10 molecules, and clustering leads
to segregation of the peptides to the boundary between the Lo and Ld domains.
Removal of the palmitoyl resulted in accumulation at the Ld phase, while removal of
the farnesyl group segregated the peptides to the Lo phase. Thus, lateral segregation
is primarily driven by the differential affinity of the saturated palmitoyl chain for
the saturated DPPC lipids and of the polyunsaturated farnesyl for the unsaturated
DLiPC lipids, while cholesterol modulates lipid domain stability and thereby Ras
nanocluster stability. Importantly, the asymmetric incorporation and aggregation
of Ras curves multi-domain membranes by expanding the surface area of the host
monolayer [18–21], with the Ras lipid anchors acting as linactants to reduce the
line tension at the domain boundary [21].

While these studies explained how lipid modification modulates domain prefer-
ence, other studies showed that protein sequence and structure also contribute to
the process. As an example, using a combination of experiments and simulations on
another Ras isoform, K-Ras, it was found that the identity of the side chains and the
structure of the intrinsically flexible polybasic domain, together, dictate preferences
for specific membrane lipids, clustering, and lateral dynamics of K-Ras [22]. As dis-
cussed later, other lipid-modified proteins also utilize a combination of a lipophilic
motif and an amphipathic helix to bind membranes, which, as in Ras, can cause
curvature via both lipid-based and protein-based sorting mechanisms.

13.4 Interaction of Peripheral Membrane Proteins
with Membrane Lipids

There are two major classes of signals that target PMPs to the surface of mem-
branes: protein-based modular domains (Figure 13.1) and lipid-based motifs
(Figure 13.2). High-affinity membrane binding of PMPs often requires the use of
more than one of these motifs or complementation by a polybasic domain or an
amphipathic helix. The most important atomic interactions between each class
of these motifs and membrane lipids are described below using specific examples
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PH (1fhx)

Ca2+

Zn2+
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FYVE (1joc) BAR (2d4c)

ENTH (1h0a)
PX (1h6r)

FERM (1gc6)C2 (6iej)

C1 (1ptr)

Figure 13.1 Modular protein-based membrane-targeting motifs found in many peripheral
membrane proteins. Left to right from top, C1 (conserved homology-1), C2, PH (pleckstrin
homology), FERM (4.1/Ezrin/Radixin/Moesin), ENTH (Epsin N-terminal homology), PX
(Phox homology), FYVE (Fab1/YOTB/Vac1/EEA1), and BAR (Bin/Amphiphysin/Rvs) domain
structures from the protein data bank (PDB; ID in bracket). The secondary structure is
shown in ribbon with basic residues in blue, acidic in red, polar in green and hydrophobic
residues in white. For each domain except BAR, a bound lipidic ligand is shown in purple
stick representation: phorbol acetate in C1, phosphatidylcholine in C2, inositol-1,3,4,5-
tetrakisphosphate in PH, inositol 1,4,5-trisphosphate or IP3 in FERM and ENTH,
phosphatidylinositol 3-phosphate or PI3P in PX, and inositol-1,3-phosphate in FYVE (one on
each monomer with the dimerization helices omitted). The approximate location of each
domain inserted into one leaflet of an idealized membrane is shown schematically using red
line (representing the approximate position of lipid phosphate groups) and green line (the
topmost location of the hydrocarbon core just beneath the carbonyl oxygens). Metal ions
are shown as balls with zinc in yellow, calcium in light blue, and magnesium in dark green.

for illustration. Where relevant, the additional signals used to increase affinity are
also noted.

13.4.1 Protein-Based Membrane-Targeting Motifs

Many PMPs contain one or more C1, C2, PH, FERM, ENTH, PX, FYVE, or BAR
domains to dock onto the surface of the plasma membrane, typically at the cytosolic
side. Studies using various techniques, such as X-ray crystallography and solution or
solid-state NMR, typically focusing on the smallest autonomous domain embedded
in a model membrane or micelle, have provided useful insights into how PMPs are
targeted to membranes [24–27]. These insights include measures of the membrane
insertion depth (how deep a protein penetrates the hydrocarbon core of a bilayer),
angle of insertion (the angle between the principal axis of a protein and the bilayer
normal), and, in favorable cases, the atomic interactions with lipids. These data,
coupled with modeling and molecular simulations [27, 28], showed that membrane
targeting by modular protein domains involves various combinations of few struc-
tural and sequence features (e.g. [29]): (i) a polar pocket or groove to specifically
target a ligand; (ii) a cluster (or clusters) of arginine and lysine residues to interact
with phospholipid head groups; and (iii) a cluster or clusters of hydrophobic surface
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Figure 13.2 Lipid-based membrane-targeting motifs. Schematics illustrate the targeting
of proteins to the cytosolic and extracellular leaflets of the plasma membrane by the four
most common lipidation motifs in humans. Also shown are chemical structures of the
fatty acids that modify a C-terminal cysteine (S-prenylation), an N-terminal glycine
(N-myristoylation), and a nonterminal cysteine (S-palmitoylation) residue on proteins at
the inner surface of the plasma membrane, as well as a glycophosphoinositol (GPI)
modification of proteins at the extracellular side. Source: Figure adapted from Lobo [23].

residues to penetrate the hydrocarbon core of the membrane to provide an anchor
for the protein.

An example of a domain with all three of these features is C1. The conserved
homology-1 (C1) domain recognizes a phorbol ester or a diacylglycerol ligand via
a zinc finger possessing a narrow polar groove, interacts with negatively charged
lipid head groups via a belt of basic residues, and two hydrophobic loops penetrate
into the hydrocarbon core of the membrane (Figure 13.1). Similarly, a combination
of electrostatic and shape complementarities is critical for lipid recognition and
high-affinity membrane binding by proteins containing C2 domains. Typical
C2 domains are characterized by an eight-stranded beta-sandwich structure
(Figure 13.1) and are frequently found in proteins with enzymatic functions, includ-
ing phospholipases and phosphatases. Most, but not all, C2 domain families have
two or more calcium-binding sites near the ligand recognition site (see Figure 13.1).
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300 13 Interaction Between Proteins and Biological Membranes

While most other protein-based targeting motifs are selective for closely related
ligands, C2 domains are promiscuous and bind to most of the major membrane
components, including phosphatidylserine (PS) and phosphatidylcholine (PC).
As for C1, proteins containing C2 domains can target acidic phospholipids in
membranes. This may be, at least in part, due to the positive electrostatic surface
generated by the calcium ions. Therefore, proteins containing C2 domains can
be targeted to both the PS-enriched inner surface of the plasma membrane and a
variety of endomembranes involved in cellular traffic.

Pleckstrin homology (PH) domains are used for membrane binding by a diverse
group of proteins involved in lipid signaling. As shown in Figure 13.1, typical PH
domains lack the large hydrophobic protrusions found in C1 domains, but they have
a deep pocket that binds phosphoinositides (PIs) with variable affinity and speci-
ficity. Since electrostatic interactions are the key determinants of ligand recogni-
tion, the preference and strength of PH domains for ligand binding depends on the
distribution of basic residues that populate loop regions surrounding the binding
pocket.

Similar to PH domains, FERM (from 4.1 protein, ezrin, radixin, and moesin)
domains lack a hydrophobic protrusion (Figure 13.1). They are commonly found
in proteins that link the cytoskeleton with the plasma membrane by binding
to the cytoplasmic regions of transmembrane proteins. FERM consists of three
compact modules: A, B, and C. It has been shown that FERM domains bind
phosphatidylinositol 4,5-bisphosphate (PIP2) and inositol-1,4,5-trisphosphate (IP3)
at the C module and between the A and C modules, respectively. Both of these
modules contain basic surface residues that interact with the phosphates of the PIs.
PI binding causes conformational changes that allow binding of FERM-containing
proteins to the cytosolic regions of integral membrane proteins.

The endomembrane-localized ENTH, PX, and FYVE domains utilize the same
general principles described above to recognize various endosomal lipids, par-
ticularly phosphatidylinositol-3-phosphates (PI3Ps). Epsin N-terminal homology
(ENTH) domains are commonly found at the N-terminus of endocytic proteins.
The ENTH domain has nine alpha-helices, with three stacked helical hairpins
and a flexible N-terminal helix that together form a groove for binding to PI3P
ligands (Figure 13.1). As in N-BAR, the intrinsically disordered N-terminus of
ENTH forms a helix upon membrane binding, which is achieved by inserting the
hydrophobic face of the amphipathic helix into the membrane (Figure 13.1). This
interaction anchors the protein and may promote positive membrane curvature
through monolayer area expansion.

PX domains bind PIs in a deep pocket, interact with negatively charged lipid head
groups via a basic surface surrounding the pocket, and insert into the membrane
with proximal hydrophobic protrusions (Figure 13.1). The FYVE domain has a
shallow basic pocket that specifically recognizes PI3P, plus additional basic residues
for nonspecific interaction with acidic phospholipid head groups, as well as a
hydrophobic protrusion that penetrates the membrane. As shown in Figure 13.1,
FYVE can form a homodimer with each monomer binding one ligand.

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by ibrahim

 ragab - C
ochrane G

erm
any , W

iley O
nline L

ibrary on [23/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



13.4 Interaction of Peripheral Membrane Proteins with Membrane Lipids 301

BAR domains do not have a pocket for binding to specific membrane lipids, and
therefore, many BAR domain-containing proteins contain additional motifs for
target specificity. BAR domains form a banana-shaped helical dimer to sense and
bind to curved membranes (Figure 13.1). The concave face of the dimer is enriched
with Lys and Arg residues whose nonspecific electrostatic interactions with nega-
tively charged phospholipids enable BAR domains to target membranes enriched
with PS. As noted in the previous section, induction of membrane curvature by
BAR domains requires an N-terminal disordered region forming an amphipathic
helix that inserts into the membrane core.

13.4.2 Lipid-Based Membrane-Targeting Motifs

A large number of PMPs (and some TMPs) with diverse structures and functions
undergo covalent modification by one or more lipid-based motifs for regulated bind-
ing to the plasma membrane [30]. The most important of these lipid-based target-
ing motifs are S-prenylation (addition of a farnesyl (15-carbon) or geranylgeranyl
(20-carbon) unsaturated branched fatty acid to one or two C-terminal Cys residues),
S-palmitoylation (addition of a palmitoyl (16-carbon) saturated fatty acid to a Cys
residue), N-myristoylation (addition of a 14-carbon saturated fatty acid (myristate) at
an N-terminal Gly), and glypiation (addition of a glycosylphosphatidylinositol (GPI)
group with various number and saturation level of lipid tails) (Figure 13.2). Most lip-
idated PMPs are involved in a variety of signal transduction pathways and include
kinases (e.g. Src family and AKAPs), G-proteins (e.g. Ras family and Gα subunits),
and cell surface receptors (such as G-protein-coupled receptors (GPCRs) and the
transferrin receptor). Key to the activity of these proteins is proper localization to
specific regions of the plasma membrane or endomembranes. This is achieved by
the interaction of each lipid-based targeting motif with distinct membrane lipids.
Perhaps the best-studied example in this context is the Ras family of small GTPases.

Ras proteins function as molecular switches controlling a wide variety of
signal transduction pathways, including the mitogen-activated protein kinase
(MAPK) and the PI3K/AKT/mTOR (phosphatidyl-inositol 3-kinase/protein kinase
B/mammalian target of rapamycin) pathways. Malfunction of Ras due to mutation
was documented for ∼20% of all human cancers [31]. Ras proteins are tethered to
the inner leaflet of the plasma membrane by a farnesylated and carboxy-methylated
C-terminus plus a proximal palmitoyl (N-Ras and H-Ras) or polybasic domain
(K-Ras). These prenyl/palmitoyl or prenyl/polybasic domain combinations, termed
lipid anchors, are the fundamental determinants of Ras-membrane interactions.
The first molecular model showing the organization of a Ras lipid anchor on a
membrane emerged from a combined FTIR, ssNMR, and neutron diffraction study
on a palmitoylated and hexadecylated heptapeptide representing the C-terminus
of N-Ras [32]. Although it lacked atomic resolution, the study provided insights
into how deep the lipidated residues penetrate the model DMPC (dimyristoylphos-
phatidylcholine) bilayer used in the study, and how the backbone localizes at the
bilayer-water interface. A subsequent MD simulation study of the same system
provided the missing details [33]. Insertion of about five terminal carbon atoms of
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302 13 Interaction Between Proteins and Biological Membranes

the palmitoyl moiety at Cys181 or the farnesyl at Cys186 into the core of the DMPC
bilayer was found to be sufficient to cross the barrier at the bilayer-water interface,
allowing for the rest of the anchor to spontaneously partition into the bilayer.
The resulting vdW interactions between the hydrophobic lipid tails of the peptide
and the membrane lipids are the major driving force for the binding. Hydrogen
bonds between the peptide backbone and lipid head groups provide additional
stabilization [33]. Similarly, in H-Ras, the farnesylated (Cys186) and palmitoylated
(Cys181 and Cys184) cysteines plus Met182 are engaged in vdW interactions with
lipid acyl chains, while the peptide backbone and polar side chains form hydrogen
bonds with lipid head groups [34]. Additional MD simulations [35] and potential
of mean force calculations showed that the two palmitoyl modifications of H-Ras
do not contribute equally to the free energy of membrane insertion [36], and
that insertion is dominated by an enthalpy-driven hydrophobic effect [37]. In the
case of the K-Ras lipid anchor, the insertion of the farnesyl tail and electrostatic
interactions of six proximal lysine residues with anionic lipids stably tether it to the
membrane [22, 38, 39].

Essentially the same interplay between vdW and electrostatic/polar interactions
underlies membrane targeting of other lipid-modified proteins. This includes, with
few exceptions, the Ras, Rho, and Rab family of proteins in the Ras superfamily.
All of these proteins are C-terminally prenylated (i.e. undergo one or more farnesyl
or geranylgeranyl modifications) and harbor a polybasic domain or a palmitoylat-
able Cys near the site of prenylation. For example, the Rho family protein RhoA is
geranylgeranylated at Cys190 and contains a proximal polybasic domain, whereas
the Rab family protein Rab11A is dually geranylgeranylated at Cys212 and Cys213.
As a result, RhoA interacts with membranes (mostly the plasma membrane but
also endomembranes) through a combination of vdW and electrostatic interac-
tions similar to K-Ras. Membrane interaction of Rab11A (typically in recycling
endosomes), on the other hand, is dominated by hydrophobic interactions, as in
H-Ras.

Other examples of regulatable membrane binding by lipid modification include
the myristoylated alanine-rich C-kinase substrate (MARCKS) [40, 41] and the
proto-oncogene tyrosine-protein kinase Src (c-Src) [42, 43]. In both of these
proteins, a glycine-myristoyl moiety at the N-terminus, complemented by a poly-
basic region, enables targeting and tight binding to the plasma membrane. As in
K-Ras, the driving force for the binding involves a combination of hydrophobic
interactions between the myristoyl chain and lipid acyl chains and electrostatic
interactions between the polybasic domain and anionic lipid head groups. K-Ras
and MARCKS can get phosphorylated at residues close to the polybasic domain,
with the negative charge on the phosphate reducing the strength of interaction with
membranes. In some cases, membrane binding via lipid modification is accompa-
nied by the insertion of an amphipathic helix into the core of the membrane (as
discussed above, an amphipathic helix is a common membrane-targeting motif
in peripheral proteins). An example is the Arf family of proteins, which interact
with membranes via a myristoylated N-terminus and a proximal amphipathic
helix [44–46].
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13.5 Interactions and Conformations of Transmembrane Proteins in Lipid Membranes 303

While prenylation, myristoylation, and palmitoylation are used to target proteins
to the cytosolic side, the GPI anchor localizes glycoproteins to the extracellular side
of the plasma membrane [30]. Modification of a protein with a GPI that harbors
two or three long fatty acyl chains enables tight binding of proteins to lipid bilay-
ers due to the extensive vdW interactions between the acyl chains of the GPI and
membrane lipids. The fatty acyl chains in most mammalian GPI anchors are satu-
rated, which, driven primarily by lipid sorting, segregate GPI-anchored proteins to
ordered membrane domains (or lipid rafts) that are enriched with saturated lipids.
In short, the membrane affinity and lateral organization of GPI-anchored proteins
are largely determined by the number, length, and saturation level of the hydrocar-
bon tails of the GPI anchor.

It is clear from the foregoing discussion that membrane association of lipid-
modified proteins is primarily determined by the lipid anchor. However, recent
reports suggest that the soluble domains of lipidated proteins also engage
membranes, although those interactions are typically short-lived [39, 47, 48].

13.5 Interactions and Conformations of Transmembrane
Proteins in Lipid Membranes

As already introduced, TMPs are integral membrane proteins that sit across the
height of membranes. The structure of the transmembrane (TM) region is typically
composed of single or multiple TM helices or a bundle of beta-sheets. The TM
surface that is in contact with the core of the membrane is largely hydrophobic
(nonpolar), whereas the TM residues facing away from lipids and into the protein
core can be neutral polar or charged. The intra- and extra-cellular regions of TMPs
are mainly hydrophilic. Usually, the hydrophobic environment of the biological
membrane restrains the tertiary structure of TMPs to a relatively small number of
stable conformations. These conformations can be altered by mutation, changes
in the membrane environment, or interaction with other proteins or ligands.
In fact, many TMPs undergo conformational changes or association reactions
within the lipid matrix to drive various biochemical processes, including signal
transduction [49, 50]. The following subsections discuss the membrane interactions
and attendant conformational changes of two categories of helical TMPs that
are most common in the plasma membrane of eukaryotic cells: single-pass and
multi-pass TMPs.

13.5.1 Glycophorin A and EGFR as Examples of Single-Pass
Transmembrane Proteins

Glycophorin A (GpA) is a widely studied seven amino-acid pattern (LIxxGVxxGVxxT)
single TM domain (see Figure 13.3) that is extensively used as a model for experi-
mental, theoretical, and simulation studies of the association of TM proteins within
membranes. Because it folds into a single-pass TM helix, it is highly hydrophobic,
and therefore tilting is the main mechanism to compensate for hydrophobic
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Figure 13.3 Examples of TMPs. (Left Top) Glycophorin A (GpA) and Epidermal Growth
Factor Receptor ErbB2 homodimer crystal structures color-coded by electrostatic charge
(red-negative, blue-positive, green-polar, white-hydrophobic) are shown in a cartoon
representation. Gly of the GxxxG motifs and Phe residues are shown in ball representation
colored in orange and violet. (Left Bottom) Beta-2 Adrenergic Receptor (𝛃2AR) in cartoon
representations colored by charge (see above), to highlight the polarity of residues, and
order (N-terminus in red, C-terminus in blue), to emphasize the monomeric structure of
𝛃2AR. Two crystallographic binding sites of cholesterol are shown in green ball-and-stick
representation. In these figures, the average position of the membrane phosphate group is
marked by red lines. (Right) Human Aquaporin 5 system. (Top): Open (Left) and closed
(Right) states are controlled by His67 at the cytoplasmic end (CE); Aromatic ring and Arg
(ar/R) motifs control the water-flow rate. (Middle): Channel length distribution for single
(red) and tetrameric (black) monomers shows a significant increase in pore flexibility when
tetrameric assembly allows for gating mechanisms due to conformational switch (see text).
(Bottom Left) Tetrameric crystal structure 3D9S of human AQP5 with cartoon-represented
monomers in different colors and POPS central lipid in vdW representation. (Bottom Right)
Equilibrated tetramer solvated in POPC bilayer (cyan stick lipids, P atoms in tan). Source:
Janosi and Ceccarelli [51]/Public Library of Science/CC BY Attribution.
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13.5 Interactions and Conformations of Transmembrane Proteins in Lipid Membranes 305

mismatch. The three Gly residues in the TM region do not have the role of helix
breakers, as usually found in hydrophilic environments. Instead, they are part of
a crucial sequence-specific (GxxxG) motif that stabilizes the GpA homodimers
[52, 53]. While the dimer interface is hydrophobic and dimerization itself is sug-
gested to be driven by van der Waals interactions [54], the membrane environment
plays a key role in modulating the GpA TM domains. Specifically, it has been shown
that membrane thickness, composition, and lipid acyl chain ordering modulate the
range of accessible dimer conformations [55–57]. This dimerization mechanism
is applicable to other single-pass TM proteins harboring the GxxxG dimerization
motif as well, such as the epidermal growth factor receptors (EGFRs), which are
discussed below.

EGFR represents a family of four closely related receptor tyrosine kinases that
include the ErbB subfamily: ErbB1 (also called Her1), ErbB2 (Her2/Neu), ErbB3
(Her3), and ErbB4 (Her4) [58]. Overexpression of ErbBs leads to many types of
cancers, while insufficient ErbB signaling leads to neurodegenerative diseases,
such as multiple sclerosis and Alzheimer’s diseases [59, 60]. ErbBs are activated by
growth factors that bind to the extracellular region [61], which induces dimerization
in the TM region, as shown in Figure 13.3 [62], as well as trans-phosphorylation
of tyrosine residues at the intracellular kinase domain [63–66]. This leads to
the activation of a wide variety of downstream partners [63] in the MAPK and
PI3K/Akt pathways, leading to cell proliferation and division. Deregulation of
ErbB and other EGFR signaling due to mutation or overexpression can therefore
cause cancer [58]. As GpA, EGFRs are single-pass TM proteins characterized by
mostly hydrophobic residues with the exception of a few polar ones. However,
the TM helix of EGFR contains two GxxxG motifs that, together, form “pockets”
for cholesterol binding. The side-chain entropy of a conserved C-terminal Phe
residue and its orientation perpendicular to the membrane normal can lead to
cholesterol depletion around the GxxxG motif near the C-terminus [67]. Other
important protein–membrane interactions in this class of tyrosine kinases include
the interactions of the intracellular domain and the juxtamembrane segment with
negatively charged lipids of the plasma membrane [68]. These membrane–protein
interactions are built upon key protein features (such as the GxxxG motifs), and
are modulated by specific membrane features, such as cholesterol concentration.
Due to their role in heterodimerization, these interactions are crucial for EGFR
signaling and are addressed below. Therefore, understanding the interactions of
the TM helices with each other and with the membrane environment is essential to
understanding signal transduction via ErbBs. Heterodimerization of ErbBs is driven
by protein–protein interactions that depend on the tilt angle of the helices, which in
turn are modulated by enthalpic and entropic factors associated with lipid–protein
interactions and lipid dynamics. Specifically, displacement of lipids between the
helices and subsequent protein–protein interactions are the driving forces for ErbB
TM helix association. Lipids tend to favor parallel inter-helical interactions, and
such a face-to-face interaction is favored by small side chains [56, 69–71]. The
dimerization pathway is also a function of cholesterol concentration in the mem-
brane. In the absence of cholesterol, dimerization proceeds via the hydrophobic
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306 13 Interaction Between Proteins and Biological Membranes

Phe residue at the C-terminus. In the presence of an intermediate (20%) cholesterol
concentration, recognition occurs through contacts at the N-terminus [67]. This
example illustrates how protein–lipid interactions modulate functionally important
conformational changes in addition to their crucial role in the structural integrity
and stability of TMPs.

13.5.2 GPCR as an Example of Multi-Pass TM Helical Proteins

G-protein-coupled receptors (GPCRs) are the largest family of human membrane
proteins. The 7-TM helix proteins are also the largest target (∼35%) of drugs on the
market [72, 73]. GPCRs are located in phospholipid-rich bilayers and are involved
in signal transduction across the plasma membrane by changing their conformation
from an inactive (antagonist bound) to an active (agonist and G protein-bound)
state. The interactions of GPCRs with various lipidic components of the bilayer
play an important role in the stability and dynamics of these conformational states.
Moreover, binding of cholesterol can affect oligomerization and helical stabil-
ity and has an allosteric effect on ligand binding [74, 75]. Multiple cholesterol
binding sites have been identified by both crystallography (see Figure 13.3) and
long-timescale MD simulations [75]. Phospholipids can modulate the association of
GPCRs with G-proteins or their binding to specific ligands. For example, for beta 2
adrenergic receptors (β2AR – illustrated in Figure 13.3), phosphatidylglycerol (PG)
lipids favor agonist binding, hence activation, while phosphatidylethanolamine
(PE) or even PC favors antagonist binding, hence the inactive state. Specifically, the
negatively charged PG lipids interact electrostatically with the positively charged
residues at the intracellular loop 3 and the intracellular end of TM6, preventing
the formation of the so-called “ionic lock” that stabilizes the inactive state of the
receptor and stabilize TM6 in the active state of β2AR [76–78]. Similarly, PIP2 favors
the active state of adenosine A2A receptor by stabilizing the outward movement
of TM6 by binding between TM6 and TM7 [79]. These main features of activation
should, in general, be applicable to the entire class of GPCRs [75].

