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Preface 

Most countries decided to open up their society again after the pandemic in the 
beginning of 2022. This meant that we could finally meet in person again, and the 
87th annual meeting of the Psychometric Society was held in Bologna, during July 
11–15, 2022. Some of the presentations given at that meeting are included in this 
volume. There were 325 abstracts submitted (including 198 oral presentations, 57 
posters, and 144 papers in organized symposia). The meeting attracted 388 par-
ticipants, 80 of whom also participated in short course pre-conference workshops. 
There were three keynote presentations, six invited presentations, three spotlight 
speaker presentations, two dissertation award presentations, one early career award 
presentations, and one career award presentation. 

This will be the eleventh time that Springer publishes the proceedings volume, 
from the annual meeting of the Psychometric Society. This volume is important 
as it allows presenters at the annual meeting to spread their ideas quickly to the 
wider research community, while still undergoing a thorough review process. The 
previous ten volumes of the IMPS proceedings were received successfully, and we 
expect these proceedings to be successful as well. 

We asked the authors to use their presentations at the Bologna meeting as the 
basis of their chapters. The authors also had the possibility to extend their chapters 
with new ideas or additional information. The result is a selection of 32 state-of-
the-art chapters addressing several different aspects of psychometrics. The content 
of the chapters includes, but are not limited to, item response models, structural 
equation models, missing values, test equating, cognitive diagnostic models, and 
different kind of applications. 

Umeå, Sweden Marie Wiberg 
Amsterdam, The Netherlands Dylan Molenaar 
Santiago, Chile Jorge González 
Madison, WI, USA Jee-Seon Kim 
Montreal, QC, Canada Heungsun Hwang
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Factors Affecting Efficiency of Interrater 
Reliability Estimates from Planned 
Missing Data Designs on a Fixed Budget 

L. Andries van der Ark , Terrence D. Jorgensen , and Debby ten Hove 

Abstract Estimating interrater reliability (IRR) requires each of multiple subjects 
to be observed by multiple raters. Recruiting subjects and raters may be prob-
lematic: There may be few available, it may be costly to compensate subjects or 
to train raters, and participating in an observational study may be burdensome. 
Planned missing observational designs, in which raters vary across subjects, may 
accommodate these problems, but little guidance is available about how to optimize 
a planned missing observational design when estimating IRR. In this study, we 
used Monte Carlo simulations to optimize an observational design to estimate 
intraclass correlation coefficients (ICCs), which are very flexible IRR estimators 
that allow missing observations. We concluded that, given a fixed total number of 
ratings, the point and credibility estimates of ICCs can be optimized by means of 
(approximately) continuous measurement scales and assigning small teams of raters 
to subgroups of subjects. Also, less substantial differences between raters resulted 
in more efficient IRR estimates. These results highlight the importance of well-
designed observational designs and proper training on an observational protocol to 
avoid substantial differences between raters. 

Keywords Interrater reliability · Intraclass correlation · Generalizability theory · 
Planned missing data · Observational design 
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2 L. A. van der Ark et al.

1 Introduction 

This chapter provides evidence we gathered to plan a complex observational study 
for the Netherlands Ministry of Justice and Security to estimate the interrater 
reliability (IRR) of the National Instrument of the Juvenile Criminal Justice System, 
which is known by its acronym LIJ (pronounced like the English word “lie”; Van der 
Put et al., 2011). The LIJ is used to predict the risk of recidivism and to identify 
protective factors and risk factors of all minors who are suspect of a criminal case. 
Completing the LIJ includes an officer of the Netherlands Child Care and Protection 
Board (rater) separately interviewing both the juvenile (subject) and at least one 
caretaker to obtain answers to almost 200 questions. This procedure typically takes 
several workdays spent on reading the police files, conducting the two interviews, 
and obtaining additional information from and verifying information with, for 
example, social workers or teachers (see Van der Ark et al., 2018, with a summary  
in English on p. 5). 

Estimating IRR requires that each subject is assessed by multiple raters. Three 
main challenges complicated investigating the IRR of the LIJ. First, a lack of 
time. The officers—who also have other important job responsibilities—lacked the 
time to obtain multiple ratings of the same juveniles. Second, the pool of raters 
and subjects to choose from was limited. Ecologically valid ratings require raters 
who are real officers and subjects who are real juveniles within the justice system. 
Third, recording interviews with the juveniles would be too ethically risky, but 
raters were required to make observations at the same time and location. The LIJ 
was administered on 18 different locations in The Netherlands. Obtaining multiple 
ratings of the same subjects was thus complicated by constraints on time and 
resources. From a pragmatic perspective, each juvenile was preferably assessed by 
a minimal number of raters from a local team. 

Sampling few raters minimizes the burden on subjects and raters, but maximizes 
sampling variability of IRR estimates. Because the stakes were high for the juvenile 
delinquents, precise IRR estimates were required. Planned missing observational 
designs in which the raters vary across subjects enable using a larger sample of raters 
while keeping the burden on individual raters stable. Guidance in optimizing such 
a planned missing observational design to yield precise IRR estimates is currently 
lacking. In this chapter, we therefore discuss a simulation study that aimed to yield 
IRR estimates with maximal precision while minimizing the burden on raters. 

1.1 Intraclass Correlation Coefficients 

IRR coefficients that can accommodate incomplete data are rare (e.g., Krip-
pendorff’s . α; Hayes & Krippendorff, 2007), but an advantageous choice is the 
intraclass correlation coefficient (ICC), which has long been used to quantify IRR 
(Bartko, 1966; Fleiss & Cohen, 1973; Shrout & Fleiss, 1979). A family of ICC 
coefficients can be derived from the broad framework of generalizability theory
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(GT; Cronbach et al., 1963; Brennan, 2001), which was developed for normally 
distributed variables (McGraw & Wong, 1996) and can be calculated from variance 
components estimable using a linear mixed model (Jiang, 2018): 

.Ysr = μ + μs + μr + μsr , (1) 

where . Ysr is rating of subject s by rater r , . μ is the overall mean rating, . μs and . μr are 
main subject and rater effects, respectively, and . μsr is the subject . × rater interaction 
(confounded with any other source of measurement error). Assuming independent 
effects with means of zero, the orthogonal variance components sum to the total 
variance of . Ysr : 

.σ 2
Y = σ 2

s + σ 2
r + σ 2

sr . (2) 

An ICC quantifying absolute agreement among raters expresses the variance 
between subjects relative to all sources of variance (McGraw & Wong, 1996): 

.ICC(A, 1) = σ 2
s

σ 2
s + σ 2

r + σ 2
sr

, (3) 

and can be interpreted as the degree to which subjects’ absolute scores can be 
generalized over raters (relevant when evaluating whether a subject meets an 
absolute criterion; Vispoel et al., 2018; Ten Hove et al., 2023). If, in practice, 
judgments would be made by averaging scores across .k > 1 raters, reliability would 
be increased by reducing rater-related error proportional to k; that is, by dividing the 
rater-related variance components in the denominator of Equation (3) by the number 

of raters .
σ 2

r +σ 2
sr

k
. 

Equation (1) can be extended by relying on the latent response variable (LRV) 
interpretation of a probit model (Agresti, 2007). Assuming an observed outcome 
X—measured using a discrete scale with categories1 .c = 0, . . . , C—is a crude 
indicator of an underlying continuum Y : 

.Xsr = c if τc < Ysr ≤ τc+1, (4) 

a standard linear-model interpretation is applicable to the LRV . Ysr , under an 
identification constraint that the residual variance .σ 2

sr = 1. An advantage is that 
ICCs can be compared across studies that used different response scales, such as 
binary vs. 5- or 7-point Likert scales (Zumbo et al., 2007; Vispoel et al., 2019). The 
LRV approach has recently been proposed for generalizability coefficients (of which 
ICCs are a special case; Ten Hove et al., 2023; Vispoel et al., 2018) using structural 
equation modeling (SEM; Vispoel et al., 2019; Ark,  2015), which Jorgensen (2021)

1 There are actually .C + 2 thresholds, but the lowest and highest thresholds are fixed by definition 
to be the lowest and highest possible scores in the Y distribution; because the normal distribution 
is unbounded, .τ0 = −∞ and .τC+1 = +∞. 
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showed could be problematic for sparse data from planned missing data (PMD) 
designs. The current study investigates a generalized linear mixed model (GLMM) 
with a (cumulative) probit link function for ordinal outcomes, which can estimate 
variance components from a crossed design even with incomplete data. 

1.2 Planned Missing Data 

PMD designs were conceived to reduce participant burden in large scale surveys 
(Graham et al., 1996). We introduce some terminology to facilitate discussing PMD 
designs in the context of multirater studies. Regardless of whether the limits are 
monetary, we refer to the total number of ratings (.NRatings) as the  budget. A fixed 
budget could be limited not only by time and monetary constraints but also by the 
numbers of available subjects and raters. We further define workload as the number 
of subjects per rater (.NS/R) and team size as the number of raters per subject 
(.NR/S). How the budget is allocated depends on a number of features, listed in 
Table 1. The overall number of subjects and raters are represented by . NS and . NR . 
Different (sub)samples from the pool of raters might be assigned to each subject, 
and different (sub)samples of the subject pool may be assigned to each rater. In a 
fully crossed two-way design with complete data, .NRatings = NS × NR because 
the number of subjects assigned to each rater (.NS/R = NS) is the entire subject 
pool; likewise, the number of raters assigned to each subject (.NR/S = NR) is  
the entire rater pool. Incomplete designs are still crossed but do not assign each 
rater to every subject (Ten Hove et al., 2023). Putka et al. (2008) referred to ill-
structured measurement designs when assignment was not systematic or optimal, 
but thoughtfully deployed PMD designs can be economically advantageous in 
multirater studies with expensive or time-consuming observational protocols (e.g., 
Vial et al., 2019; Zee et al., 2020; Yuen et al., 2020). 

Randomly or systematically assigning a .NS/R subset of the subject pool to be 
observed by each rater (or vice versa: a .NR/S subset of the rater pool is assigned 
to observe each subject) has been shown to improve accuracy of estimated variance 
components used to calculate an ICC to represent IRR (Ten Hove et al., 2020, 2021). 
For example, Yuen et al. (2020) randomly assigned a team of two raters to each 
subject in a staggered fashion that maximized the overlap among raters (i.e., each 
possible pair of raters rated the same subject at least once). If only .NR = 2 raters 
had observed all .NS = 29 subjects, each rater would have a workload of . NS/R =
29. Instead, each of .NR = 6 raters had a substantially lower workload of only 
.NS/R = 9 or 10. Thus, given a fixed budget (.NRatings = 58), sampling the same 
team size (.NR/S = 2) from a larger pool of .NR = 6 raters reduced the workload by 

.
NR/S

NR
= 1/3. 

The simulation study described next was designed to decide how IRR of the LIJ 
could be most efficiently estimated under budget constraints. The results led Van der 
Ark et al. (2018) to evaluate the LIJ by assigning teams of .NR = 4 raters to evaluate 
.NS/R = 2 subjects each.
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Table 1 Trade-off among rater-pool size, subject-pool size, team size, and workload given a fixed 
budget 

Reduction Consequence 

A smaller pool of subjectsa . . . . requires assigning more raters per subjectc 

(larger teams) 

A smaller pool of ratersb . . . . requires assigning more subjects per raterd 

(greater workload) 

Assigning fewer raters per subjectc (smaller 
teams) 

. . . . requires a larger pool of subjectsa 

Assigning fewer subjects per raterd (lighter 
workload) 

. . . . requires a larger pool of ratersb 

Note: Budget = total number of ratings (.NRatings = NR × NS/R = NS × NR/S ), assuming equal 
team sizes across subjects and equal workload across raters. When using a block design (i.e., 
nonoverlapping teams), additionally useful design features can be derived, albeit redundant with 

the features above: block size = .NS/R × NR/S and . NBlocks = NRatings
block size

a Subject pool: . NS = NR × NS/R

NR/S

b Rater pool: . NR = NS × NR/S

NS/R

c Team size: . NR/S = NS/R × NR

NS

d Workload: . NS/R = NR/S × NS

NR

2 Method 

To develop an observational design for estimating the IRR of the scales and items of 
the LIJ, we conducted a set of Monte Carlo simulations. We provide our R syntax 
for replicating our simulation on the Open Science Framework (OSF2 ). 

2.1 Data Generation 

The two-way model in Eq. (1) was used to generate normal random effects for all 
conditions, with .μ = 0 for the grand mean and all random-effect means, . σ 2

s =
0.70, .σ 2

r = 0.15, and .σ 2
sr = 0.25. These population variances implied a population 

ICC(A,1) = 0.636, denoted . ρ. For ordinal conditions, thresholds .τ1 = −0.5 and 
.τ2 = 0.5 were used to discretize the continuous data into .C = 3 categories. To keep 
the generated data comparable across conditions, the data were always generated 
from a fully crossed design for a given . NS and . NR . Then, missing data patterns 
were imposed to yield a certain number of complete-data “blocks” (i.e., . NBlocks =
NR/S × NS/R) that yielded a fixed budget of .NRatings = 384.

2 Supplemental online materials available at https://osf.io/g5hvs/. 

https://osf.io/g5hvs/
https://osf.io/g5hvs/
https://osf.io/g5hvs/
https://osf.io/g5hvs/
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2.1.1 Core Design Factors 

The design factors we had most control over were workload and team size given 
a fixed budget, and we planned to estimate ICCs for continuous, ordinal, and 
binary items. So our core factors were team size (.NR/S = 2, 4, or 8), workload 
(.NS/R = 1, 2, 4, or 8), and model used for generating and analyzing data (linear 
or probit for continuous or discrete data, respectively), yielding . 3 × 4 × 2 = 24
conditions. The proportion of missing data in two-way designs (i.e., .NS/R > 1) 
varied from 83.33% (in conditions with the largest blocks) to 98.96% (with the 
smallest workload .NS/R = 2 and team size .NR/S = 2, requiring the largest . NR and 
. NS). When .NS/R = 1, there is no “missing-data problem” because raters are nested 
in (rather than crossed with) subjects. For .NS/R = 1, we used an one-way model by 
removing . μr from Eq. (1) and its variance component . σ 2

r from Eq. (2) because when 
raters are nested in subjects, . μr is confounded with the rater . × subject interaction. 
Thus, Eq. (3) still represents ICC(A,1). 

2.1.2 Additional Design Factors 

In the results section, we also describe two follow-up studies in which we varied 
two additional factors: The magnitude of reliability, and random versus block 
assignment of raters to subjects. We fully crossed these design factors with the 
core conditions described above, but did not cross these with each other. The 
results are useful for planning missing observational designs for IRR. Additional 
manipulations are available in the R scripts provided with the online supplementary 
materials. 

2.2 Analysis 

We used Markov chain Monte Carlo (MCMC) estimation with uninformative 
priors, implemented in the Stan software (Carpenter et al., 2017), for each of 2000 
replications within each condition. We saved the posterior mean (denoted . ρ̂) as an  
estimate of . ρ, as well as the central 95% Bayesian credible interval (BCI) limits. 
In each condition, we evaluated accuracy of posterior means as point estimates by 
calculating the relative parameter bias, which is the difference between a condition’s 
average estimate (denoted . ρ̄) and . ρ, divided by . ρ: . ρ̄−ρ

ρ
. We evaluated accuracy 

of BCIs by calculating 95% coverage rates (i.e., proportion of replications whose 
intervals captured . ρ) in each condition. Finally, we evaluated precision (our primary 
criterion for choosing an optimal design for the LIJ evaluation) of the estimates by 
calculating the average width of 95% BCIs in each condition. 

We investigate the effects of design factors on bias and precision using fully 
factorial linear regression models (ANOVA) and on the coverage using fully 
factorial binary logistic regression models (analysis of deviance).
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3 Results 

For brevity, we report only medium and larger effects (i.e., Monte Carlo design 
factor accounts for .η2p > 6% of variance, holding other effects constant) on bias or 

precision, or 6% of deviance in coverage (analogous to McFadden’s3 pseudo-. R2). 
More extensive results are provided on the OSF. 

3.1 Core Conditions 

Table 2 shows results across core conditions, and Figs. 1 and 2 show the width of 
the 95% BCIs across conditions with continuous and ordinal responses, respectively. 

Table 2 Relative bias, CI coverage, and CI width across core conditions 

Scale Workload (.NS/R) Team size (.NR/S ) Bias Coverage Width 

Continuous 1 2 −0.017 0.946 0.173 

1 4 −0.011 0.944 0.174 

1 8 −0.010 0.951 0.213 

2 2 −0.019 0.945 0.174 

2 4 −0.013 0.950 0.176 

2 8 −0.014 0.940 0.216 

4 2 −0.022 0.934 0.176 

4 4 −0.016 0.951 0.181 

4 8 −0.014 0.951 0.218 

8 2 −0.024 0.950 0.183 

8 4 −0.021 0.944 0.189 

8 8 −0.019 0.946 0.225 

Ordinal 1 2 0.011 0.941 0.226 

1 4 0.012 0.938 0.211 

1 8 0.011 0.941 0.241 

2 2 0.005 0.934 0.226 

2 4 0.009 0.946 0.214 

2 8 0.006 0.935 0.244 

4 2 0.007 0.941 0.226 

4 4 0.006 0.946 0.217 

4 8 0.007 0.938 0.246 

8 2 0.004 0.956 0.229 

8 4 0.003 0.942 0.224 

8 8 0.002 0.942 0.252 

Note: Accuracy represented by bias (expressed as a proportion of the true .ρ = 0.636) and 95% 
CI coverage. CI width represents precision

3 Find descriptions of several types of pseudo-. R2 for logistic regression here: https://stats.idre.ucla. 
edu/other/mult-pkg/faq/general/faq-what-are-pseudo-r-squareds/. 

https://stats.idre.ucla.edu/other/mult-pkg/faq/general/faq-what-are-pseudo-r-squareds/
https://stats.idre.ucla.edu/other/mult-pkg/faq/general/faq-what-are-pseudo-r-squareds/
https://stats.idre.ucla.edu/other/mult-pkg/faq/general/faq-what-are-pseudo-r-squareds/
https://stats.idre.ucla.edu/other/mult-pkg/faq/general/faq-what-are-pseudo-r-squareds/
https://stats.idre.ucla.edu/other/mult-pkg/faq/general/faq-what-are-pseudo-r-squareds/
https://stats.idre.ucla.edu/other/mult-pkg/faq/general/faq-what-are-pseudo-r-squareds/
https://stats.idre.ucla.edu/other/mult-pkg/faq/general/faq-what-are-pseudo-r-squareds/
https://stats.idre.ucla.edu/other/mult-pkg/faq/general/faq-what-are-pseudo-r-squareds/
https://stats.idre.ucla.edu/other/mult-pkg/faq/general/faq-what-are-pseudo-r-squareds/
https://stats.idre.ucla.edu/other/mult-pkg/faq/general/faq-what-are-pseudo-r-squareds/
https://stats.idre.ucla.edu/other/mult-pkg/faq/general/faq-what-are-pseudo-r-squareds/
https://stats.idre.ucla.edu/other/mult-pkg/faq/general/faq-what-are-pseudo-r-squareds/
https://stats.idre.ucla.edu/other/mult-pkg/faq/general/faq-what-are-pseudo-r-squareds/
https://stats.idre.ucla.edu/other/mult-pkg/faq/general/faq-what-are-pseudo-r-squareds/
https://stats.idre.ucla.edu/other/mult-pkg/faq/general/faq-what-are-pseudo-r-squareds/
https://stats.idre.ucla.edu/other/mult-pkg/faq/general/faq-what-are-pseudo-r-squareds/
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Fig. 1 Width of 95% BCI for ICC(A,1) under different conditions for continuous data 
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The width of empirical intervals (i.e., distance between 2.5% and 97.5% quantiles 
in the distribution of posterior means across Monte Carlo replications) are included 
for comparison; similarity with BCIs indicates accurate estimates of uncertainty. 

Bias was negligible across conditions (.Mbias = −0.01, .SD = 0.01), and 
no design factors explained more than 0.05% of variance in bias. Coverage was 
nominal across conditions (.Mcov = 0.94, .SD = 0.01), and no design factors 
explained more than 0.05% of deviance in coverage. Precision was substantially 
affected only by the scale (continuous or ordinal: .η2p = 14.74%) and team size 

(.η2p = 11.38%). ICC(A,1) was more precisely estimated for continuous data (95% 
BCI width: .Mwidth = 0.19, .SD = 0.03) than for ordinal data (.Mwidth = 0.23, 
.SD = 0.02). ICC(A,1) was more precisely estimated using teams of . NR/S = 2
(.Mwidth = 0.20, .SD = 0.03) or  .NR/S = 4 (.Mwidth = 0.20, .SD = 0.03) than for 
teams of .NR/S = 8 (.Mwidth = 0.23, .SD = 0.02). 

An explanation of why smaller teams yielded more precise estimates may be 
that—holding other factors constant—assigning smaller teams (.NR/S) maximizes 
. NS (Table 1). Because . σ 2

s should be expected to be the largest component of an ICC 
in practice (e.g., for even a modest IRR .≥ 0.50), a more efficiently estimated . σ 2

s

could lead to a more efficiently estimated . ρ. The next simulation additionally varied 
the amount of rater error, illuminating this explanation. 

3.2 Magnitude of ICC 

Rater variance was fixed to .σ 2
r = 0.25 in the core conditions, implying a modest . ρ =

0.636. Because we expected ICCs to vary across LIJ items, we added conditions 
with more rater variance (.σ 2

r = 0.70, implying lower IRR: .ρ = 0.42) and with less 
rater variance (.σ 2

r = 0.05, implying higher IRR: .ρ = 0.70). Extending the 24 core 
conditions by varying . σ 2

r = 0.05, 0.25, or 0.70 yielded 72 conditions. 
Bias was still negligible across conditions (.Mbias = −0.002, .SD = 0.014) and 

no design factors explained more than 0.03% of variance in bias. Coverage also still 
was nominal across conditions (.Mcov = 0.94, .SD = 0.01), and no design factors 
explained more than 0.01% of deviance in coverage. Efficiency was substantially 
affected by . ρ, which explained .η2p = 15.64% of the variability in BCI width, 

whereas the influential factors from the core conditions explained only .η2p = 5% of 
the variability in BCI width, holding other factors constant in this extended design. 
Figures 1 and 2 show results for continuous and ordinal data, respectively. The 
higher IRR was in the population, the more precisely it was estimated (.ρ = 0.70: 
.Mwidth = 0.19, .SD = 0.03; .ρ = 0.64: .Mwidth = 0.21, .SD = 0.03; .ρ = 0.42: 
.Mwidth = 0.25, .SD = 0.03). This was consistent with our explanation for why 
smaller teams yielded more precise estimates under a fixed budget; it is not a general 
rule that fewer raters (per subject) yield more precision (Ten Hove et al., 2021).
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3.3 Overlapping Teams 

In the core conditions, we imposed a missing-data structure that mimicked the 
blocks assigned in the LIJ study. We compared this to unstructured random 
assignment by randomly deleting all but .NR/S ratings for each subject. This strategy 
meant that the workload could vary across raters, with an average (rather than fixed) 
workload of .NS/R . This design is comparable to Yuen et al. (2020), who designed 
a balanced workload across raters (i.e., fixed .NS/R). Because overlapping teams 
implies a two-way design, we omitted the .NS/R = 1 conditions. Thus, this study 
had a 3 (.NR/S = 2, 4, or 8) . × 3 (.NS/R = 2, 4, or 8) . × 2 (scale) . × 2 (teams overlap 
or not) design with 36 conditions. 

Bias was still negligible across conditions (.Mbias = −0.005, .SD = 0.013) and 
no design factors explained more than 0.11% of variance in bias. Coverage also 
still was nominal across conditions (.Mcov = 0.94, .SD = 0.01), and no design 
factors explained more than 0.04% of deviance in coverage. Precision was also not 
substantially affected by overlapping teams; the main and all higher-order effects 
combined only explained .η2p = 2.74% of the additional variability in BCI width 
beyond the core design. 

4 Discussion 

This chapter provided evidence from Monte Carlo simulations demonstrating 
how beneficial planned missing observational designs can be for expensive, time-
consuming multirater studies. Results showed that MCMC estimation of MLMs and 
GLMMs can provide accurate point and interval estimates of ICCs across a variety 
of population values, scales of measurement, and planned missing observational 
designs, even when the vast majority of observations of a conventional (fully 
crossed) two-way design are missing. Bias and coverage appeared stable across the 
selected design factors but we showed that the precision of ICC estimates can be 
maximized by using more (approximately) continuous scales of measurement and 
allocating smaller teams of raters to subjects. These results highlight the importance 
of well designed observational designs. In addition, less rater error also improved 
efficiency, which highlights the importance of proper training on an observational 
protocol to avoid substantial differences between raters. 

4.1 Advice for Sample-Size Planning 

In practice, researchers must weigh the costs of different design features to choose 
the best design for their situation (e.g., Are raters or subjects more expensive? Does 
the gain in efficiency warrant the additional effort?), and accounting for such costs
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was not explored in our simulation studies. Certain design features might also be 
more difficult to control than others. Holding other features constant, smaller teams 
and lighter workloads might require larger pools of subjects and raters, respectively, 
either of which might be infeasible. 

In the LIJ study, for example, the number of available juveniles turned out to 
be quite limited. Furthermore, the greatest cost was the burden on each rater, so 
workload was of primary concern in the design. With a fixed budget, minimizing 
team size to improve precision would have been coincident with maximizing . NS , 
which was not feasible. However, smaller teams (larger . NS) only improved precision 
by a few decimal places, and workload had no discernible effect on precision, so we 
felt justified advising the ministry to assign fewer subjects to larger teams for LIJ 
data collection. 

Overlapping raters does not seem to have any (dis)advantage, so researchers can 
feel free to randomly assign raters to subjects using whichever algorithm best fits 
their needs. Overlapping raters might be more feasible if the ratings need not be 
conducted at a fixed time point; for example, if the subjects have been recorded, or if 
the observation is made on objects (like critics judging artwork or experts evaluating 
the face validity of a measurement instrument). Systematic overlap is not necessary, 
but might be more desirable to ensure balanced workload across raters (see Yuen 
et al., 2020). In contrast, random assignment to blocks (within which subjects and 
raters are fully crossed) would be more feasible when live observations of the same 
event must be made at the same time, as in the LIJ evaluation. 

We conducted these simulations for a specific setting (evaluating IRR of the LIJ), 
and showed that some general design factors can improve the efficiency of ICC 
estimates. We hope that our example helps other researchers make such decisions, 
but future research is needed to provide advice for other scenarios that have different 
priorities for working within a budget. 

Appendix 

Four annotated R functions to generate sample data from a random-effects model. 
The first function generates (approximately) normally distributed data, the second 
discretizes those data with thresholds to make ordinal data. The third function 
imposes missing-data patterns consistent with the design factors. The fourth func-
tion transforms the data from wide to long format with respect to raters. 

1 ## function to simulate a full matrix of all possible continuous ratings. 
2 ## To limit time for Kripp’s bootstrap, scale and round to closest 1/3. 
3 simcon <- function(subj = 0.7, # variance of subject effect 
4 rater = 0.15, # variance of rater effect 
5 error = 0.25, # variance of measurement error 
6 nS = 16, # numbers of subjects and raters 
7 nR = 32) { 
8 subj.effect <- rnorm(nS, 0, sqrt(subj)) 
9 rater.effect <- rnorm(nR, 0,sqrt(rater)) 
10 error <- rnorm(nS*nR, 0, sqrt(error)) 
11 ratings <- matrix(error, nrow = nS, ncol = nR)
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12 for (RR in 1:nrow(ratings)) { 
13 ratings[RR, ] <- ratings[RR, ] + subj.effect[RR] 
14 } 
15 for (CC in 1:ncol(ratings)) { 
16 ratings[ , CC] <- ratings[ , CC] + rater.effect[CC] 
17 } 
18 matrix(round(scale(as.numeric(ratings))[,1] * 3) / 3, # 19 categories between

-3:3 
19 nrow = nS, ncol = nR) 
20 } 
21 ## Test function 
22 # simcon() 
23 

24 ## function to generate ordinal data by applying 2 thresholds to continuous 
data 

25 simord <- function(x, # matrix output by simcon 
26 threshold1 = -0.5, threshold2 = 0.5) { 
27 ratings1 <- x > threshold1 
28 ratings2 <- x > threshold2 
29 ratings1 + ratings2 
30 } 
31 ## test it 
32 # simord(simcon()) 
33 

34 

35 ## function to impose missing data patterns on data from simcon() or simord(). 
36 pokeHoles <- function(data, random = TRUE, RpS = 4, SpR = 2) { 
37 nS <- nrow(data) 
38 nR <- ncol(data) 
39 if (SpR == 1L) random <- FALSE # SpR == 1L implies independence, no overlap 
40 ## If random, sample RpS columns (raters) within each row (subject). 
41 if (random) { 
42 for (RR in 1:nS) { 
43 keep <- sample(1:nR, size = RpS) 
44 data[RR, -keep] <- NA 
45 } 
46 } else { 
47 ## If fixed, create independent blocks of raters with same subjects. 
48 nProjectjes <- nS / SpR # how many blocks of complete observations 
49 if (nProjectjes != nR/RpS) stop(’Design numbers inconsistent with overall’, 
50 ’ count of raters or subjects.’) 
51 obsMat <- matrix(TRUE, nrow = SpR, ncol = RpS) 
52 missMat <- !kronecker(diag(nProjectjes), obsMat) 
53 data[missMat] <- NA 
54 } 
55 data 
56 } 
57 ## test it 
58 # pokeHoles(simcon()) 
59 # pokeHoles(simcon(), random = FALSE) 
60 

61 

62 ## function to transform matrix of ratings (pokeHoles output) from wide to long 
63 ## format. If ratings are ordinal, convert to ordered factor. 
64 trans <- function(x, ordered = FALSE) { 
65 library(reshape2) 
66 long <- melt(x) 
67 names(long) <- c("subject", "rater", "rating") 
68 long <- long[!is.na(long$rating), ] 
69 if (ordered) long$rating <- ordered(long$rating) 
70 long 
71 } 
72 ## test it 
73 # trans(pokeHoles(simord(simcon())))
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Annotated Stan (Carpenter et al., 2017) syntax to fit a cross-classified hierarchical 
linear model to the normally distributed two-way data in order to quantify IRR by 
estimating ICC(A,1) with MCMC-estimated variance components. 

1 data { 
2 int N; // number of ratings 
3 int nS; // number of subjects 
4 int nR; // number of raters 
5 int sID[N]; 
6 int rID[N]; 
7 real Rating[N]; 
8 real rangeRatings; 
9 } 
10 parameters { 
11 real Intercept; 
12 vector[nS] eS; // Subject effects (deviation of true-score from mean rating) 
13 vector[nR] eR; // Rater effects 
14 real<lower=0,upper=rangeRatings/2> sigmaS; // SD of subject effects 
15 real<lower=0,upper=rangeRatings/2> sigmaR; // SD of rater effects 
16 real<lower=0,upper=rangeRatings/2> sigmaE; // interaction + residual SD 
17 } 
18 model { 
19 real mu[N]; 
20 // Priors 
21 Intercept ~ normal(0, rangeRatings/2); 
22 eS ~ normal(0, sigmaS); 
23 eR ~ normal(0, sigmaR); 
24 //sigmaS ~ 
25 // Fixed effects 
26 for (n in 1:N) mu[n] = Intercept + eS[sID[n]] + eR[rID[n]]; 
27 // Likelihood 
28 Rating ~ normal(mu, sigmaE); 
29 } 
30 generated quantities { 
31 real icc; 
32 icc = sigmaS*sigmaS / (sigmaS*sigmaS + sigmaR*sigmaR + sigmaE*sigmaE); 
33 } 

Additional *.stan files for other models (1-way data, ordinal data) can be found 
on the OSF, along with the R scripts to generate data, fit the model using the R 
package rstan, run the simulation, and compile and analyze simulation results: 
https://osf.io/g5hvs/ 
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Abstract Interest has grown recently in linking national or regional assessments 
to international large-scale assessments. However, commonly used equating and 
linking methods are not defensible for such purposes as they would make unrealistic 
assumptions such as construct equivalency and error-free measurement, and usually 
only provide a point to point projection. This paper introduces a new approach 
for score projection by constructing an enhanced concordance table between two 
large-scale assessments with one source test and one target test. Specifically, the 
proposed method employs predictive mean matching method to find a set of donors 
with the smallest distances to the predicted mean generated by an imputation model 
on the source test for each concordance level within the identified score range. Both 
the means and standard deviations of donors’ plausible values on the target test 
are utilized to construct a concordance table between the two tests. This approach 
not only ensures the score uncertainty due to measurement error and imperfect 
correlation between tests are appropriately taken into account, but also avoids 
complex statistical functional forms and linearity assumption. The robustness of 
the new approach is demonstrated by a linking study to relate a regional assessment 
to TIMSS and PIRLS international long-standing large-scale assessments, where 
students take both the source and the target tests. Recommendations for educators 
and researchers to make inferences and interpret the concordance table are also 
provided. 
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1 Introduction 

Over the past 20 years, large-scale assessment has become an increasingly more 
popular field of study in education. Interest has also grown recently in situations 
where results from national and regional large-scale assessments are to be linked 
to international large-scale assessments (Hernández-Torrano & Courtney, 2021). 
A practical situation is using the results of one assessment to estimate the likely 
score range on another large-scale assessment as if it had been administered. For 
example, if a country participated in a regional large-scale assessment but is not an 
international assessment participant yet, researchers and educators may be curious 
to know what the percentage of the students reaching international benchmarks or 
proficiency levels would be. Linking a national test to an international test provides 
the opportunity to locate the outcomes of the national study on an established 
international scale. Being able to project scores or proficiency levels from different 
assessments onto one well-known international scale is also very useful and highly 
desired for benchmarking in educational monitoring. 

Various methodologies can be used for linking or equating assessments. There 
are three broad categories of linkages between tests (Holland & Dorans, 2006; Linn  
et al., 2009; Mislevy, 1992): equating two tests X and Y, aligning the scales of tests X 
and Y, predicting/projecting the likely results of test Y from test X. Equating makes 
strong assumptions about the two test scores to be equated (Lord, 1980) and is hence 
considered the strongest form of scale linkage. Equating is a statistical procedure 
that is used to adjust the scores of one test, among a pair of two (essentially parallel) 
tests targeting the same construct using the same test blueprints. The goal is to create 
two sets of scores that can be used interchangeably (Kolen & Brennan, 2014). A 
similar approach to equating, known as scale alignment, can be used to achieve 
comparability between two tests built to similar specifications but do not meet 
the parallel forms assumption. Projecting is a concordance approach. A concrete 
statistical method for linking two measurement scales and calculating a concordance 
table usually uses equating-like methods (e.g., equipercentile methods) or statistical 
moderations (e.g., using a series of complex equations to adjust the test scores to 
have the same mean and standard deviation) to match the scores on two tests that 
have similar construct but differ in content and/or specifications. Projecting is the 
least restrictive type of linkage in that it does not assume that the constructs are the 
same or scores are exchangeable after linking. 

2 Linking Large-Scale assessments 

Large-scale assessments are tests, usually standardized, or other data collection 
procedures administered to large numbers of students at the same time. Some of 
those large-scale assessments require scores for individual students such as state 
assessments which are used to monitor student performance from year to year.
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However, some large-scale assessments are designed with the purpose of reporting 
results at the group level based on a set of plausible values (PVs) and generally rely 
on sampling techniques. They often make use of sampling weights and replication 
methods, resort to item response theory, and utilize item responses and context 
variables in population models for the calculation of scale scores (e.g., von Davier 
& Sinharay, 2013). These include international assessments as well as national 
and regional assessments. Recently, as large-scale assessments with the purpose 
of reporting results at the group level gain more popularity and publicity than 
ever before, interest in linking large-scale assessments from national, regional, to 
international has also grown. 

There are a few challenges with linking large-scale assessments in practice. 
Utilizing a population model that include individual responses from both tests as 
well as context variables requires data collection designs that are very costly to 
implement. The construct equivalency assumptions associated with conventional 
linking methods are typically unrealistic and not defensible in linking regional 
to international large-scale assessments because the tests being linked measure 
somewhat different constructs and are constructed in different ways. 

Several studies attempted to link test scores from national and international large-
scale assessments over a long period of time (Cartwright et al., 2003; Nissen et al., 
2015; Jia et al., 2014; Ehmke et al., 2020). Most previous studies used traditional or 
IRT-based equating-like methods, or alternatively, attempted statistical moderation. 
In the 2011 NAEP-TIMSS linking study (Jia et al., 2014), the objective of the study 
was to use states’ 2011 NAEP (The National Assessment of Educational Progress in 
the United States) scores to predict their average TIMSS scores and percentages of 
students reaching each of the TIMSS international benchmark levels. Two different 
linking methods were applied, IRT-based calibration linking analysis and statistical 
moderation. For the calibration linking analysis, the NAEP items were calibrated 
onto the TIMSS metric by fixing IRT item parameters for the TIMSS items in the 
specific braided linking booklets to the values from the TIMSS 2011 operational 
analysis. For statistical moderation, a series of complex equations were utilized to 
adjust the NEAP scores to have the same mean and standard deviation as TIMSS. 

Nissen et al. (2015) also used the IRT-based calibration linking method and 
an equating method (equipercentile) to link the National Educational Panel Study 
in Germany to the TIMSS scale. Among the methods used in linking large-
scale assessments, the statistical moderation procedures are conceptually and 
procedurally complex. Equating-like method makes strong assumptions such as 
construct and reliability equivalency, and that equating functions are invertible. 
For example, the equipercentile linking uses the same percentile rank across two 
tests to calculate the expected or predicted score to create a concordance between 
two tests. The expected score is a concordant or equated score only when the two 
sets of scores are almost perfectly related. However, regional and international 
large-scale assessments are usually not very highly correlated, not to speak of 
measuring directly comparable constructs, since difficulty, construct definitions, and 
assessments frameworks are not the same.
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In this paper, a new approach for score projection is proposed to establish 
an enhanced concordance table between two large-scale assessments with one 
source test (X) and one target test (Y). The proposed new method takes the 
uncertainty of the proficiency estimates on both tests into account and also controls 
for potential construct differences between the tests. More specifically, it can be 
conceptually compared to predictive mean matching (PMM; Little, 1988; Rubin, 
1986), a customary form of imputation which calculates the predicted value of 
target variable Y according to the specified imputation model and based on values 
observed elsewhere, so they are realistic. Note that the model used to generate PVs 
in large-scale assessments is also a special case of an imputation model (von Davier 
& Sinharay, 2013). It provides a method for score projection where equating-like 
methods are not defensible as they would make unrealistic assumptions such as 
equivalency of constructs and high reliability levels. 

3 Technical Procedure for Establishing Concordance Tables 

The technical procedures described in this section draw on the statistical principles 
of population (or conditioning) models used in large-scale assessments (e.g., von 
Davier et al., 2009). This allows constructing a concordance that incorporates 
the uncertainty of the projection by utilizing conditional variance estimates. The 
approach can be described as follows: 

The predictive means of source test score θ and target test score ϑ are derived 
utilizing population models. The expected values given item responses and context 
data, which provides students’ background information is related to achievement 
such as students’ gender and social-economic status, are given by 

ϑ̂ = E (ϑ |Y1, . . . , YJ , Z1, . . . , ZK) and θ̂ = E (θ |X1, . . . , XI , Z1, . . . , ZK) 
(1) 

Focusing on predicting ϑ from θ , the conditional distribution can be constructed for 
generating imputations even for those cases where only test X is given together with 
the context variables Z1, . . . , ZK . It can be constructed if the imputation models for 
ϑ and θ can be estimated from a sample, so that the conditional distribution in Eq. 
(2) can be constructed for generating imputations. 

P (ϑ |X1, . . . , XI , Z1, . . . , ZK) (2) 

For a concordance, the full population model using individual responses and context 
variables is often impractical. Practitioners want to use a score on one test to make 
inferences about the likely score range on another test. This is always projection-
based using joint or conditional distributions, and the use of just a point estimate 
on target test given the source test score would be ignoring the uncertainty of this 
projected score. Therefore, the approach used here utilizes PVs (obtained from
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population models) to account for the uncertainty of the score projection. The 
observed joint distribution of source and target test latent variable estimates can 
be used to create a conditional distribution of the target test’s latent variable given 
the source test’s variable, P (ϑ|θ ). Based on a sample of respondents v = 1, ..., N , 
plugging in the posterior means and PVs allows us to approximate this conditional 
distribution. Instead of constructing the full population model 

ϑ̂ ∼ P (ϑ |X1, . . . , XI , Z1, . . . , ZK) (3) 

an approximate imputation model P (ϑ|θ ) based on the source and target latent 
variables only is used and estimated using the two full population models 

ϑ̂ ∼ E (ϑ |Y1, . . . , YJ , Z1, . . . , ZK) and θ̂ ∼ E (θ |X1, . . . , XI , Z1, . . . , ZK) 
(4) 

to generate an estimate of the conditional distribution 

P
(
ϑ̂ |θ̂

)
≈ P (ϑ |θ) (5) 

Then, the concordance is essentially given by 

P
(
ϑ̂ |E (θ |X1, . . . , XI , Z1, . . . , ZK)

)
(6) 

and provides a projected distribution on the target test form given a function of the 
context variable and observed item responses on the source test form. 

4 Practical Implementation for Establishing Concordance 
Tables 

To establish a concordance table between two large-scale assessments, 5 main steps 
are usually involved in practice. The details of these steps are described in this 
section. 

1. Collect data on both tests in a linking sample and estimate conditional distribu-
tions 

The national test or regional test is usually the source test. The target test is the 
test to be linked to, usually the international test such as Trends in International 
Mathematics and Science Study (TIMSS), Progress in International Reading Liter-
acy Study (PIRLS), or Programme for International Student Assessment (PISA). 
In a linking study, the test data for the source and the target tests are usually 
collected at the same time window. After data collection, the next step is to derive the
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conditional distributions for individuals through population models of the context 
and achievement data for the source test and target test, respectively. Then draw sets 
of PVs (e.g., 5 PVs of each test) separately from the conditional distributions and 
transform the PVs on the corresponding reporting metrics if it is needed. 

2. Identify score range of source test and concordance levels 

The concordance score range and levels are identified based on estimated posterior 
means of the conditional distributions derived from the population models. Using 
the full range of source test for concordance table is not always practical because 
outliers may exist. However, the final identified score range for concordance table 
should cover the majority of data (99% or more). For the concordance levels, or 
concordance score points, the rule is to include enough levels and to retain as much 
information as possible but not too trivial. For example, if the standard deviation of 
reporting metric for the source test is 100, 20 or 10 points apart could be reasonable 
choices. The choice also depends on the sample size of the linking study available 
to find donors. 

3. Select a set of donors for each concordance level 

For each specified concordance level, a PMM method is used to find a set of donors 
who are the nearest neighbors to each concordance score point. This selection is 
achieved by selecting a set of (e.g., 5 or 7) smallest absolute differences of students’ 
posterior mean on the source test to each specified concordance level. The posterior 
mean can be either directly estimated based on the population model identified for 
generating PVs or, if needed, approximated by simply averaging the generated PVs 
on the source test. 

4. Establish a concordance table between the two tests 

All donors’ PVs on the target test are utilized to construct the concordance table. 
The concordance table includes predicted conditional distributions, both predicted 
means and predicted standard deviations on the target test, given concordance score 
levels and nearest neighbor donors. Specifically, preliminary concordance tables are 
created by assigning the mean of all donors’ PVs based on the target test data to each 
corresponding concordance score level as the projected mean within the specified 
concordance range. The standard deviation of each set of combined donor’s PVs 
based on the target test is the associated uncertainty of the projected mean on the 
target test. 

5. Smoothing and extrapolating 

If there are a limited number of samples in the source data, a smoothing procedure 
such as a simple moving average (e.g., Isnanto, 2011) may be used to better 
represent the underlying projected conditional means and standard deviations on the 
target scales in the specified range. To obtain a robust prediction for concordance 
scores beyond the specified range, where only a very small number of students 
could be observed, an extrapolation such as Sen’s slope estimator or the Thiel-Sen 
estimator (Sen, 1968) may be used to extrapolate for the concordance score levels
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at two ends. The Sen’s slope estimator is to find the median of all slopes for all 
pairs of ordered (ordinal) two variables. Specifically, the median slope for all pairs 
of ordered concordance score levels and the projected means is used to extrapolate 
the predicted mean. Similarly, the median slope for all pairs of ordered concordance 
score levels and the projected standard deviation is used to extrapolate the predicted 
standard deviation at the two very ends. 

5 Example for Establishing Concordance Tables 

This section describes the procedures used to construct the International Association 
for the Evaluation of Educational Achievement (IEA) Rosetta Stone Study concor-
dance table, which provides a projection of the scores on the regional assessment 
onto the scales of the target assessments, TIMSS and PIRLS. 

IEA’s Rosetta Stone study is designed to facilitate measuring progress toward 
the UNESCO Sustainable Development Goal for quality in education and aims at 
linking different regional assessment programs to TIMSS & PIRLS international 
long-standing metrics and benchmarks of achievement (IEA website; UNESCO 
website). The goal is to provide countries who participated in regional assessments 
but not in TIMSS & PIRLS with information about the proportions of primary 
school students that have achieved established international proficiency levels in 
literacy and numeracy for allowing international comparisons. Rosetta Stone Study 
includes linking different regional large-scale assessments to the TIMSS and PIRLS 
international long-standing metrics of achievement. In this paper, the Rosetta Stone 
ERCE (UNESCO’s Regional Comparative and Explanatory Study) linking study is 
used to illustrate the proposed method. 

The Rosetta Stone ERCE study has two assessment parts: Rosetta Stone linking 
booklets, which contain both TIMSS and PIRLS items (items were originally 
developed for students in grade 4 and were presented in TIMSS 2015 and PIRLS 
2016), and the ERCE 6th grade assessment, which tests 6th grade students 
from Latin American and Caribbean countries in reading and mathematics. The 
two assessments have similar constructs but are based on different frameworks 
targeting different populations as defined by their intended focal grade levels. Both 
assessments include achievement booklets and a set of context questionnaire. 

To construct the concordance, the 2019 ERCE assessment was administered to 
students in the 6th grade together with the Rosetta Stone linking booklets. Students 
in two countries, 3108 in Colombia and 4716 in Guatemala, participated in the 
study. For the source tests, ERCE math and reading, items were already calibrated 
by the ERCE team, which also provided the PVs for ERCE. The IRT scaling 
and population modeling for the TIMSS & PIRLS linking items were based on 
those students and with the same background data. Educational Testing Service’s 
DGROUP program (Rogers et al., 2006) was applied with a two-dimensional model 
to generate the conditional distributions and PVs based on the context data and the
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responses to the TIMSS & PIRLS linking items by fixing item parameters to the 
values from the operational TIMSS 2015 and PIRLS 2016, respectively. 

For the ERCE math test, the posterior mean for each student was approximated 
by averaging the five PVs (the ERCE PVs were provided by ERCE team and on the 
ERCE reporting metric) from the ERCE mathematics scale. For the ERCE reading, 
the posterior mean for an individual was approximated by averaging the five PVs 
from the ERCE reading scale. The correlations between the posterior means of 
ERCE data and linking data (ERCE math and TIMSS linking, ERCE reading and 
PIRLS linking) range from 0.78 to 0.82. The concordance score range and levels 
were identified based on the estimated ERCE posterior means using the combined 
data of the two countries. The score ranges of the posterior means of the ERCE 
mathematics and reading scales were either rounded up or down to cover almost 
all the data of the two countries and to be as symmetric as possible around the 
overall mean of the ERCE scale (which is 700). For both ERCE scales, scores range 
from about 400 to 1000 (covering almost 100% of the data) with very few data 
points beyond the range of 440 to 940 (covering about 99.5% of the data). As a 
result, 26 score levels were identified in the score range of 440–940 for preliminary 
concordance table with 20 points apart for each of the two scales. 

To construct a reliable concordance table, only students who participated in 
all four tests, ERCE math, ERCE reading, TIMSS linking, and PIRLS linking 
were included for the donor selection, i.e, 2619 students in Colombia and 3902 
students in Guatemala. For each identified concordance score level, 5 donors were 
selected from each of the two countries so that each country contributes equally 
to the concordance tables. This selection was achieved by selecting the 5 smallest 
absolute differences of students’ posterior mean on the ERCE test to each specified 
concordance score for each country. Each of the donors donated 5 PVs on the target 
tests. The mean and standard deviation of the donors’ PVs from the Rosetta Stone 
linking data were calculated based on the total 50 donated PVs (2 countries * 5 
donors * 5 PVs) at each level. These steps were implemented separately for ERCE 
mathematics and reading. In the following sections, concordance table for ERCE 
mathematics is used for illustration. 

Preliminary concordance table for ERCE mathematics was created by assigning 
the estimated mean and standard deviation of each set of 50 PVs based on the 
Rosetta Stone linking data to each concordance level in the specified range of ERCE 
mathematics. The estimated mean and standard deviation of each set of PVs were 
weighted by using the total weight variable in the data and calculated with SAS 
version 9.4 (SAS Institute Inc). The mean and standard deviation of each set of 50 
donated PVs were produced for each concordance score level between the range 
of 440 and 940 on the source test, ERCE math, as shown in Fig. 1. The projected 
conditional means based on the donated PVs on the target scale show that generally 
higher means are related to higher concordance scores for mathematics. Because 
of the volatility due to the limited number of countries and the smaller sample 
sizes available as donors per score point (not all students could be included in 
population modeling and donor selection), there was a small fluctuation at some 
concordance score points. Therefore, a smoothing procedure was used to better
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Fig. 1 Predicted Mean and SD with/without smoothing and extrapolating for ERCE math 

represent the underlying projected conditional distributions on the target test. For 
each concordance score point, the mean of the donated PVs was smoothed by 
applying a simple moving average operation (e.g., Isnanto, 2011) with a window of  
7 score points. The smoothed mean Xi at a concordance score level, i, was calculated 
based on the unsmoothed mean xi and the adjacent means as follows: 

Xi = 
xi−3 + · · · +  xi + · · · + xi+3 

7 
(7) 

The standard deviation of PVs of each score point was smoothed in a similar way 
as the means of PVs as shown in Eq. (7) but with adjustments. First, getting the 
average of each set of the 7 variances (variance of the 50 donated PVs) clustered 
at the corresponding score level i in the concordance table for the corresponding 
variance,vi. Next, the smoothed variance, Vi, was adjusted by adding the geometric 
mean of the smoothed variances for the all 26 score points (instead of arithmetic 
mean and was calculated by using GEOMEAN function in EXCEL) to better 
represent the variance of the PVs with the smaller sample sizes available as donors 
per score point. The square root of the final adjusted smoothed variance becomes 
the smoothed conditional standard deviation (SD) at that accordance score point. 

To obtain a robust prediction for ERCE concordance scores beyond the range 
of 440–940, where only a very small number (less than 0.5%) of students was 
observed, a non-parametric regression method, Sen’s slope estimator, was used to 
extrapolate for two more concordance score levels at both ends. To calculate the 
Sen’s slope estimator for the predicted mean, the median of all slopes for all pairs 
of ordered ERCE score levels and the smoothed means were used to predict the 
conditional means of the likely posterior distributions at the concordance levels 
400, 420, 960, and 980. The Sen’s slope, for the ordered pairs (i, Xi) where Xi is 
the smoothed mean at the score level i, is calculated as:
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Table 1 Concordance table 
for ERCE mathematics 
(partial table) 

Projected 
score on 
TIMSS scale Lower bound Upper bound 

ERCE 
mathematics 
score Mean SD 95% 68% 68% 95% 

400 290 64 162 226 354 417 
420 304 63 178 241 367 430 
440 319 62 194 256 381 443 
. . .  
680 449 53 344 397 502 555 
700 465 52 362 414 517 569 
720 481 51 379 430 532 583 
. . .  
940 624 51 522 573 675 726 
960 638 50 538 588 688 739 
980 653 49 554 603 702 751 

Note: More detailed information about Concordance Table for 
ERCE Mathematics and Reading can be found here: https:// 
timssandpirls.bc.edu/Rosetta-Stone-Reports/index.html 

Sen′s slope  = Median

{
Xj − Xi 

j − i 
: i <  j

}
(8) 

Similarly, the median of all slopes for all pairs of ordered score levels and 
the smoothed standard deviations were used to predict the conditional standard 
deviations. The Sen’s slope estimators for the predicted mean and standard deviation 
are 14.47 and −0.85, respectively. Figure 1 shows the smoothed and unsmoothed 
predicted distributions for mathematics. The smoothed graph also included the four 
extrapolated score points at the two ends. 

Table 1 shows part of the final concordance table for ERCE mathematics. The 
first column shows the ERCE concordance score levels. The second and third 
columns show the projected means and standard deviations (SDs) of the projected 
conditional distribution of the latent variable on the TIMSS scale given the ERCE 
score level. The last four columns show the lower and upper bounds (minimum and 
maximum values) of the 68% and 95% cut points for conditional distribution on 
TIMSS scale. 

6 How to Use the Concordance Table 

The concordance table can be used for estimating the percentages of students in 
each ERCE country reaching the four TIMSS 4th grade benchmarks. To estimate 
the percentages, a series of steps are needed to generate the projected PVs. First,

https://timssandpirls.bc.edu/Rosetta-Stone-Reports/index.html
https://timssandpirls.bc.edu/Rosetta-Stone-Reports/index.html
https://timssandpirls.bc.edu/Rosetta-Stone-Reports/index.html
https://timssandpirls.bc.edu/Rosetta-Stone-Reports/index.html
https://timssandpirls.bc.edu/Rosetta-Stone-Reports/index.html
https://timssandpirls.bc.edu/Rosetta-Stone-Reports/index.html
https://timssandpirls.bc.edu/Rosetta-Stone-Reports/index.html
https://timssandpirls.bc.edu/Rosetta-Stone-Reports/index.html
https://timssandpirls.bc.edu/Rosetta-Stone-Reports/index.html
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Table 2 Estimated percentages of 6th grade ERCE students reaching the 4th grade TIMSS 
international benchmarks 

Country Advanced (625) High (550) Intermediate (475) Low (400) 

Estimated percentages based on Rosetta Stone 
Colombia 2.3 (0.5) 15.7 (1.4) 47.9 (2.4) 81.1 (1.7) 
Guatemala 0.9 (0.3) 8.4 (0.9) 34.2 (1.6) 71.6 (1.7) 
Average 1.6 (0.3) 12.0 (0.8) 41.0 (1.4) 76.3 (1.2) 
Estimated percentages based on Concordance 
Colombia 2.7 (0.5) 16.4 (1.3) 48.2 (2.2) 81.3 (1.5) 
Guatemala 1.1 (0.3) 8.1 (1.0) 30.4 (1.3) 66.6 (1.5) 
Average 1.9 (0.3) 12.3 (0.8) 39.3 (1.3) 73.9 (1.0) 

Note: Standard errors appear in parentheses 

calculate the average of 5 PVs based on the ERCE sample in the domain of interest 
on the ERCE scale for each student. The average of the 5 PVs is the posterior mean 
of each student. Second, find the closest ERCE score level in the above concordance 
table for each student based on the estimated posterior mean. Third, assign the 
corresponding projected mean and SD on the TIMSS scale to each student based 
on the identified closest ERCE score level. Next, impute 5 new projected TIMSS 
PVs (target test) based on the assigned projected mean and SD for each student. 
PVs for individual students can be imputed using a normal distribution with the 
corresponding projected mean and SD. This step was repeated five times to get 
5 PVs for each student. Then the percentages of students reaching the four TIMSS 
4th grade benchmarks can be estimated based on the new projected 5 PVs. 

The steps described here for generating projected PVs based on the concordance 
table and calculating the percentages of reaching the four benchmarks could be 
applied to all countries participated in ERCE 2019 but not participated in TIMSS 
assessment or Rosetta Stone study. This is one of the purposes for establishing the 
concordance table between two assessments. In this section, the percentages of 6th 
grade students participating in ERCE 2019 assessment reaching the four TIMSS 
4th grade international benchmarks (Advanced: 625, High: 550, Intermediate: 475, 
Low: 400) were estimated and shown in Table 2 for two sets of PVs based on 
the same two countries and used to demonstrate the robustness of the concordance 
table. The first set of PVs are based on the Rosetta Stone linking data which were 
generated from population models, item responses together with the context data 
of students’ background of information, before establishing the concordance table. 
The second set of PVs are the projected PVs based on the concordance table which 
were re-generated based on the steps described above. 

Overall, Table 2 shows that while there is small variability in estimated countries’ 
percentages when comparing the estimates based on concordance and those based 
on Rosetta Stone linking data, the average percentages across the two countries 
provide highly comparable results.
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7 Conclusion and Recommendations 

As large-scale assessments gain more popularity and publicity recently, interest in 
linking large-scale assessments from national, regional, to international has also 
grown. Several studies (Jia et al., 2014; Ehmke et al., 2020) attempted to link 
test scores from national assessments to international large-scale assessments using 
conventional equating-like linking methods. However, the construct equivalency 
assumptions associated with equating-like linking methods are typically unrealistic 
and not defensible in linking regional to international large-scale assessments 
because the tests being linked measure somewhat different constructs and are 
constructed in different ways. 

This paper introduced a new approach for score projections by constructing an 
enhanced concordance table between two large-scale assessments with one source 
and one target tests. First, this new donor-based concordance approach integrates 
uncertainty due to construct differences and measurement error, and can be used to 
construct a concordance table for projections between two large-scale assessments. 
It appropriately provides a conditional distribution (with mean and SD) on the 
international target assessment given achievement on the regional source, rather 
than the point to point projection as in the conventional equipercentile linking 
methods. Second, the proposed concordance approach also avoids assumptions 
about statistical dependencies that rely on distributional assumptions or assumed 
complex functional forms as used in statistical moderations (Jia et al., 2014) to  
link the assessments. Most importantly, the constructed concordance table could 
also be applied to all countries participated in the same regional assessment but 
not participated in linking study due to financial reasons or other limitations for 
participation. 

The Rosetta Stone ERCE linking study illustrates the robustness of the new 
approach by relating different regional assessment programs to TIMSS and PIRLS 
international long-standing metrics and benchmarks of achievement. The concor-
dance tables enable educators and researchers to make inferences and interpret 
the ERCE results in relation to TIMSS and PIRLS international benchmarks of 
mathematical and reading knowledge comprehension. 

However, the concordance should be used with care, being aware of the 
limitations of country participation and sample sizes, and differences between 
assessments. Also, concorded scores are not perfectly equivalent as they do not 
provide a direct link between assessments. It cannot be used as a point to point 
projection, either. Moreover, concordance tables vary by different samples as they 
are dependent on sample characteristics such as differences in school curricula, 
test language and language spoken at home, socioeconomic or sociodemographic 
differences. Even the uncertainty of the concordance has to be taken into con-
sideration when constructing concordance tables. The concordance tables still 
may vary if sample characteristics in one country are very different from other 
participating countries. In addition, different choices for number of donors and 
intervals between concordance levels may also lead to differences in the projected
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conditional distributions. Therefore, to link large-scale assessments in the future, 
educational practitioners and researchers are encouraged to use larger national 
sample sizes and add more countries in the linking study so that more donors 
are included from different countries to improve the estimated concordance and 
account for country-specific variability whenever it is possible. Further research 
on the impact of choices for number of donors and intervals between concordance 
levels on the resulting concordance is also warranted. 

While the concordance has its limitations, it is an appropriate tool to allow 
comparisons between two large-scale assessments. It helps comparing difficulty 
levels between regional assessments and other large-scale assessments and allows 
studying the achievement distributions of them for benchmarking in educational 
monitoring. 
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Comparing Parametric and 
Nonparametric Methods for 
Heterogeneous Treatment Effects 

Jee-Seon Kim , Xiangyi Liao , and Wen Wei Loh 

Abstract Efforts to estimate treatment effects and draw causal inferences based 
on observational data are increasingly relevant with the abundance of such data in 
the social and behavioral sciences. Although the average treatment effect (ATE) 
might be the first step in the analysis, the main goal often concerns conditional 
average treatment effects (CATEs) of particular subgroups or treatment effects 
conditioning on a (set of) covariate(s). This study examines several parametric and 
nonparametric methods for CATE estimation. Specifically, we apply two machine 
learning methods, causal forest (CF) and Bayesian additive regression trees (BART), 
and two doubly-robust multilevel modeling approaches to the synthetic data used for 
the data challenge at the 2018 Atlantic Causal Inference Conference. We conclude 
with a discussion on the issues and challenges of different methods in estimating 
and interpreting CATE. 

Keywords Conditional average treatment effects · Multilevel models · 
Hierarchical linear modeling · Machine learning · Propensity scores · 
Observational studies · Causal forest · Bayesian Additive Regression Trees 
(BART) · Clustered data · Doubly-robust estimators 

1 Potential Outcomes and ATE in Clustered Data 

Treatment effects can be defined using the Neyman-Rubin potential outcomes 
framework (Neyman, 1923; Rubin, 1974). We are using the extended notation of 
potential outcomes for the multilevel structure where units are nested within clusters 
(Hong & Raudenbush, 2006; Lyu et al., 2022). Assume that there are N individuals 
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nested within M clusters. Let .Yij (1) denote the potential outcome if individual i 
within cluster j was treated (.Tij = 1) and .Yij (0) denote the potential outcome if 
individual i within cluster j was untreated (.Tij = 0), where .i = 1, . . . , nj in cluster 
.j = 1, . . . ,M and .

∑M
j=1 nj = N . The observed outcome can be presented as 

. Yij = TijYij (1) + (1 − Tij )Yij (0)

under the stable unit treatment value assumption (SUTVA; Rubin, 1986) where 
the potential outcomes of each individual are not affected by others’ treatment 
assignments, and there is only a single version of treatment. For more details on 
SUTVA for multilevel settings, see Hong and Raudenbush (2006, 2013). 

As the two potential outcomes .Yij (0) and .Yij (1) are never observed simulta-
neously, individual treatment effects cannot be estimated. However, if the pair of 
potential outcomes (.Yij (0), Yij (1)) is independent of treatment assignment . Tij , we  
can estimate average treatment effects (ATEs), the average linear contrast between 
two potential outcomes as: 

. τ = E[Yij (1) − Yij (0)].

Block randomized experiments or multisite randomized trials achieve this inde-
pendence through the randomization of treatment assignment within blocks or 
sites. For observational data, an unconfoundedness assumption is required to obtain 
the ATE, which implies that the potential outcomes are independent of treatment 
assignment, given the observed vector of covariates. Unconfoundedness is also 
referred to as strong ignorability in the causal inference literature (Rosenbaum 
& Rubin, 1983; Rubin, 1978), which implies that the potential outcomes are 
independent of treatment assignment, given observed individual covariates .Xij and 
cluster covariates . Zj ; 

. Unconfoundedness : Yij (1), Yij (0) ⊥ Tij |Xij ,Zj ,

and the probability of each individual being assigned to a particular treatment given 
observed covariates is strictly between 0 and 1; 

. Positivity or Overlap : 0 < e(Xij ,Zj ) = Pr(Tij = 1|Xij ,Zj ) < 1,

where . ⊥ denotes independence between two random variables and .e(Xij ,Zj ) is 
the propensity score (Rosenbaum & Rubin, 1983). Propensity scores are commonly 
estimated by logistic regression with single-level data and by random or fixed 
effects logistic regression with multilevel data (Leite, 2016; Fuentes et al., 2021). 
Propensity scores are often used in matching methods to match treated and control 
units or to weigh cases via inverse probability weighting towards eliminating 
confounding due to observed covariates and satisfying the unconfoundedness 
assumption (Kainz et al., 2017; Leite, 2016; Stuart, 2010).
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2 Subgroup Analysis and CATE 

When it is of interest to estimate subgroup-specific treatment effects that may differ 
from other subgroups or the ATE for the whole population, conditional Average 
treatment effects (CATEs) (Imbens & Rubin, 2015) can be estimated conditional on 
observed level-1 (e.g., individual) and level-2 (e.g., cluster) covariates, .Xij and . Zj , 
respectively. 

. τij = E[Yij (1) − Yij (0)|Xij = xij ,Zj = zj ].

Machine learning methods, such as Bayesian additive regression trees (BART) 
and causal forests (CF), provide estimators of . τij under strong ignorability and 
SUTVA for observed covariates (Chipman et al., 2010; Wager & Athey, 2018). 
Multilevel models can also be used for the estimation of CATE, often in combination 
with propensity score adjustments such as matching, stratification, and weighting 
(Fuentes et al., 2021; Leite, 2016). 

In this chapter, we consider CATE based on only observed covariates. The 
estimand cannot be estimated directly by multilevel models, CF, or BART alone 
when the subgroup memberships are unobservable or the relevant covariates are 
unmeasured. For the estimation and evaluation of treatment effects with unobserved 
subgroups, we refer readers to Kim and Steiner (2015), Kim et al. (2016), Suk et al. 
(2021), Lyu et al. (2022), and Loh and Kim (2022b). 

3 Doubly-Robust Estimators Using Multilevel Models 

3.1 Inverse Propensity Weighted Regression 

Multilevel models have been used widely for analyzing nested or clustered data 
(Raudenbush & Bryk, 2002; Snijders & Bosker, 2011). To estimate CATE using 
multilevel models, we first fit fixed or random effects logistic regression to estimate 
propensity score .e(Xij ,Zj ) and then combine the use of propensity scores and 
the multilevel regression outcome. Such “doubly-robust” estimators are appealing 
because they offer protection against model misspecification biases when either 
model is correctly specified (Robins, 2000; Bang & Robins, 2005). 

Let .μ(Tij ,Xij ,Zj ) = E[Yij |Tij ,Xij ,Zj ] denote the outcome function, the 
estimator of the CATE is then: 

.̂τ
IPWReg
ij = μ̂(Tij = 1,Xij ,Zj ) − μ̂(Tij = 0,Xij ,Zj ). (1) 

We estimate . μ using weighted multilevel regression with treatment indicator, all 
individual- and cluster-level covariates as well as (correctly specified) interaction 
terms. In particular, we weight each observation by the inverse propensity score
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weight . Wij , which is defined as: 

.Wij = Tij

e(Xij ,Zj )
+ 1 − Tij

1 − e(Xij ,Zj )
. (2) 

These weights are used to weigh the observed data when fitting the multilevel 
regression; see, e.g., Vansteelandt and Keiding (2011) for the single-level setting. 
The mean potential outcomes predicted using the fitted model are then used to 
construct the quantities in Eq. (1). 

3.2 Augmented Inverse Propensity of Weighting 

Loh and Kim (2022a), following Kang and Schafer (2007), explain three doubly 
robust estimation methods where the estimators differ in terms of how the estimated 
propensity scores are leveraged in the outcome model. Among the three methods, 
we adopt the augmented inverse propensity weighted (AIPW) estimator (Robins 
et al., 1994). The AIPW method imputes potential outcomes and avoids an explicit 
parametrization by augmenting the inverse probability weights estimator with an 
outcome model to exploit information about the treatment effects. 

While the ATE is often encoded as the treatment coefficient in a parametric model 
for the outcome, the CATE is not as easily encoded as an explicit parameter in the 
outcome model. Furthermore, the AIPW estimator of the ATE is doubly robust in 
the sense that it is consistent if either the propensity score model or outcome model 
is correctly specified and asymptotically unbiased when both are correctly specified 
(Glynn & Quinn, 2010; Kurz, 2022). Therefore, the AIPW method is a particularly 
appealing doubly robust estimator for CATE. 

The procedure of obtaining the CATE estimate using the AIPW estimator 
can be explained as follows: Let μ1(Xij , Zj ) = E[Yij |Tij = 1, Xij , Zj ] and 
μ0(Xij , Zj ) = E[Yij |Tij = 0, Xij , Zj ] be the outcome functions for treated and 
control units, respectively. The estimator of the CATE, among individuals with the 
same observed covariate values (Xij , Zj ), is then: 

.

τ̂ AIPW
ij =Tij Ŵij (Yij − μ̂1(Xij ,Zj )) + μ̂1(Xij ,Zj )

− (1 − Tij )Ŵij (Yij − μ̂0(Xij ,Zj )) − μ̂0(Xij ,Zj ).
(3) 

The estimates Ŵij are obtained by substituting the unknown propensity scores 
e(Xij , Zj ) in (2) with their estimates using, for example, a multilevel logistic 
regression with all individual- and cluster-level covariates. The estimates μ̂1 and
μ̂0 are obtained using multilevel regression with all individual- and cluster-level 
covariates. In sum, the AIPW estimator lessens the reliance on traditional parametric 
models while profiting from correctly specifying either the selection model or the 
outcome model, but not necessarily both, for valid inference.
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4 Data Challenge at a Causal Inference Conference 

We revisit a workshop conducted at the 2018 Atlantic Causal Inference Conference 
(ACIC), where eight groups of researchers were invited to analyze synthetic data 
to assess treatment effect variation on an outcome (Carvalho et al., 2019). The 
generated dataset was motivated by the National Study of Learning Mindsets, a 
large-scale randomized trial of an online growth mindset intervention (Yeager et al., 
2019). 

Among several questions the participants were asked to address, we focus 
on the effect of the intervention in relation to a school-level variable we call 
“FIXED.MINDSET” (X1 in the paper), which is a measure of the average fixed 
mindset rating for each school before intervention. Specifically, we are inter-
ested in whether (1) the mindset intervention was effective in improving student 
achievement and (2) FIXED.MINDSET (school-level average fixed mindset score) 
moderates the effect of the intervention. It was found that while the ATE was very 
similar across the eight teams of researchers, CATE was substantially different 
depending on the approaches and methods used. 