13.5.3 Aquaporin as an Example of Oligomeric Multi-Pass TM Proteins

Oligomeric TMPs perform various functional roles. These include roles as ion and
water channels, mechanosensitive channels, transporters, and light-harvesting
rings. These proteins are functional as homo- or hetero-oligomers ranging from
tetramers to 9/10-mers or more, depending on their function. For some of these
TMPs, it has been shown that specific lipids may play a role in either oligomerization
and stability or more importantly, modulating their function. A good example of
oligomeric TMPs are aquaporins, a group of transmembrane proteins that passively
transport water across the membrane-driven response to osmotic gradient [80].
It was revealed that the regulation of these (usually) tetrameric proteins is likely
gated by conformational changes (conditioned by the oligomerization state) of
specific amino acids that act as on/off “switches” on one side, and water flow “reg-
ulators” on the other side [51] (see Figure 13.3). Nonetheless, little is known about
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13.5 Interactions and Conformations of Transmembrane Proteins in Lipid Membranes 307

the interaction of the aquaporin outer surface and the host membrane. Studies
showed that lipids in the middle of the oligomers usually stabilize the system
while interactions at the surface influence function. Hence, strong hydrophobic
interactions with the acyl chains of the annular lipids rather than the weaker
hydrogen-bonding interaction with head groups are the driving force for lipid
positioning near aquaporin [81]. Simulations suggest that aquaporins have little
specificity for annular lipids (i.e. local environment) [82].

13.5.4 Antimicrobial Peptides: Peripheral or Integral?

Natural antimicrobial peptides (AMPs) are 10–50 residue-long peptides that func-
tion as a type of host defense mechanism by selectively interacting and destroying
bacterial but not mammalian cell membranes. As in most protein-based targeting
motifs, AMPs employ two important features of their amino acid composition to
selectively target bacterial membranes: a large proportion (30–50%) of hydrophobic
amino acids and positively charged amino acids (usually in the range+3e to +7e).
As is typically the case, the hydrophobic residues enable high-affinity membrane
binding while the basic residues allow for preferential binding to anionic bacterial
membranes. The secondary structure of AMPs varies from helical (e.g. magainin),
ß-strand (e.g. defensin), mixture of helices and strands (e.g. protegrin-1), to extended
(e.g. indolicidin). Most AMPs undergo disorder-to-order conformational transition
upon membrane binding, as occurs in the unstructured segments of many modular
membrane-targeting motifs such as N-BAR and ENTH domains.

Despite the substantial sequence and structural diversity of AMPs, some general
conclusions could be drawn from many years of studies regarding their binding to
and effect on bacterial membranes. First, Arg and Lys residues ensure the initial
engagement with the bacterial outer membrane. In the next phase, the hydrophobic
residues facilitate passage through the membrane. However, this process is compli-
cated by the complex composition of bacterial external membranes, including the
lipopolysaccharides enriched with Mg2+ and Ca2+ ions in the outer membrane of
Gram-negative bacteria, and the thick layer of negatively charged peptidoglycans in
Gram-positive bacteria [83]. It is not fully clear how, after crossing the outer mem-
brane, the peptides reach the cytoplasmic membrane, but concentration gradient
and solvent effects likely explain the entire process. AMPs are distinguished from
PMPs and TMPs by the extent of their conformational reorganization after binding
to the inner membrane. While conformational adaptation of membrane proteins in
response to the altered environment is common and even expected, AMPs undergo
enormous conformational changes following membrane binding. Some AMPs con-
vert from surface-binder to transmembrane or translocate through the membrane to
interact with internal targets. Others form a variety of exquisite oligomeric structures
that either remain on the membrane surface or become transmembrane. Not surpris-
ingly, therefore, the way in which AMPs disrupt bacterial membranes is also highly
divergent. The most common models to describe this process include the formation
of barrel-stove, toroidal pore, and carpet-like structures, or a combination of these.
Some AMPs may act as detergents or electroporation agents [84, 85]. Consequently,
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multiple mechanisms have been proposed to explain how AMPs kill bacteria, rang-
ing from the formation of transmembrane pores [86, 87] to impact on membrane
structural integrity without pore formation [88–91].

13.6 Summary

The plasma membrane is a complex, semipermeable envelope of cells with an
actively controlled composition, dynamics, and function; it is a fluid “mosaic” of
proteins floating-like icebergs in a moving “sea” of lipids. The plasma membrane
allows for the passive diffusion of uncharged nonpolar molecules (e.g. O2 and CO2
and fatty acids), and harbors protein channels and pumps for the transport of small
ions (e.g. Na+ and K+), carrier proteins for the transport of large polar molecules,
such as amino acids and glucose, and receptors for hormones, neurotransmitters,
and other signals. In addition, the plasma membrane is home to, and an organizing
platform for, many transiently binding signaling proteins, enzymes, and scaffolding
proteins. In this chapter, we have discussed how proteins use an exquisite com-
bination of charged, polar, and hydrophobic amino acids to recognize and bind
to specific regions of membranes, including the plasma membrane. Global shape,
local structure, charge distribution, and lipid modification have been discussed as
some of the most important determinants of protein–membrane interactions, lateral
dynamics, and sensing or induction of curvature. Specifically, a precise mixture
of polar and nonpolar protein–lipid interactions define the structure and function
of TMPs, including channels and GPCRs. Similarly, a combination of structure,
positively charged and nonpolar amino acids, and modification by lipophilic motifs
dictate how PMPs are targeted to membrane surfaces. We have used AMPs as an
example of proteins that utilize the entire range of protein–membrane interaction
patterns. AMPs achieve enormous conformational adaptations by presenting a
precise mix of basic, polar and nonpolar residues to alternately interact with the
polar or negatively charged surface and hydrophobic core of membranes. This
allows most AMPs to conditionally become peripheral and transmembrane, unlike
TMPs that are permanently membrane-associated or PMPs that are transiently
membrane-tethered.
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Abbreviations

AMPA α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
ATP Adenosine triphosphate
GABA γ-Aminobutyric acid
GPCR G-protein-coupled receptor
hERG Human ether-a-gogo-related gene
IR Infrared
NMR Nuclear magnetic resonance
SCF-MP2 Self-consistent field-Møller–Plesset perturbation theory second order
VSEPR Valence shell electron pair repulsion

14.1 Introduction

The available repertoire of pharmaceutical substances comprises more than 50 000
small-molecule drugs that either were in use or all still marketed. Repositories, such
as the ZINC database, hold more than 750 million purchasable compounds that are
categorized as drug-like or at least lead-like [1]. Together with the naturally occur-
ring substrates of enzymes, these molecules share a common property: They all bind
more or less strongly, specifically, and persistently to various proteins. The physic-
ochemical principles that mediate these nonbonding interactions are basically the
same as in protein–protein or protein–DNA interactions, only the size of the ligands
and their possible binding sites can be different.

The prime experimental method to reveal the contact interface between protein
and ligand in atomistic detail is still X-ray crystallography. The key characteristic of
more than 50 000 protein–ligand complexes being resolved so far is that the ligand
has to be in direct contact with its receptor to exert its function, which is a mea-
surable change, for example, in enzymatic activity. The need for direct binding was

Protein Interactions: The Molecular Basis of Interactomics, First Edition.
Edited by Volkhard Helms and Olga V. Kalinina.
© 2023 WILEY-VCH GmbH. Published 2023 by WILEY-VCH GmbH.

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by ibrahim

 ragab - C
ochrane G

erm
any , W

iley O
nline L

ibrary on [23/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



316 14 Interactions of Proteins with Small Molecules, Allosteric Effects

formulated by Paul Ehrlich decades before the first crystallographic structure of a
protein was available: “Corpora non agunt nisi fixata.” Likewise, the macroscopic
idea of the lock-and-key principle by Emil Fischer regarding the specificity of lig-
ands dates back to the nineteenth century. Both hypotheses still remain valid today,
but we have developed a more detailed view of these modes of interaction.

14.2 Modes of Binding to Proteins

The simplest approach is that neither ligand nor protein change their conformation
upon binding, which would allow rigid-body docking because only shape comple-
mentarity is required according to the lock-and-key principle. The complex of ben-
zamidine in β-trypsin (PDB entry 3PTB) is one of the few enzyme–ligand systems
where this assumption is justified. Typically, the ligand contains multiple rotatable
bonds and thus will adopt the rotamer in the binding pocket that is energetically
most favorable. Likewise, the amino acid side chains of the receptor will undergo
conformational changes during binding. Flexible docking can only account for a
limited number of them because it is computationally not feasible to simultane-
ously consider all rotatable bonds of the protein during ligand binding. Instead,
the obtained docking pose can be refined using molecular dynamics simulations. In
practice, this is, however, only doable for a strongly limited number of ligands owing
to the computational demand as well as the manual effort of setting up simulations
and evaluating their results. So far, this induced fit corresponds to the mechanical
operation of a patent key when opening the lock.

A general aspect of molecular dynamics simulations is their function to reveal the
accessible conformations of polypeptides over the respective time span. Thus, tran-
sient binding pockets on the surface become apparent. In particular, small-molecule
inhibitors of protein–protein interaction bind to such transient pockets, thus giving
rise to the so-called conformational selection [2, 3]. Once the appropriate pocket is
available, ligand binding stabilizes the corresponding conformation of the protein.

Whereas the physicochemical interactions are generally the same no matter
where and how ligands bind, their exerted function heavily depends on the respec-
tive mechanism of action at the particular binding site. Furthermore, proteins,
especially those considered as drug targets, can be classified into distinct groups not
only according to their biochemical function but, in this context, according to the
mechanistic effect that these ligands have on them. Due to their high expression
level, enzymes have first been exploited as targets for reversible and irreversible
inhibitors. Corresponding ligands must exhibit a substantially higher binding
affinity than the natural substrate, ideally, several orders of magnitude; thus
allowing low dosage, which is, in turn, advantageous for avoiding side effects as less
substance is available that could bind to other receptors. In the case of irreversible
inhibitors, the binding is not competitive, but instead, a chemical reaction leads
to covalent binding to the enzyme, rendering it unfunctional until degradation.
The prototypic example is the acetylation of serine by acetylsalicylic acid inside
Cyclooxygenase I, which blocks access to the catalytic center.
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14.3 Types of Interaction Between Protein and Ligand 317

Receptors, in particular, G-protein-coupled receptors (GPCRs), transfer signals
from one side of a membrane to the other one, which eventually causes the desired
effect further downstream in the signal transduction cascade. Thus, they are widely
exploited as drug targets (about 30% of all prescription medicines). GPCRs possess
several conformational states and binding sites for a variety of ligands, which
allow multiple ways of modulating receptor response. Whereas agonists intensify
the response, antagonists prevent this action, either by competitive binding or
indirectly by allosteric effects. This can be achieved either by causing a change in
the three-dimensional structure of the protein and modulating the affinity of the
receptor for substances that work as agonists or by preventing the receptor response
by other mechanisms. Such allosteric effects will be addressed in detail later in this
chapter (see Section 14.6).

Finally, ion channels and transporters are also transmembrane proteins involved
in either selectively modulating the passage of (small inorganic) ions or active uptake
or efflux of compounds that otherwise do not passively diffuse through membranes,
such as strongly polar or charged organic substances. Their functionality can be
prevented by blockers or inhibitors, whereas openers keep ion channels in a per-
manently open state, respectively. Their response can be much faster, for example,
in depleting the concentration of neurotransmitters in the synaptic cleft.

14.3 Types of Interaction Between Protein and Ligand

The specific physical characteristics of (known) protein–ligand interactions allow
to list them in order of decreasing energetic contribution to the energy of binding.
Nevertheless, their importance for selectivity is independent of this ranking and
rather governed by biochemical and pharmaceutical considerations.

14.3.1 Salt Bridges

Interactions between charged particles follow Coulomb’s law and thus depend on
distance and magnitude of charge. Therefore, attraction between two oppositely
charged ions is strongest in vacuum and media of low dielectric constant, such as
the interior of proteins. Here, these short-distance contacts involving the side chains
of aspartate, glutamate, lysine, and arginine contribute to the stability of secondary
and tertiary structural elements (see Figure 14.1A(a)). In contrast to the situation in
aqueous solution where the prior desolvation of ions is energetically unfavorable,
the resulting stabilization that goes along with the transfer into the hydrophobic
protein interior makes up for the loss of entropy. Since the energies of salt bridges
(>400 kJ/mol) are in the same range as ionic bonds in crystals or are even stronger
than covalent single bonds, these are, therefore, the dominant terms regarding
ligand binding, if corresponding interactions are present. Multiple-charged amino
acid side chains can be found, for example, in the binding pockets of kinases, which
accommodate the strongly negatively charged adenosine triphosphate (ATP). Since
the present charges of the amino acids have to be compensated by ligands to
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Figure 14.1 Salt bridges between oppositely charged amino acid side chains stabilize
secondary and tertiary structural elements in proteins (A), here shown for the carboxylate
groups of aspartate or glutamate and arginine (a), or involving an inorganic cation (b).
Likewise, metal ions can be complexed by charged groups, or coordinated by lone pairs,
typically involving the side chains of cysteine and histidine (B).

yield reasonable binding affinities, this requires likewise inhibitors that contain
multiple-charged groups, which hamper passive uptake.

14.3.2 Coordination of Ions via Lone Pairs

Interactions between formally positively charged ions and the lone pair of a ligat-
ing atom (N, O, S) are also called “dative bonds” or “coordinate covalent bonds”,
due to the fact that this is actually a 2-center-2-electron bond and therefore can be
attributed as covalent bond. In contrast to usual σ-bonds, the two electrons come
from the same atom (provided by one lone pair), which forms the Lewis base, while
the metal ion is the Lewis acid. In bulk solution (metal–aquo complexes), as well
as in organometallic compounds (including metalloenzymes), this kind of bonding
is dominant. Although this ion–dipole interaction is electrostatically less attractive
than ion–ion interactions (i.e. salt bridges), it can be as strong as typical covalent
bonds. According to molecular orbital theory, p-orbitals of the ligand arising from
lone pairs overlap with d-orbitals of the metal forming π-bonds that correspond to
double bonds. Whereas negative charge from the ligand atoms would be transferred
onto the more electropositive metal, the latter π-back bonding leads to a depletion of
this unfavorable charge density on the metal, while simultaneously the metal–ligand
bond is strengthened [4].

In contrast to loosely bound counter ions (e.g. Na+, K+, and Ca2+) of charged
amino acid side chains at the protein surface, metal ions (especially zinc and iron)
are found in the active center of metalloenzymes. According to the valence shell elec-
tron pair repulsion (VSEPR) theory, the coordination sphere of metal ions is only
partially saturated by interactions with protein atoms, and the remaining places are
filled up by water or substrate molecules. Most frequently, such catalytic metal ions
are coordinated by the side chains of histidine or cysteine (lone pairs of nitrogen or
sulfur, respectively). Furthermore, ionic bidentate coordination by both carboxylate
oxygens of aspartate and glutamate is observed (see Figure 14.1B). Likewise, this can
be exploited for drug design, where similar functional groups mimic these interac-
tions that otherwise are occupied by the natural substrates (see Figure 14.2). Thus,
coordinative binding can provide both affinity and selectivity.
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(a) (b)

Figure 14.2 The inhibitors captopril (a) vs. enalapril (b) in contact with the zinc ion in the
binding pocket of the angiotensin-converting enzyme (PDB entry codes 1UZF and 1UZE,
respectively). The coordination of the metal ion is achieved either by the lone pair of sulfur
(captopril) or via a carboxylate group (enalapril). Interaction with the zinc ions is likewise
found for all later developed ACE inhibitors, whereas their sizes vary largely, aiming to fill
the remaining binding pocket.

14.3.3 Hydrogen Bonds

14.3.3.1 Definition
Among noncovalent interactions, hydrogen bonds can be more than 10 times
stronger than other van der Waals interactions and therefore have received special
attention. Formally, the interaction occurs between the lone (electron) pair of
an electron-rich atom (usually nitrogen, oxygen, or sulfur) denoted acceptor
(Ac) and the antibonding molecular orbital of the bond between hydrogen and
a further electronegative atom, being the donor (Dn) of the hydrogen bond (see
Figure 14.3) [5]. Therefore, the interaction involves electrostatic (dipole–dipole or
ion–dipole) as well as partially covalent contributions that can lead to resonant
structures, particularly if the Dn–H· · ·Ac system at hand is charged and the
proton is shared between the two electronegative atoms. In typical protein–ligand
interactions, such situations do, however, not arise and the covalent bond between
hydrogen and donor can be assigned unambiguously. The character and actual
amount of electronic contributions in hydrogen bonds are still heavily debated
in the literature [5]. Conversely, the role of hydrogen bonding for selectivity is
undisputed.

Figure 14.3 Hydrogen bonds involving
charged groups (a) are stronger than those
between neutral partners (b) because the
former ones involve ion–dipole
interactions.
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Notable changes upon hydrogen bonding include lengthening of the Dn—H bond
by about 0.1 Å, which shifts the bond-stretching frequency toward lower energy, a
higher vibrational frequency in the infrared (IR) spectrum (redshift), respectively.
The change in electron density can also be detected in the 1H-NMR spectrum, where
strong hydrogen bonds cause downfield shifts.

The H· · ·Ac hydrogen bond itself covers a distance range of 1.6–2.0 Å. Lower val-
ues lead to repulsion, whereas the attractive interaction vanishes for longer dis-
tances. Besides its length, a hydrogen bond is considered to be optimal if the angle
between donor, hydrogen, and the respective lone pair of the acceptor is close to
180∘ (colinear arrangement of Dn–H· · ·Ac). Physical equations that model the shape
of hydrogen bond energies make use of trigonometric functions (cos2 or cos4) that
cause the energy to sharply drop below 170∘ and to vanish for values ≤90∘, also due
to steric considerations [6, 7]. Consequently, the colinear hydrogen bonds present in
antiparallel β-sheets are energetically stronger than those in parallel β-sheets, which
substantially deviate from the collinear Dn–H· · ·Ac orientation.

14.3.3.2 Occurrence and Functionality of Hydrogen Bonds in Biological
Systems
Besides intermolecular hydrogen bonds that mediate ligand–receptor interactions,
intramolecular hydrogen bonds stabilize secondary structural elements in proteins
(i.e. α-helices and β-sheets). Likewise, hydrogen bonding between the nucleic
bases is a key element of double-stranded DNA. In contrast to hydrogen bonds
in bulk water, these hydrogen bonds are embedded in an otherwise hydrophobic
environment of low dielectric constant. For electrostatic reasons, such hydrogen
bonds are even stronger than in aqueous solution. Likewise, binding pockets of
proteins are mostly hydrophobic, except for those that are located on the surface,
where they are exposed to the solvent. Moreover, the lacking option to form
alternative hydrogen bonds as there is no surrounding water leads to a loss in
entropy compared to the unfolded protein or the unbound ligand, respectively.
Regarding ligand binding, in buried pockets, this loss of entropy is at least partially
compensated by the expelled water molecules from these cavities. Once in bulk
solution, these waters can now form many more alternative hydrogen bonds than
inside the binding pocket, which drastically increases their entropy.

It is obvious that ligands must saturate corresponding hydrogen bond interactions
in the binding pocket for energetic reasons. Likewise, these hydrogen bonds between
receptor and ligand enable selective binding. Depending on the size and number of
polar or charged amino acids, the count of these hydrogen bonds can vary drasti-
cally. A case where hydrogen bonding accounts for most of the energetic part of the
binding affinity is the biotin–streptavidin complex, with an experimentally deter-
mined association constant in the order of 1014 mol/l, which is unusually high for
a noncovalent inhibitor [8]. There, six almost optimally orientated hydrogen bonds
are formed in the binding pocket.

Selectivity of inhibitors is, however, typically mediated by only one or two
hydrogen bonds between receptor and ligand. Particularly, drugs that work on
targets in the central nervous system (CNS) often possess only one hydrogen bond
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14.3 Types of Interaction Between Protein and Ligand 321

functionality (either a donor or an acceptor atom), which renders them more
lipophilic than other orally administered medications. Moreover, CNS-active drugs
are usually chemically less complex than other pharmaceutical agents. Among the
guidelines for drug design, Lipinski’s rule of five was the first to notice the limiting
effect of log P (the water–octanol partitioning coefficient as numerical criterion for
lipophilicity), count of hydrogen-bonding functionalities, and molecular weight
on oral bioavailability [9]. Too many hydrogen bonds render a compound strongly
hydrophilic and thus unlikely to diffuse through the lipid bilayers of biological
membranes. Therefore, compounds, such as sugars (for example glucose) and
oligopeptides, are subject to active uptake by transporters. Drugs that contain
corresponding chemical fragments are likewise substrates of these transporters.
For example, captopril that contains an L-proline group is recognized by the PEPT1
transporter. Conversely, strongly lipophilic molecules are less water-soluble and
tend to remain in hydrophobic environments, such as lipid bilayers. Both extremes
have to be avoided, but there are numerous exceptions to this and other suggested
rules (about 20% of all marketed drugs).

14.3.3.3 Classification of Hydrogen Bonds
According to Jeffrey, the strength of hydrogen bonds can be classified into the three
categories; strong (63−167 kJ/mol involving HF and thus not relevant in biological
systems), medium (17−63 kJ/mol that is the typical interaction involving nitrogen or
oxygen as acceptor atom and a polar hydrogen atom), and weak (<17 kJ/mol, such as
C—H· · ·O hydrogen bonds where the hydrogen atom is nonpolar) [10, 11]. Hydro-
gen bonds between uncharged partners (e.g. C—O· · ·H—N) are always weaker than
those where the acceptor atom is negatively charged (e.g. C(—O)O−· · ·H—O—H),
or conversely if the donor atom is positively charged (see Figure 14.3). The reason
for this is that the electrostatic ion–dipole interaction is stronger than that between
two dipoles (neutral hydrogen bonds).

14.3.3.4 Weak Hydrogen Bonds
Hydrogen bonds involving sulfur are substantially weaker compared to their
counterparts with oxygen. First, the distance between donor and acceptor atom
is increased as a consequence of the 0.45 Å larger van der Waals radius of sulfur,
which weakens the electrostatic attraction according to Coulomb’s law, and second,
due to the lower electronegativity compared to oxygen. Interestingly, hydrogen
bonds involving sulfur as acceptor exhibit more pronounced directionality than
corresponding carbonyl oxygen acceptors, as shown by evaluation of X-ray crystallo-
graphic structures [11]. According to VSEPR theory, there should be no substantial
difference, as both lone pairs are oriented the same way [12]. Moreover, the lone
pairs of sulfur are expected to be larger (3p compared to 2p orbitals) and the angle
between them to be slightly widened due to the increased repulsion that goes along
with their size. Conversely, by taking the actual electron density around oxygen
into account, there is substantial electron density between the lone pairs of oxygen,
which are far less evolved than VSEPR theory suggests. Likewise, oxygen is smaller
than sulfur, and thus, the proton can come closer to this electron density upon
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322 14 Interactions of Proteins with Small Molecules, Allosteric Effects

hydrogen bonding. Consequently, hydrogen bonding in sulfur occurs more via the
lone pairs. Moreover, hydrogen bonds in ice are longer and exhibit emphasized
directionality compared to liquid water at low temperatures, likewise accounting
for the density anomaly of water. Other untypical high physical constants, such
as heat capacity, density, dielectric constant, and boiling point of water are also
attributed to hydrogen bonding.

Even, weaker hydrogen bonds than those involving sulfur are observed in crystal
structures between C–H· · ·O and N–H· · ·C. Their interaction energies are stronger
than usual van der Waals contacts, because the interactions involve stronger dipoles,
due to the presence of electronegative elements. Nevertheless, these contacts can be
important in drug design.

14.3.3.5 Hydrogen Bonds to Fluorine
In principle, fluorine should also be a suitable hydrogen bond acceptor, being more
electronegative than nitrogen and oxygen, causing a stronger dipole moment. Cor-
responding C—F· · ·H—N bonds are, however, rarely seen in X-ray crystallographic
structures [13, 14]. Conversely, C−F· · ·H−C van der Waals contacts are observed fre-
quently. Electronegativity, however, increases with the tendency to accept electrons
and not protons, which is the key feature of a hydrogen bond acceptor. Covalently
bound fluorine is instead a weak Lewis base and an extremely weak proton acceptor.
Therefore, corresponding hydrogen bonds to fluorine are weak (6−10 kJ/mol) and
exhibit less directionality [13]. Thus, the most common reason for the use of fluorine
in medicinal chemistry is to block metabolically labile sites in drugs or to increase
the hydrophobicity of the ligand without introducing larger lipophilic groups.

14.3.3.6 Nitrogen vs. Oxygen as Competing Hydrogen Bond Acceptors
In rational ligand design, frequently functional groups have to be exchanged to
improve binding affinity. Since heterocycles are widely used building blocks, the
question arises if nitrogen or oxygen is the better hydrogen bond acceptor. Böhm
et al. analyzed crystal structures of corresponding complexes and also performed
ab initio self-consistent field Møller–Plesset perturbation theory second-order
(SCF-MP2) computations of the interaction energies using triple-zeta plus polariza-
tion functions as basis set [15]. Their results clearly show that hydrogen bonds to
nitrogen as acceptors lead to much stronger interaction energies, which is reflected
by the higher frequency of such contacts in crystal structures. Whereas carbonyl
oxygen is a good acceptor, the strength of interaction decreases for sp3-hybridized
oxygen the more aliphatic substituents are attached.

14.3.3.7 Bifurcated Hydrogen Bonds
Since oxygen possesses two lone pairs, it can, therefore, accept two (or even three)
hydrogen bonds, making it over-coordinated oxygen. Such arrangements are called
bifurcated hydrogen bonds and are found in water clusters (giving rise to a tetra-
hedral arrangement of four oxygen atoms around a central one), carbonyl oxygens
(e.g. in the biotin–streptavidin complex), and carboxylate anions (side chains of
aspartate and glutamate). Cases, where single hydrogen participates in more than
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14.3 Types of Interaction Between Protein and Ligand 323

one hydrogen bond, seem to be rare, except in bulk water during reorientation of
hydrogen bonds.

14.3.4 Halogen Bonds

In halogen bonds (Dn—X· · ·Ac, where X is fluorine, chlorine, bromine, or iodine,
while Dn can also be carbon instead of nitrogen), the Lewis acid–base relationship is
reversed compared to that in hydrogen bonds with respect to the electron-donor and
electron-acceptor atoms, although both hydrogen and halogen gain electron density
upon bonding. The resulting interaction energies range from 5 to 180 kJ/mol and
thus compete with hydrogen bonds. The X· · ·Ac distance is shorter than the sum
of the van der Waals radii of both atoms, which would otherwise cause repulsion.
Compared to hydrogen bonds, one observes emphasized directionality. This is due
to the anisotropic electron density distribution around the halogen, which gave rise
to the definition of the so-called σ-hole [16]. Evaluation of crystallographic struc-
tures of proteins and nucleic acids revealed that the relevance of halogen bonds has
been overlooked, which is remarkable because halogens are ubiquitously present in
drugs (see Figure 14.4) [17]. Beside halogen–oxygen interactions, also contacts with
nitrogen and sulfur have been observed, although not as frequently.

Voth et al. showed that halogen bonds to carbonyl oxygens of the protein backbone
are most often found in a geometrical arrangement that forms an almost right angle
(85∘) to the corresponding hydrogen bond to that oxygen atom [18]. They further-
more suggested that such halogen bonds are orthogonal (in a functional sense rather
than in Euclidean space) and energetically independent from the classical hydrogen
bonds. The local van der Waals surface of both α-helices, as well as β-sheets forms

Leu83

Glu81

Ile10

Figure 14.4 Tetrabromobenzotriazole bound to human phospho-CDK2/cyclin (PDB code
1P5E) shows three halogen bonds (light-green lines) to carbonyl oxygens of the protein
backbone as prominent interactions. Since this kinase is essential for meiosis, it is a widely
exploited target in cancer therapy.
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324 14 Interactions of Proteins with Small Molecules, Allosteric Effects

a pocket where the halogen also makes hydrophobic contact with the side chain of
the amino acids that contain the hydrogen bond donor.

14.3.5 van der Waals Interactions

The weakest intermolecular interactions are summarized as van der Waals inter-
actions. These range from less than 1 kJ/mol up to values of hydrogen bonds. In
contrast to all other ionic, covalent, or dative bonds, these do not arise from a chem-
ical bond-like situation where electrons are shared over two or more atomic centers,
and the attraction vanishes rapidly with increasing distance between the considered
atoms. Conversely, repulsion occurs at short distances, which increases almost
exponentially when the electron density between these (noncovalently connected)
atoms is decreased and thus the nuclei repel each other. Further electrostatic forces
arise due to interactions between dipole moments that are either permanently
present (Keesom interaction), dipoles that are induced by permanent dipoles
(Debye force), and finally, the London forces that stem from mutually induced
instantaneous dipole moments. Whereas the former dipoles are due to permanently
present electric monopoles, these instantaneous dipoles are caused by (random)
fluctuations of the charge density within the electron clouds around the atoms,
leading to very short-lived multipoles. Therefore, this interaction is also termed
London dispersion interaction. The superposition of attraction and repulsion gives
rise to the Lennard–Jones potential, where the energetic terms reciprocally depend
on powers of the distance r between the considered pairs of atoms. The repulsive
part is typically proportional to 1/r12, although smaller exponents (r9 or r10) result
in a less steep curve. For the attractive part, 1/r6 is commonly used.

The strength of interaction increases with the polarizability of the involved
distribution of electrons (see Figure 14.5). For example, the interaction between
two methyl groups comprises only σ-electrons that are rather confined around the
respective single bonds and thus are hardly polarizable. Conversely, electrons of
π-systems can be polarized much more easily as the corresponding p-orbitals occupy
substantially more space and are furthermore delocalized over multiple atoms. The
electronic behavior of aromatic systems closely resembles that of electrons in a coil
exhibiting shielding effects due to induced ring currents, which can be detected in
nuclear magnetic resonance (NMR) spectra as chemical shifts.

Whereas the attractive part of the van der Waals interactions is rather weak, the
repulsive part is the dominating design principle for the overall shape of the ligand.
It is easy to understand that a ligand that does not fit into a binding pocket for steric
reasons cannot exhibit suitable binding affinity due to steric clashes. Eventually, this
is the reason for the lock-and-key principle.

N H
H

OH H

C HH H C CH

H H
H

HH

Figure 14.5 Dispersive intermolecular interactions in order of decreasing energy from left
to right.
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14.3 Types of Interaction Between Protein and Ligand 325

14.3.6 Mutual Interactions of Delocalized 𝛑-Electron Systems

At first sight, the interaction between electrons should be always repulsive,
according to Coulomb’s law. However, this applies only to a static picture of the
particles. It has been mentioned above that interactions between instantaneous
dipole moments in electrons lead to the attractive London forces. This attraction
becomes even larger once π-electrons are involved. The simplest system to elucidate
stacking effects of aromatic π-systems is the benzene dimer, which was extensively
studied [19]. The appropriate treatment of the electron dispersion requires the
use of theoretical methods that account for electron correlation (e.g. SCF-MP2 or
coupled-cluster), as well as rather large counterpoise-corrected basis sets to reflect
dimerization and diffuse electron distribution. The computed interaction energy
is in the range of 8–12 kJ/mol, with the two most stable arrangements being the
parallel displaced dimer and a perpendicular T-shaped conformation, whereas the
sandwich-like complex that has both ring centers aligned on top of each other is
less stable. This can be explained by the competing quadrupole moments that arise
from the local dipole moments of the C—H bonds, which destabilize this sandwich
configuration. Similarly, X-ray structures of proteins and double-stranded DNA
show the displaced dimer being the most often adopted arrangement between
corresponding aromatic side chains (i.e. phenylalanine, tyrosine, histidine, and
tryptophan) or nucleic bases, respectively.

The reason why particularly heterocyclic aromatic rings are ubiquitously found
in drugs is not primarily due to the stronger interaction compared to other nonaro-
matic rings, but rather for their synthetic accessibility and their preferred metabolic
profile compared to benzene rings. Furthermore, heterocycles are less hydropho-
bic than benzene, because they can form hydrogen bonds, which helps to keep the
log P low.

14.3.7 Cation–𝛑 Interaction

Even, stronger electrostatic attraction is expected for the interaction of a cation
(monopole) with the quadrupole moment of delocalized π-systems (see Figure 14.5,
leftmost). Corresponding interaction energies are computed to be around 45 kJ/mol
in the gas phase [20]. Interesting for ligand design is the interaction of fragments
that contain quaternary nitrogen; for example, the neurotransmitter acetylcholine
to the nicotinic acetylcholine esterase, where the positively charged N(Me)3 group
binds to tryptophan. The side chains of arginine and lysine side can conversely
interact with aromatic rings of inhibitors, whereby the more localized charge
density in lysine causes the stronger interaction [21].

14.3.8 Anion–𝛑 Interaction

To enable substantial attractions of an anion, the charge distribution of the delo-
calized π-system has to be (in principle) reversed so that the charge density on the
sp2-hybridized carbon atoms is largely depleted. This can be achieved by strongly
electron-withdrawing substituents, e.g. fluorine, or the use of π-electron-poor aro-
matic moieties. The latter approach has been applied to the design of specific sensors
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326 14 Interactions of Proteins with Small Molecules, Allosteric Effects

to detect simple inorganic anions, i.e. chlorine [22]. However, no corresponding
protein inhibitor that makes use of this kind of interaction is known as of yet.

14.3.9 Unusual Protein–Ligand Contacts

The intermolecular contacts so far have been presented in order of decreas-
ing energetic strength from the point of electrostatics. The specific nature
of synthetic ligands, however, leads to a bias of certain interactions that are
mainly due to the frequency of preferred chemical fragments in pharmaceu-
tical drugs; for example, sulfonyl groups, or nitrile substituents, which form
weak hydrogen bonds [23]. Likewise, halogen bonding to the carbon atom of
backbone peptide linkers was observed. The statistical significance of such
unusual contacts was investigated in detail by Kuhn et al. [24]. In contrast to the
above-mentioned weak hydrogen bonds, the C—F· · ·H—N bond was not found to be
relevant.

14.4 Modeling Intermolecular Interactions by Force
Fields and Docking Simulations

Whereas covalent bonds are modeled in force fields using more or less elabo-
rated mathematical descriptions of the corresponding potential shapes for effects
due to bond stretching, bond bending, and rotation around single bonds, the
representation of nonbonding interactions relies on extensive parameterization
of rather simple functions. Electrostatic interaction is computed by applying
Coulomb’s law using point charges on the nuclear centers and sometimes using
distance-dependent dielectric constants to account for shielding effects due to
water or protein environment. Basically, all methods for generating the required
partial atomic charges will result in positive values for the more electropositive
atoms and conversely in negative values for the more electronegative elements,
to maintain the overall net charge. In turn, negative charge distributions due to
p-orbitals of π-systems or lone electron pairs are neglected, unless additional dipole
representations are used that enable iterative treatment of polarization effects
(so-called polarizable force fields) [25]. As a consequence, all interactions involving
such distributions of electrons, e.g. cation–π attraction or π–π stacking, cannot be
represented properly by using point charges on the nuclei only. The same holds
for corresponding scoring functions used in protein–ligand docking. On the other
hand, these induced electrostatic interactions are substantially weaker than salt
bridges and can be, at least partially, accounted for by suitable parameterization
of the van der Waals interactions. Even explicit terms for hydrogen bonding
seem to be expendable if corresponding optimized parameters for the respective
atom types are used [26]. In fact, tuning and calibration of parameters to the
experimental binding affinity have shown to be a successful strategy for interaction
terms that cannot be addressed otherwise, such as effects due to solvation or
entropy [27, 28].
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14.6 Allosteric Effects: Conformational Changes Upon Ligand Binding 327

The strong steric repulsions of overlapping van der Waals radii as given by the
Lennard–Jones potential will cause even slightly wrong ligand conformations to be
ranked far inferior than they should be. As a work-around, the repulsive potential
can either be cut off at a given energy threshold or by using a less steeply rising term
that allows moderate clashes, while preserving the continuity of the potential form.

14.5 Entropic Aspects

Except for hydrogen bonds, so far only purely energetic aspects of protein–ligand
interactions have been addressed, which would correspond to the static picture once
the ligand is bound to the protein. The actual process of binding goes, however, along
with substantial changes in the entropy of both enzyme and ligand, which enter into
the free energy of binding [29]. The most obvious change arises from the loss of trans-
lational and rotational degrees of freedom of the ligand that is no longer free to move
around in solution. For any inhibitor, this term is, however, very similar to that of the
natural substrate and thus negligible. The major difference and what can rationally
be addressed is the count of rotatable single bonds in the inhibitor, which will also be
conformationally restricted. The recommended upper limit is eight rotatable single
bonds, not counting those that are members of ring systems because the flexibility
of cyclic systems is limited anyhow [30].

Entropic changes upon expelling water molecules from the binding site have
been mentioned earlier in the context of hydrogen bonding. This process positively
contributes to binding affinity, because these water molecules gain entropy due to
increased mobility in solution. The situation for hydrophobic surface areas of the
ligand is similar to that inside the binding pocket. Water molecules cannot form
hydrogen bonds to the corresponding atoms of the ligand and are thus restricted.
Once these hydrophobic surface parts are buried inside the equally hydrophobic
binding pocket, these water molecules now can form more dynamic hydrogen
bonds to other solvent waters, which increase their entropy. The corresponding
desolvation term is proportional to the hydrophobic surface area of the ligand and
can be included in scoring functions for docking [27]. While it seems advantageous
to maximize the hydrophobic surface of inhibitors from this point of view, the worse
solubility in aqueous media is the limiting factor for oral bioavailability [9].

14.6 Allosteric Effects: Conformational Changes Upon
Ligand Binding

The rational design of ligands by energetically optimizing the interactions at
the binding interface has been addressed over decades. The gained experience
and principles can be used in virtual screening, for example, by applying filter-
ing steps according to rules for bioavailability and other guidelines, as well as
molecular docking. On the other hand, there are far less rules and approaches to
predict conformational changes of proteins upon ligand interaction, in particular,
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328 14 Interactions of Proteins with Small Molecules, Allosteric Effects

if these go beyond the change of rotameric states of amino acid side chains,
which can be accounted for in flexible docking [31]. A further assumption is that
competitive binding to such orthosteric sites does not substantially change the
overall conformation of the protein.

Local changes of secondary structural elements have been observed in X-ray
structures, for example, upon binding of statins to 3-hydroxy-3-methylglutaryl-CoA
reductase [32]. The situation for GPCRs, ion channels, and transporters is even
more difficult, because there are fewer crystallographic structures available, on
top of the presence of (several) allosteric binding sites. These areas are different
from the orthosteric site where the endogenous agonist of the receptor binds,
which corresponds to the binding pocket for substrates of enzymes. Conversely,
allosteric modulators comprise substances that modulate the receptor’s response by
binding to other sites than the orthosteric site. In particular, GPCRs offer multiple
possibilities for making use of corresponding ligands. This functionality requires a
coupling process through space that seems to be conformationally triggered. The
resulting effect will be rather different from that of a typical antagonist that blocks
access of the agonist to the orthosteric site as it can be either positive, negative, or
neutral. A positive allosteric modulator (PAM) can increase both the likelihood
of binding the agonist, its ability to activate the receptor or both simultaneously.
Neutral allosteric ligands (NAL, also called silent allosteric modulators; SAM) do
not alter the activity of the agonist but prevent other effectors from binding to one
of the possible allosteric sites, but without exerting a negative effect themselves.
Only negative allosteric modulators (NAM) show the same effects as antagonists by
decreasing the affinity or efficacy of the agonist.

So far, discovery of most allosteric modulators has been made by chance, although
the number of known effectors and binding sites is drastically rising [31]. In gen-
eral, allosteric modulators cause a change in the conformation of the receptor. For
example, they can stabilize one of the conformations that are naturally occurring
during the activation and deactivation cycle of GPCRs. Often the shape of the orthos-
teric site is also affected, which has direct consequences for the binding of the ago-
nist. Such modulation of the binding affinity has been observed for benzodiazepines
and barbiturates, which are both PAMs of the GABAA receptor, thereby enhancing
the agonistic effect of the neurotransmitter γ-aminobutyric acid (GABA).

Allosteric modulators are interesting for drug development, because they are typ-
ically more specific than orthosteric ligands and thus show less adverse effects due
to decreased binding affinity to off-targets. The reason for this is the higher degree
of conservation of orthosteric sites, which accommodate endogenous ligands. Muta-
tions in these regions are, therefore, more likely to result in severe functional con-
sequences. Conversely, allosteric sites, which are less important for the function of
the receptor, allow larger variability of the amino acid sequence during evolutionary
processes.

An example how allosteric modulators can overcome a crucial drug-resistant
mutation of the orthosteric site in the BCR–ABL1 fusion product is the allosteric
inhibitor asciminib. The so-called “gatekeeper mutation” of threonine in position
315 to isoleucine causes a whole series of orthosteric inhibitors, including imatinib,
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14.7 Aspects of Ligand Design Beyond Protein–Ligand Interactions 329

bosutinib, nilotinib, and dasatinib, to become non-functional. Asciminib exerts
its inhibitory activity by binding to the C-lobe of the kinase that is otherwise the
myristoyl-binding pocket required for auto-inhibition, and thus locks BCR–ABL1
into an inactive conformation [33].

Besides stabilizing a particular conformation directly, allosteric modulators
can also affect the unbinding of the agonist, causing the receptor to remain
longer in the active conformation. For example, piracetam is a PAM of the
α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor, which is
activated endogenously by glutamate, thereby opening the ion-channel mediating
fast synaptic transmission in the CNS. Moreover, cyclothiazide also works as PAM
but prevents desensitization of the receptor. This phenomenon is observed during
repeated or intense exposure to agonists. In the AMPA receptor, the ligand-binding
domain is a dimer, which can be disrupted, but is stabilized by cyclothiazide. The
therapeutic spectrum of AMPA receptor ligands furthermore comprises antagonists
and NAMs.

14.7 Aspects of Ligand Design Beyond Protein–Ligand
Interactions

From the thermodynamic point of view, an effective inhibitor must show substan-
tially larger binding affinity than the present natural ligand. Competing against an
endogenous substance that is available in the cell in high concentration, such as
pyruvate or ATP, therefore requires the binding constant of the inhibitor to be higher
by several orders of magnitude. Moreover, such ubiquitously used catabolites are
substrates of numerous enzymes, which are often vital for homeostasis. A typical
example is kinases. Nevertheless, successful inhibitors for various kinases in cancer
treatment have been designed that bind to subpockets that are not occupied by ATP
itself. Typically, one strives for selective inhibitors to avoid obvious side effects that
arise from binding to other enzymes. In particular notorious and seemingly unspe-
cific antitargets, such as the human ether-a-gogo-related gene (hERG) channel have
to be avoided. On the other hand, too much selectivity for the target at hand can be
disadvantageous when mutations in the binding pocket can easily cause resistance,
which was observed for numerous antibiotics and anti-HIV drugs. Conversely, a cer-
tain degree of promiscuity may lead to synergistic effects, if the affected enzymes
are therapeutic targets belonging to the same category. For example, the vasopep-
tidase inhibitor omapatrilat binds to the angiotensin-converting enzyme and neu-
tral endopeptidase, which, both, are part of the regulatory system that lowers blood
pressure.

The straightforward application of protein–ligand interactions for the design of lig-
ands with maximum potency will furthermore result in rather large and lipophilic
inhibitors that fill up the binding pocket as much as possible. Again, this is unfavor-
able because solubility and bioavailability will be decreased and likewise undesired
metabolization will be increased [34]. Finally, limitations due to synthetic accessi-
bility have to be kept in mind.
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14.8 Conclusions

Based on the physicochemical aspects that promote binding of ligands to proteins
shown here, it becomes apparent that one has to make use of all possibilities of
forming attractive interactions to maximize binding affinity. Most important are
ionic interaction and polar interactions, such as salt bridges and contacts to metal
ions, because these contribute most to the binding energy. Additionally, hydrogen
bonds mediate selectivity. So far, the importance of halogen bonds seems to be
underestimated, although their energetic contribution is similar to that of hydrogen
bonds. Finally, repulsive van der Waals interactions due to steric clashes in the bind-
ing pocket are a limiting factor in ligand design, which can be, however, addressed
by docking simulations. Conversely, conformational changes of the receptor upon
ligand binding, both orthosteric and allosteric sites, are difficult to predict and
account for.
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15.1 Introduction

One way a mutation can have an effect on a protein interaction is when it changes
the amino acid sequence of one of the proteins. Single-nucleotide variants (SNVs) are
the most common type of genetic variation [1], and when talking about mutations
in this chapter, we always mean genetic variations that lead to the substitution of a
single amino acid (non-synonymous SNVs).

From a biochemical point of view, a change in an amino acid can affect inter-
action in many different ways. There can be obvious mechanisms, for example,
if the wild-type amino acid formed an important non-covalent bond (e.g. a salt
bridge) with a residue on the interface of the interacting protein chain and the
mutant amino acid can no longer do that (e.g. it is not charged). This will typically
result in lower total interaction strength between the two proteins. A less obvious
mechanism would be a mutation that leads to a change in the overall conformation
of the protein that, in turn, changes the interaction interface and weakens the total
strength of the interaction. On the other hand, mutations can also have a stabilizing
effect on protein–protein interactions (PPIs), for example, by introducing a new
bond at the interface to the interaction partner or by simply enlarging the interac-
tion interface. However, it is well known that most SNVs are either functionally
neutral [2] or weakly deleterious [3], and thus the corresponding protein mutations
do not affect PPIs at all or have only a minor negative effect on binding.

The great challenge is to differentiate mutations that weaken, strengthen, or do
not affect an interaction without making an expensive biochemical experiment by
just employing computational biology methods. Such methods differ, for example,
in how much information is needed for prediction. As a starting point, in all cases,
the amino acid sequence of the protein has to be known – without it, one would not
be able to identify the mutation in the first place. Given the sequence of the protein
(and potentially protein interaction partners), one can resort to another very useful

Protein Interactions: The Molecular Basis of Interactomics, First Edition.
Edited by Volkhard Helms and Olga V. Kalinina.
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334 15 Effects of Mutations in Proteins on Their Interactions

source of information: sequences of evolutionarily related proteins or homologs. The
benefit of employing this information depends on the quantity and diversity of these
sequences, but thanks to ever-growing amounts of sequencing data, the quantity and
diversity of homologous sequences are constantly improving. Later in this chapter,
we will show how computational methods leverage these data, and why it is impor-
tant to have a large and diverse set of homologs. The next level of information that
can be used by computational tools is experimentally resolved three-dimensional
(3D) structures of proteins, which typically renders the tools more accurate than
purely sequence-based approaches. Many methods can only be applied to structures
that contain both partners of the PPI, which drastically limits the number of cases
where those comparatively more precise methods can be applied. If an experimen-
tally resolved 3D structure of a homologous complex is available, sometimes it can be
used as a source of structural data as well, and comparing multiple related structures
can shed additional light on the consequences of a mutation.

This necessitates development of tools that efficiently search and store data related
to the availability of sequences of homologs or structural data for a given muta-
tion. The latter problem is solved by so-called structural annotation methods that are
described in detail in Section 15.2. Later, in Section 15.3, we move on to an overview
of computational methods that perform the actual mutation effect prediction.

15.2 Structural Annotation of Mutations in Proteins

Structural annotation can be defined as the task of relating experimentally resolved
protein structures to protein sequences. In its simplest form, this means assigning
one or more 3D structures to a given amino acid sequence of a protein. In most cases,
the protein is not given by its sequence specifically but by an identifier of a database
storing the sequences of proteins or the corresponding genes that encode the protein,
and hence information about the amino acid range covered by a particular structure
is required. These methods, as a rule, rely on protein there-dimensional structures
represented by entries in the Protein Data Bank (PDB) [4].