The organizer later revealed that the data were generated from the following 
model: 

. yij = μ(xij , zj ) + [
τij + U1j

]
Tij + U0j + εij ,

where . yij is the achievement score for student i in school j , . μ is an additive function 
of student- and school-level covariates, .U0j and .U1j are random school effects that 
follow .N(0, 0.152) and .N(0, 0.1052), respectively. Note that .U0j and .U1j were 
generated independently. Level-1 random effect . εij was drawn by jitter standard 
deviation 0.5. Treatment effects were generated as follows: 

. τij = 0.228 + 0.05 · 1(FIXED.MINDEST < 0.07)

− 0.05 · 1(ACAD.ACH < −0.69) − 0.08 · 1(ETHNICITY ∈ {1, 13, 14}),

where ACAD.ACH is school achievement average before intervention and ETH-
NICITY is a categorical race/ethnicity variable. Therefore, for the two questions 
above, the correct ATE and CATE should reflect that (1) the mindset intervention 
improved student achievement and (2) the treatment was more effective (by 0.05 
points in the outcome) for schools with fixed mindset scores lower (0.07 or less) at 
pretest. For further details of the data generation, see Carvalho et al. (2019).
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Fig. 1 Students’ CATE estimates against school-level mindset. The dash-dotted line (“Oracle”) 
represents the true CATE based on the data generating model. IPWReg Inverse Propensity 
Weighted Regression, AIPW Augmented Inverse Propensity of Weighting, CF Causal Forest, 
BART Bayesian Additive Regression Trees 

5 CF, BART, and Multilevel Models for CATE 

We reproduced the results of CF and BART as presented at the conference 
and subsequent dissemination (Athey & Wager, 2019; Carnegie et al., 2019), 
obtained two results using inverse propensity weighted regression (IPWReg) and 
the augmented inverse propensity of weighting (AIPW), and compared the four 
estimates to the “true” CATE based on the data generating model. All methods 
return similar ATE estimates around 2.5 and the results for CATE are depicted in 
Fig. 1. 

Although none of the parametric and nonparametric methods reproduced the true 
step function at the change point of 0.07 perfectly, all four approaches discovered the 
decreasing trend of students’ CATEs as a function of the school-level covariate and 
detected a sizable decline of the treatment effects around the school’s average fixed 
mindset score of zero. We found that the CATE estimates using different methods 
deviated from the oracle values based on the data generating model in various ways. 
Specifically, CF closely resembled the range of the CATE but was insensitive to 
the sharp reduction in the middle. BART created a shape of a cubic function that 
was relatively close to the true CATEs for the low fixed mindset scores but not 
for the high scores. IPWReg and AIPW approximated students’ CATEs around the 
inflection points closely but overestimated and underestimated the effects at the
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lower and upper ends, respectively. IPWReg in particular showed the problem of 
extrapolation at the lower end, even after trimming extreme weights downward. 

6 Discussion 

Valid causal evaluations of conditional treatment effects based on observational 
studies require not only a procedure of controlling for potential confounding, but 
correctly specifying how the effect is modified (or moderated) by the covariates. 
Although numerous methods and procedures have been proposed to estimate 
CATEs, both parametric and nonparametric methods were built under strong 
assumptions and face different challenges. Parametric methods require correct 
specification of the model in addition to modeling assumptions. Nonparametric 
methods are generally more robust against model misspecification but harder to 
interpret than parametric models, and machine learning methods can be susceptible 
to overfitting. 

We have compared different point estimators of the CATE. In future work, we 
will explore the statistical (and computational) efficiency of these estimators, by 
empirically investigating the coverage and widths of the corresponding confidence 
intervals (CIs) in finite samples. In particular, we will compare CIs constructed using 
either normal approximations with influence functions (for methods where these 
are available), or the nonparametric bootstrap; see e.g., Smith et al. (2022) for  a  
comparison under the single-level setting. 

With these noticeable differences between parametric and nonparametric meth-
ods in mind, this chapter compared the CATE estimates by four different methods; 
CF, BART, and two multilevel regression approaches. In our empirical comparison 
of these methods, we used the synthetic data created by the organizer of the data 
challenge workshop at the 2018 ACIC (Carvalho et al., 2019). 

The data challenge at ACIC and our revisit of the workshop with additional 
methods highlight important issues in assessing heterogeneous treatment effects in 
non-randomized studies and even in randomized trials. As covariates are related 
to each other, whether a particular variable is a moderator of the treatment effect 
depends on whether the analysis conditions on related covariates or not, and it also 
depends on whether treatment effect variation was estimated across sampled clusters 
or in the population (Carvalho et al., 2019). 

Examining heterogeneous treatment effects becomes more challenging in obser-
vational studies with an increasing number of covariates, due to the curse of 
dimensionality. Covariates may affect outcome and selection procedures differently 
and confounding may involve complex nonlinear relations, among many other 
reasons. Recent studies emphasize that it is crucial to consider multiple aspects 
of the methods and procedures such as sample splitting, inclusion of confounder 
interactions, and doubly robust estimators to obtain valid causal effect estimates 
and draw a proper inference, especially for subgroup effects and CATE (Naimi et al., 
2021; Ratkovic, 2021).
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A Historical Perspective on Polytomous 
Unfolding Models 

Ye Yuan and George Engelhard 

Abstract This study provides a review and discussion of unfolding models for 
unidimensional polytomous data. Unfolding models (ideal point models) have 
a single-peaked response function. Unfolding models offer an underutilized and 
alternative approach to cumulative item response theory models for examining 
measurement data. Engelhard and Yuan (J Appl Measur, in press) described the 
basic principles of several key unfolding models for dichotomous responses. This 
study extends this work to graded responses. The study revisits main polytomous 
unfolding models including the Generalized Hyperbolic Cosine model (Andrich, 
Br J Math Stat Psychol 49(2):347–365, 1996), Graded Unfolding Model (Roberts 
and Laughlin, Appl Psychol Measur 20(3):231–255, 1996), Generalized Graded 
Unfolding Model (Roberts et al., Appl Psychol Measur 24(1):3–32, 2000), and 
nonparametric unfolding models for multicategory data (van Schuur, Polit Anal 
4:41–74, 1992). One of the major goals of this study is to highlight the underlying 
principles, formulations, measurement properties, and implementations of selected 
polytomous unfolding models. The main purpose of this study is to call attention to 
the use of unfolding models for polytomous responses for modeling measurement 
data. The study also highlights the importance of using cumulative versus unfolding 
models for attitude measurement. 

Keywords Unfolding model · Attitude measurement · IRT model 

The basic underlying idea of unfolding models can be traced back to Thurstone 
and Chave (1929). Thurstone distinguished between maximum probability and 
increasing probability scales. Increasing probability scales undergird various cumu-
lative item response models including the Rasch model and other IRT models. The 
maximum probability scales are called a variety of names including unfolding, 
ideal-point, non-monotonic, non-cumulative and proximity scales. One of the 
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Fig. 1 Polytomous unfolding models taxonomy 

fundamental features of an unfolding response process is that the probability of a 
positive response is a single-peaked function (Coombs & Avrunin, 1977). Unfolding 
models have been used in a variety of areas with a major focus on attitude 
measurement. 

Significant research has discussed the structure of polytomous cumulative 
IRT models, such as nominal categories item response model (Bock, 1972), the 
Samejima’s graded response model (Samejima, 1969), the Rasch rating scale model 
(RSM; Andrich, 1978; Rasch, 1961), and the generalized partial credit model 
(GPCM; Muraki, 1992). However, unfolding models with maximum probability 
scales have received less attention. It is worth revisiting the polytomous unfolding 
models in order to foster interest in using unfolding models. 

The purpose of study is to provide a brief historical perspective on polytomous 
unfolding models. Unfolding models are an underutilized approach for modeling 
response data. A main theme of this study is to call attention to the importance of 
unfolding models for polytomous responses as an alternative to cumulative models. 

This study discusses unidimensional unfolding models that all have a funda-
mental characteristic of a unimodal response process. Figure 1 shows a basic 
taxonomy of unfolding models for polytomous data. Engelhard and Yuan (in 
press) have summarized a taxonomy of dichotomous unfolding models that shows 
the distinctions between deterministic and probabilistic models, nonparametric 
and parametric models. Figure 1 highlights the development and extension of 
dichotomous responses models into polytomous rating. Based on this taxonomy, 
the present study describes important polytomous unfolding models and compares 
them on several characteristics.
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1 Description of Polytomous Unfolding IRT Models 

GHCM The Hyperbolic cosine model (HCM; Andrich & Luo, 1993) is an unfold-
ing model for dichotomous responses. Andrich (1996) proposed a general hyper-
bolic cosine model for unfolding polytomous responses (GHCM). The model is a 
generalized HCM designed to reconcile Thurstone and Likert approaches. Under 
the GHCM for unfolding Likert-style responses, the distance between thresholds 
should be symmetrical. For example, Fig. 2 (Panel A) shows a case with 4 observed 
categories and 7 latent response categories. It is unknown if the person responds 
to the strongly disagree/disagree below or above the statement location, thus the 
distance of thresholds, such as τ 2 − τ 1 should equal to τ 6 − τ 5. The key idea of 
this generalization is to fold over the latent categories based on the equations shown 
in Fig. 2 (Panel B). It is analogous to the dichotomous case, but the equation can 
be extended to ordered response categories to calculate the probabilities of disagree 
by summing up the “disagree below” and “disagree above”. The equations in Panel 
B are based on the Rasch model for ordered response categories (Andrich, 1978), 
where βn is the person location and δi is the statement location on the continuum. 
The parameter .kyi = −∑y

k=1 τki represents the thresholds. A normalizing constant 

γ ni is used to keep .
∑2m

y=0 P {Yni = y} = 1, where m + 1 represents the number of 
observed response categories. The construction can be similarly generalized as the 
form of GHCM as: 

P {Xni = x; x <  m} = 
1 

γni 
(exp kxi) 2 cosh [(m − x) (βn − δi)] , 

P {Xni = m} = 
1 

γni 
(exp kmi) 

Figure 3 (Panel A) presents an example of the GHCM’s item category response 
curve. 

GUM. The graded unfolding model (GUM; Roberts & Laughlin, 1996) is another 
unfolding form for polytomous responses. The difference from GHCM is that in the 
context of GUM, the most positive response Xni = m (such as “strongly agree”) 
is also considered as two possible responses. The key idea of GUM is based on the 
rating scale model (Andrich, 1978) and the probabilities of two subjective responses: 

P (Xi = x|βn) = P (Yi = x|βn) + P [Yi = (2m + 1 − x) |βn] 

The equations yield the form of GUM: 

P (Xni = x) = exp
[
x (βn − δi ) − ∑x 

k=0 τk
] + exp

[
(M − x) (βn − δi ) − ∑x 

k=0 τk
]

∑m 
w=0

{
exp

[
w (βn − δi ) − ∑w 

k=0 τk
] + exp

[
(M − w)

(
(βn − δi ) − ∑w 

k=0 τk
] }
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Fig. 2 Illustrative of GHCM for polytomous responses 

Fig. 3 Illustrative of item category response functions 
Note. These figures represent examples for each unfolding model. The shapes vary based on the 
values of the parameters in the model, and these figures were selected to illustrate distinctive shapes 
for each model 

where M = 2m + 1. Figure 3 Panel B presents a GUM item category response 
curve using the GGUM R package. Luo (2001) re-expressed GUM from another 
perspective. Luo (2001) explained the rating formulation approach and the process 
of mapping a polytomous response that we will discuss later. A general form 
of polytomous unfolding models was generated in Luo (2001), where ψ is the
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operational function. Engelhard and Yuan summarized the operational functions 
for dichotomous unfolding models (Engelhard & Yuan, in press). Luo found that 
the GUM equation is a case of this general form of polytomous unfolding models. 
Interested readers can consult Luo (2001) for details of the probabilistic function 
and the operational function satisfying the properties (Luo, 2001). 

GGUM The Generalized graded unfolding model (GGUM; Roberts et al., 2000) is  
a generalization of the GUM. The GGUM family of models are flexible in analyzing 
dichotomous and polytomous unfolding responses data. Like GUM, GGUM also 
considers each observable response category correspond to two unique subjective 
response categories. The subjective response categories are the latent categories 
which follow a cumulative IRT model, for examples, a rating scale model or 
partial credit model. Figure 3 (Panel C) shows the item category response curve 
of GGUM. GGUM adds an item discrimination parameter (αi) to the model based 
on the generalized partial credit model (Muraki, 1992) for the subjective response 
categories. When θ j is the location of the jth individual on the latent continuum, the 
probability of a person endorsing a particular observable response category is the 
sum of the probabilities of the two subjective responses. The definition of GGUM 
can be expressed as, 

P
(
Zi = z|θj

)

= 
exp

{
αi

[
z
(
θj − δi

) − ∑z 
k=0 τik

]}
+ exp

{
αi

[
(M − z)

(
θj − δi

) − ∑z 
k=0 τik

]}

∑C 
w=0

{
exp

{
αi

[
w

(
θj − δi

) − ∑w 
k=0 τik

]} + exp
{
αi

[
(M − w)

(
θj − δi

) − ∑w 
k=0 τik

]}}

where Zi is an observable response to statement i, M represents the number of the 
latent response categories minus 1, and C is the number of observable response 
categories minus 1 (Roberts et al., 2000). Marginal maximum likelihood can be used 
to estimate the item parameters for GGUM. An expected a posteriori procedure can 
be used to estimate the person parameters. 

Luo’s General Form Luo (2001) constructed a general class of polytomous unfold-
ing models. We showed its approach to GUM in the above section. Luo (2001) 
proposed a general formulation of polytomous unfolding models. Using this general 
form, a Hyperbolic cosine model for polytomous responses (HCM-P model; Luo, 
2001), a polytomous unfolding models for simple squared logistic model (SSLMP; 
Luo, 2001), and a PARELLA model for polytomous responses can be developed. 
The definitions of these models are summarized in Table 1. 

Nonparametric Method The aforementioned models use parametric methods. This 
section introduces a nonparametric unfolding model and its extension for graded 
responses data. Multiple unidimensional unfolding (MUDFOLD; van Schuur, 1984) 
is a nonparametric method to analyze dichotomous data. Nonparametric methods 
can select items and identify a homogenous set of indicators (van Schuur, 1992). 
The nonparametric approach does not explicitly formulate a measurement model. 
In the cumulative data, the Mokken model (Mokken, 1971) can be viewed as



46 Y. Yuan and G. Engelhard

Ta
bl
e 
1 

L
uo

’s
 g

en
er

al
 f

or
m

 o
f 

po
ly

to
m

ou
s 

un
fo

ld
in

g 
m

od
el

s 

D
ic
ho

to
m
ou

s
H
C
M
 (
A
nd

ri
ch
 &

 L
uo

, 1
99
3)

SS
L
M
 (
A
nd

ri
ch

, 1
98
8)

PA
R
E
L
L
A
 (
H
oi
jt
in
k,
 1
99
0)
 

P
 (

Z
n
ik

 =
1 )

 =
 

co
sh

(ρ
ik

) 
co

sh
(ρ

ik
)+

co
sh

(β
n
−δ

i
) ,

 
k

=
1,

 .
..

, m
. 

P
 (

Z
n
ik

 =
 1

) =
ex

p( ρ
2 ik

)

ex
p( ρ

2 ik

) +e
xp

[
(

(β
n
−δ

i
)2

]
, 

k
= 

1,
 .

..
, m

. 

P
 (

Z
n
ik

 =
1 )

 =
 

ρ
ik

 2 

ρ
ik

 2
+ (

ρ
n
−δ

i
)2 

, 
k

=
1,

 .
..

 , m
. 

P
ol
yt
om

ou
s

H
C
M
-P
 (
L
uo

, 2
00
1)

SS
L
M
P
 (
L
uo

, 2
00
1)

PA
R
E
L
L
A
P
 (
L
uo

, 2
00
1)
 

P
 (

X
n
i 
=

k
) =

 

[c
os

h (
β

n
−δ

)]
m

−k
∏

k
 

l=
1 

co
sh

(ρ
il
) 

λ
n
i 

, 
k 

= 
0,

 .
..

, m
 −

 1
. 

P
 (

X
n
i 
= 

k
) =

 
ex

p{
∑

k
 

l=
1 
ρ

2 il

}
ex

p{ (m
−k

)(
β

n
−δ

i
)2

}

λ
n
i 

, 
k

=
0,

 .
..

, m
 −

1.
 

P
 (

X
n
i 
= 

k
) =

 (β
n
−δ

)2 (
m

−k
)
∏

k
 

l 
ρ

ik
 2 

λ
n
i 

, 
k 

=
0,

 .
..

, m
 −

1.
 

λ
n
i 
=

∑
m

 
k
=0

 [c
os

h
(β

n
 −

δ
) ]

m
−k

∏
k
 

l=
1 

co
sh

(ρ
il
) 

λ
n
i 
=

∑
m

 
k
=0

 e
xp

{
∑

k
 

l=
1 
ρ

2 il

}
ex

p
{ (m

 −
k
)
(β

n
 −

 δ i
)2

}
λ

n
i 
=

∑
m

 
k
=0

 (
β

n
 −

δ
)2 (

m
−k

)
∏

k
 

l=
1 
ρ

ik
 2 

L
uo

 (
20
01
) 

G
en
er
al
 F
or
m
 

of
 P
ol
yt
om

ou
s 

U
nf
ol
di
ng

 
M
od

el
s 

P
 { X

n
i 
= 

k
|β n

,
δ i

, (
ρ

il
)}

=
(
∏

k
 

l=
1
ψ

l(
ρ

il
))

(∏
m

 
l=

k
+1

ψ
l(

β
n
−δ

i
) )

 
λ

n
i 

,
k

 =
 

0,
..

.,
m

 λ n
i 
≡

∑
m

 
k
=0

(
∏

k
 

l=
1
ψ

l (
ρ

il
))

( ∏
m

 
l=

k
+1

ψ
l (

β
n
 −

 δ i
))

N
ot

e.
 T

he
 p

ar
am

et
er

s 
ar

e 
de

fin
ed

 in
 th

e 
te

st



A Historical Perspective on Polytomous Unfolding Models 47

a nonparametric method and the Rasch model is a parametric counterpart . For 
unfolding response processes, the MUDFOLD approach assumes that the item 
characteristics curves are single-peaked and provides the order of the items along 
the latent trait. Besides the common assumptions of unidimensionality and local 
independence, the unfolding IRT model has the assumption of a unimodal function 
of theta for every item. The stochastic ordering and the manifest unimodality 
are two other assumptions. Van Schuur (1992) extended the MUDFOLD for 
multicategory data. This extension is analogous to Molenaar’s (1982) extendsion of 
Mokken’s (1971) nonparametric unidimensional cumulative model. The procedure 
for conducting MUDFOLD for multicategory data is similar to MUDFOLD for 
dichotomous data. Corresponding to Guttman’s model for the triangular pattern, the 
response patterns (1,0) are not permitted. For examples, (1,0,1,1) has one error, and 
(1,0,1,0,1) has two errors (Leik & Matthews, 1968). In the context of multicategory 
data, there are different error response patterns that violate the unfolding model. 
For example, the response categories are 0, 1, and 2, pattern 202 indicates four 
error patterns: 202, 201, 102, and 212. The total number of errors in each response 
pattern can be calculated by summing up the number of errors in each triple of 
items over all triples (van Schuur, 1992). The calculation of the expected number 
of errors in each triple of items and the ordering of items in an unfolding scale 
for multicategory data are similar to the calculation for the dichotomous data. The 
examination of goodness of fit including the assessment of H-coefficients and the 
probability pattern. A positive H-coefficient value is expected. The probabilities for 
the highest or the lowest response are expected to follow the same characteristic 
monotonicity pattern as in the dichotomous cases. Also, the interpretations of the 
dominance matrix, the adjacency matrix, the conditional adjacency matrix, and the 
correlation matrix are the same as for dichotomous data (van Schuur, 1992). 

2 Discussion 

This study briefly describes the main unfolding models for unidimensional poly-
tomous responses. Polytomous unfolding models, such as GGUM, have been 
used in attitude and personality assessments for years. Other models also have 
great potential to contribute to both cognitive and non-cognitive assessments. 
Future research on polytomous unfolding IRT models can pay more attention to 
implementing various models to support and improve education and social science 
measurement from the psychometric perspective.
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Kernel Equating Presmoothing Methods: 
An Empirical Study with Mixed-Format 
Test Forms 

Joakim Wallmark , Maria Josefsson , and Marie Wiberg 

Abstract When equating test forms, it is common to presmooth the test score 
distributions before conducting the equating. In this study, the log-linear and item 
response theory (IRT) presmoothing methods were compared when equating mixed-
format test forms using kernel equating. Test forms from two different high-stakes 
tests were equated: The Swedish national test in mathematics, using the equivalent 
group sampling design, and the verbal part of the Swedish SAT test, using the 
nonequivalent groups with anchor test sampling design. In both cases, the analytical 
equating standard errors were lower for high and low performing test takers when 
using IRT presmoothing compared to log-linear presmoothing. Both presmoothing 
methods resulted in reasonable equated curves. As no true equating transformation 
is known in a practical setting, using IRT models for presmoothing appears to be 
a viable alternative to log-linear models when equating mixed-format tests such as 
the Swedish SAT. 

Keywords Kernel equating · Presmoothing · Item response theory 

1 Introduction 

Large-scale and high-stakes testing programs typically require construction of 
multiple forms of the same test. It is common to compare test forms from different 
administrations using test score equating (Kolen & Brennan, 2014; González & 
Wiberg, 2017). Test forms can be constructed in different ways using different 
types of items, potentially affecting which equating methods can be used and 
their efficiency. For example, the items on each test form may be multiple choice 
items, scored dichotomously, or constructed response items, scored polytomously. 
In general multiple-choice items require shorter testing time, while constructed 
response items can measure a deeper level of understanding and reasoning. It has 
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also been shown that multiple-choice items may provide less information about 
high and low performing test takers when compared to constructed response items 
(Ercikan et al., 1998). Since time is often limited and tests aim to cover a broad 
range of knowledge in a topic, a mix of different item types are sometimes used in 
the same test form. Such test forms are commonly referred to as mixed-format tests 
(Ercikan et al., 1998; Kim et al., 2008, 2010a,b; Kolen & Lee, 2014). The National 
Assessment of Educational Progress, the Advanced Placement Program, the SAT 
Reasoning Test and the national test in mathematics in Sweden are all examples of 
mixed-format tests. Despite the popularity of mixed-format tests, earlier research on 
mixed-format test equating has mostly considered traditional equating methods (see 
e.g. Kolen & Lee, 2014). Kernel equating (von Davier et al., 2004b) has increased 
in popularity in recent years. The method is flexible and has been shown to perform 
well for both small and large sample sizes, making it an attractive alternative to 
traditional- (e.g. Kolen & Brennan, 2014) and item response theory (IRT; Lord, 
1980) equating methods. 

As a first step when using kernel equating, the test score distributions are 
typically smoothed out to reduce the impact from sampling error on the equated 
scores. This procedure is commonly referred to as presmoothing. Historically, the 
most common way to presmooth the data has been through the use of log-linear 
models. A lot of research on kernel equating has been conducted using this method 
of presmoothing, which we will refer to as log-linear kernel equating (LLKE) (e.g. 
Mao et al., 2006; von Davier et al., 2006; Moses et al., 2007; Liu and Low, 2008). 
More recently, Andersson and Wiberg (2017) proposed the use of IRT models for 
presmoothing of test forms containing dichotomously scored items. The same IRT 
presmoothing method was extended to include polytomous items using polytomous 
IRT models (Andersson, 2016). Limited research has been conducted to evaluate 
the performance of kernel equating with IRT presmoothing when polytomous IRT 
models are used on real test data. 

The aim of this study is to evaluate the performance of kernel equating using 
IRT presmoothing on real test data. The resulting equating transformations were 
compared against log-linear presmoothing alternatives. Test data from the Swedish 
national test in mathematics as well as the Swedish scholastic aptitude test (SAT) 
were equated. The Swedish national test was equated using the equivalent groups 
(EG) design, in which the test taker samples taking each test form are assumed to be 
sampled from the same population. The SAT was equated using the nonequivalent 
groups with anchor test (NEAT) design. Under the NEAT design, population 
differences are adjusted for using a set of common items, typically referred to as 
the anchor test, given to both test taker groups. 

In Sect. 2, descriptions of kernel equating as well as IRT- and log-linear pres-
moothing are given. This is followed by an empirical study, with methodology and 
results in Sects. 3 and 4. Finally, advantages, limitations and practical implications 
of the two presmoothing methods are discussed in Sect. 5.
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2 Kernel Equating 

Let X and Y denote two test forms, administered to samples from population 
P and Q respectively. Under the NEAT design, let A denote the anchor test 
form administered to both samples. Further, we denote the discrete cumulative 
distribution functions (cdfs) for the test scores on X and Y by .FX(x) and .FY (y). 
For the anchor test, let .FAP (a) and .FAQ(a) denote the cdfs for the test scores on A 
in population P and Q respectively. 

The goal in equating is to equate the scores on X to Y using the equipercentile 
transformation .ϕ(x) = F−1

Y (FX(x)) for a target population T . This transformation 
only exists for continuous cdfs .FX(x) and .FY (y). Kernel equating (von Davier et al., 
2004b) uses kernel smoothing to estimate .ϕ(x) using continuous approximations of 
the typically discrete test score distributions in the samples. Different kernels can 
be used in this process, the most common being the Gaussian kernel (von Davier 
et al., 2004b; Mao et al., 2006; Moses et al., 2007; von Davier et al., 2006). The 
continuous approximation of .FX(x) when using a Gaussian kernel is 

.FhX
(x) =

K∑

j=0

rjΦ

(
x − δXxj − (1 − δX)μX

δXhX

)
, (1) 

where .Φ(·) is the standard normal distribution function and K is the total score on 
form X (assuming only non-negative integers are possible X scores). . xj is the j th 
score value, . rj is the probability for the j th score value, .μX is the mean of the X 

scores, . hX is the bandwidth and .δX =
√

σ 2
X

σ 2
X+h2

X

where . σ 2
X is the variance of the form 

X scores. The approximations of .FY (y), .FAP (a) and .FAQ(a) are obtained in the 
same fashion, and denoted .FhY

(y), .FhAP
(a) and .FhAQ

(a). The bandwidth parameter 
.hX determines the smoothness of .FhX

(x) and can be selected by minimizing the 
function 

. PEN (hX) =
K∑

j=0

[
rj − d

dx
FhX

(
xj

)]2

. (2) 

When using kernel equating under the NEAT design, one can use either the 
chained equating (CE) method or the Post-stratification equating (PSE) method. 
When using PSE, the anchor test scores are used to compute .FhX

(x) and . FhY
(y)

directly for a weighted target population .T = wP + (1 − w)Q where . 0 ≤ w ≤ 1
is the weight given to P . When using CE, the equating transformation is obtained 
by chaining separate equatings .ϕ̂(x) = F−1

hY
(FhAQ

(F−1
hAP

(FhX
(x)))). See von Davier 

et al. (2004a) for additional details. 
Before approximating the continuous distribution functions, the discrete score 

distributions are typically presmoothed to reduce the random errors due to sampling. 
The log-linear and IRT model presmoothing methods are described below.
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2.1 Log-Linear Presmoothing 

When using log-linear models under the EG design, the frequencies of each X 
score . nx are modelled by .log (nx) = β0 + ∑D1

l=1 βlx
l where .D1 is the highest 

polynomial degree. Under the NEAT design, let .nxa be the frequency of a score 
combination with x and a. The model can now be written . log (nxa) = β0 +∑D1

l=1 βX
l xl + ∑D2

l=1 βA
l al + ∑D3

l=1

∑D4
m=1 βXA

lm xlam where . D1, . D2, .D3 and . D4
denote the maximum polynomial degrees. The X, A, and XA superscripts are used 
to distinguish between the model parameters . β associated with the powers of the X 
scores, the A scores, and the cross products of the X and A scores, respectively. 

2.2 IRT Presmoothing 

Any IRT model that can be fit to the data can be used in the presmoothing step. 
When dealing with polytomous data, a common option is the generalized partial 
credit (GPC) model (Muraki, 1992), defined as 

.Pim(θ) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1

1 + ∑Mi−1
g=1 exp

(∑g

t=1 [ai (θ − bit )]
) , if m = 1

exp
(∑m

t=1 [ai (θ − bit )]
)

1 + ∑Mi−1
g=1 exp

(∑g

t=1 [ai (θ − bit )]
) , otherwise

(3) 

where i denotes the item, . Mi is the number of response categories, .Pim(θ) is the 
probability that a test taker with ability . θ responds in response category m, . bit is the 
item category difficulty parameter and . ai is the item discrimination parameter. Note 
that this model generalizes to the two parameter logistic model for items with only 
two response categories (Lord, 1980). When using the GPC model, . θ is assumed 
to be uni-dimensional and the responses to different items are assumed independent 
conditional on . θ . After fitting the model to each item, the total score probabilities 
conditional on . θ can be computed using the algorithm introduced by Thissen et al. 
(1995). As a final step, the marginal total score probabilities, . rj in Eq. (1), can be 
retrieved by integrating out the latent trait . θ , thus averaging over the population. 

3 Empirical Study 

To compare IRT with log-linear presmoothing, test forms from the Swedish 
national test in mathematics (NAT) as well as forms from the Swedish SAT were 
equated. The national mathematics test is given to high-school students taking 
the mathematics 3c course. The test has a large impact on the course grade, and
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Table 1 Summary statistics for the equated test forms 

EG NEAT 

Statistic .XNAT .YNAT .XSAT .YSAT .ASAT . ASAT

Year 2019 2018 2014 2013 2014 2013 

Total score 58 57 80 80 40 40 

Number of items 28 28 60 60 30 30 

Dichotomous items 9 9 50 50 25 25 

Polytomous items 19 19 10 10 5 5 

Mean 25.54 25.72 40.12 40.94 17.56 17.71 

Standard deviation 12.62 12.12 12.88 13.34 7.06 7.13 

Anchor test correlation – – 0.85 0.86 – – 

Sample size 1401 1008 2859 2469 2859 2469 

the grade is later used together with the grades of other courses to apply for 
university programs. It is a mixed-format test with different types of items, requiring 
either short answers or step-by-step solutions. Some items are polytomously scored 
while others are scored dichotomously. There are no anchor items available for the 
national mathematics test forms. As the populations of test takers are similar in age 
and from similar educational background we assumed that the populations were 
equal and the test form from 2019 (.XNAT) was equated to the 2018 form (.YNAT) 
under the EG design. 

Using a set of anchor items, the SAT test form from 2014 (.XSAT) was equated 
to the 2013 (.YSAT) form under the NEAT design. Both the CE and PSE methods 
were compared. The Swedish SAT is given twice a year, and the scores are used 
for applying to university. At least one third of the spots on different educational 
programs are given to students taking the SAT, while the remainder apply using 
their high school grades. The SAT consists of a verbal part and a quantitative part, 
which are equated separately. In this study, only the verbal part was equated. Three 
different types of items are contained within the test form: sentence completion, 
word interpretation and reading comprehension. All items are multiple choice 
items. Before conducting IRTKE, the scores from the reading comprehension items 
referring to the same texts were added together to form polytomous items, as the 
responses on these items cannot be assumed to be independent. 

Summary statistics for all test forms are displayed in Table 1. Among the 
polytomous items on .XNAT and .YNAT, 12 items had three response categories. On 
.XNAT, there were three items with four response categories and four items with five 
response categories. However, .YNAT had four four-category items and three five-
category items, resulting in the total score on .XNAT being one point higher. On both 
Swedish SAT test forms, there were six items with three response categories, two 
items five categories and two items with six. As shown in Table 1, most items on the 
SAT forms were dichotomous. 

The kequate (Andersson et al., 2013) R package was used to equate the test 
forms. GPC models were used for IRT presmoothing, see Eq. (3). For LLKE, order
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four polynomial log-linear models were used to model the score frequencies on 
each test form under the EG design. The polynomial orders were chosen based 
on Akaike information criterion (AIC, Akaike, 1981). The Bayesian information 
criterion (BIC, Schwarz, 1978) has been shown to be more efficient than AIC for 
bivariate smoothing (Moses & Holland, 2010), and was used for polynomial order 
selection under the NEAT design. For both SAT forms, this resulted in degree five 
polynomials for the scores on the main test forms, degree four polynomials for 
anchor item scores, and cross products with maximum powers of two for the main 
form scores along with power one anchor scores. 

Penalty minimization based on minimizing Eq. (2) was used for bandwidth 
selection. For method evaluation, the standard error of equating (SEE) of each 
equating transformation was compared together with the equated scores. 

4 Results 

For all equated test forms, both presmoothing methods result in somewhat similar 
amounts of smoothing. As an example, Fig. 1 shows the presmoothed score distri-
butions from using IRT and log-linear presmoothing on .XNAT and .YNAT. For these 
forms, the score frequencies in the data show large differences between adjacent 
score points, especially towards the middle part of the score distributions. The 
differences between IRT presmoothing and log-linear presmoothing appear to be 
relatively small. The largest difference is on the lower end of .XNAT score scale, 
where the IRT presmoothing method puts the frequency of a score of zero 5.78 
points below the log-linear frequency. 

Figure 2 displays each estimated equating transformation alongside its corre-
sponding analytical SEE for the national mathematics test. Figure 3 shows the 
same for the Swedish SAT equatings. In the left plots in each figure, the score on 
.XNAT/.XSAT is subtracted from the equated scores to better visualize the differences 
between each equating method. A negative difference suggests lower score on 
.YNAT/.YSAT for a given score on .XNAT/.XSAT. 

When looking at the NAT equating results in Fig. 2, one should note that the 
total score on .XNAT was one score point higher than the total score on .YNAT. 
For this test, both IRT and log-linear presmoothing give an indication that the 
scores on .XNAT correspond to a marginally higher .YNAT scores on the lower part 
of the score scale. The curves are similar in shape everywhere except for on the 
upper end, where the IRTKE equating transformation changes direction and has a 
downward slope around a .XNAT score of 40. Despite the overall similarities between 
the presmoothing methods in Fig. 1, the equated scores differ with more than . 1.5
score points around an X score of 52. The reason being that multiple subsequent 
IRT score frequencies are below the corresponding log-linear frequencies around 
a score of 40 on .XNAT. This results in relatively large differences in the score 
distribution percentiles which persist throughout the kernel smoothing step. On 
average, the equating transformation obtained using LLKE was .0.23 score points
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Fig. 1 The presmoothed score frequencies from each method are displayed together with the score 
frequencies in the data 
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Fig. 2 The left plot shows the differences between the estimated equating transformations and 
their corresponding score x on the national mathematics test form from 2019. The plot to the right 
shows the SEEs associated with each curve 

above the IRTKE transformation. One interpretation would be that using log-linear 
presmoothing makes .YNAT appear easier compared with using IRT presmoothing 
for this test. As displayed in the right plot in Fig. 2, the estimated SEEs are lower 
for the majority for most of the score scale when using IRT presmoothing compared
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Fig. 3 The left plot shows the differences between the estimated equating transformations and 
their corresponding score x on the SAT test form from 2013. The plot to the right shows the SEEs 
associated with each curve 

to using log-linear models. The largest differences are at the ends of the score scales. 
On the lower end, the SEEs from using IRT are almost half the size of the LLKE 
SEEs for some .XNAT scores. The average SEE was .0.61 for the IRTKE equating 
and .0.67 for the LLKE equating. 

Under the NEAT design, Fig. 3, the differences between each curve is smaller 
even though the total test score is higher and more methods are compared. The 
equated scores are within one point of their corresponding scores on .XSAT over the 
whole score scale for all equating methods. The curves are also similar in shape 
and the largest differences are found towards the lower end of the score scale. 
All methods suggest that a score over 36 on .XSAT equates to a marginally higher 
score on .YSAT. The resulting equating transformations from IRTTKE CE and LLKE 
PSE are relatively close to each other for most of the .XSAT score scale. These 
transformations differ mostly for the very best and the worst performing test takers. 
There appears to be no clear separation of the equating transformations based on 
presmoothing method or whether PSE or CE was used. 

Looking at the SEEs in the right plot of Fig. 3, it is clear that for the lower 
and upper .XSAT scores, the SEEs from using IRT presmoothing are much larger 
than when using log-linear models. The opposite is true for the mid score range, 
but to a smaller extent. Over the entire score scale, the average SEEs were lower 
when presmoothing using IRT. The averaged SEEs were .0.40, .0.45, .0.57 and 
.0.52 for IRTKE with CE, IRTKE with PSE, LLKE with CE and LLKE with PSE 
respectively.
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5 Discussion 

In this study, kernel equating with IRT and log-linear presmoothing was compared 
when equating mixed-format tests using real test data under both the EG and NEAT 
data collection designs. Despite some differences, the equated scores from both 
presmoothing methods seemed plausible for all equated tests. There is no obvious 
reason as to why one method should be preferred over another just by looking at the 
equated scores. See for example Fig. 3. 

The SEEs at the upper and lower ends of the score scales were smaller when 
using IRT presmoothing compared to log-linear presmoothing for both the SAT and 
the NAT. Andersson and Wiberg (2017) observed the same phenomenon in their 
simulation study using only dichotomous items, also comparing LLKE with IRTKE. 
This could possibly be explained by the fact that the log-linear method models the 
total test score distribution directly, without the need for specific items scores. With 
these models, having a few extra test takers at the top or bottom scores can result 
in “bumps” in the smoothed distributions, later impacting the equated scores. On 
the contrary, when using IRT presmoothing, the probabilities of responding in a 
certain response category for each item are modelled first, and forced to follow the 
parametric forms of the chosen IRT model. These smooth curves are then combined 
to get the smoothed total score distribution, imposing further smoothing at the lower 
and upper ends of the score scales, which in turn results in smaller SEEs. Whether 
this extra smoothing is desirable depends on whether or not the inconsistencies 
between the score frequencies at the top or bottom scores are there by chance or if 
it is a feature in the underlying population which should be modelled. However, as 
the true distribution is in practice unknown, the lower SEEs from IRT presmoothing 
may be attractive if equated scores of top performing students are of interest. 

In this study, real test data was equated when comparing different methods. A 
limitation with this approach is that the true equating transformation is unknown, 
making it hard to judge which method performed better in terms of the equated 
scores. A simulation study would solve this issue, even though it is sometimes 
hard to come up with a fair true equating transformation in a simulated setting. 
Additionally, we only compared different equating methods within the kernel 
equating framework. In future studies, kernel equating should be further compared 
to other equating methods when test forms contain polytomous or mixed-format 
items to see if similar findings would be obtained. For example, Wang et al. (2020) 
showed that IRT observed-score equating produced better results compared to both 
IRTKE and LLKE in various scenarios under the NEAT design for tests containing 
only dichotomous items. 

Another limitation is that only unidimensional GPC models were considered 
when equating using IRTKE. It would be of interest, especially in a mixed-
format setting, when different items can sometimes be assumed to measure slightly 
different constructs, to explore the performance when using multidimensional IRT 
models. Additionally, in a mixed-format setting, the use of mixed IRT models could 
be considered (Chon et al., 2010). With this approach, a three parameter logistic



58 J. Wallmark et al.

model could be used for dichotomous items to incorporate guessing, while the GPC 
or any other polytomous model could be used for the polytomous items. Non-
parametric models (e.g. Wiberg et al., 2019; Tsutsumi et al., 2021) could also be 
used in situations where the parametric models do not fit the data very well. 

In conclusion, using IRT models for presmoothing when using kernel equating 
on mixed-format test forms appears to be a viable alternative to using log-linear 
models. However, since no true equating is known, multiple equating methods 
should be considered and compared even if one method has lower SEEs. This could 
help judge if the resulting equating transformations appear plausible. For example, if 
multiple methods are compared and one method gives vastly different results while 
the other ones are more similar, it could be an indication that the deviating one is 
wrong, unless one has specific reasons to believe otherwise. 
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Equating Different Test Scores with 
Landmark Registration Compared to 
Equipercentile Equating 

Marie Wiberg , James O. Ramsay , and Juan Li 

Abstract The overall aim of this study is to propose a new test score equating 
method based on landmark registration, which has its roots in functional data 
analysis. A further aim is to compare sum scores and binary optimal scores and 
examine the proposed method in comparison with equipercentile equating with both 
simulated data and data from a college admissions test. We used the EG design 
in both the empirical study and the simulation study. In the simulation study, we 
examined the behaviour when either difficulty or discrimination differ in the test 
forms or if there is a large ability difference between the groups taking different test 
forms. The results indicate that the proposed method worked well. The empirical 
study suggested that the proposed method could be used in practice. Practical 
implications of using different test scores in test equating as well as the usefulness 
of landmark registration was discussed. 

Keywords Landmark registration · Equipercentile equating · EG design 

1 Introduction 

There are several options when calculating test takers’ test scores. If the used test has 
binary scored items, we could use sum scores, which is simple the sum of the correct 
answers. Advantages of sum scores include that they are computationally fast, easy 
to calculate and easily understood by the test takers and the general public. Another 
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option for calculating test scores are to use parametric item response theory (IRT) 
and calculate the test takers’ latent test score. The advantage is that the test takers 
ability and the test scores are placed on the same scale but a large disadvantage 
is they are computationally demanding. A third option is to use optimal scores 
obtained from nonparametric item response functions (Ramsay & Wiberg, 2017a,b; 
Wiberg et al., 2018). Optimal scores are obtained by optimizing a criterion for fitting 
the data from a test taker within some class of nonparametric IRT models. Optimal 
scores have been shown to be more efficient than sum scores in terms of bias 
and root mean squared error (Ramsay & Wiberg, 2017b) and less computationally 
demanding than scores from parametric IRT (Wiberg et al., 2019). However, in order 
for optimal scores to be useful in testing programs we need to have tools to compare 
test scores between different test forms. 

In test score equating we use statistical models and methods to make test 
scores comparable among different test forms so that the scores can be used 
interchangeably (González & Wiberg, 2017). A large number of equating methods 
have been developed for various data collection designs and different test scores. 
González and Wiberg (2017) divided these into traditional methods, such as mean, 
linear and equipercentile equating (Kolen & Brennan, 2014), kernel equating 
methods (von Davier et al., 2004) and parametric IRT methods (Lord, 1980). The 
most common method to use with binary scored items is equipercentile equating 
and this method can be used regardless of the test score used. 

Another possibility if we want to place test scores on the same scale is by 
using the methodology from functional data analysis which optimal scores are 
built upon. In functional data analysis, so-called registration is typically used to 
put two functions on the same scale. Common registration methods include shift 
registration, curve registration, and landmark registration (Ramsay & Silverman, 
2005). In this study we will use landmark registration. The overall aim of this study 
is to propose a new test score equating method based on landmark registration and 
compare it with the commonly used equipercentile test equating method using both 
real data and a simulation study in the equivalent groups (EG) design. A further 
aim is to compare sum scores and binary optimal scores and examine the proposed 
method in comparison with equipercentile equating. Examined conditions include 
when either difficulty or discrimination differ in the test forms and if there is a large 
ability difference between the groups taking different test forms. 

Previous studies on optimal test scores have focused on developing the theory 
and comparisons with sum scores (Ramsay & Wiberg, 2017a,b), comparisons with 
parametric IRT (Wiberg et al., 2019) and developing the theory behind optimal 
scores further (Ramsay et al., 2020b). So far, no studies have been focused on 
equating optimal test scores. Previous studies on test score equating has mainly 
focused on the use of sum scores or IRT scores, for a summary see e.g. Kolen and 
Brennan (2014) and for implementations refer to González and Wiberg (2017). 

The rest of the paper is structured as follows. In the next section sum scores 
and optimal scores are briefly described, followed by a section which contains 
a short description of equipercentile test equating. In Sect. 4, we propose to use 
landmark registration of curves in order to equate binary optimal scores or sum 
scores. Section 5 contains an empirical example with a real college admission
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test where binary optimal scores and sum scores are compared when using both 
equipercentile equating and landmark registration in an EG design. The sixth section 
contains a simulation study and the seventh section displays the results from the 
simulation study. Finally, a discussion section with some concluding remarks and 
practical implications are given. 

2 Sum Scores and Optimal Scores 

For simplicity, we focus on test data which are binary scored, but our approach can 
be easily modified to optimal scores based on full information by taking account test 
takers wrong answers (see Ramsay et al. (2020b). Assume we have response data 
.Uij = 0 or 1, where .i = 1, . . . , n are the items and .j = 1, . . . , N the test takers. To 
calculate the sum score . Sj for test taker j , we sum the response pattern over the i 
items, .Sj = ∑n

i=1 Uij . 
Let . θ denote a measure of a test taker’s ability in terms of a test score. To calculate 

optimal scores, we use the negative log likelihood as fitting criterion for an arbitrary 
item response function over the interval .[0, n] defined as 

. − logL(θ |U) =
n∑

i=1

[−UiWi(θ) + log(1 + expWi(θ))], (1) 

where the item function .Wi(θ) is the log-odds ratio 

.Wi(θ) = log

(
Pi(θ)

1 − Pi(θ)

)

. (2) 

and .Pi(θ) is the probability of answering an item correctly. To estimate .Wi(θ), B-
spline basis function expansions are used 

.Wi(θ) =
K∑

k

γikψik(θ), (3) 

where for each item i, . γik is the coefficient of the basis function .ψik in the basis 
function expansion of the ith item characteristic curve. To obtain optimal scores we 
use the first derivative of the negative log likelihood at the optimal . θ defined as 

.

n∑

i=1

Uij

dWi

dθ
−

n∑

i=1

Pi(θ)
dWi

dθ
= 0. (4) 

The first two terms on the left hand side is a weighted sum of the data, and at 
the optimal . θ the two terms are equal. The n weights .dWi/dθ are the slopes of the 
log-odds functions at . θ , and decides the importance of each term in the sums. Thus, 
the quality of the information provided by a response is measured by how fast the
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log-odds is increasing or decreasing at . θ . For more details on how to obtain optimal 
scores refer to Ramsay and Wiberg (2017a) and for a comparison with sum scores 
refer to Wiberg et al. (2018) and for a comparison with parametric IRT scores refer 
to Wiberg et al. (2019). To obtain optimal scores in practice we use the R package 
TestGardener (Ramsay & Li, 2021). 

3 Equipercentile Equating 

Assume that we want to equate test form X to test form Y. Let X be the test scores 
from test form X and let Y be the test scores from test form Y. Let . FX and .GY be 
the test scores cumulative distribution functions (CDF’s) and .F−1

X and .G−1
Y their 

functional inverses, so that .F−1
X [FX(x)] = (F−1

X ◦FX)(x) = x. Let .ϕ(x) denote the 
equating transformation, which for an equipercentile equating is defined as 

.ϕ(x) = G−1
Y (FX(x)) = (G−1

Y ◦ FX)(x), (5) 

(Braun & Holland, 1982). The equating transformation will have different appear-
ance depending on the test equating method and data collection design and thus 
there exist a large amount of methods to equate test scores. 

In the EG design, we assume that the two samples who take test form X and 
test form Y are from the same population P . Scores from the different test forms at 
the same quintiles are assumed to be equivalent and thus we can use the equating 
transformation defined in (5) directly. 

When using optimal scores with these traditional equating transformations we 
simply exchange the use of sum scores with optimal scores when we calculate the 
equating transformation. 

4 Equating Test Scores with Landmark Registration 

As discussed above, in functional data analysis registration is typically used to put 
two functions on the same scale. In this study we use landmark registration, which 
means that for each curve, argument values are identified which are associated 
with some features (Ramsay & Silverman, 2005). An advantage with landmark 
registration is its speed and that it allows for a continuous registration process. 
Landmark registration uses points to remove phase variation by transforming the 
domain of each curve so the location of shape features are aligned across curves. 
A typical choice of landmarks are percentiles such as the 5, 25, 50, 75 and 
95 percentiles but one can place as many landmarks as one believes is needed. 
Landmark registration can be used as a fast low-dimensional approximation of the 
inverse in Eq. (1).
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Let the CDF’s of scores on two test forms be .FX(x) and .GY (y), respectively. 
For simplicity we will assume that the test scores X and Y are over the same range, 
which we denote by .[0, τ ]. Let function .Y = h(X) map test scores in the X-space 
into test scores in Y-space, where in this case the scales are the same, but they 
could be different. Let .φ(X) be a strictly increasing smooth function of test scores, 
labelled warping function, such that .φ(0) = 0 and .φ(τ) = τ . Let  the CDF  . FX be 
warped into target CDF . GY in the sense that 

.GY [φ(x)] ≈ FX(x). (6) 

This warping function is similar to the equipercentile equating definition in (1). 
Landmark registration can thus be seen as a kind of equipercentile equating where 
the difference lies in how the equating transformation is obtained. The warping 
function in (6), is our new proposed equating transformation. 

In the spirit of nonparametric analysis of test data, we need to represent . FX(x)

and .GY (y) as having an arbitrary level of accuracy. The accuracy will usually be 
defined by the test analyst by requiring a balance between how well (6) approaches 
an equality and how smooth the two CDF’s and the warping function are. The two 
most important factors in this choice are likely to be the numbers of test takers and 
the numbers of items in the two test forms. 

A CDF  F and a warping function . φ share three features. Each is required to be 
strictly increasing, each must be constrainable to be as smooth as is required, and 
each is normalized: .F(0) = φ(0) = 0, and .F(τ) = 1 while .φ(τ) = τ. We achieve 
these characteristics by the following transformations introduced by Ramsay (1996), 
which define them in terms of two unconstrained functions .LF (x) and .Tφ(x): 

.F(x) =
∫ x

0
exp[LF (u)] du and φ(x) = τ

∫ x

0 exp[Tφ(u)] du
∫ τ

0 exp[Tφ(u)] du
. (7) 

Each function is a strictly increasing function of the score x by virtue of the 
fact that the indefinite integral of a positive function will necessarily increase. In 
the case of the CDF, we see that function .LF is simply the log-density function 
.LF (x) = log dF/dx, and this description is also reasonably appropriate for warping 
function . φ since the larger .Tφ(x) is the faster .φ(x) increases. 

The required flexibility in either the CDF or the warping function is achieved by 
defining the corresponding log-density function L as a basis function expansion 

.L(x) =
K∑

k

ckξk(x). (8) 

B-spline basis functions are the usual choice for the basis functions . ξk , and the 
larger their number K , the more flexible the log-density. An explicit roughness 
penalty on the size of the second or higher derivatives of the spline expansion can 
also be used to impose further smoothness in the context of high-dimensional basis
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expansions. A single-parameter warping function that is contained within this class 
is 

. φ(x) =
{

τ evx−1
evτ −1 , if v �= 0,

x, if v = 0.

The restriction .F(0) = φ(0) = 0 is automatically satisfied by the definition 
in (7). For the estimation of (8), the fitting criterion is the negative log likelihood, 
the coefficients are optimized subject to the linear restriction .

∑
k ck = 0 and 

the normalizing constant is computed on each iteration. In the warping case, the 
optimization is subject to the restriction .v = 0. Further details and illustrations are 
provided by Ramsay and Silverman (2005) and Ramsay et al. (2009) and functions 
coded for these purposes are available in the fda package available for both R and 
Matlab and can be obtained from the website www.functionaldata.org. In the  EG  
design, the described warping function can be used directly. 

5 Empirical Study 

To illustrate the proposed equating method and in order to compare the use of sum 
scores and optimal scores in the EG design we examined real test data from the 
Swedish scholastic aptitude test (SweSAT) from two consecutive administrations 
(labelled 13B and 14A) referred to as the test forms. SweSAT is a binary-scored 
multiple-choice test that are used for college admissions. The test is typically given 
twice a year and it consists of a verbal and a quantitative subtest with 80 items each. 
We used the quantitative part with an EG design, and used two samples of 2000 test 
takers, who had taken either of two test forms. To items are the same on the test 
forms but the test forms are built to have similar items. We equated the new test 
form 14A to the old test form 13B. 

Both sum scores and binary optimal scores were used. The test scores were used 
with the traditional equipercentile equating method and with the proposed equating 
method based on landmark registrations of the CDFs. We used a large number of 
basis functions, i.e. 15 to approximate the empirical CDF’s. 

Everything was done in R with the R packages TestGardener (Ramsay & Li, 
2021) to estimate optimal scores, equate (Albano, 2016) to conduct equipercentile 
equating and fda (Ramsay et al., 2022) to obtain the warping functions. The used 
code can be obtained from the authors upon request. 

5.1 Empirical Study Results 

Figure 1 displays the warping function (i.e. the equating transformation) for 
landmark registration when test form 14A sum scores are warped to the score scale 
of the 13B test form. Note, the diagonal line is the identity function. A general

www.functionaldata.org
www.functionaldata.org
www.functionaldata.org
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Fig. 1 The warping function for landmark registration from original 14A sum scores to the target 
13B sum scores. The vertical lines represent the 5, 25, 50, 75 and 95 percentiles 

results is that the 14A test form gives higher test scores than the 13B test form over 
the whole scale. Notice that the smallest test score was 10 rather than 0 because 
examinees were encouraged to guess if they couldn’t make a choice otherwise. Most 
items had four response options, except 12 items which had five response options. 
Even if an examinee was guessing at all 80 questions, it would be highly improbable 
that the test score would be close to zero. Guessing is a form of contamination of the 
choice data that misrepresents the performance level of the weakest examinees. The 
warping function for optimal scores had a similar appearance and was thus excluded 
here. 

Note that the warping function is concave because it shifts the original 14A score 
values to the right. The registration shows that a 14A test taker scoring 60 would 
score 55 on the 13B test, and a 14A test taker scoring 45 would score about 40 
on the 13B test. The warping penalizes the 14A examinees for its easier items. 
Interestingly to note, the equipercentile equating illustrates the opposite pattern. A 
test taker would have received higher scores on 13B than on 14A. The reason is that 
the test scores functions are built differently. 

In order to examine the differences more closely, refer to Table 1, which gives 
the equated values at each of the examined percentiles for all the examined methods. 
Reasonable equated scores were obtained when optimal scores were used with 
the equipercentile equating methods. Not surprisingly, the equated values are most 
affected by the choice of test scores and less effective of the choice of equating
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Table 1 Selected percentiles (Perc), original test form scores (14A) and equated values for sum 
scores and optimal scores using landmark registration (LR) and equipercentile (EP) equating with 
the EG design 

EG design Sum scores Optimal scores 

Perc 14A LR EP 14A LR EP 
0.05 19 19 18 9 9 6 

0.25 27 25 24 21 24 21 

0.50 35 32 31 35 38 36 

0.75 45 40 39 48 53 50 

0.95 60 55 55 61 64 62 

method. Using optimal scores instead of sum scores seems to give in general similar 
test scores in the lower score range (first quartile) but larger test score differences at 
the end points. Noticeable is that the proposed method yielded reasonable equated 
scores regardless of test score in the lower score range where we only had a few 
test takers. The results of using landmark registration to equate the test scores 
was similar to the results from equipercentile equating with optimal scores for the 
boundary values but differed somewhat in the mid score range. Not shown here as 
we only showed results up to the 95 percentile, the proposed method forces the 
highest score to be no larger than the highest score 80. 

6 Simulation Study 

To illustrate how the equating is affected by different test scores and to compare the 
proposed method with equipercentile equating for the different test scores we used a 
simulation study. In the simulation study we assume that we equate from test form X 
to test form Y and we simulated binary response data for a 80 items multiple choice 
test. We sampled 5000 test takers for each test forms X and Y. We used a baseline 
case, which we obtained by simulating item response data with a two-parameter 
logistic IRT model and the ability of the test takers were drawn from N(0,1). We 
choose to use landmarks at the following percentiles; 0.05, 0.25, 0.50, 0.75, 0.95. 
Note, one can easily choose to use more landmarks if there are certain percentiles 
which are of higher interest, such as grading limits. The five landmarks chosen here 
were only used to illustrate that a large number of landmarks is not needed to get 
stable equating results. 

The discrimination parameters were drawn from a U(0.3,1.3) distribution, 
whereas the difficulty parameter were drawn from the N(0,1) distribution. Each 
condition was replicated 200 times. We used an EG design and examined the 
following four different conditions; (1) The baseline case. (2) A more difficult Y test 
form (achieved by adding 0.5 to the difficulty parameters in test form Y), (3) More 
discriminating Y test form (achieved by adding 0.5 to the discrimination parameters 
in test form Y). (4) More able test taker took test form Y (achieved by assuming the
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ability was drawn from N(1,1) for population Q). The examined conditions were 
compared with respect to the obtained equating transformation and the root mean 
squared error (RMSE). 

The R package ltm (Rizopoulos, 2006) was used to generate the dichotomous 
score responses. The R package fda (Ramsay et al., 2022) was used to calculate the 
landmark registration, the R package TestGardener (Ramsay & Li, 2021) was used 
to calculate the binary optimal scores and the R package equate (Albano, 2016) was  
used to calculate the equipercentile equating. 

6.1 Simulation Study Results 

We started by examining the RMSE in the four different conditions, and the 
result is given in Fig. 2. The overall result was that landmark registration yielded 
lower RMSE within each test score as compared to equipercentile equating. The 
sum scores had low RMSE also for equipercentile equating except in the higher 
percentiles. The landmark registration had more similar RMSE over the percentiles 
than equipercentile equating, even though we only used five landmarks. Only 
small differences appeared in the four conditions for landmark registration. The 
equipercenitle equating for sum scores all showed the same pattern, with a sudden 
rise of RMSE for sum scores at the highest percentiles. The reason is probably 
due to the low amount of test takers achieving the highest sum scores. For a more 
discriminating test Y, the RMSE was lower in all four conditions. If a more able test 
group took test Y the RMSE for the equipercentile equating was much higher for 
both test scores. 

Figure 2 strengthen the pattern observed in the empirical study, i.e. that optimal 
scores and sum scores differ quite much as they are built differently, i.e. the optimal 
score depend on which test item is answered correctly and not as in sum scores 
based on binary items where all items have the same weight. Thus in the following 
figures we primarily focused on the results of the equating methods within each test 
score instead of comparing the results between the test scores. 

The left part of Fig. 3 gives the equated values for sum scores using equiper-
centile equating in the four conditions. It is clear that all different conditions affect 
the equated values quite much. The right part of Fig. 3 displays the equated values 
for optimal scores using equipercentile equating in the four conditions. In contrast 
to sum scores, the item discriminations had the largest affect on the equated scores 
when optimal scores were used but the other conditions did not have any large effect. 

Figure 4 displays the equated values at different percentiles using landmark 
registration for sum scores to the left and optimal scores to the right in the four 
conditions. Again, item discrimination heavily affect the equated values when 
optimal scores are used with landmark registration, but all conditions were affected 
when sum scores were used with landmark registration. Note, the reason percentiles 
were used for the original scale here as landmark registration are built on percentiles 
and we wanted to emphasize this.
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Fig. 2 RMSE for sum scores (SS) and optimal scores (OS) with equipercentile equating (EP) and 
landmark registration (LR). From top left to right bottom; baseline case, more difficult Y test, more 
discriminating Y test and more able test takers taking test Y 

7 Discussion 

In this paper, we have illustrated how to equate test forms scored with sum 
scores and optimal scores. We also proposed to equate test scores with landmark 
registration, i.e. to register one CDF to another to reduce variation by using theory 
from functional data analyses. We compared the proposed equating method with 
equipercentile equating using sum scores and optimal scores with both real data and 
a simulation study. 

The empirical example support the use of either equipercentile equating or the 
proposed equating method when we have an EG design. This is good news as 
optimal scores have been shown to be advantageous for test takers, especially for 
high achievers (Ramsay & Wiberg, 2017a; Wiberg et al., 2018). To be able to equate 
test scores from different test versions is important if optimal scores are to be used in 
practice. One advantage of the proposed method is that the minimum and maximum 
test scores are kept intact in the equated scores which is not necessary the case 
for linear equating. It is also flexible as one can decide which percentiles matters
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Fig. 3 Equated values for sum scores to the left and optimal scores to the right with equipercentile 
equating in the four conditions 
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Fig. 4 Equated values for sum scores to the left and optimal scores to the right with landmark 
registration at different percentiles in the four conditions 

more, by setting them as landmarks. It is of course also possible to examine specific 
percentiles in equipercentile equating but the idea with landmark registration is to 
put emphasis on certain percentiles. This has potential to be useful when equating 
test forms where one are interested in putting percentile markers for different grades. 

The simulation study showed that the largest differences were between different 
test scores and only smaller differences were found between the equating methods 
within the test scores. The RMSE was lowest for landmark registration for sum 
scores in all examined conditions. The RMSE for sum scores using equipercentile 
was most affected by change in item discrimination. On contrary, RMSE for optimal 
scores using equipercentile was most affected by the change in the examinees’ 
ability. An advantage of landmark registration in comparison to equiprecentile 
equating is the possibility to get stable equated scores even if very few test takers
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have scores in the lower or upper score range. The result that landmark registration 
can be used for sum scores makes it interesting, especially when we have observed 
test scores which are not evenly distributed on the score scale. 

Several research topics can be of interest in the future. First, the proposed 
method should be examined for the case when we want to equate several test forms. 
Recently, parametric IRT equating methods have been developed for this purpose 
(Battauz, 2017) but a drawback is that parametric IRT can be computational chal-
lenging. An advantage with optimal scores is they are in general less computational 
demanding than parametric IRT. As landmark registration is useful in functional 
data analysis when we have many curves it should be relatively straight forward 
to examine this further. Second, in our simulation study we generated the scores 
with IRT, in the future one should consider a larger comparison where one simulate 
test scores without a parametric model as in e.g. Leoncio et al. (2022). Third, one 
could also examine test forms which have polytomous items and then one could use 
optimal scores as described in Ramsay et al. (2020a). Fourth, it would be interesting 
to examine optimal scores if differential item functioning is present in some or 
several of the items. Fourth, to make landmark registration more useful one should 
study how it performs if a nonequivalent groups with anchor test design is used 
instead of an EG design. This application should be straight forward, as we can use 
a chained equating approach, possible referred to as chained warping equating, in 
which the EG procedure is extended as follows. Instead of using a single warping 
function we need to use a chain of warping functions. First, we register the CDF 
of test form X to the anchor test CDF in population P , then we register the CDF 
of the anchor test in population P to the CDF of the anchor test in population Q. 
Finally, the CDF of the anchor test in population Q is registered to the CDF of test 
Y. The obtained chained warping function will be similar to chained equipercentile 
equating but the CDF’s are obtained differently. How it would work in comparison 
to other methods within the NEAT design is however left for future research. 

In summary, the proposed equating method and the examination of using 
equipercentile equating with optimal scores extends the possibilities to use optimal 
scoring in different test situations. There are however still important topics that 
needs to be studied in the future in order to make optimal scores a natural choice in 
standardized testing. 
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Pauci sed boni: An Item Response 
Theory Approach for Shortening Tests 

Ottavia M. Epifania , Pasquale Anselmi , and Egidio Robusto 

Abstract Item Response Theory (IRT) is the theoretical framework often used for 
shortening tests. This contribution presents a new IRT-based item selection proce-
dure which is meant for this purpose. This procedure is based on the information that 
each item provides in respect to different trait levels of interest (denoted as . θ targets), 
which are obtained by segmenting the latent trait in either equal or unequal intervals. 
In a simulation study, the performance of the new procedure was compared with 
that of the typical IRT procedure and of a random selection of the items. The new 
procedure outperformed the other two in recovering central and peripheral regions 
of the latent trait continuum, particularly when the short test forms consisted of 
fewer items. Despite this study highlighted the potentiality of the new item selection 
procedure for developing short test forms, work is still needed. 

Keywords Item response theory · Static short test form · Information · 
Assessment precision 

1 Introduction 

Tests can be efficiently shortened by considering the information at the item level 
provided by Item Response Theory (IRT) models (see, e.g., Colledani, Anselmi, 
& Robusto, 2021; Chiesi, Lau, & Saklofske, 2020; Choi, Reise, Pilkonis, Hays, 
& Cella, 2010; Silvia, 2021; Edelen & Reeve, 2007). According to IRT models, 
the probability of observing a correct response on an item is a function of 
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the characteristics of the person taking the test (i.e., the latent trait) and the 
characteristics of the item. Additionally, IRT models allow for obtaining information 
on the precision with which each item assesses different levels of the latent trait. 
This information is of particular relevance for the development of short test forms 
(STFs). Generally, IRT models can be used to develop STFs following one of two 
approaches. One approach is used for obtaining adaptive STFs where the items 
administered to each person are adaptively selected during the test administration. 
Computerized adaptive testing (CAT) procedure results in adaptive STFs that can 
provide precise assessments of the latent trait of the test-takers while including the 
least number of items (e.g., Drasgow & Olson-Buchanan, 1999; Magis & Barrada, 
2017). In CAT procedures, each adaptive STF can be different according to the level 
of the latent trait of each individual. As such, each individual can be administered 
with different subsets of items, which are adaptively selected according to the level 
of the latent trait of the test taker. Although having a STF tailored to the specific 
level of the latent trait of each individual is optimal in terms of information, it is 
not ideal in specific contexts such as job recruitment or college admission, where 
the different subsets of items might raise fairness issues. The other approach results 
in static STFs, and it is the one usually employed for shortening tests in an IRT 
framework (see, e.g., Colledani et al., 2019, 2018, 2021; Chiesi et al., 2020; Silvia, 
2021). In static STFs, the most informative items are chosen, irrespective of the 
latent trait of the test-takers. As such, all test-takers are administered with the same 
subset of items. Since the static STFs are not tailored to any specific level of the 
latent trait, they might require a larger number of items for a precise assessment of 
different levels of the latent trait than adaptive STFs obtained with CAT procedures. 
Other approaches exist for shortening tests in an IRT-based framework, such as 
those based on the two stage semi-adaptive branching (Belov & Armstrong, 2008), 
according to which a common item is asked first and, based on the response to 
that item, a different subset of items is administered. Differently from CAT, where 
each item is chosen according to the response to the previous item, in semi-adaptive 
branching procedures the response to the first item determines the subset of items to 
be administered. 

In this contribution, we focus on the development of static STFs. Specifically, 
we aim to obtain a procedure that strives for combining the main advantages of the 
adaptive STFs (i.e., being tailored to specific trait levels of interest) with those of 
the static STFs (i.e., being equal for all respondents). The following section gives an 
overview of the IRT model used for the application of the proposed procedure, along 
with an introduction to the item and test information functions. In Sect. 3, the typical 
procedure for shortening tests in an IRT framework and the procedure introduced in 
this study are presented. The results of a simulation study are presented in Sect. 4. 
A discussion of the results of the simulation study close the argumentation.
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2 Item Response Theory and Information Functions 

The procedure presented in this contribution is based on the 2-parameter logistic 
model (2-PL Birnbaum, 1968) for dichotomous responses. However, the proposed 
approach is general enough to be used with other IRT models for both dichotomous 
and polytomous responses. In the 2-PL model, the probability of a correct response 
to item i by person p is formalized as: 

.P(xpi = 1|θp, bi, ai) = exp[ai(θp − bi)]
1 + exp[ai(θp − bi)] (1) 

where . θp is the level of the latent trait of person p, and . bi and . ai are the difficulty 
and discrimination parameters of item i, respectively. The difficulty parameter b 
describes the location of item i on the latent trait. The discrimination parameter a 
describes the strength with which item i is linked to the latent trait (i.e., the ability of 
the item to discriminate between respondents with high and low levels of the latent 
trait). 

The item information function (IIF) informs about the precision with which an 
item measures the latent trait. In the 2PL model, the IIF. i of item i is obtained as: 

.IIFi = a2
i [P(θ)(1 − P(θ))], (2) 

where .P(θ) is the probability of a person with a certain . θ of responding correctly to 
item i, and .1 − P(θ) is their probability of responding incorrectly. The higher the 
discrimination parameter of item i, the higher IIF. i . The  IIF reaches its maximum 
in proximity of the location of the item on the latent trait (i.e., item i is most 
informative when the trait level of the respondent matches the difficulty parameter 
. bi). By summing up the IIF of all the items, a measure of the overall precision 
of the test in measuring the latent trait is obtained (i.e., test information function, 
.TIF = ∑I

i=1 IIFi). 

3 Item Selection Procedures 

3.1 Benchmark Procedure 

The benchmark procedure (BP) is the typical IRT procedure for shortening tests. 
The N items with the highest IIFs are selected from the items of the full-length test 
to be included in the static STF, where N is the desired length for the static STF.
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Fig. 1 Illustration of the . θ ′ procedure for developing a static STF composed of .N = 3 items from 
a full length test composed of .J = 10 items. Only the gray rows/columns are considered for the 
item selection at each iteration. Left, central, and right panels illustrate the .IIF matrix at iteration 
1, 2, 3, respectively 

3.2 Procedure Based on θ Targets 

The procedure is based on the definition of trait levels of interest (i.e., denoted as . θ
targets, . θ ′s), which are the levels of the latent trait on which the static STF focuses 
the most. The items that best assess the trait levels of interest (i.e., optimal items) are 
included in the static STF. In what follows, this procedure is referred to as .θ -target 
procedure. 

The latent trait is segmented into N . θ ′s, where N is the number of items to be 
included in the static STF. The IIFs of each of the J items composing the full-length 
test are computed for each . θ ′ and they are arranged in a .J × N matrix . IIF. The  
procedure iterates from 0 to .N − 1. At each iteration, the item with the highest IIF 
in .IIF is selected for the inclusion in the static STF. Once an item has been selected 
for a specific . θ ′, the row corresponding to that item and the column corresponding 
to that . θ ′ are not available anymore for item selection at the subsequent iteration. 
As soon as an optimal item (i.e., the item with the highest IIF) has been identified 
for each . θ ′, the procedure stops. 

The following example illustrates the procedure based on . θ ′ for creating a static 
STF composed of .N = 3 items from a full length test composed of .J = 10 items 
(Fig. 1). 

At the first iteration, all the rows and the columns of .IIF are considered for the 
item selection (gray area in the left matrix). The cell with the highest IIF is .IIF(6, 2). 
Row 6 of .IIF corresponds to item 6 while column 2 of .IIF corresponds to . θ ′

2. Item  
6 is the best item for evaluating . θ ′

2 and it is selected for the inclusion in the STF. 
Since item 6 has already been selected as the optimal item for . θ ′

2, the sixth row 
and the second column of .IIF are not available for the item selection at the second 
iteration (central matrix). The highest IIF is in .IIF(10, 1). Item 10 is the optimal 
item for . θ ′

1, and it is selected for the inclusion in the STF. 
At the third iteration, the rows corresponding to items 6 and 10 and the columns 

corresponding to . θ ′
2 and . θ ′

1 are no longer available for the item selection (right 
matrix). The highest IIF is in .IIF(3, 3). Being the optimal item for . θ ′

3, item 3 is
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selected for the inclusion in the STF. Since the number of selected items is equal to 
N , the procedure ends. 

In this contribution, two methods for selecting the . θ ′s are presented, according 
to which the latent trait can be either clustered into N clusters or it can segmented 
into .N + 1 intervals of equal width. In the former case, the latent trait is segmented 
into unequal intervals and the centroids . cn of the N clusters are the . θ ′s (unequal 
intervals procedure, UIP). In the latter case, the latent trait is segmented into equal 
intervals, and the N central values of the .N + 1 intervals are the . θ ′s (equal intervals 
procedure, EIP). 