The simple protein-to-structure mapping can be solved by a sequence similarity
search, but structural annotation has more facets than this. The more interesting
problem setting is the mapping of individual amino acids in a given protein to indi-
vidual residues in a protein structure. This is a nontrivial task, since certain 3D struc-
tures may lack certain parts of sequences due to biological (signal peptide cleavage
and posttranslational modifications) or technical reasons. If a residue-level mapping
between a protein sequence and a 3D structure is built, this can be automatically
used in the most common application scenario: structural annotation of nsSNVs.
Hence most structural annotation methods focus on such mutations.

Structural annotation methods differ in many aspects: what type of input they
can process; the type and quantity of annotated structures; and the complexity of
subsequent structural analysis of the results. While technically structural analysis is
not necessarily a part of structural annotation, it is performed more often than not
as the default option. The reason for this is that users that are interested in structural
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15.2 Structural Annotation of Mutations in Proteins 335

annotation, especially that of mutations, are usually also interested in the details of
the spatial environment of the annotated positions. For example, for mutations, a
very important type of analysis is describing their potential impact on interaction
interfaces.

Generally, there are two types of structural annotation methods: databases and
on-demand automated pipelines. In databases, all annotations and analyses are
precomputed; with the obvious caveat that custom inputs, especially mutations
not stored in the database, cannot be processed. In pipelines, such input can be
processed, but since their annotation and analysis are performed in real time, this
could result in long waiting times, especially if the performed analysis is more
comprehensive.

15.2.1 Databases for Structural Annotation of Mutations

Over the years, several databases were developed for structural annotation of
mutations. The general idea behind them was to somehow map a set of clinically
relevant mutations onto three-dimensional structures of the same or homologous
protein that were resolved experimentally. Such a structural view of clinically
described mutations may provide insights into the biochemical mechanisms
behind the observed phenotypes. This information was sometimes combined with
additional annotations and predictions.

In 2003, MutDB [5] was the first database for structurally annotation mutations to
be published, and many more were to follow. MutDB combined all protein sequences
from Swiss-Prot [6] and mutation data from dbSNP [7], and employed BLAST [8]
to perform a sequence similarity search against the PDB. Then, the results were
limited to hits with a sequence identity of 100%, which made position-specific anno-
tation trivial. In 2008, MutDB was updated [9], and in addition to structural anno-
tation also incorporated KEGG [10] pathway annotations, and results of multiple
mutation effect prediction methods, including SNPs3D [11], PolyPhen [12, 13], SIFT
[14], and others (for a discussion of these methods, see Section 15.3). Another tool,
SNPs3D is primarily a method for mutation effect prediction; however, prediction
results for all mutations contained in dbSNP and Human Gene Mutation Database
(HGMD, [15]) are provided in the form of a database. The structural annotation is
only given when an experimental structure of the target protein was available. In
those cases, a support vector machine that predicts stability changes introduced by
mutations [16] was used. LS-SNP/PDB expands the structural annotation concept
to include analysis of 3D structures of homologs by adopting the template search
pipeline from MODELLER [17]. LS-SNP/PDB also adds the results of basic struc-
tural analysis, including solvent accessibility, secondary structure assignment, and
interaction interface assignments. MSV3D included all protein sequences from the
OMIM [18] database, in which clinically relevant mutations were annotated using
multiple public online databases, including dbSNP [7], SwissVar [19], and several
gene-specific databases. For all proteins, if at least one 3D structure was assigned,

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by ibrahim

 ragab - C
ochrane G

erm
any , W

iley O
nline L

ibrary on [23/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



336 15 Effects of Mutations in Proteins on Their Interactions

MODELLER was used to provide protein structure models, in addition, to experi-
mentally resolved 3D structures. All these databases are not available online any-
more. SAAPdb [20, 21] can still be downloaded but is not maintained. Its intention
was to provide a more comprehensive structural analysis and visualization than its
competitors.

The current landscape of databases (as well as of other tools) for structural anno-
tation of mutations is dynamic and changing, so we focus on a few recent ones
(Table 15.1). There are disease-specific and general-purpose databases. As the name
suggests, Cancer3D [22, 26] focuses on mutations that are associated with cancer.
The basis for the database are mutations coming from cancer cell line encyclopedia
(CCLE) [27] and the cancer genome atlas (TCGA) [28]. The protein sequences that
contain cancer-associated mutations were compared with all proteins in the PDB
[4] using the BLAST [8] sequence similarity search tool. Structures of homologous
(nonhuman) proteins were considered, but an imposed threshold of e-value below
10−6 strongly limited their amount. The alignments provided by BLAST were used
to create position-specific mappings. Later, Cancer3D was extensively updated [22],
supplying the community with Cancer3D v2. The update included an expansion on
the total amount of cancer-associated mutations using the updates of the underlying
databases, as well as an improved structural analysis, including annotation of flexi-
ble and disordered regions. An important innovation of Cancer3D was identification
of protein–protein, protein–nucleic acid interaction interfaces, and ligand-binding
pockets in all annotated structures by finding the residues that lie closer than 5 Å
to the corresponding interaction partner (this functionality was also earlier imple-
mented in some dynamic structural annotation methods, see Section 15.2.2). Hence,
it became possible to find candidate mutations that could have an impact on these
interactions. We discuss dedicated tools in more detail in Section 15.3.

The concept behind mutfunc is similar to Cancer3D but vastly expands on the
number of mutations stored in the database by not limiting it to cancer-associated
mutations (ExAC [29] and ClinVar [30] were considered) and also by including
mutations from two other species, Escherichia coli and Saccharomyces cerevisiae,
extracting them from public genome data and publications. The computational
strategy behind the structural annotation in mutfunc is quite different, though.
First, the UniProt [31] annotations for each chain in each PDB entry were
considered, and structures that maximized the coverage were assigned to each
protein. Second, for UniProt entries, to which a structure could not be assigned
in this way, homology-based protein structure modeling using the ModPipe [32]
software was performed, assigning a structure to a larger portion, but not to all
proteins in UniProt. This “one-structure-per-protein” strategy allowed for a more
comprehensive structural analysis of the annotated structures due to the limited
number of structures. However, this strategy has an obvious disadvantage of losing
a lot of information by discarding a lot of experimentally resolved structures. In
particular, different interaction partners present in different structures of the same
protein are not detected. The variety of analysis methods that are implemented in
mutfunc is impressive. First, mutations that participate in interactions are detected
by calculating the solvent accessibility area for the isolated protein chains and their
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Table 15.1 Currently available databases for structural annotation of mutations.

Database URL
Year of
publication Species Homologs Isoforms

Structural
analysis

Cancer3D [22] http://
cancer3d
.org/search

2018 Human Yes Yes Interactions

mutfunc [23] http://www
.mutfunc
.com/

2018 Human,
E. coli, S.
cerevisiae

Yes No Interactions, stability,
posttranscriptional modification,
transcription factor binding,
predicted mutation effect with
SIFT

HUMA [24] https://huma
.rubi.ru.ac
.za/

2018 Human No Yes None

MISCAST [25] https://
miscast
.broadinstitute
.org/

2020 Human No No Interactions+ secondary
structure assignment
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complexes, where interface residues are defined as residues for which the area
changes. Second, a relatively computationally expensive prediction of the mutation
effect on protein structure stability using FoldX [33] is provided. Third, mutfunc
includes additional analysis options: evolutionary conservation of the mutation,
its potential effect on posttranslational modifications (PTM) predicted with MIMP
[34], and predicted phenotypic effects using SIFT [14] are presented. Additionally,
for mutations in non-coding regions, their predicted impact on transcription factor
binding sites is provided. The mutfunc webserver enables fast queries of one or
a few mutations, while the database is also completely downloadable making it
useful for large-scale studies.

HUMA [24] is a hybrid method combining structural and sequence annotation
by integrating many publicly available resources (dbSNP [7]; UniProt [31]; ClinVar
[30]; and OMIM [18]), allowing for quick access and linking of multi-modal
data. The structural annotation itself encompasses only structures of the target
protein without considering structures of homologs or any modeling attempts. The
position-wise mapping is provided, but the information on which structure covers
which mutation is missing, so users have to scan manually through the annotated
structures. Structural analysis is also not performed; instead, the authors introduce
their own tool VAPOR, an integrated consensus method utilizing multiple mutation
effect prediction methods: PolyPhen-2 [12], PROVEAN [35], PhD-SNP (single
nucleotide polymorphism) [36], FATHMM-XF [37], I-Mutant 2.0 [38], and MUpro
[39] (see Section 15.3 for a summary of this class of tools).

A recent addition to the palette of structural annotation databases is MISCAST,
which focuses on the generation of features that can be used in machine-learning
methods aimed to predict the effect of mutations (further discussed in Section 15.3).
The size of the database, compared to the other approaches discussed here, is
relatively small due to some incisive filtering. First, similar to HUMA, all proteins
without an experimentally resolved structure in the PDB are omitted. Second,
all proteins that do not contain any mutation from GnomAD [40], ClinVar [30],
or HGMD [15] are also left out. There are few details given on how and if the
structure is chosen when there are multiple structures available, or on how the
results from the structural analysis are combined. The structural analysis includes
identification of secondary structure elements and calculation of solvent accessible
area for each residue using DSSP [41], identification of residues participating in
interaction interfaces using PDBsum [42], and analysis of nonstructural features,
such as physicochemical properties of mutated amino acid and protein function
annotations.

Overall, structural annotation databases tend to focus on mutations that can be
associated with diseases, which is of great practical importance, but this focus makes
them unusable for the structural annotation and analysis of novel mutations. Here
structural annotation pipelines take over.
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Table 15.2 Pipelines for dynamic structural annotation.

Webserver URL Year Species Homologs Isoforms Structural analysis

MuPIT [43] http://mupit.icm.jhu.edu/
MuPIT_Interactive/

2013 Human Yes No None

dSysMap [44] https://dsysmap
.irbbarcelona.org/

2015 Human No No Protein–protein
interactions and
solvent accessibility

Mechismo [45] http://mechismo
.russelllab.org/

2015 Human, mouse,
yeast, fruit fly,
C. elegans, E.
coli, B. subtilis,
Mycoplasma
pneumoniae

Yes No All interaction partners

PinSnps [46] https://fraternalilab.kcl.ac
.uk/PinSnps/

2016 Human Yes No Protein–protein
interactions and
solvent accessibility

VarQ [47] https://varq.qb.fcen.uba
.ar/

2018 All No Yes All interaction
partners, solvent
accessibility, change of
stability, aggregability,
conservation

VarMap/VarSite [48] https://www.ebi.ac.uk/
thornton-srv/databases/
cgi-bin/DisaStr/GetPage
.pl?varmap=TRUE

2019 Human Yes No All interaction partners

PhyreRisk [49] http://phyrerisk.bc.ic.ac
.uk/

2019 Human Yes Yes None
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15.2.2 Dynamic Structural Annotation Pipelines

Similar to structural annotation databases, many pipelines were developed and
replaced by successor pipelines over the years (Table 15.2). A number of pipelines
are not available anymore: MarkUs [50], snp2structure [51], and G23D [52]. The
websites of other pipelines are available but currently not functional: SAAPdap
[20], PROSAT+ [53], GenProBis [54], and StructMAn [55].

The web server MuPIT dates back to 2013 but is still functional at the time
of this writing. This pipeline is an extension of a now unavailable structural
annotation database LS-SNP/PDB [56]. Users can directly enter genomic coordi-
nates regardless of whether the given position belongs to a protein-coding region.
The focus of the tool lies in its visualization of the annotated structures, which
are obtained by sequence similarity search with BLAST among all proteins in the
PDB. Hence, MuPIT can detect structures of homologous proteins, and performs
the position-specific mapping by aligning sequences of the obtained proteins with
BLAT [57]. Like many pipelines, MuPIT also incorporates a database to store the
results of previous queries, thus supplementing the benefits of a pipeline with the
benefits of a database, that is allowing for processing of arbitrary new queries and
fast access to queries that have once already been processed. Unfortunately, other
than visualization, there is no structural analysis performed.

A recent annotation pipeline VarMap [48] has a similar aim as MuPIT of mapping
genomic coordinates to the protein sequences and structures. In this case, struc-
tural annotations are provided by VarSite [58], which was developed by the same
authors and shares the same website. The structural analysis encompasses detect-
ing interactions with all kinds of interaction partners (proteins, nucleic acids, small
molecules, and ions), and the results are combined with the results of a compre-
hensive nonstructural analysis, including evolutionary conservation of each amino
acid calculated by ScoreCons [59], functional annotations from CATH [60] and Pfam
[61], and disease annotations taken from UniProt and ClinVar. The feature in the
structural analysis of VarSite that distinguishes it from other tools is that it combines
information obtained from different annotated structures. This results in a view list-
ing all interactions that were detected in any structure in one single plot without
requiring users to manually scan through the individual annotated structures. This
aggregated results style is also maintained when mutations known to be associated
with diseases are supplemented by reporting their participation in interactions. It
is also reported in how many structures this interaction could be observed. VarSite
cannot annotate alternative protein isoforms.

Extensive structural analysis is the focus of dSysMap [44], since its purpose is
to analyze the effects of mutations in PPI interfaces on the scale of PPI networks.
dSysMap does not only create a PPI network for given proteins but also places given
individual mutations into the network based on their spatial location in the protein
complexes. Individual mutations are structurally classified, and information from
multiple external databases is gathered: Pfam [61], 3did [62], BIND [63], BioGRID
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15.2 Structural Annotation of Mutations in Proteins 341

[64], DIP [65], HPRD [66], InnateDB [67], and IntAct [68]. Only proteins are consid-
ered as interaction partners in dSysMap, although alternative protein isoforms are
not taken into account, either.

The concept of PinSnps [46] is similar to dSysMap, but it focuses less on the
systems biology and more on the structural analysis of individual proteins and
their complexes. Hence, the structural annotation pipeline works similarly, but the
structural analysis in PinSnps includes additional features: solvent accessible area
for every residue is calculated, and all residues are divided into those lying on the
surface of the protein and those located in the core of the protein; posttranslationally
modified residues and mutations known to be associated with diseases are also
annotated. In comparison to dSysMap, PinSnps allows for more comprehensive
analysis of individual mutations and proteins, while the systems biology aspect
with its nonstructural interaction annotation and its network-style visualization of
dSysMap still is superior.

Another structural annotation pipeline is Mechismo [45], whose focus is to
predict whether a residue participates in an interaction while considering all kinds
of interaction partners. For each protein, the experimentally resolved structures in
the PDB are retrieved. To find experimentally resolved structures of proteins evo-
lutionarily related to the given protein, a sequence similarity search is conducted
among sequences of proteins in the other UniProt entries. The experimentally
resolved structures associated with the entries resulting from this search are also
considered for the structural analysis. Interactions are identified by distance:
molecules closer than 5 Å are considered to form an interaction. To enhance
prediction of interactions, Mechismo also includes the information from databases
reporting experimentally identified interactions: BIND [63], BioGRID [64], IntAct
[62], and MINT [69]. For the whole input sequence, Pfam [61] domains are retrieved
and disordered regions are predicted by IUPred [70]. The predicted interactions are
divided by the type of interaction partner into protein–protein, protein–chemical,
and protein–DNA/RNA interactions. The protein–chemical interactions are also
subdivided into organic, inorganic, and organometallic. The Mechismo webserver
has low processing times, due to the fact that its outputs are based on a database of
precomputed annotations for all variants in a given protein, even if only a handful of
variants are queried by the user. The results of similarity searches are stored, and for
all residues in all structures, the corresponding interaction types are precomputed.
This limits the scope of possible queries and gives Mechismo a database-like
character. But since it also stores intermediate steps and not just the end results, it
can be easily expanded by adding precomputed data for other sequences. Currently,
about 60 000 sequences of eight organisms are available (March 2021).

VarQ is another recently developed method that is more focused on individual
positions [47]. The goal of VarQ is to assess the clinical relevance of a given nsSNV.
For that purpose, it combines databases comprising data on clinical effects of
mutations (dbSNP [7]; BioMuta [71]; humsavar [72]; and ClinVar [30]) with a
custom structural annotation pipeline, for which only experimentally resolved
structures of the query protein are considered. The structural analysis is performed
on a single representative structure for each protein, but if different low molecular
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342 15 Effects of Mutations in Proteins on Their Interactions

weight ligands are bound in different structures, all such structures are analyzed.
For selection of the representative structure, VarQ takes the structure that covers
the largest part of the given protein and uses the resolution of a structure as a
tie-breaker, when multiple structures have the same coverage. Structural analysis
performed by VarQ is the most comprehensive to date in the field. The participation
of the wild-type residue in a protein–protein interaction is checked with 3did [62].
The involvement of the residue in an active site is computed with fpocket [73]. The
change in the protein structure stability introduced by the amino acid substitution
is calculated with FoldX [33]. The relative solvent accessibility (RSA) of the residue
is calculated to determine if the residue lies on the surface of a protein or is buried
in the protein core. Tango [74] is used to estimate the tendency of the mutation
to cause aggregation. Conservation of the wild-type and mutant amino acids is
assessed using the frequency in the alignment of the corresponding Pfam family.
The results of all performed analyses are reported individually. Since VarQ uses
many computationally expensive methods, it is very slow and can only be used
in case studies of preselected mutations. Further, the fact that 3D structures of
homologs are not considered means that a lot of potentially useful data is omitted.

PhyreRisk [49] was developed to meet a different need. The burden of dynamic
structural analysis was substituted by performing an automated protein structure
modeling using the in-house homology-based modeling suite Phyre2 [75]. With their
support of alternative protein isoforms, PhyreRisk is to date the only annotation
method offering structural annotation of multiple protein isoforms, while combin-
ing structures of homologous proteins as well.

From the review above, it is obvious that one can perform structural analysis
in many different ways, highlighting different aspects of protein interactions. One
need that remains unmet to this day is a method that automatically performs a
detailed structural analysis (e.g. like the one performed by VarQ or VarSite), but
for a larger number of mutations. This analysis could be further used to generate
feature databases for training machine-learning methods that predict the effect of
mutations.

15.3 Methods for Predicting Effect of Protein Mutations

Predicting effects of a mutation on protein structure, function, and interactions
is a notoriously difficult task. Not only can the scale of such effects vary, but also
mutations in a protein tend to trigger long cascades of functional effects in the cell.
Since there are so many aspects that have to be considered when predicting effects
of mutations, many different approaches have been developed to this end in the
last two decades. Due to the endless complexity of the effect cascades, there are
no methods that attempt to predict them in every detail, therefore every method
either concentrates on functional effects in a single protein or tries to predict the
final outcome, for example, pathogenicity, without providing insights into the
mechanisms behind it. We call such integral effects phenotypic and distinguish
them from more easily interpretable mechanistic functional effects. In this section,
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15.3 Methods for Predicting Effect of Protein Mutations 343

we focus again on mutations that cause changes in proteins encoded in the genome
of the affected organism, and primarily on nsSNVs.

Methods that predict phenotypic effects of mutations are usually based on
machine learning and their most useful features are derived thanks to the fact
that all species on Earth are evolutionary related. One can see every life form as
a successful outcome of its genome, and thus a mutation that changes a protein
amino acid to one that can be found or is similar to the one found in another
species can be regarded as harmless or neutral. The reason for this is that a variant
that leads to a cascade with a fatal outcome cannot proliferate in evolution and
thus will not be observed in other species. Thus, a variant that cannot be found in
genomes of other species can be suspected to have a negative phenotypic effect (this
speculation is, however, limited by the amount of sequencing data available from
related species). This concept of evolutionary conservation has proven to have high
predictive power for the prediction of effects of mutations.

The other types of methods that predict only one step among all biochemical
changes that lead to a particular phenotype can also use machine learning but can
include concepts that are less based on statistics, but rather on understanding of the
underlying molecular biochemistry and directly estimating the mutation’s effect on
it. One such step is typically the effect of a mutation on particular interactions of
proteins, on which we focus in Section 15.3.3.

15.3.1 Prediction of Phenotypic Effect

The field of tools predicting phenotypic effects of mutations expanded immensely
over the last decades, and these days comprise tens, if not hundreds of methods
[76, 77]. Due to its large size, we will not give a fully comprehensive analysis
of the field but provide an overview focused on the most important and recent
developments.

Protein function is exerted via interactions of proteins with their molecular coun-
terparts, such as other proteins, nucleic acids, substrates, effectors, or ligands. As
described in Section 15.2, mutations in particular protein regions can destroy some
or all of these interactions and thus be detrimental to protein function. In case of
proteins with crucial functions, this may lead to impaired phenotypes, for example,
diseases. Mutations that happen on interaction interfaces (e.g. PPI interfaces) may
selectively destroy interactions, and mutations that severely destabilize protein fold
can abrogate all of them [78].

The fundamental insight for the field of predicting phenotypic effects was the dis-
covery that evolutionary conservation of a protein position strongly correlates with
its ability to harbor mutations that lead to a significant effect on the phenotype: the
more conserved a position is in related proteins, the higher are the chances that
mutations in it will be detrimental. At the same time, mutations to amino acids that
can be found at the corresponding positions in related species, are more likely to be
tolerated. One of the first and perhaps most successful model that was based on this
concept was SIFT [14], whose predictive power was already great for the method
being so simple. SIFT searches for sequences of homologs with PSI-BLAST [79] and
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344 15 Effects of Mutations in Proteins on Their Interactions

calculates a multiple sequence alignment (MSA) of them. Based on the amino acids
that occupy the same position in the MSA as the given mutation, SIFT computes a
position-specific scoring matrix (PSSM) and assesses the probability of the mutant
amino acid being tolerated based on it.

Most modern methods for phenotypic effect prediction are supervised
machine-learning methods that enhance the prediction by adding more and more
features into the mix. PolyPhen-2 [12] uses a combination of evolutionary-based
features and simple protein structure-based features to train a naive Bayes classifier.
The evolutionary features in PolyPhen-2 are PSIC scores [80], a concept similar
to PSSMs where related sequences are weighted by their similarity and take into
account occurrences of both wild-type and mutant amino acids. The structural
features here include RSA and crystallographic beta-factor, but do not consider
potential interactions that can be distorted by the mutation. Other methods intro-
duce prior knowledge from annotated databases into the models, e.g. SNAP [81]
combines evolutionary features, simple structural features predicted from sequence
(RSA, secondary structure assignment, and flexibility), and features derived from
database lookups (Pfam [61] and Swiss-Prot [6] annotations) in a neural net.
Other machine-learning techniques were also used: FATHMM-XF [37] uses hidden
Markov models, CADD [82] uses logistic regression, DANN [83] uses a deep neural
net, and M-CAP [84] uses a random forest.

In all these tools (SIFT, FATHMM-XF, CADD, and DANN) the protein 3D
structure is not considered. When it is used, features based on protein structure
are comparatively simple and/or are predicted from a sequence. The lack of exper-
imentally resolved structures for many of the human proteins is a major obstacle
for the integration of structural features, and thus the inclusion of more complex
structural features can lead to the inapplicability of the method for a wide array of
input scenarios. However, it has been shown [85] that the more complex structural
features can increase the performance of prediction of clinical effects for cases,
where they are available. Hence there is a paramount need to improve structural
coverage of the human proteome, both with experimentally resolved structures and
with high-quality models. It is likely that novel deep learning-based methods, such
as AlphaFold [86], will partially satisfy this need, but many important structural
features, such as interaction with nonprotein interaction partners, cannot, as of
now, be predicted by these tools.

15.3.2 Estimation of Mutation Effects by Modeling Biophysical
Properties of Proteins

Experimental methods that determine the stability of a protein structure or protein
complex measure the Gibbs free energy ΔG of the folding process. The effect of a
mutation on the stability of a structure can be described as the difference in ΔG
values when comparing the wild-type and the mutant structures, and hence it is
denoted as ΔΔG, and is usually given in kcal/mol or kJ/mol. To save time and
resources of expensive wet-lab experiments, computational methods for estimating
ΔG of biomacromolecules have been developed. One well-known method is FoldX
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15.3 Methods for Predicting Effect of Protein Mutations 345

[33], which calculates a ΔG estimate of a given protein structure. The concept
behind FoldX is based on the combination of statistical, physical, and empirical
energy functions, which are weighted and added to form a statistical potential to
estimate Gibbs free energy. The key terms in this potential represent, for example,
Coulomb interaction, steric clashes in the structure, and hydrogen bonds. FoldX is
one of the few computational tools for estimating the change of stability that can
analyze the change of stability of protein complexes upon mutations.

A more recently developed method attempts to account for protein flexibility in
more detail. Flex ddG [87] is based on the Rosetta modeling suite [88] and applies
structural optimization with distance constraints to the wild-type complex struc-
ture and the corresponding mutant model structure. The key ingredient that distin-
guishes Flex ddG from other comparable methods is a random sampling of complex
structures by probing different backbone and side-chain torsion angles, resulting in
fifty different structures of the same two initial complexes. The sampling is followed
by energy minimization steps. For the final complex, a ΔG estimation is performed
for each ensemble using the Rosetta potential and aggregated to return the ΔΔG.

The most ambitious methodology to analyze the effect of a mutation on a PPI is
the usage of molecular dynamics (MD) simulations. Since for every MD simulation
setup, individual challenges and problems can occur, there is no tool automatiz-
ing the whole process. This makes MD simulation the most time-intensive way to
study mutations that require extensive expert knowledge. The common approaches
here include free-energy calculation protocols (FEP) [89], alchemical calculations
[90, 91], and force-field-based MD toolkits [92], but here we will not go into the
details of these methods. However, MD simulations are also the most comprehen-
sive way that gives detailed insights into the molecular mechanisms resulting from
a mutation, and thus provide invaluable insights into the impact of mutations on
proteins and their interactions [93].

15.3.3 Prediction of Mechanistic Effects of Mutations on Interactions
of Proteins

In recent years, many machine-learning methods have been developed to predict
the change in binding affinity (expressed as ΔΔG) of protein interactions, predomi-
nantly with other proteins, caused by a mutation (Table 15.3). The different methods
differ in the specific machine-learning techniques that they employ, the nature of
features that they use based on the given information, the way how they generate
these features, and the level of information they expect as input.

SAAMBE-SEQ [99] and MuPIPR [100] only need the amino acid sequence of
the wild-type protein and the mutation information, thus they do not use any
features based on the 3D structure of the protein. This means that they can be
applied in basically every case, but neglecting structural information is likely to
decrease their predictive power. SAAMBE-SEQ generates a variety of features
based on the sequence, such as the average position-specific scoring matrix (PSSM)
value of the interface residues for both interaction partners, and the evolutionary
conservation of the mutation, which is directly encoded as a feature vector. Further,
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346 15 Effects of Mutations in Proteins on Their Interactions

Table 15.3 Methods for predicting change of complex stability upon mutation.

Name URL Year Input
Number of mutations
per structure

BindProfX [94] https://zhanggroup
.org/BindProfX/

2016 Structure
of the
complex

Any number,
if all on the
interaction
interface

iSEE [95] https://github.com/
haddocking/iSee

2019 Structure
of the
complex

One

mCSM-PPI2 [96] http://biosig
.unimelb.edu.au/
mcsm_ppi2/

2019 Structure
of the
complex

One

MutaBind2 ([97],
p. 2)

https://lilab.jysw
.suda.edu.cn/
research/
mutabind2/

2020 Structure
of the
complex

Up to six

SAAMBE-3D
[98]

http://compbio
.clemson.edu/
saambe_webserver/
index3D.php

2020 Structure
of the
complex

One

SAAMBE-SEQ [99] http://compbio
.clemson.edu/
saambe_webserver/
indexSEQ.php

2020 Amino
acid
sequence

Any number

MuPIPR [100] https://github.com/
guangyu-zhou/
MuPIPR

2020 Amino
acid
sequence

One

physicochemical properties of the substituted amino acids are used as features.
These features are then used to train a random forest. MuPIPR, in comparison, is
more restrained, since it uses only the sequence information as features. On the
other hand, a more uniform feature set allows MuPIPR to employ deep neural nets
as the machine-learning method.

Other tools require information on the 3D structure of the complex to produce
ΔΔG estimations. Among them, BindProfX [94] is a special case, since it does not
use a classical machine-learning method to create its statistical prediction model.
The idea of this tool is similar to predicting mutation impact using evolutionary
conservation, but here structural conservation is used instead. The authors collected
a database of experimentally resolved interfaces, which is used to create multiple
structural alignments of the interface of the PPI of interest. In this structural align-
ment, statistical methods similar to calculation of conservation in multiple sequence
alignments are used to determine residues that are important for the interface and
residues that are exchangeable. Since the structural alignment is done only for the
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interface part of the complex, BindProfX can only predict ΔΔG values for mutations
that lie directly at the interface.

All other methods require the structure of the PPI complex as input, which is then
used to generate a whole new level of features, called structural features. The specific
generation of structural features can differ largely among the methods. SAAMBE-3D
[98] takes the same physicochemical property features as SAAMBE-SEQ and also
encodes the sequence of the protein, but in this method, these features are com-
puted only in a 10 amino acid-long window around the mutation. The structural
features are based on the 10 nearest residues lying in a 10 Å sphere around the
mutated residue. Further, some quality measures of the corresponding structure
resolution experiment are also used as features. For the training of the prediction
model, SAAMBE-3D uses gradient boosting as the machine-learning method.
Another method that combines the evolutionary features with custom structural
features is iSEE [95]. For the computation of the structural features, HADDOCK
[101] is used to model the mutant structure, energetically minimize mutant and
wild-type structures, and calculate intermolecular energy terms that can then be
used as features. MutaBind2 [97] applies a similar strategy. Here, their first step
is to model the structure of the mutant complex with FoldX [33] and then apply
a number of subsequent steps to both the wild-type and the mutant structures.
A short molecular dynamics simulation using the CHARMM36 [102] force field
yields energetically minimized structures and then FoldX is applied to produce the
energy terms. PROVEAN [35], a phenotypic effect prediction method, was used to
generate the evolutionary features, emphasizing the similarity of the two problem
settings. A special feature of MutaBind2 is the possibility to predict the effect of
multiple mutations in the same protein complex. In MutaBind2 and iSEE, the
machine learning part was implemented with a random forest, which allows for the
calculation of the relative importance of individual features. This is an interesting
way to analyze the model, which is also possible for the gradient-boosting model of
SAAMBE-3D. For all three methods, the feature importance factors were calculated
and analyzed. They all showed that the evolutionary features are more important
for the prediction than the structural features.

The mCSM [103] family of methods addresses many types of prediction prob-
lems for which protein 3D structure may provide a useful source of information.
They all are based on employing so-called graph-based signatures, structural fea-
tures that can be extracted from residue interaction networks. Residue interaction
networks are defined as graphs that can be calculated from the Cartesian coordinates
of a protein structure and contain amino acid residues as nodes, while edges cor-
respond to non-covalent contacts between them. Graph-based signatures are calcu-
lated by counting and categorizing all atomic contacts of the wild-type residue of the
target mutation in the residue interaction network. In mCSM-PPI2, these signa-
tures are combined with a comprehensive list of other features, including the evo-
lutionary features and physicochemical properties of the substituted amino acids.
Further, additional structural features are also computed using other structural anal-
ysis methods: FoldX for energy calculations, Bio3D [104] for the estimation of atomic
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fluctuations, and Arpeggio [105] for the visual analysis of interacting residues. Inter-
estingly, for none of the analyses, a mutant structure was modeled, all calculations
are based exclusively on the wild-type structure.

A recently developed experimental technique called deep-mutational scanning
(DMS) or multiplexed arrays of variant effect (MAVE) enables the training of models
that can be thematically placed between the prediction of phenotypic and functional
effects [106]. DMS experiments attempt to assess effects of as many mutations as
possible on a particular protein function that can be measured in an in vitro assay.
Cells containing mutated copies of the protein in question are selected based on
this function, and afterward, the corresponding fragments of their genomes are
sequenced. The proportion of a certain mutation in the sequenced product signifies
whether the mutation was beneficial, detrimental, or neutral for the protein. DMS
experiments measure the effects of mutations on protein function in a more general
sense than just assessing the strength of their interactions, although of course muta-
tions that distort these interactions would appear as deleterious in these screens.
Hence, these experiments could be beneficial for training all types of prediction
methods in the future. The greatest challenge that has to be overcome along this
path is to combine and generalize differences of individual DMS experiments on
different proteins. One approach to that aim was presented by Gray et al. in 2017
[107], in a study that created a mathematical framework to normalize the results of
different DMS experiments into larger generalized datasets, which can then directly
be used to train supervised machine-learning methods. Such a model, Envision, was
also later constructed by the same group [108] based on gradient-boosted trees. The
dataset that was used in this study contained only a limited number of proteins. For
each of them, an experimentally resolved structure was available, which enabled
the authors to use evolutionary features in combination with features directly
generated from these structures. In general, structural features are more commonly
used in models that predict the functional effects, as opposed to phenotypic effects
(presented in more detail in Section 15.3.3), which means that the data from DMS
experiments has the potential to become indispensable for training methods in
that field.

15.4 Conclusion

The computational approaches amenable to assessing the effect of a mutation on
protein interactions heavily depend on the available information about the corre-
sponding protein complex. An experimentally resolved structure of the complex
gives an irreplaceable advantage; thus the application of a structural annotation
method as a first step is inevitable. The range of structural annotation web servers
is broad, and to make a correct choice one has to pick a tool that supports the
annotation specific for the set of mutations in question (e.g. corresponding to a
certain disease). The structural analysis pipeline should detect interaction interfaces
to find the structures of potential complexes. Further, one should gauge the number

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by ibrahim

 ragab - C
ochrane G

erm
any , W

iley O
nline L

ibrary on [23/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



References 349

of mutations that should be annotated and the depth of the provided structural
analysis.

While some structural annotation methods provide the results of phenotypic
effect prediction models, none of them are coupled with a prediction model that is
specialized for predicting the effect on protein interactions. Presumably, the reason
for this is that such analysis very much depends on the chosen protein complex
structure, and structural annotation methods do not assign them specifically for
this purpose. Another potential difficulty is that there are no tools for cases where
only the experimentally resolved structures of the interacting proteins are available
in different PDB entries in an unbound state. Protein–protein docking would be
the required intermediate step, which remains a daunting task (see Chapter 4).
A potential approach to skip the necessity for a protein–protein docking method
would be training a machine-learning method on isolated structures or combining
this with predicted binding interfaces (see Chapter 2).

The quality of models produced by machine learning heavily depends on the qual-
ity of the underlying training data. For the prediction of the effect of a mutation on
protein interactions, in particular on protein–protein interactions, undoubtedly the
most important and widely used dataset is Skempi 2.0 [109]. However, it is limited
to only 345 protein complexes with 6187 mutations. Using this restricted dataset is
recognized by the authors of the respective methods as a limitation and a source of
possible bias in the models.
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AS alternative splicing
IDR intrinsically disordered regions
PPI protein–protein interactions
SLiM short linear motif

16.1 Introduction

Eukaryotic genes consist of exons and introns. During splicing, a ribonucleoprotein
complex – the spliceosome – recognizes splice sites at exon–intron boundaries, joins
exons together, and removes introns. Alternative splicing (AS) refers to different
combinations of exons and introns, where four main types of events are usually
considered: an exon could be skipped, an intron could be retained, and alternative
5′ or 3′-splice sites could be chosen. At least 95% of genes with more than one
exon undergo AS [1, 2]. For the remainder of this chapter, we will refer to the
products of AS as “transcript variants” when describing the transcript level; and as
“protein isoforms” or “isoforms” when describing the protein level. As a result of AS,
genes can potentially produce thousands of transcript variants and isoforms with
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Heart Skeletal muscle Cancer
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Figure 16.1 The impact of AS on protein structures, PPIs, and PPI networks. (a) The
isoforms from the same gene can vary in their domain structure or IDR. (b) Such isoforms
could have different PPIs. (c) Since isoforms could be tissue specific, AS could rewire PPI
networks. Created with BioRender.com.

widely differing or even opposite functions. AS of caspase-3, for example, generates
both pro- and antiapoptotic isoforms [3]. In most cases, only the function of the
major isoform is known (if at all), which leads to a considerable knowledge gap
concerning the functional repertoire of the transcriptome and proteome. However,
the true impact of AS on protein function is heavily debated. In this chapter, we
will first explore how AS affects individual proteins and their interactions with
other proteins due to changes in binding domains and subsequently consider the
systematic perturbations that AS brings to the protein–protein interaction (PPI)
network (Figure 16.1).

One theory states that most transcript variants and protein isoforms operate in
the organism in a tissue- or condition- or time-specific manner, while another
theory is that these variants merely represent stochastic noise of the splicing
machinery. The proponents of the stochastic noise theory suggest that although
transcript variants are detectable, they do not encode functional proteins, as
some evidence exists for the lack of important functional regions, incomplete
structures, and structural instability of the resulting isoforms [4–6]. Abascal et al.
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analyzed eight large-scale proteomic experiments from 100 different tissues, cell
lines, and developmental stages [7]. By integrating eight proteomics datasets
and after conservative filtering of peptide quality, they found evidence for 12 716
protein-coding genes but only 236 of them gave rise to more than one isoform. The
authors suggested that genes mostly have one main protein isoform, and AS does
not contribute much to proteome complexity. However, it is important to note that
the limited number of genes with more than one isoform found in the study might
be due to the limitations of proteomic technologies. This leads to the main critique
of the stochastic theory as detailed below.

The proponents of the AS functionality argue that the classical proteomic
approach lacks the necessary level of coverage and sensitivity to detect all iso-
forms [8]. The emerging proteomic techniques might support the role of AS
for proteome complexity: Liu et al. captured the quantitative effect of AS at the
proteomic level using a SWATH-MS technology, which combines deep proteome
coverage and quantitative accuracy of targeted protein profiling. They compared the
transcriptome and proteome before and after mutation of PRPF8, a component of
the spliceosome, and identified 3370 transcripts with differential splicing (1284 with
differential exon usage, 1449 with intron retention, 637 with both) and 1542 pro-
teins with at least one peptide with differential protein expression. Such transcripts
and proteins were enriched in the same functional categories (translation, RNA
splicing, mitotic cell cycle, and ubiquitination) suggesting that changes in AS at the
transcriptomic level are functionally mirrored at the proteomic level [9]. The other
argument is that isoforms are difficult to detect because they could appear only in
a particular tissue, condition, or developmental stage [8]. The further development
of proteomic technologies and the increase in large-scale data from different
conditions will help to answer how AS contributes to the proteome complexity.

Individual experiments demonstrate that AS can change the protein structure and
function substantially. For instance, AS modulates the activity of transcription fac-
tors, changes the properties of enzymes, changes the subcellular localization of pro-
teins, affects kinetics and sensitivity of ion channels, and disrupts PPIs [10–12].
We review how AS affects protein structure, potentially leading to a loss or gain of
interacting partners in Section 16.2. The condition-specific (e.g. tissue- or develop-
mental stage-specific) nature of AS events suggest the rewiring of PPIs [10, 12]. In
system biology, PPIs are modeled as networks and used to study biological pathways
and mechanisms. Because of difficulties in the current methods for detecting inter-
actions, these networks usually represent only gene-level interactions and ignore
isoforms. This simplified approach neglects the complexity of the proteome due to
AS and, thus, does not live up to the full potential of systems biology for the study of
PPI network rewiring. We will discuss the importance of isoforms for PPI analysis
in more detail in Section 16.3. Ideally, all possible interactions between the isoforms
of two genes should be tested experimentally. Affinity purification-mass spectrom-
etry is a popular approach for identifying PPI in a high-throughput manner but it
generates a high amount of nonspecific interactions [13]. On the other hand, exper-
iments for individual proteins are more accurate but require a prohibitive amount
of resources to perform on a large scale. To investigate how AS rewires PPIs in a
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362 16 Not Quite the Same: How Alternative Splicing Affects Protein Interactions

particular tissue, condition, or developmental stage, we need a systematic computa-
tional approach. We will discuss the benefits and limitations of currently emerging
approaches, in Section 16.3.3 and provide our view on further development of this
field.

16.2 Effects of Alternative Splicing on Individual
Proteins

16.2.1 Alternative Splicing and Protein Structure

AS could potentially disrupt the protein structure, therefore, not all parts of proteins
might be equally prone to AS. Several studies have demonstrated that isoforms often
only differ in a small number of residues, preserving the domain structure [14, 15].
Wang et al. examined alternatively spliced sequences from a 3D structural point
of view and found that alternative splicing mostly affects residues at the protein
surface. More specifically, alternatively spliced exons were enriched in coiled regions
of the secondary structure [16]. These observations lead to the hypothesis that AS
does not dramatically impact the folding and structure of proteins, but rather leads
to changes on the surface. Since these changes modulate the affinities to other pro-
teins or ligands, they can, nevertheless, have a functional impact. In some cases,
however, AS leads to gain or loss of core parts of a protein. For instance, Sulakhe
et al. compared protein features of alternatively spliced isoforms with those of their
canonical isoform [17]. They found that 42% of the spliced-out regions in trans-
porters genes are present in a transmembrane domain and 41% of the spliced protein
features in the cell cycle proteins correspond to short sequence motifs. Similarly,
DNA-binding regions represent 37% of the spliced-out features for DNA-binding
proteins. In such cases, the loss or gain introduced by AS can significantly impact
the function of their corresponding genes.

16.2.2 Alternative Splicing and Intrinsically Disordered Regions

Intrinsically disordered regions (IDR) are protein segments that lack tertiary
structure. Such regions exist in any state from fully ordered to disordered, con-
tributing to protein diversity [18]. They differ in charge, amino acid composition,
length, and conformation state. This affects the protein structure, function, and
interactions with other proteins, DNA, RNA, and ligands. Therefore, IDRs affect,
among other things, signal transduction and molecular recognition [19, 20]. First,
auto-inhibition modules (or inhibitory modules) of proteins are often disordered.
These modules compete with other biomolecules for interaction with their own
protein [21]. Second, IDRs can change their structure and adapt to different
interaction partners [22]. Molecular Recognition Features (MoRFs) are a subgroup
of IDRs that can become ordered upon binding [22]. Finally, IDRs are enriched with
posttranslational modifications [23] and linear motifs – short stretches of amino
acids (3–10 aa) with a distinct function (e.g. posttranslational modification, binding,
localization, and degradation signals, see also Chapter 17) [24]. They tend to locate
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16.2 Effects of Alternative Splicing on Individual Proteins 363

within IDRs and accessible protein surfaces [25]. Linear motifs are referred to in
the literature as short linear motifs (SLiMs) or eukaryotic linear motifs (ELMs): we
will further refer to them as SLiM (not to confuse with the ELM database [26]).

AS of IDRs preserves protein structure while diversifying protein function. For
example, proteins of the G protein-coupled receptor (GPCR) family, comprising
the extracellular N-terminus, the intracellular C-terminus, seven transmembrane
domains, three intracellular loops, and three extracellular loops, have a high
proportion of IDRs. The N-, C-termini, and one of the intracellular loops (ICL3) are
predicted to be the most disordered and show most AS events and posttranslational
modifications. The isoforms resulting from these events have different binding
properties. The canonical and the short isoform (with deletion of 29 residues from
ICL3) of D2 dopamine receptor 2 (D2R2), for example, bind to different alpha
subunits of G protein and activate distinct signaling pathways. Another example
is EDNRB which has isoforms without palmitoylation site that cannot activate
G-proteins [20].

Colak et al. [27] divided IDRs into “constrained” ones that preserve amino
acid sequences in evolution and “flexible” ones that do not. They showed that
such a “flexible disorder” allows proteins to have different isoforms without
structural disruption; while a “constrained disorder” presents a scaffold for SLiM
and posttranslational modifications.

The computational analysis of IDR falls into two groups: prediction of IDR from
a protein sequence and analysis of PPIs due to in- or exclusion of IDRs. The first
group has been extensively reviewed in several articles [28, 29]; we will focus on the
second group of tools and databases.

IDRs affect protein–protein interactions through several mechanisms and each of
these motivates dedicated tools and/or databases. Several tools predict MoRFs based
on scoring functions (ANCHOR [30]) or different machine learning techniques
(e.g. neural networks in en_DCNNMoRF [31]; support vector machines in fMoRF-
pred [32]) (Table 16.1). DisoRDPbin [38] predicts residues within IDRs that bind to
other proteins, DNA or RNA. The information about experimentally validated and
predicted IDRs are stored in dedicated databases (Table 16.2). DIBS [51] represents
the largest set of experimentally validated MoRFs. DistProt [52] is a database of
manually curated IDRs and their interacting partners. D2P2 [50] collects predictions
of disordered proteins. ModiDB [55] collects both experimentally validated and
predicted IDRs and related features from various sources. Mutual folding induced
by binding (MFIB) [54] database is a repository for protein complexes that are
formed exclusively by intrinsically disordered proteins.

Another mechanism for IDRs to affect PPIs is through SLiMs. The in- or exclusion
of SLiMs in protein isoforms adds novel functions and introduces new interaction
partners including posttranslational modifiers. For example, the proapoptotic
member of the Bcl-2 family Bim has several isoforms and one of them, BimS, lacks
the dynein-binding motif and differs in its ability to sequester the microtubule
dynein complex [57, 58]. The analysis of experimentally validated SLiMs from
the ELM [26] database showed that alternatively spliced exons are enriched with
particular SLiMs that bind to PDZ, PTB, SH2, and WW domains [59]. Buljan
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Table 16.1 The list of tools for investigating the role of IDR and SLiM in PPIs.

Name Publication Link Description

ANCHOR [30] http://anchor.enzim.hu MoRFs prediction based on
scoring

en_DCNNMoRF [31] http://vivace.bi.a.u-tokyo.ac.jp:8008/fang/home5.html MoRFs prediction based on
convolutional neural
networks

fMoRFpred [32] http://biomine.cs.vcu.edu/webresults/fMoRFpred/20190527084228/results.html MoRFs prediction based on
support vector machine

IUPred2A [33] https://iupred2a.elte.hu/ IDR and MoRFs prediction
MORFchibi [34] https://gsponerlab.msl.ubc.ca/software/morf_chibi/ MoRFs prediction based on

support vector machine
MoRFPred [35] http://biomine.cs.vcu.edu/servers/MoRFpred/ MoRFs prediction based on

support vector machine
OPAL+ [36] https://github.com/roneshsharma/OPAL-plus/wiki/OPAL-plus-Download MoRFs prediction based on

support vector machine
Predict-MoRFs [37] https://github.com/roneshsharma/Predict-MoRFs MoRFs prediction based on

support vector machine
DisoRDPbind [38] http://biomine.cs.vcu.edu/servers/DisoRDPbind/ Binding residues prediction
DILIMOT [39] http://dilimot.russelllab.org/ SLiM search
DSTAR [40] https://www.comp.nus.edu.sg/~bioinfo/hugowill/DSTAR.html Correlated motifs from PPI

networks
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iELM [41] http://i.elm.eu.org/search/ SLiM prediction
iSPOT [42] http://cbm.bio.uniroma2.it/ispot/ SLiMs bound to specific

domains
MotifCluster [43] https://alse.cs.hku.hk/motif_pair/ Motif pairs from PPI networks
MOTIPS [44] http://motips.gersteinlab.org/ Predicts protein-domain

targets
Scansite [45] https://scansite4.mit.edu/4.0/#home SLiM search
SlimFinder [46] http://www.slimsuite.unsw.edu.au/servers/slimfinder.php SLiM prediction in a group of

proteins
SLimPred [47] http://bioware.ucd.ie/~compass/biowareweb/Server_pages/slimpred.php SLiM prediction
SlimProb Not published http://www.slimsuite.unsw.edu.au/servers/slimprob.php SLiM search in protein

sequences
SlimSearch [48] http://slim.icr.ac.uk/slimsearch/ SLiM search in a proteome
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Table 16.2 The list of databases of IDRs and SLiMs.

Name Publication Link Description

ADAN [49] http://adan-embl.ibmc.umh.es/default.asp Database for
prediction of PPI of
modular domains
mediated by SLiMs

D2P2 [50] http://d2p2.pro/about Database of
integrated IDR
predictions

DIBS [51] http://dibs.enzim.ttk.mta.hu/help.php Database of
validated MoRFs

DistProt [52] https://www.disprot.org/about Database of
manually curated
IDR, including
interacting partners

ELM [26] http://elm.eu.org/ Database of SLiMs
LMPID [53] http://bicresources.jcbose.ac.in/ssaha4/lmpid/ Database of SLiMs

mediated PPIs
MFIB [54] http://mfib.enzim.ttk.mta.hu/ Database of

disordered protein
complexes

MobiDB [55] https://mobidb.bio.unipd.it/about/mobidb Database of IDR
including binding
residues prediction

Prosite [56] https://prosite.expasy.org/ Database of protein
features, including
SLiMs

et al. showed that tissue-specific alternatively spliced exons are also enriched in
SLiMs [23].