3.3 Comparison Between θ -Target Procedure and Benchmark 
Procedure 

Both the BP and the .θ -target procedure aim at obtaining static STFs. While the BP 
procedure selects the item according to their information functions, irrespective of 
the position of the items on the latent trait, the .θ -target procedure selects the most 
informative item for each of the identified . θ targets. Unless the item selection in 
the BP procedure is supported by a visual inspection of the latent trait (e.g., Chiesi 
et al., 2020), the items are selected only according to their information functions, 
regardless of their location on the latent trait. As such, the items with locations 
that match the most common levels of the latent trait of the respondents have a 
higher probability of being selected than the items with locations matching the least 
common levels of the latent trait. The risk associated with such a procedure is that 
the static STF might not precisely assess the respondents with extreme levels of 
latent trait, this resulting in biased estimates of the latent trait (see, e.g., Feuerstahler, 
2018) 

In the .θ -target procedure, the item selection considers the information that each 
item provides in respect to the trait levels of interest (i.e., . θ targets). Specifically, 
the most informative item for each . θ target is selected in the iterative procedure. 
Since the . θ targets are spread along the entire latent trait and the most informative 
item has been selected for each of them, the resulting static STFs should be able 
to provide a precise and reliable assessment of both the most dense and the least 
dense regions of the latent trait. In this sense, the item selection is tailored to each 
. θ target. Therefore, this procedure is expected to maximize the information and the 
assessment precision across all respondents, including those with extreme levels of 
the latent trait. 

4 Method 

The performance of the BP and that of the procedures based on . θ ′s (i.e., UIP and 
EIP) are compared for the development of STFs composed of 10, 30, 50, 70, and 90
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items obtained from a full-length test composed of 100 items. A random selection 
of items (random procedure, RP) from the full length test is considered as well. The 
performance of the procedures is evaluated in terms of TIF and overall coverage of 
the latent trait. 

The latent traits of 1000 respondents were simulated from a normal distribution 
.N(0, 1). Item difficulty parameters b were simulated from a uniform distribution 
.U(−3, 3). Since it is not uncommon to find most discriminative items concentrated 
in the central region of the latent trait (i.e., medium difficulty levels, Azzopardi 
& Azzopardi, 2019; Sim & Rasiah, 2006), medium to highly discriminative items 
(.a > .64 Baker & Kim, 2017) were assigned to the items with medium levels of 
difficulty, while lowly discriminative items (.a ≤ .64 Baker & Kim, 2017) were  
assigned to items with most extreme levels of difficulty. The item discrimination 
parameters were simulated from a . χ2 distribution with 2 degrees of freedom, and 
the values were multiplied by a constant (. 4.3) to obtain plausible item discrimina-
tion parameters. Difficulty and discrimination parameters were simulated for 100 
items. 

5 Results 

The overall information of the STFs of different length is reported in Fig. 2. 
Benchmark procedure (BP) resulted in the highest information irrespective of the 
length of the STFs. As the number of items increased (i.e., 50-item STF), the 
performance of BP and UIP tended to be similar. EIP resulted in lower overall 
information than both BP and UIP. RP resulted in the lowest information. 

The TIFs of all static STFs are reported in Fig. 3. Irrespective of the number 
of items included in the STF, the BP (solid line) always resulted in the highest 
TIFs, while EIP (dot-dashed line) resulted in the lowest TIFs (after RP, dotted line). 
However, the peripheral regions of the latent trait were more precisely assessed by 
EIP and UIP than by BP. This is particularly noticeable for shorter static STFs. 

6 Discussion 

In this contribution, we presented a new procedure for the development of static 
STFs in an IRT framework. By tailoring the item selection to specific and fixed 
levels of the latent trait, the procedure is supposed to be a trade-off between the 
procedures used for adaptive testing and those typically used for the development 
of static STFs. 

The results highlighted the potential of the new procedure for developing STFs 
able to efficiently and precisely measure also the peripheral (i.e., least common) 
regions of the latent trait. The assessment precision of the extreme regions of the 
latent trait might be of particular use when non-normally distributed latent traits are
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Fig. 2 Overall information of the short test forms. Solid line: Benchmark procedure. Long-
dashed line: Unequal intervals procedure. Dot-dashed line: Equal intervals procedure. Dotted line: 
Random procedure 

considered, such as for the assessment of medical health outcomes (see, e.g., Smits 
et al., 2020) or for the assessment of clinically relevant constructs among the general 
population (e.g., Anselmi et al., 2022; Colledani et al., 2021), where the latent trait 
might present strong floor or ceilings effects. If a STF is to be developed for the 
assessment of such constructs, it should be able to provide a reliable assessment of 
the most common regions of the latent trait where the majority of the respondents 
are located and also of the extreme regions of the latent trait. This would allow 
for precisely assessing the majority of the respondents falling in the most dense 
regions of the latent trait and for identifying the respondents with extreme levels 
of the latent trait by administering the same STF. Moreover, the .θ -target procedure 
might be useful for developing STFs focused on specific trait levels, such as for the 
diagnostic screening of clinically relevant topics in the general population. In such 
instances, the trait levels of interest (hence the . θ targets) would be those around the 
cut-off level used for identifying potentially problematic respondents. This would 
ensure to obtain a STF able to adequately discriminate between respondents with 
trait levels over and below the cut-off level. 

Since items with medium difficulty levels tend to be also the most discriminative 
ones (e.g., Azzopardi & Azzopardi, 2019; Sim & Rasiah, 2006), the item parameters 
in this study were simulated such that the most discriminative items could be 
concentrated in one region of the latent trait. However, the performance of the 
proposed procedure should be tested and compared with other procedures also 
considering situations where highly and lowly discriminative items are equally 
spread throughout the entire latent trait.
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Fig. 3 Test information functions of all short test forms. Solid line: Benchmark procedure. Long-
dashed line: Unequal intervals procedure. Dot-dashed line: Equal intervals procedure. Dotted line: 
Random procedure 

The lack of a comparison between the assessment precision of STFs obtained 
with the CAT procedure and that of STFs obtained with the .θ -target procedure is 
a limitation of the study. Future studies should compare the assessment precision 
of the STFs obtained with all the IRT-based procedures used for shortening tests, 
including the one presented in this contribution. In the .θ -target procedure, the item 
selection is tailored to the identified . θ targets, similarly to the underlying logic of 
CAT procedures where the selected items are tailored to the specific . θ level of each 
respondent. Differently from CAT, in the . θ target procedure the items are selected to 
maximize the information across all respondents by administering the same subset 
of items, similarly to what it is done in the typical IRT procedure for shortening 
tests. As such, the .θ -target procedure can be considered as a sort of middle ground 
between the typical IRT procedure and the CAT procedure. Following this idea, the 
assessment precision of the STFs obtained with the .θ -target procedure should be 
better than that of the STFs obtained with the typical IRT procedure but worse than 
that of the STFs obtained with the CAT procedure. Nonetheless, the adaptive STFs 
obtained with the CAT procedure hinder the comparability between respondents, 
given that they are administered with different subsets of item. This potential issue 
is overcome in the .θ -target procedure. 

In conclusion, the presented approach showed its feasibility for the development 
of STFs in an IRT framework. However, work is still needed to further understand 
the applicability and advantages of the new procedure considering different scenar-
ios.
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Smits, N., Öğreden, O., Garnier-Villarreal, M., Terwee, C. B., & Chalmers, R. P. (2020). A study of 
alternative approaches to non-normal latent trait distributions in item response theory models 
used for health outcome measurement. Statistical Methods in Medical Research, 29(4), 1030– 
1048. https://doi.org/10.1177/09622802209076

https://doi.org/10.1177/10731911211017657
https://doi.org/10.1177/10731911211017657
https://doi.org/10.1177/10731911211017657
https://doi.org/10.1177/10731911211017657
https://doi.org/10.1177/10731911211017657
https://doi.org/10.1177/10731911211017657
https://doi.org/10.36315/2019v2end001
https://doi.org/10.36315/2019v2end001
https://doi.org/10.36315/2019v2end001
https://doi.org/10.36315/2019v2end001
https://doi.org/10.36315/2019v2end001
https://doi.org/10.36315/2019v2end001
https://doi.org/10.1177/0146621606297308
https://doi.org/10.1177/0146621606297308
https://doi.org/10.1177/0146621606297308
https://doi.org/10.1177/0146621606297308
https://doi.org/10.1177/0146621606297308
https://doi.org/10.1177/0146621606297308
https://doi.org/10.1186/s40359-020-0386-9
https://doi.org/10.1186/s40359-020-0386-9
https://doi.org/10.1186/s40359-020-0386-9
https://doi.org/10.1186/s40359-020-0386-9
https://doi.org/10.1186/s40359-020-0386-9
https://doi.org/10.1186/s40359-020-0386-9
https://doi.org/10.1186/s40359-020-0386-9
https://doi.org/10.1186/s40359-020-0386-9
https://doi.org/10.1186/s40359-020-0386-9
https://doi.org/10.1016/j.paid.2017.08.037
https://doi.org/10.1016/j.paid.2017.08.037
https://doi.org/10.1016/j.paid.2017.08.037
https://doi.org/10.1016/j.paid.2017.08.037
https://doi.org/10.1016/j.paid.2017.08.037
https://doi.org/10.1016/j.paid.2017.08.037
https://doi.org/10.1016/j.paid.2017.08.037
https://doi.org/10.1016/j.paid.2017.08.037
https://doi.org/10.1016/j.paid.2017.08.037
https://doi.org/10.1016/j.paid.2017.08.037
https://doi.org/10.4473/TPM28.3.6
https://doi.org/10.4473/TPM28.3.6
https://doi.org/10.4473/TPM28.3.6
https://doi.org/10.4473/TPM28.3.6
https://doi.org/10.4473/TPM28.3.6
https://doi.org/10.4473/TPM28.3.6
https://doi.org/10.4473/TPM28.3.6
https://doi.org/10.4473/TPM28.3.6
https://doi.org/10.1007/s11136-007-9198-0
https://doi.org/10.1007/s11136-007-9198-0
https://doi.org/10.1007/s11136-007-9198-0
https://doi.org/10.1007/s11136-007-9198-0
https://doi.org/10.1007/s11136-007-9198-0
https://doi.org/10.1007/s11136-007-9198-0
https://doi.org/10.1007/s11136-007-9198-0
https://doi.org/10.1007/s11136-007-9198-0
https://doi.org/10.1007/s11136-007-9198-0
https://doi.org/10.1177/0146621617733955
https://doi.org/10.1177/0146621617733955
https://doi.org/10.1177/0146621617733955
https://doi.org/10.1177/0146621617733955
https://doi.org/10.1177/0146621617733955
https://doi.org/10.1177/0146621617733955
https://doi.org/10.18637/jss.v076.c01
https://doi.org/10.18637/jss.v076.c01
https://doi.org/10.18637/jss.v076.c01
https://doi.org/10.18637/jss.v076.c01
https://doi.org/10.18637/jss.v076.c01
https://doi.org/10.18637/jss.v076.c01
https://doi.org/10.18637/jss.v076.c01
https://doi.org/10.18637/jss.v076.c01
https://doi.org/10.1007/s12144-020-01299-7
https://doi.org/10.1007/s12144-020-01299-7
https://doi.org/10.1007/s12144-020-01299-7
https://doi.org/10.1007/s12144-020-01299-7
https://doi.org/10.1007/s12144-020-01299-7
https://doi.org/10.1007/s12144-020-01299-7
https://doi.org/10.1007/s12144-020-01299-7
https://doi.org/10.1007/s12144-020-01299-7
https://doi.org/10.1007/s12144-020-01299-7
https://doi.org/10.1177/09622802209076
https://doi.org/10.1177/09622802209076
https://doi.org/10.1177/09622802209076
https://doi.org/10.1177/09622802209076
https://doi.org/10.1177/09622802209076
https://doi.org/10.1177/09622802209076


Limited Utility of Small-Variance Priors 
to Detect Local Misspecification 
in Bayesian Structural Equation Models 

Terrence D. Jorgensen and Mauricio Garnier-Villarreal 

Abstract In a highly influential paper on current practice in Bayesian structural 
equation modeling (BSEM), Muthén and Asparouhov (Psychol Methods 17:313– 
335, 2012) proposed using small-variance priors to constrain non-target parameters 
to be close to (rather than exactly) zero, with the “side product” (p. 313) that the 
posterior distributions of such nontarget parameters could be used analogous to 
modification indices. This chapter presents 2 simulation studies of their utility, in 
the context of (a) constraining cross-loadings to be nearly zero and (b) constraining 
factor loadings and intercepts to be equivalent across groups or occasions. The first 
study reinforced earlier findings that small-variance priors can prevent detecting 
important misspecifications (i.e., global-fit indices indicate better fit as priors 
become less restrictive). In contrast, these local indicators have greater power to 
detect invalid constraints when priors are less restrictive. Study 2 revealed similar 
patterns in the context of detecting invalid equality constraints and showed limited 
utility of small-variance priors over modification indices under maximum-likelihood 
estimation. Our advice is to evaluate global fit in BSEM without small-variance pri-
ors, and only when hypothesized models are rejected, utilize small-variance priors 
to search for clues about possible respecification. We recommend exploring other 
tools for local-fit evaluation in BSEM, which might detect misspecifications without 
introducing additional complications of small-variance priors (e.g., propagation of 
bias). 
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1 Introduction 

Bayesian structural equation modeling (BSEM) has recently received substantial 
attention within psychology and the social sciences as an increasingly viable 
alternative to traditional frequentist SEM techniques, such as maximum likelihood 
(ML) estimation. Several tools are available to evaluate global (mis)fit of a BSEM, 
such as posterior predictive model checking (PPMC; Gelman et al., 1996), for which 
a posterior predictive p value (PPP) can be calculated that is analogous to the p 
value of a SEM’s χ2 statistic, which tests the null hypothesis (H0) that a SEM 
perfectly represents the true data-generating process. Approximate global fit of a 
BSEM can be evaluated using SRMR (Levy, 2011) or  χ2-based fit indices analogous 
to those under maximum likelihood estimation (MLE), on the condition that the 
BSEM uses uninformative priors during Markov chain Monte Carlo (MCMC) 
estimation (Garnier-Villarreal & Jorgensen, 2020). Although PPP or fit indices may 
indicate poor model fit, they cannot provide clues about the specific source(s) of 
misspecification. 

In a highly influential paper, Muthén and Asparouhov (2012) proposed using 
small-variance priors to constrain non-target parameters to be close to zero, as a 
less-restrictive alternative to fixing such parameters to exactly zero. The Bayesian 
credible intervals (BCI; interval estimates analogous to confidence intervals of 
frequentist estimators) for nontarget parameter estimates (constrained to be small) 
can be used to indicate local sources of misspecification. They suggested that 
“[the sensitivity of nontarget parameters] be used in line with modification indices 
[in MLE] to free parameters for which the credibility interval does not cover 
zero” (Muthén & Asparouhov, 2012, pp. 316–317), noting the advantage over 
modification indices in that BCIs for all parameters can be obtained simultaneously, 
preventing the problem of sequentially modifying one parameter at a time under ML 
estimation. The goal of this paper is to evaluate their proposal in the context of (a) 
cross-loadings in single-group SEM and (b) equality constraints on loadings (i.e., 
measurement equivalence) using Monte Carlo simulations. 

2 Study 1: Priors for Approximately-Zero Constraints 

This study was part of an investigation of PPP’s frequency properties, so the Method 
details correspond to those published by Jorgensen et al. (2019). We focus only on 
normal-data conditions here because patterns of results for ordinal data were largely 
similar, although power decreased with fewer categories.
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2.1 Method 

Using the MONTECARLO command in Mplus (version 6.11 for Linux; Muthén & 
Muthén, 2012), we simulated a two-factor CFA with three indicators per factor. 
In each of the four population models, factors were standard normal (μ = 0, 
σ = 1), with a factor correlation ψ21 = 0.25, factor loadings λ = 0.7, indicator 
intercepts = 0, and indicator residual variances θ = 0.51; thus, indicators had 
unit variance. To vary levels of misspecification of the analysis model, the third 
indicator of the first factor was specified to have a cross-loading on the second 
factor (λ32) in the population. The magnitude of λ32 was 0.0, 0.2, 0.5, or 0.7 
in the population, but was constrained to be close to zero in the analysis model 
using informative priors (see next paragraph). For ease of interpretation, we refer 
to λ32 = 0.2 as minor misspecification (using α = .05, the ML χ2 test has 80% 
power when N > 500, RMSEA = 0.06, SRMR = 0.03, CFI = 0.98), λ32 = 0.5 as 
severe misspecification (80% power when N > 150, RMSEA= 0.12, SRMR= 0.07, 
CFI = 0.92), and λ32 = 0.7 as very severe misspecification (80% power when 
N > 100, RMSEA = 0.14, SRMR = 0.07, CFI = 0.89). 

In the analysis model, we specified noninformative priors for all target parame-
ters (primary loadings, residual variances, and the factor covariance) using Mplus 
defaults—for example, factor loadings ~ N(μ = 0, σ2 = “infinity”). For all 
cross-loadings, we specified normally distributed priors with four levels of infor-
mative variance, chosen to correspond approximately with the prior belief in a 
95% probability that the cross-loadings are within approximately ±0.01, ±0.10, 
±0.20, or ± 0.30 of zero (i.e., σ = 0.005, 0.05, 0.10, and 0.15, or equivalently 
σ2 = 0.000025, 0.0025, 0.01, and 0.0225). In each condition, sample sizes of 
N = 50–500 were drawn in increments of 25, along with an asymptotic condition of 
N = 1000. We generated 200 samples from each of 320 conditions (20 sample sizes, 
four levels of CL, and four prior variances) with normally distributed indicators. 

We kept 100,000 iterations from the MCMC chains after thinning every 100th 
iteration. Over 99% of models converged on a proper solution, yielding 63,480 (out 
of 64,000) PPP values for analysis. Convergence was evaluated using Gelman and 
Rubin’s (1992) potential scale reduction factor (“R-hat” < 1.1). Convergence in each 
condition was at least 98% except when sample size was small (N < 100) and CL 
was large (λ32 > 0.5). The smallest convergence rate was 82% (N = 50, λ32 = 0.7). 
Nonconverged solutions were omitted from Results. Nontarget cross-loadings were 
considered significantly different from 0 when their 95% BCI excluded 0. 

2.2 Results 

Whereas the power to reject an inappropriate model increased as prior variance 
decreased (negative association) when using PPP as an indicator of global misfit 
(see Jorgensen et al., 2019, for details), the power to detect local sources of misfit
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(here, the neglected parameter λ32) increased as prior variance increased (a positive 
association). Figure 1 depicts how often λ32 was detected as significantly different 
from 0. As would be expected, λ32 was never estimated to be significantly greater 
than 0 when it was in fact 0 in the population, and was very seldom estimated to 
be significant when it was only 0.2 in the population. As might also be expected, 
using the most restrictive priors—which yielded the greatest power of PPP to detect 
misspecification—λ32 was never estimated to be significantly greater than 0. Power 
was only adequate when the neglected parameter was severe (λ32 = 0.5 or 0.7). 
When the prior variance was reasonably informative (95% CI within ±0.10 of 0), 
adequate power (≥ 80%) to detect the neglected cross-loading (λ32) was found for 
N > 400, and for N > 300 when priors were less informative (95% CI within ±0.20 
or ± 0.30 of 0). 

We were also interested in the degree to which the neglected cross-loading would 
affect other parameters estimates in the model. Related cross-loadings (first and 
second indicators of the first factor, which did not cross-load onto the second factor 
in the population) were sometimes detected to be significantly different from 0 
(although less frequently than the actual neglected cross-loading), and the factor 
correlation grew increasingly biased. Investigating the average parameter estimates 
for normal-data conditions in Table 1 (collapsed across sample size, which had no 

Fig. 1 Rejection rates for neglected cross-loading (λ32) as a function of sample size, plotted 
separately across conditions of varying priors and magnitude of neglected cross-loading (λ32). 
Dashed horizontal line provided for reference at 80% power, and dotted vertical lines at N = 300 
and 500 provided for reference when judging sample sizes necessary for adequate power
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Table 1 Effect of neglected cross-loading (λ32) on estimates of related cross-loadings and factor 
correlation 

Prior 95% CI Population λ32 λ̂32 λ̂12 λ̂22 ψ̂21 

±0.01 0.0 0.000 0.000 0.000 0.247 
0.2 0.001 −0.001 −0.001 0.332 
0.5 0.001 −0.001 −0.001 0.448 
0.7 0.001 −0.001 −0.001 0.518 

±0.10 0.0 0.000 0.001 0.001 0.244 
0.2 0.050 −0.027 −0.026 0.330 
0.5 0.088 −0.058 −0.057 0.438 
0.7 0.087 −0.068 −0.068 0.499 

±0.20 0.0 0.002 0.002 0.001 0.243 
0.2 0.091 −0.045 −0.046 0.327 
0.5 0.184 −0.111 −0.110 0.433 
0.7 0.211 −0.145 −0.145 0.492 

±0.30 0.0 0.002 0.002 0.001 0.242 
0.2 0.109 −0.055 −0.053 0.329 
0.5 0.234 −0.135 −0.135 0.433 
0.7 0.285 −0.187 −0.186 0.491 

effect on the point estimates) reveals that as λ32 increased, (a) the average estimates 
of related cross-loadings decreased, although with less magnitude than the neglected 
λ32, and (b) the average estimate of the factor correlation became greater than its 
true value (0.25). Note that although there would seldom be any indication (i.e., low 
power) that the pattern is significant when the neglected cross-loading is only minor 
(λ32 = 0.2), such a small neglected parameter estimate still results in a unacceptably 
biased factor correlation (relative bias = [0.33–0.25] / 0.25 = 0.32), according to 
Hoogland and Boomsma’s (1998) criterion (< 0.05). 

To verify that such bias would also occur using MLE, we simulated a single large 
sample (N = 10,000) from the population with λ32 = 0.7, and fit a model to that 
data in which all cross-loadings were fixed to 0. This yielded the same negative bias 
in the related cross-loadings and the same positive bias in the factor correlation. 
Modification indices indicated that fit would be significantly improved by freeing 
not only the true omitted cross-loading, but also by freeing other cross-loadings and 
residual correlations. Freeing only the true omitted cross-loading eliminated bias in 
any estimates. 

3 Study 2: Priors for Approximate Equality Constraints 

This is a subset of unpublished results from a dissertation project (Jorgensen, 
2015). When evaluating measurement equivalence across contexts (e.g., different 
populations or occasions), small-variance priors can be specified for parameters that
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represent differential item/indicator functioning (DIF), allowing for approximate 
rather than exact invariance. Although priors can now be easily specified for 
functions of parameters in Mplus (Muthén & Muthén, 2012) and blavaan1 

(Merkle & Rosseel, 2018), this study was manually programmed in 2014 using Stan 
(Carpenter et al., 2017). 

3.1 Method 

Figure 2 represents the data-generating 1-factor SEMs for Study 2. In addition to 
type of invariance (groups vs. occasions), we manipulated total N = 200, 300, 
400, 600, or 800 (balanced group sizes) and priors for DIF parameters ~ N(μ = 0, 
σ = 0.05 or 0.10; i.e., 95% probability that �λ or �τ fell within ±0.10 or within 
±0.20, respectively). For longitudinal SEM, the autocorrelation for common and 
unique factors are indicated by the dashed line representing the factor correlation. 

Fig. 2 Population model(s) for data generation in Study 2. Solid lines represent population 
characteristics that are constant across all conditions, whereas dashed lines represent varying 
conditions described in the dashed textboxes

1 See https://ecmerkle.github.io/blavaan/articles/invariance.html for example syntax. 

https://ecmerkle.github.io/blavaan/articles/invariance.html
https://ecmerkle.github.io/blavaan/articles/invariance.html
https://ecmerkle.github.io/blavaan/articles/invariance.html
https://ecmerkle.github.io/blavaan/articles/invariance.html
https://ecmerkle.github.io/blavaan/articles/invariance.html
https://ecmerkle.github.io/blavaan/articles/invariance.html
https://ecmerkle.github.io/blavaan/articles/invariance.html
https://ecmerkle.github.io/blavaan/articles/invariance.html


Limited Utility of Small-Variance Priors to Detect Local Misspecification. . . 91

One of 5 effect sizes for DIF (see dashed boxes) were simultaneously added to Item 
4’s loadings and Item 3’s intercept, yielding 5 DIF conditions. We generated 500 
samples from each population. 

Whereas Mplus (Muthén & Muthén, 2012) uses Gibbs sampling, Stan (Carpenter 
et al., 2017) uses a modified Hamiltonian Monte Carlo algorithm called the no 
U-turn sampler (NUTS), which has efficiency advantages over Gibbs sampling. 
After 1000 burn-in iterations on each of three chains, we saved 1000 post-burn-
in samples per chain. We fit models representing approximate metric invariance 
(Model 1), approximate full scalar invariance (Model 2b), and approximate partial 
scalar invariance (Model 2f). Model 2b represents a “backward” specification 
search, in which DIF is tested by releasing constraints from a fully restricted model. 
Model 2f represents a “forward” specification search, which proceeds from the 
least constrained configural model and applies more restrictive constraints. This 
is not strictly necessary in BSEM because all DIF parameters can be evaluated 
simultaneously, but it allows comparison of Muthén and Asparouhov’s (2012) 
proposed approach to the traditional use of modification indices in ML estimation 
(using lavaan; Rosseel, 2012). 

3.2 Results 

Convergence was nearly 100% for Models 2b and 2f, but nonconvergence of 
Model 1 increased with N, particularly with less informative priors. When the 
prior σ = 0.05, convergence dropped from 100% when N = 200 to 50% when 
N = 800. When the prior σ = 0.10, convergence dropped from 100% when N = 200 
to 25% when N = 800. In all conditions, there were > 100 converged results, 
and collapsing across conditions with little impact (e.g., no substantial differences 
between multigroup and longitudinal models) increased the Monte Carlo sample 
sizes used to draw conclusions. 

Similar to Study 1, using small-variance priors on substantially nonzero parame-
ters induced bias in other DIF parameters (which were truly zero in the population). 
Estimated DIF for DIF-free items appeared to counterbalance the invalidly con-
strained (truly nonzero) DIF parameter, and the effect was stronger in larger samples 
(see Fig. 3 for estimated DIF in intercepts). Furthermore, estimated parameters 
(posterior means) of latent variables were systematically biased by using small-
variance priors on substantially nonzero parameters. In this case, latent means 
were biased more negatively as �τ4 increased, more so in Model 2f (which 
correctly allowed for DIF in λ4) than Model 2b (which invalidly constrained λ4). 
Surprisingly, less restrictive priors exacerbated the situation: allowing the true DIF 
to be more negative did not alleviate the truly DIF-free estimates, which were also 
more positive. Similar results were found for DIF in factor loadings and how that 
biases estimated latent variance in the second group/occasion (see Jorgensen, 2015, 
Part III). Patterns were similar but more extreme using ML estimation, when Models
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Fig. 3 Average posterior mean of �τs by DIF, prior σ, and  N, with separate lines per �τ 

1 and 2(b and f) represented exact rather than approximate metric and (full or partial) 
scalar invariance. 

The practical impact of these biased estimates can be reflected by rates at which 
the H0 of invariance was rejected. Figure 4 compares Type I error rates (averaged 
across non-DIF parameters) between ML modification indices (grey lines) and 95% 
BCIs (black lines). While Type I error rates fluctuated around the nominal 5% 
for modification indices, the BCIs had near-zero error rates across conditions. As 
typically happens when Type I error rates are higher, power for modification indices 
was also somewhat higher in some conditions (see Fig. 5). 

4 Discussion 

The use of parameter estimates constrained by small-variance priors as a Bayesian 
analog to ML modification indices (Muthén & Asparouhov, 2012) seems to have 
some limited potential. Their power to detect DIF is often similar to (sometimes 
lower than) modification indices, but they have lower Type I error rates. However, 
small-variance priors continue to propagate bias throughout the model, just as 
invalid exactly-zero constraints do in ML estimation. So it may not be advisable
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Fig. 4 Type I error rates by DIF, prior σ, and  N, with separate lines per estimator and model 

to use small-variance priors, even following a sensitivity analysis to choose their 
precision (e.g., Asparouhov et al., 2015). At the very least, relying on parameter 
estimates constrained by small-variance priors for clues about necessary model 
modifications (which Muthén & Asparouhov, 2012, indicated was a “side product 
of the proposed approach”, p. 313) does not imply that models with small-variance 
priors should be used for inference. 

As Muthén and Asparouhov (2012) assert in their subtitle, small-variance 
priors for nontarget parameters are intended to provide researchers with a more 
flexible representation of [their] substantive theory. But because PPP appears 
insensitive to minor misspecification (Jorgensen et al., 2019), nontarget parameters 
could potentially be fixed to zero without PPP indicating poor model fit. When 
misspecification is too severe to be ignorable, PPP would have even greater power 
to reject the model if priors for nontarget parameters were excluded altogether 
(i.e., nontarget parameters fixed to zero). When a SEM without small-variance 
priors indicates poor (exact or even approximate) fit, small-variance priors for 
nontarget parameters could then be added to help detect the local source of misfit; 
however, the priors should be only weakly informative to increase the probability 
that they indicate a neglected parameter should be “freed” and (contrary to Muthén 
and Asparouhov’s advice) freed one parameter at a time rather than considering 
all parameters simultaneously. Future research should explore the possibility of
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Fig. 5 Power by DIF, prior σ, and  N, with separate lines per estimator and model 

developing more reliable tools to detect local sources of misspecification in BSEM 
(i.e., sensitive to misspecification without propagating errors throughout the model), 
perhaps using a PPMC framework to investigate score-based statistics, analogous to 
actual modification indices in ML estimation. 
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Proper and Useful Distractors in 
Multiple-Choice Diagnostic Classification 
Models 
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Abstract The multiple-choice (MC) item format has been implemented in educa-
tional assessments that are used across diverse content domains. MC items comprise 
two components: the stem that provides the context with a motivating narrative, and 
the collection of response options consisting of the correct answer, called the “key,” 
and several incorrect alternatives, the “distractors.” The MC-DINA model was the 
first diagnostic classification model for MC items that used distractors explicitly as 
potential sources of diagnostic information. However, the MC-DINA model requires 
that the q-vectors of the distractors are nested within each other and that of the 
key, which poses a serious constraint on item development. Consequently, later 
adaptations of the MC item format to cognitive diagnosis dropped the nestedness 
condition. The relaxation of the nestedness-condition, however, comes at a price: 
distractors may become redundant (i.e., they do not contribute to any further 
diagnostic differentiation between examinees), and they may induce undesirable 
diagnostic ambiguity (i.e., they are equally likely to be chosen by an examinee, 
but their q-vectors point at different diagnostic classifications). In this article, two 
criteria, useful and proper, are proposed to identify redundant and diagnostically 
ambiguous distractors. 
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1 Introduction 

The multiple-choice (MC) item format has been implemented in educational 
assessments that are used across diverse content domains. MC items comprise two 
components: the stem prepares examinees for the test questions in providing the 
context and a motivating narrative; the collection of response options contains the 
correct answer, called the “key,” and several incorrect alternatives, the “distractors.” 
Different from the dichotomous response format, MC items allegedly permit for 
collecting richer diagnostic information, while examinees need to spend less time on 
recording their answers. MC items are also less vulnerable to subjective scoring. In 
summary, the economy of MC items is likely one of the reasons for their persistent 
popularity not just in educational testing. 

The MC item format has been adapted to accommodate also the cognitive 
diagnosis (CD) framework in educational measurement. Within CD, ability—or 
competence—in a curricular knowledge domain is perceived as a composite of 
cognitive skills called “attributes.” CD-based tests consist of items that require 
for a correct response mastery of different attributes. From the item responses, 
examinees’ ability can be inferred and evaluated in terms of attributes mastered 
and those needing study. 

Early approaches to analyzing MC items within the CD framework lacked 
sophistication such that the MC responses were simply dichotomized in scoring 
the key as 1 and the distractors as 0, (e.g., Lee et al., 2011; Templin & Henson, 
2006). The dichotomized responses were then analyzed using one of the CD 
models—diagnostic classification model (DCM) hereafter—for binary responses. 
De la Torre’s (2009) Multiple-Choice Deterministic Inputs, Noisy “And” Gate 
(MC-DINA) model was the first DCM for analyzing MC items in considering the 
distractors explicitly as potential sources of diagnostic information. Recall that in 
case of the DINA model, an item can only discriminate between examinees, who 
have mastered all required attributes and those who fail one or more of these 
attributes. In contrast, extending the model to accommodate the MC item format, 
is expected to increase the classification accuracy in allowing for the separation 
of examinees into more than two groups. To this purpose, de la Torre’s (2009) 
MC-DINA model, as a particular feature, requires that the attribute profiles of the 
distractors be nested within the attribute profile of the key. But obviously, such a 
nestedness requirement puts an undue burden on the test developer, as the options 
for item building are seriously constrained. In fact, later adaptations of the MC 
item format to CD—including the current implementation of de la Torre’s (2009) 
MC-DINA in the R package GDINA (Ma & de la Torre, 2020)—have abandoned 
the nestedness requirement (e.g., Ozaki, 2015; DiBello et al., 2015; Wang et al., 
2021). 

The relaxation of the nestedness-condition, however, comes at a price. First, 
distractors may become redundant; that is, they do not contribute to any further 
diagnostic differentiation between examinees. But redundancy among distractors 
may not be easy to detect; in addition, the inclusion of redundant distractors in
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a test results in wasting valuable item space and may increase unsystematic error 
variance. Second, distractors may create undesirable diagnostic ambiguity; that is, 
they are equally likely to be chosen by an examinee, but their attribute profiles point 
at different diagnostic classifications. 

In this article, a rationale is developed based on psychometric theory to detect 
these two cases during test construction before the test is actually used in the field. 
Specifically, we propose two criteria that identify useful and proper distractors. A 
distractor is said to be useful if it is not redundant. A redundant distractor is one 
that does not improve the classification of examinees beyond the response options 
already available for a given item. A distractor is called proper if it allows for the 
unambiguous identification of an examinee’s ideal response. Notice that in the case 
of the MC-DINA model the restriction that all distractors must be nested within 
each other prevents such potential ambiguity. 

The next section briefly reviews essential CD concepts and their adaptation 
to accommodate MC items like the MC-DINA model and the nonparametric 
classification method for MC items (MC-NPC). Section 3 presents the theory of 
useful and proper distractors. The discussion section concludes with a summary of 
the key insights and a discussion of some limitations and future research avenues. 

2 Review of Key Technical Concepts 

2.1 Cognitive Diagnosis 

DCMs for cognitive diagnosis (CD), a formative assessment framework in educa-
tional measurement, describe ability in a given knowledge domain as a composite 
of K cognitive skills—henceforth: “attributes”—that a student has mastered or not 
(DiBello et al., 2007; Haberman & von Davier, 2007; Leighton & Gierl, 2007; 
Nichols et al., 1995; Rupp et al., 2010; Sessoms & Henson, 2018; Tatsuoka, 
2009). Attribute mastery is recorded as a K-dimensional binary vector . α =
(α1, α2, . . . , αk, . . . , αK)′ ∈ {0, 1}K . Distinct attribute profiles . αm identify different 
classes of proficiency . Cm, .m = 1, 2, . . . , M = 2K (provided the attributes are not 
hierarchically organized). (The terms profile and vector are used interchangeably 
here.) The primary task of CD is to assign students to one of these M classes based 
on their performance in a test that targets proficiency in the knowledge domain in 
question. Said differently, examinees’ individual attribute vectors .αi∈Cm

must be 
estimated (.i = 1, . . . , N is the examinee index; for brevity, .αi∈Cm

= αm = αi is 
often used, depending on the context). 

CD items require mastery of domain-specific attributes for a correct response. 
Similar to examinees, CD items are characterized by individual K-dimensional 
attribute profiles . qj , with entries .qjk = 1 if a correct answer requires mastery of 
the . kth attribute . αk , and 0 otherwise (.j = 1, 2, . . . , J is the item index). (Notice that
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the zero vector is not admissible; thus, there are at most .2K −1 distinct item-attribute 
profiles.) 

The collection of the item attribute profiles of a CD assessment forms its 
Q-matrix .Q = {qjk}(J×K) (Tatsuoka, 1982) that establishes the associations 
between items and attributes. The Q-matrix of a test must be known and it must 
be complete. A Q-matrix is said to be complete if its specific composition can 
guarantee the identifiability of all realizable proficiency classes among examinees 
(Chiu et al., 2009; Köhn & Chiu, 2016; 2017; 2019; 2021). Q-completeness is the 
key requirement for the identifiability of DCMs. 

2.2 The MC-DINA Model 

The intuitive appeal of the simple conceptual elegance of the Deterministic Inputs, 
Noisy “AND” Gate (DINA) model (Haertel, 1989; Junker & Sijtsma, 2001; 
Macready & Dayton, 1977) is presumably the reason why the DINA model is 
arguably one of the most popular DCMs. The DINA is a conjunctive model, as the 
probability of a correct response is maximal only if an examinee has mastered all 
attributes required for a given item. Thus, each DINA item generates a bi-partition 
of the .M = 2K proficiency classes of the latent attribute space into groups of 
examinees who have mastered the attributes required for said item as opposed to 
those who have not. The item response function (IRF) of the DINA model is 

.P(Yij = 1 | αi ) = (1 − sj )
ηij g

(1−ηij )

j (1) 

where .Yij = 1 denotes the correct response to item j (otherwise, .Yij = 0); . sj and . gj

are slipping and guessing parameters, respectively, subject to .0 ≤ gj < 1 − sj ≤ 1; 
the ideal response (or conjunction parameter) .ηij = ∏K

k=1 α
qjk

ik = 0, 1 indicates 
whether examinee i has mastered all attributes required by item j . 

The MC-DINA model was proposed by de la Torre (2009) as an extension of the 
DINA model to accommodate MC items. Recall that each DINA item results in a 
bi-partition of the latent attribute space. In contrast, an MC item partitions the latent 
attribute space into a number of proficiency classes that is proportional to those of 
coded response options, thereby purportedly increasing the accuracy of examinee 
classification. (A response option is said to be “coded” or “cognitively based” if 
it is linked to an item attribute vector .qjh specifying the attribute requirements 
for an examinee who endorses this option; terminology and notation follow de 
la Torre, 2009.) In case of the MC-DINA model, the polytomous response to 
item j is denoted as the random variable . Xij , with the response options indexed 
by .h = 1, 2 . . . , Hj . Let .H ∗

j denote the number of coded options. Since not all 
options are coded, .H ∗

j ≤ Hj . “Non-coded” response options like “none of these” 
or “all of the above” are not associated with a specific attribute vector. Hence, 
as a convention, their item attribute vectors are written as a K-dimensional null
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vector, .qj0 = (0, 0, . . . , 0)′. The key has always the largest number of attributes; 
the attribute vectors of the coded response options must be nested within the q-
vector of the key. Their attribute vectors must also be hierarchically nested within 
each other such that they form an ordinal scale with the key at the top. 

2.3 Removing the Nestedness Condition 

If the q-vectors of the coded response options are not required to be nested within 
each other and the q-vector of the key, then the linear ordering of the coded response 
options is lost and their scale level is changed to nominal. As an adjustment to this 
significant conceptual modification, the original MC-DINA response option index, 
.h = 1, 2, . . . , Hj , is replaced by the index .l = 0, 1, 2, . . . , H ∗

j , and the notation 

for the q-vector .qjh is changed to one involving the index l: . q(l)
j . All non-coded 

response options are indexed as .l = 0, having q-vectors .q(0)
j . The key is indexed as 

.l = H ∗
j ; thus, .q

(H ∗
j )

j . The indices .l = 1, 2, . . . , H ∗
j −1, are assigned to the remaining 

coded response options according to the following rationale. 
Let . q and . q′ denote the q-vectors of distinct coded response options. If . ‖ qj ‖1

> ‖ q′
j ‖1, then .l > l′ so that the notation becomes .q(l)

j and .q(l′)
j . (and vice versa; 

.‖ · ‖1 denotes the . L1 norm). If . q and . q′ are of the same length, then the response 
options are indexed based on their evaluation in lexicographic order—that is, . l > l′
if the position of the first non-zero entry in . q precedes that in . q′, and vice versa. 
Ties—both q-vectors share the position of the first non-zero entry—are ignored and 
the evaluation is based on the first position with distinct entries; such a position can 
always be identified because all coded response option q-vectors must be distinct. 
Formally, define the set .L(q,q′) = {k | qk > q ′

k, k = 1, 2, . . . , K}. Notice that 
.L(q,q′) �= L(q′,q) due to the evaluation of . qk and . q ′

k in lexicographic order. If 

. 
( ‖ q(l)

j ‖1 = ‖ q(l′)
j ‖1

) ∧
(

minL(
q(l)

j ,q(l′)
j

)
< minL(

q(l′)
j ,q(l)

j

))

then .l > l′. 
After the indices l of the item response options have been determined, the ideal 

response . ηij of examinee i to item j can be computed 

.ηij = max
l=0,1,2,...,H ∗

j

{
l

K∏

k=1

I [αik ≥ q
(l)
jk ]

}
(2) 

where .I [·] denotes the indicator function. 
The original IRF of the MC-DINA model is not provided in de la Torre (2009); 

however, for the case that the nestedness condition has been removed, the IRF of 
the MC-DINA model can be (re-)constructed as
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. P(Xij = l | αi ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
Hj

+ Hj −H ∗
j −1

Hj
I [l = 0] if ηij = 0

(
1 − ∑

m�=l εjml

)I [ηij =l,l>0] ∏
l′ �=l ε

I [ηij =l′]
j ll′ if ηij > 0

(3) 
where .εjll′ is the probability that the observed response level l disagrees with the 
ideal response level . l′. (Because the manifest and ideal item responses, X and . η, 
now have more than two levels, addressing potential discrepancies between X and 
. η as “slips” and “guesses” does not fit the complexity of the MC setting involving 
multiple item parameters. The more general term “perturbation” should be preferred 
whenever observed and ideal responses disagree.) Typically, slipping and guessing 
are constrained to be less than 0.5 (otherwise, an individual mastering none of the 
attributes would have a probability greater than 0.5 to provide the correct answer). 
Of course, if there are more than two perturbation terms, then the desirable property 
is that .

∑

m�=l

εjml < 0.5. An examinee with .ηij = 0 is not “attracted” (de la Torre, 

2009) to any of the coded response options. Instead, said examinee is assumed to 
pick one of the response options at random. If .

(
ηij = l

) ∧ (
l �= 0

)
, then examinee 

i is supposed to choose the coded response option .Xij = l with high probability; 
still, alternative response options may be chosen with non-zero probability. 

2.4 The MC-NPC Method 

The MC-NPC method is the nonparametric counterpart to the MC-DINA model. As 
was mentioned earlier, different from de la Torre’s (2009) original MC-DINA, for 
the MC-NPC, like for the MC-DINA implementation in the R package GDINA, the  
q-vectors of the coded distractors are not required to be nested within each other and 
the q-vector of the key. Thus, the item response options have nominal scale level. 

MC-NPC is an adaptation of the nonparametric classification (NPC) method 
(Chiu & Douglas, 2013) to accommodate the MC item format for the DINA 
model. “Nonparametric” refers to the fact that the NPC methods do not rely on 
the parametric estimation of examinees’ proficiency class membership, but use a 
distance-based algorithm on the observed item responses for classifying examinees. 
Proficiency class membership is determined by comparing an examinee’s observed 
item response vector . X with each of the ideal item response vectors of the M 
realizable proficiency classes. Let .η(m) = (

η
(m)
1 , η

(m)
2 , . . . , η

(m)
J ) denote the ideal 

item response vector of examinees in .Cm as defined in Eq. (2). An examinee’s 
proficiency class is identified by the attribute vector .αm underlying that ideal item 
response vector which, among all ideal response vectors, minimizes the penalized 
Hamming distance to the manifest item response vector .Xi = xi . The penalized 
Hamming distance is defined as
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Table 1 Example to illustrate non-useful distractors 

(a) 

Option Level q 
Key 4 (100) 

Distractor 3 (111) 

Distractor 2 (110) 

Distractor 1 (001) 

(b) 

.α (000) (100) (010) (001) (110) (101) (011) (111) 

.η 0 4 0 1 4 4 1 4 

. dp(xi , η(m) ) = 
J∑

j=1 

I [η (m) 
j > 0, Xij �= η (m) 

j ] +  
J∑

j=1 

wjI [η (m) 
j = 0, Xij �= η (m) 

j ] 
(4) 

The estimate of the attribute profile of examinee i is identified by minimizing 
.dp(xi , η(m) ) across all ideal response profiles .η(1) , η(2) , . . . ,  η(M) and observed 
response profile .Xi = xi : 

. ̂αi = arg min 
αm∈{α1,α2,...,αM } 

dp(xi , η(m) ) 

3 Coded Response Options: The Concepts of Proper and 
Useful 

Recall that the nestedness condition imposed on the key and coded response 
options may create significant difficulties when constructing a test simply because 
the number of such nested coded response options may be limited—hence, the 
proposition to replace the nestedness condition by the two more flexible criteria 
of useful and proper distractors. 

A distractor is said to be useful if it is not redundant. A redundant distractor is one 
that does not improve the classification of examinees beyond the response options 
already available for a given item. Here is an illustration of the concept. Suppose 
the q-vector of the key of an item is (100) and those of the three distractors are 
(111), (110), and (001). These four response options are coded as 4, 3, 2, and 1, 
respectively, as shown in Table 1(a). 

For the .2K possible attribute profiles, the corresponding ideal responses are 
computed using Eq. (2) and listed in Table 1(b). Notice that the levels of the response 
options cover the entire range from 0 to 4; however, only three different ideal 
responses, 0, 1, and 4, can be identified based on the information provided by the 
key and the coded distractors. Hence, distractors having levels 2 and 3 are redundant 
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because they do not provide any information to identify their corresponding ideal 
responses. 

A formal definition of a “useful” distractor is provided below, but some notation 
is needed first. “Nestedness” is denoted by “. ≺.” Specifically, for vectors . a = 
(a1, . . . , aK) and .b = (b1, . . . , bK), .a ≺ b if and only if .ak ≤ bk for all k but 
. a �= b. Also, .a � b if and only if .ak ≤ bk for all k. Let . L be the latent space of all 
realizable attribute profiles. Define the set .Lj = {α | α �� qjH ∗

j 
} consisting of all 

attribute profiles that do not contain all the attributes required by the key of item j— 
said differently, all attribute profiles that do not allow an examinee to answer item 
j correctly. Define . Gj (α) = {

h | α
qh = q

h qh, where h ∈ {0, · · ·  ,H ∗

j − 1}, α ∈ 
Lj

}
as the set of the indices h of distractors that are nested within . α. If .| Gj (α) |> 1, 

then define .G∗
j (α) = {h | qh �≺ qh′ , where h, h′ ∈ Gj } as the subset of .Gj (α) that 

contains the indices h of all response options that are not nested within those in 
.Gj (α). Notice that if .Gj (α) contains only a single element, then .G∗

j (α) = Gj (α). 
A distractor h, with .h ∈ {1, · · ·  ,H ∗

j − 1}, is defined as useful if there exists 
an .α ∈ Lj such that .h ∈ G∗

j (α). The condition that identifies a useful distractor is 
summarized in the following claim: a distractor h of item j is useful if and only if 
.qjH ∗

j
�� qjh. 

A distractor is called proper if it allows for the nonambiguous identification 
of an examinee’s ideal response. Notice that in case of the MC-DINA model 
the restriction that all distractors must be nested within each other prevents such 
ambiguity. As an example, consider an item where the key is coded as (1111) and 
the two distractors as (1100) and (0110). Notice that they are not nested within each 
other; hence, they may induce ambiguity about an examinee’s classification. For 

.α = (1110), the ideal response is . η(1110) = max 
l∈{0,1,2,3}

{
l
∏4 

k=1 I [αik ≥ q (l) jk ]
}

= 2 

(see Eq. (2)). So, an examinee having .α = (1110) is expected to choose Distractor 
2. However, because .(1110) � (1100) and .(1110) � (0110), this examinee is 
equally likely to choose Distractor 1. This potential mismatch between the ideal and 
observed response induces ambiguity concerning an examinee’s proficiency class 
and may cause her misclassification. 

To avoid such ambiguity, the concept of proper distractors is introduced by the 
following definition: the distractors of item j are said to be proper if . | G∗

j (α) |= 1 
for all .α ∈ Lj . Now, let .Qj = {qj1, · · ·  , qjH ∗

j 
} be the set consisting of the q-vectors 

of all the coded options for item j . In addition, suppose the distractors of item j are 
useful. Then they are claimed to be proper if and only if for each pair of coded 
distractors with .qjh  and .qjh′ , where .h, h′ ∈ {1, · · ·  ,H ∗

j − 1}, and . 
⋃

(qjh,qjh′) �=
(
1, 1, . . .  , 1

)′, then .
⋃

(qjh,qjh′) ∈ Qj . 

4 Discussion and Outlook 

The concepts of useful and proper distractors of MC items in CD assessments, 
as they are presented in this article explore uncharted territory. Redundancy and 
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diagnostic ambiguity never were an issue, as long as the nestedness condition 
implied tight control over the diagnostic utility of the distractors of MC items. 
However, the relaxation of the nestedness constraint in recent approaches to CD 
modeling of MC items has created redundancy and diagnostic ambiguity as new 
challenges in item construction for researchers as well as educational practitioners. 

Avenues for future research concern (1) a broader theoretical appraisal of useful 
and proper as criteria for evaluating the quality of distractors of MC items, and 
(2) simulation studies to assess the extent to which distractors failing these two 
criteria induce examinee misclassification. 
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Detecting Latent Variable Non-normality 
Through the Generalized Hausman Test 

Lucia Guastadisegni, Irini Moustaki, Vassilis Vasdekis, and Silvia Cagnone 

Abstract This paper extends the generalized Hausman test to detect non-normality 
of the latent variable distribution in unidimensional IRT models for binary data. 
To build the test, we consider the estimator obtained from the two-parameter IRT 
model, that assumes normality of the latent variable, and the estimator obtained 
under a semi-nonparametric framework, that allows for a more flexible latent 
variable distribution. The behaviour of the test is evaluated through a simulation 
study. The results highlight the good performance of the test in terms of both Type 
I error rates and power with many items and large sample sizes. 

Keywords Generalized Hausman test · SNP-IRT model · Binary data 

1 Introduction 

One of the typical assumptions of latent variable models is the normal distribution 
of the latent variables. As shown in Ma and Genton (2010), this assumption is not 
always appropriate and misspecifying the form of the latent variable by assuming 
normality can result in large biases in parameter estimates. Several methods, that 
assume a different form for the latent variable, have been proposed within the 
generalized latent variable models (GLLVM) and Item Response Theory (IRT) 
framework. Some examples are the semi-parametric (Ma & Genton, 2010), the 
empirical histogram (Knott & Tzamourani, 2007), the Ramsey-curve (Woods, 2006) 
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and the semi-nonparametric (SNP) (Gallant & Nychka, 1987, Woods & Lin, 2009, 
Irincheeva et al., 2012) methods. 

Commonly information criteria are used to choose between a model where the 
latent variables are normal and a model where they have a more complex shape 
(Woods & Lin, 2009, Irincheeva et al., 2012). However, detecting non-normality of 
the latent variables through a statistical test remains an open issue. 

Hausman (1978) proposes a specification test to detect failure of the orthog-
onality assumption in the regression model. The Hausman test can be applied 
also in other contexts, to detect different types of model misspecification. The 
idea of the test is simple. It compares two different estimators that are consistent 
when the model is correctly specified and one is also efficient. In presence of 
model misspecification, only the inefficient estimator is consistent. The efficiency 
assumption simplifies the computation of the covariance matrix of the difference 
between the two estimators. However, this matrix can fail to be positive definite 
under model misspecification or in presence of small sample sizes. A generalized 
version of the Hausman (GH) test has been proposed by White (1982). In this case 
none of the estimators that result from different models need to be efficient and the 
covariance matrix involved in the test is always positive definite. 

As far as we know, in the IRT context the classic Hausman test has been used 
only by Ranger and Much (2020) to detect misspecification of the item characteristic 
functions and local dependencies among items. In generalized linear mixed models 
(GLMM) for clustered data, a robust version of the Hausman test, similar to the 
one by White (1982), has been proposed by Bartolucci et al. (2017) when a discrete 
distribution for the random effects is assumed. 

The objective of this work is to extend the GH test to detect non-normality 
of the latent variable distribution in unidimensional IRT models for binary data. 
To build the test, we consider the estimators resulting from two different models 
and estimation methods. The first model is the classical unidimensional IRT model 
for binary data based on the normality assumption of the latent variable, where 
we estimate the parameters using a maximum pairwise likelihood (PL) method. 
The PL method uses information from bivariate-order margins and belongs to the 
family of composite likelihood methods (Lindsay, 1988, Varin,  2008). It produces 
biased parameter estimates when the latent variable is not normally distributed. 
The second model is the unidimensional SNP-IRT model for binary data (Woods 
& Lin,  2009, Irincheeva et al., 2012), and we estimate the parameters using the 
quasi-maximum likelihood (ML) method. The choice of these estimators for the 
two models is motivated by the following reasons. First, both methods are consistent 
when the latent variable is normally distributed. Moreover, the quasi-ML method for 
the .SNPL model is consistent also under different distribution assumptions of the 
latent variable (Gallant & Tauchen, 1989, Irincheeva et al., 2012). These conditions 
on the consistency of the parameter estimators are required to correctly apply the 
Generalized Hausman test (White, 1982). Second, the maximum PL estimator is less 
efficient than the ML estimator. This implies that, also under normality of the latent 
variable distribution, the covariance matrix of the difference of the two estimators
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involved in the GH test is different from zero. This allows us to avoid numerical 
problems in the computation of the test. 

The article is organized as follows. First, we review the classical and SNP-IRT 
model for binary data. Second, we introduce the GH test to detect non-normality of 
the latent variable distribution. Next, we present a Monte Carlo simulation study. 
Finally, we present some concluding remarks. 

2 The Classical and SNP-IRT Model for Binary Data 

Let us denote by .y1, . . . , yp a set of observed binary variables/items, by n the 
number of individuals and by z the latent variable with density function .h(z). 

For the classical IRT model, the response category probability for the i-th 
individual to the j -th item is modelled using a logistic model (measurement model) 

. P(yij = 1|zi) = πij (zi) = exp (α0j + α1j zi)

1 + exp (α0j + α1j zi)
, (1) 

where .α0j is the item intercept and .α1j the item slope. In this model .h(z) = φ(z), 
where .φ(z) is the density of a standard normal. 

For the SNP-IRT model, the response probability is the same as (1), where the 
latent variable has a SNP parametrization 

.
h(zi) = P 2

L(zi)φ(zi) PL(zi) =
∑

0≤l≤L

aiz
l
i , (2) 

.a0, . . . , aL are the real coefficients of the polynomial .PL(zi) andL is the polynomial 
degree. 

In order for .h(z) to be a density, the coefficients .a0, . . . , aL of .PL(z) should 
be chosen such that .

∫
h(z)dz = 1. For this purpose, Gallant and Tauchen (1989) 

use a proportionality constant .1/
∫

PL(z)2φ(z)dz and fix the constant term of 
the polynomial equal to 1. Alternatively, Irincheeva et al. (2012) and Woods and 
Lin (2009) use the parametrization proposed by Zhang and Davidian (2001), that 
imposes 

.1 =
∫

R

P 2
L(z)φ(z)dz = E{P 2

L(w)} = a′E(w̃w̃′)a = a′Aa (3) 

with .w ∼ N(0, 1), .PL(w) = a′w̃, .w̃ = (1, w,w2, . . . , wL). The matrix A is 
positive definite by definition and .A = B ′B, where B is a positive definite matrix. 

If .c = Ba, Eq. (3) becomes .c′c = 1 and .c = (c1, . . . , cL+1)
′. The  

elements of c can be represented using a polar coordinate transformation as 
. c1 = sinϕ1, c2 = cosϕ1 sinϕ2, . . . , cL = cosϕ1 × cosϕL−1 sinϕL, cL+1 =
cosϕ1 cosϕ2 × cosϕL−1 cosϕL, with angles .−π/2 < ϕt ≤ π/2, .t = 1, . . . , L. The
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density of the latent variable in (2) can be expressed as 

.h(z|ϕ, L) = (a′z̃)2φ(z), (4) 

where a can be obtained from c as .a = B−1c, .z̃ = (1, z, z2, . . . , zL)′ and . ϕ =
(ϕ1, . . . , ϕL)′. 

When .L = 1, .PL(z) = a0 + a1z, .a0 = sinϕ1, .a1 = cosϕ1. When . L = 0
the distribution of the latent variable reduces to the normal one. In the following 
sections we indicate with .SNP1 the model for .L = 1 and with .SNP0 the model for 
.L = 0. 

2.1 Pairwise Estimator for the SNP0 Model 

To implement the GH test, the parameters of the .SNP0 model are estimated with 
the pairwise method. The pairwise log-likelihood of the data, based on the bivariate 
marginal densities .f (yij , yik, θ), .j, k = 1, ..p and .k > j , is  

.

plSNP0(y, θ) =
n∑

i=1

p∑

j=1

∑

k>j

ln f (yij , yik, θ) =

=
n∑

i=1

p∑

j=1

∑

k>j

ln
∫ [

πij (zi)
yij (1 − πij (zi))

1−yij

]

×
[
πik(zi)

yik (1 − πik(zi))
1−yik

]
φ(zi)dzi .

(5) 

The pairwise log-likelihood is maximized with respect to . θ , that includes the item 
intercepts and slopes. Under correct model specification, the maximum PL estimator 
. θ̃ converges in probability to the true parameter value . θ0 and 

.θ̃
p−→ N(θ0, A

−1(θ0)B(θ0)A
−1(θ0)), (6) 

where .A(θ) = Ey

[
− ∂2plSNP0 (y,θ)

∂θ∂θ ′

]
, .B = var

[
∂plSNP0 (y,θ)

∂θ

]
and . A(θ) �= B(θ)

(Lindsay, 1988, Varin,  2008). These matrices can be estimated by their observed 
versions as 

.Â(θ) = −
n∑

i=1

∂2plSNP0(yi , θ)

∂θ∂θ ′ (7) 

and
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.B̂(θ) =
n∑

i=1

∂plSNP0(yi , θ)

∂θ

∂plSNP0(yi , θ)

∂θ ′ . (8) 

2.2 Quasi-ML Estimator for the SNPL Model 

The parameters of the .SNPL model, .L > 0, are estimated with the quasi-ML 
method. The log-likelihood of the data is 

. 

lSNPL
(y, θ) =

n∑

i=1

ln f (yi , θ) =

=
n∑

i=1

ln
∫ p∏

j=1

πij (zi)
yij (1 − πij (zi))

1−yij P 2
L(zi) exp

(
− 1

2
z′
izi

)
dzi .

(9) 
The integral in the log-likelihood .l(y, θ) is approximated with the Gauss-Hermite 
quadrature, as in Woods and Lin (2009). The degree of the polynomial L is fixed and 
is not estimated by maximum likelihood. The log-likelihood function is maximized 
with respect to the unknown vector of parameter .θ = (α0,α1,ϕ) as follows 

.(α̇0, α̇1, ϕ̂) = argmaxθ lSNPL
(y, θ). (10) 

For identifiability reasons, the item intercepts and slopes, that correspond to a latent 
variable that has mean 0 and variance 1, are rescaled as (Irincheeva et al., 2012) 

.α̂0j = ˙α0j + ˙α1j Ẽ(Z) j = 1, . . . , p (11) 

.α̂1j = ˙α1j

√
Ṽ (Z) j = 1, . . . , p, (12) 

where .Ẽ(Z) and .Ṽ (Z) are found given . ϕ̂ and the SNP density of z. The final 
quasi-ML estimator is .θ̂ = (α̂1, α̂0, ϕ̂). Under normal, multi-modal and asymmetric 
distributions of the latent variables and if the regularity conditions A2–A6 of White 
(1982) are satisfied, 

.θ̂
p−→ N(θ0∗, A−1(θ0∗)B(θ0∗)A−1(θ0∗)), (13) 

where .θ ′
0∗ = (α′

00,α
′
01,ϕ∗′). .α00 and .α01 are the true parameter values for the 

item intercepts and slopes while . ϕ∗ is the value of . ϕ that minimizes the Kullback-
Leibler information criterion (White, 1982, Gallant and Tauchen, 1989, Irincheeva 
et al., 2012). .A(θ) and .B(θ) are the expected Hessian and cross-product matrices, 
respectively. Their observed versions can be computed with the Delta method
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(Cramér, 1946) and are defined similarly to (7) and (8), where .plSNP0(yi , θ) is 
replaced by .lSNPL

(yi , θ). 

3 The Generalized Hausman Test 

In this section we present the GH test, derived by White (1982), applied to detect 
non-normality of the latent variable using the SNP-IRT model. 

Let’s denote by . η the sub-vector of .θ ′ = (α′
0,α

′
1,ϕ

′) that includes the item 
intercepts . α0 and slopes . α1. . η has dimension .2p × 1, where p is the number of 
items. 

Consider the maximum PL estimator .θ̃SNP0 = η̃SNP0
of a classic IRT model 

where the latent variable is normally distributed, that is the .SNP0 model. 

Consider the quasi-ML estimator .θ̂
′
SNPL

= (η̂
′
SNPL

, ϕ̂
′
) of a SNP-IRT model 

with .L > 0, where the sub-vector of parameter . ϕ̂ has dimension .L × 1 and so 
.θ̂SNPL

has dimension .(2p + L) × 1. Following White (1982), under normality of 
the latent variable 

.
√

n(η̂SNPL
− η̃SNP0

)
d−→ N(0, S(η0, θ0∗)). (14) 

An estimator of .S(η0, θ0∗) is 

.

Ŝ(η̃SNP0
, θ̂SNPL

) = Âηϕ(θ̂SNPL
)−1B̂(θ̂SNPL

)Âηϕ(θ̂SNPL
)−1′

+ Â(η̃SNP0
)−1B̂(η̃SNP0

)Â(η̃SNP0
)−1′

− Âηϕ(θ̂SNPL
)−1R̂(η̃SNP0

, θ̂SNPL
)′Â(η̃SNP0

)−1′

− Â(η̃SNP0
)−1R̂(η̃SNP0

, θ̂SNPL
)Âηϕ(θ̂SNPL

)−1′
,

(15) 

where the matrices .Â(η̃SNP0
) and .B̂(η̃SNP0

), defined in formulas (7) and (8), have 

dimension .2p × 2p and are evaluated at .η̃SNP0
. .Â(θ̂SNPL

) and .B̂(θ̂SNPL
) are the 

observed Hessian and cross-product matrix of dimension . (2p + L) × (2p + L)

for the .SNPL model, evaluated at .θ̂SNPL
. The matrix .Âηϕ(θ̂SNPL

)−1 is obtained 
by deleting the last L row from the  matrix  .Â(θ̂SNPL

)−1 and has dimension . 2p ×
(2p + L). The matrix .R̂(η̃SNP0

, θ̂SNPL
) has dimension .2p × (2p + L) and can be 

computed as 

.R̂(ηSNP0
, θSNPL

) =
n∑

i=1

∂plSNP0(yi , η)

∂η

∂lSNPL
(yi , θ)

∂θ ′ , (16) 

where .plSNP0(yi , η) is the pairwise log-likelihood for the individual i under the 
model .SNP0 and .lSNPL

(yi , θ) is the log-likelihood for the individual i under the 
model .SNPL. The matrix in (16) is evaluated at .(η̃SNP0

, θ̂SNPL
). We choose the
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maximum PL and the quasi-ML estimator for the two models to avoid that, under 
correct model specification, .η̃SNP0

and .η̂SNPL
converge to the same covariance 

matrix, producing a .Ŝ(η̃SNP0
, θ̂SNPL

) matrix in (15) with all entries close to 0. 
Given the theoretical result in (14), the GH test is given by 

.GH = (η̂SNPL
− η̃SNP0

)′Ŝ(η̃SNP0
, θ̂SNPL

)−1(η̂SNPL
− η̃SNP0

). (17) 

Under normality of the latent variable, the GH test is asymptotically distributed as a 
. χ2
2p, where 2p are the degrees of freedom, i.e. the number of parameters in . η. 

However, the matrix .Ŝ(η̃SNP0
, θ̂SNPL

) is often close to singularity and its 
inversion in formula (17) is numerically unstable. 

Given the theoretical result in (14) and the quadratic form . (η̂SNPL
−

η̃SNP0
)′(η̂SNPL

− η̃SNP0
), we consider the following test statistic (Ranger & Much, 

2020) 

.GHT = (η̂SNPL
− η̃SNP0

)′(η̂SNPL
− η̃SNP0

). (18) 

Under normality of the latent variable 

.GHT ∼
d∑

l=1

λlz
2
l , zl ∼ N(0, 1), (19) 

where d is the rank of .S(η0, θ0∗) and .λ1, . . . , λd are its non-zero eigenvalues. 
It is possible to approximate the distribution in (19) as follows (Welch, 

1938,Yuan & Bentler, 2010) 

.GHT ∼ aχ2
b . (20) 

The quantity a and b are defined as 

.a =
∑d

l=1 λ2l∑d
l=1 λl

(21) 

and 

.b = (
∑d

l=1 λl)
2

∑d
l=1 λ2l

. (22) 

Since .S(η0, θ0∗) can be consistently estimated by .Ŝ(η̃SNP0
, θ̂SNPL

) defined in (15), 

a and b can be consistently estimated substituting .λ̂1, . . . , λ̂d in (21) and (22), where 
d is rank of . Ŝ and .λ̂1, . . . , λ̂d are its non-zero eigenvalues.
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4 Simulation Study 

4.1 Simulation Design 

In this section we study the performance of the .GHT test by a simulation study. 
The estimation of the SNP-IRT model is computationally expensive. Moreover, 
as the degree of the polynomial L increases (.L > 1), the .SNPL model becomes 
more sensitive to the choice of the initial values for all model parameters and the 
estimation results can be less reliable. Furthermore, in the data generating models 
we assume the latent variable distributed as mixtures of two normals, that can 
be well approximated with .L = 1, as highlighted in Irincheeva et al. (2012). 
Thus, to implement the .GHT test, we consider the .SNP0 and the .SNP1 models. 
The optimization of the .SNP0 model is obtained with direct maximization using 
the function “optim” of the software R while, for the .SNP1 model, the function 
“nlminb”, that makes use of the analytically computed gradient and Hessian matrix. 
For the .SNP1 model, initial values of the parameters . α0 and . α1 are the parameter 
estimates obtained with the .SNP0 model. In each data replication, for the . ϕ1
parameter, we sample 10 initial values from a sequence of values equally spaced 
by 0.1 in the interval .[−π

2 ; π
2 ], i.e. the domain of . ϕ1, including the .SNP0 model as 

a subcase. Among the estimated .SNP1 models in each data replication, we select 
the one that corresponds to the maximum value of the log-likelihood function. All 
matrices involved in the .GHT test are computed numerically with the “NumDeriv” 
R package. Although assuming a SNP distribution for the latent variable is more 
computationally demanding than assuming the normal distribution, it has the great 
advantage that it is very flexible and produces accurate estimates in many situations. 

We consider the following simulation conditions: number of items . (p =
4, 10, 20) . × sample size (.n = 500, 1000). × test statistic (.GHT ). In all the simulation 
scenarios, .R = 500 replications are considered and .α = 0.05. Non-valid statistics, 
for example negative statistics, are excluded from the analysis. The Type I error 

rates and power of the .GHT test are computed as .p̂ = ∑Nv

l=1
I (GHTl

≥c)

Nv
, where . Nv

is the number of valid statistics out of the number of replications, I is an indicator 
function, .GHTl

is the value of the .GHT test statistic evaluated in the l-th replication. 
c is the theoretical asymptotic critical value corresponding to the .(1−α)th percentile 
of the .aχ2

b distribution for the .GHT test, where . a and . b are computed as in (21) and 

(22). The confidence interval (CI) of each rate . p̂ is computed as .p̂±z(1− α
2 )

√
α(1−α)

Nv
. 

To evaluate the performance of the .GHT test, we consider three scenarios (SC), 
corresponding to three different distribution assumptions for the latent variable z in 
the data generating models. The general model is 

.

logit (πij ) = α0j + α1j zi i = 1, . . . , n j = 1, 2, . . . , p

z ∼ h(z)
(23)
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Item intercepts are randomly generated in the interval [. −0.8; 1.12] while the item 
slopes in the interval [0.5; 1.5]. 

To study the Type I error rates of the .GHT test we consider the following 
scenario: 

A . z ∼ N(0, 1)

To study the power of the .GHT test we consider the following two scenarios: 

B . z ∼ 0.1N(−2, 0.25) + 0.9N(2, 1),
where z has an overall mean equal to 1.6 and variance equal to 2.365. 

C . z ∼ 0.7N(−1.5, 0.6) + 0.3N(1.5, 0.5),
where z has an overall mean equal to . −0.6 and variance equal to 2.217. 
Under the distributional assumptions of the two scenarios B and C, the  

estimates of the quasi-ML parameters of the .SNP1 model are nearly unbiased 
(see the results on the bias of the parameters in scenario B reported in Irincheeva 
et al., 2012) while the maximum PL parameter estimates of the .SNP0 model are 
largely biased with respect to the true parameter values. This should result in a 
good .GHT test performance in terms of power. 

4.2 Results 

Table 1 reports the Type I error rates, mean and standard deviation of the theoreti-
cal(T) and empirical(E) distribution of the .GHT test for scenario A. 

Overall, the .GHT test has good performance in terms of Type I error rates when 
the sample size is large and in general with many items. Moreover, the empirical 

Table 1 Type I error rates, 
mean and standard deviation 
of the theoretical(T) and 
empirical(E) distribution of 
the .GHT test for scenario A, 
.p = 4, 10, 20, . n = 500, 1000

p n Distribution Mean SD . α

4 500 TD 2.01 2.00 0.050 

ED 1.61 1.81 0.016 
1000 TD 2.12 2.06 0.050 

ED 2.54 2.93 0.086 
10 500 TD 3.44 2.62 0.050 

ED 2.89 2.64 0.018 
1000 TD 3.21 2.54 0.050 

ED 3.00 2.97 0.044 

20 500 TD 3.48 2.64 0.050 

ED 3.44 3.15 0.056 

1000 TD 3.52 2.65 0.050 

ED 3.63 3.12 0.060 

Note 1: Values in boldface indicate that the nom-
inal level . α is not included in their confidence 
interval
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Table 2 Empirical power of 
the .GHT test for scenarios B 
and C, .p = 4, 10, 20, 
. n = 500, 1000

SC p n Power 

B 4 500 0.53 

1000 0.86 

10 500 0.924 

1000 0.998 

20 500 0.99 

1000 0.998 

C 4 500 0.796 

1000 0.92 

10 500 1 

1000 1 

20 500 0.986 

1000 1 

distribution of the .GHT test approaches the theoretical one as the number of items 
and the sample size increase. Small differences can be found in terms of empirical 
and theoretical standard deviations, while the means of the two distributions are very 
similar under most conditions. Despite the good performance of the test with many 
items and large sample size in terms of Type I error rates, we observe an inconsistent 
pattern of results with 4 items and all sample sizes. In general, the estimation of 
the model parameters and the related information matrices, on which the .GHT test 
is based, is less accurate on small data sets. Indeed, few items and small sample 
sizes carry out less information than more items and large sample sizes. We should 
consider larger sample sizes to obtain Type I error rates of the .GHT test close to the 
nominal level . α for 4 items, while .n = 1000 is sufficient for 10 items and . n = 500
for 20 items. 