Usually, only 2–5 amino acids are involved in weak transient binding of SLiMs
[24]. Two mechanisms can modulate the binding properties: first, post-translational
modifications change the binding properties of a SLiM; second, the repetition of
SLiMs also modulates specificity and affinity of PPIs [59]. SLiMs could also overlap
and form a molecular switch. Posttranslational modifications drive the choice of a
SLiM that depends on the biological context: the condition, the oligomeric state, the
cell type, or tissue. The CYT-1 isoform of receptor tyrosine-protein kinase ErbB4,
for example, has an alternatively spliced exon with a WW domain-binding motif
(PPAY1056) and an overlapping SH2 domain binding motif (YTPM1059). The phos-
phorylation state of the overlapping tyrosine determines the interacting partner of
the protein [58, 60].

Computational analysis of SLiMs is mostly focused on their search or prediction,
and most tools for short motif search could be applied here, e.g. MEME [61]. Special-
ized tools are listed in Table 16.1 and described below. SlimProb searches for known
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SLiMs in protein sequences; SlimSearch [48] does the same but proteome-wide.
SLiMPred [47], iELM [41], DILIMOT [39], and SlimFinder [46] utilize different
approaches to predict potential SLiMs in a protein sequence: SlimFinder and
DILIMOT use the overrepresentation of sequence motifs in a group of proteins;
iELM uses hidden Markov models trained on manually annotated interactions
mediated by SLiMs; SLiMPred uses neural networks. Scansite [45] and iSPOT
[42] search SLiMs that are bound to specific domains: Scansite predicts binding to
SH2, 14-3-3, and PDZ domains; iSPOT – to SH3, PDZ, and WW domains. MOTIPS
[44] predicts binding partners for specific protein domains. MotifCluster [43] and
D-STAR [40] suggest algorithms to analyze PPIs to find statistically significant
co-occurring pairs of interacting SLiMs, therefore, trying to identify novel SLiMs.
SLiM databases are listed in Table 16.2. The largest maintained database in this
field – ELM [26] – stores experimentally validated SLiMs independent of their
function. The last 2020 release contains 3542 instances of SLiMs from 10 species.
LMPID [53] collects only those SLiMs that mediate PPIs. The last release in 2015
included 1762 SLiM instances from 2215 PPIs. Prosite [56] is a general protein motif
database but also includes information about SLiMs. ADAN [49] stores information
about protein and ligand interactions of binding domains mediated by SLiMs. The
last update was in 2009 and contains 3502 entries.

16.3 Effects of Alternative Splicing on Protein–Protein
Interaction Networks

16.3.1 Alternative Splicing Rewires Protein–Protein Interactions

Most of the time, proteins do not function individually but rather as a group with
interactions between proteins as well as other molecules. The current practice of
presenting PPI networks on a one-protein-per-gene level does not capture the com-
plexity of the proteome. As discussed in [62], two main problems result from this
simplified approach that often only tests for interactions of major isoforms. First
(Figure 16.2b), false-negative PPI: an interaction between two genes could be missed
if an interacting isoform was not tested. Second (Figure 16.2a), a false-positive PPI:
an experimentally verified interaction between two genes may be specific to a subset
of isoforms 16.2. Since AS could be specific to particular tissue, condition, or devel-
opmental stage, the consequence of these false-positive and false-negative PPIs can
dramatically bias results in network enrichment analysis.

While one might be tempted to dismiss this as a rare issue, recent experimen-
tal studies suggest that isoform-specific interactions represent around half of the
interactions annotated for genes [11]. Moreover, isoforms tend to behave as func-
tionally distinct proteins rather than minor variants. Colak et al. [27] suggested that
tissue-specific alternatively spliced exons encode significantly more often for IDRs
compared to alternatively spliced exons found in several tissues. Moreover, Buljan
et al. [10] found that tissue-specific protein-coding exons are enriched in IDRs that
contain binding motifs. The in- or exclusion of these binding motifs by tissue-specific
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False-positive PPI:

An edge between two genes

False-negative PPI:

No edge between two genes

Tested isoform

Untested isoform

Tested isoform

Untested isoform

(a)
(b)

Interacting proteins

Non interacting proteins

Figure 16.2 Presenting PPI networks on a gene level might lead to (a) a false-positive
protein–protein interaction; (b) a false-negative protein–protein interaction. Created with
BioRender.com.

splicing can, thus, be expected to rewire interaction networks and modulate signal-
ing pathways. Interestingly, proteins with tissue-specific alternatively spliced IDRs
and SLiMs occupy central positions in the PPI network and tend to have more inter-
acting partners than proteins with common alternatively spliced exons found across
tissues. Also, their interaction partners differ strongly and rarely overlap between a
pair of tissues [23]. In a concrete example, Ellis et al. reported that neural-specific
exons are enriched in regions of protein with conserved interaction surfaces, and
about a third of them affect PPIs [12]. These findings highlight the importance of
considering AS in studying PPIs.

16.3.2 Alternative Splicing in Diseases

Altered isoform–isoform interactions play a role in diseases, for example, cancer.
Climente-Gonza et al. found that abnormal splicing in cancer affects domain
families that mediate PPIs [63]. These protein domains are also frequently mutated
in tumors with a negative correlation between the occurrence of AS and somatic
mutations in driver genes. As a consequence, protein domains are often lost with
functional consequences that are not apparent at the level of gene expression.
Alternative splicing-related changes could hence represent important oncogenic
processes that are easily missed in classical gene expression analysis. Kahraman
et al. studied isoform switches (the changes of the dominantly expressed transcript
variants between cancer and healthy samples) in 27 cancer types. They showed that
20% of isoform switches disrupt PPIs [64]. Their analysis shows that tumor samples
with mutations in the spliceosomal complex have a higher number of switches of
the dominant transcript, while the expression of only few transcripts was correlated
with somatic mutation in cis. Kataka et al. analyzed The Cancer Genome Atlas
RNA-Seq datasets using the PPIXpress tool [65], generating 642 patient-specific
pairs of interactomes, i.e. one for the tumor and one for tumor-adjacent negative
controls. In their analysis, they formulate the problem as a differential analysis
of the pairs of interactomes to identify patient-specific edgetic perturbation [66].
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16.3 Effects of Alternative Splicing on Protein–Protein Interaction Networks 369

The perturbed edges refer to the interactions specific to only a set of isoforms from
a gene. They found that a set of these perturbations is shared between different
patients and highly correlated with survival.

Autism spectrum disorders were also linked to changes in AS [67] based on study
of experimentally validated interactions between multiple brain-specific isoforms
from nearly 200 genes. In this study Corominas et al. constructed a network, named
Autism Spliceform Interaction Network, and revealed new physical associations
between genes from pathogenic autism copy number variations, making it more
relevant for autism spectrum disorder studies than gene-focused PPI networks.
Furthermore, many of the newly discovered interactions were part of related
neurodevelopmental disorders pathways. Such a network is a successful example
of an isoform-centered view of the interactome serving as a rich resource for
neurobiology and drug development.

16.3.3 Resources for Studying the Effect of Alternative Splicing
on Protein–Protein Interactions

Separate resources exist to study AS (e.g. APPRIS [68]) and to study PPI (e.g.
STRING [69], BIOGRID [70]). Only a few tools and databases (Table 16.3) couple
this information and address the impact of AS on the PPIs. Even less do so at a
network level.

AS can lead to domain exclusion or inclusion; and in case of interacting
domains leads to alterations in PPI. Several databases collect domain–domain
interactions. DOMMINO [79] uses domains annotated by SCOP or predicted by
an HMM-based approach. The last 2012 release of DOMMINO contains around
200 000 domain–domain interactions among other molecular interactions. 3did
contains 14 278 domain–domain interactions based on PFAM domains for which
high-resolution 3D structures are available. KBDOCK operates with PFAM domains
and 3D structures but specializes in the spatial structure of domain-domain inter-
actions. DIMA integrated experimental and computational resources to form a
comprehensive domain–domain interaction database [77].

Other resources provide direct annotations of individual interacting domains
or exonic regions involved in AS events. Two databases, ExonOnthology and
ExonSkipDB [80, 81], store information about the functional role of alternatively
spliced exons. ExonSkipDB collected exon skipping events from GTEx and TCGA
[86, 87] and predicted the possible subsequent loss of protein function, including the
loss of interactions. ExonOnthology exploits several computational resources and
provides a functional description for an exon of interest, including the disordered
state, its possible effect on PPI, and posttranslational modifications. The AS-ALPS
database collected AS regions where the amino acid sequence is changed by AS [72].
It coupled the knowledge about AS of this region with the information about inter-
actions extracted from the Protein Data Bank (PDB [88]). This information allows
AS-ALPS to infer whether AS impairs protein structure and interactions. IRview
collects “interacting regions” and for some of them reported observed variants [82].
In the last 2011 release, this database contained 3417 experimentally validated
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Table 16.3 The list of resources for investigating the effect of AS on PPIs.

Name

Direct
impact
on PPI Publication Link Description

3did — [71] http://3did.irbbarcelona.org Database of domain–domain interactions from PFAM,
with 3D structure

AS-ALPS — [72] https://as-alps.nagahama-i-bio.ac.jp/ Database of AS regions
CompleXChange ✓ [73] https://sourceforge.net/projects/complexchange/ An extension of PPIxpress for differential analysis of

protein complexes
CORUM — [74] http://mips.helmholtz-muenchen.de/corum/ Database of protein complexes. The last update included

complexes with isoforms
DIGGER ✓ [75] https://exbio.wzw.tum.de/digger/ Database for isoform-specific and exon-specific

interactions. The resource also allows the user to
construct a subnetwork of the PPI corresponding to a set
of isoforms

DIIP ✓ [76] http://bioinfo.lab.mcgill.ca/resources/diip Database for isoform interactions identified from the
domain-mediated interactions

DIMA — [77] http://webclu.bio.wzw.tum.de/dima2/index.jsp The integrated database of conserved domain–domain
interactions based on experimental and computational
resources

DomainGraph ✓ [78] https://domaingraph.bioinf.mpi-inf.mpg.de/ Method for the analysis and visualization of exon
inclusion/exclusion on domain-mediated interactions
and miRNA binding sites

DOMMINO — [79] http://korkinlab.org/dommino Database of domain–domain interactions from SCOP
and predicted by HMM

Exon Ontology — [80] http://fasterdb.ens-lyon.fr/ExonOntology/ Database of alternatively spliced exon function
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ExonSkipDB — [81] https://ccsm.uth.edu/ExonSkipDB/ Database of alternatively spliced exons from GTEx and
TCGA

IRview — [82] http://ir.hgc.jp/ Database of experimentally validated protein interacting
regions and their variants

KBDOCK — [83] https://kbdock.loria.fr/ Database of spatial organization of domain–domain
interactions

PPICompare ✓ [84] https://sourceforge.net/projects/ppicompare/ Based on PPIxpress and extended to compare between
two different conditions. The tool identifies significant
rewired interactions between the grouped samples

PPIXpress ✓ [65] https://sourceforge.net/projects/ppixpress/ Constructs condition-specific PPIs from transcript
expression data by identifying the interaction of the
major expressed isoform. PPIexpress filters the rest of the
interactions with nodes of low expressed genes

VastDB — [85] http://vastdb.crg.eu/ Database of AS events, including overlap with protein
domains and disordered regions
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(using in vitro virus and yeast two-hybrid system techniques) interacting regions
from human and mouse together with their functional characteristics (InterPro
domains, non-synonymous single nucleotide polymorphisms, and variant regions).
Vast-DB [85] stores the results of the comprehensive AS profiles of 308 RNA-Seq
datasets from human, mouse, and chicken and provides general information about
identified AS events including overlap with protein domains, IDRs, and mappings
to the protein structure.

Only a few databases report isoform–isoform interactions. DIIP [76] combines
domain–domain interactions and PPIs and infers the existence or absence of an
interaction between isoforms based on the in- or exclusion of interacting domains.
The CORUM database collects manually curated protein complexes [74]. The last
update included 58 protein complexes with isoforms, such as the CASP-2S-fodrin
complex where only one isoform of CASP interacts with fodrin [89]. This subset
from the CORUM database mostly includes isoforms that are associated with dis-
eases or alter function of a protein complex. One database – IIIDB – is currently not
available but the idea behind it might contribute to the possible future resources for
AS analysis. IIIDB used domain–domain interactions to predict PPI and extended
this approach by adding the co-expression of interacting isoforms [90].

While the above methods aimed to reduce the number of false positives among
the current PPIs by trying to identify isoform-specific interactions and filter
non-interacting isoforms from the network, DomainGraph was the first resource to
explore the exon rather than the domain contributions to PPIs [78]. This approach
offers the advantage that the impact of exon expression can be studied on a
systems level [78]. DomainGraph combines domain–domain interactions with
protein–protein interactions to first identify the domains mediating the interaction
between two proteins. Subsequently, these domains are mapped to exons. In this
way, differential exon usage yields insights about the edgetic changes in the PPI
network. This idea was later extended to identify missing interactions in annotated
isoforms and known PPIs [75, 76]. PPIXpress [65] constructs a condition-specific
PPI on a whole-proteome scale based on transcript expression. The intuition is that
interaction should not exist if one of the interacting isoforms in the edge is missing
or downregulated even if the two genes are expressed [65, 75]. Combined with
RNA-Seq profiles, such methods could extend our understanding of tissue-specific
regulation and disease mechanisms related to AS. PPICompare was later built
on the output of PPIXpress to extend its functionality for differential analysis of
PPIs [84]. The idea is to construct one network for each condition and to compare
them with respect to rewiring resulting from isoform switch events. The authors
applied PPICompare to different blood development stages. Later on, similar
algorithms were extended by the same authors to include differential analysis of
protein complexes in their tool CompleXChange [73].

Recently, we developed DIGGER, a database and a web tool for fully exploring
the impact of AS at different levels [75]. DIGGER offers the features provided
by existing tools such as PPIXpress as a user-friendly database. In addition to
PPIs and domain–domain interactions, DIGGER also considers residue-specific
interactions inferred from co-resolved protein structures. Users can switch from an
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isoform-centric view of the interactome to an exon-centric one and interactively
study the impact of AS on both levels.

16.4 Conclusion and Future Work

AS affects protein sequences, hence interfering with protein function and interaction
potential. We described mechanisms of how AS affects PPIs via in- or exclusion of
interacting domains or binding motifs. The latter are often found within IDRs and
do not affect the protein structure, emphasizing the importance of these regions for
modulating interactions. As isoforms are often tissue-specific, AS appears to play an
important role in rewiring PPIs depending on the biological context. Importantly,
PPI rewiring (or in such case, disruption) might also drive pathological conditions,
such as cancer or neurological disorders.

Despite the current efforts to understand the functional impact of AS on PPIs and
pathways, a few issues remain unaddressed. Isoforms remain difficult to detect in
proteome analysis and consequently, functional studies are limited to considering
the transcriptome. Here, the majority of RNA-Seq analyses are performed on gene
or transcript level using short-read sequencing technologies, where often only
gene-level results are considered, ignoring the consequences of AS altogether.
Furthermore, the latest benchmarks show that transcript-level RNA-Seq analysis
cannot accurately quantify AS events [91]. Importantly, such methods can only
detect known transcripts and, as a result, they underestimate the impact and
the variation of de novo or rare AS events. Methods such as MAJIQ or leafcutter
[92, 93], which are tailored toward detecting such de novo events are not yet part
of most transcriptome analysis pipelines and deserve more attention. Emerging
new technologies, such as long-read sequencing and single-cell technologies,
lead to more noisy data but offer unique opportunities to reconstruct full-length
transcripts and to study cell-type specific effects. Available resources for studying
the consequences of AS on PPI networks suffer from the relatively low structural
coverage of the interactome. In the best-case scenario, only 20% of the PPIs can
be mapped to domain–domain interactions [65, 75] and even with the inclusion
of residue-specific information from the PDB, this percentage does not increase
significantly [75]. To tackle this issue in the absence of experimental data, few efforts
aimed to approach the problem as a supervised machine learning problem [94] with
mixed success even though similar ideas were previously applied for other resources
such as GO term databases [95]. A logical next step for the field is the systematic
integration of AS analysis and the analysis of tissue-specific disordered regions
as it will yield tissue-specific PPI networks that are better tailored for knowledge
discovery and downstream applications such as network enrichment [96] and drug
repurposing [97].

In summary, it is important to switch to an isoform-centered view of the interac-
tome to capture the central role of AS in tissue regulation and to capture the dynamic
changes of the proteome in health and disease.
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17

Phosphorylation-Based Molecular Switches
Attila Reményi

Institute of Organic Chemistry, Biomolecular Interactions Research Group, Research Center for Natural
Sciences, H-1117 Budapest, Hungary

17.1 Introduction

There are several posttranslational modifications (PTM), such as phosphorylation,
ubiquitination, acetylation, methylation, glycosylation, lipidation, and proteolysis.
These chemical modifications on proteins have the ability to regulate activity, affect
interactions with other molecules, or influence cellular localization and thus local
concentration. PTMs happen fast compared to gene expression level-based mecha-
nisms involving transcriptional regulation. They may be reversible or irreversible
and could be categorized based on the chemical nature of the group attached
to amino acid side chains: peptide adducts (ubiquitination and sumoylation),
small chemical groups (acetylation, methylation, phosphorylation), more complex
molecules (glycosylation, isoprenylation), or protein cleavage by proteolysis.

Protein phosphorylation is probably the most widespread posttranslational
regulatory mechanism. Modification of amino acids (e.g. aspartate, histidine, but
most prominently serine/threonine or tyrosine) by kinases plays a key role in
signal transduction or in controlling gene expression. Why is phosphorylation
so widespread and effective? First, protein phosphorylation requires the transfer
of the γ-phosphoryl group from ATP to an amino acid side chain, and since ATP
is abundant and is constantly restocked, the source is readily at hand. Second, the
phosphate group on proteins is highly loaded: it has two negative charges that
could have large effects on the chemical nature of the phosphorylated protein
region [1].

Phosphorylation of the alkyl/aryl hydroxyl group of a serine, threonine, or tyrosine
residue results in the formation of an ester bond, which is chemically stable under
neutral pH. Phosphorylation on six more amino acids is also chemically feasible: on
cysteine by forming a phosphorothiolate bond, on aspartate or glutamate forming
a mixed anhydride, or on histidine, arginine or lysine forming a phosphoramidate.
However, these latter are chemically more labile in aqueous solution under phys-
iological conditions and are not as widely used as alkyl/aryl hydroxy amino acids.

Protein Interactions: The Molecular Basis of Interactomics, First Edition.
Edited by Volkhard Helms and Olga V. Kalinina.
© 2023 WILEY-VCH GmbH. Published 2023 by WILEY-VCH GmbH.
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382 17 Phosphorylation-Based Molecular Switches

Histidine and aspartate phosphorylation in so-called two-component systems elicits
a quick response to extracellular signals since the half-life of histidine phosphorami-
date is short and the mixed anhydride bond of phospho-aspartate also spontaneously
hydrolyzes. This ancient signaling system, comprising a membrane-bound histidine
kinase and the cytoplasmic response regulator modified on aspartate by the for-
mer, is frequently used in bacteria, but it is less frequent in eukaryotes, albeit it is
present in yeast and is quite common in plants [2]. Due to chemical stability, ser-
ine/threonine and tyrosine phosphorylation is experimentally more tractable, and
the phosphorylation of these amino acids has been far better studied. This chapter
henceforth will discuss serine/threonine and tyrosine phosphorylation.

There are more than 500 protein kinases in the human kinome [3]. The
ATP-binding crevice is wedged in-between two compact kinase lobes connected by
a more flexible hinge region. Phosphorylation of the so-called activation loop con-
trols kinase activity by affecting substrate and ATP binding. The three-dimensional
atomic structure of the first kinase was determined three decades ago [4]; since
then, we have learned how kinases themselves are regulated by reversible phos-
phorylation. It turned out that the structure of all protein kinases is very similar
and nucleotide binding and phosphotransfer to substrates are mediated by the
well-conserved, common features of the kinase domain core (∼250 aa). However,
the way how the activity of the different protein kinases is controlled, namely the
transition from an inactive state into an active state, is different and there have been
different additions to the common kinase core during evolution bringing about new
activation mechanisms. In brief, the structures of active kinases are all similar but
inactive kinase structures greatly differ [5].

Phosphatases counteract the action of kinases because they are capable of remov-
ing the phosphoryl group from phosphorylated proteins [6]. This makes protein
phosphorylation a reversible process and this PTM is probably the most widely
used mechanism for transmitting signals within the cell. It is estimated that
one-third of proteins are subject to regulatory phosphorylation. Because phos-
phate esters of serine (Ser), threonine (Thr), and tyrosine (Tyr) do not hydrolyze
spontaneously under physiological conditions, each protein kinase-mediated
phosphorylation needs to be reversed by a protein phosphatase. However, the
number of known phosphatase genes is far less than the number of known protein
kinases in the human genome (∼520 kinases vs. ∼180 phosphatases).

Although it is clear that the dual action of kinases and phosphatases is key to
the success of alkyl/aryl hydroxy amino acid-based protein phosphorylation as a
regulatory mechanism, the molecular logic underlying this type of PTM-based reg-
ulation is still not well understood. For example, we have only limited knowledge
of how specificity of protein phosphorylation/dephosphorylation is governed and
how phosphorylation of specific sites affects function. In summary, we have learned
a great deal about how protein kinases as conformational switches work, but how
they specifically regulate the phosphorylation of hundreds or thousands of proteins
remains far less understood.
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17.1 Introduction 383

Large-scale interactomics and phospho-proteomics are generating data on how
protein phosphorylation affects biological function on a global scale. It has become
apparent that most protein phosphorylation events occur in disordered protein
regions [7]. This top–down strategy complements the classical work addressing
individual protein kinases, phosphorylation sites, and their effects on protein
function. The output emerging from all these could be best integrated through the
exploration of phospho-switches: protein regions whose biophysical/biochemical
nature changes upon phosphorylation leading, in turn, to changes in protein
activity, interaction capacity, protein abundance, or cellular localization.

17.1.1 Structural and Functional Effects of Protein Phosphorylation

Phospho-amino acids generated by protein phosphorylation act as new chemical
entities that do not resemble any natural amino acid. A protein-linked phosphate
group can form hydrogen bonds or salt bridges either intra- or intermolecularly
and makes stronger hydrogen bonds with arginine than either aspartate or gluta-
mate [1].

Phosphate in a protein was first identified in 1906. Enzymatic phosphorylation of
a protein was described 20 years later, and it was 50 years ago when ATP-mediated
phosphorylation of a specific serine site was reported. This was in glycogen phos-
phorylase where phosphorylation allosterically activated the enzyme [8]. The first
3D view of phosphorylation-mediated molecular regulation was then obtained on
this enzyme in 1989 [9], which was then followed by the crystal structure of the first
protein kinase, PKA, two years later [4]. Protein tyrosine phosphorylation was then
discovered in 1979 [10]. This was decades later compared to discovery of Ser/Thr
phosphorylation; and after showing that tyrosine phosphorylation may cause similar
allosteric changes to what formally had been described in the activation of glycogen
phosphorylase, phospho-tyrosine binding domains were also discovered (e.g. SH2
domains) [11]. Their fundamental role in phosphorylation-based biological regu-
lation, parallel to the later discovered phospho-serine/threonine binding domains
(e.g. 14-3-3 domains), attracted significant attention, and then they were found in
hundreds of signaling proteins [12].

Although protein phosphorylation may happen in structured domains and pro-
mote classical allostery, kinases mostly target residues located in flexible regions,
for example in an exposed loop or more frequently in a disordered protein region [7].
This is because the latter harbors binding sites for phospho-amino acid recognition
domains, may be subject to multisite phosphorylation (see later), and is best suited
to be the target of different types of PTMs. These PTM associations (e.g. phosphory-
lation, acetylation, and mono- and polyubiquitination) may then work together to
influence protein function in a hierarchical or combinatorial fashion [13].

Phosphorylation of proteins binding to polyanions, such as DNA, could
have a direct impact due to electrostatic repulsion, which in turn may modulate
DNA binding. In agreement with this, as early as about three decades ago, the
DNA-binding activity of the Oct1 transcription factor was found to be inhibited by
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384 17 Phosphorylation-Based Molecular Switches

phosphorylation at two distinct phosphorylation sites on its DNA-binding domain.
Based on the crystal structure of Oct1 bound to a DNA enhancer, the two serine
residues (Ser335 or Ser385) are both located next to the negatively charged DNA
phosphate backbone (Figure 17.1a). This suggests a direct mechanistic explanation
for decreased DNA binding upon phosphorylation by kinases that, in turn, causes
the down-regulation of the mitosis-specific Histone 2B gene [15, 16]. However, such
electrostatic repulsion-based direct mechanisms do not seem to be widely used nei-
ther for gene expression regulation nor for regulation of RNA–protein binding [17];
these interactions are rather regulated by indirect mechanisms. The C2H2 Zn-finger
containing transcription factors constitute the largest family of sequence-specific
DNA-binding proteins, and they contain a short-conserved linker (TGEKP) con-
necting the Zn-fingers. DNA binding requires α-helix formation and the threonine
in the linker caps the helices and makes their structure less flexible [18]. It is
known that entry into mitosis is accompanied by the cessation of transcription, and
apart from RNA polymerase or nucleosome remodeling complex phosphorylation,
gene-specific transcription factors may also be inactivated: phosphorylation of the
threonine in the conserved linker of C2H2 Zn-finger transcription factors inhibits
binding of this large group of DNA-binding proteins [19].

Ribonucleoprotein complexes involved in pre-mRNA splicing and mRNA decay
are often regulated by phosphorylation of RNA-binding proteins, which usually
occur in dynamic or disordered regions [17]. Many RNA-binding proteins have
a signal response segment (SRS) that is disordered but becomes ordered upon
phosphorylation and serves as a recognition site for another protein in the ribonu-
cleoprotein complex. SR (serine/arginine) proteins are essential components of
the spliceosome that regulate splicing and mRNA export and their processive
hyper-phosphorylation plays a key role in mRNA splicing [20]. Furthermore, more
recently, phosphorylation was recognized as a major PTM affecting ribonucleo-
protein (RNP) granule formation. RNP granules form through liquid–liquid phase
separation and phosphorylation can directly weaken or enhance the multivalent
interactions between phase-separating macromolecules [21].

The cell membrane is composed of anionic phospholipids that bind polybasic
peptides, moreover, this interaction is mediated by bulk electrostatics. Apart from
structured globular domains responsible for membrane recruitment (e.g. PH, C1 or
C2 domains), peripheral membrane proteins often have a positively charged region
required for membrane association. Phosphorylation of this region at specific sites
could serve as an “electrostatic switch”: it attenuates membrane binding by damp-
ening the overall electrostatic attraction between the protein and the membrane.
For example, phosphorylation of the yeast Ste5 signaling protein at its N-terminal
stretch rich in lysines/arginines by a cyclin-dependent kinase (CDK) demonstrates
that phosphorylation can produce changes in protein function through bulk
electrostatics, without the necessity of intricate conformational changes [22, 23]
(Figure 17.1b). However, it is likely that in most cases a functionally relevant protein
phosphorylation event is associated with some specific structural change which
will be discussed below.
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Figure 17.1 Structural effects of phosphate in proteins. (a) Steric clash due to Ser335 or
Ser385 phosphorylation in the DNA-binding domain of Oct1 interferes with Oct1-DNA
binding in the major or minor groove, respectively (PDB ID: 1GTO), (b) bulk electrostatics
(e.g. recruitment of the Ste5 scaffold protein to the cell membrane is blocked when Ste5
is phosphorylated at multiple sites around its membrane binding – originally positively
charged – region), (c) local and long-range order-to-disorder or disorder-to-order changes,
(d) transient charge clamps (e.g. the arginine/lysine residues in the C-terminal disordered
tail of RSK bind to Ser732 when it is phosphorylated; functionally these transient
intramolecular charge clamps limit the binding of RSK to one if its partners ERK2).
Source: Adapted from Gógl et al. [14], (e) classical vs. modular – conformational or
steric – allostery, and (f) no change (e.g. the third phosphorylation event in the
hypothetical multi-domain protein may be structurally/functionally neutral).
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386 17 Phosphorylation-Based Molecular Switches

Phosphorylation may cause local changes in protein structure. In addition to the
electrostatic effects, the positively charged amine group in lysine and the guanid-
ium group in arginine side-chains, in particular, can make strong hydrogen bonds.
Moreover, the phosphate group can form hydrogen bonds with backbone amides
or with different polar amino acid side chains; conversely, it may interfere with
hydrophobic interactions. The phosphate group will have a local effect on protein
structure by promoting order-to-disorder or disorder-to-order transition in globular
proteins and may exert long-range effects through allostery – classical or modular,
where the latter involves a phospho-amino acid-binding domain [12] (Figure 17.1c).

Despite that a disordered protein region does not have a structurally well-defined
conformation, phosphorylation may affect its conformational dynamics and pro-
mote α-helix, turn, or β-sheet formation depending on the neighboring sequence
context. For example, lysines or arginines at the right spacing allow the formation
of transient charge clamps with the phosphorylated residue, making the region
locally less flexible and thus leading to more intra- or intermolecular hydrogen
bonds. These latter may promote or limit protein–protein binding; for example,
in the disordered C-terminal tail of RSK1, these trigger the disassembly of the
ERK2–RSK1 signaling complex [14] (Figure 17.1d). In addition, phosphorylation
may play an important role in regulating protein function through modular allostery
(Figure 17.1e). The functional outcome of these structural changes naturally will
differ from protein to protein; however, it may well be that lots of phosphorylation
events remain without any functional consequence: if these do not change the local
or global structure, for example, or when there is no system in place that would be
able to “read” it out [24] (Figure 17.1f).

17.2 Reversible Protein Phosphorylation in Cellular
Signaling: Writers, Readers, and Erasers

Apart from the direct steric or ionic impact of covalently attached phosphate on pro-
tein structure, the unique size of the ionic shell and charge properties of this group
allows specific and inducible recognition of phosphoproteins by phospho-specific
binding domains in other proteins. This promotes inducible protein–protein
interaction, therefore phosphorylation may serve as a binary ON/OFF switch
in signal transduction networks to transmit signals in response to extracellular
stimuli. The appearance of dedicated protein domains capable of binding to
phosphorylated amino acids provides a great opportunity for the expansion of
classical phosphorylation/dephosphorylation-based mechanisms. According to a
simple analogy from an information processing view, protein kinases may be
regarded as “writers,” phosphatases as “erasers,” and modular phospho-amino
acid-binding domains as “readers” of phosphorylation-coded intracellular infor-
mation (Figure 17.2a,b). The latter includes, for example, WW, 14-3-3, and FHA
domains [25].

Ser/Thr phosphorylation is more ancient than tyrosine phosphorylation, and
the mechanisms of how the writers and readers of these two different systems
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17.2 Reversible Protein Phosphorylation in Cellular Signaling: Writers, Readers, and Erasers 387

work are also somewhat different. For example, tyrosine kinases and phosphatases
tend to have more modular domains or specificity elements in addition to their
catalytic domains. In contrast to this, Ser/Thr kinases recognize their substrates
mostly via their kinase domains, while Ser/Thr phosphatase catalytic domains are
promiscuous and their specificity depends on subunits that bind to their specific
substrates. Interestingly, an ultradeep human phosphoproteome analysis also
revealed the distinct regulatory nature of Tyr and Ser/Thr-based signaling [26].

Tyrosine phosphorylation as a later evolutionary invention became widespread
only after the emergence of multicellular organisms [27]. Conversely, tyrosine phos-
phorylation likely facilitated the evolution of multicellular organisms [28]. The rapid
expansion of phospho-tyrosine binding domains – the readers, such as SH2, PTB
domains – brought about new cytoplasmic adapters for receptor tyrosine kinases/
phosphatases and new non-receptor tyrosine kinases/phosphatases controlled by
modular allostery [12] (Figure 17.2c–e).

In summary, a phosphate group in proteins may directly affect protein activity and
binding by eliciting a local structural/electrostatic change due to its specific chemical
nature – since it is a dianion at neutral pH with good capacity to form salt bridges
and hydrogen bonds, but more frequently the functional effect is indirectly “read
out” and is mitigated by phospho-amino acid binding domains.
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Figure 17.2 Protein kinases, phosphatases, and phospho-amino acid binding domains.
(a) Scheme on writers/erasers/readers, (b) Statistics of serine/threonine vs tyrosine kinases
and phosphatases from the human proteome, (c) concrete examples for a pSer/Thr or a
pTyr binding domain (WW, PDB ID: 2N1O or SH2, PDB ID: 1TZE), (d) SH2 domain-based
adapters for receptor tyrosine kinases (e.g. Grb2; RTK: receptor tyrosine kinase, for example,
EGF receptor), and (e) examples of SH2 domain-based modular allostery (Src kinase –
conformational, SHP2 phosphatase – steric; phosphorylated ligand binding in trans
relieves the intramolecular autoinhibition; the multi-domain organization of these two
enzymes are shown simplified).
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388 17 Phosphorylation-Based Molecular Switches

17.3 Protein Kinases as Molecular Switches and as
Components of Signaling Cascades

Protein kinases could be divided into two primary kinase classes: the eukaryotic pro-
tein kinases (ePK) and the atypical protein kinases (aPK). The eukaryotic protein
kinases are related via their highly conserved kinase core where twelve of the specific
conserved sequence motifs could be classified into twelve subdomains. ePK could
be further divided into eight groups: AGC, CAMK, CK1, CMGC, STE, RGC, tyrosine
kinase, and tyrosine kinase-like [3]. These groups are distinguished by their specific
regulatory mechanisms. Compared to ePKs, atypical protein kinases form a much
smaller group and lack the conserved sequence features, albeit they share the same
kinase domain fold. This chapter discusses the general features of the ePK group.

There are some protein kinases that are constitutively active, but most protein
kinases may be regarded as molecular switches whose activity is universally con-
trolled by phosphorylation at their activation segment [29]. Protein kinases may
get phosphorylated at other regions in their catalytic core or in their disordered
regions flanking the latter [30]. These auxiliary sites vary among kinases but they
have an important but normally indirect role: similarly to other protein phosphory-
lation sites, they could influence the binding of the kinase to other proteins or the
cellular localization, for example. Important structural changes required for turn-
ing an inactive kinase into an active one, apart from activation loop phosphoryla-
tion, include adjustments between the two kinase lobes to allow nucleotide binding,
aligning the ATP phosphates, Mg ions, and the catalytic aspartate to hydrolyze the
nucleotide’s phospho-anhydride bond, opening of the substrate-binding pocket, and
positioning of the phosphorylatable residue for phosphotransfer. There are evolu-
tionary conserved sequence signatures related to any of these processes, and the lack
of any of these features in a kinase sequence indicates that the kinase is not active and
likely functions as a pseudokinase [30]. Conversely, there are some constitutively
active kinases (e.g. PDK1, CK2, and GSK3), where all the catalytic requirements are
in place after translation and folding and thus these enzymes are not dependent on
activation segment phosphorylation.

Protein kinases may operate in a more complex fashion than simple ON/OFF
switches. First, activation segment phosphorylation at one site may not suffice to
turn the kinase on, and the phosphorylation of a few more (normally one or two)
residues is required in a distributive process (e.g. the two phosphorylation sites
in the MAP kinase activation loop). Second, some kinases work as conditional
switches and require priming phosphorylation at an allosteric site in addition to
activation segment phosphorylation (e.g. AGC kinases with a dual requirement for
hydrophobic motif and activation loop phosphorylation). This latter process allows
the transmission of the phosphorylation-based signal toward downstream sub-
strates only if two upstream kinases were simultaneously active. From a structural
point of view, the activation segment in kinases provides a good example of how
phosphates trigger functionally important order-to-disorder or disorder-to-order
structural changes: phosphorylation of amino acids in key positions may cause a
steric clash with the globular kinase domain core and makes the activation loop
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17.3 Protein Kinases as Molecular Switches and as Components of Signaling Cascades 389

more flexible opening access to the otherwise occluded active site. Conversely, the
activation loop may become locked in a more rigid conformation by binding the
phosphates to nearby arginines that in turn are required for the formation of the
substrate-binding pocket. Activity regulation for some kinases may be very complex:
it involves all these mentioned mechanisms in addition to kinase-specific ones; for
example, modular allostery due to their extra modular domains (SH2 domain – Src
tyrosine kinase, PH domain – PKB) or to subunits binding to different secondary
messengers (e.g. cAMP – PKA, DAG – PKC, and Ca/calmodulin – CAMKII) [5].
In some even more complex cases, there could be two kinase domains within one
kinase where one activates the other (e.g. RSK) [30] .

Some kinases require that their substrate was pre-phosphorylated by another
kinase earlier (e.g. GSK3 binds to and phosphorylates S/T-P-x-x-Phos sites,
CK1 binds to and phosphorylates Phos-x-x-S sites, where “Phos” indicates the
pre-phosphorylated, “primed,” phospho-amino acid and x indicates any amino
acid). For example, the JNK mitogen-activated protein (MAP) kinase – as the “mas-
ter” kinase – responsible for phosphate priming may work together with GSK3 or
CK1 to ensure multisite phosphorylation of some of its substrates [31]. Since GSK3
and CK1 – as the “slave” kinase – are both constitutively active, their partnership
with the signal-activated JNK MAP kinase may be required for counteracting the
action of phosphatases and/or to set up a dynamic threshold for JNK pathway
activity-based phosphorylation of specific substrates, probably helping to lower
noise. Protein dephosphorylation is simply controlled by recruitment, and one
Ser/Thr catalytic domain (e.g. PP1) may involve hundreds of different targeting
subunits that place the enzyme next to its substrates [32]. In general, phosphatase
catalytic domains are somewhat simpler than most protein kinase domains regard-
ing structural plasticity; however, some tyrosine phosphatase domains are known
to be modulated by modular allostery (e.g. SHP2) [33].

Protein kinases often form cascades where they phosphorylate each other. This
may be important for signal amplification, to allow protein phosphatases to act at
several levels before the phosphorylation of the final effector protein takes place,
or to bring about a more complex system that allows the integration of different
signaling pathways. In addition, a hierarchically organized kinase cascade provides
a simple blueprint for non-linear network behavior, for example for ultrasensitivity,
where the protein network shows a non-linear cooperative response, albeit each
phosphorylation event between network components is linear [34]. In addition,
protein kinases and phosphatases may also establish phosphorylation-based
positive and negative feedback loops, where a given enzyme affects the activity of
another enzyme found several tiers away from its direct interactors [35]. Because of
this complexity, kinase–phosphatase cascades create a challenge for how to handle
signaling fidelity even before the phosphorylation of the effector protein happens
by the last kinase. To maintain signaling fidelity, namely that an extracellular
cue would elicit the right protein phosphorylation pattern, but also to allow some
level of required cross-talk for signal integration, kinases, phosphatases, and their
substrates form specific interactions that are mostly mediated by so-called linear
binding motifs [36]. These interactions depend on protein associations between a
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390 17 Phosphorylation-Based Molecular Switches

structured globular domain and a short stretch of amino acids located in highly
flexible or disordered protein regions. They mediate transient protein–protein
binding with only micromolar binding affinity, well suited for fast signal propaga-
tion through complex protein kinase/phosphatase networks working with a high
turnover rate, and complement those globular domain–domain type interactions
that take place when kinases activate each other by phosphorylation or when a
phosphatase deactivates a kinase by dephosphorylation [37].

17.4 Mechanisms of Phosphorylation Specificity:
the Importance of Short Linear Motifs

A key question in kinase biology is how kinases achieve specificity for their
substrates, and conversely, how phosphatases specifically dephosphorylate these.
This section will focus on the specificity of protein kinases. An important aspect of
substrate recognition is that the phosphorylation site on the substrate falls within
a consensus amino acid sequence that is complementary to the active site of the
kinase. However, the interaction between the substrate-binding pocket and the
phosphorylation target motif normally does not ensure signaling fidelity, because
consensus sites are short and occur in hundreds or thousands in the proteome
(e.g. an S/TP site for MAP kinases and CDKs or an RxxS/T motif for most AGC
kinases) [38, 39].

Kinase specificity can be increased by forming supplementary interactions that
recruit the kinase to the substrate. These interactions can be mediated by linear bind-
ing motifs – often referred to as docking motifs found in the substrate that binds
to the so-called docking groove on the kinase – or by auxiliary modular domains
found either on the kinase or on the substrate. The important role of these short
linear motif (SLiM)-based protein–peptide type interactions is well-established for
many kinases and phosphatases (Figure 17.3). Cyclin-dependent kinases provide an
interesting example where the cyclin subunit is not only required for the activity
of the kinase but also has substrate-binding docking grooves for different types of

Active site

Docking groove

Modular domain

Target motif

Docking motif

Ligand motif

Figure 17.3 Mechanisms of phosphorylation specificity: the importance of protein–peptide
type interactions. Phosphorylation specificity is governed by protein–protein interaction
specificity between the active site of the kinase and its target motif, kinase-docking grooves
and docking motifs, and/or modular binding domains and their ligands.
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17.4 Mechanisms of Phosphorylation Specificity: the Importance of Short Linear Motifs 391

docking motifs that increase the specificity of S/TP phosphorylation sites [40, 41]. In
addition, the phosphorylation of specific substrates may also be increased by anchor-
ing or scaffold proteins [42]. Anchoring proteins are located in specific compart-
ments of the cell and contribute to the spatial pattern of kinase-substrate phospho-
rylation. The important role of A-kinase anchoring proteins (AKAPs) in directing
PKA activity in the cell is well-established [43]. Scaffold proteins bind more than one
kinase and facilitate signaling through kinase cascades and/or allow combinatorial
regulation between the different tiers of the cascade [12]. Similarly, a protein scaf-
fold that binds a kinase and one of its effector protein substrates at the same time
promotes phosphorylation by passive tethering. Therefore, kinase-docking motifs
are not only found in direct substrates but also on signaling scaffold proteins where
they may indirectly increase the local concentration of the substrate’s target motif
around the kinase’s active site [44].

Mass spectrometry-based phosphoproteomics identified thousands of phos-
phosites [45]. This huge amount of data is collected and curated in dedicated
phosphorylation site resources such as phosphoELM (http://phospho.elm.eu.org)
or PhosphoSitePlus (www.phosphosite.org) and in general protein databases such as
HPRD (www.hprd.org) and Uniprot (www.uniprot.org) [46]. Kinase–phosphosite
predictions are now also possible using sequence-based computational tools. How-
ever, our information on this topic is still fragmented, and possibly a large fraction of
physiologically relevant phosphorylation sites may not even be known. Fortunately,
kinase group-specific or kinome-wide, systems-level experimental studies are
adding to our understanding of the molecular basis of protein kinase-mediated
phosphorylation specificity [47, 48].

Because most phosphorylation sites are located in disordered protein regions, it is
of utmost importance to examine how these regions bind kinases/phosphatases. In
contrast to protein interfaces formed between globular domains, where interacting
residues come from different parts of the 3D structure, the contact residues of linear
motifs are contained within a relatively short (3 to 25 aa) stretch. In principle, this
should make the identification of linear motifs binding to the same protein domain
straightforward, based on their sequence similarity. Unfortunately, the low informa-
tion content of these motifs renders them elusive for simple consensus motif-based
in silico searches [49]. This is due to the fact that only a few fixed positions (as few as
2–3 aa residues, albeit more typically 4–5) define a particular type of linear motifs,
called classes. The Eukaryotic Linear Motif (ELM) database currently contains more
than 200 motif classes with more than 2000 instances [50].

Linear binding motif discovery will likely facilitate our understanding of phos-
phorylation specificity because auxiliary protein interactions – beyond substrate
target motif binding – play a decisive role. However, natural SLiMs exist as
multiple, relaxed versions of a hypothetical optimal consensus. Because of these
shortcomings, purely sequence-based in silico approaches should be comple-
mented by structure-based scoring schemes whenever possible [51, 52]. Testing
three-dimensional complementarity of peptides to the partner domain surface will
then help to filter hits before starting their experimental validation.
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392 17 Phosphorylation-Based Molecular Switches

17.5 Examples of Phospho-Switch-Based Biological
Regulation

SLiMs, apart from passively mediating binding between proteins, can play a more
active role since they can also be subject to different types of PTMs, which may
change their capacity for being able to function as recruitment sites between
proteins. The switches ELM resource (http://switches.elm.eu.org) is a useful com-
pendium of short linear motifs that are known to be regulated by phosphorylation
[52]. It is important to note that phospho-switches rarely work as classical ON/OFF
switches and they rather operate as dimmers where phosphorylation changes
their binding affinity to their partners modestly, mostly less than 10-fold [53]
(Figure 17.4).

Another important aspect of phospho-switches is that they are often subject to
multisite phosphorylation, namely that they are phosphorylated at multiple
sites. These more complex phospho-switches may be modified by one kinase at
several sites or by different kinases at distinct sites. Thus, their earlier described
biophysical/structural sensitivity toward accommodating phospho-amino acids
forms the mechanistic basis for higher-level phosphorylation-based biological
regulation (e.g. noise suppression, ultrasensitivity, and signal integration). The
following sections will describe how CDK activity thresholds may drive cell
cycle stage-specific substrate phosphorylation and how human mitogen-activated
protein kinases (MAPK) exert their control on the activity of specific transcription
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Figure 17.4 Phosphorylation-based ON/OFF switches vs. dimmers. (a) Phosphorylation
might have a profound effect on protein–peptide type interactions, either by promoting
it (ON switch), disrupting it (OFF switch), or by altering the binding affinity in a more
gradual fashion (ON or OFF dimmer). (b) As an example of dynamic regulation, the
formation of RSK1–MAGI1 complex is controlled by PDZ domain binding and PDZ ligand
phosphorylation (on Thr733). The crystal structure of the RSK1 C-terminus (green) in
complex with the MAGI1 PDZ domain (brown) is shown in the upper panel. The lower
panel shows the results of a luciferase complementation assay, where the complex
formation between RSK1 and MAGI1 was monitored in unstimulated (black) and
EGF-stimulated (gray) HEK293 cells. Source: Gógl et al. [14]/John Wiley & Sons.
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17.5 Examples of Phospho-Switch-Based Biological Regulation 393

factors. These examples will demonstrate how the complex regulation of biological
activities may come about by combining kinase binding linear motifs and their
phosphorylation target motifs in disordered protein regions, and also how the
function of the latter could simply change as phosphorylation-based regulatory
systems evolve.

Cyclin-dependent kinases (CDKs) drive the major events of the eukaryotic cell
division cycle. Substrates of Cdk1 in budding yeast (Saccharomyces cerevisiae) were
analyzed by phospho-proteomics in vivo, which identified 547 phosphorylation sites
on 308 proteins. It was found that more than 90% of the identified Cdk1-dependent
phosphorylation sites were located in loops and disordered regions [47]. Further-
more, it was also found that Cdk1 targets had multiple phosphorylation sites that
tended to cluster, suggesting that multiple phosphorylations modulate the same pro-
tein surface. Further analysis of Cdk1 substrate orthologs from 32 different fun-
gal species revealed that many substrates are phosphorylated at rapidly evolving
site clusters, which are likely to modify substrate function by simply disrupting or
generating protein–protein interactions, possibly allowing diverse cell cycle control
mechanisms to adapt rapidly. CDKs are activated by different cyclins at different
cell cycle stages, and a quantitative model of CDK function states that cyclins tem-
porally order cell cycle events at different CDK activity levels or thresholds. Three
mechanisms determine the phosphorylation rate of a yeast CDK substrate: active site
specificity, presence of Cks1 binding sites (phospho-TP), and cyclin docking motifs.
CDK1 functions in complex with a specific cyclin (also an allosteric activator of the
kinase) and Cks1 (a phospho-threonine binding adapter). The CDK active site rec-
ognizes minimal (S/TP) or full consensus motifs (S/TPxK/R), cyclins can bind to
specific substrates via linear motifs for substrate targeting and the Cks1 subunit of
the CDK complex interacts with phosphorylated TP sites and directs multisite phos-
phorylation. It was suggested that the cyclin-CDK-Cks1 complex could serve as a
scaffold for disordered Cdk1 substrates, mediating an ordered phosphorylation pro-
cess. According to the multisite phosphorylation code hypothesis, the linear motifs
(phosphorylation and docking sites) and their patterns function as a barcode giving
a unique identity to each substrate. The cyclin-CDK-Cks1 complex can read the bar-
code and assigns the execution of any CDK-triggered switch to a specified time point
during the cell cycle [54].