Table 2 presents the power of the .GHT test for scenarios B and C. 
The power of the .GHT test is high when the sample size is large and with 10 and 

20 items. Moreover, it increases with the number of items and the sample size. 

5 Conclusion 

In this work, we extended the GH test to detect non-normality of the latent variable 
distribution in unidimensional IRTmodels for binary data. The GH test was obtained 
as the difference between the estimators of the classic IRT model for binary data and 
the SNP-IRT model, that allows for a more flexible shape of the latent variable 
distribution. To avoid the inversion of the covariance matrix of the difference 
between the parameter estimates, we considered an alternative form of this test, 
that we called .GHT test, and we evaluated its performance by means of a small 
simulation study.
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The simulation study highlights that the .GHT test has good performance in terms 
of Type I error rates with many items and in particular for large sample sizes. For 
what concerns the power, the .GHT test has good performance with many items and 
large sample sizes. However, these are preliminary results. Further studies should 
include other distributions of the latent variables. Indeed, it would be interesting 
to study the behaviour of this test when the SNP approach performs less well in 
recovering the distribution of the latent variable, for example when it is skewed 
(Monroe, 2014). Moreover, the .GHT test presented in this work could be applied 
to IRT models for polytomous data, assuming the SNP representation of the latent 
variable distribution. Since these models involve a higher number of parameters, 
the additional issue, compared to binary data, could be the computational cost of 
the estimation process (Bartholomew et al., 2011). 

The GH test could also be applied to detect other types of model violations, 
as local dependence or violation of the item characteristic function. In these 
cases, other types of estimators consistent under model misspecification should be 
considered in order to apply the test. 
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A Speed-Accuracy Response Model with 
Conditional Dependence Between Items 

Peter W. van Rijn and Usama S. Ali 

Abstract Conditional independence assumptions play an important role in many 
psychometric models, but can sometimes be too restrictive in modeling process 
data from educational and psychological tests such as response times. For this 
reason, a continuous speed-accuracy response model is developed that relaxes the 
assumption of conditional independence of items given latent proficiency (“local” 
independence). Our model is a generalization of the speed-accuracy response model 
developed by Maris and van der Maas (Psychometrika, 77:615-633, 2012) in which 
a scoring rule incorporating both accuracy and speed of item responses is assumed 
to produce a sufficient statistic for a latent proficiency variable. The assumption 
of local independence is dropped in a similar way as in the interaction model 
developed for dichotomous item responses by Haberman (Multivariate and Mixture 
Distribution Rasch Models, pp. 201–216. Springer, New York, 2007). Recently, 
Verhelst (Theoretical and Practical Advances in Computer-Based Educational 
Measurement, pp. 135–160. Springer, Cham, 2019) discussed similar models in the 
context of exponential family models for continuous item responses. A pairwise 
conditional maximum likelihood approach is developed to estimate item parameters. 
The model is illustrated by an application to data from a listening test. 
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1 Introduction 

Conditional independence assumptions play an important role in the way psycho-
metric models are applied. For example, the assumption of “local” independence 
in item response theory (IRT) models (Lord & Novick, 1968), which states that 
item responses are independent conditional on a latent proficiency variable, greatly 
simplifies the application of these models to real data. In general, such assumptions 
can be problematic when modeling process data from educational and psychological 
tests such as response times to test items (Bolsinova et al., 2017). Problems with 
these assumptions can arise both within items (e.g., between accuracy and speed) 
and between items (e.g., due to speededness). Our objective is to develop and 
estimate a speed-accuracy response model (Maris & van der Maas, 2012) which 
permits conditional dependencies between items similar to the interaction model for 
discrete item responses (Haberman, 2007). This would allow a more flexible way of 
dealing with response-time data, but also with other continuous item response data 
(Verhelst, 2019). 

We start the next section with models for dichotomous item responses. This is 
followed by a section on speed-accuracy response models, in which we present our 
new model. Next, we discuss model estimation using a pairwise likelihood approach 
and an application to real data. The paper ends with a brief discussion. 

2 Discrete Item-Response Models 

Under local independence, the log probability of the vector . y containing m 
dichotomous item responses under the Rasch (1960) model can be given by 

. logp(y|θ) = C(θ) +
m∑

j=1

yj (θ + βj ), (1) 

where .C(θ) is a normalizing factor, . θ is a latent proficiency variable, and . βj is the 
intercept parameter for item j . The normalizing factor .C(θ) for the Rasch model is 
.−∑m

j=1 log
[
1 + exp(θ + βj )

]
. An important feature under the Rasch model is that 

the total score .r = ∑m
j=1 yj is a sufficient statistic for . θ (Andersen, 1970). 

Haberman’s (2007) interaction model is an extension of the Rasch model with 
conditional dependence between items: 

. logp(y|θ) = C(θ) +
m∑

j=1

yj (θ + βj ) +
m∑

j=2

j−1∑

k=1

yjyk(γj + γk), . (2) 

= C(θ) + rθ + β ′y + (r − 1)γ ′y. (3)
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where . γj is the interaction parameter for item j . It can be seen from Eq. (3) that 
item difficulty is effectively a linear function of the total score. In this model, the 
total score remains a sufficient statistic for . θ , but local independence is no longer 
assumed. 

Conditional on the total score r , we obtain the following conditional probability 
for the interaction model 

. logp(y|r) = D(r) + β ′y + (r − 1)γ ′y, (4) 

where the conditional normalizing factor .D(r) is 

.D(r) = − log
∑

y:r
exp

[
β ′y + (r − 1)γ ′y

]
. (5) 

The summation here runs over all response pattern . y that result in total score r . 
Equation (4) is independent of . θ and can be used to develop conditional maximum 
likelihood (CML) estimation for item parameters . β and . γ . CML estimates of item 
parameters of both the Rasch and Haberman model can be obtained with the R 
package dexter (Maris et al., 2022). 

3 Speed-Accuracy Response Models 

In discussing speed-accuracy response models, we focus on the signed residual time 
(SRT) scoring rule: 

.xj = (2yj − 1)(dj − tj ), (6) 

where . xj is the score awarded to the speed and accuracy of the response to item j , 
. dj is a time limit for item j and .tj > 0 is the continuous response time for item j . 
In this scoring rule, fast correct responses are given more credit than slow correct 
responses, and fast incorrect responses are penalized more than slow incorrect 
responses. Of course, there are many more ways to combine speed and accuracy 
into a single value, each with merits and limitations, but we limit our attention to 
the SRT score here. Note that response times can be rescaled so that . dj can be fixed 
to one and .−1 < xj < 1 for all items. 

The speed-accuracy response model from Maris and van der Maas (2012) is:  

. log f (x|θ) = C(θ) +
m∑

j=1

xj (θ + βj ). (7) 

The Maris–van der Maas model is related to the Rasch model for continuous item 
responses (Müller, 1987), but also has marginal functions for item responses and
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response times. For example, the marginal function for item responses, or the item 
response function, turns out to be the two-parameter logistic (2PL) model where 
the item discrimination equals the time limit . dj (Maris & van der Maas, 2012, Eq.  
(12)). The speed-accuracy response model of Eq. (7) and an extension including 
a discrimination parameter can be estimated using marginal maximum likelihood 
(MML) estimation, for example, with the dedicated software package SARM (van 
Rijn & Ali, 2018b). 

Our proposed new model is the Maris–van der Maas model extended with 
conditional dependence between items: 

. log f (x|θ) = C(θ) +
m∑

j=1

xj (θ + βj ) +
m∑

j=2

j−1∑

k=1

xjxk(γj + γk). (8) 

As in the Haberman interaction model, the total score remains a sufficient statistic 
for . θ , but local independence does not hold. The Haberman model provides an 
approximation to a 2PL model and our new model does so in a similar fashion 
to the two-parameter speed-accuracy response model by van Rijn and Ali (2018b). 
However, no distributional assumption is needed for . θ to estimate Haberman’s and 
our new model. 

The normalizing factor .C(θ) is difficult to obtain for our model, because the 
scores are continuous. A similar issue also occurs in other models with interactions 
(e.g., the partition function in Boltzmann distributions, Ising models; Maris & 
Bechger, 2021). However, things prove to be easier when we focus on item pairs 
.(j, k) with .1 ≤ k < j ≤ m instead of the full vector and condition on their total 
score .r = xj + xk , .j �= k. 

Conditional on .rjk = xj + xk , we can then write 

. log f (xj , xk|r) = D(rjk) + xjβj + xkβk + xjxk(γj + γk). (9) 

The pairwise conditional normalizing factor .D(r)jk can be obtained and turns out 
to be 

.D(rjk) = − log
∫ r̃jku

r̃jkl

exp[xβj + (rjk − x)βk + x(rjk − x)(γj + γk)]dx, (10) 

where .r̃jkl = max(rjk − 1,−1) and .r̃jku = min(rjk + 1, 1). The integral 
can be solved analytically using the error function, but this can give numerical 
issues. Instead, numerical integration (adaptive quadrature) can be used. We now 
have an expression (Eq. (9)) for the conditional probability of item pairs which is 
independent of . θ . Note that if a scoring rule different from the SRT is used (e.g., 
the unsigned residual time .Yj (dj − Tj )), the normalizing factors would need to be 
derived accordingly.
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4 Estimation 

A pseudo-likelihood approach can now be developed to estimate item parameters 
.ξ = (β ′, γ ′)′ (Besag, 1975). Specifically, we use the pairwise conditional log 
likelihood (PCL; Verhelst, 2019) 

.PCL(ξ) =
n∑

i=1

m∑

j=2

j−1∑

k=1

log f (xij , xik|rijk). (11) 

= 
n∑

i=1 

m∑

j=2 

j−1∑

k=1 

D(rijk) + 
m∑

j=2 

j−1∑

k=1 

[sjβj + skβk + sjk(γj + γk)], (12) 

where . xij is the SRT score of test taker i on item j , .rijk is the total score on item 
pair .(j, k) for test taker i, .sj = ∑n

i=1 xij and .sjk = ∑n
i=1 xij xik . To identify the 

model, we fix .βm = γm = 0. The main challenge lies in the computation of the 
conditional normalizing factor .D(rijk) for which we use numerical integration. The 
PCL can be maximized numerically or otherwise. 

If the interaction terms are dropped, the PCL can also be used for estimating 
. β in the Maris–van der Maas model. Note that in this case only so-called weak 
local independence is assumed (i.e, item pairs are independent conditional on . θ ; 
McDonald, 1999). The PCL approach also works for the Rasch model (Zwinder-
man, 1995), but not for the Haberman model. This can be illustrated, for example, 
using the probability of getting item j correct and item k incorrect, given that 
either j or k is correct (i.e., the sum score is 1). Under the Haberman model, this 
probability simplifies to .p(1, 0|1) = exp (βj )

exp (βj )+exp (βk)
, which is the same as in the 

Rasch model. This means that we cannot use pairwise probabilities to distinguish 
the Rasch and the Haberman model. The use of triplewise probabilities could put 
us back in business. However, when the number of items becomes more than 5 
there are increasingly more triples than pairs to deal with, making the approach 
impractical for longer tests. Such triplewise conditional likelihood estimation would 
nevertheless be of interest (e.g., in case of missing or incomplete data), but is beyond 
our present scope. 

Various aspects of pairwise CML (PCML) estimation such as efficiency and 
uniqueness could be studied further, but space is limited for our current exposition. 
An important aspect though is that there are dependencies when using pairwise 
probabilities (van der Linden & Eggen, 1986, p. 347). For example, if a person 
responds to three dichotomously scored items a, b, c, and .ya = 0 and . yb = 1
is observed, then .ya = 1 and .yc = 0 cannot be observed. The same holds in a 
more intricate fashion for continuous scores (e.g., if .xa > xb, then .xa < xc is less 
likely). These dependencies limit the use of the pairwise likelihood (e.g., for model 
comparisons).
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5 Application 

To illustrate the new model, we make use of 17 items from a listening section of an 
English language test for non-native speakers. The sample size is .n = 9355. Since 
the data were not collected under item-specific time limits (although there was a time 
limit on the section), we leniently created the time limits . dj for the SRT scoring 
rule based on the 99-th percentile of the empirical response time distributions (as 
was done in van Rijn & Ali, 2018a). We estimate the Rasch, Haberman, Maris–van 
der Maas, and our new model. We compared the CML and PCML estimates for 
the Rasch model, and the MML and PCML estimates for the Maris–van der Maas 
model as a check to see if the pairwise estimation works. Furthermore, the CML 
estimates for the Haberman model and the PCML estimates of our new model are 
compared as well. 

Figure 1 shows the results of the check on pairwise estimation. CML estimates 
of item parameters for the Rasch and Haberman model were obtained with the R 
package dexter (Maris et al., 2022). MML estimates for the Maris–van der Maas 
model were obtained with the SARM software (van Rijn & Ali, 2018b). The PCML 
estimates for both models were obtained with our own R code. As can be seen from 
the figure, PCML produces very similar estimates as CML for the Rasch model 
and as MML for the Maris–van der Maas model. Note that some care regarding 
model identification is needed when comparing estimates across CML and MML 
estimation. 

Figure 2 displays a comparison of the . β parameters between the Maris–van 
der Maas and our new model and a comparison of the . γ parameters between the 
Haberman and our new model. The estimated . βs of the Maris–van der Maas and 
our new model are very similar. The estimated . γ s for the Haberman and our new 
model are correlated, but on different scale. This difference in scale is not surprising 
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Fig. 1 Comparison of CML and PCML estimates of item parameters for Rasch model (left) and 
MML and PCML for Maris–van der Maas model (right) for listening test
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Fig. 2 Comparison of item parameters acrossMaris–van derMaas and newmodel (left) and across 
Haberman and new model (right) for listening test 

given that these models are fitted to different data (dichotomous item responses vs. 
continuous scores based on the SRT scoring rule). 

6 Discussion 

In this paper, we presented a new speed-accuracy response model with conditional 
dependence between items. We developed a PCML estimation procedure to estimate 
its item parameters, which, on the basis of the application, appears to work, so 
that our new model can be practically estimated. Nevertheless, various estimation 
aspects need to be sorted out (e.g., efficiency, uniqueness, dependencies among 
pairwise probabilities, information loss). In addition, whether our model fits better 
than simpler models remains to be determined. 

A limitation of our exposition is that we only focus on the SRT scoring rule, 
which is not widely used in practice. However, a benefit of our model and estimation 
procedure is that it can also be applied to other types of continuous scores, 
potentially including process data. We argue that this is relevant since it is likely 
that item responses will be scored more and more frequently by algorithms than 
by humans, and such algorithms often produce a continuous score. It would be 
interesting also to investigate whether a mix of different scores can be modelled 
within this approach. 

Another benefit of the new model is that no distributional assumption is needed 
for . θ to estimate its structural parameters. This can be important especially when 
the quality of the sample of test takers is diverse. In addition, certain model features 
can be directly related to other observables from the data (e.g., item-total score 
regressions). A downside is that estimation can become tricky in case of incomplete
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data (Eggen & Verhelst, 2011) and adaptive testing (Zwitser & Maris, 2015). So, in 
closing, our initial results are promising, but much more work is needed on model 
features (e.g., marginal functions for item responses and response times), estimation 
(e.g., standard errors) and model fit (e.g., generalized residuals). 
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A Modified Method of Balancing 
Attribute Coverage in CD-CAT 

Chia-Ling Hsu, Zi-Yan Huang, Chuan-Ju Lin, and Shu-Ying Chen 

Abstract This study introduces a new attribute balancing method for cognitive 
diagnostic computerized adaptive testing (CD-CAT): the modified attribute bal-
ancing index (M-ABI). Based on simulation studies, using the M-ABI yielded 
acceptable measurement accuracy, ensured attribute coverage, and increased item 
bank utilization regardless of the item selection method, test length, or complexity 
of the Q-matrix structure. Overall, these results suggest the feasibility of using the 
M-ABI in CD-CAT to increase measurement precision, attribute coverage, and item 
usage, simultaneously. 

Keywords Attribute coverage · Attribute balancing · Computerized adaptive 
testing · Cognitive diagnostic model 

1 Introduction 

Cognitive diagnostic computerized adaptive testing (CD-CAT) combines the psy-
chometric properties of cognitive diagnostic models (CDMs) and CAT, the benefits 
of which drive increasing research in CD-CAT. Which identifies an examinee’s 
mastery (versus non-mastery) of a set of fine-grained latent attributes (e.g., CDM, 
Rupp et al., 2010) by customizing each test to each examinee. As CD-CAT aims 
to accurately identify the attributes mastered by an examinee, its item selection 
algorithms must efficiently choose optimal items and/or balance the coverage of 
various attributes (attribute balancing; Cheng, 2010). 
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Many past studies have shown how balancing attribute coverage for many 
items that measured one attribute affected the classification accuracy of examinees’ 
mastery statues and ignored many items that measure multiple attributes. Extending 
the research, Sun et al. (2021) introduced an attribute balancing method for many 
items that measured multiple attributes. However, Sun et al.’s (2021) method does 
not guarantee balanced attribute coverage and ignores many items that measure 
a single attribute. These research results have shown that the published attribute 
balancing methods do improve the accuracy of examinees’ mastery statues but do 
not uniformly utilize the item bank (e.g., they tend to select items that measured 
one or multiple attributes). Although accurately measuring an examinee’s mastery 
status is the primary goal of CD-CAT, effective item use is also vital. Since 
building an item bank often entails a costly and time-consuming process of writing, 
reviewing, and pretesting the items, the existence of underused items in the item 
bank represents an undesirable resource waste. As a result, it is beneficial to 
have a cost-effective method of selecting items that can meet attribute coverage 
requirements, enhance classification accuracy, and boost item bank use at the same 
time. 

To address this research gap, we introduce a new attribute balancing method: the 
modified attribute balancing index (M-ABI). Regardless of whether the item bank 
is composed of numerous items that measure a single or multiple attributes, the 
M-ABI increases both measurement precision and test efficiency. Specifically, the 
M-ABI (1) guarantees the balanced attribute coverage required for each attribute, 
(2) improves the measurement precision, (3) increases the selection of items that 
measure multiple attributes, and (4) thus increases the utilization of the item bank. 

After briefly discussing CDM and item selection methods, we introduce the M-
ABI. Then, we report on simulation studies comparing the M-ABI’s performance 
to Cheng’s (2010) and Sun et al.’s (2021) attribute balancing methods. Finally, we 
discuss the implications of this study for the use of M-ABI in CD-CAT. 

2 The Deterministic Input Noisy Output “AND” Gate Model 

This study uses the deterministic input noisy output “AND” gate (DINA) model 
(Junker & Sijtsma, 2001), in which an examinee must possess all skills (latent 
attributes) required by an item for a correct response. The probability of a correct 
response from examinee i on item j is as follows: 

P
(
Xij = 1|αi

) = (
1 − sj

)ηij gj 
1−ηij , (1) 

where the mastery (latent class) of examinee i is αi = (αi1, αi2, . . . , αiK)
′
and . ηij =

∏K
k=1α

qjk

ik (qjk indicates whether item j requires attribute k for a correct response), 
with the slipping parameter sj and the guessing parameter gj.
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3 Item Selection Methods 

Attribute balancing for item selection began with the global discrimination index 
(GDI, Cheng, 2010) using Kullback-Leibler (KL) information (Tatsouka, 2002; 
Tatsouka & Ferguson, 2003; Xu et al., 2003). We use KL information first, before 
using posterior-weighted KL (PWKL) information (Cheng, 2009) and then modified 
PWKL (MPWKL) information (Kaplan et al., 2015). 

The KL information of item j for examinee i’s provisional estimate of the latent 
class . α̂ is as follows: 

KLj

(
α̂i

) = 
2K∑

c=1

[
1∑

x=0 

P
(
Xj = x|α̂i

)
log

(
P

(
Xj = x|α̂i

)

P
(
Xj = x|αc

)

)]

, (2) 

where .P
(
Xj = x|α̂i

)
and P(Xj = x| αc) are the probabilities of response x to item j 

given the interim estimate for examinee i’s latent class and latent class c (c = 1, 2, 
. . . , 2K), respectively. 

The PWKL information of item j for examinee i given the responses to t items is 
as follows: 

PWKLj

(
α̂ (t) 

i

)
= 

2K
∑

c=1 

⎧ 
⎨ 

⎩ 

1∑

x=0 

⎡ 

⎣P
(
Xj = x|α̂ (t) 

i

)
log 

⎛ 

⎝ 
P

(
Xj = x|α̂ (t) 

i

)

P
(
Xj = x|αc

)

⎞ 

⎠ 

⎤ 

⎦ π(t) (αc) 

⎫ 
⎬ 

⎭ . 

(3) 

Given the responses to t items x(t), KL information is weighted by the corresponding 
posterior probabilities of the latent classes (i.e., π(t)(αc) ∝ π(αc0)L(x(t)| αc)). The 
prior distribution for latent class c is π(αc0), the likelihood of x(t) given latent class 
c is L(x(t)| αc), and the interim estimate for examinee i’s latent class given t items is 
.α̂

(t)
i . 

The MPWKL information for item j is as follows: 
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⎫ 
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(4) 

where the probability of response x to item j considering latent class d is 
P(Xj = x| αd) and the posterior probability of latent classes d is π(t)(αd).
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4 A Modified Attribute Balancing Index 

To better balance attribute coverage for an item bank with many multi-attribute 
items, Sun et al. (2021) proposed an attribute balancing method called ratio of test 
length to the number of attributes (RTA). The RTA for item j is as follows: 

RT Aj = 1 

1 + I (H ≤ Bk)
∑V 

v=1I
(
qj = q∗

v

) ,H  = min (b1, b2, . . . , bK) (5) 

where Bk is the minimum number of items required to measure the kth attribute 
(k = 1, 2, . . . , K), bk is the number of previously selected items used to measure the 
kth attribute, I(H ≤ Bk) and .I

(
qj = q∗

v

)
are the indicator functions, V is the number 

of previously selected items (v = 1, 2, . . . , V), . q∗
v is the q-vector of previously 

administered items, and qj is the q-vector of unadministered items. As stated by Sun 
et al. (2021), the RTA is more likely to select items with attributes that differ from 
those of previously administered items, hence boosting the utilization of the item 
bank. However, the two elements, I(H ≤ Bk) and .

∑V
v=1I

(
qj = q∗

v

)
, simultaneously 

determine the RTA; if one of them is 0, the other can be disregarded, which does 
not affect item selection. Thus, the RTA does not guarantee that each attribute fully 
meets the attribute coverage requirement. 

To simultaneously increase the selection of multi-attribute items and fully meet 
the attribute coverage requirement, we modified the attribute balancing index (ABI, 
Cheng, 2010) to create the M-ABI, which releases the limit of the ABI from 0 when 
the kth attribute fulfils the attribute coverage requirement: 

M − ABIj = 
K∑

k=1

(
Bk − bk 

Bk

)
qjk, (6) 

with all notations denoting the same meanings as in Eq. (5). As compared to 
.ABIj = ∏K

k=1(Bk − bk/Bk)
qjk , the M-ABI has a slightly different form. First, qjk 

is no longer an exponent but, rather, a multiplier of each (Bk − bk)/Bk. Second, 
rather than calculating a multiplicative product of all (Bk − bk)/Bk, we sum  
all the components. Larger differences among attributes and their corresponding 
unsatisfied attribute coverage requirements for each item yield both greater ABI 
and greater M-ABI values. However, when a bk is equal to its corresponding Bk, 
ABI = 0, but M-ABI �= 0; instead, M-ABI merely decreases. Thus, unlike ABI, 
M-ABI still allows these unused items that measure attribute k to be chosen and 
administered to the examinee.
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5 Simulation Study 

We used an item bank with 300 items that measured six attributes, generated the g-
and s-parameters in the DINA model from Uniform (0.05, 0.25), and designed two 
Q-matrix structures (simple versus complex). The simple Q-matrix had 55% single-
attribute items, and each item measured 20% the targeted attributes. By contrast, the 
complex Q-matrix (based on Sun et al., 2021) had 87% multi-attribute items. There 
were 30,000 examinees were generated, such that each examinee had a 50% chance 
of independently mastering each attribute. 

Three item selection algorithms—KL, PWKL, and MPWKL—were employed 
with the ABI, RTA, and M-ABI methods. The fixed-length stopping rules stopped 
the CD-CAT for test lengths set at 10, 15, 20, and 25 items. To ensure satisfactory 
attribute balancing under various test lengths, the minimum number of items that 
measured each attribute was set to one, two, three, and four items for each of the four 
test lengths. Thus, 60%, 80%, 90%, and 96% of the test lengths, respectively, were 
considered as attribute balancing. The initial latent class was randomly generated 
from 64 latent classes for each examinee. The maximum likelihood estimation 
updated the examinees’ provisional and final estimates of the latent classes. Thus, 
the simulation study had 72 conditions = 2 (Q-matrix structures) × 3 (item selection 
algorithms) × 3 (attribute balancing methods) × 4 (stopping rules). All conditions 
used identical simulated designs. 

The proportion of examinees with correctly classified latent classes is called as 
the classification accuracy rate (CAR), and it indicates the accuracy of the attribute 
balancing method. 

CAR = 

N∑

i=1 
Iα̂i ,αi 

N 
, (7) 

with an indicator function .Iα̂i ,αi
and the number of examinees N. If .α̂i = αi , 

. Iα̂i ,αi
= 1; otherwise, . Iα̂i ,αi

= 0. The attribute coverage of the proportion of 
examinees whose tests satisfied the attribute balancing criterion indicates the 
efficacy of the attribute balancing method. Meanwhile, the number of items used 
across all examinees (so-called item usage) indicates the efficiency of the attribute 
balancing method. It would be expected that, as compared with the ABI and RAT 
methods, the proposed M-ABI will meet the three criteria simultaneously, enabling 
it cost-effective. 

6 Results 

Table 1 shows that, regardless of the item selection method, Q-matrix structure, or 
test length, both M-ABI and ABI ensured that all the tests satisfied the attribute
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Table 1 Percentage of examinees’ tests meet attribute coverage requirement 

Test length 
Item selection Q-matrix Attribute balancing 10 15 20 25 

KL Simple ABI 1.00 1.00 1.00 1.00 
RTA 0.97 0.78 0.63 0.63 
M-ABI 1.00 1.00 1.00 1.00 

Complex ABI 1.00 1.00 1.00 1.00 
RTA 0.99 0.80 0.68 0.66 
M-ABI 1.00 1.00 1.00 1.00 

PWKL Simple ABI 1.00 1.00 1.00 1.00 
RTA 1.00 0.94 0.88 0.82 
M-ABI 1.00 1.00 1.00 1.00 

Complex ABI 1.00 1.00 1.00 1.00 
RTA 1.00 0.95 0.87 0.78 
M-ABI 1.00 1.00 1.00 1.00 

MPWKL Simple ABI 1.00 1.00 1.00 1.00 
RTA 1.00 0.96 0.84 0.73 
M-ABI 1.00 1.00 1.00 1.00 

Complex ABI 1.00 1.00 1.00 1.00 
RTA 1.00 0.94 0.78 0.66 
M-ABI 1.00 1.00 1.00 1.00 

Note. KL Kullback–Leibler information, PWKL posterior-weighted KL, MPWKL modified PWKL, 
NAB no attribute balancing, ABI attribute balancing index, RTA ratio of test length to the number 
of attributes, M-ABI modified ABI 

coverage criterion but RAT did not. For strict attribute balancing constraints (e.g., 
90% or 96% of the test lengths were considered as attribute balancing), the M-
ABI, ABI, and RTA methods showed similar results across all simulation conditions 
(their differences in CARs were < .05; see Table 2). For lenient attribute balancing 
constraints (e.g., 60% of the test lengths were considered as attribute balancing), the 
ABI often performed slightly better than both RTA (by 0–.05) and M-ABI (by .04– 
.09, see Table 2). Figure 1 shows that the M-ABI had higher efficiency than both 
ABI and RTA, using 16.7% more items than the ABI and 7.3% more items than the 
RTA on average across conditions. 

7 Discussion 

This study aims to propose a cost-efficient method for considering classification 
accuracy, attribute coverage efficacy, and item bank utilization simultaneously. 
Thus, we introduced a new method, the modified attribute balancing index (M-ABI), 
and compared it to two other methods (ABI and RTA) regarding these three criteria. 
Overall, the M-ABI satisfied the attribute balancing requirement (like the ABI but
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Table 2 Classification accuracy rate of latent classes 

Test length 
Item selection Q-matrix Attribute balancing 10 15 20 25 

KL Simple ABI 0.60 0.76 0.86 0.92 
RTA 0.59 0.77 0.86 0.91 
M-ABI 0.53 0.73 0.84 0.90 

Complex ABI 0.58 0.75 0.83 0.87 
RTA 0.54 0.73 0.82 0.86 
M-ABI 0.49 0.69 0.80 0.86 

PWKL Simple ABI 0.74 0.92 0.96 0.98 
RTA 0.69 0.89 0.96 0.99 
M-ABI 0.67 0.88 0.96 0.98 

Complex ABI 0.70 0.88 0.93 0.96 
RTA 0.65 0.85 0.94 0.97 
M-ABI 0.63 0.83 0.92 0.96 

MPWKL Simple ABI 0.80 0.93 0.96 0.97 
RTA 0.80 0.93 0.98 0.99 
M-ABI 0.76 0.91 0.97 0.99 

Complex ABI 0.77 0.88 0.92 0.95 
RTA 0.77 0.90 0.96 0.98 
M-ABI 0.73 0.89 0.95 0.97 

Note. KL Kullback–Leibler information, PWKL posterior-weighted KL, MPWKL modified PWKL, 
NAB no attribute balancing, ABI attribute balancing index, RTA ratio of test length to the number 
of attributes, M-ABI modified ABI 

not the RTA), had similar CAR given strict attribute balancing constraints, had 
slightly less CAR given lenient attribute balancing constraints (ABI ≥ RTA > M-
ABI), and was much more efficient in terms of item utilization. The M-ABI has a 
slightly lower CAR than ABI/RTA because it uses more items for administration, 
which may not contribute well to the objective function optimized in the CD-CAT 
algorithms. Nonetheless, as compared with ABI and RTA, M-ABI had acceptable 
classification accuracy, ensured balanced attribute coverage, and increased item 
usage; thus, when performed simultaneously with CD-CAT, it was the most cost-
effective method when one considers accuracy, attribute coverage efficacy, and 
efficiency. 

This study’s limitations include its few manipulations and absence of real-world 
data. First, we manipulated only a few factors/levels in the simulation studies, so 
future studies can manipulate more such factors or levels, such as by adopting 
different CDMs, different Q-matrix structures, more attributes, other advanced item 
selection algorithms (e.g., Wang, 2013; Zheng & Chang, 2016), or different test 
termination rules (e.g., Hsu et al., 2013; Tatsouka, 2002). Furthermore, M-ABI 
performance might differ under different practical constraints, such as test security 
and content balancing control, so future studies can examine such constraints.
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Fig. 1 Item bank utilization. (Note. ABI attribute balancing index, RTA ratio of test length to the 
number of attributes, M-ABI modified ABI) 
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Resolving the Test Fairness Paradox 
by Reconciling Predictive 
and Measurement Invariance 

Safir Yousfi 

Abstract Until recently, the dominant approach to establish that a psychological 
or educational test is fair with respect to a demographic characteristic like gender 
or age was to show that predictive invariance holds (e.g. identical regression of the 
criterion on the test scores). In last decade, the claim of some psychometricians 
that measurement invariance should be regarded as a major prerequisite for test 
fairness had some impact. Both criteria for test fairness are now required by common 
standards for educational and psychological testing. 

However, it has been shown that predictive invariance and measurement invari-
ance are incompatible concepts and cannot hold simultaneously in realistic settings. 
While psychometricians concluded that an explicit choice between these approaches 
has to be made, test developers and test users seem to neglect the incompatibility 
and follow one of the approaches without explanation. 

A psychometric approach to test fairness is suggested that resolves the incom-
patibility of predictive and measurement invariance by adopting the key ideas 
behind both competing concepts of test fairness. Within this framework, latent 
predictive invariance and measurement invariance are both considered as basic 
requirements for test fairness in realistic settings. Additional requirements lead to 
more stringent concepts of fairness that are necessary for fairness considerations in 
case of multidimensionality. 
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1 Introduction 

It has been proven that measurement invariance and predictive invariance are 
incompatible requirements under almost all circumstances (Meredith & Millsap, 
1992; Millsap & Meredith, 1992; Millsap, 1997, 2007, 2011). Hence, it is an 
unattainable goal to meet both most common statistical requirements for test 
fairness. Consequently, Borsboom et al. (2008) concluded that an explicit decision 
between both concepts is inevitable and recommended to prefer measurement 
invariance. In the remainder, a different approach for escaping from this dilemma 
will be outlined. 

2 Recap of Predictive and Measurement Invariance 
and Their Relations 

Definition (Predictive Invariance) Predictive invariance holds if for each value 
of the variable X, the conditional distribution of the criterion variable C does not 
depend on the value of group variable G (cf. Cleary, 1968; Millsap, 2007): 

(G⊥⊥C) | X 

Definition (Measurement Invariance) Measurement invariance1 holds if for each 
value of the vector of latent variables θX the conditional distribution of the variable 
X does not depend on the value of group variable G (cf. Meredith & Millsap, 1992; 
Millsap, 2007): 

(G⊥⊥X) | θX 

X can be test response pattern and/or a function thereof. 
Meredith and Millsap (1992) have shown that (G ⊥⊥ X) | θX (measurement 

invariance) implies (G ⊥⊥ C) | X (predictive invariance) in case of Bayesian 
sufficiency, i.e. if 

(C ⊥⊥ θX) | X 

Meredith and Millsap (1992) emphasize that (C ⊥⊥ θX) | X (Bayesian sufficiency) 
would hardly be a met in practical applications as it requires that measurement errors 
of X (as a measure of θX) would not attenuate but contribute unrestrictedly to the 
association of θX and C.

1 The respective constellation is sometimes referred to as strict or absolute measurement invariance 
which contrast to other weaker forms of measurement invariance. In this paper we do not use any 
variations of measurement invariance but refer always to this concept. 
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In contrast, if C and X are locally independent in each group, i.e. 
(C ⊥⊥ X) | (θX,G), and there are group differences on the latent variable (i.e., 
⫫ ) then measurement invariance (i.e., (G ⊥⊥ X) | θX) and predictive 

invariance (i.e., (G ⊥⊥ C) | X) are mutually exclusive (unless some trivial regularity 
assumptions are violated; Meredith & Millsap, 1992). Hence, it is an unattainable 
goal to meet both most common statistical requirements for test fairness. Borsboom 
et al. (2008) concluded that an explicit decision between both concepts is inevitable 
and recommended to prefer measurement invariance. In the following chapter, a 
different approach for escaping from this dilemma will be outlined. 

3 Fairness Concepts Based on Latent Variables 

The key idea behind predictive invariance is that disparate impact (substantial group 
differences in the consequences of a procedure, e.g. selection rates) can be justified 
(only) if it can be attributed to a trait that is shown to be predictive for a respective 
outcome (e.g. success on the job). This line of reasoning relies on the (implicit) 
assumption that disparate treatment of persons that differ (only) in the respective 
trait is justified. For example, lower admission rates for black applicant need not 
necessarily considered as unfair, if they can be attributed to lower abilities (instead 
of direct discrimination based on their race). These lower abilities result in lower 
aptitude and lower aptitude is generally regarded as a justified reason for disparate 
treatment. 

However, observed test scores are at best (statistically) unbiased estimators for 
the respective latent variable. The predictive and explanatory power of the observed 
score stems from the underlying latent variable and is attenuated by measurement 
error. As a consequence, the posterior distributions (on the latent variable) of persons 
with the same observed score on a trait measure generally differs between groups 
if there are group differences on the trait. This leads to violations of predictive 
invariance even if the latent trait is regarded as criterion variable. Such violations 
of predictive invariance should not be considered as a violation of principles of 
fairness as it does not result in disparate treatment of members of different groups 
with the same latent trait score. Principles of fairness would only be violated if 
group differences on the criterion variable are expected for persons with the same 
latent trait value as these differences would undercut the premise that disparate 
impact (group differences in the consequences of a procedure) could be justified 
by differences on the respective trait. 

In conclusion, predictive invariance is generally not suited to justify disparate 
impact or disparate treatment of members of different groups based on their 
observed trait measures. Requiring predictive invariance for the latent variable as 
predictor of the respective criterion seems to be an obvious alternative fairness 
requirement. Moreover, the incompatibility of predictive invariance and measure-
ment invariance applies only the observed test scores as predictor of the criterion.
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There is no incompatibility of latent predictive invariance with measurement invari-
ance. As any violation of latent predictive invariance and measurement invariance 
inevitably leads to fairness issues it seems straightforward to integrate both concepts 
in a comprehensive psychometric concept of fairness. 

Definition (Weak Fairness) Using a function f of the test response X as indica-
tor/predictor of C is weakly fair with regard to characteristic G at (all levels of) θX, 
if 

a. (C ⊥⊥ f (X)) | (θX,G) (group-wise local independence of f (X) and C) 
b. (G ⊥⊥ f (X)) | θX (measurement invariance of f (X)) 
c. (G ⊥⊥ C) | θX (predictive invariance of θX) 

Please note that weak fairness boils down to measurement invariance of f (X) in  
case of C = θX (operational definition of the intended target of measurement). In 
this case, X might be the test response pattern and f (X) might an estimator of θX, 
e.g. the maximum likehood, weighted likelihood, or a Bayesian estimator (without 
group specific prior) or simply the sum score. 

Please note also, that weak fairness boils down to predictive invariance of f (X), 
if f (X) = θX, i.e. if f (X) is a perfectly reliable unbiased estimator of θX. 

For theoretical purposes C might be a platonic true score, i.e. a latent variable that 
is defined conceptually and not necessarily by a measurement model of observed 
variables. 

Weak fairness refers always to a specific grouping of the population by the group 
variable G. Moreover, weak fairness refers always to a specific scoring f of the 
test response pattern X. Consequently, item DIF (i.e. violations of measurement 
invariance for elements of X) does not necessarily lead to violations of measurement 
invariance of f (X), e.g. if DIF cancels out across the items. 

Weak fairness ensures that (for each level of θX) statistical inference from X on 
C by means of f does not depend on G. Hence, it ensures fairness on each level 
of θX. This is a trivial consequence of the local independence assumption which 
requires that f (X) is not informative with respect to C on all levels of θX (but may 
be informative across levels of θX). 

However, if the (expected) error of inference from f (X) on  C (i.e. C − f (X)), 
depends on θX then group differences on C might not be adequately reflected 
by f (X). In extreme cases, group differences on f (X) might even have different 
sign/direction than group differences on C. Moreover, a scoring f is always weakly 
fair if f (X) is an arbitrary constant that takes the same value regardless of X. 
Weak fairness would also hold, if only those elements of a X that are completely 
unrelated to θX (e.g. 2-pl items with zero discrimination) are considered by f (X) 
while elements of X that are related to θX are ignored. To avoid such undesired 
properties, it seems necessary to tighten the concept of weak fairness by additional 
fairness requirements, if f (X) and C are on an ordinal or interval scale. Then it is 
expedient to require that f (X) reflects differences of C due to differences in θX in 
order to keep the claim tenable that group difference in f (X) can be justified by
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group difference in θX that are predictive for C. Otherwise the conceptual basis that 
underlies (latent) predictive invariance would be undercut. 

Definition (Substantial Fairness) A weakly fair test use is called substantially fair, 
if the following condition holds for each pair of values a,b of the latent variable 

E (C|θX = a) ≤ E (C|θX = b) �⇒ E (f (X) |θX = a) ≤ E (f (X) |θX = b) 

Substantial fairness ensures that differences in θX that are consequential for 
the expected value of C are also reflected in expected value of f (X). However, 
substantial fairness is not invariant to strictly monotone transformations of f (X) and 
focuses only on expectations and neglects other properties of the distributions of C 
and f (X). Hence, it seems necessary to tighten the concept of fairness further. 

Definition (Essential Fairness) A weakly fair test use is called essentially fair, if 
the following condition holds for each pair a,b of values the latent variable 

(C|θX = a) � (C|θX = b) �⇒ (f (X) |θX = a) � (f (X) |θX = b) 

(A|B) � (D|E) denotes “less in the usual stochastic order”, i.e. P(A > x|B) ≤ P(D > x 
|E) for each value of x. 

Essential fairness ensures that the usual stochastic orderings of the conditional 
distributions of C and f (X) are consistent (on the whole domain of θX). In other 
in words: If a value b of the latent trait θX is associated with higher values of the 
criterion C than another value a, then b will also be associated with higher values of 
f (X), i.e. f (X) reflects differences of C due to differences in θX. 

However, essential fairness does not preclude underprediction and overprediction 
of groups that differ with respect to their distribution on θX. If overprediction 
happens on lower levels of θX, for example, then the magnitude of the (mean) 
difference between a low scoring group to another group with average or above 
average (mean) values of θX would not be adequately reflected in the values of f (X). 
To prevent bias on the group level the concept of weak fairness can be tightened 
further by referring to difference of C and f (X). This difference ε := crit − f (X) 
might be called error of prediction, if C is an observed variable or error of 
interpretation if C is a hypothetical variable that is defined conceptually (plantonic 
true score). 

Definition (Strong Fairness) Weakly fair test use is called strongly fair if 
E(ε| θX) = E(ε) (conditional regressive independence of ε and θX) 

Definition (Strict Fairness) Weakly fair test use is called strictly fair if ε ⊥⊥ θX 
(stochastic independence of ε and θX). 

Definition (Absolute Fairness) Absolutely fair test use is strictly fair test use with 
E(ε) = 0
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Please note that the additional requirements for substantial, essential, strong, 
strict and absolute fairness do not refer to G. Consequently, neither of these 
requirements are directly relevant for fairness with respect to G. As fairness on each 
level of θX is already guaranteed by weak fairness, these additional requirements 
aim at fairness with respect to θX to prevent indirect bias as consequence of group 
differences on θX. They ensure that f (X) reflects differences of C due to differences 
in θX. The required level of fidelity in reflecting these differences increases from 
substantial to essential to strong to strict and finally to absolute fairness. 

Only absolute fairness prevents against any over- and underestimation for all 
levels of θX. Strict fairness ensures absolutely homogenous over- or underestimation 
if E(ε) �= 0 and prevents against any bias with respect to G. Strong fairness requires 
only that the expected over- or underestimation is the same for all values of θX. 
However, the precision of the prediction of C might depend on θX which might lead 
to minor violations of fairness on the group level in case of group differences on 
θX. If C or f (X) are only on an ordinal scale, then ε is generally not meaningful 
which undercuts the conceptual basis of strong, strict and absolute fairness. In 
contrast, essential fairness is meaningful if C and/or f (X) are on an ordinal scale. 
Consequently, essential fairness is robust against monontone transformations of C 
and f (X). If essential fairness is violated then substantial fairness cannot be expected 
to be robust against all monotone transformations of C and f (X). If substantial 
fairness is violated for a weakly fair test, then local fairness still holds on each level 
of θX. However, f (X) does not imply the same order on θX as C does. Consequently, 
the order of different groups (values of G) with respect to f (X) might be inconsistent 
with the order with respect to C which must be considered as a severe violation of 
fairness on the group level. 

4 Fairness Concepts Based on Manifest Variables 

If weak fairness is violated because of violations of the local independence 
assumption (i.e. measurement invariance and latent predictive variance still hold) 
then the claim that the explanatory power of the test scores stems only from 
respective latent trait but not from measurement error of θX is not tenable as these 
measurement errors seem to be related to C. Such constellations are likely to occur 
if measurement errors of θX do not only reflect transient variation of behavior but 
enduring changes as a result of the testing experience (e.g. learning). 

In order to illustrate the effects of violations of local independency, we will refer 
to a hypothetical dating platform that has one matching algorithm g(Y) that relies 
only on information Y that is available before potential mating partners interact and 
another algorithm f (X) that relies on information X that is gathered after the first 
interaction of potential partners. Suppose that the same latent trait variable θX = θY 
underlies the observed scores f (X) and g(Y). θX might be the (a-priori) mating
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probability of potential partners. Measurement errors of Y and g(Y) are most likely 
transient whereas random variation of X and f (X) might reflect permanent effects of 
affection which might result in mating C. If the algorithm f (X) is a (nearly) perfect 
measure of the state of potential couples after their first interaction, then it seems at 
least plausible that knowledge of θX would not have any incremental value over f (X) 
for the prediction of mating, i.e. Bayesian sufficiency of f (X) with respect to θX for 
the prediction of C would hold. If we suppose further, that measurement invariance 
of f (X) holds for straight vs. queer potential couples (G), then we could infer that 
predictive invariance of f (X) holds (Meredith & Millsap, 1992; Millsap, 2007). 
However, the irrelevance of θX as incremental predictor of C follows directly from 
Bayesian sufficiency and does not rely on measurement variance. As measurement 
errors of f (X) as a measure of θX (a-priori mating probability) do not attenuate 
but contribute to the prediction of C there is no need to require measurement 
invariance as prerequisite for manifest fairness (of post-hoc mating predictions after 
the first interaction). Therefore, in the remainder only Bayesian sufficiency but not 
measurement invariance would be required for manifest fairness on levels of the 
observed f (X). 

Definition (Weak Manifest Fairness) Weak manifest fairness (of using a function 
f of the test response X as indicator/predictor of C) holds (at all levels of f (X)), if 
the following conditions are met: 

1. (C ⊥⊥ θX) | f (X) (Bayesian sufficiency of f (X)) 
2. (G ⊥⊥ C) | f (X) (predictive invariance of f (X)). 

Definition (Substantial Manifest Fairness) Substantial manifest fairness is given, 
if weak manifest fairness holds and if the following condition holds for each pair 
a,b of values of f (X) 

E (C|f (X) = a) ≤ E (C|f (X) = b) �⇒ a ≤ b 

Definition (Essential Manifest Fairness) A weakly manifestly fair test use is 
called essentially manifestly fair, if the following condition holds for each pair of 
values a,b of f (X): 

(C|f (X) = a) � (C|f (X) = b) �⇒ a ≤ b 

Definition (Strong Manifest Fairness) Weak manifest fairness is called strong 
manifest fairness if E(ε| f (X)) = E(ε) (conditional regressive independence of ε 
given f (X)) 

Definition (Strict Manifest Fairness) Weak manifest fairness is called strict 
manifest fairness if ε ⊥⊥ f (X) (stochastic independence of ε and f (X)). 

Definition (Absolute Manifest Fairness) Absolute manifest fairness is strict 
manifest fairness with E(ε) = 0.
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5 Comparison of Fairness Concepts for Latent and Manifest 
Variables 

The concepts for manifest fairness mimic the concepts of latent fairness. The key 
difference is that latent fairness concepts require fairness on levels of θX, while 
manifest fairness concepts require fairness on levels of f (X). If f (X) must be  
considered as fallible measure of a trait that is to be measured, then latent concepts 
of fairness should be applied to guarantee fairness for the units of measurement. If 
the random variation of f (X) is also considered as a feature that is to be measured, 
then manifest fairness concepts should be applied for fairness evaluations. In most 
applications latent fairness concepts are much better compatible with the purpose 
of measurement. In contrast, it is hard to imagine settings where manifest fairness 
concepts fit to the purpose of measurement (cf. Meredith & Millsap, 1992; Millsap, 
2007). 

It is interesting to apply the fairness concepts to settings where G is constant and 
does not vary across the units of measurement. Then weak fairness boils down to 
local independence of X and C and manifest weak fairness boils down to Bayesian 
sufficiency. In this case, the other latent versions of fairness would describe the 
degree to which f (X) reflects differences of C due to differences in θX, while the 
other manifest version of fairness would describe the degree to which f (X) reflects 
differences in C. 

6 Discussion 

Borsboom (2006) and Millsap (2007) referred to the apparent neglect of the 
work of Millsap (1997) and the focus on analyzing predictive invariance (instead 
of measurement invariance) for evaluating potential test bias as a paradigmatic 
example of a lack of impact of psychometric insights on psychological research 
and practice. Ten years later, Putnick and Bornstein (2016) reported an exponential 
growth in the number of studies that analyze the measurement invariance, i.e. 
the approach recommended by Borsboom et al. (2008). More recently, Han et al. 
(2019, p. 1484) concluded that “relative to predictive invariance, MI [measurement 
invariance] has been investigated more frequently and more rigorously in recent 
years . . . ”, with some exception like “ . . .  assessment research related to personnel 
se[le]ction”. However, even in test bias research that relies on analyses of predictive 
invariance, there is an increasing awareness that these analyses can be distorted 
by statistical artifacts due to measurement error (and in case of analyses based 
on correlational analyses also by range restriction). Attenuation corrections are 
recommended to adjust for these distortions (cf. Aguinis et al., 2010; Berry & Zhao, 
2015). Interestingly, these corrections implicitly accomplish that the true score of
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a test is considered as predictor instead of the observed score which is analogous 
to requiring latent predictive invariance instead of observed predictive invariance 
as prerequisite for fair test use. So far it seems to be unnoticed that attenuation 
corrections remove the incompatibility of predictive invariance and measurement 
that was described in the psychometric literature, i.e. both major statistical fairness 
approaches become compatible even in settings with local stochastic independence. 
This should not only be considered as an opportunity but rather as an obligation to 
apply both major psychometric approaches in future research and practice if fairness 
is to be evaluated. The fact that an integrated evaluation of fairness has hardly been 
tried in the literature (see Han et al., 2019) might at least in part be attributable to 
the discouraging message from the psychometric literature that such an endeavor 
would inevitably (or at least in realistic settings) lead to a violation of test fairness 
with respect to at least one of both major fairness criteria (Millsap, 1997, 2007; 
Borsboom et al., 2008). 

One implication of the present work is that relying exclusively on analyses of 
measurement invariance is only adequate if the latent variable itself is considered 
as the ultimate criterion. This might be the case when the test has perfect content 
validity. However, this is rarely the case whenever inferences on or predictions of 
behavior in real life settings (that do not match exactly the test setting) are the 
purpose of measurement. On the other hand, relying only on latent predictive invari-
ance without considering measurement invariance is insufficient for establishing test 
fairness as measurement bias leads inevitably to disparate treatment for test takers 
of different groups with the same value of the latent variable. 

Another key message of the current work is that measurement invariance 
and (latent) predictive invariance jointly establish only a weak form of fairness 
that does not even preclude that higher expected test scores are associated with 
lower expected scores on the criterion. The additional requirements for substantial 
fairness might appear trivial in case of a one-dimensional latent variable. In case 
of multidimensionality substantial fairness (and the other concepts beyond weak 
fairness) requires that the relative importance of the dimensions of the latent 
variable for the criterion C are perfectly reflected in the test score (i.e. proportional 
regression weights for the dependent variable C and the dependent variable f (X) if  
the associations are linear and additive). This line of reasoning indicates that the 
introduced concepts beyond weak fairness offer a promising framework to analyze 
fairness issues that result from omitted variables (cf. Sackett et al., 2003). In general, 
fairness with regard to the full vector of latent variables does not imply fairness with 
regard to a reduced or shortened vector of latent variables. Addressing these issues 
is important for many real-life applications of test scores where relevant criteria 
are often multidimensional. A full analysis of this topic is beyond the scope of this 
chapter.
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The Plausibility and Feasibility of 
Remedies for Evaluating Structural Fit 

Graham G. Rifenbark and Terrence D. Jorgensen 

Abstract Various structural fit indices (SFIs) have been proposed to evaluate the 
structural component of a structural equation model (SEM). Decomposed SFIs treat 
estimated latent (co)variances from an unrestricted confirmatory factor analysis 
(CFA) as input data for a path model, from which standard global fit indices 
are calculated. Conflated SFIs fit a SEM with both measurement and structural 
components, comparing its fit to orthogonal and unrestricted CFAs. Sensitivity of 
conflated SFIs to the same structural misspecification depends on standardized fac-
tor loadings, but decomposed SFIs have inflated Type-I error rates when compared 
to rule-of-thumb cutoffs, due to treating estimates as data. We explored whether two 
alternative approaches avoid either shortcoming by separating the measurement and 
structural model components while accounting for uncertainty of factor-covariance 
estimates: (a) plausible values and (b) the Structural-After-Measurement (SAM) 
approach. We conduct population analyses by varying levels of construct reliability 
and numbers of indicators per factor, under populations with simple and complex 
measurement models. Results show SAM is as promising as existing decomposed 
SFIs. Plausible values provide less accurate estimates, but future research should 
investigate whether its pooled test statistic has nominal Type I error rates. 
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1 Evaluating Structural Fit 

A structural equation model (SEM) can include both measurement and structural 
components. The measurement model pertains to the relationship between observed 
and latent variables (i.e., shared variance among indicators of a common factor, vs. 
error variance unique to each indicator). The structural model represents the theo-
rized causal structure among latent variables. Evaluating how well a hypothesized 
SEM is substantiated by data can be conducted by (a) a null-hypothesis (. H0) test  
of exact fit, using the likelihood-ratio test (LRT or . χ2) statistic, or (b) quantifying 
approximate (mis)fit using at least one global fit index (GFI), such as the root-mean-
squared error of approximation (RMSEA) or comparative fit index (CFI; see Hu & 
Bentler, 1998, for an overview). 

When the goal is to test/evaluate the hypothesized structural model, its evaluation 
is complicated by qualities of the measurement model. Specifically, greater con-
struct reliability (determined by the magnitude of factor loadings and the number of 
indicators per factor in the measurement model) manifests worse apparent data– 
model fit (e.g., higher . χ2 or RMSEA, lower CFI). That is, the same structural 
misspecification is easier to detect when using instruments with larger loadings 
or more indicators than when using fewer or less reliable indicators. Hancock and 
Mueller (2011) refer to this as the reliability paradox: lower reliability yields better 
apparent data–model fit, inadvertently motivating researchers to use poor-quality 
measurement instruments. Two existing methods for assessing structural-model fit 
are conflated and decomposed approaches. 

Conflated approaches attempt to examine structural model fit by keeping the 
SEM intact, estimating both components simultaneously. A single SEM’s . χ2

statistic conflates misspecification from both components, so Anderson and Gerbing 
(1988) proposed evaluating structural-model fit with a LRT by comparing a SEM 
(with hypothesized structural restrictions) to an unrestricted confirmatory factor 
analysis (CFA), on the assumption1 that misspecification can only occur in the 
measurement component. Exact fit is thus tested with a .Δχ2

Δdf statistic: the 

difference between the hypothesized SEM’s . χ2
H and the structurally saturated CFA’s 

. χ2
S , with .Δdf = dfH − dfS . Approximate structural fit can be evaluated using this 

.Δχ2 statistic (and .Δdf ) in place of a single SEM’s . χ2 statistic (and df ) when 
calculating common GFIs, for example: 

.RMSEA(D)(or RDR) = (Δ)χ2 − (Δ)df

(Δ)df × N
. (1) 

When using .Δχ2
Δdf , Browne and Du Toit (1992) referred to Eq. (1) as the root-

deterioration per restriction (RDR), which Savalei et al. (2023) more recently called

1 The structural component might be misspecified even in a CFA if the number of factors is 
incorrect (Mulaik & Millsap, 2000). 
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.RMSEAD. In the specific context of comparing a CFA to a structurally restricted 
SEM, McDonald and Ho (2002) called it RMSEA-Path, which is the term we use 
throughout this chapter. 

Incremental fit indices (e.g., CFI) can also be calculated using .Δχ2
Δdf (Savalei 

et al., 2023), but must also include the . χ2
0 statistic for a structural “null” model— 

e.g., an independence model with endogenous factors orthogonal to themselves and 
to exogenous factors—which must be nested in the hypothesized SEM (and CFA). 
Like Savalei et al. (2023) did with RMSEA, Lance et al. (2016) unified some past 
definitions by proposing a family of structural fit indices (SFIs) called “C9” that are 
analogous to incremental GFIs, as well as their complement (C10 = . 1− C9) that 
quantifies badness rather than goodness of fit. For example, a C9 analogous to the 
normed fit index (NFI; Bentler & Bonett, 1980) is:  

.C9 = χ2
0 − χ2

H

χ2
0 − χ2

S

, (2) 

.C10 = χ2
S − χ2

H

χ2
0 − χ2

S

. (3) 

One can replace each model’s . χ2 in Eq. (2) with estimated noncentrality parameter 

(NCP) .χ2 − df for a C9 analogous to CFI, or with the ratio . 
χ2

df
for a C9 analogous 

to the nonnormed fit index (NNFI; Bentler & Bonett, 1980) or Tucker–Lewis (1973) 
index (TLI). 

Conversely, decomposed approaches examine structural model fit by separately 
estimating the measurement and structural components of a SEM in two steps. First, 
an unrestricted CFA is fitted and its model-implied latent covariance matrix (. ̂�) is  
extracted. Second, . ̂� is used as input data for subsequent path analysis that models 
the hypothesized relations among latent variables (i.e., matching the target SEM’s 
structural component). Two-stage estimation attempts to circumvent the reliability 
paradox by removing the (Stage-1) measurement model’s influence on (Stage-2) 
structural model. Hancock and Mueller (2011) proposed calculating GFIs for the 
Stage-2 path analysis to serve as SFIs. 

1.1 Issues with Current Methods 

Conflated SFIs have nominal Type-I error rates under correct specification (Lance 
et al., 2016; Rifenbark, 2019, 2022), but their power to detect structural misspec-
ification is moderated by the magnitude of factor loadings (McNeish & Hancock, 
2018). Thus conflated C9/C10 still suffer the reliability paradox: C9 indicates better 
fit with smaller than larger factor loadings. 

Although the decomposed approach appears to disentangle measurement-model 
misfit from structural misspecifications (Hancock & Mueller, 2011), their SFIs 
also suffer from inflated Type-I error rates (Rifenbark, 2022; Heene et al., 2021) 
when rule-of-thumb cutoffs are used (e.g., Hu & Bentler, 1999). Imprecision when
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estimating . ̂� increases an SFI’s sampling variance, which occurs when measuring 
the factors less reliably (lower factor loadings, fewer indicators). This broadening of 
an SFI’s sampling distribution sends more values past the “critical value” (cutoff), 
even when a structural model is correctly specified (i.e., due to sampling error alone; 
Marsh et al., 2004). 

Ideally, one would not use fixed cutoffs to judge the quality of a model with 
SFIs (Groskurth et al., 2021; McNeish & Wolf, 2023); however, while it remains 
common practice, it is valuable to investigate the practical consequences of doing 
so. Hancock and Mueller (2011) did not propose a decomposed . H0 test of exact 
fit because treating the Stage-1 . ̂� as observed data would inflate the Type I error 
rate. Thus, only approximate-fit solutions have been proposed from a decomposed 
perspective. 

1.2 Potential Remedies for Evaluating Structural Fit 

An ideal method would allow structural misspecifications to be identified inde-
pendent from measurement-model misfit, but without ignoring the measurement 
model’s imprecision when using . ̂� as input data. A true test of exact fit with nominal 
Type I error rate would also be welcome. 

We explore two potential solutions based on factor score regression (FSR; 
Thurstone, 1935; Thomson, 1934), which uses factor-score estimates (derived from 
Stage-1 measurement models) as input data for a path analysis. FSR suffers from 
the same limitation as decomposed SFIs: the input data are estimated (not known) 
factor scores, whose imprecision is not accounted for in Stage-2 estimation. One 
solution is numerical, the other is analytical. 

1.2.1 Numerical Solution: Sample Plausible Values 

Rather than obtain a single point estimate of subject i’s vector of factor scores, 
we can draw a sample of plausible values from their sampling distribution, whose 
variance reflects their imprecision. It was first proposed for Item Response Theory 
(IRT; Mislevy et al., 1992; von Davier et al., 2009) and has since been applied 
in SEM (Asparouhov & Muthén, 2010; Jorgensen et al., 2022).  The motivation is  
similar to sampling multiple imputations of missing values (Rubin, 1987), where 
the (100%-)missing values are the factor scores. Drawing m samples of plausible 
values provides m imputed data sets, where M should be large enough to minimize 
additional Monte Carlo sampling error. 

To use plausible values to evaluate a structural model’s fit, we first estimate an 
unrestricted CFA, drawm samples of plausible values, fit the hypothesized structural 
model (as a path analysis) to each of the m data sets, then use Rubin’s (1987) rules 
to pool parameter estimates across m results. The LRT statistic can also be pooled
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(Meng & Rubin, 1992) and the pooled statistic can be used to calculate SFIs in 
Eqs. 1 and 2. Variability of results across m imputations (i.e., between-imputation 
variance) captures the uncertainty around . ̂� and factor scores estimated from it. 
Imprecision should therefore be accounted for, resulting in decomposed SFIs that 
yield more robust inferences about structural fit, including a test of exact fit with 
approximately nominal Type I error rate. 

1.2.2 Analytical Solution: Use Bias-Correcting Formulas 

Croon (2002) developed a bias-correcting method for FSR, which Devlieger et al. 
(2016) showed outperforms other FSR methods in terms of bias, mean-squared 
error, and Type I error rates. Devlieger et al. (2019) extended Croon’s (2002) 
correction to construct fit indices (RMSEA, CFI, SRMR) and approximate χ2 for 
nested-model tests, validating their method with simulation results. These analytical 
solutions even outperform SEM when there are fewer observations than indicators. 

More recently, Rosseel and Loh (2022) developed structural-after-measurement 
(SAM) which generalizes Croon’s correction further to be applicable when ana-
lyzing summary statistics (̂�) rather than raw data. Thus, factor-score estimates 
are no longer required. SAM is implemented in the R package lavaan (Rosseel, 
2012) via the sam() function. As the name implies, measurement parameters are 
estimated first, potentially in separate independent measurement blocks to prevent 
misfit from propagating across factors (e.g., cross-loadings, residual correlations 
between indicators of different factors). There can be as many measurement blocks 
as there are latent variables or as few as one, and there are equivalent “local” and 
“global” SAM procedures (Rosseel & Loh, 2022). Only local SAM provides a 
“pseudo-χ2 statistic” (and fit indices calculated with it) to evaluate the fit of the 
structural model, so we focus only on local SAM. 

2 Asymptotic Investigation 

We compared how well SFIs from SAM or plausible values could evaluate structural 
fit, relative to the flawed decomposed SFIs (Hancock & Mueller, 2011) and to 
the conflated test (Anderson & Gerbing, 1988) and SFIs (Lance et al., 2016). 
We analyze population moments at the factor level (. �) and item level (. �) to  
obtain asymptotic results free from sampling error. Factor-level results enable us 
to determine “true” values (benchmarks for SFIs) of an overly restricted structural 
model. Item-level results enable evaluating how much each method’s SFIs are 
affected by different measurement-model conditions.
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2.1 Hypotheses 

We know from past research (McNeish & Hancock, 2018) that for a given structural 
misspecification, SFIs of Lance et al. (2016) indicate better (or worse) fit with lower 
(or higher) factor loadings and fewer (or more) indicators; conversely, Hancock and 
Mueller (2011) SFIs are not affected (on average) by measurement quality. How-
ever, measurement-model misspecifications (e.g., omitted cross-loadings) should 
bias estimates of factor (co)variances, thus biasing even Hancock and Mueller 
(2011) SFIs. 

Regardless of whether a measurement model is correctly specified, we expect 
plausible values to yield asymptotically identical SFIs as the decomposed SFIs of 
Hancock and Mueller (2011) regardless of measurement quality. Plausible values 
and decomposed SFIs both estimate . ̂� from a CFA, which will not be biased by poor 
measurement quality, but can be biased by measurement misspecifications (e.g., 
omitted cross-loadings). The advantage of plausible values is that beyond SFIs, a 
pooled . χ2 statistic can be calculated, which should be similar to the . χ2 obtained by 
fitting the same model to the population . �. 

Likewise, we expect SAM to yield asymptotically identical SFIs as the decom-
posed SFIs of Hancock and Mueller (2011) regardless of measurement quality, 
but only when a measurement model is correctly specified. Given measurement 
misspecifications (e.g., omitted cross-loadings), SAM’s independent measurement 
blocks provide a layer of protection from propagated errors, which should make 
SAM’s SFIs more robust than plausible values or Hancock and Mueller (2011) SFIs. 

2.2 Factor-Level Population Model 

First, we specified population parameters to derive . �, which enabled us to determine 
population-level SFI values for more-restricted models. We refer to these true-value 
results to evaluate the accuracy of SFI estimates under four different methods in 
the indicator level analysis. We selected a frequently used structural model for our 
population (Lance et al., 2016; McNeish & Hancock, 2018; Rifenbark, 2019, 2022), 
depicted in Fig. 1. These population parameters imply population covariance matrix 

.� = (I − B)−1 × � × [

(I − B)−1
]′
, to which we fit four models: 

– saturated Model S: all variables freely covary 
– null Model 0: only X1, X2, and X3 freely covary 
– true partial-mediation Model T : all paths in Fig. 1 estimated 
– misspecified full-mediation Model M: Model T with fixed . β51 = β52 = 0

Models were estimated with maximum likelihood (ML) in lavaan(), and the 
fitMeasures() function was used to obtain . χ2 (with .N = 500) and GFIs for 
Model M . We used Models M , S, and 0 to calculate C9 (Eq. (2)), and we verified 
that Model T estimates matched population parameters in Fig. 1.
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Model M’s .χ2
df =3 = 216.99, so population RMSEA . = 0.378 indicated very 

poor fit. Population CFI . = 0.863 and analogous C9 . = 0.852 were also unacceptable 
by most standards (Bentler & Bonett, 1980; Hu & Bentler, 1999). These “true 
values” are the benchmarks we will use to compare the four methods for evaluating 
structural fit using indicator-level data. 

2.3 Indicator-Level Population Model 

Holding the structural model constant, we specified different measurement models 
to investigate the impact of different measurement-model attributes on structural 
model evaluation. We manipulated three factors: 

– We used 3 or 6 indicators per factor (pF). Therefore, the full SEM (Lance et al., 
2016) or CFA (plausible values Hancock & Mueller, 2011) was  fitted to 15 or  
30 indicators. Local SAM’s fitted 5 single-indicator CFAs to each factor’s 3 or 6 
indicators before fitting the structural component (Model M). 

– Whereas McNeish and Hancock (2018) manipulated factor loadings directly, we 
selected loadings that would yield low or high construct reliability (CR . = 0.6 or 
0.9), which also depends on pF (Gagne & Hancock, 2006). As such, for a given 
construct reliability, factor loadings were lower when pF = 6 than when pF = 3. 
Table 1 shows the population . � values (of all pF indicators) for each factor under 
various conditions. They are standardized loadings, such that residual variances 
were set to .diag(�) = 1 − diag(���′). 

η1 
X1 

η2 
X2 

η3 
X3 

η4 
Y1 

η5 
Y2 

β41 = 0.4 (0.34) 

β51 = 0.6 (0.429) 

β42 = 0.6 (0.51) 

β52 = 0.4 (0.286) 

β43 = 0.4 (0.34) 

β52 = 0.4 (0.337) 

0.3 

0.3 

0.3 
ψ4,4 = 0.32 
R2 = 76.9% 

ψ5,5 = 0.462 
R2 = 76.3% 

Fig. 1 Population structural parameters. Each exogenous-factor variance .ψX,X = 1, so exogenous 
covariances are correlations. Standardized slopes in parentheses
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– In the population, the measurement model had either simple or complex struc-
ture. Simple structure implies each observed indicator loads onto only one latent 
variable, and residuals are uncorrelated. Our complex measurement model con-
tained both a cross-loading and a correlated residual. In the complex population, 
the covariance between the first indicators of Y1 and Y2 was .r = 0.20 (scaled 
to a covariance by multiplying residual SDs: .0.2

√

θy1θy7 ), and the last indicator 
of X3 cross-loaded onto X2. Table 1 shows that across pF and CR conditions, 
the cross-loading (in parentheses) was half as large as the primary loading, while 
maintaining indicator variances .θx,x = 1. 

In all six conditions, we computed the population indicator-level covariance 
matrix implied by our SEM parameters in Fig. 1 and Table 1: .� = ���′ + �. 

2.4 Procedure 

The same four structural models that we fitted to . � were augmented with a simple-
structure model. Thus, augmented Model S was an unrestricted CFA, augmented 
Model 0 was an orthogonal CFA, and augmented Models T and M were “full” 
SEMs representing partial and full mediation, respectively. In simple-structure 
conditions, the measurement model was correctly specified, but it was misspecified 
in complex-structure conditions because it omitted the cross-loading and residual 
covariance. Misspecifying the measurement model (which biases . ̂�) allowed us to  
compare how SFIs are influenced across the four methods. 

The four full SEMs were fitted to the indicator-level population . �, and resulting 
. χ2 values were used to calculate conflated SFIs for augmented Model M: RMSEA-
Path (Eq. (1); McDonald & Ho, 2002) and C9 with NCP (Eq. (2), analogous to CFI; 
Lance et al., 2016). To calculate decomposed versions of these SFIs (Hancock & 
Mueller, 2011), we saved the model-implied . ̂� and fitted the (nonaugmented) Model 
M to it, just as we did to obtain “true” population SFIs by fitting Model M to the 
population . �. However, . ̂� could vary across the 2 (simple vs. complex) . × 2 (pf  . =
3 or 6) . × 2 (CR . = 0.60 or 0.90) . = 8 conditions. 

Table 1 Population values for . �

pF = 3 pF = 6 

CR = 0.90 CR = 0.60 CR = 0.90 CR = 0.60 

X1–X3 0.866 0.578 0.775 0.448 

PL (CL) 0.696 (0.348) 0.464 (0.232) 0.622 (0.311) 0.359 (0.179) 

Y1 0.736 0.491 0.658 0.380 

Y2 0.620 0.413 0.554 0.320 

Note: Simple-structure parameters given in the top row. Second row shows PL = primary loading 
and CL = cross-loading of indicators of X1–X3 in complex-structure conditions. Bottom rows 
show loadings for Y1 and Y2 under either simple or complex structure
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To obtain SFIs using plausible values and SAM, raw data were necessary 
for analysis. We used the rockchalk::mvrnorm() function to generate a 
single data set with the argument empirical=TRUE to guarantee our sample’s 
covariance matrix was identical to the population . �. This minimized sampling error, 
although some Monte Carlo error was still expected because different raw data (even 
with identical covariance matrices) yield different factor-score estimates. 