We have a substantial understanding of how individual MAPKs bind to tran-
scription factors (TF) since most of the known docking motifs (the so-called
D- or F-motifs) were originally found in these proteins decades ago. Physiological
responses to extracellular cues depend on a complex activation pattern of different
MAPKs (e.g. ERK1/2, JNK, and p38), which is not exclusive but combinatorial, and
not binary (i.e. on or off) but quantitative. Immediate-early (IE) gene transcription
factors (TF; e.g. Elk1, ATF2) are directly linked to MAPK-signaling cascades,
and thus the rate of transcription of a specific gene is coupled to the strength
of intracellular-signaling events [55]. The primary response to an extracellular
cue is triggered by phosphorylating the TF in its transactivation domain (TAD),
which is structurally mostly disordered. The Elk1 TAD binds to one of the subunits
of the Mediator complex promoting gene expression, and this binding region is
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Figure 17.5 An example of a complex, linear motif-based phospho-switch: ATF2 TAD.
The ATF2 transcription factor regulates gene expression in response to MAP kinase
activation. ATF2 contains a binding site (a Zn finger + D-motif binding to the D-groove,
yellow) for JNK and an F-site (green) binding to the F-groove. TAD activity is correlated with
the phosphorylation of T69/71 sites. The invertebrate ATF2 TAD contains an asparagine at
position 90 which optimally caps the p38 binding helical region: the two kinases activate
the TAD in an additive manner. However, all vertebrate ATF2 orthologs have a serine at this
position (S90) that is phosphorylated by JNK. Because Ser90 phosphorylation blocks p38
binding, the vertebrate TAD architecture allows a more complex regulation of how p38 and
JNK co-regulate ATF2 transcriptional output. Upper panels show the structural models of
p38- and the JNK-ATF2 TAD complexes and bottom panels show the results of
phospho-ATF2 levels calculated with an in silico model. Source: Kirsch et al. [57]/Springer
Nature/CC BY 4.0.

surrounded by ERK phosphorylation target sites and also contains an ERK-binding
D-motif as well as an F-motif. The Elk1 TAD is regulated by ERK phosphorylation:
the phosphorylation rate of eight distinct sites is determined by their position
relative to ERK2 docking motifs, and residues with fast/intermediate or slow
phosphorylation rates promote or attenuate co-activator binding, respectively. This
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17.6 Conclusion 395

allows the TAD to promote transcription under low/intermediate ERK-signaling
pathway flux and to down-regulate it under high ERK flux. In brief, the Elk-1
TAD harbors a MAPK-controlled complex phospho-switch subject to multi-site
phosphorylation and demonstrates how progressive Elk-1 TAD phosphorylation
causes a self-limiting response to ERK activation [56].

Another study found that the ATF2 TAD architecture is key in determining how
the transcription factor will respond to JNK, p38, or the concomitant activation
of these two. The ATF2 TAD has two MAPK phosphorylation sites (T69/71),
and p38 and/or JNK-mediated phosphorylation promotes the transcription of
specific genes. The JNK-binding D-motif and a p38-specific F-motif were mapped
N-terminal or C-terminal from the critical T69/71 sites. The topology of the MAPK
binding sites relative to the transcription-controlling phosphorylation sites is
evolutionarily conserved but in vertebrates the TAD also contains a unique JNK
phosphorylation site located in the p38-binding F-site, and JNK phosphorylation
at this unique site (Ser90) attenuates p38 binding. Because of this, the ATF2 TAD in
vertebrates does not simply integrate the signal coming from the two MAPKs, as this
seems to be the case in invertebrate orthologs, but due to its unique architecture, it
responds to the relative strength of these two MAPK pathways. This latter capacity of
the ATF2 TAD goes beyond additive phosphorylation of the same phospho-switch.
The basic integration capacity, emerging from an ancient pre-vertebrate ATF2
architecture comprised of JNK and p38 binding sites, became more complex due
to an amino acid change (Asn to Ser at 90) in the critical p38 binding region in
vertebrates: one of the MAPKs (JNK) acquired the capacity to have a direct influence
on how the other (p38) effects ATF2 mediated transcription [57] (Figure 17.5).

Changing the response of transcription factors to signaling pathways is an
important mechanism in the evolution of gene regulation. It was posited that
amino-acid changes in the CCAAT/enhancer-binding protein-β (CEBPB) changed
the way this TF responded to cAMP/protein kinase A/GSK3β signaling in placental
mammals, which in turn changed expression of prolactin hormone [58]. The
novel function came about because of amino acid substitutions reorganizing the
location of key phosphorylation sites. These simple changes in the architecture of
the transcription controlling regulatory domain of CEBPB were sufficient to cause
a fundamental change, from repression to activation, in how the TF responded to
phosphorylation.

17.6 Conclusion

Phospho-switch-based regulation has been mostly addressed in individual studies
where the goal was to reveal the mechanistic basis underlying the function of a
known phosphorylation event in a given protein. These studies provided dozens of
well-characterized examples, and as the number of biochemically and structurally
explored cases increased, some common themes have emerged: (i) most protein
phosphorylation occurs in a disordered protein region (although the globular
“writers” are also regulated by phosphorylation), (ii) phosphorylation sites with
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Figure 17.6 Functional modalities regulated by phospho-switches (KIN: kinase; SUB:
substrate). Phosphorylation may affect enzymatic activity through specialized
phospho-switches that work in cis. The mechanistic basis of this type of regulation may be
highly diverse and depend on the specific topology of the phospho-regulated protein.
However, phospho-switches that work in trans may operate similarly: they are
phosphorylation sensitive interaction hot spots for effector protein binding involved in
protein level control (e.g. ubiquitin ligases or RNA polymerase subunits) or cellular
localization (e.g. anchor proteins binding to the cytoskeleton).

functional relevance are often located in known linear binding motifs (for example
in the ligands of the “readers”, in the SLiMs that bind to phospho-tyrosine or
phospho-serine/threonine binding domains), and (iii) phospho-switches are
often associated with known linear binding motifs for kinases or phosphatases
enhancing the rate of catalytic activity and specificity among the “writers/erasers”.
Because of these, prediction of phospho-switches in proteins using bioinformatics
is inherently linked with linear binding motif and kinase phosphorylation site
discovery in general. Fortunately, based on our current structural and biochemical
knowledge, individual kinase phosphorylation sites in a protein may be predicted.
Moreover, large-scale phospho-proteomics studies provide lots of experimental data
on protein phosphorylation globally and under relevant cellular settings. Concur-
rently, large-scale experimental interactomics, particularly those focusing on the
disordered part of the proteome [59], provide more and more data on linear motif
mediated protein–protein associations. Moreover, the three-dimensional structure
of the writers/erasers and reader domains may be used for the structural modeling
of protein–peptide type interactions, and more recently deep-learning computa-
tional approaches are also employed to predict these types of interactions [60].
The real challenge in exploring phospho-switches on the large scale is their exper-
imental analysis/validation. There are several protein–protein interaction tools
used in protein interactomics: peptide–protein arrays, biological surface display
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techniques (e.g. phage display), affinity purification mass spectrometry (AP–MS),
protein fragment complementation assays (PCA), two-hybrid screening (Y2H or
M2H), signaling pathway reconstruction (e.g. MAPPIT), proximity-based protein
labeling, or in vivo protein crosslinking that may be used to explore phospho-switch
regions as baits; however, the modification of these regions by a kinase in these
artificial systems may not be straightforward, moreover, the preys are also mostly
unknown [61]. Fortunately, earlier studies on phosphorylation-based biological
regulation established that this PTM frequently affects protein abundance (for
example through phospho-degrons that bind to ubiquitin ligases), gene expression
(for example through binding to phosphorylation controlled TADs), or cellular
localization (for example through binding to phospho-amino acid-binding domains
from anchoring proteins) and the study of these functional modalities may be
addressed with dedicated cell-based assays (Figure 17.6). We foresee that the
discovery of phospho-switches will facilitate the understanding of protein phos-
phorylation not only in individual proteins but also at a higher level, in protein
networks and ultimately in intact cellular systems, too.
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18.1 Technical State of the Art

For sure, in all areas (structural biology, interaction assays, spectroscopy, and data
sets) we can expect to see continuous improvements of existing methods in terms of
spatial and time resolution, sensitivity, and a continuous shift toward in vivo tech-
niques and to condition-specific techniques. Also, scientists will continue to intro-
duce novel techniques that enable us to probe interactions on a genome-scale rather
than one-by-one.

Some types of protein interactions can already be efficiently approached by
experiments at a genome-wide scale, e.g. those of proteins interacting with DNA
using ChIP-Seq [1], or with RNA using eCLIP [2]. For decades, protein–protein
interactions have been studied by yeast-two-hybrid (Y2H) and tandem affinity
purification coupled with mass spectrometry (TAP/MS) techniques. Yet, these
methods have their limitations, in that they often lack in sensitivity and cannot
differentiate between different isoforms and posttranslational modifications.
A promising novel opportunity has arisen in the form of direct protein sequencing
using nanopore technologies, Edman degradation, and mass spectrometry that
provide resolution down to the single-cell level [3, 4], but these methods are still far
from maturity. In this light, computational tools that enable integration of sparse
and multimodal experimental data are gaining importance, and machine learning,
in particular deep learning, bears a great promise to fulfill this need.

18.2 Role of Machine Learning

The important contributions of machine learning to diverse areas of interactomics
were mentioned in several chapters of this book, e.g. Chapters 2 and 3 introduce
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machine learning approaches that can distinguish biological contacts from crystal
contacts or that predict hotspots at binding interfaces. Chapter 4 (as well as other
chapters) mention recent breakthroughs in protein structure prediction made by
deep learning approaches [5, 6], and note that similar techniques will likely become
helpful for predicting biomolecular contacts as well. Also mentioned in Chapter 4
is the potential of machine learning in deriving scoring functions. A special type of
machine learning methods (Boltzmann generators, see [7]) have been developed to
generate putative protein conformations along protein folding pathways as alluded
to in Chapter 9. Chapter 15 then explores the application of machine learning to
predict changes of binding affinity upon mutations as well as for predicting their
phenotypic effects. Finally, Chapter 16 mentioned machine learning tools that pre-
dict Molecular Recognition Features (MoRFs) as a subgroup of intrinsically disor-
dered regions. One can certainly anticipate that the role of machine learning and
the diversity of its applications in the field of interactomics will steadily increase in
the coming years.

The key challenge for powerful machine learning techniques, such as deep learn-
ing, in the field of interactomics currently lies in the sparsity of experimental data
available for training. Additionally, these data often come from different experimen-
tal approaches. Luckily, standardized high-throughput experimental tools (as out-
lined in Section 18.1) should alleviate this problem in the future. The data sparsity
issue can be also mitigated by emerging machine learning tools that allow to train
models on very sparse and multimodal data. Machine learning should become par-
ticularly helpful in integrating data stemming from different sources.

18.3 Challenges

Experimental studies addressing protein interactions do not routinely character-
ize whether the involved proteins are subject to posttranslational modifications
although, in the light of Chapter 17, such details appear to be of critical impor-
tance. A particularly noteworthy example is the C-terminal domain of RNA
polymerase. It consists of multiple repeats of the peptide sequence YSPTSPS, in
which five out of seven residues can be phosphorylated. Peck et al. [8] described
how dynamic alterations in the phosphorylation status of these residues enable
the formation of specific interactions with different regulatory proteins during the
transcription cycle. Further examples mentioned, e.g. in Chapter 10 describe how
phosphorylation affects transcription factor–DNA interactions.

More work is also needed to map the conditions under which, e.g. protein–protein
interactions are relevant, and when they are not. It has become common practice to
prune the global protein–protein interactome to a particular condition on the basis
of transcriptomic (or ideally proteomic) information about which genes/proteins are
expressed or not. The idea behind this is that proteins that are not present in a par-
ticular cell type cannot interact. But, of course, we also need to determine which
protein isoform is expressed in that tissue or cell type and whether the isoforms are
subject to PTMs in that particular condition.
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18.4 What Picture(s) May Evolve? 403

Another fundamental challenge is to properly address protein interactions
involving fully or partially disordered proteins. Such interactions are widespread,
e.g. among RNA-binding proteins (RNAPs), but not well amenable to structural
biology (X-ray and cryoEM) or to molecular dynamics simulations. Here, we point
to a recent perspective article that addressed the potential of machine learning
approaches in this respect [9].

What is currently also lacking is to better connect the different layers of inter-
actomes. Proteins that interact with DNA, chromatin, and RNA are well-known to
interact also with other proteins and with small molecules acting as effectors. But
can proteins that interact with DNA also bind to RNA? Can they bind to membranes
or to the cytoskeleton?

18.4 What Picture(s) May Evolve?

It is difficult to estimate to what fraction the protein interactome of an organism such
as human or of a model plant such as Arabidopsis thaliana is known to date. Based
on a Bayesian scheme for data integration, the developers of the repository PrePPI
estimated in 2016 that there are between 127 000 and about 500 000 direct physical
interactions of pairs of human proteins [10]. Yet, the question is also where we draw
the line what contacts are considered as direct physical interactions. Chapter 12 pre-
sented the intriguing picture whereby practically all synthesized RNA molecules of
a cell are constantly covered by many types of proteins during their entire lifetime.
Hundreds of RNAPs can bind to individual mRNAs, often at many different places,
and only concerted binding of several RNAPs can elicit the desired biological effect,
such as, for example, mRNA processing. Can we expect the same multitude also with
respect to interactions of proteins with DNA, membranes, and the cytoskeleton? In
a particular human cell, a few hundreds of thousands of specific protein–protein
contacts may exist with life times ranging from short-lived transient, yet specific
interactions of redox proteins or between proteins of a signal transduction pathways,
up to permanent assemblies such as ribosome or proteasome. Can we neglect that
millions to billions of unspecific protein contacts transiently form in parallel to these
specific assemblies? Do they give rise to particular phenomena due to their sheer
number such as membrane rafts or molecular sponges around RNAs? Only time
will tell us.

From a bioinformatics perspective, there will likely be plenty of work for us in the
coming years. First of all, the experimental techniques are maturing so that the accu-
mulated gold standard data sets are growing in size, coverage, and in quality. Hence,
the relevance of data integration and machine learning is steadily rising. Although it
may sometimes appear as if “the more we know, the more we don’t know,” looking
at the current COVID-19 pandemic should provide us with good faith in the power of
modern life sciences. Never before have scientists been able to respond so quickly to
a deadly disease by mapping out the cellular and molecular consequences of a viral
infection, characterizing the molecular interactions of the virus with host proteins
on the surfaces of cells, and eventually even inventing novel vaccines. What helped,
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in the end, was to understand how the spike protein of the envelope of the SARS-2
virus binds to the human ACE2 receptor. Do we need to say anything more why THIS
BOOK addresses a timely topic?
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(EGFRs) 305
eukaryotic genes 205, 359
exocytosis 133, 139

f
Förster resonance energy transfer (FRET)

116, 129, 164, 181, 182, 227, 242,
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fluorescence polarization (FP) assays 40,
223, 226, 241, 245

folded proteins 3, 10
free energy 143, 144, 146–156
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gatekeeper mutation 328
generalized Born (GB) model 66, 149,

150
generalized/Hamiltonian

replica-exchange methods 156
Gibbs free energy 107, 144–145, 344
glycophorin A (GpA) 303–306
G-protein coupled receptors (GPCRs)

301, 306, 308, 317, 328
guardian of the cell 197

h
HADDOCK 58, 62, 64, 66, 117, 132, 139,

347
helical transmembrane proteins 6, 7
hidden Markov models (HMM) 175,

182, 183, 338, 367
histone posttranslational modifications

215–231
cellular assays to characterize

227–231
homodimeric interfaces 46
homology modeling 39
HUMA 338
hybrid methods 117, 131–133
hydrogen bonds

allosteric effects 327–329
anion-π interaction 325–326
bifurcated 322–323
cation-π interaction 325
classification 321
definition 319–320
delocalized π-electron systems 325
entropic aspects 327
fluorine 322
by force fields and docking simulations

326–327
halogen bonds 323–324
in biological systems 320–321
nitrogen versus oxygen 322
unusual protein-ligand contacts 326
van der Waals interactions 324
weak 321–322

HyperTRIBE 280

i
immunofluorescence (IF) 227, 229
immunoprecipitation assays 203–204,

244
induced fit 102, 176, 177, 184, 316
in-silico protein structure prediction 39
in situ structural biology 128
integral transmembrane proteins 6
Integrative Modeling Platform (IMP)

132, 134, 139
integrative structural biology 128,

131–133
International Molecular Exchange (IMEx)

consortium 79
intrinsically disordered regions (IDR)

147, 273, 359, 360, 362–367, 402
Inverse Potts Model 40, 43–45
in vitro remodeling assays 245
isothermal–isobaric ensemble 143–145

k
kinase specificity 390

l
light-based microscopy 129
linear interaction energy (LIE) 149, 150
linear response approximation 149
liquid-liquid phase separation (LLPS)

215, 273, 384
live-cell fluorescent microscopy 129
local statistical inference, limitations of

41–42
long disorder regions (LDRs) 10

m
machine-learning methods 26, 28,
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mammalian DNA 231
Markov state models (MSM)
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association-dissociation path ensemble
177–178
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Markov state models (MSM) (contd.)
dimensionality reduction 171–172
estimation, validation, and analysis

169–178
feature selection 170–171
model estimation and validation

173–174
protein–protein encounters 176–177
sources of errors and uncertainty

179–180
spectral gaps 174–175
theory and properties 165–169
VAC and VAMP 169–170

mass spectrometry 61, 80, 106, 117, 128,
223, 225, 229, 232, 242, 276, 282,
361, 391, 397, 401

maximum-entropy principle 42
mCSM 347
mean-field DCA (mfDCA) 44
mean first passage times (MFPT) 178
mean force, potential of 150–155
metadynamics 153–156
methylation-sensitive SELEX 235
MM/GBSA 149–150
MM/PBSA 149–150
Molecular Complex Detection (MCODE)
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algorithm 86–88
definition 85

molecular dynamics (MD) simulations
60, 64–67, 146, 149, 151, 164–165,
176–177, 181, 200, 204–205,
296–297, 301–302, 306, 345

M-TASSER 63, 115
multiple sequence alignment (MSA)

42–46, 344, 346
multiplexed arrays of variant effect

(MAVE) 348
mutation

biophysical properties 344–345
dynamic structural annotation

pipelines 339–342
mechanistic effects 345–348
phenotypic effects 343–344
predicting effects 342–343

structural annotation methods
334–335

databases 335–338
MutDB 335
myristoylation 299, 301, 303

n
non-symmetric complexes 111
normal-mode analysis 150
NPT ensemble 144
nuclear magnetic resonance (NMR)

spectroscopy 9, 26, 39, 45, 53,
102, 127, 131, 164, 181, 196, 208,
241, 272, 298, 324

nucleic acid methylation 235
nucleosomes 199, 204, 213, 222,

224–227, 229, 232, 241, 242,
244–248

o
obligatory interfaces 25
oligomerization 6, 154, 156, 306

p
palmitoylation 296, 303, 363
parallel tempering 154–156
pathway methods 150, 151, 156
peripheral membrane proteins (PMPs)

294–303, 307, 308, 384
Perron Cluster-Cluster Analysis (PCCA)

174, 175
phosphatases 295, 299, 382, 386, 387,

389–391, 396
phospho-amino acids 383, 392
phospho-proteomics 383, 393, 396
phosphorylation 381

in cellular signaling 386–387
mechanisms of 390–391
molecular switches 388–390
phospho-switch based biological

regulation 392–395
structural and functional effects

383–386
PhyreRisk 342
physico-chemical interactions 195, 316
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plasma membrane 7, 133, 136, 293–303,

305, 306, 308
pleckstrin homology (PH) domains 300
Poisson-Boltzmann (PB) equation 150
position-specific scoring matrix (PSSM)

28, 202, 204, 344–345
post-translational modifications (PTM)

338, 381
histones 215–231
molecular parameters 226–227
peptides and nucleosomal templates for

222–224
qualitative analysis 224–226

potential of mean force (PMF) 145,
150–155

Potts model 40, 42–45
prenylation 299, 301–303, 381
principal component analysis (PCA)

172, 397
protein binding sites 15, 230, 236
protein complexes

computational approaches 110–117
quaternary structure 101–102

Protein Data Bank (PDB) 18, 21–24, 26,
102, 106–107, 150, 316, 334–336,
338, 340–341, 349, 369, 373

protein interactions, types of 41, 401
protein–ligand interactions 147, 317,

319, 327, 329
protein–protein binding 183

free energy 24
interfaces 15–30

protein–protein encounters 143–156,
163–186

protein-protein interaction interfaces
109, 114–115

classification 102, 104–105
protein-protein interaction network

(PPIN) 77
of human 83
identify protein complexes 84–94
of model organisms 80
Molecular Complex Detection 84–88
Saccharomyces cerevisiae 80–83

protein-protein interactions (PPIs)
alternative splicing 367–373
public data repositories 79

protein-protein interface
amino acid composition 22–23
biological vs. crystal interfaces 26
characterization 29
conserved residues and hot spots

28–29
definition 15–18
distance-based methods 15–16
gap volume 22
homo-and hetero-dimeric complexes

24
non-obligate and obligate complexes

25
regions 16–17
secondary structure 23
structure 16
surface area 21
3D structures 21
transient and permanent complexes

25–26
types 27

proteins
active sites 3–6
binding interfaces 10–11
composition 2–3
conformational dynamics 8
disordered 9–10
domains 1–2
evolutionary conservation 10
folded structure 7
large-scale domain motions 8–9
membrane 6–7
N-terminal and C-terminal tails 9
secondary structure elements 3
size 1
surface dynamics 9
surface loops 11
post-translational modifications 11

proximity ligation assays (PLA) 229
proximity-dependent biotinylation 282
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pseudo-likelihood maximization direct
coupling analysis (plmDCA)
44–45

q
quaternary protein structure 101

r
Ras proteins function 301
relative accessible surface area (rASA)

15–16
relative binding free energies 147, 156
replica-exchange methods 155–156
ribonucleoprotein complexes 359, 384
RNA modifications 232, 234, 236
RNA polymerases 274
RNA-protein interaction detection

(RaPID) 279, 280
RNA-protein interactions 272–273,

275–276, 278–280, 282
RNA-protein interactomics

co-purification methods 280
interactomes 278–280
metabolic RNA labelling with modified

nucleobases 273
proximity-dependent labelling methods

280–282
RBPome 276–278
RNA-protein crosslinking 274–276
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89, 92, 196, 207, 236, 238, 274, 336,
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salt bridges 24–25, 278, 317–318, 326,
330, 333, 383, 387

short linear motifs (SLiMs) 363,
366–367, 391–392, 396

single-nucleotide variants (SNVs) 333,
341, 343

small angle X-ray scattering (SAXS) 39,
62, 116, 156, 241

in solution 62

solvent accessible surface area (SASA)
16, 150

spliceosome 359, 361, 384
statistical inference of coevolution

41–43
steered molecular dynamics (steered MD)

153
super-resolution microscopy methods

129
surface plasmon resonance (SPR) 226
symmetric complexes 105, 111, 113

t
targets of RBPs identified by editing

(TRIBE) 280–282
thermodynamic ensembles 143–145
thermodynamic integration (TI) 151
3D-MOSAIC 113–114, 116
time-lagged independent component

analysis (TICA) 172
transition path theory (TPT) 177–178
trans-membrane proteins (TMPs)

6–7, 294–296, 300–301, 303–308,
317

transcript variants 359–360, 368
transcription factors (TFs) 195

binding sites 201
detection 201–204
position-specific scoring matrix

204
cis-regulatory modules 205–207
dimerization 198
DNA curvature/bending 200
epigenetic modification 199
gene expression 207
modifications 200–201
molecular dynamics 204–205
sequence recognition principle

197–198
transmembrane proteins (TMPs) 6–7,

294, 300, 303–308, 317
two-component signal transduction

system (TCS) 45–46
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tyrosine phosphorylation 382–383,
386–387

u
UHRF1 239–241, 247
umbrella sampling (US) 151–153,
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v
variational approach for conformational

dynamics (VAC) 169–170
variational approach for Markov processes

(VAMP) 169–171, 173, 185

van der Waals interactions 150, 305, 319,
324, 326, 330

VarQ 341–342

w
water soluble proteins 2, 6
weighted histogram analysis method
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X-ray crystallography 9, 26, 39, 53, 102,
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