2.4.1 Plausible Values 

We fitted an unrestricted CFA (augmented Model S) to the raw data, then used the 
semTools::plausibleValues() function (Jorgensen et al., 2022) to sample 
.m = 100 sets of plausible values. We used the semTools::sem.mi() function 
to fit Model M to each sample of plausible values. The fitMeasures() function 
provided SFIs using the pooled . χ2 statistic (the “D3” method; Meng & Rubin, 
1992). 

2.4.2 SAM 

We used the lavaan::sam() function to fit augmented Model M to the raw data, 
which internally fitted five single-factor CFAs (i.e., 5 measurement blocks using the 
argument mm=5), followed by fitting Model M to the . ̂� estimate obtained via the 
local-SAM method (Rosseel & Loh, 2022). SFIs are printed by the summary() 
function. 

2.5 Results and Discussion 

We verified that all GFIs, SFIs, and . χ2 showed perfect data–model fit when both 
the measurement and structural (Model T ) components were correctly specified. 
Table 2 presents estimated SFIs (RMSEA and CFI) for Model M across conditions, 
with their true values from Sect. 2.2 in the column headers. 

2.5.1 Conflated SFIs 

As expected (McNeish & Hancock, 2018; Rifenbark, 2019, 2022), RMSEA-Path 
(McDonald & Ho, 2002) and C9 (Lance et al., 2016) in the  . ̂� column of Table 2 
were affected by measurement quality (CR), with lower CR inducing better apparent 
fit. One might not even reject the model using SFIs when construct reliability was 
low. Even the additional misfit from the measurement model (complex populations) 
did not yield SFIs that indicated fit being as poor as the true values did, although the 
impact of measurement misspecification was small. Holding CR constant, number
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Table 2 Asymptotic estimates of SFIs across conditions 

RMSEA (= 0.378) CFI (= 0.863) 

Measurement CR pF .̂� .̂� PV SAM .̂� .̂� PV SAM 

Simple low 3 0.088 0.378 0.285 0.378 0.971 0.863 0.848 0.863 

(correctly 6 0.090 0.378 0.291 0.378 0.970 0.863 0.842 0.863 

specified) high 3 0.255 0.378 0.320 0.378 0.906 0.863 0.850 0.863 

6 0.257 0.378 0.323 0.378 0.905 0.863 0.848 0.863 

Complex low 3 0.080 0.356 0.254 0.358 0.977 0.890 0.888 0.887 

(misspecified) 6 0.085 0.364 0.261 0.366 0.973 0.878 0.877 0.877 

high 3 0.251 0.373 0.309 0.373 0.910 0.872 0.865 0.871 

6 0.254 0.375 0.310 0.375 0.907 0.867 0.862 0.867 

Note: True RMSEA and CFI provided in column headers as benchmarks. CR high (0.9) or low 
(0.6) construct reliability, pF = number of indicators per factor, . ̂� conflated SFIs (i.e., RMSEA-
Path or C9), . ̂� decomposed SFIs of Hancock and Mueller (2011). PV decomposed SFIs pooled 
from plausible values, SAM decomposed SFIs from pseudo-. χ2 of SAM approach 

of indicators (pF) also did not substantially affect expected values of RMSEA-Path 
or C9. 

2.5.2 Decomposed SFIs 

When the measurement model was correctly specified, Hancock and Mueller (2011) 
SFIs (in the . ̂� column of Table 2) nearly matched SAM’s results across all CR and 
pF conditions, indicating their SFIs have asymptotically equivalent expected values. 
Both methods estimated true SFIs accurately for simple-structure populations. But 
their equivalence did not hold for misspecified measurement models. Failing to 
model the cross-loading and residual correlation induced small differences between 
SAM and Hancock and Mueller (2011) SFIs, with SAM estimates being slightly 
closer to true values. Although the impact of pF was small (somewhat better fit with 
fewer indicators), its effect was greater when CR was low. 

Using plausible values also showed some promise, although its pooled SFIs 
were less accurate estimates of true values than SAM or Hancock and Mueller 
(2011). Pooled RMSEA showed better fit than the true values (particularly with 
low CR), and pooled CFI estimates were somewhat more accurate than RMSEA. 
However, pooled CFI showed better fit than true values (like RMSEA) only when 
the measurement model was misspecified; with correct specification, pooled CFI 
always showed worse fit than true values across conditions. Pooled SFIs always 
showed slightly worse fit with more indicators, but again this was negligible.
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3 Conclusion 

Population analyses show that SAM and the decomposed SFIs of Hancock and 
Mueller (2011) are identical in the case of the simple measurement model. 
However, slight differences were observed when the complex measurement model 
was misspecified. This was expected because SAM isolates local misfit in each 
measurement block, which may enable SAM to outperform Hancock and Mueller 
(2011) in cases of greater measurement misspecification. 

In the current investigation, Hancock and Mueller (2011) SFIs appear asymptoti-
cally equivalent to SAM’s SFIs. Although their sampling distributions may have the 
same expected values, their sampling variances may yet differ. Caution is warranted 
until Monte Carlo studies reveal whether increasing either’s sampling variability 
inflates Type I errors (i.e., in smaller samples and lower CR). Holding CR constant, 
pF had negligible impact on SFIs, which warrants ignoring it in future Monte Carlo 
study, varying only CR via the magnitude of factor loadings. 

The oddly inconsistent plausible-value results are likely due to the relative misfit 
of Model 0 and Model M , but could also be due to Monte Carlo sampling error 
(we drew a finite sample of plausible values, so these results were not entirely 
asymptotic). Results could also depend on the method for pooling the . χ2 statistic; 
alternatives include the “D2” method (Li et al., 1991) and “D4” (Chan & Meng, 
2017). Grund et al. (2021) found that D2 can be too liberal, while D3 and D4 can be 
too conservative. Given how these patterns could be exacerbated in the extremely 
poor-fitting null Model 0, further investigation is warranted. The greatest promise 
of plausible values may not be for SFIs themselves, but in its ability to provide an 
actual (pooled) test of the . H0 of exact fit. 

References 

Anderson, J. C., & Gerbing, D. W. (1988). Structural equation modeling in practice: A review and 
recommended two-step approach. Psychological Bulletin, 103(3), 411–423. 

Asparouhov, T., & Muthén, B. (2010). Plausible values for latent variables using Mplus. Available 
from http://www.statmodel.com/download/Plausible.pdf. 

Bentler, P. M., & Bonett, D. G. (1980). Significance tests and goodness of fit in the analysis of 
covariance structures. Psychological Bulletin, 88(3), 588–606. 

Browne, M. W., & Du Toit, S. H. (1992). Automated fitting of nonstandard models. Multivariate 
Behavioral Research, 27(2), 269–300. 

Chan, K. W., & Meng, X.-L. (2017). Multiple improvements of multiple imputation likelihood 
ratio tests. Statistica Sinica, 32, 1489–1514. 

Croon, M. (2002). Using predicted latent scores in general latent structure models. In G. 
Marcoulides, & I. Moustaki (Eds.), Latent variable and latent structure models (pp. 195–223). 
Erlbaum. 

Devlieger, I., Mayer, A., & Rosseel, Y. (2016). Hypothesis testing using factor score regression: A 
comparison of four methods. Educational and Psychological Measurement, 76(5), 741–770.

http://www.statmodel.com/download/Plausible.pdf
http://www.statmodel.com/download/Plausible.pdf
http://www.statmodel.com/download/Plausible.pdf
http://www.statmodel.com/download/Plausible.pdf
http://www.statmodel.com/download/Plausible.pdf
http://www.statmodel.com/download/Plausible.pdf
http://www.statmodel.com/download/Plausible.pdf


158 G. G. Rifenbark and T. D. Jorgensen

Devlieger, I., Talloen, W., & Rosseel, Y. (2019). New developments in factor score regression: 
Fit indices and a model comparison test. Educational and Psychological Measurement, 79(6), 
1017–1037. 

Gagne, P., & Hancock, G. R. (2006). Measurement model quality, sample size, and solution 
propriety in confirmatory factor models. Multivariate Behavioral Research, 41(1), 65–83. 

Groskurth, K., Bluemke, M., & Lechner, C. (2021). Why we need to abandon fixed cutoffs for 
goodness-of-fit indices: A comprehensive simulation and possible solutions. Available from 
PsyArXiv: https://doi.org/10.31234/osf.io/5qag3. 

Grund, S., Lüdtke, O., & Robitzsch, A. (2021). Pooling methods for likelihood ratio tests in 
multiply imputed data sets. Available at PsyArXiv: https://doi.org/10.31234/osf.io/d459g. 

Hancock, G. R., & Mueller, R. O. (2011). The reliability paradox in assessing structural relations 
within covariance structure models. Educational and Psychological Measurement, 71(2), 306– 
324. 

Heene, M., Maraun, M. D., Glushko, N. J., & Pornprasertmanit, S. (2021). The devil is mainly 
in the nuisance parameters: Performance of structural fit indices under misspecified structural 
models in SEM. Available on PsyArXiv: https://doi.org/10.31234/osf.io/d8tuy. 

Hu, L.-T., & Bentler, P. M. (1998). Fit indices in covariance structure modeling: Sensitivity to 
underparameterized model misspecification. Psychological Methods, 3(4), 424–453. 

Hu, L.-T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: 
Conventional criteria versus new alternatives. Structural Equation Modeling, 6(1), 1–55. 

Jorgensen, T. D., Pornprasertmanit, S., Schoemann, A. M., & Rosseel, Y. (2022). semTools: 
Useful tools for structural equation modeling. R package version 0.5-6. 

Lance, C. E., Beck, S. S., Fan, Y., & Carter, N. T. (2016). A taxonomy of path-related goodness-
of-fit indices and recommended criterion values. Psychological Methods, 21(3), 388–404. 

Li, K.-H., Meng, X.-L., Raghunathan, T. E., & Rubin, D. B. (1991). Significance levels from 
repeated p-values with multiply-imputed data. Statistica Sinica, 1(1), 65–92. Retrieved from 
https://www.jstor.org/stable/24303994. 

Marsh, H. W., Hau, K.-T., & Wen, Z. (2004). In search of golden rules: Comment on hypothesis-
testing approaches to setting cutoff values for fit indexes and dangers in overgeneralizing Hu 
and Bentler’s (1999) findings. Structural Equation Modeling, 11(3), 320–341. 

McDonald, R. P., & Ho, M.-H. R. (2002). Principles and practice in reporting structural equation 
analyses. Psychological Methods, 7(1), 64–82. 

McNeish, D., & Hancock, G. R. (2018). The effect of measurement quality on targeted structural 
model fit indices: A comment on lance, beck, fan, and carter (2016). Psychological Methods, 
23(1), 184–190. 

McNeish, D., & Wolf, M. G. (2023). Dynamic fit index cutoffs for confirmatory factor analysis 
models. Psychological Methods, 28(1), 61–88. https://doi.org/10.1037/met0000425 

Meng, X.-L., & Rubin, D. B. (1992). Performing likelihood ratio tests with multiply-imputed data 
sets. Biometrika, 79(1), 103–111. 

Mislevy, R. J., Johnson, E. G., & Muraki, E. (1992). Chapter 3: Scaling procedures in NAEP. 
Journal of Educational Statistics, 17(2), 131–154. 

Mulaik, S. A., & Millsap, R. E. (2000). Doing the four-step right. Structural Equation Modeling, 
7(1), 36–73. 

Rifenbark, G. G. (2019). Misfit at the intersection of measurement quality and model size: A 
Monte Carlo examination of methods for detecting structural model misspecification. Ph.D  
Thesis, University of Connecticut. 

Rifenbark, G. G. (2022). Impact of construct reliability on proposed measures of structural fit 
when detecting group differences: A Monte Carlo examination. In Wiberg, M., Molenaar, 
D., González, J., Kim, J.-S., & Hwang, H. (Eds.), Quantitative psychology: The 86th annual 
meeting of the psychometric society, Virtual, 2021 (pp. 313–328). Springer. 

Rosseel, Y. (2012). lavaan: An R package for structural equation modeling. Journal of Statistical 
Software, 48(2), 1–36.

https://doi.org/10.31234/osf.io/5qag3
https://doi.org/10.31234/osf.io/5qag3
https://doi.org/10.31234/osf.io/5qag3
https://doi.org/10.31234/osf.io/5qag3
https://doi.org/10.31234/osf.io/5qag3
https://doi.org/10.31234/osf.io/5qag3
https://doi.org/10.31234/osf.io/5qag3
https://doi.org/10.31234/osf.io/5qag3
https://doi.org/10.31234/osf.io/d459g
https://doi.org/10.31234/osf.io/d459g
https://doi.org/10.31234/osf.io/d459g
https://doi.org/10.31234/osf.io/d459g
https://doi.org/10.31234/osf.io/d459g
https://doi.org/10.31234/osf.io/d459g
https://doi.org/10.31234/osf.io/d459g
https://doi.org/10.31234/osf.io/d459g
https://doi.org/10.31234/osf.io/d8tuy
https://doi.org/10.31234/osf.io/d8tuy
https://doi.org/10.31234/osf.io/d8tuy
https://doi.org/10.31234/osf.io/d8tuy
https://doi.org/10.31234/osf.io/d8tuy
https://doi.org/10.31234/osf.io/d8tuy
https://doi.org/10.31234/osf.io/d8tuy
https://doi.org/10.31234/osf.io/d8tuy
https://www.jstor.org/stable/24303994
https://www.jstor.org/stable/24303994
https://www.jstor.org/stable/24303994
https://www.jstor.org/stable/24303994
https://www.jstor.org/stable/24303994
https://www.jstor.org/stable/24303994
https://doi.org/10.1037/met0000425
https://doi.org/10.1037/met0000425
https://doi.org/10.1037/met0000425
https://doi.org/10.1037/met0000425
https://doi.org/10.1037/met0000425
https://doi.org/10.1037/met0000425


Remedies for Structural Model Evaluation 159

Rosseel, Y., & Loh, W. W. (2022). A structural after measurement approach to structural 
equation modeling. Psychological Methods. Advance online publication. https://doi.org/10. 
1037/met0000503 

Rubin, D. B. (1987). Multiple imputation for nonresponse in surveys. Wiley. 
Savalei, V., Brace, J. C., & Fouladi, R. T. (2023). We need to change how we compute RMSEA for 

nested model comparisons in structural equation modeling. Psychological Methods. Advance 
online publication. https://doi.org/10.1037/met0000537 

Thomson, G. H. (1934). The meaning of “i” in the estimate of “g”. British Journal of Psychology. 
General Section, 25(1), 92–99. 

Thurstone, L. L. (1935). The vectors of mind: Multiple-factor analysis for the isolation of primary 
traits. University of Chicago Press. 

Tucker, L. R., & Lewis, C. (1973). A reliability coefficient for maximum likelihood factor analysis. 
Psychometrika, 38(1), 1–10. 

von Davier, M., Gonzalez, E., & Mislevy, R. (2009). What are plausible values and why are 
they useful. In M. von Davier, & D. Hastedt (Eds.), IERI monograph series: Issues and 
methodologies in large-scale assessments (pp. 9–36). IEA-ETS Research Institute.

https://doi.org/10.1037/met0000503
https://doi.org/10.1037/met0000503
https://doi.org/10.1037/met0000503
https://doi.org/10.1037/met0000503
https://doi.org/10.1037/met0000503
https://doi.org/10.1037/met0000503
https://doi.org/10.1037/met0000537
https://doi.org/10.1037/met0000537
https://doi.org/10.1037/met0000537
https://doi.org/10.1037/met0000537
https://doi.org/10.1037/met0000537
https://doi.org/10.1037/met0000537


Clustering Individuals Based on 
Multivariate EMA Time-Series Data 

Mandani Ntekouli, Gerasimos Spanakis, Lourens Waldorp, and Anne Roefs 

Abstract In the field of psychopathology, Ecological Momentary Assessment 
(EMA) methodological advancements have offered new opportunities to collect 
time-intensive, repeated and intra-individual measurements. This way, a large 
amount of data has become available, providing the means for further exploring 
mental disorders. Consequently, advanced machine learning (ML) methods are 
needed to understand data characteristics and uncover hidden and meaningful 
relationships regarding the underlying complex psychological processes. Among 
other uses, ML facilitates the identification of similar patterns in data of different 
individuals through clustering. This paper focuses on clustering multivariate time-
series (MTS) data of individuals into several groups. Since clustering is an 
unsupervised problem, it is challenging to assess whether the resulting grouping 
is successful. Thus, we investigate different clustering methods based on different 
distance measures and assess them for the stability and quality of the derived 
clusters. These clustering steps are illustrated on a real-world EMA dataset, 
including 33 individuals and 15 variables. Through evaluation, the results of kernel-
based clustering methods appear promising to identify meaningful groups in the 
data. So, efficient representations of EMA data play an important role in clustering. 
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1 Introduction 

In the course of EMA studies, time-intensive, repeated and intra-individual measure-
ments are collected through digital questionnaires and smartphone’s app logs and 
sensors. Recent methodological advancements in collecting EMA data have offered 
new opportunities to collect a large amount of data on a personalized level, both in 
terms of time points and different variables of interest. Having more time points is 
always a desirable data characteristic, but when more variables are involved, training 
a linear Vector Autoregressive (VAR) model becomes computationally expensive, 
and sometimes even not feasible. Especially in a complex field as psychopathology, 
behaviors and psychological processes are prone to interact in a non-linear fashion. 
Thus, applying more complex and non-linear models becomes necessary. 

Such complex models can be borrowed from the field of Machine Learning (ML). 
ML includes a wide range of advanced statistical and probabilistic techniques that 
learn to build models based on the provided data (Han et al., 2022). As a result, those 
models are able to uncover hidden characteristics and patterns in data. A popular 
example is through unsupervised clustering analysis. One application of clustering 
in EMA data can be to identify similar individuals (Genolini et al., 2016). Although 
all individuals exhibit their own characteristics, they may share common influences 
that lead to some similar behavior. So, information of people belonging to similar 
groups could potentially improve the baseline personalized models (Ntekouli et al., 
2022). 

This paper focuses on clustering multivariate time-series (MTS) data of different 
individuals into several groups. For clustering time-series data, various decisions 
should be made regarding the clustering algorithm, distance metric and the optimal 
number of clusters. Thus, the most efficient methods for these decisions are 
described in great detail. Finally, it is proposed that validation is performed through 
intrinsic methods examining quality and stability of clusters. This is an important 
part of this paper, given that validation of time-series clustering is considered as the 
most challenging part. 

2 Background on EMA Time-Series Data Characteristics 

Before describing the clustering process, an introduction to EMA time-series’ 
characteristics is necessary. A key point, as well as a challenge of the current 
problem, is the multi-level structure of EMA data. During an EMA study, data are 
collected sequentially, at fixed time-intervals for all participating individuals. An
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example could be every 2 h for a period of 2–4weeks. As a result, the captured data 
represent different aspects of participants’ emotions over time and other contextual 
information. 

When observing such a dataset, more special characteristics appear and need to 
be taken into account. First, somemeasurements can be missing, mostly because of a 
machine or human error. This leads to datasets with incomplete time-series. Missing 
points affect also the time intervals between two consecutive measurements. When 
missing points exist, data are characterized as irregularly spacedMTS. In such cases, 
beyond deletion and imputation strategies, there are still ways to process data with 
missing values without relying on possibly biased techniques. A widely proposed 
approach is to apply a kernel to the raw data. Kernel methods have dominated ML 
because of their effectiveness in dealing with a variety of learning problems. To 
tackle these problems, a kernel can be applied to map data to a reproducing kernel 
Hilbert space (RKHS), that is higher dimension feature space. The success of kernel 
methods relies on the fact that nonlinear data structures, like high dimensional MTS, 
can be transformed based on the type of kernel to a space where they are finally 
linearly separable. 

Apart from length invariances, resulting from missing values, EMA time-series 
data can also exhibit different characteristics in terms of measurement scale and 
shift invariances. Regarding scaling, although EMA responses are usually recorded 
on a Likert scale, where 5 or 7 categories are available, the range of given responses 
may differ per participant. For example, some individuals may tend to be biased 
towards the middle values, avoiding all the extreme scores, whereas others may do 
the opposite, resulting in a higher skewness in some items, like negative emotions. 
In such cases, data normalization or scaling is a useful approach, whose effect is 
shown in Fig. 1b. 

Additionally, different individuals’ time-series can exhibit shift invariances. 
Time-series represent the evolution of individual’s emotion or behavior. Thus, 
among different individuals, similar patterns of a behavior can be seen shifted in 

(a) (b) 

Fig. 1 (a) An example of 3 variables over time for 2 different individuals. (b) Best alignment 
between 2 individuals according to all variables. For the illustration, only Variable 1 is shown
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time. To be able to identify these shifted patterns and consider them as similar, an 
appropriate alignment method should be applied. For instance, alignment issues can 
be taken into account by an appropriate distance measure such as DTW, that will be 
further discussed later. 

Before applying clustering, all the aforementioned special characteristics of 
time-series should be taken into account (Paparrizos and Gravano, 2015). Thus, 
preprocessing and efficient data representations are required as additional steps. 

3 Clustering Methodological Steps 

In this section, an overview of all the necessary steps and decisions for applying 
an EMA clustering is given. We examine all the decisions regarding distance 
metrics and clustering methods as well as how clustering options and results can 
be efficiently evaluated (Von Luxburg et al., 2010). 

3.1 Distance Metric 

Clustering algorithms are always relying on finding the most similar elements of 
a dataset and group them together. Similarity can be estimated by various distance 
metrics, each one reflecting a different characteristic, such as intensity or shape. In 
order to pick an adequate distance measure, the data variances, described before, 
have to be considered, otherwise, different clustering methods applied on the same 
dataset, can produce different results. 

The most commonly used distance metric is the Euclidean distance, which can 
be used for both, tabular data and time series. A necessary requirement is that the 
different time-series should be of the same length. However, in the case of EMA 
datasets, this requirement is usually not satisfied because of missing values. A 
difference in the amount of missing values occurring in the data representing various 
individuals make the MTS to be of variant lengths. 

To tackle this issue, another distance metric is widely used, Dynamic Time 
Warping (DTW). DTW has become the state-of-the-art distance metric because of 
its high accuracy and its applicability in case of variable-length time-series (Sakoe 
and Chiba, 1978; Javed et al., 2020). Compared to Euclidean distance, DTW takes 
into account the shape difference of time-series. By stretching or compressing time 
series along the time axis, DTW aims to find the best shape-based alignment of 
these. This way, it also accounts for differences between points’ time interval due to 
missing values, but at the same time, outliers or noise do not significantly affect it. 
In practice, this is possible by comparing all possible alignment paths and finally get 
the one leading to the minimum distance. An example of the best alignment between 
the same EMA item of two individuals is illustrated in Fig. 1b. The vertical lines
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indicate the best alignment, showing that the two time series may not be “warped” 
one by one. 

Any distance metric can be viewed as a kernel as long as it is also positive 
definite (Cuturi, 2011). Due to DTW’s success, it was first considered as a good 
candidate for a kernel, however that’s not directly possible, since it is based on the 
Euclidean distance, which does not satisfy all the properties of a positive definite 
kernel (conditional positive definite). Hence, an alternative version for a time-series 
kernel was created which is called global alignment kernel (GAK) (Cuturi, 2011). 
More specifically, as GAK was based on softDTW (Cuturi and Blondel, 2017), it 
takes advantage of the distance score values found across all possible alignment 
paths, rather than the optimal path found by DTW. According to this perspective, 
two time-series are considered similar not only if they have at least one alignment 
with high score, but quite more efficient alignment paths. 

3.2 Clustering Methods 

Due to the heterogeneity of clustering methods, this paper is limited to 
representative-based algorithms. These are distance-based methods whose goal is 
to retrieve a number of clusters defined by some representative elements or objects, 
named cluster centers. Clustering methods can be divided into two main categories, 
hard and fuzzy clustering (Aghabozorgi et al., 2015; Javed et al., 2020; Özkoç, 
2020). In hard clustering methods, such as k-means and hierarchical clustering 
(HC), each individual is assigned to one cluster based on the highest similarity to 
clusters’ center. Two challenges arise: how to integrate the appropriate distance 
metric and how to calculate the centroid of a cluster in case it is needed. 

Nevertheless, from a theoretical point of view, in the field of psychopathology, 
a hard clustering algorithm could not always be the most appropriate choice. 
Knowing that psychopathology is a dynamically evolving, rather than a fixed, 
health condition, makes the approach of allowing individuals belonging to different 
clusters a more realistic scenario. Since clusters can capture dynamics in different 
time periods, individuals might be better represented by more than one cluster. 
Furthermore, the fact that comorbidities, meaning the co-occurrence of many mental 
disorders, is prevalent in a high degree leads to shared psychological processes 
or behaviors among patients with different diagnoses (Roefs et al., 2022). Thus, 
clustering algorithms permitting individuals not to be strictly assigned to only 
one group are considered more plausible. This can be achieved by applying fuzzy 
clustering algorithms, such as Fuzzy c-means (FCM) and Fuzzy k-medoids (FKM).
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3.3 Clustering Evaluation 

A “good" clustering result is one that identifies the “optimal" number of clusters 
and also how good objects, or individuals in this case, are grouped into clusters. 
Investigating how “good" a clustering result is can be quite challenging, since 
usually, there are no ground truth labels (as in supervised tasks) to compare against. 
To overcome this issue, an intrinsic evaluation is performed. 

Ad-hoc intrinsic evaluation methods assign scores to a clustering result based on 
cohesion and separation. Some popular methods are Inertia, Silhouette Coefficient 
and Davies-Bouldin Index (Han et al., 2022). Out of these, Silhouette coefficient 
is picked as a metric, since it takes into account both intra-cluster and inter-
cluster similarities. It compares the average similarity across individuals of the 
same cluster to the points belonging to the closest one. To find the closest cluster, 
similarities among all individuals in a cluster is taken into account. Thus, it’s quite 
straightforward to interpret the clustering results. Its values range from . −1 to 1, 
where 1 and . −1 indicate the best and the worst clustering, respectively, whereas 
0 show a meaningless grouping, for example, when similarity differences between 
clusters are negligible. On the other hand, in case of fuzzy clustering, additional 
evaluation measures have been widely adopted, further assessing the membership 
degree of each individual into different groups (Cuturi & Blondel, 2016). The most 
common ones are Partition Coefficient (PC), Partition Entropy (PE) and Xie-Beni 
(XB) index, all examining the fuzziness of individuals in a different way. Apart 
from PC (ranges from 0 to 1), PE and XB are not bounded, while the optimal 
number of clusters is found at the highest, lowest and highest values, respectively. 
Consequently, these estimates give more information about the efficiency of fuzzy 
clustering. 

Moreover, the stability of the clustering result should be taken into account. 
Running a clustering algorithm multiple times may lead to different results due to 
different initialization values. To evaluate clustering stability, it is needed to run the 
clustering algorithm several times and compare the matching of individuals’ cluster 
assignment. After checking all label permutations, the produced distance quantifies 
the mean cluster disagreement across all pairs of individuals. The result represents 
the clustering instability index (called stability by Von Luxburg et al., 2010) and its 
value can range from 0 (most stable) to 1 (less stable). 

Furthermore, the extracted evaluation coefficients (such as Silhouette) can also 
be tested for their consistency by investigating their distribution across different runs 
of the algorithm. If the coefficients vary a lot, then that is indication of an unstable 
clustering. 

Summarizing, there are various methods for evaluating a good clustering 
approach. Thus, in this paper, a good clustering is defined as a combination of 
some of the aforementioned methods. More specifically, the number k of clusters is 
primarily determined based on a high Silhouette coefficient, but this decision should 
be consistent to the findings of the other evaluation indexes as well. Subsequently, 
cluster stability requirement should also be fulfilled. Stability is examined on the
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instability index as well as the consistency of silhouette coefficients when clustering 
is repeatedly applied. 

4 Experimental Results 

In this section, an example real-world dataset is used to illustrate all the decisions 
about methods, presented in the previous sections. The used dataset is a real-world 
dataset obtained by a study described in Soyster et al. (2022). It is a result of 
a 2-week data collection from 33 individuals, providing roughly 89 data points 
per individual. In a goal to capture alcohol consumption, 15 variables/indicators 
(such as positive and negative emotions, drinking craving and expectancies) were 
included in the data collection. We perform clustering on the 33 individuals based 
on their 15-variable time-series, taking into account the specific issues discussed in 
the previous chapter. Following, clustering results are evaluated through examining 
cluster quality and stability. 

First, we apply clustering through k-means (.kmDT W , .kmGAK ), HC (.HCDT W , 
.HCGAK ) and FKM (.FKMDT W , .FKMGAK ). Both distance metrics (DTW and 
GAK) are examined, except for fuzzy c-means (FCM) where only the DTW 
was used, as it is quite difficult to extract the clusters’ centroids in the original 
dimensions, due to kernalization. The . σ hyperparameter of the GAK kernel depends 
on the given data and it is calculated as the average of the median of all distances 
(Cuturi, 2011). Then, the groups derived by all clustering methods are evaluated in 
terms of Silhouette coefficient as well as stability. According to this, the optimal 
number of clusters is determined as well as the quality of the retrieved clusters. 

Regarding the Silhouette analysis, overall results are shown in Fig. 2a. We notice 
that the FKM method using a GAK kernel gives the highest score. It is interesting 
that this remains constant for different values of clusters, as they are always grouped 

(a) (b) 

Fig. 2 (a) Maximum silhouette scores for all algorithms. (b) Intrinsic fuzzy clustering evaluation
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to two clusters even in cases when more are allowed (leading to empty clusters). 
Also, a quite high score is produced by kernel k-means with .k = 2. Apart from  
these, the rest of the algorithms show a result close to zero, which is interpreted as 
a not so meaningful clustering result. The best result among these is given by HC 
using a GAK kernel with .k = 2. Therefore, it is interesting to observe that when 
a kernel-based method is utilized, the quality of the retrieved clusters seems to be 
better, showing that kernels are needed to better represent the complex structure of 
EMA data. 

In case of fuzzy clustering methods, additional intrinsic evaluation measures 
can be used. The scores for different number of k are presented in Fig. 2b. These 
appeared to be consistent to the Silhouette results, showing that .k = 2 is the optimal 
choice, also for the fuzzy clustering algorithms. 

Next, we check the stability of the clustering-derived groups through silhouette 
scores consistency and instability index. Instability index and silhouette scores 
distribution were computed for 50 runs of each algorithm and are presented in 
Fig. 3a and b, respectively. For this part, HC is not included as it’s independent of 
initialization issues. According to these figures, the most stable clustering result is 
produced by FKM, whereas the least stable by kernel k-means. A low instability 
score shows that groups’ separation does not change a lot across repetitions. 
However, we can still observe an interesting case, or run, of an outlier in kernel 
k-means with a score approximating . 0.2, which is quite higher compared to the 
rest. This is also apparent in Fig. 2a, for .kmGAK and .k = 2, and worth further 
investigating. 

Summarizing, from a methodological perspective, various choices are possible 
for algorithms, distance metric and evaluation, which lead to different results. 
Although it is important that all methods extracted 2 clusters as the optimal 
grouping, it does not mean that individuals are assigned into groups in a similar 
way. This is also reflected when getting different results during evaluation. It is 
interesting to highlight that the method evaluated as the most stable is .FKMGAK , 

(a) (b) 

Fig. 3 Clustering evaluation for .k = 2. (a) Clustering instability index. (b) Distributions of 
silhouette scores
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regardless of the issue of initial parameters. Also, the fact that always two clusters 
were retrieved, even though more were allowed, gave more evidence for the optimal 
number of clusters. 

5 Related Work 

As already discussed, applying clustering methods to time-series data has been 
widely explored. Some examples of review studies are Aghabozorgi et al. (2015), 
Javed et al. (2020), and Özkoç (2020). Considering that all well-known clustering 
algorithms can be used for time-series, the challenge becomes on how to pick the 
right distance metric. Thus, most research studies have focused on finding a good 
representation of time-series similarities and integrate it to clustering algorithms. 

Due to the success of the shape-based time-series clustering, other DTW-
variations have been suggested, by either applying some restrictions on DTW or 
softening the optimal distance paths using softDTW (Cuturi & Blondel, 2017). 
Other studies exploring different shape-based information (Vlachos et al., 2002; 
Paparrizos & Gravano, 2015; Genolini et al., 2016), propose the use of the longest 
common subsequence (LCSS), cross-correlation and Fréchet distance, respectively. 

However, most studies have handled univariate time-series data. The added 
value of the current paper is the multi-level structure of EMA data, including 
several multivariate time-series. In case of multivariate time-series, kernel-based 
data representations have been proposed Badiane et al. (2018). Kernels based on 
DTW, such as GAK, were used Cuturi and Blondel (2017). Moreover, in Mikalsen 
et al. (2018), another time-series cluster kernel (TCK) was proposed, based on 
Gaussian mixture models (GMMs). 

Specifically for EMA data, only little research work has been conducted as far 
as clustering is concerned. In Torous et al. (2018), clustering EMA data into similar 
meaningful groups or clusters is proposed. However, it was not applied leaving a gap 
that is covered in this paper. Other than this, a different goal focusing on clustering 
EMA items was investigated in Hebbrecht et al. (2020). In that case, clustering 
was used to organize a person’s symptomatology into homogeneous categories of 
symptoms and not for grouping different individuals like in the current paper. 

6 Conclusions 

This paper aims to address some of the challenges of EMA data modeling by 
grouping or clustering similar individuals. A detailed review of all the potential 
directions for applying clustering based on time-series patterns. Having described 
the heterogeneity of existing methods, the focus was then placed on the most 
challenging part of clustering, which is evaluation. A combination of several well-
known ad-hoc evaluation measures was proposed, examining clustering quality
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through Silhouette coefficients as well as stability. According to our analysis, kernel-
based clustering methods produced the best quality clusters, showing that kernels 
can be useful for efficient EMA data representations. Future work can include a 
simulation study for evaluating clustering methods in different EMA experimental 
scenarios as well as further exploration of data representations using different 
kernels, since it plays an important role in clustering. Moreover, it should be 
investigated how clustering-derived groups of individuals could be further utilized. 
For example, an interesting approach is to train group-based models for providing 
more accurate predictive capabilities. 
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On the Relationship Between Coefficient 
Alpha and Closeness Between Factors 
and Principal Components for 
the Multi-factor Model 

Kentaro Hayashi and Ke-Hai Yuan 

Abstract Cronbach’s alpha remains very important as a measure of internal 
consistency in the social sciences. The Spearman-Brown formula indicates that as 
the number of items goes to infinity, the reliability of the composite eventually 
approaches one. Under proper conditions, as the lower bound of the reliability the 
coefficient alpha also keeps increasing with the number of items. Hayashi et al. 
(On coefficient alpha in high-dimensions. In: Wiberg M, Molenaar D, Gonzalez J, 
Bockenholt U, Kim J-S (eds) Quantitative psychology: the 85th annual meeting of 
the psychometric society, 2020. Springer, New York, pp 127–139, 2021) showed 
that under the assumption of a one-factor model, the phenomenon of the coefficient 
alpha approaching one as the number of items increases is closely related to the 
closeness between factor-analysis (FA) loadings and principal-component-analysis 
(PCA) loadings, and also the factor score and the principal component agreeing with 
each other. In this work, their partial results are extended to the case with a multi-
factor model, with some extra assumptions. The new results offer another way to 
characterize the relationship between FA and PCA with respect to the coefficient 
alpha under more general conditions. 

Keywords Factor analysis · Reliability · Spearman-Brown formula 

1 Introduction 

The coefficient alpha (Cronbach, 1951) remains very important as a measure of 
reliability in the social sciences. Whenever a new questionnaire is developed by 
psychologists, the coefficient alpha is consistently reported to demonstrate that the 
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measure has good reliability. Moreover, the coefficient alpha itself remains an active 
research area in psychometrics (e.g., Sijtsma, 2009; Yuan & Bentler, 2002; Zhang 
& Yuan, 2016). 

It is well known that, under certain conditions, as a lower bound of the reliability 
of the composite the coefficient alpha increases as the number of items increases. 
The fact has also been noted via the Spearman-Brown formula (Brown, 1910; 
Spearman, 1910). This implies that as the number of items goes to infinity, 
the reliability of the composite eventually approaches 1. Therefore, the issue of 
reliability is closely associated with the number of manifest variables, and we will 
term the issue as high dimensionality. 

Regarding high dimensionality, there is another interesting phenomenon. It has 
been known that the results of factor analysis (FA; e.g., Lawley & Maxwell, 1971) 
often approach those of principal component analysis (PCA; e.g., Jolliffe, 2002), 
especially as the number of variables increases (Guttman, 1956; Bentler & de 
Leeuw, 2011; Bentler & Kano, 1990; Schneeweiss & Mathes, 1995; Schneeweiss, 
1997; Kijnen, 2006). Hayashi et al. (2021) showed that the coefficient alpha 
approaching 1 is related to the increased closeness between FA and PCA in high 
dimensions under the one-factor model. Here, the closeness between FA and PCA 
includes the closeness with respect to both their loadings and the corresponding 
factor/component scores. More specifically, they showed that as the number of 
dimensions increases the phenomenon of the coefficient alpha approaching 1 is 
related to four different phenomena: (1) the closeness between the FA and PCA 
loadings, (2) the factor scores and the principal component scores agreeing with 
each other, (3) the inverse of the covariance matrix of the manifest variables 
becoming a diagonal matrix, assuming a FA model in the population, and (4) the 
communalities of the FA and PCA approaching each other. 

In this work, we extend their partial results proven under the one-factor model to 
the model with multiple factors. More specifically, we prove that as the coefficient 
alpha approaches 1, the results from FA and PCA converge to each other with 
respect to (1) the closeness between the matrix of factor loadings and the matrix 
of PCA loadings as well as (2) the closeness between factors and principal 
components. Researchers have implicitly assumed that the use of the coefficient 
alpha requires the instrument to have a single factor. There are few rigorous studies 
connecting between the coefficient alpha and the multi-factor model. Therefore, to 
the best of our knowledge, this work is the first one that formally associates the 
coefficient alpha to the multi-factor model as well as uses it to characterize the 
closeness between FA and PCA. 

2 Definitions and Assumptions 

Suppose that there exists a p-dimensional vector of random variables, x = (x1, 
. . . , xp)T , measuring the same construct(s). Denote the covariance matrix and the 
correlation matrix of x as � and P, respectively. Then the coefficient alpha is defined 
as:
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When the xj’s are all standardized, the alpha coefficient is defined as: 
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where . ρ = (1p TP1p − p)/p* is the average of the p* = p(p − 1) correlation 
coefficients between the distinct pairs of the items in x (Hayashi & Kamata, 2005). 

The factor analysis (FA) model is expressed as x = μ + �f + ε, where μ = E(x) 
is a p × 1 vector of intercepts, � is a p × m matrix of factor loadings, f is an 
m × 1 vector of factors (latent variables), and ε is a p × 1 vector of random errors. 
Here, we assume the number of factors m is finite (i.e., m < ∞). Without loss of 
generality, we let μ = 0. We assume that the mean and the variance of the factors 
and the errors are E(f) = 0, Cov(f) = Im, E(ε) = 0, and Cov(ε) = �, where Im 
is an identity matrix of order m and � is a diagonal matrix with positive elements. 
Also, we assume that the factors and the errors are uncorrelated (i.e., Cov(f, ε) = 0). 
Then, the covariance matrix of x is expressed as � = ��T + �. Thus, � can be 
defined as � = �+�1/2, where �+ is the standardized eigenvectors corresponding 
to the m nonzero eigenvalues of � − � and � is the diagonal matrix whose diagonal 
elements are the m nonzero eigenvalues of � − � (i.e., � = diag{ev(� − �)}). 

Likewise, we can express the PCA loadings as �* = �+�*1/2, where �+ is 
the p × m standardized eigenvectors corresponding to the m largest eigenvalues 
of � and �* is a diagonal matrix whose diagonal elements are the m largest 
eigenvalues of � (i.e., �* = diag{ev(�)}). Then, the first m principal components 
(PCs) are obtained as f+ = �+Tx. Note Cov(f+) = �+T��+ = �*. If we define 
f * = �*−1/2f+ = �*−1/2�+Tx, then Cov(f *) = Im. Because � = .

∑p

i=1ωiλ
∗
i λ

∗T
i , 

where ωi is the i-th largest eigenvalue of � and λi 
* is the corresponding stan-

dardized eigenvector, we can also express � as � = �*�*T + �*, where
�* = .

∑p

i=m+1ω
∗
i λ

∗
i λ

∗T
i is not a diagonal matrix, in general, unlike the FA model. 

We employ the average squared canonical correlations between the two loading 
matrices � and �* (Schneeweiss & Mathes, 1995; Schneeweiss, 1997) as a measure 
of closeness between � and �*. The squared canonical correlations are given by the 
eigenvalues of (�T�)−1(�T�*)(�*T�*)−1(�*T�), and are known to be invariant 
with respect to orthogonal rotations. Thus, the average squared canonical correlation 
between matrices � and �* is given by 

ρ2 (
�,�∗) = (1/m) tr

{(
�T �

)−1 (
�T �∗) (

�∗T �∗)−1 (
�∗T �

)}
.
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Note that ρ2(�, �*) is well defined whenever the inverse of �T� and �*T�* exist, 
which is true whenever �T� and �*T�* are positive definite or when both � and
�* are of full column rank (Theorem 14.2.9 of Harville, 1997). A special case of the 
average squared canonical correlation is when the two matrices are column vectors 
f and f *: 

ρ2 (
f , f ∗

) =
(
f T f

)−1 (
f T f ∗

) (
f ∗T f ∗

)−1 (
f ∗T f

)

=
(
f T f ∗

)2 
/
{||f ||2

∣∣∣∣f ∗
∣∣∣∣

2

}2 
, 

which is equal to the squared correlation between f and f *. Note that the correlation 
here is defined slightly different from that of the Pearson correlation, without 
centering. 

Assumption 1. The diagonal elements of � are finite (i.e., σ ii ≤ σ sup < ∞) 
and the unique (error) variances (elements of �) are bounded away from zero 
(0 < ψ inf ≤ ψ ii). 

Note: Then, the unique (error) variances are also bounded above, i.e., 
0 <  ψ inf ≤ ψ ii ≤ ψ sup ≤ σ sup < ∞. Also, the diagonal elements (σ ii) of � are 
also bounded away from zero, because 0 < ψ inf ≤ σ inf ≤ σ ii. 

Assumption 2. The average correlation . ρ is positive, bounded away from zero, and 
strictly less than 1 (i.e., 0 < c ≤ . ρ < 1 for some small  c > 0).  

Assumption 3. The sum of squared elements of � is of order p. 

Note: The sum of squared elements of � is equal to the sum of diagonal elements 
(i.e., the sum of m eigenvalues) of �T�. So, we can express Assumption 3 as  
tr(�T�) = (C)(p) with some C < ∞. 

3 Theorem 

(1) If the coefficient alpha approaches 1 (i.e., α(�) → 1), then the matrix of FA 
loadings (�) and the matrix of PCA loadings (�*) converge to each other with 
respect to the average squared canonical correlation (i.e., ρ2(�, �*) → 1). 

(2) If the coefficient alpha approaches 1 (i.e., α(�) → 1), then the factors (f) and 
the principal components (f *) converge to each other with respect to the average 
squared correlation (i.e., ρ2(f, f *) → 1).
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4 Lemmas and Proof of the Theorem 

Lemma 1. α(�) → 1 as  p → ∞  if and only if α(P) → 1 as  p → ∞. 
Note: Lemma 1 implies that in proving the Theorem, we can work with the alpha 
coefficient in either the metric of the covariance matrix or that of the correlation 
matrix. 

Proof : Let � = �P�, where � = diag(σ ii 
1/2) is the diagonal matrix whose diagonal 

elements are the standard deviations. Due to Assumption 1, the diagonal elements 
(σ ii) of � are bounded away from zero, and we can express P as P = �−1��−1. 
Thus, there exist 

0 < σinfP ≤ � ≤ σsupP < ∞and 0 < σsup
−1� ≤ P ≤ σinf

−1� < ∞. 

(<=) Taking the trace on each term of the inequality σ infP ≤ � ≤ σ supP yields 
(σ inf)tr(P) ≤ tr(�) ≤ (σ sup)tr(P). It follows from σ inf 

1/2Ip ≤ � ≤ σ sup 
1/2Ip that 

(σ inf)(1p 
TP1p) ≤ 1p T�1p = 1p T�P�1p ≤ (σ sup)(1p TP1p). Thus, 

α (�) = {p/ (p–1)} {
1–tr (�) /

(
1p 

T �1p

)}
≥ {p/ (p–1)} {

1–
(
σsup

)
tr (P) /

[
(σinf) 1p 

T P1p

]}
= {p/ (p–1)} {

1–
(
σsup/σinf

)
tr (P) /

(
1p 

T P1p

)}
. 

Now, p/(p − 1) → 1 as p → ∞, and α(P) = {p/(p − 1)}{1 − tr(P)/(1p TP1p)} →  1 
implies tr(P)/(1p TP1p) → 0. Because σ sup is bounded and σ inf is bounded 
away from zero, σ sup/σ inf is also bounded and bounded away from zero. Thus, 
tr(P)/(1p TP1p) → 0 implies (σ sup/σ inf)tr(P)/(1p TP1p) → 0, and α(�) → 1 follows 
as p → ∞  (with p/(p − 1) → 1). 
(=>) Taking the trace on each term of the inequality σ sup

−1� ≤ P ≤ σ inf
−1�

yields (σ sup
−1)tr(�) ≤ tr(P) ≤ (σ inf

−1)tr(�). Also, (σ sup
−1)(1p T�1p) ≤ 1p TP1p = 

1p T�−1��−11p ≤ (σ inf
−1)(1p T�1p) follows from σ sup

−1� ≤ P≤ σ inf
−1�. Thus, 

α (P) = {p/ (p–1)} {
1–tr (P) /

(
1p 

T P1p

)}
≥ {p/ (p–1)} {

1–
(
σinf

−1
)

tr (�) /
((

σsup
−1

)
1p 

T �1p

)}
= {p/ (p–1)} {

1–
(
σsup/σinf

)
tr (�) /

(
1p 

T �1p

)}
. 

As before, because (σ sup/σ inf) is bounded and bounded away from zero, 
tr(�)/(1p T�1p) → 0 implies (σ sup/σ inf)tr(�)/(1p T�1p) → 0. Thus α(P) → 1 
follows as p → ∞  (with p/(p − 1) → 1). ��
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Lemma 2. If α (P) → 1 then p → ∞. 

Proof : α(P) = {1 + p−1( ρ−1 − 1)}−1 → 1 is equivalent to p−1( ρ−1 − 1) → 0. 
With Assumption 2 (0 < c ≤ ρ < 1), noting 0 < ρ−1 − 1 ≤ c−1 − 1 < ∞, p−1( 
ρ−1 − 1) → 0 implies p−1 → 0 (i.e., p → ∞). 

Lemma 3 (Schneeweiss, 1997, Theorem 1 (1)). 

If the smallest (the m-th) eigenvalue of �T�−1� → ∞  (i.e., if evm(�T�−1�) → ∞) 
as p → ∞, then ρ2(�, �*) → 1. 

Proof : Because we modify the original proof by Schneeweiss (1997), we give a 
full proof. Due to Assumption 1 (0 <  ψ inf ≤ ψ ii ≤ ψ sup ≤ σ sup < ∞), evm(�T

�−1�) → ∞ implies evm(�T�) → ∞. Also, note that, because �* = �+�*1/2,
�*T�* = �*1/2�+T�+�*1/2 = �*. 

Now, noting the well-known property of the determinant (det(AB) = det(A)det(B)) 
for square matrices A and B, let  R = (�T�)−1(�T�*)(�*T�*)−1(�*T�) and take 
the determinant of both sides: 

det (R) = det
(
�T �∗�∗T �

)
/
{
det

(
�T �

)
det

(
�∗T �∗)}

= det
(
�∗T ��T �∗) /

{
det

(
�T �

)
det

(
�∗)}

= det
(
�∗T (�–�) �∗) /

{
det

(
�T �

)
det

(
�∗)}

= det
(
�∗2–�∗T ��∗) /

{
det

(
�T �

)
det

(
�∗)}

≥ det
(
�∗2–ψsup�

∗) /
{
det

(
�T �

)
det

(
�∗)}

= det
(
�∗–ψsupIm

)
/ det

(
�T �

)
. 

Let ω* be the smallest diagonal element of �* = diag(ωj 
*). Then ω* = evm 

(�) = evm(��T + �) ≥ evm(��T ) = evm(�T�) → ∞  as p → ∞. 
Let A(p) be a finite-dimensional square matrix which is a function of 
p. Then, because the determinant det: Mn × n(R) → R is a continuous 
function, if limp → ∞A(p) exists, we can always interchange the limit with the 
determinant (i.e., limp → ∞det(A(p)) = det(limp → ∞A(p))) (See e.g., https:// 
math.stackexchange.com/questions/3684644/can-we-interchange-the-limit-with-
determinant). Now, define two A(p)’s as A1(p) = (�* − ψ supIm) /ω* and 
A2(p) = �T�/ω*. We have limp → ∞det(A1(p)) = det(limp → ∞A1(p)) and 
limp → ∞det(A2(p)) = det(limp → ∞A2(p)). Here, we assumed that the limits of 

both
∏m 

j=1

(
ω∗

j /ω
∗
)

and det(�T�/ω*) exist. Thus, we have

https://math.stackexchange.com/questions/3684644/can-we-interchange-the-limit-with-determinant
https://math.stackexchange.com/questions/3684644/can-we-interchange-the-limit-with-determinant
https://math.stackexchange.com/questions/3684644/can-we-interchange-the-limit-with-determinant
https://math.stackexchange.com/questions/3684644/can-we-interchange-the-limit-with-determinant
https://math.stackexchange.com/questions/3684644/can-we-interchange-the-limit-with-determinant
https://math.stackexchange.com/questions/3684644/can-we-interchange-the-limit-with-determinant
https://math.stackexchange.com/questions/3684644/can-we-interchange-the-limit-with-determinant
https://math.stackexchange.com/questions/3684644/can-we-interchange-the-limit-with-determinant
https://math.stackexchange.com/questions/3684644/can-we-interchange-the-limit-with-determinant
https://math.stackexchange.com/questions/3684644/can-we-interchange-the-limit-with-determinant
https://math.stackexchange.com/questions/3684644/can-we-interchange-the-limit-with-determinant
https://math.stackexchange.com/questions/3684644/can-we-interchange-the-limit-with-determinant
https://math.stackexchange.com/questions/3684644/can-we-interchange-the-limit-with-determinant


On the Relationship Between Coefficient Alpha and Closeness Between Factors. . . 179

limp→∞ det (R) ≥ limp→∞
{
det

(
�∗–ψsupIm

)
/ det

(
�T �

)}
= limp→∞

∏m 
j=1

(
ω∗

j −ψsup

)
det

(
�T �

)
= limp→∞

∏m 
j=1

(
ω∗

j /ω
∗−ψsup/ω

∗
)

det
(
�T �/ω∗)

= limp→∞
∏m 

j=1

(
ω∗

j /ω
∗
)

det
(
�T �/ω∗)

= limp→∞
∏m 

j=1 ω
∗
j 

det
(
�T �

)
= limp→∞

{
det

(
�∗) / det

(
�T �

)}
≥ 1 = det (Im) . 

Therefore, det(R) → det(Im), and R→ Im follows. Thus ρ2(�, �*) = (1/m)tr(R) → 1 
follows. 

Now, we remain to prove that det(R) → det(Im) = 1 implies R → Im. Suppose 
R → A and det(A) = 1 but  A is not an identity matrix. Then, there exist at least 

one eigenvalue of A that is not equal to 1, which, due to det(A) = 
m∏

i=1 
evi (A) = 1, 

implies that there must be an eigenvalue of A greater than 1 and also an eigenvalue 
of A smaller than 1. However, because R is a generalized squared correlation matrix 
and R → A, all the eigenvalues of A must be at most 1 (between 0 and 1).1 Thus a 
contradiction results and R → Im follows. ��
Lemma 4 (Schneeweiss, 1997, Theorem 1 (2)). If the smallest (the m-th) eigenvalue 
of �T�−1� → ∞  (i.e., if evm(�T�−1�) → ∞), then ρ2(f, f*) → 1. 

Proof : First note f * = �*−1/2�+Tx and �* = �+�*1/2, and let 
F = E(f f  *T ){E(f *f *T )}−1E(f *f T ){E(f f  T )}−1. Because E(f f  T ) = Im and 

E(f *f *T ) = Im, 
F = E(f f*T )E(f*f T ). Now, because 

E
(
f f  ∗T

)
= E

(
f xT �+�∗−1/2

)
= �T �+�∗−1/2 = �T �∗�∗−1 and 

E
(
f ∗f T

)
= �∗−1�∗T �, 

it follows that 

F = �T �∗�∗−2�∗T �.

1 See e.g., http://www2.tulane.edu/~PsycStat/dunlap/Psyc613/RI2.html and https://stats. 
stackexchange.com/questions/284861/do-the-determinants-of-covariance-and-correlation-
matrices-and-or-their-inverses on this point. 
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Now, multiply Im=(�T�)–1(�T�)(�*T�*)–1(�*T�*) to the right-hand side and take 
the determinant for the both sides. Noting R=(�T�)–1(�T�*)(�*T�*)–1(�*T�), we 
get 

det (F ) = det (R) det
(
�T ��∗−1

)
det

(
�∗T �∗�∗−1

)
. 

Due to Lemma 3, evm(�T�−1�) → ∞  implies det(R) → 1 and ρ2(�, �*) → 1. 
As shown in the proof of Lemma 3, det(�T��*−1) → 1, and ρ2(�, �*) → 1 also  
implies det(�*T�*�*−1) → 1. Thus det(F) → 1, that is, F → Im and ρ2(f, f*) → 1 
follows. 

Alternatively, we can prove Lemma 4 without using Lemma 3, as follows 
(See Schneeweiss & Mathes, 1995, Theorem 1). Noting that �+ is a matrix of  
eigenvectors, so that �+T�+ = Im, 

ρ2
(
f , f ∗

) = (1/m) tr (F ) 
= (1/m) tr

(
�T �∗�∗−2�∗T �

)
= (1/m) tr

(
�∗−1�∗T ��T �∗�∗−1)

= (1/m) tr
(
�∗−1�∗T (�–�)�∗�∗−1)

= (1/m) tr
(
�∗−1/2�+T (�–�)�+�∗−1/2)

= (1/m) tr
{
�∗−1/2 (

�∗–�+T ��+)
�∗−1/2}

= 1– (1/m) tr
(
�∗−1�+T ��+)

≥ 1–
(
ψsup

)
(1/m) tr

(
�∗−1�+T �+)

= 1–
(
ψsup

)
(1/m) tr

(
�∗−1)

≥ 1–
(
ψsup

)
(1/m) tr

((
�T �

)−1
)

→ 1. 

The last inequality follows because �* ≥ �T�, �*−1 ≤ (�T�)−1, and 
−�*−1 ≥ −(�T�)−1. ��
Lemma 5. p → ∞  implies the smallest (the m-th) eigenvalue of �T�−1� → ∞  
(i.e., If p → ∞, then evm(�T�−1�) → ∞). 

Proof : With Assumption 1 and under the assumption that p→ ∞, evm(�T�−1�) → 
∞ is equivalent to evm(�T�) → ∞. Obviously, evm(�T�) → ∞  implies 
ev1(�T�) → ∞. Also, ev1(�T�) < ∞ implies evm(�T�) < ∞. Thus, we instead 
prove the statement: “If p → ∞, then ev1(�T�) → ∞,” which is equivalent to 
“If ev1(�T�) <  ∞, then p < ∞.” Now, because for a finite m, ev1(�T�) <  ∞ 
implies the sum of the m largest eigenvalues of �T� is also finite, by Assumption 
3, tr(�T�) = (C)(p) < ∞ with some C < ∞. Thus p < ∞ follows. 

Now, we prove the Theorem.
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(1) Due to Lemma 1, we prove the claim in the correlation metric (with α(P)). First, 
due to Lemma 2, α (P) → 1 implies p → ∞. Second, due to Lemma 5, p → ∞  
implies evm(�T�−1�) → ∞. Finally, due to Lemma 3, evm(�T�−1�) → ∞  
implies ρ2(�, �*) → 1. 

(2) Again, due to Lemma 1, we prove the claim in the correlation metric (with 
α(P)). As before, due to Lemma 2, α (P) → 1 implies p → ∞. Next, due to 
Lemma 5, p → ∞  implies evm(�T�−1�) → ∞. (Up to this point, same as 
(1).) Finally, due to Lemma 4, evm(�T�−1�) → ∞  implies ρ2(f, f *) → 1. 

5 Simulation 

In the previous section, we had to impose the assumption that the average correlation 
. ρ is bounded away from zero (i.e., 0 < c ≤ . ρ for some small c > 0) for the proof 
of the Theorem. We demonstrate the importance of this assumption with a small 
simulation in this section. We employed two correlation structures, one satisfying 
the assumption and the other not satisfying the assumption. For the correlation 
structure in which the assumption was not satisfied, the matrix of factor loadings 
in the population was of the form � (p × m = 2) = (λ1, λ2), where the j-th element 
of λ1 was given by exp(−sqrt(j)), that is, λ1 = (0.368, 0.243, 0.177, 0.135, 0.107, 
0.086, . . . )T and the j-th element of λ2 was given by exp(−j), that is, λ2 = (0.368, 
0.135, 0.050, 0.018, 0.007, 0.002, . . .  )T . Thus, as  j increases, the factor loadings 
decrease exponentially. Obviously, the loadings violate the stated assumption. In 
the other condition in which the assumption is satisfied, we used the same loadings 
as before but added a small constant of c = 0.05 to each loading. The number of 
variables p ranged from 102 to 300, and increased by 6 (i.e., p = 102, 108, 114, 
120, . . . , 294, 300). From the factor loadings, we constructed correlation matrices 
and generated data using the mvrnorm function in the MASS package in R version 
4.1.3. The sample size was n = 2000 and the number of replications for each p was 
5. We obtained the average of 5 replications, thus the number of data points for each 
condition was (300 − 102)/6 + 1 = 34. Then we compared the results. 

Figure 1 shows the relationship between the coefficient alpha and the Fisher-z 
transformed average squared canonical correlation between FA loading and PCA 
loading matrices � and �* (i.e., z = (1/2)log{(1 + ρ(�, �*))/(1 − ρ(�, �*))}, 
where ρ(�, �*) is the square root of ρ2(�, �*)) under the two conditions. As Fig. 
1 shows, there was a high positive correlation (0.787, p-value < 0.001) between the 
coefficient alpha and the Fisher-z transformed average squared canonical correlation 
when the assumption holds. On the other hand, there was no significant correlation 
(−0.189, p-value = 0.285) when the assumption does not hold. Next, Fig. 2 shows 
the relationship between the number of variables (p) and the coefficient alpha under 
the two conditions. As Fig. 2 shows, there was a positive linear relationship between 
p and the coefficient alpha (with a correlation of 0.989, p-value < 0.001) when 
the assumption holds. On the other hand, there was no significant slope between 
p and the coefficient alpha (with a correlation of −0.230, p-value −0.191) when the 
assumption does not hold.
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Fig. 1 Relationship between the coefficient alpha and the Fisher-z transformed average squared 
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Fig. 2 The relationship between the number of variables and the coefficient alpha 

6 Discussion 

We showed that the phenomenon of the coefficient alpha approaching 1 is related 
to the increased closeness between FA and PCA for the multi-factor model. Our 
results are an extension of the work by Hayashi et al. (2021) who showed the



On the Relationship Between Coefficient Alpha and Closeness Between Factors. . . 183

connection between the phenomenon of the coefficient alpha approaching 1 and the 
increased closeness between FA and PCA under the one-factor model. Our results 
imply that when the value of coefficient alpha is close to 1, we can use PCA as an 
approximation to FA and trust that the results are almost the same whether we use 
FA or PCA even for the multi-factor model. A practical implication for this work is 
that we can use the value of coefficient alpha as an index for the degree of closeness 
between FA and PCA. 

It is well known that a set of items must follow a single-factor model in order to 
appropriately apply the coefficient alpha. Probably because of the strong association 
between the coefficient alpha and a single factor, it seems that the connection 
between the coefficient alpha and the multi-factor model has not been studied. To the 
best of our knowledge, our work is the first-ever attempt to connect the coefficient 
alpha to the multi-factor model. 

In deriving our Theorem, we introduced assumptions that the average correlation 
. ρ is positive, bounded away from zero, and strictly less than 1 (Assumption 2), 
and the sum of squared elements of factor loadings is of order p (Assumption 3). 
Alternatively, instead of these two assumptions, we can introduce the following 
assumptions to derive the same results stated in our Theorem. 

Assumption 4. The proportion that factor loadings are positive and bounded away 
from zero (0 < λinf ≤ λij) approaches 1 as p increases. 

Assumption 5. The average correlation is strictly less than 1 ( . ρ < 1).  

Note that Assumption 4 implies that, with probability 1, the average correlation . ρ
becomes positive and bounded away from zero, as p increases. This is because only 
a limited number of the off-diagonal elements (σ ij = .

∑m
k=1λikλjk , i 	= j) can be 

negative and their contribution to . ρ becomes nullified as p increases. Combined 
with . ρ < 1 (Assumption 5), Assumptions 4 also implies 0 < c ≤ . ρ < 1, just like 
Assumption 2. Also, we can still prove Lemma 5 with Assumption 4 by noting the 
inequality 

∞ > tr
(
�T �

)
=

∑m 

j=1

∑p 

i=1 
λ2 

ij ≥
(
λinf 

2
)

(m)(p) 

with an infimum of factor loadings λinf (0 < λinf ≤ λij), in place of 
tr(�T�) = (C)(p) < ∞ in Assumption 3. 

Practically speaking, the alternative assumption of positive loadings (and also 
a positive matrix) may not be so unnatural. First, note the signs of the factors are 
indeterminate. If there is a column in which all factor loadings are negative, we can 
reverse the sign of those factor loadings to positive without changing the correlation 
structure. Second, often, positive factor loadings can be found after rotations are 
performed even if the initial solution of the maximum likelihood estimates includes 
negative loadings. Third, positive matrices and positive loading matrices can be 
found among examples well-known to researchers. For example, two examples in
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Lawley and Maxwell (1971) are both positive matrices (see Tables 4.1 and 4.4). 
All varimax-rotated factor loadings of the correlation matrices given in Tables 4.1 
and 4.3 are positive (see the table in the middle of p. 84 and Table 6.6 on p. 76 
of Lawley & Maxwell, 1971). Also, the correlation matrix given in Schneeweiss 
(1997) is a positive matrix, except for one off-diagonal element whose value is 0. 

However, Assumption 4 may still be a rather strong assumption compared to 
Assumptions 2 and 3. With Assumptions 2 and 3, we no longer require that almost all 
factor loadings are positive or that almost all off-diagonal elements of the correlation 
matrix are positive. Consequently, there are probably numerous examples in which 
Assumptions 2 and 3 hold. For example, the correlation matrix given in Table 15.2 
of Press (2003) is for 15 variables, and out of 105 unique off-diagonal elements, 
4 entries are negative. So, this correlation matrix is not a positive matrix but it 
still satisfies Assumptions 2 and 3. It will not be difficult to find many similar 
examples. Thus, we believe that our results have wide applicability in practice with 
Assumptions 2 and 3. 
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A Genetic Algorithm-Based Framework 
for Learning Statistical Power Manifold 

Abhishek K. Umrawal, Sean P. Lane, and Erin P. Hennes 

Abstract Statistical power is a measure of the replicability of a categorical hypoth-
esis test. Formally, it is the probability of detecting an effect, if there is a true effect 
present in the population. Hence, optimizing statistical power as a function of some 
parameters of a hypothesis test is desirable. However, for most hypothesis tests, 
the explicit functional form of statistical power for individual model parameters 
is unknown; but calculating power for a given set of values of those parameters 
is possible using simulated experiments. These simulated experiments are usually 
computationally expensive. Hence, developing the entire statistical power manifold 
using simulations can be very time-consuming. We propose a novel genetic 
algorithm-based framework for learning statistical power manifolds. For a multiple 
linear regression F -test, we show that the proposed algorithm/framework learns the 
statistical power manifold much faster as compared to a brute-force approach as the 
number of queries to the power oracle is significantly reduced. We also show that the 
quality of learning the manifold improves as the number of iterations increases for 
the genetic algorithm. Such tools are useful for evaluating statistical power trade-
offs when researchers have little information regarding a priori ‘best guesses’ of 
primary effect sizes of interest or how sampling variability in non-primary effects 
impacts power for primary ones. 
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1 Introduction 

1.1 Motivation 

Statistical power analysis is of great importance in empirical studies (Yang et al., 
2022; Fraley & Vazire, 2014; Cafri et al., 2010). Statistical power is a measure 
of the goodness/strength of a hypothesis test. Formally, it is the probability of 
detecting an effect, if there is a true effect present to detect. For instance, if we 
use a test to conclude that a specific therapy or medicine is helpful in anxiety and 
stress alleviation then the power of the test tells us how confident we are about this 
insight. Hence, optimizing the statistical power as a function of some parameters 
of a hypothesis test is desirable. However, for most hypothesis tests, the explicit 
functional form of statistical power as a function of those parameters is unknown 
but calculating statistical power for a given set of values of those parameters is 
possible using simulated experiments. These simulated experiments are usually 
computationally expensive. Hence, developing the entire statistical power manifold 
using simulations can be very time-consuming. The objective of this paper is to 
develop a framework for learning statistical power while significantly reducing the 
cost of simulations. 

1.2 Literature Review 

Bakker et al. (2012), Bakker et al. (2016), Maxwell (2004), and Cohen (1992) point 
out that quite frequently the statistical power associated with empirical studies is 
so low that the conclusions drawn from those studies are highly unreliable. This 
happens primarily due to the lack of a formal statistical power analysis. Using 
simulations of statistical power, Bakker et al. (2012) shows that empirical studies 
use questionable research practices by using lower sample sizes with more trials. 
The results show that such practices can significantly overestimate statistical power. 
This makes the conclusions of the study about the effect size to be misleading as 
the reproducibility of the study is hampered due to the low statistical power. The 
questionable research practices include performing multiple trials with a very small 
sample size, using additional subjects before carrying out the analysis, and removal 
of outliers. Bakker et al. (2012) emphasizes carrying out a formal power analysis for 
deciding the sample size to avoid such low statistical power. Recently, Baker et al. 
(2021) provides an online tool for drawing power contours to understand the effect 
of sample size and trials per participant on statistical power. The results provided 
in this paper demonstrate that changes to the sample size and number of trials lead 
to understanding how power regions of the power manifold. Rast and Hofer (2014) 
also demonstrates a powerful (inversely correlated) impact of sample size on both 
the effect size and the study design. Recently, Lane and Hennes (2018) and Lane and 
Hennes (2019) provide simulation-based methods for formally conducting statistical 
power analysis. These simulation-based methods perform well in terms of power
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estimation but can be computationally expensive due to a high number of queries to 
the simulation-based power function oracle. 

1.3 Contribution 

In this paper, we provide a novel genetic algorithm-based framework for learning 
the statistical power manifold in a time-efficient manner by significantly reducing 
the number of queries to the power function oracle. For a multiple linear regression 
F -test, we show that the proposed algorithm/framework learns the statistical power 
manifold much faster than a brute-force approach as the number of queries to the 
power oracle is significantly reduced. We show that the quality of learning the 
manifold improves as the number of iterations increases for the genetic algorithm. 

2 Methodology 

Let .y1, ..., yn be n sample observations from some probability distribution F with a 
p-dimensional parameter vector . θ . Let  . φ denote the hypothesis test of interest. Let 
. H0 and . H1 be the corresponding null and alternative hypotheses, respectively. Let . α
and . γ be the probabilities of Type I and Type II errors, respectively. Therefore, the 
power of the test is .1− γ . Let . β be the effect size that is a function of the parameter 
vector . θ associated with the probability distribution F . 

Let the sample size n be given to varying in a fixed range according to some 
budget constraint, and there is some expert/prior knowledge about the range in 
which the unknown effect size of interest may vary. Let .[βl, βu], .[θ l , θu], and 
.[nl, nu] be the initial ranges of effect size, parameter vector, and sample size 
respectively. Statistical power associated with a hypothesis test is a function of the 
effect size . β (hence of . θ ), level of significance . α, and sample size n. Since the 
level of significance is predetermined as a fixed number, we can say that power is 
a function of the effect size and sample size for a fixed given value of the level of 
significance. 

Define .c := (β, n) ≡ (θ , n) ≡ (θ1, ..., θp, n). For the hypothesis test . φ, 
statistical power is a function . c for a given value of . α denoted as .1 − γ := fφ,α(c). 
In most cases, we do not know the explicit algebraic form of .f (·) to calculate power 
as a function of . c. However, calculating power for a specific choice of . c is possible 
using simulations. For our work, we assume that we have access to such a black box 
that takes . c as input and returns .1 − γ as output. We call this black box a power 
function value oracle. 

A brute-force way of learning/computing the power manifold (for parameters in 
the initial ranges) is to divide the ranges of the parameters into a high-dimensional 
grid, compute the power using the power function value oracle, and then plot the 
values. The drawback of this approach is the computational cost associated with a 
very large number of queries to the value oracle.
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Motivated by the idea of reducing the computational cost of learning the 
statistical power manifold while being able to do well in terms of power estimation, 
we propose a genetic algorithm-based framework. 

2.1 Learning Power Manifold Using Genetic Algorithm 

Genetic algorithm (Goldberg & Holland, 1988; Holland, 1992) is a meta-heuristic 
inspired by biological evolution based on Charles Darwin’s theory of natural 
selection that belongs to the larger class of evolutionary algorithms. Genetic 
algorithms are commonly used to generate high-quality solutions to optimization 
and search problems by relying on biologically inspired operators such as mutation, 
crossover, and selection (Mitchell, 1998). 

We next explain the steps involved in genetic algorithm in the context of our 
problem as follows. 

We start with N (a hyper-parameter) randomly chosen . c vectors where entries 
inside the vector are chosen randomly from the respective ranges with some 
discretization. The discretization step size for parameters .θ1, ..., θp is usually a 
proper positive fraction and for sample size is a positive integer. Each of these 
N random vectors is called a chromosome. The collection of these N is called a 
population. In simple words, we initialize a population of N chromosomes. Let 
.{c1, ..., cN } be the initial population where . ci is the ith chromosome. A gene is 
defined as a specific entry in the chromosome vector. We next calculate the power 
values associated with these N chromosomes using the power function value oracle. 
The power value of a chromosome is called its fitness. Let  . fi be the fitness of . ci . 
We save these chromosomes and the corresponding fitness values in a hash map 
(dictionary) . D. 

We next go to reproduction to form the next generation of chromosomes. The 
chance of selection of a chromosome from a past generation to the next generation 
is an increasing function of its fitness. The idea of using power value as fitness for 
reproduction is motivated by the fact that we are interested in maximizing the power 
and would like to travel/take steps towards the high-power region. 

We next go to mutation where the probability of a chromosome going through 
mutation is . pm (a hyper-parameter). If a chromosome is selected for mutation then 
we mutate a randomly chosen gene of that chromosome by replacing its current 
value with some randomly chosen value within its initial range. 

We next go to crossover where we select the best two chromosomes in terms of 
fitness. We then select a random index and split both chromosomes at that index. 
Finally, we merge the front piece of the first chromosome with the end piece of the 
second chromosome, and vice-versa. 

We then repeat reproduction, mutation, and crossover for some I (a hyper-
parameter) iterations. Note that, in these successive iterations some chromosomes 
are repeated. We do not need to query the power value oracle again to calculate their 
fitness as we save this information in a dictionary. We update this dictionary after 
every iteration for new (not seen previously) chromosomes.



Genetic Algorithm-Based Learning of Statistical Power 191

The final dictionary . D with all (chromosome, power value) pairs that the genetic 
algorithm comes across through the iterations of the genetic algorithm in the process 
of learning to reach a high/max power region gives us an estimate of the power 
manifold of interest. 

2.2 Power Prediction Using Nearest Neighbors 

So far, we have estimated the power manifold using the genetic algorithm. We 
next answer the following question. How do we predict the power of a new set 
of arguments? Note that the genetic algorithm described above comes across some 
sets of arguments but not all. It is indeed desirable that the above genetic algorithm 
queries the power value oracle as less as possible but still be able to learn the 
manifold well. However, in general, a user may be interested in knowing the power 
function value for an arbitrary set of arguments. 

Once we have estimated/learned the power manifold, we can use this estimated 
manifold to predict the power values for an arbitrary set of arguments instead of 
querying the costly power value oracle. We use a simple nearest neighbors predictor 
described as follows. 

For a given set of arguments, . c, select k (a hyper-parameter) nearest neighbors 
(in terms of the Euclidean distance) in . D returned by the genetic algorithm. Provide 
a prediction of the power for . c as the average of the power values of those k nearest 
neighbors in . D. 

Refer to Fig. 1 for an overview of the proposed methodology. 

Fig. 1 The proposed methodology with the genetic algorithm on the left and the nearest neighbors 
on the right
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3 Experiments 

We perform experiments to demonstrate the performance of our algorithm in terms 
of power function estimation and run-time. We consider the following multiple 
linear regression model. 

. y = β0 + β1x1 + β2x2 + β3(x1x2) + ε,

where y is the response, . x1 is the experimental condition (-1: control, 1: treatment), 
. x2 is some other measure, and .x1x2 is the interaction of the experimental condition 
and the other measure. 

We chose the above model as it is simple to understand and also covers important 
aspects of experimental studies, viz., a categorical variable, a continuous variable, 
and an interaction of these variables. 

3.1 Experimental Details 

Based on similar prior knowledge we know the following. .β1 ∈ [0.10, 0.30], . β2 ∈
[0.30, 0.90], .β3 > 0. Based on the budget constraint, we have .n ≤ 500. The  level of  
significance, .α = 0.05. 

For genetic algorithm, we use .N = 1000, 2000, . . . , 5000, .I = 10, 20, . . . , 100, 
.λ = 1, .pm = 0.05, regression coefficients’ discretization step size = 0.05, sample 
size’s discretization step size = 5, and number of simulations for the power value 
oracle = 1000. For nearest neighbors, we use .k = 5. We focus on the following two 
tests. 

1. .H0 : β1 = 0 against .H1 : β1 �= 0. 
2. .H0 : β3 = 0 against .H1 : β3 �= 0. 

We use a t-test to test the significance of the partial regression coefficient . β1
while controlling for the rest of the model parameters, and similarly for . β3. 

3.2 Algorithms 

We compute the statistical power manifold for the above setup using the proposed 
methodology discussed in Sect. 2. The proposed methodology first involves the 
genetic algorithm discussed in Sect. 2.1 and then the k-nearest neighbors discussed 
in Sect. 2.2. 

For assessing the performance of our algorithm, we compute the power manifold 
using the brute-force method also discussed in Sect. 2.
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3.3 Evaluation Metrics 

We compare the performance of our algorithm with a costly brute-force strategy in 
terms of the quality of the estimation using root mean squared error. Let . c1, . . . , cM

be all set of arguments seen by the brute-force method. Let .f (b)
1 , . . . , f

(b)
M be 

the corresponding power values computed using the brute-force method. Let 
.f

(g)

1 , . . . , f
(g)
M be the corresponding power values using our algorithm (either after 

the genetic algorithm or after the nearest neighbors prediction). We calculate the 
root mean squared error (RMSE) as follows. 

. RMSE =
[
1

n

M∑
i=1

(
f

(b)
i − f

(g)
i

)2]1/2

.

Note that RMSE for the Brute-force method will be zero. 

3.4 Results 

For our experiments, computing power manifold for .H0 : β1 = 0 against . H1 :
β1 �= 0, and .H0 : β3 = 0 against .H1 : β3 �= 0 using the brute-force method takes 
approximately 8000 s. 

For different population sizes, the time taken by our algorithm as a function of 
the number of iterations is plotted in Fig. 2. 

Fig. 2 Run times vs. no. of iteration. Brute-force run-time is 8000 s
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Fig. 3 Root mean squared error vs. no. of iteration. Brute-force RMSE is zero 

For different population sizes, the root mean squared error (calculated against the 
brute-force estimation) for our algorithm as a function of the number of iterations is 
plotted in Fig. 3. 

3.5 Discussion 

Based on Fig. 2, we make the following observations. The time taken by our 
algorithm is always less than the brute-force method. The time taken by our 
algorithm increases as the number of iterations increases and the size of the 
population increases, respectively. The rate of increase in run-time as a function 
of the number of iterations decreases as the size of the population increases. The 
reason for this behavior is the following. A smaller (larger) initial population will 
require less (more) time in calculating the fitness of the initial population but in the 
future, the algorithm will come across more (less) new set of arguments. 

Based on Fig. 3, we make the following observations. The root mean squared 
error for our algorithm decreases as the number of iterations increases and the size 
of the population increases, respectively. The rate of decrease in root mean squared 
error as a function of the number of iterations decreases as the size of the population 
increases.
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4 Conclusion 

For learning the statistical power manifold in a time-efficient manner, we devel-
oped a novel genetic algorithm-based framework. Using our algorithm, applied 
researchers may learn/construct the statistical power manifold for some given initial 
constraints on different parameters. The learned surface can be used to identify 
high-power and low-power regions in the power manifold that can help applied 
researchers design their experiments better. 

We performed experiments to demonstrate the performance of the proposed 
algorithm. We showed that our algorithm learns the power manifold as good as 
the costly brute-force methods while bringing huge savings in terms of run-time. 
Furthermore, we showed that the quality of learning using the proposed method 
improves as the number of iterations of the genetic algorithm increases. However, 
the run-time of the proposed algorithm also increases as the number of iterations of 
the genetic algorithm increases. This exhibits the optimality vs. run-time trade-off 
associated with our algorithm. Based on the estimation threshold and the availability 
of computational resources, the user may choose the required number of iterations 
and the size of the population. 

For further details about our work, refer to the technical report, Umrawal et al. 
(2022). 

5 Future Work 

In the future, we are interested in also performing the genetic algorithm step of 
our algorithm for power minimization which would help us better learn the low-
power regions. We are also interested in reducing the root mean squared error 
further by exploring more sophisticated prediction methods like neural networks. 
Furthermore, we are interested in extending our algorithm for learning the gradient 
of the statistical power manifold for different parameters. 
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Using Nonparametric Mixture Models to 
Model Effect Heterogeneity in 
Meta-analysis of Very Rare Events 

Heinz Holling and Katrin Jansen 

Abstract Modeling heterogeneity in meta-analysis of count data is challenging 
when the event of interest is rare. Then, models based on the assumption of a 
normal random-effects distribution often fail to detect heterogeneity or to provide 
unbiased estimates of the between-study variance. The aim of this study is to 
evaluate the performance of logistic and log-linear nonparametric mixture models 
in detecting heterogeneity, estimating the pooled effect size, and estimating the 
between-study variance in meta-analysis of very rare events. These models do not 
require a parametric specification of the random-effects distribution. Performance 
was evaluated by means of a simulation study in which the number of primary 
studies, the sample size within studies, the mixture component weights and the 
baseline probabilities as well as the effect sizes of the components were varied. The 
results show that nonparametric mixture models perform well in terms of parameter 
estimation as long as enough studies with large sample sizes are available. Large 
numbers of studies and large sample sizes are required for a reliable detection 
of heterogeneity, in particular when non-zero effects are associated with a low 
occurrence probability. 

Keywords Meta-analysis · Nonparametric mixture model · Rare events · Count 
data analysis · Heterogeneity 

1 Introduction 

A meta-analysis is a quantitative summary of studies on the same research question. 
It is typically conducted in form of a synthesis of quantitative measures of an effect 
of interest, so-called effect sizes, which are extracted from the individual studies. 
Here, we will focus on meta-analysis of count data. Specifically, we focus on a 
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Table 1 Contingency table Event No event 

Treatment .yi1 . ni1 − yi1

Control .yi0 . ni0 − yi0

situation in which for each study i, .i = 1, ..., k, the occurrence of an event of 
interest was assessed for . ni1 subjects in a treatment group and . ni0 subjects in a 
control group. The observations from study i can be summarized in a contingency 
table (see Table 1 for illustration). 

From these data, an effect size can be computed, such as the log odds ratio (log 
OR), 

. log(̂ORi) = log

(

yi1/(ni1 − yi1)

yi0/(ni0 − yi0)

)

(1) 

or the log relative risk (log RR), 

. log(̂RRi) = log

(

yi1/ni1

yi0/ni0

)

(2) 

In the following, study effect sizes will be denoted by . θ̂i , regardless of whether 
the log OR or the log RR is used. In a conventional meta-analysis using the inverse 
variance model, it is typically assumed that . θ̂i follows a normal distribution with 
mean . θi and variance . σ 2

i . For the log OR, . σ
2
i can be estimated by 

.̂Var(θ̂i) = 1/yi1 + 1/(ni1 − yi1) + 1/yi0 + 1/(ni0 − yi0) (3) 

and for the log RR by 

.̂Var(θ̂i) = 1/yi1 − 1/ni1 + 1/yi0 − 1/ni0. (4) 

In a meta-analysis, we are interested in obtaining a quantitative summary of 
these study effect sizes in form of a pooled effect size and a confidence interval. A 
further objective is to model the heterogeneity among the true effect sizes . θi which 
are usually assumed to follow a normal distribution with mean . θ and variance . τ 2, 
such that we obtain the conventional random-effects model for meta-analysis. The 
maximum likelihood estimator for the pooled effect obtained from this model is 
.θ̂ = ∑k

i=1 wiθ̂i/
∑k

i=1 wi , where .wi = 1/(σ 2+τ 2). Several estimators for . τ 2, e.g., 
the restricted maximum likelihood estimator have been proposed (see Borenstein 
et al., 2009, for a general introduction to meta-analysis). 

Problems with the conventional random-effects model occur when any of the 
four cells in the contingency table is zero: Then, study effect sizes as well as their 
variances are no longer defined. Even if an ad-hoc fix to this problem is used by 
applying continuity corrections (see Sweeting et al., 2004, for a discussion), the
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assumption of a normal distribution within studies is questionable when event prob-
abilities are small (Jackson & White, 2018). Finally, estimation of heterogeneity is 
challenging in meta-analysis of rare events (Zhang et al., 2020). 

Commonly used alternatives to the conventional random effects model in rare 
events meta-analysis are the Mantel-Haenszel method (Mantel & Haenszel, 1959) 
and the Peto method (Yusuf et al., 1985), both of which are based on the assumption 
of fixed effects (i.e., .θ1 = ... = θk). However, simulation studies have shown 
that these models yield biased estimates and unsatisfactory coverage of confidence 
intervals when study effect sizes are truly heterogeneous (Bhaumik et al., 2012; 
Kuss, 2014). 

Generalized linear mixed models (GLMMs) are important alternative random 
effects models for count data. These models are typically based on the assumption 
that the counts of the individual studies follow binomial distributions or Poisson 
distributions (see Beisemann et al. (2020) for an overview of models for the log RR, 
and Jansen and Holling (2022), for an overview of models for the log OR). GLMMs 
incorporate the random effects by assuming a normal distribution for the effect size 
parameter. These distributional assumptions for the random effects might not hold 
and can almost never be tested in the context of meta-analysis. 

In this chapter, we propose nonparametric mixture models as a potential solution 
to this problem, which allow for modeling heterogeneity without requiring the 
assumption of a parametric random-effects distribution. By using a finite mixture 
model we leave the distribution of the true effect sizes unspecified. In a previous 
simulation study (Holling et al., 2022), these nonparametric mixture models were 
investigated in the context of rare events meta-analysis for count data and it was 
shown that they perform well when certain requirements with regard to sample sizes 
and numbers of studies are met. Here, we evaluate whether these models also prove 
to be useful for meta-analysis of very rare events, i.e., in an even more challenging 
situation. 

The remainder of this chapter is structured as follows: In the following section, 
we describe the logistic and log-linear nonparametric mixture model. Afterwards, 
we present the design and the results of a simulation study evaluating these models 
in the context of meta-analysis of very rare events. Finally, we conclude the chapter 
with a short discussion. 

2 Logistic and Log-Linear Nonparametric Mixture Models 

In the following, we assume that we have collected count data from k studies which 
have observed the number of events in a treatment group and a control group, such 
that the data can be summarized in a contingency table (see Table 1, for an example). 

For the logistic mixture model, we assume that the observed counts are draws 
from random variables . Yij which follow binomial distributions .Bin(nij , pij ). We  
set up the following model equation:



200 H. Holling and K. Jansen

. log

(

E(Yij )

nij − E(Yij )

)

= αi + βi × j. (5) 

Note that the slope, . βi , represents the log OR of study i. 
For the log-linear mixture model, we assume that the observed counts are draws 

from random variables . Yij which follow Poisson distributions .Poi(λij ). We can then 
set up the model equation: 

. log
(

E(Yij )
) = αi + βi × j + log(nij ). (6) 

Here, the slope . βi represents the log RR of study i. 
If we were to specify a GLMM, we would now make the assumption that . αi

and . βi follow normal distributions. As outlined above, we do not want to assume 
a parametric random-effects distribution here, and so, we leave the distribution of 
.(αi, βi) unspecified and simply assume that they follow some mixing distribution Q. 

We obtain the following log-likelihood for the logistic mixture model: 

.l(Q) =
∑

i

log

⎡

⎣

∫

∏

j

p(yij ; nij , expit(αi + βi × j))Q(dαi, dβi)

⎤

⎦ , (7) 

where .p(·) is the probability density of a binomial distribution and . expit(x) =
exp(x)/{1+exp(x)}. Lindsay (1983, 1995) has shown that the maximum likelihood 
estimator obtained from Eq. (7) is always discrete, such that, without loss of 
generality, Eq. (7) can be replaced by 

.l(Q) =
∑

i

log

⎡

⎣

S
∑

s=1

∏

j

p(yij ; nij , expit(αs + βs × j))qs

⎤

⎦ , (8) 

where .q1, ..., qs are referred to as the weights of the discrete mixture log-
likelihood. Equations (7) and (8) refer to the log-likelihood of a model with 
heterogeneous effect sizes, for which .βs �= βs′ for .s �= s′. Making the restriction 
.βs = β for .s = 1, ..., S yields the likelihood of the corresponding model with 
homogeneous effects, in which only the intercepts . αs vary across components. 
In close analogy, we obtain the following log-likelihood for a log-linear mixture 
model: 

.l(Q) =
∑

i

log

⎡

⎣

S
∑

s=1

∏

j

p(yij ; exp(αs + βs × j + log(nij )))qs

⎤

⎦ . (9) 

For a given number of components S, the log-likelihoods in Eqs. (8) and (9) can 
be easily maximized using the EM algorithm (Dempster et al., 1977; McLachlan,
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2008). In typical applications of the nonparametric mixture model, S is unknown. 
Different solutions to this problem have been proposed: One option is to start with 
a model where .S = 1, and then sequentially increase the number of components 
until no further increase in the log-likelihood is detected. Another option is to use fit 
indices, such as the Akaike information criterion (AIC), or the Bayesian information 
criterion (BIC), to obtain the best fitting model from a predefined set of models with 
different numbers of components. 

Apart from the parameter estimates for the single components, . q̂s , . α̂s and . β̂s , 
.s = 1, ..., S, we can also obtain estimates for the pooled effect: 

.
ˆ̄β =

S
∑

s=1

q̂s β̂s , (10) 

and the between-study variance: 

.τ̂ 2 =
S

∑

s=1

q̂s(β̂s − ˆ̄β)2. (11) 

Both logistic and log-linear nonparametric mixture models were investigated 
in simulation studies by Holling et al. (2022) in the context of rare events meta-
analysis. These studies showed that model selection using the BIC and parameter 
estimation works well for studies with large sample sizes (such as .n = 1000). For 
small sample sizes (such as .n = 100), the AIC performed better with regard to 
model selection. Performance in terms of parameter estimation was reasonably good 
for small samples in case of a large number of studies (.k ≥ 40) or when components 
were more distinct in terms of their baseline probabilities or in terms of their compo-
nent effect sizes. However, Holling et al. (2022) only investigated performance for 
baseline event probabilities of .0.05 and above. Simulation studies have shown that 
estimation in parametric random effects models is most challenging for events that 
occur even less often, at event probabilities of .0.01 and below (Jackson et al., 2018). 
In this chapter, we investigate the performance of nonparametric mixture models for 
meta-analyses in which the baseline event probability is .0.01 or smaller. A detailed 
introduction to nonparametric mixture models can be found in Böhning (2000). 

3 Simulation Study 

The simulation study was conducted in R (R Core Team, 2021) and run on the 
computing cluster PALMA II (https://www.uni-muenster.de/ZIV/Technik/Server/ 
HPC.html) at the University of Münster. Computations were parallelised using 
the doParallel package (Microsoft Corporation and Weston, 2022). Separate 
simulation studies were conducted to evaluate logistic and log-linear mixture

https://www.uni-muenster.de/ZIV/Technik/Server/HPC.html
https://www.uni-muenster.de/ZIV/Technik/Server/HPC.html
https://www.uni-muenster.de/ZIV/Technik/Server/HPC.html
https://www.uni-muenster.de/ZIV/Technik/Server/HPC.html
https://www.uni-muenster.de/ZIV/Technik/Server/HPC.html
https://www.uni-muenster.de/ZIV/Technik/Server/HPC.html
https://www.uni-muenster.de/ZIV/Technik/Server/HPC.html
https://www.uni-muenster.de/ZIV/Technik/Server/HPC.html
https://www.uni-muenster.de/ZIV/Technik/Server/HPC.html
https://www.uni-muenster.de/ZIV/Technik/Server/HPC.html
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models. The two simulation studies differed only with regard to how the effect 
size was defined, but were otherwise conducted using the same parameter values 
and data generating mechanism, as described below. The code and data from this 
simulation study are available at https://osf.io/u2bda/. 

For all simulation conditions, the true number of components was .S = 2. We  
varied the number of studies k, the total sample size of each study n, and the 
probability of component 1 . q1, using the values given in Table 2. Meta-analyses 
of rare events are often based on as few as ten studies (Davey et al., 2011). Since it 
is trivial that nonparametric mixture models will not perform well if one component 
consists of (almost) only double-zero studies, it is desirable to avoid that such data 
are generated in many simulation replications. However, with as few as ten studies, 
such a scenario is likely to occur. Therefore, we chose to simulate conditions with 
more than ten studies, specifically, .k = 30 and .k = 60. In our previous simulation 
study on rare events (Holling et al., 2022), nonparametric mixture models performed 
well in terms of model selection and parameter estimation for .n = 1000, while for 
sample sizes as small as .n = 100, model selection performance was impaired. For 
.n = 100, we would expect to see similar or even worse performance drawbacks 
when events are very rare. We thus decided to include conditions with sample sizes 
as large as .n = 1000 as well as conditions with sample sizes in between . n = 100
and .n = 1000 (specifically, we chose .n = 250 and .n = 500). The component 
mixture weights . qs were chosen to mirror a scenario with balanced components 
and (.q1 = 0.5) and a scenario with unbalanced components (.q1 = 0.3). The 
values for the component baseline probabilities .p0,1 and .p0,2 were .0.005 and .0.01, 
where .p0,s is the baseline probability of component s. These values were chosen to 
model a very rare event, in line with the classification by Jackson et al. (2018). The 
component effect sizes . β1 and . β2 were .log(1) = 0 (corresponding to a neutral effect 
size) and .log(3) ≈ 1.10, reflecting a moderate degree of heterogeneity. Simulation 
conditions were defined by fully crossing the parameters given in Table 2. Note  
that for conditions in which .q1 = 0.5, the component labels s of . βs were not 
permuted since this would generate a set of equivalent conditions resulting from 
the permutation of the component labels of .p0,s and the fact that .q1 = q2. This  
approach resulted in a total number of 36 simulation conditions. 

To mirror randomization, the sample size of the treatment group, . ni1 was drawn 
from a binomial distribution with sample size n and event probability . 0.5. The  
sample size of the control group was then determined as .ni0 = n − ni1. Each 

Table 2 Simulation conditions 

Parameter Values 

Number of studies k 30, 60 

Sample sizes n 250, 500, 1000 

Component 1 probability .q1 0.3, 0.5 

Baseline probabilities .p0,s .p0,1 = 0.005 & .p0,2 = 0.01, .p0,1 = 0.01 & . p0,2 = 0.005

Effect sizes .βs .q1 = 0.5: .β1 = log(1) & . β2 = log(3)

.q1 = 0.3: .β1 = log(1) & .β2 = log(3), .β1 = log(3) & .β2 = log(1)

https://osf.io/u2bda/
https://osf.io/u2bda/
https://osf.io/u2bda/
https://osf.io/u2bda/
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study was assigned to one of the two components based on a random draw from 
a Bernoulli distribution with probability . q1. The component treatment group event 
probabilities .p1,s were calculated from . βs and . p0,s . Observations for each group 
and each study were drawn from binomial distributions with sample sizes . nij , 
.i = 1, ..., k, .j ∈ {0, 1} and event probabilities . pj,s , where s was the component 
the study had been assigned to. 

Logistic and log-linear nonparametric mixture models, as defined by Eqs. (8) and 
(9) in Sect. 2, were fitted using the flexmix package (Grün and Leisch, 2008). 
Within flexmix, we used the function stepFlexmix, which fits the model 
repeatedly for different values of S and returns the maximum likelihood solution 
for each value of S. We fitted models with .S = 1, .S = 2 and .S = 3. In addition 
to models with heterogeneous effects, we fitted models with homogeneous effects 
for which the restriction .βs = β is made, as described in Sect. 2. This results in five 
models to be considered in model selection (since the model with .S = 1 assumes 
homogeneous effects per definition). Considering models with homogeneous effects 
in model selection entails that if the correct model is identified, this means that 
heterogeneity has been correctly detected. For each model, the number of repetitions 
was set to 10. In each repetition, starting values were defined by random assignment 
of the observations to the components. 

Performance was evaluated separately for logistic and log-linear mixture models 
in terms of (1) the accuracy of model selection by the AIC and BIC, and (2) 
parameter estimation, assessed by (a) mean bias, (b) median bias and (c) the 

standard deviation of . ˆ̄β and . τ̂ 2, respectively. The mean bias of . ˆ̄β and . τ̂ 2 is defined 
as 

.Mean bias ˆ̄β =
R

∑

i=1

ˆ̄β − β̄

R
(12) 

and 

.Mean biasτ̂ 2 =
R

∑

i=1

τ̂ 2 − τ 2

R
, (13) 

respectively, where R is the number of simulation replications. The median bias 

of . ˆ̄β and . τ̂ 2 results as the median of .
( ˆ̄β1 − β̄, ..., ˆ̄βR − β̄

)

and the median of 

.
(

τ̂ 21 − τ 2, ..., τ̂ 2R − τ 2
)

, respectively. 

4 Results 

In Table 3, we present the results in terms of model selection for the logistic 
model separately for simulation conditions in which a small component baseline 
probability was associated with a large component effect size (i.e., .p0,s = 0.005
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Table 3 Model selection performance (logistic mixture model) 

k n .p0,s = 0.005 and .βs = log(3) AIC BIC 

30 250 Yes 0.08–0.10 0.01–0.01 

30 500 Yes 0.17–0.22 0.03–0.04 

30 1000 Yes 0.40–0.49 0.11–0.17 

60 250 Yes 0.11–0.15 0.01–0.01 

60 500 Yes 0.28–0.35 0.03–0.04 

60 1000 Yes 0.62–0.75 0.20–0.33 

30 250 No 0.36–0.55 0.14–0.31 

30 500 No 0.66–0.82 0.49–0.73 

30 1000 No 0.85–0.89 0.82–0.95 

60 250 No 0.55–0.77 0.26–0.53 

60 500 No 0.83–0.90 0.72–0.93 

60 1000 No 0.87–0.89 0.95–0.97 

Table 4 Model selection performance (log-linear mixture model) 

k n .p0,s = 0.005 and .βs = log(3) AIC BIC 

30 250 Yes 0.08–0.10 0.01–0.01 

30 500 Yes 0.17–0.22 0.02–0.03 

30 1000 Yes 0.38–0.49 0.10–0.16 

60 250 Yes 0.11–0.13 0.01–0.01 

60 500 Yes 0.26–0.34 0.02–0.05 

60 1000 Yes 0.64–0.75 0.21–0.32 

30 250 No 0.35–0.55 0.13–0.30 

30 500 No 0.67–0.83 0.50–0.72 

30 1000 No 0.87–0.89 0.83–0.93 

60 250 No 0.54–0.78 0.26–0.54 

60 500 No 0.85–0.90 0.74–0.93 

60 1000 No 0.88–0.90 0.94–0.96 

and .βs = log(3) for .s = 1 or .s = 2) and simulation conditions in which a small 
component baseline probability was associated with a neutral component effect size 
(i.e., .p0,s = 0.005 and .βs = log(1) for .s = 1 or .s = 2). The corresponding results 
for the log-linear model are presented in Table 4. Results for logistic and log-linear 
models are similar and will thus be described simultaneously. 

For the conditions in which .p0,s = 0.005 and .βs = log(3) for .s = 1 or .s = 2, 
(presented in the upper half of Tables 3 and 4), both the AIC and the BIC perform 
poor in terms of model selection. Only if k and n are very large, the AIC achieves a 
somewhat satisfactory performance and consistently selects the correctly specified 
model in more than .60% of simulation replications. In simulation conditions with 
.p0,s = 0.005 and .βs = log(1) for .s = 1 or .s = 2 (presented in the lower half of 
Tables 3 and 4), model selection performance is notably better and can be considered



Modeling Effect Heterogeneity in Meta-analysis of Very Rare Events 205

satisfactory if either k or n is large. Note that in most conditions, the AIC performs 
better in model selection than the BIC. 

Next, we evaluate the estimation of . β̄ for the model which was correctly specified 
(i.e., a model with heterogeneous effects and .S = 2). Results in terms of mean bias, 

median bias and .SD( ˆ̄β) are presented in Table 5 for the logistic model, grouped by 
the number of studies k and the sample size n. Analogous results for the log-linear 
model are shown in Table 6. The results for both models are similar and will be 
described simultaneously. Note that we removed simulation replications from the 
analysis in which . β1 or . β2 exceeded .log(1000), since estimates of this magnitude 
can point to issues in maximum likelihood estimation in the analysis of sparse data 
(see Heinze, 2006). The range of the number of simulation replications which the 
results are based on is given in column 3 of Table 5, for the logistic mixture model, 
and in column 3 of Table 6, for the log-linear mixture model. We see that both mean 

and median bias of . ˆ̄β are generally small, in particular when k and n are large. The 
larger k and n, the more efficient becomes the estimation of . ˆ̄β, as can be assessed 
by evaluating .SD( ˆ̄β). 

Finally, we evaluate how well the between-study variance, . τ 2, is estimated by the 
correctly specified model. Outliers were removed from the analysis in the same way 
as in the analysis of the estimation of . β̄. Results in terms of mean bias, median bias 
and .SD(τ̂ 2) are displayed in Table 7, for the logistic mixture model, and in Table 8, 
for the log-linear mixture model. Since the results of the two models are similar, we 
will describe them simultaneously. While median bias is mostly adequate even for 
small values of k and n, small sample sizes are associated with a large mean bias and 
inefficient estimation of . τ 2. Even for .k = 60 and .n = 500, the standard deviation of 

Table 5 Estimation of . β̄ (logistic mixture model) 

k n Replications Mean bias Median bias SD 

30 250 3733–4739 . −0.022–0.045 . −0.002–0.015 0.359–0.440 

30 500 4279–4997 0.000–0.024 . −0.008–0.010 0.208–0.256 

30 1000 4718–5000 0.001–0.010 . −0.004–0.007 0.153–0.172 

60 250 4265–4971 . −0.008–0.046 . −0.008–0.016 0.257–0.340 

60 500 4585–5000 . −0.001–0.021 . −0.001–0.011 0.147–0.188 

60 1000 4877–5000 0.002–0.005 0.000–0.007 0.108–0.124 

Table 6 Estimation of . β̄ (log-linear mixture model) 

k n Replications Mean bias Median bias SD 

30 250 3745–4748 . −0.022–0.051 . −0.003–0.023 0.371–0.441 

30 500 4268–4998 0.000–0.027 . −0.006–0.010 0.211–0.260 

30 1000 4741–5000 0.003–0.012 0.005–0.007 0.153–0.178 

60 250 4287–4987 . −0.012–0.041 . −0.002–0.008 0.253–0.348 

60 500 4559–5000 0.003–0.019 0.000–0.011 0.144–0.183 

60 1000 4883–5000 0.000–0.005 0.001–0.003 0.108–0.122
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Table 7 Estimation of . τ 2 (logistic mixture model) 

k n Replications Mean bias Median bias SD 

30 250 3733–4739 0.327–0.608 0.006–0.045 1.173–1.559 

30 500 4279–4997 0.045–0.227 . −0.001–0.072 0.243–0.684 

30 1000 4718–5000 0.011–0.057 . −0.010–0.026 0.136–0.264 

60 250 4265–4971 0.124–0.521 0.009–0.070 0.633–1.389 

60 500 4585–5000 0.022–0.162 . −0.004–0.058 0.142–0.565 

60 1000 4877–5000 0.003–0.032 . −0.007–0.021 0.093–0.160 

Table 8 Estimation of . τ 2 (log-linear mixture model) 

k n Replications Mean bias Median bias SD 

30 250 3745–4748 0.348–0.629 . −0.006–0.040 1.223–1.665 

30 500 4268–4998 0.048–0.215 . −0.004–0.060 0.235–0.668 

30 1000 4741–5000 0.009–0.059 . −0.010–0.034 0.133–0.240 

60 250 4287–4987 0.117–0.503 0.003–0.031 0.545–1.395 

60 500 4559–5000 0.019–0.149 . −0.007–0.049 0.141–0.518 

60 1000 4883–5000 0.005–0.027 . −0.004–0.013 0.093–0.164 

. τ̂ 2 can still be as large as . 0.5 depending on the combination of .p0,s and . βs . Thus, a 
proper estimation of . τ 2 seems to require considerably larger numbers of studies and 

sample sizes than a proper estimation of . 
ˆ̄β. 

5 Conclusion and Discussion 

Nonparametric mixture models have been successfully applied to statistical issues 
in many disciplines, e.g., medicine, psychology or economics. Applications to 
different problems in meta-analysis are provided by, e.g., Doebler and Holling 
(2014), Holling et al. (2012) and Malzahn et al. (2012). Holling et al. (2022) 
developed nonparametric mixture models for meta-analysis of count data based 
on log-linear and logistic regression. Simulation studies including rare data pro-
vided good estimates of both the pooled effect sizes and heterogeneity when the 
assumptions of the models were fulfilled and enough studies with reasonably large 
sample sizes were available. In this chapter, we explored the potential of these 
nonparametric mixture models for meta-analysis of very rare events. By using a 
binomial or Poisson model within studies, these models are adequate for count 
data even when some studies have zero counts in either or both study groups, a 
situation which is frequently encountered in meta-analysis of very rare events and is 
problematic for conventional meta-analysis models. On top of that, nonparametric 
mixture models provide a flexible way to account for heterogeneity in meta-analysis 
of count data. They avoid the assumption of a normal random-effects distribution—
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an assumption which usually cannot be tested and may be questionable, for instance 
when the model is not correctly specified. 

We found that even for events with occurrence probabilities below .0.01, a  
sensible model selection performance can be achieved in some situations. Problems 
with regard to selection of the correct model occur when non-zero effect sizes are 
associated with small baseline probabilities. When baseline probabilities are small, 
it is more likely that double zero studies occur. When double zero studies occur 
in a component with a neutral effect size, this is less problematic as double zero 
studies indicate that there is no treatment effect. However, when double zero studies 
occur in a component with a non-zero effect size, they might induce bias towards 
a neutral effect. In our simulation study, there was always one component with a 
neutral effect and one component with a non-zero effect. If double zero studies 
in the latter component induce bias towards a neutral effect, this might result in 
a better fit for a model with one component, and as a consequence, a model with 
one component is selected by model selection criteria. In summary, it is likely 
that the poor model selection performance in conditions in which a small baseline 
probability is paired with a non-zero effect is caused by many double zero studies in 
the respective component. For larger sample sizes, we would expect to see a better 
model selection performance even under such challenging conditions, since larger 
sample sizes make the occurrence of double zero studies less likely. We found that in 
meta-analysis of very rare events, the AIC outperforms the BIC in terms of model 
selection. However, since the BIC is asymptotically consistent in model selection 
while the AIC is not, it seems likely that this result would not generalize to larger 
numbers of studies and larger sample sizes (see Vrieze, 2012, for a discussion of the 
differences between the AIC and BIC). 

In terms of parameter estimation, nonparametric mixture models perform well 
also for very rare events as long as the number of studies and the sample sizes 
are large enough. As expected, more studies and larger samples are required for 
meta-analysis of very rare events as compared to meta-analysis of rare events (cf. 
Holling et al., 2022). In addition, it is important to note that a proper estimation 
of the heterogeneity variance requires considerably larger numbers of studies and 
sample sizes than a proper estimation of the pooled effect size. 

This study was the first evaluation of nonparametric mixture models for meta-
analysis of count data with very rare events. Future studies should further investigate 
the performance of these models. In particular, the conditions of our simulation 
study could be extended. Interesting extensions would include, for instance, the 
investigation of further combinations of component baseline probabilities and 
component effect sizes. Furthermore, the ability of correctly clustering the studies 
could serve as another criterion of performance as nonparametric mixture models 
also provide the means to assign observations (here studies) to clusters. Moreover, 
it would be interesting to re-analyze existing meta-analyses including rare and 
very rare events, e.g., from the Cochrane Library, by using nonparametric mixture 
modeling to explore whether this approach might be statistically more appropriate 
or leads to more plausible interpretations of the results.
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So far, nonparametric mixture models have not received much attention in the 
context of meta-analysis, although they have the advantage of not requiring para-
metric assumptions with regard to the random-effects distribution. This flexibility 
could prove useful in situations in which the common intercept-only model, as used 
in conventional random effects meta-analysis using the inverse variance model, is 
overly simplistic, for instance in the presence of moderation effects which cannot be 
modeled explicitly due to missing data. Hence, practitioners should explore whether 
this approach might be more appropriate for the analysis of their meta-analytic count 
data, especially for rare and very rare events. 

References 

Beisemann, M., Doebler, P., & Holling, H. (2020). Comparison of random-effects meta-analysis 
models for the relative risk in the case of rare events: A simulation study. Biometrical Journal, 
62(7), 1597–1630. 

Bhaumik, D. K., Amatya, A., Normand, S.-L. T., Greenhouse, J., Kaizar, E., Neelon, B., & 
Gibbons, R. D. (2012). Meta-analysis of rare binary adverse event data. Journal of the 
American Statistical Association, 107(498), 555–567. 

Böhning, D. (2000). Computer-assisted analysis of mixtures and applications: meta-analysis, 
disease mapping, and others. Chapman & Hall/CRC, Boca Raton. 

Borenstein, M., Hedges, L. V., Higgins, J. P., & Rothstein, H. R. (2009). Introduction to meta-
analysis. Chichester: John Wiley & Sons. 

Davey, J., Turner, R. M., Clarke, M. J., & Higgins, J. P. (2011). Characteristics of meta-analyses 
and their component studies in the cochrane database of systematic reviews: a cross-sectional, 
descriptive analysis. BMC Medical Research Methodology, 11(1), 1. 

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data 
via the EM Algorithm. Journal of the Royal Statistical Society: Series B (Methodological), 
39(1), 1–22. 

Doebler, P., & Holling, H. (2014). Meta-analysis of diagnostic accuracy and ROC curves with 
covariate adjusted semiparametric mixtures. Psychometrika, 80(4), 1084–1104. 

Grün, B., & Leisch, F. (2008). FlexMix version 2: Finite mixtures with concomitant variables and 
varying and constant parameters. Journal of Statistical Software, 28(4), 1–35. 

Heinze, G. (2006). A comparative investigation of methods for logistic regression with separated 
or nearly separated data. Statistics in Medicine, 25(24), 4216–4226. 

Holling, H., Böhning, W., & Böhning, D. (2012). Likelihood based clustering of meta-analytic 
SROC curves. Psychometrika, 77(1), 106–126. 

Holling, H., Jansen, K., Böhning, W., Böhning, D., Martin, S., & Sangnawakij, P. (2022). 
Estimation of effect heterogeneity in rare events meta-analysis. Psychometrika, 87(3), 1081– 
1102. 

Jackson, D., Law, M., Stijnen, T., Viechtbauer, W., & White, I. R. (2018). A comparison of seven 
random-effects models for meta-analyses that estimate the summary odds ratio. Statistics in 
Medicine, 37(7), 1059–1085. 

Jackson, D., & White, I. R. (2018). When should meta-analysis avoid making hidden normality 
assumptions? Biometrical Journal, 60(6), 1040–1058. 

Jansen, K., & Holling, H. (2022). Random-effects meta-analysis models for the odds ratio in the 
case of rare events under different data-generating models: A simulation study. Biometrical 
Journal, 65(3), e2200132.



Modeling Effect Heterogeneity in Meta-analysis of Very Rare Events 209

Kuss, O. (2014). Statistical methods for meta-analyses including information from studies without 
any events-add nothing to nothing and succeed nevertheless. Statistics in Medicine, 34(7), 
1097–1116. 

Lindsay, B. G. (1983). The geometry of mixture likelihoods: A general theory. The Annals of 
Statistics, 11(1), 86–94. 

Lindsay, B. G. (1995). Mixture models: Theory, geometry and applications. NSF-CBMS Regional 
Conference Series in Probability and Statistics, 5, i–163. 

Malzahn, U., Böhning, D., & Holling, H. (2012). Nonparametric estimation of heterogeneity 
variance for the standardised difference used in meta-analysis. Biometrika, 87(3), 619–632. 

Mantel, N., & Haenszel, W. (1959). Statistical aspects of the analysis of data from retrospective 
studies of disease. JNCI: Journal of the National Cancer Institute, 22(4), 719. 

McLachlan, K. (2008). The EM algorithm and its extensions. New Jersey: John Wiley & Sons. 
Microsoft Corporation, & Weston, S. (2022). doParallel: Foreach Parallel Adaptor for the 

’parallel’ Package. R package version 1.0.17. 
R Core Team. (2021). R: A language and environment for statistical computing. Vienna: R 

Foundation for Statistical Computing. 
Sweeting, M. J., Sutton, A. J., & Lambert, P. C. (2004). What to add to nothing? use and avoidance 

of continuity corrections in meta-analysis of sparse data. Statistics in Medicine, 23(9), 1351– 
1375. 

Vrieze, S. I. (2012). Model selection and psychological theory: A discussion of the differences 
between the Akaike information criterion (AIC) and the Bayesian information criterion (BIC). 
Psychological Methods, 17(2), 228–243. 

Yusuf, S., Peto, R., Lewis, J., Collins, R., & Sleight, P. (1985). Beta blockade during and after 
myocardial infarction: An overview of the randomized trials. Progress in Cardiovascular 
Diseases, 27(5), 335–371. 

Zhang, C., Chen, M., & Wang, X. (2020). Statistical methods for quantifying between-study 
heterogeneity in meta-analysis with focus on rare binary events. Statistics and Its Interface, 
13(4), 449–464.



Investigating Differential Item 
Functioning via Odds Ratio in Cognitive 
Diagnosis Models 

Ya-Hui Su and Tzu-Ying Chen 

Abstract The increasing number of tests being developed has prompted more 
people to investigate the association between test items and skill attributes and state 
of knowledge, spurring the development of the cognitive diagnosis models. Several 
studies have predominantly adopted the Mantel–Haenszel (MH) method to detect 
differential item functioning (DIF) under such models. Jin et al. (2018) used the  
odds ratio (OR) method to examine DIF under the Rasch model, which assumed 
latent traits were continuous. It was found that that the OR method outperformed 
the traditional MH method in terms of type I error rate control and statistical 
power. However, no studies have applied the OR method in DIF detection under the 
cognitive diagnosis models. Therefore, this study investigated the effectiveness of 
DIF detection methods, including the MH method, MH method with purification 
procedure, MH method with attribute patterns as the matching variables, OR 
method, and OR method with purification procedure. According to the results, the 
effectiveness of DIF detection was affected by sample size and the proportion of 
DIF items; specifically, a large sample size and a high proportion of DIF items 
were associated with increased and decreased statistical power, respectively. The 
purification procedure enhanced the DIF detection effectiveness and reduced the 
type I error rate in both the OR and MH methods. 

Keywords Cognitive diagnostic model · Differential item functioning · MH · 
Odds ratio 

1 Introduction 

Cognitive diagnosis models (CDMs) can be used to obtain diagnostic information, 
which specifies whether the required skills has been mastered (Hartz, 2002; Junker 

Y.-H. Su (�) · T.-Y. Chen  
Department of Psychology, National Chung Cheng University, Minhsiung Township, Chiayi 
County, Taiwan 
e-mail: psyyhs@ccu.edu.tw 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 
M. Wiberg et al. (eds.), Quantitative Psychology, Springer Proceedings in 
Mathematics & Statistics 422, https://doi.org/10.1007/978-3-031-27781-8_19

211

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27781-8protect T1	extunderscore 19&domain=pdf

 885 56845 a 885 56845 a
 
mailto:psyyhs@ccu.edu.tw
mailto:psyyhs@ccu.edu.tw
mailto:psyyhs@ccu.edu.tw


212 Y.-H. Su and T.-Y. Chen

& Sijtsma, 2001; Mislevy et al., 2000; Rupp et al., 2010; Tatsuoka, 1983). The 
CDMs have been applied mainly in the educational context to provide teachers and 
students with information concerning if each of a group of specific skills has been 
mastered. The skills here are often referred to as attributes. To make sure the quality 
of a test, the detection of differential item functioning (DIF) is a critical procedure 
for examining test fairness. Many DIF detection methods have been used in CDMs 
(Hou et al., 2014; Sünbül, 2019; Zhang, 2006), including Mantel-Haenszel (MH; 
Holland & Thayer, 1986, 1988; Mantel & Haenszel, 1959), simultaneous item bias 
test (SIBTEST; Shealy & Stout, 1993), logistic regression (LR; Swaminathan & 
Rogers, 1990), and Wald test (Morrison, 1967), etc. Among these DIF methods, the 
MH method is predominantly used in CDMs. 

Jin et al. (2018) used the odds ratio (OR) method to examine DIF under the 
Rasch model, which assumed that latent traits were continuous. It was found that 
the OR method outperformed the MH method in terms of type I error rate control 
and statistical power. However, no studies have applied the OR method for DIF 
detection under the CDMs. Therefore, this study investigated the effectiveness of 
DIF detection obtained by the MH method, MH method with purification procedure, 
MH method with attribute patterns as the matching variables, OR method, and OR 
method with purification procedure in CDMs. 

2 Method 

In the study, simulations were conducted via RStudio 4.0.0 and difR package. 
Please contact the authors for accessing code if you are interested. Similar to de 
la Torre (2011), the Q matrix with five attributes were considered and generated 
in the study. Previous CDM studies used different methods to generate examinees’ 
attribute patterns (Chiu & Douglas, 2013; de la Torre & Douglas, 2004; Hou et al., 
2014; Li,  2008; Li & Wang, 2015; Zhang, 2006). In this study, examinees’ attribute 
patterns were generated according to Zhang (2006). An examinee had five attributes, 
and decided each attribute of the attribute patterns was mastered if the z scores 
randomly drawn from the multivariate normal distribution were larger than zero. 

Several CDMs have been proposed in the literature (Haertel, 1989; Junker & 
Sijtsma, 2001; Maris,  1999; Roussos et al., 2007; Templin & Henson, 2006). The 
present study focused only on the deterministic input, noisy, and gate (DINA; 
Haertel, 1989; Junker & Sijtsma, 2001) model, and the deterministic input, noisy, 
or gate (DINO; Templin & Henson, 2006) model. The DINA model assumes that 
each attribute measured by an item must be successfully applied in order to answer 
an item correctly. The DINA model includes two item parameters, sj and gj. sj is the 
slip parameter, which represents the probability that an examinee who has all the 
required attributes fails to answer item j correctly; and gj is the guessing parameter, 
which represents the probability that an examinee who lacks at least one of the 
required attributes answers item j correctly. The probability of answering an item 
correctly can be written as
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P
(
Xij = 1|sj , gj , ηij

) = (
1 − sj

)ηij gj (
1−ηij ), (1) 

where ηij = ∏K 
k=1 αik qjk  represents that examinee i has mastered all of the required 

attributes for item j, and K is the total number of k attributes. In contrast to the DINA 
model, the DINO model is a compensatory CDM. The DINO model also includes 
two item parameters, sj and gj.The probability of answering an item correctly can 
be written as 

P
(
Xij = 1|sj , gj , ηij

) = (
1 − sj

)ωij gj (
1−ωij ), (2) 

where ωij = 1−∏K 
k=1 (1 − αik)

qjk  represents that examinee i has mastered at least 
one measured attribute for item j. In the DINO model, sj represents the probability 
of not answering item j correctly when an examinee has mastered at least one 
measured attribute; gj represents the probability of answering item j correctly when 
an examinee has not mastered all measured attributes. In this study, data were 
generated according to the DINA and the DINO models. 

Zhang (2006) investigated the effect of sample size on the DIF detection in CDM. 
In practice, different sample size for the reference and focal groups is very common. 
Thus, the sample size for reference and focal groups were 500, 1000, and 2000. In 
this study, six different levels of sample size were manipulated. Previous studies 
have been investigated the effect of the item parameters on DIF detection (Hou 
et al., 2014; Li,  2008). To investigate the effect of quality of item pool on DIF 
detection in CDM. For the reference group, the item parameters sj and gj were set 
to be sj = gj = .25 in the high-quality item bank, and sj = gj = .75 in the low-
quality item bank. Many DIF studies have been investigated the effect of test length 
(Fidalgo et al., 2000; Rogers & Swaminathan, 1993; Uttaro & Millsap, 1994). Thus, 
two levels of test length (i.e., 30 and 60 items) were considered in the study. 

An item is flagged as DIF when people with the same latent ability but from 
different groups have an unequal probability of answering an item correctly. In 
CDM, DIF happens when item parameters (i.e., sj and gj) of the reference and focal 
groups are different. Previous studies have investigated the DIF amount and DIF 
type (i.e., uniform DIF and nonuniform DIF) (Hou et al., 2014; Liu et al., 2019; 
Sünbül, 2019; Zhang, 2006). Thus, seven levels of DIF type were manipulated 
in this study, including no DIF, uniform DIF, and nonuniform DIF. When the 
difference of item parameters between two groups was zero (i.e., sFj − sRj = 0 
and gFj − gRj = 0), an item j has no DIF. When the difference of item parameters 
between two groups was not zero, an item has DIF. Similar to Hou et al. (2014) and 
Liu et al. (2019), the difference of item parameters between two groups was set to 
be 0.1. Uniform DIF occurs in the item j when (sFj − sRj > 0 and gFj − gRj < 0)  
or (sFj − sRj < 0 and gFj − gRj > 0), in which the item j favors the reference or the 
focal groups, respectively. Two uniform DIF types were (sFj − sRj = +  0.1 and 
gFj − gRj = − 0.1) or (sFj − sRj = −  0.1 and gFj − gRj = + 0.1). Nonuniform DIF 
occurs in the item j when the two item parameters favor different groups. For the first 
nonuniform DIF type (sFj − sRj = + 0.1 and gFj − gRj = 0), the item j favors the
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reference group in slip parameter but doesn’t favor any group in guessing parameter. 
For the second nonuniform DIF type (sFj − sRj = 0 and gFj − gRj = −  0.1), 
the item j favors the reference group in guessing parameter but doesn’t favor any 
group in slip parameter. For the third nonuniform DIF type (sFj − sRj = +  0.1 and 
gFj − gRj = +  0.1), the item j favors the reference group in slip parameter but 
favors the focal group in guessing parameter. For the fourth nonuniform DIF type 
(sFj − sRj = −  0.1 and gFj − gRj = − 0.1), the item j favors the focal group in slip 
parameter but favors the reference group in guessing parameter. 

The DIF percentage has been investigated in previous studies (Fidalgo et al., 
2000; Jin et al., 2018; Sünbül, 2019). To understand the effect of DIF percentage 
on DIF detection, 0%, 10%, 20%, 30%, and 40% DIF items were manipulated 
in this study. Many DIF detection methods have been used in CDMs (Hou et 
al., 2014; Sünbül, 2019; Zhang, 2006). As previous discussion, the MH and OR 
were considered in this study. The DIF method had five levels, including the MH, 
MH-P, MH-A, OR, and OR-P methods. The MH method was the MH with total 
scores as the matching variables. The MH-P method was the previous MH method 
with purification procedure. The MH-A method was the MH method with attribute 
patterns as the matching variables. The OR and OR-P method were the OR (Jin et 
al., 2018) method and OR with purification procedure, respectively. 

To sum up, seven variables were manipulated: model (two levels: DINA and 
DINO), sample size for reference and focal groups (six levels: 500/500, 1000/500, 
1000/1000, 2000/500, 2000/1000, and 2000/2000), item parameters (two levels: 
.25 and .75), test length (two levels: 30 and 60 items), DIF type (seven levels: no 
DIF, two uniform DIF types, and four nonuniform DIF types), DIF percentage (five 
levels: 0%, 10%, 20%, 30%, and 40%), and DIF method (five levels: MH, MH-P, 
MH-A, OR, and OR-P). Each condition was replicated 100 times to reduce sampling 
error. To evaluate the performance of DIF detection method, evaluation criteria 
included averaged type I error and averaged statistical power over 100 replications. 

3 Results 

The type I error for the DINA model in the no DIF condition list in Table 1. The  
type I error should be approximately 5% to meet the model expectations under each 
condition. According to Wang and Su (2004)’s suggestion, if the type I error was 
less than 4% or more than 6%, the type I error in Table 1 appeared in bold. In 
the no DIF condition, the type I error for the DINA model approximately met the 
model expectation under different sample size, test length, item parameter, and DIF 
methods. The DINO model in the no DIF condition performed similarly to the DINA 
model. 

Owing to spatial limitations, the results of the DINA model in one uniform DIF 
type were shown in Figs. 1 and 2. When the uniform DIF type was (sFj − sRj = 0.1 
and gFj − gRj = −  0.1), the type I error and power of the five DIF methods for 
different DIF percentage and sample size in the DINA model were shown in Figs. 1
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Table 1 Type I error for the DINA model in the no DIF condition 

Sample size Test length Item parameter MH MH-P MH-A OR OR-P

500/500 30 0.25 0.0433 0.0423 0.0413 0.0463 0.0463

0.75 0.0403 0.0403 0.0413 0.0440 0.0467

60 0.25 0.0407 0.0415 0.0387 0.0462 0.0468

0.75 0.0410 0.0392 0.0402 0.0433 0.0437

1000/500 30 0.25 0.0387 0.0367 0.0397 0.0403 0.0413

0.75 0.0430 0.0400 0.0377 0.0423 0.0437

60 0.25 0.0423 0.0440 0.0428 0.0437 0.0445

0.75 0.0410 0.0413 0.0422 0.0428 0.0438

1000/1000 30 0.25 0.0450 0.0453 0.0450 0.0470 0.0497

0.75 0.0447 0.0440 0.0413 0.0450 0.0473

60 0.25 0.0402 0.0410 0.0430 0.0418 0.0437

0.75 0.0497 0.0498 0.0460 0.0487 0.0508

2000/500 30 0.25 0.0413 0.0413 0.0397 0.0453 0.0463

0.75 0.0443 0.0453 0.0433 0.0450 0.0467

60 0.25 0.0402 0.0410 0.0430 0.0418 0.0437

0.75 0.0497 0.0498 0.0460 0.0487 0.0508

2000/1000 30 0.25 0.0413 0.0413 0.0373 0.0383 0.0423

0.75 0.0440 0.0433 0.0450 0.0443 0.0457

60 0.25 0.0422 0.0427 0.0417 0.0420 0.0437

0.75 0.0428 0.0430 0.0405 0.0433 0.0437

2000/2000 30 0.25 0.0470 0.0473 0.0423 0.0467 0.0523

0.75 0.0463 0.0457 0.0457 0.0480 0.0500

60 0.25 0.0462 0.0468 0.0455 0.0430 0.0448

0.75 0.0432 0.0450 0.0427 0.0427 0.0465

and 2. The DIF method performs well if its type I error meet the model expectations 
(Wang & Su, 2004), and the corresponding power is high. The type I error of the 
MH-A method in the DINA model approximately met the model expectation under 
different sample size and DIF percentage, and the MH-A method in the DINA 
model had the highest power among all other methods. As the sample size or DIF 
percentage increased, the type I error of the other methods increased and the power 
of the other methods decreased. The MH method performed the worst in terms of 
the inflated type I error. The results of the DINA model in the other uniform DIF 
condition (i.e., sFj − sRj = −  0.1 and gFj − gRj = + 0.1) were similar to those in
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Fig. 1 Type I error of the DIF methods for different DIF percentage in DINA model when the 
uniform DIF type was (sFj − sRj = 0.1 and gFj − gRj = −  0.1) 

Figs. 1 and 2. Besides, the results of the DINO model were similar to those of the 
DINA model in Figs. 1 and 2. 

When the nonuniform DIF type was (sFj − sRj = 0.1 and gFj − gRj = 0), the 
DINA model had lower type I error and power than the DINO model. When the 
nonuniform DIF type was (sFj − sRj = 0 and gFj − gRj = −  0.1), the DINA model 
had higher type I error and power than the DINO model. When the nonuniform 
DIF type was (sFj − sRj = 0.1 and gFj − gRj = 0.1) or (sFj − sRj = −  0.1 and 
gFj − gRj = −  0.1), the DINA model had similar type I error and power compared 
to the DINO model. 

4 Conclusions and Discussion 

Several conclusions were drawn from this study. First, for the uniform DIF type, the 
DINA model performed similarly to the DINO model. Both the DINA and DINO 
models had higher power for the uniform DIF type than that for the nonuniform 
DIF types. For four nonuniform DIF types, the DINA model performed differently 
from the DINO model. Those findings were similar to the previous studies (Hou et
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Fig. 2 Power of the DIF methods for different DIF percentage in DINA model when the uniform 
DIF type was (sFj − sRj = 0.1 and gFj − gRj = − 0.1) 

al., 2014; Liu et al., 2019). Second, generally speaking, the power was lower when 
the item parameters were set to be .75, which item bank was low quality. This was 
similar to Hou et al. (2014). However, it had higher power when the item parameters 
were set to be .75 (i.e., low-quality item pool) in few DIF conditions. This would 
need further investigation. Third, test length had less effect on DIF detection than 
expectation. Fourth, the type I error of the MH, MH-A, and MH-P methods was 
increased with the sample size increased. The type I error of the OR and OR-P 
methods was less affected by the sample size. The power of all the DIF detection 
methods was increased with the simple size increased. Fifth, the type I error was 
inflated when the DIF percentage was increased. Those findings were similar to the 
previous studies (Fidalgo et al., 2000; Jin et al., 2018; Sünbül, 2019). Sixth, the 
MH-A method had the best performance in terms of the lowest type I error and 
highest power. This is because using the attribute patterns is the better than the total 
scores as the matching variables in CDM. The OR-P method performed well in large 
sample size, and the power was less affected when DIF percentage was high. 

Some limitations were found in this study. First, this study set the fixed values 
for the item parameters, which is similar to Hou et al. (2014); however, some other 
studies used the uniform distribution to generated item parameters (Zhang, 2006). 
In practice, the uniform distribution can be used to generated the item parameters.
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Second, this study was conducted in DINA and DINO models. Previous studies 
have used numerous CDMs. Investigating the performance of the five DIF methods 
in different CDMs is of great interest. Third, in this study, the examinees’ attribute 
patterns were generated according to Zhang (2006)’s method. Different methods 
would be used to generate attribute patterns, and then might have different impact on 
the results. Fourth, this study was conducted when attributes have a nonhierarchical 
relationship. In practice, attributes might have a hierarchical relationship, meaning 
some are a prerequisite for the presence of others. It is interesting to investigate 
the performance of DIF detection methods when attributes have a hierarchical 
relationship. 
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Effect of Within-Group Dependency on 
Fit Statistics in Mokken Scale Analysis in 
the Presence of Two-Level Test Data 

Letty Koopman 

Abstract Investigating model fit is essential for determining measurement proper-
ties of tests and questionnaires. Mokken scale analysis (MSA) consists of a selection 
of methods to investigate the fit of nonparametric item response theory models. 
Existing MSA methods assume a simple random sample, which is violated in 
two-level test data (i.e., test data of clustered respondents). This chapter discusses 
the methods manifest monotonicity, conditional association, and manifest invariant 
item ordering, and investigates the effect of within-group dependency on the point 
estimate and variability of their statistics. Results showed that fit statistics may be 
safely used in the presence of within-group dependency, giving appropriate results 
for sets of items that either did or did not violate assumptions. Implications for 
practice are discussed. 

Keywords Conditional association · Manifest invariant item ordering · Manifest 
monotonicity · Model fit · Mokken scale analysis 

1 Introduction 

Mokken scale analysis (MSA) consists of a selection of methods to investigate the 
fit of nonparametric item response theory models (IRT; see, e.g., Mokken, 1971; 
Sijtsma and Molenaar, 2002; Sijtsma and Van der Ark, 2017). Let . θ denote a latent 
variable. Let . Xi denote a binary latent variable with realization . xi that takes on value 
1 if an item is endorsed or correctly answered, and 0 otherwise. Let . P(Xi = 1|θ)

denote the item-response function of item i, which is the probability of correctly 
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scoring item i as a function of the latent variable. Four main assumptions of IRT 
models are 

1. Unidimensionality: Latent variable . θ is unidimensional 
2. Local independence: The item scores are independent given the respondent’s 

value on . θ

3. Monotonicity: Item-response function .P(Xi = 1|θ) is monotonically nonde-
creasing. 

4. Invariant item ordering: Item-response functions .P(Xi = 1|θ) and . P(Xj = 1|θ)

do not intersect for all .i �= j and for all . θ . 

Item response models that limit themselves to only the first three assumptions 
(monotone homogeneity model) or first four assumptions (double monotonicity 
model) can be classified as nonparametric IRT models, because they pose no 
distributional assumptions on the latent variable and the item-response function 
(e.g., Mokken, 1971; Sijtsma & Molenaar, 2002). 

Different combinations of these assumptions imply various observable data char-
acteristics that can be used to investigate fit of nonparametric IRT models, including 
manifest monotonicity (Junker, 1993; Sijtsma and Hemker, 2000), conditional asso-
ciation (Holland & Rosenbaum, 1986; Straat et al., 2016), and manifest invariant 
item ordering (Ligtvoet et al., 2010, 2011). The suggested practice to identify scales 
using MSA is to first investigate scalability using scalability coefficients, after which 
local independence, monotonicity, and invariant item order can be investigated 
using the properties manifest monotonicity, conditional association, and manifest 
monotonicity, respectively (Sijtsma & Van der Ark, 2017). 

The estimation method for these procedures assume the data are obtained by 
means of a simple random sampling design. However, this assumption is often 
violated, for example in two-stage sampling design in which first schools are 
sampled, after which students within the sampled school are sampled. Two-stage 
sampling designs are standard in large-scale international assessments such as 
TIMSS, PIRLS, and PISA (e.g., Joncas & Foy, 2011; Karjalainen & Laaksonen, 
2008). Such sampling designs often lead to within-group dependency in the data, 
where the item scores of respondents within the same group are more related than 
item scores of respondents across different groups. 

Snijders (2001) proposed nonparametric IRT models for two-level test data, and 
Koopman (2022, Chapter 8) showed that, in the population, these models imply the 
same observable properties as their one-level counterparts. However, within-group 
dependency can substantially affect statistical analyses in data samples, requiring 
methods that acknowledge and take into account the nested structure of the data. 
For example, Koopman et al. (2020, 2022) showed the quality of items and the 
total scale may be overestimated when the nested structure is ignored, and provided 
alternative methods. Currently, it is unknown to which degree the fit statistics are 
affected by within-group dependency. 

This chapter first provides an outline on the properties manifest monotonicity, 
conditional association, and manifest invariant item ordering, and discusses the 
currently implemented methods for evaluating them in data. Next, a simulation
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study is presented that evaluated the effect of a nested data structure on the 
fit statistics provided by these methods for different degrees of within-group 
dependency (from no dependency to extreme dependency) and for data simulated 
with and without items that violated assumptions. 

2 Observable Properties 

Various observable properties are implied by the four main assumptions of unidi-
mensionality, local independence, monotonicity, and invariant item ordering. Here I 
discuss three of them, manifest monotonicity, conditional association, and manifest 
invariant item ordering. 

2.1 Manifest Monotonicity 

Let .X(i) = ∑I
j �=i Xj denote the rest score of item i, which is the sum across all 

items except item i. Manifest monotonicity means that .P(Xi = 1|X(i)) is non-
decreasing in . X(i). For dichotomous items, unidimensionality, local independence, 
and monotonicity imply manifest monotonicity (Junker & Sijtsma, 2000). Manifest 
monotonicity is used to investigate the assumption of (latent) monotonicity. For each 
item the rest score .X(i) is computed, after which the proportion of respondents scor-
ing 1 on item . Xi is calculated, estimating .P(Xi = 1|X(i)). Manifest monotonicity 
is violated if .P(Xi = 1|X(i) = l) > P (Xi = 1|X(i) = l + 1). If rest score 
groups are too small according to a set criterion (minsize), consecutive rest score 
groups are joined. The number of rest score groups that are evaluated determines 
the number of active comparisons, and these comparisons check for violations 
of manifest monotonicity. To avoid evaluating violations that are too small for 
practical meaning, a set criterion (minvi, default = 0.03) determines when violations 
are large enough to be counted and tested for significance. The violation is tested 
for significance using a normal approximation to the hypergeometric distribution. 
Diagnostic value crit combines evidence of various statistics to give an indication 
of whether an item violates the assumptions. Table 1 provides an overview of the 
summary statistics that are provided when investigating manifest monotonicity in R 
(Van der Ark, 2007) or in MSP5 (Molenaar & Sijtsma, 2000). 

2.2 Conditional Association 

Let vector .X = (X1, X2, . . . , XI ) contain the I item scores . Xi , and divide X into 
two mutually exclusive vectors Y and Z. Let . g1 and . g2 be nondecreasing functions, 
h any function, and . σ the population covariance. Conditional association is defined 
as



224 L. Koopman

Table 1 Statistics for manifest monotonicity 

Statistic Description 

#ac The number of active comparisons 

#vi The number of violations of manifest monotonicity 

#vi/#ac The average number of violations per comparison 

maxvi The largest violation of manifest monotonicity 

sum The sum of violations of manifest monotonicity 

sum/#ac The average violation per active comparison 

zmax The maximum test statistic 

#zsig The number of violations that are significantly greater than zero 

crit The crit value 

Note. Only violations are counted that exceed minvi

Table 2 Statistics for conditional association 

Statistic Description 

.W
(1)
ij Identifying positive local dependence between items i and j 

.W
(2)
i Identifying whether item i to likely be in a positively dependent item pair 

.W
(3)
ij Identifying negative local dependence between items i and j 

.σ [g1(Y), g2(Z)|h(Z) = z] ≥ 0 (1) 

(Holland & Rosenbaum, 1986, Definition 3.4). Unidimensionality, local indepen-
dence, and monotonicity imply conditional association (Holland & Rosenbaum, 
1986, Theorem 6). Let .X(ij) denote the rest score on all items except item i and j . 
Let .Y = (Xi,Xj ) and . Z the scores on the remaining items. In that case, conditional 
association implies .σ(Xi,Xj ) ≥ 0 (i.e., Z is ignored), . σ(Xi,Xj |Xk = x) ≥ 0
(i.e., conditioning on item . Xk), and .σ(Xi,Xj |X(ij) = l) ≥ 0 (i.e., conditioning 
on the rest score). Straat et al. (2016) proposed three statistics that use conditional 
association to evaluate the local independence assumption, presented in Table 2. 

2.3 Manifest Invariant Item Ordering 

Manifest invariant item ordering means that if for .i < j it holds that . P(Xi =
1) ≥ P(Xj = 1) (i.e., item i is in general easier or more popular than item j ), 
then .P(Xi = 1|R(ij) = l) ≥ P(Xj = 1|R(ij) = l) for all l and all .i < j . 
Unidimensionality, local independence, monotonicity, and invariant item ordering 
(i.e., the four main assumptions) imply manifest invariant item ordering (Ligtvoet 
et al., 2011). Table 3 provides an overview of the summary statistics that are 
provided when investigating manifest invariant item ordering, which is similar to 
method manifest monotonicity.
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Table 3 Statistics for manifest invariant item ordering 

Statistic Description 

#ac The number of active comparisons 

#vi The number of violations of manifest monotonicity 

#vi/#ac The average number of violations per active comparison 

maxvi The largest violation of manifest monotonicity 

sum The sum of violations of manifest monotonicity 

sum/#ac The average violation per active comparison 

zmax The maximum test statistic 

#zsig The number of violations that are significantly greater than zero 

crit The crit value 

Note. Only violations are counted that exceed minvi

3 Simulation Study 

The effect of within-group dependency on the fit statistics were evaluated in a Monte 
Carlo simulation study1 (see, e.g., Morris et al., 2019). The goal was to investigate 
the effect of within-group dependency on the estimated fit statistics, for test data 
that complied with the assumptions or test data that violated the assumptions. 

3.1 Method 

Data were generated for 50 groups consisting of 50 respondents, using a two-
dimensional two-parameter logistic model to allow for violating assumptions. Note 
that without violated assumptions, this model is a parametric special case of the 
monotone homogeneity model (Van der Ark, 2001) For each respondent scores 
were sampled to 10 dichotomous items, indexed i (.i = 1, 2, . . . , 10), for 50 groups, 
indexed s (.s = 1, 2, . . . , 50), each consisting of a unique set of 50 respondents, 
indexed r (.r = 1, 2, . . . , 50). Let . αi and . βi denote the discrimination and difficulty 
of item i, respectively. Let . α∗

i denote the second discrimination parameter in the case 
of local dependency. Let . θsr denote the latent variable of interest for respondent r 
within group s, and . θ∗

sr the latent nuisance variable for that respondent in the case 
of local dependency. Then, the probability that respondent r in group s scores 1 on 
item i is defined as 

.P(Xi = 1|θsr ) = exp[αi(θsr − βi) + α∗
i (θ∗

sr − βi)]
1 + exp[αi(θsr − βi) + α∗

i (θ∗
sr − βi)] . (2) 

Data were simulated across .Q = 1000 replications

1 Syntax files are available to download from the Open Science Framework: https://osf.io/hfn6j/. 

https://osf.io/hfn6j/
https://osf.io/hfn6j/
https://osf.io/hfn6j/
https://osf.io/hfn6j/
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3.1.1 Independent Variables 

Two independent variables were included. 

Within-Group Dependency Within-group dependency had three degrees: inde-
pendent, medium, and extreme. To manipulate within-group dependency value . θsr

was split in .θsr = γs+δsr , in which . γs is a group-specific value and . δsr a respondent-
specific value. Values . γs and . δsr were sampled separately and independently. 

For the independent condition, . γs was set to zero and .θsr = δsr ∼ N(0, 1). 
Hence, there was no within-group dependency, meaning that there is no group effect. 
Essentially, this type of test data is equal to test data obtained by a simple random 
sample. 

For the medium condition, both . γs and .δsr ∼ N(0, σ 2 = 0.5), meaning that the 
group- and respondent-effect is equal, usually leading to a substantial amount of 
within-group dependency. 

For the extreme condition, . δsr was set to zero and .θsr = γs ∼ N(0, 1). Hence, 
there was a maximum amount of within-group dependency, meaning that there is 
no individual respondent effect. This is the most extreme type of within-group 
dependency given the item parameters and item response theory model. Note that for 
all conditions, the variance of .θsr = 1. The latent nuisance variable . θ∗

sr ∼ N(0, 1)
and was sampled similarly as . θsr in the different conditions (i.e., by sampling only 
. γ ∗

s , only . δ∗
sr , or both), although the latent variables were unrelated. 

Violation of Assumptions This variable had two conditions: Absence and pres-
ence of violated assumptions. This variable was manipulated by changing the item 
parameters. Data were simulated in the absence of violated assumptions using the 
following item parameters. Item discrimination .αi = 1 was equal for all i. Item  
difficulty . βi had equidistant values between . −1 and 1. .α∗

i = 0, hence there was 
no local dependency. Figure 1 shows the item-response functions for the conditon 
without violated assumptions. 

Data were simulated in the presence of violated assumptions using the following 
item parameters. Item discrimination took on values (. −0.5, 0.5, 1, 1, 1, 1, 1, 1, 1, 2) 
for item .i = 1, . . . , 10, respectively. Item 1 violates the monotonicity assumption 
and item 1, 2, and 10 violate the assumption of invariant item ordering. Item 
difficulty value .β1 = −1, and the remaining items had equidistant values between 
. −1 and 1, hence .β1 = β2. Items 1 and 2 violate the assumption of invariant item 
ordering. .αi = 0 for item .i = 1 to 8 and .α9 = α10 = 0.5, causing local dependency 
between item 9 and 10, violating the local independence assumption. Hence, item 1, 
2, 9, and 10 were the items violating assumptions. (i.e., removing these items gives 
an item set that complies with the assumptions). Figure 2 shows the item-response 
functions for the conditon with violated assumptions.
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Fig. 1 Item response functions (.P(Xi = 1|θ)) of the ten items that did not violate assumptions 
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Fig. 2 Item response functions (.P(Xi = 1|θ)) of the ten items that violated assumptions 

3.1.2 Dependent Variables 

Accuracy and efficiency were computed for all statistics presented in Tables 1, 2, 
and 3. 

Accuracy In general, all computed statistics are assumed accurate and optimal in 
the independent condition (i.e., no within-group dependency), as these test data have 
the same dependency structure as test data obtained using a simple random sampling 
design. Hence, the point estimates were compared to this condition
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Efficiency The sampling fluctuation of a fit statistic is the standard deviation of 
the statistic across all replications. Let T denote a fit statistic. Then, the sampling 
fluctuation of T , denoted .S(T ), is computed as 

.S(T ) =

√
√
√
√
√

1

Q

Q∑

q=1

(T q − T )2. (3) 

The sampling fluctuation is a measure of efficiency. 

3.1.3 Statistical Analyses 

Fit statistics were computed using the default settings of the following functions 
from the R-package mokken. Let  R> denote the R prompt and let data denote the 
particular dataset at hand. 

R> # Load R-package mokken: 
R> library(mokken) 
R> # Manifest monotonicity: 
R> summary(check.monotonicity(data)) 
R> # Conditional association: 
R> check.ca(data, TRUE)$Index 
R> # Manifest invariant item ordering: 
R> summary(check.iio(data, item.selection = FALSE))$ 
R+ item.summary 

Differences in point estimates and variability greater than .0.05 between the 
independent and other conditions are discussed. For all conditions, output will be 
averaged across items. Intraclass correlations (ICCs) will be computed for the each 
condition to reflect the degree of within-group dependency. 

3.1.4 Hypotheses 

In general, within-group dependency was expected to have no effect on the accuracy 
of the computed statistics, but the sampling fluctuation was expected to increase 
for higher levels of dependency, possibly leading to a higher number of significant 
violations. In general, statistics in all methods are higher when items violate 
assumptions, hence, their values were expected to be higher for conditions with 
violated assumptions compared to conditions without violated assumptions. No 
interaction effect between within-group dependency and assumption violations were 
expected.
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4 Results 

The ICCs reflected the intended substantial increase of the within-group dependency 
for the different conditions. In both independent conditions .ICC = 0.000 . (S =
0.004). In the conditions without violated assumptions, .ICC = 0.327 . (S = 0.046)
and .ICC = 0.660 .(S = 0.045) for the medium and extreme within-group 
dependency conditions, respectively, versus .ICC = 0.278 .(S = 0.043) and 
.ICC = 0.562 .(S = 0.049) in the conditions with violated assumptions, showing 
that the presence of violated assumptions decreased the within-group dependency 
slightly. 

4.1 Manifest Monotonicity 

For conditions without violated assumptions, the average #ca and crit were higher 
for higher within-group dependency conditions (Table 4, columns one to three). In 
addition, the sampling fluctuation of #ca, zmax, and crit was higher for higher levels 
of within group dependency. 

For conditions with violated assumptions, the average #ac, #vi, #zsig, and crit 
were slightly lower for higher within-group dependency conditions. In addition, the 
sampling fluctuation of #ac, #vi, zmax, #zsig, and crit was higher for higher levels 
of within-group dependency (Table 4, columns four to six). 

4.2 Conditional Association 

For conditions with and without violated assumptions, the estimated .W 2
i and its 

standard error were higher for higher within-group dependency conditions. The 

Table 4 Magnitude and sampling fluctuation (in parentheses) of manifest monotonicity statistics 

Without violations With violations 

Independent Medium Extreme Independent Medium Extreme 

#ac 19.21 (2.20) 19.76 (3.20) 19.64 (3.63) 16.11 (1.16) 15.57 (1.98) 15.38 (2.58) 

#vi 0.00 (0.07) 0.01 (0.09) 0.01 (0.10) 1.78 (0.28) 1.70 (0.34) 1.65 (0.39) 

#vi/#ac 0.00 (0.00) 0.00 (0.00) 0.00 (0.01) 0.09 (0.01) 0.09 (0.01) 0.09 (0.01) 

maxvi 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.03 (0.01) 0.03 (0.01) 0.03 (0.01) 

sum 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.23 (0.05) 0.22 (0.06) 0.21 (0.07) 

sum/#ac 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.01 (0.00) 0.01 (0.00) 0.01 (0.00) 

zmax 0.00 (0.07) 0.01 (0.10) 0.01 (0.12) 0.76 (0.15) 0.77 (0.16) 0.76 (0.21) 

#zsig 0.00 (0.00) 0.00 (0.01) 0.00 (0.03) 1.50 (0.23) 1.42 (0.27) 1.37 (0.31) 

crit 0.10 (1.49) 0.21 (2.23) 0.28 (2.74) 42.85 (4.61) 42.61 (5.19) 41.96 (6.57)



230 L. Koopman

Table 5 Magnitude and sampling fluctuation (in parentheses) of conditional association statistics 

Without violations With violations 

Independent Medium Extreme Independent Medium Extreme 

.W 1
ij 0.02 (0.04) 0.02 (0.04) 0.04 (0.09) 3.19 (0.21) 3.20 (0.23) 3.21 (0.28) 

.W 2
i 18.52 (2.01) 18.71 (2.14) 19.27 (2.57) 23.86 (2.46) 24.00 (2.54) 24.34 (2.81) 

.W 3
ij 2.06 (0.69) 2.08 (0.69) 2.14 (0.71) 2.65 (0.68) 2.67 (0.69) 2.70 (0.71) 

Table 6 Magnitude and sampling fluctuation (in parentheses) of manifest invariant item ordering 
statistics 

Without violations With violations 

Independent Medium Extreme Independent Medium Extreme 

#ac 51.72 (1.62) 50.31 (2.81) 48.89 (3.60) 42.87 (1.16) 42.74 (1.96) 42.34 (2.77) 

#vi 0.16 (0.39) 0.14 (0.38) 0.14 (0.37) 3.92 (1.54) 3.80 (2.01) 3.62 (2.30) 

#vi/#ac 0.00 (0.01) 0.00 (0.01) 0.00 (0.01) 0.09 (0.03) 0.09 (0.04) 0.08 (0.05) 

maxvi 0.01 (0.01) 0.00 (0.01) 0.00 (0.01) 0.25 (0.04) 0.24 (0.05) 0.23 (0.08) 

sum 0.01 (0.02) 0.01 (0.02) 0.00 (0.01) 0.62 (0.22) 0.59 (0.32) 0.56 (0.39) 

sum/#ac 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.01 (0.00) 0.01 (0.01) 0.01 (0.01) 

zmax 0.18 (0.44) 0.16 (0.44) 0.16 (0.42) 6.77 (1.12) 6.76 (1.58) 6.70 (2.34) 

#zsig 0.02 (0.13) 0.02 (0.13) 0.01 (0.11) 3.21 (1.32) 3.09 (1.75) 2.94 (2.03) 

crit 3.04 (7.71) 2.80 (7.61) 2.64 (7.20) 120.37 (21.33) 117.71 (30.89) 114.21 (40.56) 

.W 3
ij was on average slightly higher for higher within-group dependency conditions, 

whereas for .W 1
ij only the sampling fluctuation was higher in higher within-group 

dependency conditions (Table 5). 

4.3 Manifest Invariant Item Ordering 

For the conditions without violated assumptions, the average #ac and crit value were 
lower for higher levels of within-group dependency (Table 6, columns one to three). 
The sampling fluctuation was higher for #ac, but lower for crit. For conditions with 
violated assumptions, the average #ac, #vi, sum, zmax, #zsig, and crit values were 
lower for higher within-group dependency conditions. In addition, the sampling 
fluctuation of #ac, #vi, sum, zmax, #zsig, and crit values were higher for higher 
levels of within-group dependency (Table 6, columns four to six). 

5 Discussion 

This chapter investigated the effect of within-group dependency on the accuracy 
and efficiency of various fit statistics provided by methods manifest monotonicity,
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conditional association, and manifest invariant item ordering. Results showed that, 
in general, the magnitude of all fit statistics was very similar across the different 
within-group dependency conditions. In addition, the statistics that should identify 
violations of the assumptions were substantially higher in the conditions with 
violated assumptions. 

For manifest monotonicity and manifest invariant item ordering, the number of 
active comparisons and number of violations fluctuated slightly more for higher 
within-group dependency conditions. However, when there are more comparisons, 
there are more possibilities for violations to occur. Therefore, the average number of 
violations per comparison is arguably more interesting, and that was unaffected by 
the level of within-group dependency, as was the average violation per comparison. 
Hence, the average number of violations as well as the average violation per 
comparison were accurately and efficiently estimated regardless of the degree of 
within-group dependency. The maximum z value, number of significant violations, 
and crit value fluctuated slightly more across samples for higher within-group 
dependency conditions. Hence, these values are less efficiently estimated in samples 
with larger within-group dependency, although the effect was negligible. 

For the three conditional association coefficients the magnitude and sampling 
fluctuation was similar across within-group dependency conditions. Of these fit 
statistics, statistic .W 2

i was to the highest degree affected, but this may be due to 
the fact that its general magnitude and sampling fluctuation was substantially larger 
compared to the other two statistics. To conclude, the results suggest that fit statistics 
may be used safely in the presence of within-group dependency, giving appropriate 
results for items that did or did not violate assumptions. 
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Regularized Robust Confidence Interval 
Estimation in Cognitive Diagnostic 
Models 

Candice Pattisapu Fox and Richard M. Golden 

Abstract Although prior work has investigated the effects of model misspeci-
fication on inference in Cognitive Diagnostic Models (CDMs) (e.g., Liu et al., 
Multivar Behav Res, 1–20, 2021), few studies have explored how regularization 
methods might impact issues of local identifiability and the quality of statistical 
inference in the presence of model misspecification. In the present study, Tatsuoka’s 
(George et al., J Stat Software 74(2), 24, 2016; Tatsuoka, Analysis of errors in 
fraction addition and subtraction problems. Final report for NIE-G-81-0002, 1984) 
15 question fraction-subtraction data set (n = 536) was fit to a five latent skill DINA 
CDM using a uniform attribute profile distribution. A Gaussian prior was introduced 
to regularize the DINA CDM using MAP estimation (Ma and Jiang, Appl Psychol 
Meas 45(2):95–111, 2021). Next, parametric bootstrap data sets were generated 
from the fitted model and fit to both the original model and a misspecified version of 
the original model. By including an informative Gaussian prior, confidence interval 
coverage estimation performance was shown to improve for the Robust covariance 
matrix estimator but not for the Hessian and OPG covariance matrix estimators. 

Keywords Cognitive diagnostic models · Regularization · Misspecification · 
MAP estimation · Robust covariance matrix 

1 Introduction 

Cognitive Diagnostic Models (CDMs) are restricted, parameterized latent class 
models of assessments which predict student correct item response probability as 
a function of latent skill mastery for a particular exam item. Although CDMs 
have tremendous potential for improving the quality of formative assessments in 
classrooms, their full potential remains underutilized due to challenges associated 
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with smaller examinee populations relative to many high-stakes assessment efforts 
(Sessoms & Henson, 2018; Paulsen & Valdivia, 2022). In such cases, statistical 
regularities in the environment are not sufficient to support unique identification of 
parameter estimates and this process can be further influenced by the presence of 
model misspecification. 

It is well-known that a Maximum Likelihood Estimate (MLE) has an asymptotic 
Gaussian distribution which, in turn, supports the construction of confidence 
intervals and hypothesis tests. In particular, if the probability model is correctly 
specified, the asymptotic Gaussian distribution of the MLE has a mean given 
by the true parameter value and a particular positive definite covariance matrix 
(e.g., Huber, 1967; White, 1982; Golden, 2020). In this special case of correct 
specification, the MLEs are asymptotically Gaussian with a covariance matrix 
which may be estimated using either the Hessian Covariance Matrix (derived from 
second derivatives of the likelihood function) or the Outer Product Gradient (OPG) 
Covariance Matrix (derived from first derivatives of the likelihood function and 
sometimes referred to as the Fisher Information Matrix or Cross-Product Matrix). 

If the model is misspecified, then the maximum likelihood estimates can still be 
shown to have an asymptotic Gaussian distribution centered at the parameter values 
which minimize the cross-entropy of the fitted model relative to the distribution 
which generated the observed data. The asymptotic MLE covariance matrix in 
this case is called the Robust covariance matrix and is computed by combining 
the OPG and Hessian covariance matrix formulas (e.g., Huber, 1967; White, 
1982; Golden, 2020) This approach also requires that both the OPG and Hessian 
covariance matrices are positive definite. This theoretical reason for using the 
Robust covariance matrix estimation methodology relative to the OPG and Hessian 
covariance matrix estimators when model misspecification is present has been also 
empirically supported in CDM simulation studies (e.g., Liu et al., 2021). 

In a recent simulation study, Liu et al. (2021) have commented that the estimated 
accuracy of standard errors of parameter estimates appears to be affected in 
overspecified CDMs. Such situations may correspond to cases where the OPG or 
Hessian covariance matrix estimator is singular or near-singular. MAP (Maximum 
A Posteriori) estimation is an extension of ML estimation which provides oppor-
tunities for introducing prior knowledge to possibly improve identifiability and 
statistical inference quality (Mislevy, 1986; Maris,  1999; Golden, 2020; Ma and 
Jiang, 2021). 

It can be shown (see discussion near Eq. 5) that a MAP estimation methodology 
with a Gaussian prior can be used to ensure at least that the Hessian covariance 
matrix estimator is positive definite for finite sample sizes. We refer to situations 
where the Gaussian prior keeps the magnitude of the Hessian covariance matrix 
estimator from becoming excessively large as “high regularization situations”. 
When model misspecification is present, however, this regularization strategy does 
not necessarily guarantee that the OPG covariance matrix estimator will be positive 
definite (Golden, 2022). 

The objective of this study is to investigate the effects of model misspecification 
and regularization on CDM confidence interval coverage probabilities calculated
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using the Hessian, Robust, and OPG covariance matrix estimation methods. Using a 
simulation study methodology, the parameters for correctly specified and misspec-
ified models will be estimated using MAP estimation with a Gaussian prior. The 
magnitude of the covariance matrix of the Gaussian prior will also be manipulated 
for the purpose of contrasting low and high regularization situations. 

2 Mathematical Theory 

2.1 Cognitive Diagnostic Model Specification 

2.1.1 Data Model 

Assume the question bank consists of J questions. Let . xi be a J -dimensional binary 
vector whose j th element, . xij , is equal to one if and only if examinee i correctly 
answers the j th question in the question bank. Let J -dimensional binary vector 
. xi denote the response vector for the ith examinee. Assume the observed data 
.x1, . . . xn is a realization of a stochastic sequence of independent and identically 
distributed random vectors .x̃1, . . . , x̃n. 

2.1.2 Probability Model of Data Generating Process 

Let . αi be a K-dimensional binary vector whose kth element is equal to one if and 
only if examinee i demonstrates mastery of latent skill k. Define the latent skill 
profile for the ith examinee as the K-dimensional binary vector . αi . Assume the 
responses for the ith examinee are denoted by . xi and the latent attribute skill profile 
for the ith examinee, . αi , are both observable. Let .qj = [qj,1, . . . , qj,K ] denote the 
j th row of the . Q matrix whose element in row j and column k specifies that the kth 
skill is relevant for answering the j th question. 

Let .S(u) be defined such that .S(u) = 1/(1 + exp(−u)). Let  . βj = [βj,1, βj,2]T
be a two-dimensional column vector which consists of parameters specific to the j th 
question. The probability that the ith examinee correctly answers the j th question 
is given by the formula: 

. p
(
xij = 1|αi ,βj ,qj

) = S (
βjψ(αi ,qj )

)
.

A reparameterized DINA-type CDM (Henson et al., 2009) may be implemented 

by choosing . ψ such that: .ψ(α,qj ) =
[(∏K

k=1 α
qj,k

k

)
, −1

]T

. Consequently, 

.S(−βj,2) is the probability that the participant correctly guesses the answer to 
the j th question when the participant does not possess all of the relevant skills 
required to answer the j th question (i.e., when .

∏K
k=1 α

qj,k

k = 0). In addition, 
.1 − S(βj,1 − βj,2) is the probability that the participant incorrectly answers
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the j th question when the participant has all of the relevant skills (i.e., when 
.
∏K

k=1 α
qj,k

k = 1). 
Using the short-hand notation .pij (βj ,α) = p

(
xij = 1|α,βj ,qj

)
, it follows:  

. p(xij |α,βj ,qj ) = xijpij (βj ,α) + (1 − xij )(1 − pij (βj ,α)).

The conditional probability of all observed responses for the ith examinee, . xi , given  
the skill attribute profile . α of the examinee is then given by the formula: 

. p(xi |α,β) =
J∏

j=1

p(xij |α,β,qj ).

2.1.3 Latent Skill Attribute Profile Probability Model 

A Bernoulli latent skill attribute probability model (e.g., Maris, 1999) is assumed so 
that the probability that the kth latent skill, . αk , is present in the attribute pattern is 
given by the formula 

. p(αk|ηk) = αkS(−ηk) + (1 − αk)(1 − S(−ηk))

where . ηk may be a free parameter. However, in this paper, . ηk is  assumed to be a  
constant. The probability, .p(α), of a skill attribute profile, .α = [α1, . . . , αK ], for an 
examinee is given by the formula: .p(α) = ∏K

k=1 p(αk|ηk). 

2.1.4 Parameter Prior Model 

The parameter prior for the two-dimensional parameter vector . βj , associated with 
the j th question is a bivariate Gaussian density, .p(βj ), with two-dimensional mean 
vector . μj and two-dimensional covariance matrix .σ 2

β I2 for .j = 1, . . . , J where 
. I2 denotes the two-dimensional identity matrix. It is assumed that .μ1, . . . ,μJ are 
known constants and . σ 2

β is a positive number. Let .μβ = [μ1, . . . ,μJ ]. The joint 
distribution of .β = [β1, . . . ,βj ] is specified by: .p(β) = ∏J

j=1 p(βj ). 

2.2 Parameter Estimation Method 

The complete-data likelihood function, which assumes the latent skill attribute 
profile is observable, for the ith examinee is given by the formula:
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.p(xi ,α|β) = p(α)

J∏

j=1

p(xij |α,βj ,qj ). (1) 

However, since the latent skill attribute profile . α for an examinee is not 
observable we compute the marginal likelihood function for the ith examinee given 
by: 

.p(xi |β) =
∑

α

p(xi ,α|β) (2) 

where the summation is over all possible values of . α (i.e., every . α such that 
.p(α) > 0). 

The goal of the MAP estimation process is to find the parameter values . β which 
maximize the posterior probability density function: 

. p(β|x1, . . . , xn) = p(x1, . . . , xn|β)p(β)

p(x1, . . . , xn)
.

Towards this end, the MAP risk function, .�̂n(β), which is minimized to imple-
ment the MAP parameter estimation process is defined by the formula: 

. �̂n(β) = −(1/n) log (p(β)p(x1, . . . , xn|β))

which since .p(x1, . . . , xn|β) = ∏n
i=1 p(xi |β) may be rewritten as: 

. �̂n(β) = −(1/n) logp(β) − (1/n)

n∑

i=1

c(xi;β)

.where c(xi;β) = − log
∑

α

p(xi |α,β)p(α). (3) 

Because the calculation of the summation in (3) involves summing over different 
possible latent skill attribute patterns, the MAP risk function is not necessarily a 
unimodal function and may have multiple minimizers and saddlepoints (see Golden, 
2020, 2022 for further discussion; also discussion near Eq. 5 of this paper). 

To minimize . �̂n, a gradient descent type method is used to search for critical 
points of . �̂n with the objective of finding a strict local minimizer of . �̂n that provides 
a good fit to the data generating process. 

Define the complete-data log likelihood per observation, .ċ(xi ,α,β) by the 
formula: .ċ(xi ,α,β) = − log (p(xi |α,β)p(α)). The  complete-data gradient per 
observation, .ġ(xi ,α,β), is given by the formula:
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. ġ(xi ,α,β) = −
J∑

j=1

(xij − pij (βj ,α))ψ(α,qj ).

The gradient of .c(xi;β), .g(xi ,β), is given by the column vector-valued function: 

. g(xi ,β) =
∑

α

ġ(xi ,α,β)p(α|xi ,β), p(α|xi ,β) = p(xi |α,β)p(α)
∑

α p(xi |α,β)p(α)
.

(4) 
The summations over . α which are used in the computation of the gradient are often 
computationally intractable. However, the CDM used here has only five skills so the 
summations are straightforward since the summation only has .25 = 32 terms. 

To minimize the MAP risk function, the deterministic LBFGS algorithm (see 
Section 7.3.3 of Golden, 2020 for additional details) was used. The algorithm can 
be shown to converge to the set of critical points of . �̂n (e.g., Golden, 2020). Once 
a critical point is reached, then the Hessian of . �̂n can be evaluated at that point to 
check if the critical point is a strict local minimizer (e.g., Golden, 2020). 

2.3 Asymptotic Statistical Theory for Confidence Intervals 

In this section, we present explicit details regarding the calculation of confidence 
intervals. Here we assume that a parameter estimate . β̂n has been obtained which is 
a strict local minimizer of .�̂n(β) in some (possibly very small) closed, bounded, and 
convex region of the parameter space . Ω for all sufficiently large n. Furthermore, 
we assume that the expected value of .�̂n(β), .�(β), has a strict global minimizer, . β∗, 
in . Ω . This setup of the problem thus allows for situations where . � has multiple 
minimizers, maximizers, and saddlepoints over the entire unrestricted parameter 
space. Given these assumptions, it can be shown (e.g., White, 1982; Golden, 2020, 
2022) that . β̂n in this case is a consistent estimator of . β∗. 

Let . A∗ denote the Hessian of . �, .A(β), evaluated at . β∗. Let  . B∗ denote . B(β) =
E{g(x̃i ,β)(g(x̃i ,β))T } evaluated at the point . β∗. It is well known (e.g., White, 
1982; Golden, 2020, 2022) that if . A∗ and . B∗ are positive definite, then the asymp-
totic distribution of . β̂n is a multivariate Gaussian with mean . β∗ and covariance 
matrix .(1/n)C∗ ≡ (1/n)(A∗)−1B∗(A∗)−1. In the special case where the model 
is correctly specified in the sense that the observed data is i.i.d. with common 
probability mass function .p(x|β∗), then the covariance matrix . C∗ may be computed 
using either .(A∗)−1 or .(B∗)−1. 

It then follows that the Hessian covariance matrix .[A∗]−1 is estimated by 
evaluating the Hessian of . �̂n, .Ān(β), at . β̂n where
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. Ān(β) = 1

nσ 2
β

I q + (1/n)

n∑

i=1

Äi (β), Äi (β) = d
∑

α ġ(xi ,α,β)p(α|xi ,β)

dβ

(5) 
Using the Missing Information Principle (Louis, 1982, see Section 13.2.5 of 

Golden, 2020 for a review) it can be shown that the right-most equation in (5) is the  
difference of two positive semidefinite matrices. Thus, it is possible that .Ān(β) has 
negative eigenvalues for a particular . β. However, if .nσ 2

β is sufficiently small (“high 

regularization case”), this can be used to ensure that .Ān(β) is positive definite for a 
particular . β and particular sample size n. 

The OPG covariance matrix .[B∗]−1 is estimated by 

. B̂n = (1/n)

n∑

i=1

g(x̃i , β̂n)(g(x̃i , β̂n))
T .

Unlike the Hessian covariance matrix case, adjusting .nσ 2
β does not directly effect 

the rank of the OPG covariance matrix unless the probability model is correctly 
specified. 

The Robust covariance matrix . C∗ is estimated by .Ĉn = Â−1
n B̂nÂ−1

n . A 95% 
Robust confidence interval for the j th element of . β̂n, .β̂n,j has an estimated 

lower bound of .β̂n,j − 1.96
√

Ĉn,j,j /n and an estimated upper bound of . β̂n,j +
1.96

√
Ĉn,j,j /n where .Ĉn,j,j is the j th on-diagonal element of . Ĉn. Both Hessian 

and OPG confidence intervals can be computed in a similar manner by respectively 
replacing . Ĉn in these confidence interval formulas with .Â−1

n or .B̂−1
n . 

3 Simulation Study 

3.1 Methods 

This study used an extraction of the Tatsuoka (1984) Fraction-Subtraction data 
set (George et al., 2016; Tatsuoka, 1984) consisting of 15 questions, 5 skills, and 
536 students. The data set was fit using the previously described MAP estimation 
method to the previously described CDM. 

The same multivariate Gaussian prior was used for all items. The mean of the 
Gaussian prior for an item was chosen such that both the guess and slip probabilities 
were equal to 0.354. The covariance matrix for the Gaussian prior was . σ 2

β I. For  the  

high regularization case, .σ 2
β = 900/n so that .1.96σβ = 2.54 corresponds to an 

informative prior which assigns high probability mass on a small region surrounding 
the Gaussian prior mean. For the low regularization case, . σ 2

β = 9,000,000/n

so that .1.96σβ = 254 corresponds to an uninformative prior which assigns high 
probability mass for a larger region surrounding the Gaussian prior mean. The
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specific numerical choices for . σ 2
β were chosen based upon some preliminary pilot 

simulation studies. 
To create the correctly specified model experimental condition, the simulation 

study involved sampling with replacement from a CDM fitted to the original data 
set to generate multiple bootstrap data sets, rather than sampling with replacement 
from the data set. Then, the CDM used to generate the data was fit to the bootstrap 
data sets to obtain parameter estimates for the correctly specified case. The Q matrix 
of the CDM used to generate the data was then modified by randomly flipping 20% 
of its elements and then this modified-CDM was fit to the bootstrap data sets to 
obtain parameter estimates for the misspecified case. 

Final statistics were first computed in two ways. First, all of the bootstrap data 
samples (“all cases”) were used. Second, only confidence intervals which could 
be reliably estimated (“identifiable cases”) were used. The criterion for a reliably 
estimated confidence interval involved checking if: (1) parameter estimates used to 
estimate the confidence interval satisfied the numerical convergence criterion that 
the infinity norm of the gradient with respect to those parameter estimates was less 
than 0.00001, and (2) the covariance matrix used to estimate the confidence interval 
had a condition number less than 1000. 

3.2 Results 

For identifiable cases, fewer bootstrapped samples satisfied the local identifiability 
criterion for the low regularization case (60%), while nearly all satisfied the 
criterion for the high regularization case (99%), illustrating that situations where 
the covariance matrix is nearly singular were common in this study. 

Figure 1 shows that bootstrap-averaged confidence intervals for item slip prob-
abilities in the correctly specified case are wider for the low regularization case 
and narrower for the high regularization case. Table 1 provides a quantitative 
comparison of how estimated Type 1 error rates vary as a function of Hessian, 
Robust, and OPG estimation methods, presence of misspecification, degree of 
regularization, and bootstrap sample local identifiability inclusion criterion. For the 
low regularization (uninformative prior) case where the model is correctly specified 
and satisfies the local identifiability criterion, the estimated Type 1 error rate was 
close to the expected p = 0.05 level for all covariance matrix estimators, consistent 
with theory. For the high regularization (informative prior) case where the model 
is misspecified, the estimated Type 1 error rate was close to the p = 0.05 level only 
for the robust covariance matrix estimator, which was also consistent with theory. 
Finally, the OPG covariance matrix estimator for the low regularization case showed 
good performance in the presence of model misspecification. This latter result is 
not theoretically expected and we plan to pursue additional simulation studies to 
investigate its reliability.
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Fig. 1 Slip Probability Confidence Intervals: Correctly Specified Case. Averaged Hessian, OPG, 
and Robust 95% confidence intervals shown respectively using red lines, green lines, and blue lines 
are expected to contain approximately 95% of the individual bootstrap slip probability estimates 
which are denoted as black dots. Low regularization slip probability confidence intervals (left) are 
wider than high regularization slip probability confidence intervals (right) 

Table 1 Estimated Type 1 error rate computed by counting the percentage of times bootstrap 
parameter estimates not included in an averaged 95% confidence interval. The numbers in 
parentheses are the number of bootstrap data sets, M , which satisfied a criterion specifying if 
the parameter estimates are identifiable. P-values close to 0.05 indicate agreement with asymptotic 
theory. Best performance was obtained for high regularization cases using the robust covariance 
matrix estimator 

All cases (M= 100) Identifiable cases (M . < 100) 

Hessian Robust OPG Hessian Robust OPG 

Low Reg. 

Correct 0.066 0.072 0.062 0.058 (57) 0.057 (57) 0.053 (57) 
Misspecified 0.017 0.075 0.064 0.062 (63) 0.061 (63) 0.054 (63) 
High Reg. 

Correct 0.030 0.049 0.020 0.029 (99) 0.048 (99) 0.019 (99) 

Misspecified 0.038 0.054 0.023 0.039 (99) 0.053 (99) 0.023 (99) 

4 General Discussion 

In this paper, we investigated how a regularization strategy influenced the quality of 
three different methods for estimating confidence intervals for MAP estimates in the 
presence of model misspecification. We found that increased levels of regularization 
tended to improve the quality of confidence interval estimation regardless of the 
presence of model misspecification when the Robust confidence interval estimation 
method was used. We also empirically showed that when the estimated covariance 
matrices are close to singular that the quality of the confidence interval estimators 
could be compromised. 

These results suggest that regularization may be an important tool in practice 
for handling situations where near-singular covariance matrices are encountered,
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and the Robust covariance matrix estimator may be important for ensuring reliable 
estimation of sampling error in such cases. In summary, these results emphasize the 
importance of examining the rank of the Hessian and OPG covariance matrix esti-
mators to ensure reliable statistical inference. Results such as these will ultimately 
be important for developing robust CDM inference tools. 
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Continuation Ratio Model for 
Polytomous Responses with Censored 
Like Latent Classes 

Diego Carrasco , David Torres Irribarra, and Jorge González 

Abstract Polytomous item responses are prevalent in background or context 
questionnaires of International large-scale assessments (ILSA). Responses to these 
types of instruments can vary in their symmetry or skewness. Zero inflation of 
responses can lead to biased estimates of item parameters in the response model 
and also to a downward bias in the conditional model when the zero inflated 
component is not accounted for in the model. In this paper, we propose to use 
a mixture continuation ratio response model to approximate the non-normality of 
the latent variable distribution. We use responses to bullying items from an ILSA 
study, which typically present positive asymmetry. The present model allows us 
to distinguish bullying victimization risk profiles among students, retrieve bullying 
victimization risk scores, and determine the population prevalence of the bullying 
events. This study also aims to illustrate how to fit a mixture continuation ratio 
model, including complex sampling design, thus expanding the modeling tools 
available for secondary users of large-scale assessment studies. 

Keywords Continuation ratio model · Polytomous items · Item response theory · 
Bullying · Latent classes · Mixture models 
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1 Introduction 

Polytomous response distributions to multi-item instruments can vary in symmetry 
or skewness (Rhemtulla et al., 2012). In some cases, extreme responses can have a 
substantive interpretation. For example, the accumulation of the lowest response 
category of a list of symptoms can be interpreted as an absence of pathology. 
Similarly, an accumulation of responses in the lowest category of response to 
bullying victimization instruments can be expected from non-bullied students. In 
summary, there are cases where an extreme positive asymmetry in a response 
distribution across different items can be of interest. 

However, common response models to polytomous items do not directly rep-
resent this accumulation to the lowest response category across all items. Within 
the international large-scale assessment studies (ILSA) (Rutkowski et al., 2010), 
the most popular response models to score responses to multi-items scales with 
ordered response categories are the partial credit model (PCM, Masters, 1982), the 
graded response model (GRM, Samejima, 1968) and confirmatory factor analyses 
(CFA, Jöreskog, 1969). None of these response models include a term to make 
interpretations and inferences to a high accumulation of responses to its lowest 
category. In the case of bullying instruments, a scenario where several items present 
a high accumulation of responses of this sort, previous studies have resorted to 
the creation of sums scores (e. g., Rutkowski et al., 2013). This latter strategy, 
mixed with the use of zero-inflated Poisson and negative binomial models, allows 
researchers to separate inferences regarding rates of bullying events and inferences 
regarding the absence of events for the accumulation of zeros in the sum score 
(Loeys et al., 2012). 

Nevertheless, the sum score approach detaches the item side information of the 
response pattern. The sum score represents the person side of the response pattern to 
different items and the accumulation of zeros. Yet, the response prevalence among 
the items is lost, and the representation of measurement error is also lost. What can 
we do if we want to have all the information altogether? That is, to have the person 
side information regarding the absence of bullying, and rates of bullying, keeping-
in the item side information of the relative prevalence among different bullying 
indicators. Moreover, what can we do, if we want to address these challenges, with 
ILSA studies? Essentially, we would need a response model that can give us what 
traditional IRT models do while adding an element to represent the zero responses, 
while also providing estimates generalizable to the surveyed population. Building 
from our previous work (Carrasco et al., 2022), in this paper, we propose a response 
model with mixtures to address the presented challenges with an applied example. 

The paper is organized into six sections. We first describe the battery of items 
of our applied example and how responses to this instrument have been modeled 
in previous research (Sect. 2). In the following section (Sect. 3), we present our 
approach and its distinctive features to the selected application. In the Method 
section (Sect. 4), we describe the empirical data of our example, and we fit the 
presented model. We described the results in the Results section (Sect. 5). And
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finally, in Sect. 6, we compare the presented model to other alternatives and point to 
future research. 

2 Common Approaches to Model Responses to Bullying 
Victimization Items in Large-Scale Assessment 

In the present work, we are interested in modeling responses to bullying items as 
a case where positive asymmetry is present, where a high frequency of zeros is 
interpretable. In particular, we have selected the “Students’ experience of physical 
and verbal abuse at school” from the International Civic and Citizenship Education 
Study, abbreviated ICCS 2016 (Schulz et al., 2018). This battery of items consists 
of six bullying victimization events, to which students respond how often they have 
experienced these events in the last 3 months at their school. The response options 
are “not at all”, “once”, “2 to 4 times”, and “5 times or more”. Table 1 shows this 
battery of items and the observed percentage of response to each category for the 
pooled international sample of the study. In the literature on school bullying, these 
types of instruments are referred to as “bullying victimization measures” (Volk et 
al., 2014), and are used to represent the propensity of students to experience bullying 
events at their school. Other ILSA studies present similar batteries of bullying items, 
such as the “Student bullying scale” present in PIRLS 2016 (Martin et al., 2017), 
a similar variant “Student bullying scale” can be found in TIMSS 2019 (Yin & 

Table 1 “Students’ experience of physical and verbal abuse at school” in ICCS 2016 

Frame 
During the last three months, how often did you experience the following situations 
at your school? (Please tick only one box in each row.) 

Not at all (%) Once (%) 2–4 times (%) 
5 times or 
more (%) deltas 

bul1 
A student called you by an 
offensive nickname 45 26 15 14 −1.16 

bul2 
A student said things about 
you to make others laugh 44 27 18 12 −1.09 

bul3 
A student threatened to hurt 
you 81 11 5 3 0.30 

bul4 
You were physically 
attacked by another student 84 11 4 3 0.50 

bul5 

A student broke something 
belonging to you on 
purpose 80 15 4 2 0.53 

bul6 

A student posted offensive 
pictures or text about you 
on the Internet 90 7 2 1 0.90 

Note: Response rates to each category, are obtained using the pooled international sample from 
ICCS 2016 (Schulz et al., 2018a, p. 236). We use “bul1-bul6” to refer to each specific item. “deltas” 
are delta dot parameters (Wu et al., 2016), reported in the technical report of the ICCS 2016 (Schulz 
et al., 2018, p. 164)
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Fishbein, 2020), the “Exposure to bullying” is in PISA 2018 (OECD, 2019), and 
the “Violence within the school” can be found in ERCE 2019 (UNESCO, 2022). 
Thus, our selected case can shed light on common challenges across different ILSA 
studies regarding how to model bullying victimization responses. 

Scale scores are derived from responses to the bullying scale in ICCS 2016 using 
a PCM. The generated logit scores are linearly transformed and release with a mean 
of 50 and a standard deviation of 10 units in the public data file (Schulz et al., 
2018). Thus, when researchers are interested in studying relationships between the 
propensity to experience bullying with other factors, they do so using this generated 
scores available in the publicly released data from the study (e.g., Arroyo Resino et 
al., 2021; Schulz et al., 2018b; Tramontano et al., 2020). The application of the PCM 
also allows researchers to make inferences regarding the item side of the scale, and 
the prevalence of each bullying event in a multivariate way. By interpreting the delta 
parameter as a general location of item difficulty (Wu et al., 2016), one can make 
inferences regarding what is the riskier bullying event, the median item, and the 
most frequent bullying event among students. For instance, “bul6” is the riskier item 
from the battery. Students who have been bullied online are more likely to have also 
suffered from less risky bullying events (those items with lower delta estimates). In 
contrast, being teased (bul1, bul2) is a more common experience among students, 
and more than half of the students have experienced this event at least once. 

A limitation of these generated scores is that they don’t help researchers or 
secondary data users to represent the accumulation of responses to the lowest 
category across all items. Students who answer “not at all” to all items are the 
students who do not suffer from bullying at school. Using the derived scores, 
researchers can’t easily separate the non-bullied students from those who suffer 
bullying in conditional models. The non-bullied students can be viewed as censored 
cases, representing students at the lowest level of bullying risk. Not accounting for 
these censored cases can lead to downward bias estimates for inferences models 
(e.g., conditioning bullying scores with other covariates) (Masyn, 2003). We believe 
researchers resort to using sum scores mixed with zero-inflated Poisson models, 
to surpass the previous limitation (e.g., Rutkowski et al., 2013; Rutkowski & 
Rutkowski, 2016). Assuming the items’ responses fit closely with the PCM, the sum 
score can keep the order of bullying risk among respondents. Indeed, the PCM score 
over these items and its sum score are highly correlated (r = .94) within the ICCS 
2016 study. Thus, the sum score provides an advantage for researchers interested 
in addressing inquiries regarding the person side of the responses. Using the sum 
score as the dependent variable, coupled with zero-inflated Poisson models, helps 
researchers to separate inferences between students at the lowest risk and students 
with some prevalence of bullying (Fu et al., 2013). Moreover, accounting for the 
“lowest risk” students in the conditional model helps to avoid the downward bias 
estimates in the inquiry of risk factors (Baetschmann & Winkelmann, 2017). 

A limitation of the sum score approach under the presence of missing responses 
is that the simple sum score would classify students as “no risk,” while the PCM 
scores could locate these cases differently, conditional on the prevalence of response 
to all items. Thus, a response model that can account for the “censored” side of the
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distribution within the response model seems like an advantageous approach. In the 
next section, we describe a response model to address the present challenges. 

3 Continuation Ratio Model with Mixtures to Account for 
Non-normality in the Latent Distribution 

In this section we present an extension of a continuation ratio response model 
(CRM, Tutz, 2016), based on our earlier work (Carrasco et al., 2022). Continuation 
ratios are a way to formulate the logit link to the response categories and build 
a response model (de Boeck & Partchev, 2012). While partial credit models 
compare the log odds of adjacent categories and the graded response model relies 
on cumulative ratio logits, the proposed model uses the log odds of a category 
compared to all earlier categories for each item. This parametrization is referred 
to as a “decreasing order” continuation ratio (Gochyyev, 2015). To implement 
this response model, we use the expansion technique Gochyyev (2015) proposed, 
converting the original items with k responses into an expanded response matrix 
of k-1 pseudo items in a wide data format (see Carrasco et al., 2022 for more 
details). In the present application θp represents the propensity of students to report 
being bullied, while δi represents how frequent the bullying event is across students, 
compared to earlier frequency options. If we code the response options of the 
bullying scale numerically as zero for “not at all,” and 1, 2, 3 for “once,” “2 to 
4 times,” and “5 times or more” respectively, the response model can be written as 
follows: 

log

(
Pr

(
ypi = s

)
Pr

(
ypi < s

)
)

= θp − δis, s  = 0, 1, 2, 3 (1) 

To expand the current model to account for the left censoring or non-normality of 
the latent distribution term, we include latent classes into the model. We include 
latent classes that preserve the item locations and divide the latent continuum into 
groups. For identification purposes, one latent mean is fixed to zero, while the rest 
of the latent means are freely estimated, while constraining the variance term of θp, 
ζ = 0. This model specification is similar to a discrete survival model, where the 
frailty parameter is approximated using mixtures (Masyn, 2003, 2009), yet instead 
of modeling a “time-to-event” indicator expressing continuation ratios, our model is 
fitted into a series of continuation ratios used to represent the relative frequency 
of responses to bullying events. Figure 1 shows a schematic representation of 
the continuation ratio response model, and its’ variant with mixtures using path 
diagrams. We will use the acronym M-CRM, to refer to this latter model. 

In summary, the proposed model can be viewed as a non-parametric factor 
analysis, or as a case of a located latent class model (Masyn et al., 2010), 
with ordered category responses with continuation ratio logit links. This model
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Fig. 1 Path diagrams of the continuation ratio response model (CRM), and its factor mixture 
variant (M-CRM). (Note: CRM is the continuation ratio response model presented in Eq. 1, and M-
CRM is the path diagram of its factor mixture variant. θ represents the propensity of being bullied; 
bul1_0- bul1_2 are the pseudo items to represent the responses to item bul1 as continuation ratios; 
C represents the latent classes included in the model conditioning θ . ζ is the variance term for θ 
freely estimated in the CRM and constrained in M-CRM. λ represent the factor loadings in the 
model fixed to one in both models. −τ 1.1 to −τ 6.2 are the model thresholds that represent the item 
locations) 

allows comparison of students on the θ continuum, and comparisons on the class 
membership. However, members of the same class are expected to have the same 
score on θ (Masyn et al., 2010). In the following section, we describe our illustration 
example. 

4 Methods 

4.1 Selected Data for Illustration 

We use data from the International Civic and Citizenship Education Study from 
ICCS 2016. We are using responses to the “Students’ experience of physical and 
verbal abuse at school” from ICCS 2016 (see Table 1). We are using the responses
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from the Latin American participating samples, including Chile, Colombia, Domini-
can Republic, Mexico, and Perú. ICCS 2016 follows a two-stage sampling design, 
stratifying schools, and collecting responses from students from the same classroom 
within each selected school. This sample design reaches representative samples 
of 8th graders from each participating country, collecting responses of 3937–5609 
students, and from 141 to 206 schools from each participating country (see Carrasco 
et al., 2022 for more details). 

4.2 Analytical Strategy 

To fit the proposed model, we use the pooled sample of selected countries and 
scaled the survey weights so each country sample contributes equally to the model 
estimates (Gonzalez, 2012). We generate the k-1 pseudo items in wide format, con-
verting the original responses to items bul1-bul6, into a continuation ratio dummy 
coded variables (bul1_0-bul6_2). These generated variables are our dependent 
variables in the response model. We use Taylor Series Linearization to account for 
the study sampling design, and pseudo maximum likelihood (Asparouhov, 2005) 
as implemented in Mplus 8.8 (Muthén & Muthén, 2017) to produce our estimates. 
Table 2 presents the Mplus code we used to fit the selected model. 

To determine the number of latent classes in the model, we fit a series of models 
with 1–5 classes, and relied in the Vuong-Lo-Mendell-Rubin Likelihood Ratio test 
(VLMR-LRT) comparing k versus k + 1 classes (Nylund-Gibson & Choi, 2018). 
This later test favors the M-CRM with three classes over the M-CRM with four 
classes (VLMR-LRT p = .02). We described the results using the selected model. 

5 Results 

We describe the obtained results in three parts. First, the fixed effects estimates of the 
model are used to describe the relative frequency of the bullying events indicators. 
We analyze the person parameters approximated with mixtures in the second part to 
describe bullying risk profiles. Finally, we used the model expected proportions of 
the first pseudo item of each bullying indicator to describe the difference between 
the classes regarding their response profile. In Fig. 2, We use a modified version of 
an item-person map to summarize the main results. 

5.1 Item Side 

The results for the item side of the M-CRM are similar to those obtained with 
a continuation ratio response model with a continuous latent variable distribution
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Table 2 Mplus syntax used to fit the CRM-C 

TITLE:M-CRM-C3;

DATA:
FILE = 
"bull_scale.dat";

VARIABLE:
NAMES =
id_i id_j id_s ws
bul1 bul2 bul3
bul4 bul5 bul6
bul1_2 bul1_1 bul1_0
bul2_2 bul2_1 bul2_0
bul3_2 bul3_1 bul3_0
bul4_2 bul4_1 bul4_0
bul5_2 bul5_1 bul5_0
bul6_2 bul6_1 bul6_0
;

MISSING=.;

CATEGORICAL =
bul1_2 bul1_1 bul1_0
bul2_2 bul2_1 bul2_0
bul3_2 bul3_1 bul3_0
bul4_2 bul4_1 bul4_0
bul5_2 bul5_1 bul5_0
bul6_2 bul6_1 bul6_0
;

USEVARIABLES =
bul1_2 bul1_1 bul1_0
bul2_2 bul2_1 bul2_0
bul3_2 bul3_1 bul3_0
bul4_2 bul4_1 bul4_0
bul5_2 bul5_1 bul5_0
bul6_2 bul6_1 bul6_0
;

IDVARIABLE = id_i;
WEIGHT = ws;
CLUSTER = id_j;
STRATIFICATION = id_s;
CLASSES = c(3);

TYPE = COMPLEX MIXTURE;
PROCESSORS = 4;
ESTIMATOR = MLR;
STARTS    = 100 10;
ALGORITHM = INTEGRATION;
LRTBOOTSTRAP = 100;

MODEL:
%overall%
!loadings
theta by bul1_0@1;
theta by bul1_1@1;
theta by bul1_2@1;
theta by bul2_0@1;
theta by bul2_1@1;
theta by bul2_2@1;
theta by bul3_0@1;
theta by bul3_1@1;
theta by bul3_2@1;
theta by bul4_0@1;
theta by bul4_1@1;
theta by bul4_2@1;
theta by bul5_0@1;
theta by bul5_1@1;
theta by bul5_2@1;
theta by bul6_0@1;
theta by bul6_1@1;
theta by bul6_2@1;

!variance;
theta@0;

!item locations
[bul1_0$1] (10);
[bul1_1$1] (11);
[bul1_2$1] (12);
[bul2_0$1] (20);
[bul2_1$1] (21);
[bul2_2$1] (22);
[bul3_0$1] (30);
[bul3_1$1] (31);
[bul3_2$1] (32);
[bul4_0$1] (40);
[bul4_1$1] (41);
[bul4_2$1] (42);
[bul5_0$1] (50);
[bul5_1$1] (51);
[bul5_2$1] (52);
[bul6_0$1] (60);
[bul6_1$1] (61);
[bul6_2$1] (62);

%c 1%
[theta*-1] (a1);

%c 2%
[theta@0] (a2);

%c 3%
[theta*1] (a3);

OUTPUT:
STANDARDIZED
CINTERVAL
RESIDUAL
TECH11;

SAVEDATA:
SAVE = FSCORES;
FILE = 
crm_svy_3c_eap.dat;

Note: id_i is the unique student identifier; id_j is the unique school identifier; id_s is the unique 
strata identifier of the sampling, made distinct between countries, generating 375 unique pseudo 
strata; ws is the normalized survey weights vector, code preceded by “!” are comments 

(see Carrasco et al., 2022), and to those obtained from the partial credit model (see 
Table 1). Accordingly, they lead to similar conclusions when identifying what are 
the most prevalent bullying event and what are the least prevalent bullying event 
across students. The item parameters are informative of the relative frequency of 
each bullying event across the pooled population of students from Chile, Colombia, 
Mexico, Dominican Republic and Perú. The most frequent bullying event among 
students is being mocked (bul2) and being called an offensive nickname (bul1). The 
most frequent and riskier bullying event is being shamed on the internet (bul6). 
Students who have suffered from being shame via offensive pictures and offensive 
texts on the internet are also more likely to have suffered from other bullying events, 
such as physical attacks and threats.
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Fig. 2 Item person map of the bullying scale, using the estimates of the continuation response 
model with mixtures 

5.2 Person Side 

For illustration purposes, we fit a CRM, GRM, and PCM models to the same data, 
including the complex sampling design, estimating person and item parameters 
(θ, δ). The relative fit indices favor the PCM model (BICpcm = 226970.254; 
BICgrm = 227050.074; BICcrm = 227746.389, BICcrm-c2 = 232008.366, 
BICcrm-c3 = 228503.806). The EAP predictions are highly correlated between the 
PCM, GRM, CRM, and the M-CRM with three classes (r = .97–1.00), presenting
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slightly smaller correlations to the M-CRM with two classes θ realizations (r = .89– 
.90). In general terms, the θ realizations of the selected model, the M-CRM with 
three classes, allow to order person in terms of their propensity to be bullied similar 
to the other response models. 

A unique feature of the M-CRM with three classes model is the separation of the 
persons into mixtures. Using three latent classes, we can divide the propensity to be 
bullied into response profiles, a low-risk profile, a modal risk profile, and a high-risk 
profile, denominated class 1, class 2, and class 3 in Fig. 2, respectively. 45% of the 
students are in the lower risk profile, 46% in the modal risk profile, and 9% in the 
high-risk profile. In the next section, we illustrate what each of these profiles entails 
regarding their expected responses. 

5.3 Expected Responses 

In Table 3, we present the results of the expected responses to all the bullying 
event indicators, at their first response category, conditional to their latent class. 
We considered class 1 a low risk profile, class 2 a modal risk profile, and class 3 
a high-risk bullying victimization profile. Students in the low risk are more likely 
to be mocked by their peers at school and they are very unlikely to be threatened, 
suffered from physical attacks, or shamed online. Students in the modal profile are 
more likely to be mocked but very unlikely to be shamed online and present some 
risk of threats and physical attacks. In contrast, students in the high-risk profile 
report to have suffered more frequent bullying events, and most of these students 
have experience threats and physical attacks. A distinctive feature of this profile is 
that these students are more likely to have experienced online shaming (bul6) than 
the rest of the other profiles. 

Table 3 Expected proportions of “once” over “not at all” responses to bullying events 

Bullying event Item Low risk Modal risk High risk 

A student said things about you to make 
others laugh 

bul2 0.25 0.78 0.96 

A student called you by an offensive 
nickname 

bul1 0.21 0.74 0.96 

A student broke something belonging to 
you on purpose 

bul5 0.05 0.33 0.79 

You were physically attacked by another 
student 

bul4 0.02 0.21 0.66 

A student threatened to hurt you bul3 0.02 0.19 0.64 
A student posted offensive pictures or text 
about you on the Internet 

bul6 0.01 0.08 0.39 

Note: All standard errors were equal to or lower than .003
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6 Conclusion and Discussion 

Different response models are designed to account for the non-normal distribution 
of the person parameters and skewness across the responses to items (Reise et al., 
2018). Among these, it is possible to differentiate between models changing the 
assumptions of the distribution of the person parameters or latent distributions and 
models including mixtures to account for the non-normality of the latent term. The 
present model is of the second kind. 

We have illustrated how to fit a continuation ratio response model, including 
mixtures, with sampling design, to a set of bullying event indicators. These types 
of measures are commonly used in ILSA studies. The specified model accounts 
for the heterogeneity of students regarding their propensity to be bullied at school 
and uses mixtures to approximate the non-normal distribution of this heterogeneity. 
It helps to distinguish between low and high bullying victimization profiles while 
simultaneously providing information on the relative prevalence of each bullying 
event across students. 

We believe the presented model has certain advantages. Unlike response models 
assuming normally distributed continuous latent variables, the mixtures present in 
the model can account for the floor effects (e.g., high accumulation of responses in 
the lowest categories) and the positive asymmetry across item responses. Similar 
models designed to account for zero inflation and asymmetry, such as the zero 
inflation graded response and the Davidian curve graded response (Smits et al., 
2020; Wall et al.,  2015), are competing options for the present case. However, 
these models were thought for scenarios where there is no presence of the attribute 
of interest (i.e., no pathology), or there is high asymmetry only. We believe the 
factor mixture variant we specified offers a less restrictive assumption regarding 
the prevalence of the frequency of the indicators in the least risky profile, allowing 
some prevalence of the bullying event indicators instead of no prevalence at all. 
The present model is similar to a located latent class Rasch model (Robitzsch & 
Steinfeld, 2018), that relies on continuation ratio logits instead of adjacent logits 
to model the responses. This model could be fitted using freely available software 
using the R library TAM (Kiefer et al., 2016), using the item expansion technique 
illustrated here. Thus, both applications should reach similar substantive results. 
Our presented approach has the advantage that it can be fitted using different latent 
variable modelling software, that allows users to include the complex sample survey 
of ILSA studies, and produce results generalizable to the population of students, 
present in the most popular ILSA studies. 

Further research is needed to address if this model expansion has the same 
expected advantages in linking and equating of the CRM, as Kim (2016) suggested. 
Smits and colleagues (2020) assert that zero inflation leads to bias in slope and item 
locations of graded responses. The present factor mixture variant of the CRM could 
be another tool to address the high accumulation of responses on the left side of the 
distribution of bullying items.
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A Three-Step Rectangular Latent 
Markov Modeling for Advising Students 
in Self-learning Platforms 

R. Fabbricatore, R. Di Mari, Z. Bakk, M. de Rooij, and F. Palumbo 

Abstract Recent years have seen a growing interest in using technology to provide 
adaptive learning environments. In this vein, (self)learning environments that 
offer an automatic recommendation system play a fundamental role in supporting 
students’ learning with tailored feedback. In this aim, essential steps consist in 
collecting students’ responses and diagnosing their learning state throughout the 
learning process. This contribution proposes a three-step rectangular Latent Markov 
modeling to assess students’ abilities by analyzing sequences of response patterns to 
item-sets recorded at time intervals during the course. Each sequence corresponds 
to a measurement model that focuses on different topics. Furthermore, students’ 
ability is conceived as a multivariate latent variable that refers to diverse skills. The 
proposed approach consists of a three-step procedure: carrying out a multivariate 
Latent Class IRT model at each time point to find homogeneous groups of students 
according to their ability level; computing the time-specific classification error 
probabilities; fitting weighted logistic regressions to investigate the effect of socio-
demographic and psychological variables on the initial and transition probabilities 
using the entries of the inverse of the classification error matrices as weights (BCH 
correction). 
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Keywords Latent variable models · Rectangular latent Markov modeling · 
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1 Introduction 

Providing students with tailored feedback to support them during the learning 
process represents one of the main goals of students’ ability assessment in edu-
cation (Toomaneejinda, 2017). The development of proper recommendations and 
remediations is even more crucial when technology takes over the role of teachers, 
like in self-learning platforms. At this aim, the need for suitable statistical models to 
analyze the complex data structure that emerges from automatic student assessments 
stands out. Among them, latent variable models (Skrondal & Rabe-Hesketh, 2004) 
represent a relevant reference framework since students’ ability can be conceived 
as a latent construct measured by a set of manifest indicators. Both parametric and 
non-parametric approaches were introduced in this framework (Bartolucci et al., 
2015), allowing to address specific evaluation’s aims. 

Herein we rely on non-parametric approaches to identify latent classes; in this 
context, it means to find homogeneous groups of students according to their abilities. 
Non-parametric latent variable models are an ideal tool for developing accurate 
feedback during learning because they allow qualifying, in addition to quantifying, 
individual differences (McMullen & Hickendorff, 2018). 

To be effective, recommendations should address all the aspects considered 
during an evaluation process, for example, topics, dimensions of students’ ability 
(specific competencies), as well as any individual characteristic hypothesized to 
affect students’ performance. Moreover, to understand intra-individual differences, 
it is also relevant to account students’ abilities changing over time. 

From a statistical modeling point of view, this means integrating multidimen-
sionality (more latent variables defining students’ ability), longitudinal design 
with a time-varying measurement model (different topics per time point), and the 
covariate effects on the students’ progress in learning. The data consist of students’ 
response patterns collected along the learning process and related to the specific 
competencies of interest, and a set of variables that refers to the individual students’ 
characteristics. 

In this vein, to include all the above-mentioned elements, the present contribution 
proposes a three-step rectangular latent Markov modeling. In particular, the three-
step approach (Di Mari et al., 2016) allows managing different measurement 
models per time point. The novelty consists in adopting a rectangular formulation 
of the latent Markov model that enables different numbers of latent classes over 
time (Anderson et al., 2019). 

The following section introduces the three-step rectangular latent Markov mod-
eling, then an empirical application in the context of learning Statistics is presented 
in Sect. 3. Finally, some concluding remarks end the paper in Sect. 4.
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2 Three-Step Rectangular Latent Markov Modeling 

The proposed estimation procedure runs over the following three steps: a mul-
tidimensional latent class Item Response Theory (IRT) model allows detecting 
homogeneous groups of students according to their ability at each time point (Step 
1); the time-specific class membership and classification error are computed (Step 
2); a set of weighted logistic regressions are fitted to investigate the effect of the 
individual characteristics on the initial and transition probabilities (Step 3). The 
remainder of the section details the procedure’s steps, whereas the R Code for the 
current application is provided in the Appendix. 

2.1 Step 1: Multidimensional Latent Class IRT Model 

The multidimensional latent class IRT (MLCIRT) models represent a semi-
parametric extension of the traditional IRT models in that both the constraints of 
unidimensionality and continuous nature of the latent trait are released (Bartolucci, 
2007). Given the matrix of students’ response patterns, the MLCIRT model allows 
detecting sub-populations of homogeneous students according to their ability level, 
concurrently accounting for the multidimensional nature of students’ ability and 
item characteristics (e.g., difficulty and discriminating power). 

More formally, the vector .� = (�1,�2, . . . , �D)′ of the D latent variables, 
at each time .t = 1, . . . , T , follows a discrete distribution with . ξ (t)

1 , ξ
(t)
2 , . . . , ξ

(t)
kt

vector of support points defining . kt latent classes, where . kt indicates the number of 
classes at the time t . For any t , .π (t) = π

(t)
1 , . . . , π

(t)
kt

are the prior probabilities of 

belonging to latent classes. Specifically, .π(t)
c = P(�(t) = ξ (t)

c ) with .c = 1, . . . , kt , 

and .
∑kt

c=1 π
(t)
c = 1. At time .t = 2, ..., T , the vector of class weights is obtained 

as .π
′(t) = π

′(1)
∏t

h=2 �h, where .�t is the time-specific matrix of transition 
probabilities of order .k(h−1) × kh, given our working assumptions. 

Without loss of generality and for the sake of space, we present the measure-
ment part of the model only referring to the Generalized Partial Credit Model 
(GPCM; Bacci et al., 2014) among the IRT models. The used notation is typical of 
the IRT framework; not familiar readers can refer to Bartolucci et al. (2015) for more  
details. Thus, let us define .θ (t) = (θ

(t)
1 , θ

(t)
2 , . . . , θ

(t)
D ) as a realization of . � at time 

t , and .θ
(t)
cd taking value in . ξ (t)

c . The response .Y
(t)
si of the individual .s = 1, . . . , n to a 

generic polytomous item i (.i ∈ I, the set of the items), with . li response categories 
indexed from 0 to .li − 1 and administered at time t , can be parameterized as follows 
according to the GPCM: 

.g[P(Y
(t)
si = r|�(t) = ξ (t)

c )] = log
P(Y

(t)
si = r|�(t) = ξ (t)

c )

P (Y
(t)
si = r − 1|�(t) = ξ (t)

c )
= ai

(
D∑

d=1

δidθ
(t)
cd − bir

)

,

r = 1, . . . , li − 1;
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where .g(·) is the local logit link function; . δid is a dummy variable equal to 1 if the 
item i measures the latent trait d; . ai and .bir represent the discrimination and the 
item-step difficulty parameter, respectively. 

Given . kt , the parameter estimation of multidimensional latent class IRT models is 
performed through the Expectation-Maximization algorithm (Dempster et al., 1977) 
using the R package MultiLCIRT (Bartolucci et al., 2014). It is worth noting that 
the choice of . kt is a ticklish issue and some possible solutions are discussed in 
Sect. 3. 

2.2 Step 2: Modal Class Assignment and Classification Error 

Since different measurement models are estimated for each time point, time-
specific class membership and classification error probabilities are computed at this 
step. Following the modal assignment rule, each subject is assigned to the class 
corresponding to the highest posterior probability. More formally, the individual s 
is assigned to latent class g according to: 

. g(t) = argmax
c=1,...,kt

P (�(t)
s = ξ (t)

c |Y (t)
s = y(t)

s ),

where the posterior class probability can be expressed according to the Bayes’s 
theorem as follows: 

. P(�(t)
s = ξ (t)

c |Y (t)
s = y(t)

s ) = π
(t)
c

∏D
d=1

∏
i∈Id

P (Y
(t)
si = y

(t)
si |�(t)

sd = θ
(t)
cd )

P (Y
(t)
s = y

(t)
s )

.

For each time point, modal assignment estimates the predicted class . W
(t)
s

allocating a weight .w(t)
sg = P(W

(t)
s = g(t)|Y (t)

s = y
(t)
s ) = 1 and zero weight 

otherwise. 
On the other hand, classification error can be evaluated through the conditional 

probability of the estimated class value conditional on the true one (Vermunt, 2010), 
resulting in the overall time-specific .D(t) matrix with elements: 

. P(W(t) = c(t)|�(t) = ξ (t)
g ) =

1
nt

∑nt

s=1 P(�(t) = ξ (t)
g |Y (t)

s = y
(t)
s )w

(t)
sg

P (�(t) = ξ (t)
g )

,

where .c, g = 1, . . . , kt and . nt is the sample size at time t .
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2.3 Step 3: BCH Correction to Account for Covariate Effect 

In Step 3, according to the BCH correction (Bolck et al., 2004), the . D matrices 
computed at the previous step are used in the weighted logistic regressions to find 
the effect of covariates on initial and transition probabilities. 

More technically, using a multinomial logistic regression model, the probability 
of the estimated class membership .W(t) at time t given the vector . Zs of P time-
invariant individual covariates can be parameterized as follows: 

.P(W(t) = c(t)|Zs) = exp(γ
(t)
0c + ∑P

p=1 γ
(t)
pc Zsp)

∑kt

q=1 exp(γ
(t)
0q + ∑P

p=1 γ
(t)
pq Zsp)

. (1) 

In order to model the probability .P(�(t) = ξ (t)
g |Zs), for .t = 1, . . . , T , according 

to Bolck et al. (2004), we can express the probability .P(W(t) = c(t)|Zs) as a linear 
combination of .P(�(t) = ξ (t)

g |Zs) considering the classification errors as weights: 

.P(W(t) = c(t)|Zs) =
kt∑

g=1

P(�(t) = ξ (t)
g |Zs)P (W(t) = c(t)|�(t) = ξ (t)

g ). (2) 

Let be .e(t)
sc = P(W(t) = c(t)|Zs), .a

(t)
sg = P(�(t) = ξ (t)

g |Zs), and . d(t)
gc =

P(W(t) = c(t)|�(t) = ξ (t)
g ) element of matrices .E(t), .A(t), and .D(t), respectively. 

The matrix notation of Eq. 2 is: 

. E(t) = A(t)D(t).

Accordingly, we can obtain the matrix .A(t) with the probabilities of true class 
membership given individual covariates as follows: 

. A(t) = E(t)D(t)−1

Thus, using the entries of the inverse of the .D(t) matrix as observation weights 
during the estimation of the multinomial regression in Eq. 1, we can obtain 
regression parameters referring to the probability .P(�(t) = ξ (t)

g |Zs) (Vermunt, 
2010). 

Specifically, in the proposed approach, a multinomial regression with time 1 
classification as dependent variable allows evaluating the covariate effect on initial 
probability. On the other hand, to estimate the effect of covariates on all the 
possible transitions over time, .

∑T −1
t=1 kt multinomial regressions are required, each 

considering the individuals belonging to one of the latent classes emerged at time 
t as sample (in total . kt sub-samples for each time point) and the corresponding 
classification at time .t + 1 as dependent variable.
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3 Application: Learning Statistics in Non-STEM Degree 
Programs 

In what follows, we present an application of the proposed approach in the context of 
Learning Statistics in non-STEM1 degree programs. The study involved . N = 202
Italian students (83.6% female; age: mean = 19.7, sd = 2.77) enrolled in the first 
year of the psychology course at the University of Naples Federico II, attending the 
introductory Statistics course. 

Data collection was carried out via the Moodle platform and consisted of three 
waves, each focusing on different statistical topics: descriptive statistics, graphs, 
tables, and Gaussian distribution at Time 1, probability and random variables at 
Time 2, hypothesis testing and bivariate statistics at Time 3. Students’ ability was 
conceived as a multidimensional latent variable according to three Dublin descrip-
tors (Gudeva et al., 2012): understanding of theoretical concepts (Knowledge), 
ability to apply the knowledge to solve exercises (Application), and critical skills 
(Judgment). For each wave, students were asked to respond to 30 multiple-choice 
questions, 10 for each considered Dublin descriptor, which had four answer options 
and three different response scores: totally correct answers received two credits, 
partially correct answers received one credit, wrong answers received no credit. 
Blank responses were treated as missing values. 

The analyzed data also comprises cognitive and psychological variables affecting 
learning Statistics, which were assessed by means of psychometric scales at the 
beginning of the course. It is worth noting that psychological variables assume a 
fundamental role during learning, affecting students’ performance and achievement. 
Several studies (see, for example, Chiesi & Primi, 2010) highlighted the relevance 
of some of these factors especially for subjects perceived as frightening like 
Statistics for students enrolled in non-STEM degree courses. According to the 
existing literature, we accounted for the effect of math knowledge, statistical 
anxiety, attitudes toward Statistics, self-efficacy, and engagement on initial and 
transition probabilities. A more in-depth description of the data at hand can be found 
in Fabbricatore et al. (2022). 

3.1 Results 

In this section, we describe the results obtained by applying the proposed approach 
in the context of learning Statistics. 

Firstly, we ensured scale comparability across time in order to compare the 
classifications obtained in the different time points. To this aim, we carried out 
an IRT factor analysis on the whole set of items to assess item characteristics

1 STEM is the abbreviation for Science, Technology, Engineering, and Mathematics. 
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Table 1 IRT factor analysis results: Fit statistics for nested models to test parallel item similarity 

BIC .χ2 df p-value 

Knowledge Constrained 6411.63 

Unconstrained 6436.25 4.30 6 0.64 

Application Constrained 6891.54 

Unconstrained 6919.74 0.73 6 0.99 

Judgment Constrained 6735.15 

Unconstrained 6760.20 3.88 6 0.69 

Multidimensional Constrained 20041.1 

Unconstrained 20116.4 11.47 18 0.87 

Note: Constrained = equal parameters across reference (parallel) items
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Fig. 1 BIC values for different number of latent classes at each time point 

and select, for each dimension, the three items (one per time point) with the most 
similar characteristics in terms of difficulty and discrimination parameters. These 
“parallel items” can be used as reference items for identifiability issues in the multi-
dimensional latent class IRT models at Step 1 to guarantee scale comparability over 
time. We also tested their similarity through a . χ2 test comparing nested IRT factor 
models where the constrained one is that with imposed equal parameters across the 
reference (parallel) items. Table 1 shows the results for both unidimensional and 
multidimensional models, all pointing at a not significant difference between the 
nested models and thus moving in favor of scale comparability. 

Given the above results, we considered the parallel items as the reference for 
model identifiability in the multidimensional latent class IRT models in Step 1. 

The number of latent classes for each time point can be defined according 
to theoretical assumptions or a data-driven approach. Herein, we employed the 
Bayesian Information Criterion (BIC), pointing at three latent classes at Time 1 
and Time 2 and two latent classes at Time 3 (see Fig. 1).
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Fig. 2 Class profiles for the selected models. Support point value on the y-axis indicates the level 
of ability of students belonging to the considered latent classes. Accordingly, Class 1, Class 2, and 
Class 3 indicate low-, medium-, and high-ability learners, respectively 

Looking at class profiles in Fig. 2, corresponding to the best models in terms of 
BIC, we can see that latent classes are increasingly ordered according to all the latent 
trait dimensions at each time point. Hence, Class 1, Class 2, and Class 3 indicate 
low, medium, and high levels of ability, respectively. Moreover, scale comparability 
allows affirming that students’ ability was higher in Time 1 (descriptive statistics) 
than in Time 2 and Time 3, especially in Knowledge and Judgment. In contrast, a 
smaller difference in ability levels over time was found for Application. Note also
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that the level of ability associated to Class 2 at Time 3 is very similar to the ability 
level of Class 2 at Time 1. 

Regarding classification error probabilities computed in Step 2, the following . D
matrices resulted: 

. D(1) =
⎡

⎣
0.834 0.165 0.000
0.071 0.890 0.039
0.000 0.181 0.819

⎤

⎦ ; D(2) =
⎡

⎣
0.819 0.176 0.005
0.049 0.845 0.106
0.002 0.049 0.950

⎤

⎦ ;

D(3) =
[

0.977 0.023
0.031 0.969

]

with the elements on the main diagonals providing evidence for an accurate 
classification at each time point. 

The inverse of the obtained . D matrices was used for the estimation of covariate 
effects in Step 3. Results showed that sex, math knowledge, and engagement 
significantly affect initial classification probabilities, whereas no significant effects 
were found for statistical anxiety, attitudes toward Statistics, and self-efficacy. In 
particular, females had a lower probability of being in class 2 (.γ2 = −1.44, p-value 
.= 0.058) and Class 3 (.γ3 = −2.77, p-value .= 0.001) with respect to Class 1 than 
males, highlighting an impairment in the level of ability according to sex at Time 1. 
Moreover, higher level of math knowledge was associated with a greater probability 
to be in Class 2 (.γ2 = 0.08, p-value .= 0.03) and 3 (.γ3 = 0.31, p-value .< 0.001), 
and thus a medium and high performance in Statistics. Also students’ engagement 
in Statistics positively affected students performance, increasing the probability to 
be in Class 2 (.γ2 = 0.73, p-value .= 0.02) rather than in Class 1. 

The effect of covariates on transition probabilities was depicted in Fig. 3. Note  
that only the significant effects were reported, using red color for negative effects 
and green color for positive ones. Moreover, because some students dropped out 
during learning, we considered an additional class (Dropped) for Time 2 and Time 
3 at this step. 

Looking at transitions from Time 1 to Time 2, we can see that a lower level 
of engagement increased the risk of dropout for students belonging to Class 1, 
who have low ability levels. Moreover, math knowledge positively affected ability 
change over time, fostering the transitions of students from Class 2 and Class 3 at 
Time 1 to Class 3 at Time 2, namely the class with the highest level of ability. 

In addition, Statistical anxiety and attitudes toward Statistics, although not 
significantly affecting initial classification probabilities, revealed to have a signif-
icant effect on the transitions. Specifically, feeling anxious during a Statistics test 
and considering Statistics a difficult subject reduced the probability of students 
belonging to Class 2 and Class 3 at Time 1 to move in Class 2 and Class 3 rather than 
in Class 1 at Time 2, thus negatively affected their performance. On the other hand, 
positive feelings concerning Statistics (affective attitudes) increased the probability 
of students in Class 2 at Time 1 to move in Class 2 rather than Class 1 at Time 2 
(positive effect on performance).
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Fig. 3 Significant covariate effects on transitions. Note that Class 1 always represents the 
reference class. Negative effects are depicted in red, whereas positive effects are in green; 
SATS = Attitudes toward Statistics; SAS = Statistical anxiety 

Conversely, transitions from Time 2 to Time 3 were affected only by math 
knowledge and engagement among the considered cognitive and psychological 
variables. We can speculate that this result could be related to the difficulty of the 
topics at Time 3, particularly requiring basic ability in math and students’ effort 
in studying Statistics to perform better. Regarding the sex variable, we found that 
it also affected some transition probabilities, in addition to the initial ones, again 
underlying impairment in favor of males. 

4 Conclusion 

The proposed three-step rectangular latent Markov modeling represents a valuable 
statistical tool for analyzing student ability assessment data to develop tailored 
feedback in self-learning platforms. Indeed, it addresses several issues that are 
typical of ability assessment on self-learning platforms, which is based on a 
different measurement model per time point, different item characteristics (e.g., item 
difficulty and discrimination), and multiple ability dimensions. 

Moreover, the proposed approach allows combining cross-sectional and longi-
tudinal information, identifying students’ strengths and weaknesses in compari-
son with their peers for each topic (cross-sectional) and understanding students’ 
progress over time (longitudinal). In this regard, the rectangular formulation of
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Latent Markov models also accounts for changes leading to different nature and 
number of latent classes or, as in our application, the presence of dropouts. 

Therefore, model parameters can be used to provide students with adaptive 
feedback at different levels: according to the ability dimensions, the topics, peer 
performance, and progress over time. Also individual characteristics such as demo-
graphic, psychological, and cognitive factors affecting learning can be integrated 
into the model, allowing to develop motivational feedback along with formative 
one. 

In this vein, the application in the context of learning Statistics shed light on the 
amount of useful information provided by the model with the aim of encouraging 
researchers to employ such a model when dealing with complex evaluations of 
students’ ability. 

Current developments work on a Maximum Likelihood (ML) correction for the 
third step of our approach, where a rectangular latent Markov model with class 
assignments as a single indicator and known error probabilities is used to estimate 
the structural part of the model. 

Appendix 

R Code for the current application. 
Step 1: Multidimensional latent class IRT model 

1 

2 library(readxl) 
3 library(MultiLCIRT) 
4 library(dplyr) 
5 library(mclust) 
6 library(mclogit) 
7 

8 # Read the data file 
9 Data = read_excel("data_matrix.xlsx", na =  "999") 

10 

11 # Select items of Time 1 and order them according to the 
considered dimensions 

12 Data_lc_r = dplyr::select(Data, starts_with(’T1_S_’)) 
13 K = dplyr::select(Data_lc_r, ends_with(’_K’)) 
14 A = dplyr::select(Data_lc_r, ends_with(’_A’)) 
15 J = dplyr::select(Data_lc_r, ends_with(’_J’)) 
16 Data_lc_r = cbind(K, A, J) 
17 

18 # Define the matrix with item indices according to the measured 
dimensions (for each dimension, the first item is the 
reference for model identifiability) 

19 multi = rbind(c(3, 1, 2, rep(4:10)), c(14, rep(11:13), 
20 rep(15:20)), c(23, 21, 22, rep(24:30))) 
21 

22 # Model selection (compare models with different number of 
classes) following the GPCM
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23 GPCM = list() 
24 for (i in 1:5) { 
25 GPCM[[i]] <- est_multi_poly(Data_lc_r, k = i,  link = 2 , 
26 disc = 1, difl = 0, output = T, multi = multi) 
27 } 
28 

29 BIC_value = c(GPCM[[1]]$bic, GPCM[[2]]$bic, GPCM[[3]]$bic, 
30 GPCM[[4]]$bic, GPCM[[5]]$bic) 
31 

32 # Best model according to the BIC 
33 GPCM3 = GPCM[[3]] 
34 

35 # Model parameters 
36 GPCM3$piv # Class weights 
37 GPCM3$Th # Matrix of support points 
38 GPCM3$Bec # Item difficulty parameters 
39 GPCM3$gac # Item discriminating parameters 
40 GPCM3$Pp # Matrix of posterior probabilities 
41 

42 # Repeat lines 11-40 for Time 2 and Time 3 and obtain: " 
Data_lc_r2" and "Data_lc_r3" (datasets); "GPCM3_t2" and " 
GPCM2_t3" (MultiLCIRT model output) 

Step 2: Modal class assignment and classification error 

43 # Classify the observations according to the posterior class 
probabilities 

44 Data_lc_r$Id = rep(1:nrow(Data_lc_r)) 
45 Data_lc_r$Clus1 = data.frame(rep(0, nrow(Data_lc_r))) 
46 for (j in 1:nrow(Data_lc_r)) { 
47 Data_lc_r$Clus1[j,] = which.max(GPCM3$Pp[j,]) 
48 } 
49 

50 # Repeat lines 43-48 for Time 2 and Time 3 and obtain: " 
Data_lc_r2$Clus2" and "Data_lc_r3$Clus3" 

51 

52 # Create a matrix n x T with class assignments 
53 total_class = as.data.frame(left_join(Data_lc_r[, c("Id", 
54 "Clus1")], Data_lc_r2[, c("Id", "Clus2")], by = c("Id"))) 
55 total_class = as.matrix(left_join(total_class[, c("Id", "Clus1", 
56 "Clus2")], Data_lc_r3[, c("Id", "Clus3")], by = c("Id"))) 
57 

58 # Create a function for the modal D matrix computation 
59 Dmatrix = function(outmodel){ 
60 

61 classweight = outmodel$piv 
62 numobservation = nrow(outmodel$Pp) 
63 numofclasses = length(outmodel$piv) 
64 posteriorprob = as.matrix(outmodel$Pp) 
65 

66 W = posteriorprob == outer(apply(posteriorprob,1, max), 
67 rep(1,numofclasses)) 
68 num = (t(posteriorprob) %*% W)/numobservation 
69 Dmatrix = num/classweight 
70
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71 return(Dmatrix) 
72 } 
73 

74 # Calculate the D matrix for each Time and store the results in 
the cD array 

75 cD = array(NA, c(3,3,3)) 
76 cD[,,1] = Dmatrix(GPCM3) 
77 cD[,,2] = Dmatrix(GPCM3_t2) 
78 cD[1:2,1:2,3] = Dmatrix(GPCM2_t3) 

Step 3: BCH correction to account for covariate effect 

81 # Cross-tabulate class assignments from previous steps to obtain 
initial and transitions as if the assignments were 
realizations of an observed Markov chain 

82 inistart = table(total_class[,1+1], useNA = "always")/sum(table( 
total_class[,1+1], useNA = "always")) 

83 PI2 = table(total_class[,1+1],total_class[,1+2], useNA = "always" 
)/rowSums(table(total_class[,1+1],total_class[,1+2], useNA = 
"always")) 

84 PI3 = table(total_class[,1+2],total_class[,1+3], useNA = "always" 
)/rowSums(table(total_class[,1+2],total_class[,1+3], useNA = 
"always")) # Dropout class for NAs at Time 2 and Time 3 

85 total_class_recod = total_class[,-1] 
86 N = dim(total_class_recod)[1] 
87 for(t in 1:3){ 
88 total_class_recod[is.na(total_class_recod[,t]),t] = max( 

total_class_recod[,t],na.rm=T)+1 
89 } 
90 

91 modal_class1 = mclust::unmap(total_class_recod[,1]) 
92 modal_class2 = mclust::unmap(total_class_recod[,2]) 
93 modal_class3 = mclust::unmap(total_class_recod[,3]) 
94 

95 # Create "individual" transitions 
96 iK = c(3,3,2) # Number of latent classes for each time point 
97 PI2_dep = array(0,c(N,(iK[2]+1),iK[1])) 
98 for(n in 1:N){ 
99 PI2_dep[n,,] = t((modal_class1[n,])%*%t(modal_class2[n,])) 

100 } 
101 

102 PI3_dep = array(0,c(N,(iK[3]+1),iK[2]+1)) 
103 for(n in 1:N){ 
104 PI3_dep[n,,] = t((modal_class2[n,])%*%t(modal_class3[n,])) 
105 } 
106 

107 # Create BCH weights from classification error probabilities 
108 cDexp2 = diag(4) 
109 cDexp2[1:3,1:3] = cD[,,2] 
110 cDexp3 = diag(3) 
111 cDexp3[1:2,1:2] = cD[1:2,1:2,3] 
112 

113 wei1 = diag(solve(cD[,,1]))[total_class_recod[,1]] 
114 wei2 = diag(solve(cDexp2))[total_class_recod[,2]] 
115 wei3 = diag(solve(cDexp3))[total_class_recod[,3]]
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116 

117 # Select the covariates from the dataset 
118 covar = dplyr::select(Data, c("Sex", "PMP_Total", 
119 "SAS_Examination", "SAS_Interpretation", "SATS_Affect", 
120 "SATS_Difficulty", "MSLQ_SelfEfficacy", "ENG")) 
121 

122 # Estimate covariate effect at Time 1 
123 df_t1 = data.frame(y = factor(mclust::map(modal_class1)), covar) 
124 out_t1 = mblogit(y ~ ., data = df_t1, weights = wei1) 
125 

126 # Estimate covariate effect on transitions at Time 2 
127 # Starting in state 1 (first row of transition matrix), first ( 

arrival) state as reference 
128 df_t2_s1 = data.frame(y = factor(mclust::map(PI2_dep[,,1])), 

covar) 
129 out_t2_s1 = mblogit(y ~ ., data = df_t2_s1, weights = wei2) 
130 

131 # Repeat lines 128-129 for each sub-sample of individuals defined 
by the latent classes emerged at Time t considering the 

corresponding classification at Time t+1 as dependent 
variables to estimate the covariate effect on all the other 
transitions at Time 2 and Time 3 
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Considerations in Group Differences in 
Missing Values 

Ambar Kleinbort, Anne Thissen-Roe, Rohan Chakraborty, and Janelle Szary 

Abstract In recent years, employers are increasingly using artificial intelligence 
(AI) systems to summarize multidimensional psychological measurements to sup-
port employee selection decisions. It is important to evaluate and maximize the 
fairness of these AI models with regard to demographic groups such as gender 
and ethnicity. Different approaches have emerged, including obscuring group labels 
and maximizing the models’ classification parity, neither of which guarantees a 
reduction in bias in operational settings (Corbett-Davies and Goel, The measure 
and mismeasure of fairness: A critical review of fair machine learning, 2018). The 
issue of fairness becomes more complex when missing measurements are imputed 
in the data used to train a model. The encoding of group differences can vary from 
the imputed data used for training, to complete real-world data. We tested how this 
can lead to unexpected observations of bias for the final model in production. To 
do this, we built debiased imputers that reduce group differences in missing values, 
and a paired, non-debiased version for each of them. We then built models on data 
imputed with each pair and tested their fairness with complete data sets labeled 
by groups (gender and ethnicity). We found that reducing the group differences 
encoded in imputed training data did not guarantee a more fair AI scoring model, 
and in some circumstances, it may result in a less fair model. We also found that 
alterations in missing data patterns post model building have little influence on 
fairness, and therefore note it’s best to allocate more complete data to the training 
data set. Lastly, we were pleasantly surprised to see that neither of our imputation 
methods, when used to partially impute the demographic testing data sets, resulted 
in underestimations of groups differences. 
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1 Background 

At pymetrics, we do career matching using machine learning with data from 
a set of cognitive tasks. The contemporary career matching space puts a high 
emphasis on fairness, and the different ways it can be optimized and measured. In 
accordance with the US Equal Employment Opportunity Commission’s guidelines, 
which govern recruiting laws in the US, the gold-standard measurement of practical 
significance of group differences in a selection method is minimum impact ratio. 
This is a ratio of the probability of success for the lowest and highest passing 
groups, which must be above 0.80. Furthermore, the guidelines say that the groups 
to be considered are gender and ethnicity (where each group exceeds 2% of 
the population from which employees are to be selected; United States Equal 
Employment Opportunity Commission, 1978). 

With the entry of machine learning into the set of tools used for employee 
selection, concerns have been raised in both public and professional spaces: Will 
machine learning and AI tools replicate or even exacerbate patterns of historical 
discrimination in employment opportunity? Can these tools help to ameliorate 
historical discrimination, and if so, how? (Kassir et al., 2022; Corbett-Davies & 
Goel, 2018) We adopt an approach that emphasizes measurement, monitoring, and 
optimization of fairness outcomes at several points in our instruments’ life cycle. 

Once we have built an employee selection model, we use a holdout data set 
with demographics to measure expected impact ratios. However, once the model 
is deployed and we’ve collected real-world candidate data, the impact ratio often 
differs. In industry settings training data can differ from the real-world data acquired 
when a model is deployed in a number of ways. One common difference is that real-
world data is often messier, with more missing values. Treatment of missing data has 
long been acknowledged to affect evaluations of fairness via self-selection effects 
(see, e.g.,Wainer, 1986); however, in our observations, the treatment of ignorable 
missing data (Rubin, 1987) matters as well. 

Most frequently, a model is trained to fill in these missing values. Models with 
this goal are called imputers, and can be as simple as calculating the median or 
as complex as predicting values with a neural network. Imputing data can modify 
distributions and lead to overestimates or underestimates of true variability (Rubin, 
1987). This can lead to faulty statistical and machine learning models. Further, we 
wanted to know how imputation of data can change the relationships between data 
distributions from demographic subgroups within the population, in linear or non-
linear ways. These changes may appear as artifacts in any subsequent statistical or 
machine learning model built upon the imputed data, making it harder to establish 
or monitor selection model fairness. 

We set out to test how distorting these feature distributions using imputation 
would impact the final fairness of our machine learning employee selection models. 
This was done by comparing the impact ratios obtained from a full testing data 
set to that of masked and imputed versions of that same data set. Furthermore, 
we developed debiased imputers, which avoid propagating or exacerbating group
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differences in columns with missing data, and compared their effects on final model 
fairness to those of regular imputers. 

2 Experimental Setup 

In order to compare debiased and regular imputer performance, we built employee 
selection models for multiple jobs, and used a range of missing data percentages 
and missing mechanisms for data masking. We also tested two pairs of imputers, 
including Multiple Imputation by Chained Equations (MICE) and a factor model. 
As stochastic variation can impact multiple stages of the machine learning process, 
namely the masking of training data, model fitting, and masking of testing data, we 
performed replications of our experiment at each stage. We first tested the effect 
of changing the random seed used to mask the training data set that our machine 
learning models are fit on, using 25 seeds. Secondly, we iterated over 25 random 
seeds at the model fitting stage, meaning there was a single mask on the training 
data, but the model was fit 25 times. Lastly, we tried 25 different masks on the 
holdout set used to measure the impact ratio. For simplicity, we performed these 
replications for one missing type, occupation and imputer pair; we believe our 
results to be representative of what we would find in others. 

2.1 Selection Models 

In order to test how imputation affects model fairness in a comprehensive way, we 
created selection models for three distinct occupations: Human Resources, Finance, 
and Sales. For the purposes of this investigation, we used an adapted version of 
a soft-margin Support Vector Machine (SVM) to create the selection models. An 
SVM is a classification algorithm that seeks to find a hyperplane separating two 
classes. As described in Cortes and Vapnik (1995), it does so by minimizing 

.
1

2
W 2 + C

n∑

i=1

ξi, (1) 

where W is the vector that is normal to the hyper-plane that separates the classes, C 
is a hyper-parameter and . ξ is a slack variable. 

As noted above, the minimum acceptable impact ratio for any of these models is 
0.80, but for the purposes of this study we did not use any of our usual methods to 
improve model fairness, since we wanted to observe the effects of missingness and 
imputation alone. Thus, we observed impact ratios below 0.80 that would normally 
lead to model rejection and replacement later in our process.
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2.2 Missingness Simulation 

To simulate incomplete data for each model, we began with a full data set and 
removed data points using two different missingness mechanisms: Missing com-
pletely at random (MCAR) and missing at random (MAR). MCAR is characterized 
by data points being missing independently from both the observed and unobserved 
features, and occurs strictly at random. This means that MCAR patterns cannot be 
explained by the data that has been recorded nor by any other data. On the other 
hand, MAR data points can be accounted for in whole or part by the observed 
features, but are not influenced by unobserved values, including their own missing 
values (Rubin, 1976). We used an open source implementation by Muzellec et al. 
(2020) to produce MCAR and MAR masks for our data. Both were applied at 5, 
10 and 20% missing (see appendix for code). These percentages were included 
because they are typical of what we have encountered in practice. Samples with 
greater than 20% missing are generally excluded from our models/analyses. We do 
observe MNAR mechanisms, but they are beyond the scope of this chapter. 

2.3 Imputer Models 

Once the missingness patterns were simulated, we built two pairs of imputers. First, 
by using MICE, which starts by filling in the missing values with the median. It 
then takes the feature that had the most missing values, and creates a regression to 
replace the filled in values with more accurate ones (based on the current values in 
all the other features, including the imputed values). At this point, it moves on to 
the feature with the second most missing values, does the same, and iterates through 
all the features until the values converge (Azur et al., 2011). To create the debiased 
version of the MICE imputer, we made each regression prioritize smaller errors for 
the minority group. Furthermore, the debiased MICE model was built separately for 
gender and ethnicity. We selected this model due to its optimal performance on our 
data (Chakraborty et al., 2022). 

This means that for each regression 

.X̂n =
n∑

m�=n

(βnm ∗ xm) + errorn, (2) 

to obtain the vector of . βn coefficients, MICE uses the least squares difference 

.β̂n =
(
X�X

)−1
X�y, (3) 

and the debiased MICE uses a weighted least squares difference where
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.β̂n = w3
(
X�X

)−1
X�y. (4) 

To get the demographic specific weights for our samples, . w, we start with G in 
.categoriesn, and let .w = (n/c1, n/c2, ..., n/cn) where .ci = Σg∈GδGi,g . 

We also tested an imputer based on a factor model of our measures. This is, to our 
understanding, an unusual and perhaps novel imputation method. The factor model 
imputer begins by scoring each individual’s factors by an exact method that ignores 
missing data (Thissen & Thissen-Roe, 2020). It proceeds to use point estimation, 
treating the factor scores as inputs to the regression equation form of the factor 
model, to fill in the missing values. That is, our multiple factor model for the vector 
of observed responses . yi for person i can be written as 

.yi = Λf i + εi , (5) 

in which the observations . yi and the vector of factor scores . f i are standardized, . Λ
is the matrix of factor loadings for . yi on . f i (used here as regression coefficients), 
and . ε is multivariate .N(0,Θ) in which . Θ is the variance-covariance matrix of the 
residuals. Then we can make a point estimate for the observations . yi as 

.ŷi = Λf i , (6) 

and fill only the missing observations with their corresponding point estimates, 
leaving actual observations in place. (In our usual case, where the observations 
are not standardized, there is an additional transformation step on each side, in 
which the observed values are standardized prior to factor score estimation, and 
the estimated observations . ŷi are subjected to the reverse scale-and-shift operation 
to restore their original range of values. This could be built into the factor model; 
for practical reasons we do not.) 

We had an existing theory of the factor structure of our measures, which we used 
as the base hypothesis for a pair of confirmatory factor analyses (CFA), one of which 
was constrained in ways designed to reduce group differences in the latent variables, 
accounting for gender and ethnicity simultaneously; that is, less group differences 
were encoded in the factor scores. This manipulation was verified to have achieved 
its goal; some factors had small group differences to begin with, but others had 
notable reductions. Between the two parallel CFA results, we had the materials for 
a debiased/regular matched pair of imputers, as we did with MICE. 

In contrast to the debiasing method used for MICE, the strategy for reducing bias 
in the factor model was indirect. The target of bias reduction was group differences 
in the latent variable scores, not the subsequent imputed values. It was not clear a 
priori that the debiased factor model, when used as an imputer, would in fact result 
in less group differences in imputed data sets and subsequent models in the same 
way that the directly-debiased MICE imputer would. Therefore, we carried out the 
same empirical tests on the factor model imputer.
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Table 1 Conditions for training and testing predictive models. This table is replicated for each 
occupation, imputer pair, at each missing percentage and mechanism 

Imputed test set Full test set 

Training set with debiased imputation Debiased imputed set Debiased full set 

Training set with regular imputation Regular imputed set Regular full set 

2.4 Impact Ratios 

This set up resulted in four sets of impact ratio results per experiment, given that the 
imputed testing set and the full testing set are each passed through two models; one 
where the training set was imputed with the debiased imputation and one with the 
regular imputation. In each case, the same imputation model is used to produce the 
training set for model development and the test set for impact ratio evaluation. We 
did not measure how models behave when the training and testing sets are imputed 
differently, on the basis that this is unlikely in a production setting. The experimental 
design is summarized in Table 1. 

3 Results 

In varying the random seed across the steps of machine learning processes, we find 
that missing data and imputation affect subsequent fairness measures in distinct 
ways at each step. Firstly, we observed that changing the mask on the training set 
has a very heavy influence on final impact ratios, as can be seen by the large boxplots 
in Fig. 1a. At this stage, the missing data can flip which demographic groups pass at 
the lowest or highest rates. Changing the seed for the machine learning model also 
had an impact, as can be seen in Fig. 1b, but the order of the groups remained more 
stable. Moreover, we were very interested to see that varying missing data patterns 
beyond this point has very little effect on the impact ratio. This is depicted in Fig. 1c, 
where we see that changing the testing set mask creates very little variation. This 
suggests that in situations with limited availability of complete data, it is best to use 
as much of the complete data as possible in the training set, rather then trying to 
distribute it between the training and testing sets. 

The resulting impact ratios for gender across criterion reveal that debiasing the 
imputation can lead to both better and worse parity amongst groups. This depends 
on the occupation, the missing percentages, and the missing mechanisms. As shown 
in Fig. 2, the models with debiased imputation (light shaded bars) alternate between 
having higher and lower impact ratios as compared to their counterpart models with 
regular imputation (dark shaded bars). This makes the overall difference of the mean 
impact ratio tend towards zero, at 0.004 (SE = 0.008).This suggests that minimizing 
the distortion of the relationships between distributions can sometimes be helpful
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Fig. 1 Reliability of impact ratios for ethnicity groups. Each box represents the interquartile range 
of 25 repeated trials using different random seeds applied to the (a) training set masking, (b) model 
fitting, (c) testing set masking step for the Sales selection model, using MCAR simulation with 
MICE imputation 

when optimizing model fairness, but it is not a guarantee due to the non-linear nature 
of the distortions. 

Furthermore, we were pleasantly surprised to see that the expected (from the 
imputed testing set) and actual (from the full testing set) impact ratios had negligible 
differences, in spite of the changes in the imputed data. This can also be observed in 
Fig. 2, where we see that for any given set of conditions the impact ratios for models 
tested on imputed data (green bars) and full data (blue bars) are very similar. This 
holds true for the debiased and regular imputer conditions.
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Fig. 2 Impact ratios for gender. Each row shows impact ratios obtained for a single trial of 
each imputer and missingness condition across various selection models and missing percentages. 
(a) MICE imputer, MCAR missingness. (b) MICE imputer, MAR missingness. (c) Factor model 
imputer, MCAR missingness. (d) Factor model imputer, MAR missingness 

The impact ratios for ethnicity in Fig. 3 showed that debiased MICE imputers can 
either help or hurt overall fairness, which is demonstrated by similar impact ratios 
when aggregated across all other conditions (selection model, missing mechanism, 
and missing percentage). The difference of the means is 0.005 (SE = 0.012). Neither 
imputer affected the system enough to create large changes in the order of the 
ethnicity groups.
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Fig. 3 Impact ratios for ethnicity with MICE imputation. Impact ratios obtained for a single 
trial of MICE imputation with MAR missingness across missing percentages for three different 
selection models. (a) Human resources model. (b) Sales model. (c) Finance model 

Similarly, models trained with the debiased versus regular factor model imputers 
did not show a directional difference in overall fairness. For gender, the difference 
in the mean impact ratio is 0.005 (SE = 0.01), and for ethnicity the difference is 
0.017 (SE = 0.017). However, debiasing these imputer models can have the effect of 
changing the order of demographic groups’ pass rates across missing percentages 
(for a fixed occupation and missing mechanism). This effect is best demonstrated by 
the crossing lines in the factor imputer results in Fig. 4, contrary to the very mild flips 
in some of the MICE imputer results (see Fig. 3). As with the MICE results, we see 
that the expected versus actual impact ratios had minimal differences, as observed 
in how the imputed testing set results look similar to their full counterparts.
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Fig. 4 Impact ratios for ethnicity with factor model imputation. Impact ratios obtained for a 
single trial of factor model imputation with MAR missingness across missing percentages for three 
different selection models. (a) Human resources model. (b) Sales model. (c) Finance model 

4 Conclusion 

In this study, we were able to establish that calculating an expected impact ratio 
from an imputed testing set gives a good approximation of actual impact ratios. We 
also showed that imputation technique has a heavy impact on final model fairness, 
which can be improved by debiasing the imputer. However, debiasing can also make 
models less fair. For this reason, the use of debiased imputers to optimize model 
fairness needs to be evaluated for each use case. In future studies, we will aim to 
explain the non-linear changes in the relationship between the distributions of each 
group to identify which scenarios will or will not benefit from debiased imputation. 
Additionally, we found that missing data has the heaviest impact on fairness at the 
training data set stage, and therefore recommend utilizing as much complete data as 
possible during this stage of model building. In further studies, we would also like to
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see how debiasing imputers and concentrating the more complete data in the training 
set, as opposed to sharing it with the testing set, interacts with our usual methods for 
making models more fair. This will allow us to see how much improvement these 
methods can add to an already fairness-optimized workflow. 
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Appendix: Code to Generate Missing Data Patterns 

This code in Python represents how we simulated MCAR and MAR missingness 
patterns, as well as different missing percentages for each. The MNAR simulation 
details are excised since they were not utilized in this paper and are specific to the 
pymetrics data pipeline. 

1 def produce_NA(p_miss, X, mecha = "MCAR", 
mecha_gen_type = "classic",opt = None, p_obs = None, 
trait_missing_probs_file = None, 

game_missing_probs_file = None, 
missing_trait_group_probs_file = None, 
game_trait_table = None,trait_year = ’2020’): 

2 """ 
3 Generate missing values for specifics missing-data 

mechanism and proportion of missing values. 
4 

5 Parameters 
6 ----------
7 X : torch.DoubleTensor or np.ndarray, shape (n, d) 

or pandas.DataFrame (n, d+...) 
8 Data for which missing values will be simulated 

. 
9 If a numpy array is provided, it will be 

converted to a pytorch tensor. 
10 p_miss : float 
11 Proportion of missing values to generate for 

variables which will have missing values. 
12 mecha : str, 
13 Indicates the missing-data mechanism to be 

used. "MCAR" by default, "MAR", "MNAR" or "MNARsmask 
" 

14 mecha_gen_type:
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15 Indicates if the missing-data mechanism is: 
16 - "classic" 
17 - mimics our game_processors (" 

game_processor") 
18 opt: str, 
19 For mecha_gen_type == "classic" and mecha = " 

MNAR" 
20 For mecha_gen_type == "game_processor" and 

mecha = "MAR", it indicates whether the missing-data 
mechanism is generated at a 

21 - game level ("game_level") 
22 - group trait level ("grouped_trait_level") 
23 p_obs : float 
24 If mecha_gen_type == "classic", and (mecha 

= "MAR" or ("MNAR" with opt = "logistic" or "quanti 
")), 

25 proportion of variables with *no* missing 
values that will be used for the logistic masking 
model. 

26 trait_missing_probs_file: file path for pandas. 
DataFram, 

27 File path for DataFrame containing trait level 
missing probabilities. 

28 Must contain a column called ’missing_prob’, 
indexed with missing trait corresponding each of 
those excess probabilities. 

29 game_missing_probs_file: file path for pandas. 
DataFrame, 

30 DataFrame containing game level missing 
probabilities. 

31 Must contain a column called ’missing_prob’, 
indexed with missing games corresponding each of 
those excess probabilities. 

32 missing_trait_group_probs_file: file path for 
pandas.DataFram, 

33 Dataframe containing excess probabilities of 
each of the groups of missing traits. 

34 Must contain a column called ’excess_prob’, 
indexed with missing traits corresponding each of 
those excess probabilities. 

35 game_trait_table: dict, 
36 

37
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38 A map between games and their corresponding 
trait names. 

39 Returns 
40 ----------
41 A dictionnary containing: 
42 ’X_init’: the initial data matrix. 
43 ’X_incomp’: the data with the generated missing 

values. 
44 ’mask’: a matrix indexing the generated missing 

values. 
45 """ 
46 TRAITS = TRAITS2020 if trait_year == ’2020’ else 

TRAITS2022 
47 to_torch = torch.is_tensor(X) ## output a pytorch 

tensor, or a numpy array 
48 if not to_torch: 
49 X = X.astype(np.float32) 
50 X = torch.from_numpy(X) 
51 X = X.float() 
52 

53 if mecha_gen_type == "classic": 
54 if mecha == "MCAR": 
55 mask = (torch.rand(X.shape) < p_miss). 

double() 
56 elif mecha == "MAR": 
57 mask = MAR_mask(X, p_miss, p_obs) 
58 elif mecha ==’MNAR": 
59 raise ValueError("not implemented for this 

paper") 
60 

61 X_nas = X.clone() 
62 X_nas[mask.bool()] = np.nan 
63 

64 if not to_torch: 
65 return {’X_init’: X.double().numpy() , ’ 

X_incomp’: X_nas.double().numpy(), ’mask’: mask. 
numpy().astype(’float’)} 

66 else: 
67 return {’X_init’: X.double() , ’X_incomp’: 

X_nas.double(), ’mask’: mask}
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Fully Latent Principal Stratification: 
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Measurement Models 
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Abstract Despite prominent potentials of randomized controlled trials (RCTs) 
with computer-based interventions, log data poses a challenge since it differs in 
structure and size from the type of data commonly encountered in studies of causal 
mechanisms. The current study developed a method for RCTs suitable for big 
data, or complex implementation data. The method is an extension of principal 
stratification (PS), a causal framework used for studying how treatment effects vary 
as a function of post-treatment or intermediate variables. To exploit the complex 
structure of the log data, the proposed method can incorporate latent variables or 
measurement models into PS, substantially extending the scope of PS modeling 
into scenarios with multivariate and complex implementation data. With the method 
development, we did a simulation study to evaluate if our proposed FLPS model 
worked properly under various conditions, including sample sizes, number of items, 
effect sizes, and response rates, with different IRT models. FLPS models will 
allow researchers to gain deeper and more nuanced insights into the relationship 
between the effectiveness of the interventions under study, and how they are used. 
This ability will, in turn, deepen our understanding of our rapidly-evolving and 
growing interaction with technology, guiding the development of more effective 
interventions and guiding the implementation decisions of users. 

Keywords Principal stratification · Randomized control trials · Latent variables · 
Causal inference · Log data 

S. Lee (�) · H.-A. Kang · T. A. Whittaker 
The University of Texas at Austin, Department of Educational Psychology, Austin, TX, USA 
e-mail: sooyongl09@utexas.edu 

S. Adam 
Worcester Polytechnic Institute, Worcester, MA, USA 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 
M. Wiberg et al. (eds.), Quantitative Psychology, Springer Proceedings in 
Mathematics & Statistics 422, https://doi.org/10.1007/978-3-031-27781-8_25

287

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27781-8protect T1	extunderscore 25&domain=pdf

 885 54077 a 885 54077 a
 
mailto:sooyongl09@utexas.edu
mailto:sooyongl09@utexas.edu
https://doi.org/10.1007/978-3-031-27781-8_25
https://doi.org/10.1007/978-3-031-27781-8_25
https://doi.org/10.1007/978-3-031-27781-8_25
https://doi.org/10.1007/978-3-031-27781-8_25
https://doi.org/10.1007/978-3-031-27781-8_25
https://doi.org/10.1007/978-3-031-27781-8_25
https://doi.org/10.1007/978-3-031-27781-8_25
https://doi.org/10.1007/978-3-031-27781-8_25
https://doi.org/10.1007/978-3-031-27781-8_25
https://doi.org/10.1007/978-3-031-27781-8_25
https://doi.org/10.1007/978-3-031-27781-8_25


288 S. Lee et al.

1 Introduction 

The data revolution in education has led to more data collection within randomized 
controlled trials (RCTs) to study program effectiveness. It is particularly the case 
in RCTs evaluating computer-based interventions, which allow researchers and 
administrators to collect implementation data in the form of log or clickstream 
data. For example, Pane et al. (2014) conducted a large-scale RCT to study the 
effectiveness of using computers in math learning. This study extensively gathered 
not only primary data for evaluating program effectiveness, but also log data 
obtained while using CTA1,1 such as students’ performance on each worked section, 
timestamps, and hints requested, to name a few. Such log data from technology 
RCTs presents an unprecedented opportunity for researchers to use the fine-grained 
and rich data to help understand how and why online interventions work. 

Despite the prominent potential of RCT with computer-based interventions, log 
data poses a challenge since it differs in structure and size from the type of data 
commonly encountered in studies of causal mechanisms. Unlike the implementation 
or mediation data that most current statistical techniques are designed for, computer 
log data is highly multivariate, multilevel, and messy. Taking Pane et al.’s study as 
an example again, their data were gathered from 147 schools, spanning 52 diverse 
school districts in seven states over the course of two school years. In addition, log 
data was available—including, e.g., correctness and hint usage for each problem 
each student attempted—but only for students assigned to the treatment group who 
had access to the software. Furthermore, some log data, including the number of 
problems, widely varied between students in the treatment group (Sales & Pane, 
2019). As a result, traditional statistical methods developed for causal models do 
not adapt easily to computer log data. 

To exploit the complex log data structure, fully-latent Principal Stratification 
(FLPS) was proposed, incorporating a latent-variable-based measurement compo-
nent into the broader causal model. The technique is an extension of principal 
stratification (PS), a causal framework used for studying how treatment effects 
vary as a function of post-treatment or intermediate variables (Feller et al., 2016; 
Frangakis & Rubin, 2002; Sales and Pane, 2019). Such FLPS modeling opens 
the door to a new frontier in causal modeling—combining PS and other causal 
frameworks with model-based measurement models, such as item response theory. 
The proposed method can incorporate continuous latent variables as measurement 
models into PS, substantially extending the scope of PS modeling into scenarios 
with multivariate and complex implementation data.

1 The Cognitive Tutor Algebra1 (CTA1) is a software for intelligent tutoring systems that provides 
personalized learning for students through adaptive testing in math learning. 
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2 Classical PS 

The classical PS is briefly reviewed to set the stage for FLPS. Principal stratification 
(Frangakis & Rubin, 2002) is based on the potential outcomes framework, in which 
the causal effect in an outcome Y between treatment assignments (Treatment or 
Control) is defined as the difference between two potential outcomes (. τi ≡ YTi

−
YCi

). Randomized treatment assignment allows estimation of average effects for 
overall and baseline subgroups. However, variation in effects due to a variable M 
defined subsequent to treatment assignment may not have a causal interpretation. 

In the PS framework, “principal” effects are estimated within strata (groups) of 
individuals with the same potential values of M , .MC and . MT . That is, principal 
effects are defined as . E[τ |MT = mt,MC = mc] = E[YT − YC |MT = mt,MC =
mc] (Frangakis & Rubin, 2002). When M itself is a feature of the intervention, such 
as in the RCTwhich the current study focuses on, M is only defined for the treatment 
group as . MT . In those cases, we can define “principal effects” for subgroups based 
on .MT (instead of M) as:  .E[τ |MT = m] = E[YT |MT = m] − E[YC |MT = m]. 
In other words, the principal effect is a special type of subgroup or moderation 
effect—the effect of treatment assignment among subjects who would, if assigned 
to treatment, implement the program in a particular way. 

In the classical PS framework, M is a single measurement without error. 
When the intermediate variable M is multivariate—say, including measurements 
of students’ master skills—classic PS models may use aggregated measures (e.g., 
the sample mean . m̂) to stratify on its potential values (. m̂Ti

). This approach, however, 
ignores measurement error in the aggregate as well as other relevant aspects of the 
measurement structure, and can produce misleading results. 

3 Fully Latent PS 

We propose “Fully Latent PS” or “FLPS,” extending classical PS to model 
implementation data that includes several measurements, .mi ≡ {mi1, .., miji

}, 
where . ji denotes the number of measurements for subject i. FLPS incorporates 
the measurement process into the classical PS, specifying a distribution for the 
measurements, .p(mi |ηTi

), where . ηT is a subject-level latent trait variable measuring 
the construct of interest. The T subscript of . ηT denotes potential implementation; 
even though measurements m are only available for subjects in the treatment 
group, . ηT is well-defined for all subjects in the experiment. It measures subjects’s 
potential implementation—how they would implement the intervention if assigned 
to the treatment condition. The causal estimand in FLPS is .τ(ηT ) ≡ E[τ |ηT ]— 
the averaged treatment effect for subjects who would, if assigned to treatment, 
implement the interventions as . ηT . Unlike a classical PS intermediate variable 
. MT , latent variables such as . ηT are not observed in either the treatment or the 
control group of the study. Thus, distributions for both treated and control potential
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outcomes follow mixture distributions. For instance, when . ηT is continuous, we 
may model outcomes as 

. p(YT |m, x) =
∫

p(YT |ηT , x)p(m|ηT )p(ηT |x)dηT and p(YC |x)

=
∫

p(YC |ηT , x)p(ηT |x)dηT , (1) 

where x is a vector of covariates and .p(ηT |x) is a model for . ηT as a function of 
x. Although . ηT is unobserved and must be estimated in both the treatment and 
control groups, the data differ markedly between the two groups: the model for 
. ηT in the treatment group includes both measurements m and covariates, whereas 
in the control group, only covariates are available. We took a Bayesian approach 
to estimation, with the goal of estimating the posterior distribution of model 
parameters . θ (Gelman et al., 1995), which can be computed as: 

.

p(θ |Y,Z,X,mi:Zi=1)

∝ p(θ) ×
∏

i:Zi=1

∫
p(Yi |Zi, ηTi

, Xi; θ)p(mi |ηTi
; θ)p(ηTi

|Xi, η)dηTi
×

∏
i:Zi=0

∫
p(Yi |Zi, ηTi

, Xi; θ)p(ηTi
|Xi; θ)dηTi

,

(2) 

where .p(Yi |Zi, ηTi
, Xi; θ) is a model as a function of covariates X and latent 

parameters . ηY for treatment or control potential outcomes when .Zi = 0 or 1, 
respectively. .p(mi |ηT ; θ) is a measurement model. .p(ηTi

|Xi; θ is a model for . ηT as 
a function of X. .p(θ) is the prior probability density function regarding the FLPS 
parameters. 

Sales and Pane (2019) explored Rasch measurement modeling in FLPS to model 
mastery data. In this study, we extend the framework to accommodate other item 
response models, such as the two-parameter logistic (2PL) model (Birnbaum, 1968), 
the generalized partial credit model (GPCM; Muraki, 1997; Masters, 2016) and the 
graded response model (GRM; Samejima, 1969). Below we present performance of 
the extended FLPS in simulation settings. 

4 Simulation Study 

A Monte Carlo simulation study was conducted to investigate FLPS models’ oper-
ating characteristics. The simulation was designed to mimic RCT implementation 
data gathered during the RCT of Pane et al. (2014). All simulation studies were 
carried out using R version 3.5.1 (R Core Team, 2021) and Stan (Stan Development 
Team, 2016).
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4.1 Design 

The manipulated simulation factors include sample size (N ), the number of items 
(J ), and four item response models (Rasch, 2PL, GPCM, and GRM). Fixed factors 
are as follows: Each student in the treatment group attempted a random 60% of 
available items, whereas the students in the control group did not attempt any 
items.2 Two covariates were included in the model, which explained 50% of the 
variance in the latent factor. 20% of the variance of the outcome is accounted for 
by the treatment assignment, covariates, and the latent factor. Table 1 summarizes 
details on the parameterization of these factors. The strength of the relationship 
between Z and Y (. τ0); between . ηT and .YT − YC (. τ1); between the latent variables 
(. ηT ) and potential outcomes (Y ) (. ω); between X and . ηT (. β); between Y and . ηT

(. γ ) was randomly drawn from the uniform distribution with the range differing by 
relationships. 

In terms of measurement models, intercept parameters were from the standard 
normal distribution for the Rasch and 2PL models. The items for the GPCM 
and GRM have four categories with the three intercepts drawn from the uniform 
distribution with a minimum distance of 0.5 to ensure enough space between 
the intercepts. The mean-centered values were used for intercepts of polytomous 

Table 1 Description of the simulation study 

Condition Simulation factors Values Notation 

Manipulated Measurement model Rasch, 2PL, GPCM, GRM Model 

Sample size 500, 1000, 2000 N 
Number of items 50, 100, 200 J 

Fixed Number of covariates 2 

Percentage of items administered 0.6 

Strength of relationship 

. ηT and .YC U (0.1,0.3) . ω

. ηT and .YT − YC .U(−0.2,−0.1) . τ1

Z and Y U (0.2,0.4) . τ0

Predictive power of .η 0.5 

Predictive power of Y 0.2 

Measurement model parameters 

Intercept N (0,1) for binary data d 
U (0.5,1) for polytomous data 

Slope LogN(0.1,1.3) a 
Note. The number of items (J ) was fixed at 100 when evaluating the performance under different 
calibration sample sizes. Similarly, the sample size (N ) was fixed at 1000 when evaluating the 
performance under different item set sizes

2 Each treatment subject attempted 30, 60, and 120 items out of the total number of items (50, 100, 
and 200). 
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models. For all of the models, item slope parameters were generated from the log-
normal distribution with a mean of 0.1 and a standard deviation of 0.3. 

The FLPS model was analyzed in Stan via the ‘rstan’ package in R. For priors, 
we applied the log-normal prior distribution for the slope parameters and the normal 
distribution for the intercepts for the measurement models.3 For the structural 
model, the priors for all the parameters were uniformly distributed. For the Bayesian 
estimation, two MCMC chains with 5000 iterations each were used to estimate the 
posterior distributions, with the first 2000 samples discarded in the burn-in period. 
The mean of the posterior distribution for each parameter was taken as the MCMC 
estimates. 

4.2 Evaluation 

For evaluating the estimation accuracy, we examined bias and root mean squared 
error (RMSE) of the final estimates. In addition to the distance measures, we also 
examined coverage rate of the credible interval estimates to evaluate fidelity of 
standard error estimates. The credible interval was obtained as the 2.5th and 97.5th 
percentiles of the posterior probability distribution of each estimand. The coverage 
rate evaluates the average proportion of times the credible interval includes the 
generating parameter. 

5 Results 

5.1 Recovery of Measurement Model Parameters 

Table 2 presents bias, RMSE, and coverage rates of the measurement model 
parameter estimates observed under the different sample-size and measurement-
size conditions. The measurement model parameter estimates on the whole showed 
adequate accuracy and precision. The error statistics were reasonably small (average 
bias = 0.072, RMSE= 0.335) and the precision of the uncertainty estimate was 
maintained adequately high (average coverage rate = 0.916). 

Under the different sample-size conditions, the trends related to the sample size 
were generally consistent with the expectation—the larger the samples, the more 
accurate the estimates were. With the bias stable around zero, the values of RMSE 
declined from 0.300 to 0.229 and 0.189 with increases in the sample size. The results 
revealed that for sample sizes of 500 or fewer, the coverage rates were around the

3 In terms of intercept priors, the standard normal prior was applied to the 2PL, whereas normal 
priors with . −1, 0, and 1 as the mean and 1 SD were applied to each of the three intercepts for the 
polytomous models. 
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Table 2 Recovery of measurement model parameters across conditions 

Bias RMSE Coverage 

Model .NT J a d .ηT a d .ηT a d . ηT

Rasch 250 100 – 0.008 −0.004 – 0.213 0.334 – 0.948 0.948 

500 100 – 0.005 −0.004 – 0.152 0.330 – 0.956 0.949 

1000 100 – 0.004 −0.003 – 0.109 0.327 – 0.955 0.951 

500 50 – 0.006 −0.005 – 0.154 0.436 – 0.950 0.951 

500 100 – 0.005 −0.004 – 0.152 0.330 – 0.956 0.949 

500 200 – −0.003 0.002 – 0.151 0.243 – 0.948 0.950 

2PL 250 100 0.021 0.004 0.018 0.321 0.239 0.420 0.936 0.952 0.952 

500 100 0.001 0.005 0.010 0.220 0.178 0.369 0.937 0.946 0.951 

1000 100 0.028 0.004 −0.003 0.153 0.125 0.333 0.957 0.952 0.951 

500 50 0.032 0.001 0.007 0.241 0.176 0.458 0.929 0.956 0.949 

500 100 0.001 0.005 0.010 0.220 0.178 0.369 0.937 0.946 0.951 

500 200 0.009 −0.005 0.018 0.222 0.169 0.299 0.936 0.953 0.948 

GPCM 250 100 0.043 −0.002 0.009 0.252 0.422 0.300 0.933 0.874 0.947 

500 100 0.007 0.003 0.015 0.164 0.209 0.259 0.945 0.957 0.955 

1000 100 0.003 0.001 0.006 0.125 0.151 0.238 0.929 0.956 0.949 

500 50 −0.004 −0.004 0.007 0.166 0.212 0.320 0.934 0.956 0.955 

500 100 −0.007 0.003 0.015 0.164 0.209 0.259 0.945 0.957 0.955 

500 200 −0.015 0.000 0.013 0.160 0.241 0.214 0.944 0.936 0.950 

GRM 250 100 0.021 −0.005 0.014 0.252 0.201 0.345 0.930 0.958 0.951 

500 100 0.005 −0.001 0.011 0.180 0.145 0.309 0.927 0.959 0.948 

1000 100 −0.004 −0.001 0.007 0.127 0.104 0.287 0.924 0.959 0.950 

500 50 0.000 −0.003 0.009 0.183 0.147 0.393 0.921 0.959 0.953 

500 100 0.005 −0.001 0.011 0.180 0.145 0.309 0.927 0.959 0.948 

500 200 −0.004 −0.005 0.007 0.166 0.144 0.244 0.944 0.957 0.953 

Note. . NT : Size of the treatment group. a: Slope parameter of the item response model. d: 
Intercept parameter of the item response model. . ηT : Latent trait score of the treatment group. 
The trait estimates of the control group subjects showed average bias of 0.002, RMSE of 1.021, 
and coverage rate of 0.922. The number of measurement items was fixed at 100 throughout 

nominal value of 0.95, regardless of the type of measurement models, except for the 
GPCM intercept estimates with N = 250. The low coverage in the GPCM is partly 
due to the prior for the intercepts under such a small sample size. The location of the 
intercept priors for the GPCM shifted the estimates for the first and third intercepts, 
which led to low coverage. As expected, longer assessments entailed more precise 
trait recovery under the different sample size conditions. As the number of items 
increased from 30 to 60 and 120, the bias of the trait estimates stayed around zero 
(0.03 on average) while RMSE decreased from 0.269 to 0.229 and 0.205 on average. 
The coverage rate of the interval estimates was kept at the nominal level, averaging 
0.951 rate.
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5.2 Parameter Recovery for Structural Models 

Table 3 presents the results of the structural paths (the difference in Y between Z 
(. τ0), the principal effect (. τ1), the effect of . η on Y (. ω), the effect of X on . η (. β), and 
the effect of X on Y (. γ ) in terms of the bias, RMSE, and coverage rates. Overall, the 
results of the structural model estimates showed that bias and the RMSE were small, 
and coverage rates for structural paths were well above 0.9. Under different sample 
sizes, overall, the RMSE values associated with all the structural model parameters 
were close to zero, falling below 0.1, regardless of the simulation condition. The 
larger the sample size, the smaller the RMSE became for each parameter. Across all 
of the measurement models, the RMSE ranged from 0.04 0.09 with N = 500 and 
ranged from 0.02 to 0.05 with .N = 2000. In contrast to the sample-size conditions, 
the values of RMSE associated with the structural parameters showed no noticeable 
difference between the varying number of items. The differences were less than 0.01 
in RMSE. However, with .N = 1000, the coverage rates are all above 0.9 across the 
number of items. 

Table 3 Recovery of structural model parameters across conditions 

RMSE Coverage 

Model N J .τ0 .τ1 .ω .β .γ .τ0 .τ1 .ω .β . γ

Rasch 500 100 0.066 0.067 0.080 0.069 0.041 0.970 0.940 0.950 0.945 0.930 

1000 100 0.046 0.048 0.055 0.054 0.028 0.920 0.950 0.960 0.930 0.965 

2000 100 0.031 0.030 0.037 0.036 0.020 0.960 0.970 0.970 0.960 0.945 

1000 50 0.045 0.044 0.064 0.051 0.026 0.960 0.970 0.920 0.960 0.925 

1000 100 0.046 0.048 0.055 0.054 0.028 0.920 0.950 0.960 0.930 0.965 

1000 200 0.042 0.044 0.057 0.049 0.030 0.970 0.950 0.930 0.935 0.935 

2PL 500 100 0.070 0.079 0.090 0.094 0.041 0.970 0.940 0.940 0.945 0.970 

1000 100 0.046 0.051 0.060 0.065 0.028 0.970 0.970 0.960 0.955 0.925 

2000 100 0.035 0.040 0.048 0.040 0.021 0.950 0.940 0.940 0.975 0.970 

1000 50 0.047 0.059 0.071 0.057 0.028 0.970 0.930 0.940 0.970 0.960 

1000 100 0.046 0.051 0.060 0.065 0.028 0.970 0.970 0.960 0.955 0.925 

1000 200 0.043 0.055 0.065 0.054 0.027 0.980 0.910 0.950 0.935 0.945 

GPCM 500 100 0.059 0.072 0.073 0.077 0.040 0.980 0.980 0.990 0.955 0.955 

1000 100 0.052 0.044 0.051 0.048 0.028 0.910 0.940 0.990 0.960 0.955 

2000 100 0.033 0.036 0.047 0.033 0.019 0.940 0.940 0.890 0.955 0.955 

1000 50 0.051 0.056 0.065 0.055 0.028 0.930 0.930 0.910 0.970 0.935 

1000 100 0.052 0.044 0.051 0.048 0.028 0.910 0.940 0.990 0.960 0.955 

1000 200 0.049 0.052 0.064 0.048 0.030 0.950 0.920 0.910 0.960 0.945 

GRM 500 100 0.064 0.080 0.093 0.074 0.041 0.940 0.910 0.930 0.965 0.930 

1000 100 0.048 0.046 0.057 0.057 0.025 0.970 0.940 0.970 0.955 0.960 

2000 100 0.034 0.039 0.044 0.040 0.018 0.940 0.930 0.950 0.935 0.950 

1000 50 0.047 0.049 0.054 0.058 0.026 0.940 0.950 0.950 0.955 0.975 

1000 100 0.048 0.046 0.057 0.057 0.025 0.970 0.940 0.970 0.955 0.960 

1000 200 0.051 0.051 0.059 0.048 0.028 0.940 0.970 0.960 0.960 0.955 

Note. N: Sample size; J: The number of items
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6 Summary and Future Direction 

The purpose of this study was to propose a flexible PS framework that incorporates 
various measurement models. The framework can accommodate large, complex 
implementation data that have been commonly observed in RCTs. Our simulation 
study showed that the proposed FLPS works properly with different item response 
models. The results demonstrated some promising potential for causal inference. 
The FLPS framework allows researchers to gain deeper and more nuanced insights 
into the relationship between the effectiveness of the interventions under study— 
in particular when big implementation data is available, such as in evaluations of 
computer-based interventions. Moreover, the FLPS framework will facilitate the 
thorough study of causal mechanisms in various measurement designs, permitting 
subsequent study designs to be optimized to reduce measurement error. 

We conclude the paper with the limitations of the current study and possible 
future directions. The current study considered the item response models as a 
starting point. Future study can consider more flexible latent variable models such 
as factor analytic model, latent class models, or factor mixture models. Future study 
can also consider more complex relations in the log-data, such as multidimensional 
latent structures. Furthermore, this study limited the well-specified measurement 
models. In this simulation study, the population models were used as the measure-
ment models for FLPS. In practice, however, it is not always the case. One might use 
misspecified measurement models mistakenly or for convenience. Future research 
can investigate how the FLPS could be robust with a misspecified measurement 
model. 
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Appendix 

# Install the package for data generation 
# devtools::install_github("sooyongl/IMPS2022") 
library(IMPS2022) 
library(rstan) 

# Generate data 
sdat <- makeDat( 

N = 200, # number of total sample (Half is 
for the treatment group) 
R2Y = 0.2, # Proportion of outcome explained by 
covariates 

R2eta = 0.5, # Proportion of latent variance
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explained by covariates 
omega = 0.5, # Effect of latent variable on 
outcome 
tau0 = 0.3, # Difference in outcome between 
Treatment and Control 
tau1 = -0.15, # Principal effects 
lambda = 0.5, # Missingness on item responses 
nsec = 20, # Number of items 
lvmodel = ’2pl’ # Latent variable models 
) 

# Write the Stan code 
# Other stan scripts can be found in sooyongl/IMPS2022, 
or loaded by mk_stan(\grm") for example. 

stan_code <- " 
data{ 
//Sample sizes 

int<lower=1> nsecWorked; 
int<lower=1> ncov; 
int<lower=1> nstud; 
int<lower=1> nsec; 
int<lower=1> nfac; 
int<lower=0> min_k; 
int<lower=1> max_k; 

// Data indices 
int<lower=1,upper=nstud> studentM[nsecWorked]; 
int<lower=1,upper=nsec> section[nsecWorked]; 

// Index for factor loadings 
matrix[nsec, nfac] factoridx; 
int<lower=0> firstitem[nsec]; 

// Input data 
int<lower=min_k,upper=max_k> grad[nsecWorked]; 
matrix[nstud,ncov] X; 
int<lower=0,upper=1> Z[nstud]; 
real Y[nstud]; 

} 

parameters{ 
// IRT model 
vector[nstud] eta; // Latent traits 
real<lower=0> sigU; // Latent variable variance 

matrix<lower=0, upper=10>[nsec, nfac] a1_free; // 
Item Slopes 
real d[nsec]; // Item intercepts 

vector[ncov] betaU; // Covariate effects on latent 
variable 
vector[ncov] betaY; // Covariate effects on outcome 

real omega;
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real yint; 
real tau0; 
real tau1; 

real<lower=0> sigY[2]; // Outcome variance 
} 

transformed parameters { 
matrix<lower=0, upper=10>[nsec, nfac] a1; 

// Factor loading constraints 
for(jjj in 1:nfac) { 

for(jj in 1:nsec) { 
if(factoridx[jj, jjj] != 0) { 

if(firstitem[jj] == 1) { // first loading per 
factor constrained to 1. 
a1[jj, jjj] = 1; 
} else { 

a1[jj, jjj] = a1_free[jj, jjj]; 
} 

} else { 
a1[jj, jjj] = 0; 

} 
} 

}; 
} 

model{ 
vector[nstud] muEta; 
vector[nstud] muY; 
real sigYI[nstud]; 

// Fully Latent Principal Stratification model 
// Structural part -----------------

for(i in 1:nstud){ 
muEta[i] = X[i, ]*betaU; 

muY[i] = yint+ omega*eta[i] + Z[i] * (tau0 + 
tau1*eta[i]) + X[i,]*betaY; 
sigYI[i]=sigY[Z[i]+1]; 

eta[i] ~ normal(muEta[i], sigU); 
Y[i] ~ normal(muY[i], sigYI[i]); 

}; 

// Measurement part -----------------
for(j in 1:nsecWorked) { 

grad[j] ~ bernoulli_logit(d[section[j]] + 
a1[section[j],1] * eta[studentM[j]]); 

}; 

// Priors ------------------
// IRT priors 

d ~ normal(0, 1); 
for(i in 1:nsec) {
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for(j in 1:nfac) { 
a1_free[i, j] ~ lognormal(0, 1); 

}; 
}; 

// Priors for structural model 
betaY ~ normal(0, 1); 
betaU ~ normal(0, 1); 
omega ~ normal(0, 1); 
yint ~ normal(0, 1); 
tau0 ~ normal(0, 1); 
tau1 ~ normal(0, 1); 

} 
" 

# Run a FLPS model 
fit <- rstan::stan(model_code = stan_code, data = 
sdat$stan_dt) 

summary(fit) 
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Multilevel Reliabilities with Missing Data 

Minju Hong and Zhenqiu Laura Lu 

Abstract Reliabilities are widely used in social and behavioral sciences. The main 
purpose of this study was to investigate the performance of reliabilities for multilevel 
data with missing values. We examined the accuracy and convergence of multilevel 
reliabilities with missing values. The single-level reliabilities were also compared. 
In the simulation study, we considered different conditions, including missing 
data mechanisms, missing data techniques, missing data proportions, sample sizes 
at multilevel levels, and intra-class correlations. Results showed that, in general, 
multilevel reliabilities performed better than single-level reliabilities. Regarding 
missing data techniques, list-wise deletion method is not recommended. 

Keywords Reliability · Missing data · Multilevel confirmatory factor analysis 

1 Introduction 

Reliability is one of the important features of a measurement tool such as a test 
or a questionnaire. Under the factor analysis framework (Jöreskog, 1971), we 
can estimate reliabilities by treating the true scores and the error as the latent 
variables. There are three types of measurement models to explain the relationship 
between factors and indicators: parallel, tau-equivalent, and congeneric. Because 
the assumptions for the parallel model are too strict in practical testing situations 
(Crocker & Algina, 1986), reliabilities have been estimated based on either the 
tau-equivalent or the con-generic model. The most common reliability estimate 
is the coefficient alpha (Cronbach, 1951). However, it is controversial to use the 
coefficient alpha because the tau-equivalent assumption could be violated in actual 
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test administration situations (Cortina, 1993; Sijtsma, 2009). In addition, as test 
administration has become more complicated, traditional reliability estimates are 
more likely to lead to biased results in some cases such as when data have a 
multilevel structure (Bonito et al., 2012). Another problematic case involves the 
existence of missing values in the data set (Enders, 2003, 2004; Raykov, 2009). 

Therefore, this study aims to investigate the performance of both the traditional 
(i.e., single-level) and multilevel (i.e., within-group level and between-group level) 
reliability estimates under a multilevel data structure with missing values. Based 
on literature, we consider the conditions of multilevel data structure (i.e., number 
of clusters, cluster sizes, and intra-class correlations) and the conditions of missing 
values (i.e., missing data mechanisms, missing data proportions, and missing data 
techniques). 

2 Theoretical Backgrounds 

2.1 Reliabilities for Single-Level Data 

Based on the classical test theory, an observed score X has two components, the true 
score T and the error E: 

X = T + E (1) 

Then, reliability ρXT is defined as the ratio of the true score variances σ 2 
T over the 

observed score variances σ 2 
X (Crocker & Algina, 1986): 

ρXT = 
σ 2 

T 
σ 2 

X 
(2) 

The well-known reliability Cronbach’s alpha (coefficient alpha) is based on parallel 
or tau equivalent measurement. It is calculated by 

α = 
I 2σ ij
∑

σ 2 
X 

(3) 

where I is the total number of items in the test X, σ ij (i �= j with i, j = 1, . . . , 
I) is the average of off-diagonal elements, and

∑
σ 2 

X is a sum of all elements of 
the observed scores’ variance–covariance matrix. Another well-known reliability 
coefficient omega (McDonald, 1978) is for the congeneric measurement and is 
calculated by
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ω =
(∑I 

i=1 λi

)2

(∑I 
i=1 λi

)2 + ∑I 
i=1 θii 

(4) 

where λi is the factor loading and θ ii is the error variance of the ith item in the test. 

2.2 Reliabilities for Multilevel Data 

The data in the field of education are often multilevel (Bryk & Raudenbush, 1987). 
Under the factor analysis model framework, Muthén (1994) applied the multilevel 
confirmatory factor analysis (MCFA) model to analyze the educational data set. 
Then, we can specify the two-level MCFA model to decompose the observed score 
into 

Xikg = XBig + Xwikg =
(
λBiηBg + εBig

) + (
λwiηwkg + εwikg

)
(5) 

where XBig is the component of the observed score at the between-group level, and 
Xwikg is the component at the within-group level. 

Geldhof et al. (2014) proposed the level-specific reliability estimates; their idea 
was to apply coefficients alpha and omega to be estimated at each level of the data 
separately. If the test is tau equivalent, at the within-group and the between-group 
levels, we assume that factor loadings are the same, and error variances are varied 
among the ith test item. Then, level-specific alpha, including the within-group level 
coefficient alpha αw and between-group level coefficient alpha αB, are calculated by 

αw = 
I 2σwij
∑

σ 2 
Xw 

(6) 

αB = 
I 2σBij
∑

σ 2 
XB 

(7) 

If the test is congeneric, that is, when we relax the assumptions of the same factor 
loadings, then, level-specific omega, that is within-group level coefficient omega ωw 

and between-group level coefficient omega ωB, are calculated by 

ωw =
(∑I 

i=1 λwi

)2

(∑I 
i=1 λwi

)2 + ∑I 
i=1 θwii 

(8)
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ωB =
(∑I 

i=1 λBi

)2

(∑I 
i=1 λBi

)2 + ∑I 
i=1 θBii 

(9) 

2.3 Reliabilities with Missing Values 

Missing data are the unobserved values in the data set for many reasons (Little & 
Rubin, 2002). The previous studies showed that missing values in the data set are 
one of the most important factors for the reliability estimation (Enders, 2003, 2004; 
Raykov, 2009). Little and Rubin (2002) explained three missing data mechanisms. 
If the probability of missing data is not dependent on any factors of the entire data 
set, it is missing completely at random (MCAR). If the probability of missingness 
is dependent on the probability of the observed values in the data set, it is missing at 
random (MAR). If the probability of missingness is dependent on the probability 
distribution of the missing values in the data set, it is missing not at random 
(MNAR). 

To handle the missing values, the most commonly used method is the listwise 
deletion (LD) method, which is the way to get rid of the cases having the missing-
ness. However, under the MNAR, data deletion methods could cause biased results 
of statistical analysis, reduce the statistical power, and invalidate the conclusions of 
the study. 

To overcome the limitation of LD, many researchers use either data imputation 
methods, which is a method to replace the missingness with the most plausible 
values, or the full information maximum likelihood (FIML) estimation method, 
which is a way to estimate the parameters from the incomplete data by augmenting 
the information from observed data and an underlying probability model. Based on 
literature, the conditions including the missing data mechanisms (MCAR, MAR, 
MNAR), the missing data proportions (up to 40%), the missing data techniques 
(LD method, FIML method, and data imputation methods such as person mean 
imputation, or item mean imputation), the population values of the reliability 
estimates, the sample sizes (100–3000 samples), and the test length (3–20 items) 
were the significant factors for the reliability estimation with missing values in the 
data set. (Deng & Chan, 2017; Edwards et al., 2021). 

3 Methods 

3.1 Data Generation 

We first generated the complete data based on an MCFA model with one factor and 
six indicators, as shown in Fig. 1. In the within-group level model, the factor was
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Fig. 1 Path diagram of the model for data generation and data analysis 

shown as the circle in the lower plate with the factor score ηw~N(0, 1). Factor load-
ings were λwi and the corresponding errors of each indicator were εwi~N(0, θwii). 
And MXi in the square indicated whether the corresponding indicator Xi was 
observed with the dashed line representing the probability density of missing data 
p

(
MXi

)
. 

At the between-group level, a single factor was represented as the circle of 
the factor score ηB~N(0, 1) related to the six indicators with factor loadings λBi. 
Different from the within-group level model, the between-group level indicators XBi 

were shown as the latent variables because XBi indicated the shared but unobservable 
features of the within-group level units belonging to the same between-group level 
unit. Their corresponding errors were εBi~N(0, θBii) seen as the circles in Fig. 1. 

To generate missing values, we used the procedure as follow: For MCAR, we 
created three binary variables corresponding to the indicators X4–X6 based on the
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Bernoulli distribution with the probability p (i.e., the missing data proportion). If the 
value of the binary variable was 1, then the value of the corresponding indicator was 
deleted; if the value of the binary variable was 0, then we treated the value of the 
corresponding indicator as the observed value. For MAR, we matched three pairs 
of the six indicators selected as (X1, X4), (X2, X5), and (X3, X6). We then sorted the 
first three indicators’ values into ascending order. Then, we eliminated the last three 
indicators’ values when the corresponding indicator of the pairs was ranked as the 
smallest p percentage. For MNAR, we sorted the last three indicators’ values into 
ascending order and deleted their values if the values were ranked in the smallest p 
percentage. 

In total, we examined 216 conditions for three missing data mechanisms (MCAR, 
MAR, and MNAR), four sample sizes (750, 1500 with 100 groups, 1500 with 50 
groups, and 3000 samples), six ICCs (.050, .111, and .296 with the same between-
group level but different within-group level parameters and .050, .111, and .296 
with the same within-group level but different between-group level parameters), 
and three missing data proportions (0%, 15%, and 30%). For each condition, we 
conducted 1000 replications. 

3.2 Data Analysis 

In this study, six reliability measures were estimated and compared, single-level 
coefficient alpha α, within-group level coefficient alpha αw, between-group level 
coefficient alpha αB, single-level coefficient omega ω, within-group level coefficient 
omega ωw, and between-group level coefficient omega ωB. We used two missing 
data techniques, listwise deletion (LD) and full-information maximum likelihood 
(FIML) methods to handle the generated data sets with missing values. 

To evaluate the reliability estimation regarding the simulated conditions, we used 
two criteria. To evaluate the accuracy of the estimation, the first criterion was the 
percentage bias calculated as 

Percent Bias (%) =
[

1 

1000 

1000∑

r=1

(
ρ̂XTr − ρXTr

)

ρXTr

]

× 100 (10) 

where ρ̂XTr was the estimated reliability measure in the r th replication, and ρXTr 
was the population value under each simulated condition. We marked the condition 
showing bias above 15%, which indicated the condition would have a meaningful 
negative impact on the reliability estimation. 

To evaluate the stability of the estimation, we calculated the second criterion, the 
convergence rate, as 

Convergence Rate (%) = 
(Number of Converged Models) 

1000
× 100 (11)
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We defined the model as converged (a) when the model satisfied the good model-
fit values (i.e., CFI > .90, TLI > .90, and RMSEA < .08) and (b) when there were 
no convergence error messages from the Mplus outputs. The larger value of the 
convergence rate indicated more stable results of the reliability estimation. 

4 Results and Conclusions 

4.1 Convergence Rates 

In terms of convergence rates, because the single-level coefficient alpha and the 
within-group and between-group level coefficient alpha were estimated from the 
fully saturated model, the results showed a perfect model fit (i.e., 100% convergence 
rates) under all simulated conditions. For the coefficient omega estimates, the 
convergence rates were below 50% (39.8% under MAR, 35.5% under MNAR) when 
(a) we used the LD method, (b) the sample size was small (750 samples), and (c) the 
ICC value was large (.296) by fixing the same between-group level parameters, the 
two-level MCFA model to estimate the within-group and between-group coefficient 
omega ωw and ωB. 

Our results of the lowest convergence rates (Figs. 2 and 3) extended the findings 
of Hancock and An (2020), because this simulation investigated the impact of 
multilevel related conditions (e.g., sample sizes at each level, ICCs) and missing 
data conditions (i.e., missing data mechanisms, missing data proportions). 

Fig. 2 Convergence rates of coefficient omega under MNAR using LD method with the low 
population values of the within-group reliabilities (αw = .372, ωw = .376)
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Fig. 3 Convergence rates of coefficient omega under MNAR using LD method with the low 
population values of the between-group level reliabilities (αB = .372, ωB = .376) 

4.2 Percentage Bias 

The single-level and within-group level reliability estimates reported the highest 
percentage bias under the conditions of (a) the small sample size (750 samples), (b) 
the large ICC value (.296), and (c) the low population values of the within-group 
reliabilities (αw = .372, ωw = .376). Meanwhile the between-group level reliability 
estimates provided the worst accuracy results under the conditions of (a) the small 
samples (750), (b) the small ICC value (.050), and (c) the low population values of 
the between-group level reliabilities (αB = .372, ωB = .376). 

Regarding the missing data related factors, the conditions under (a) MNAR 
mechanism, (b) the more missing data proportions (30% missingness), and (c) the 
usage of LD method showed the worse performance of all six reliability measures, 
single-level and level-specific coefficient alpha and coefficient omega. The results 
of the percentage bias are corresponded with the results of convergence rates. Thus, 
it indicates that the simulation conditions related with the missing data have the 
meaningful impacts on the reliability estimation. 

Further, under most simulated conditions in this study, the percentage bias of the 
coefficient alpha was higher than the percentage bias of the coefficient omega. In 
the data generation step of the simulation study, we set the population values of the 
factor loadings and the error variances varied, because it is a case of the congeneric 
measurement model. 

The literatures pointed out how the violation of the tau-equivalent assumptions 
could cause the overestimation issue of single-level coefficient alpha (Deng & Chan, 
2017; Green & Yang, 2009; Raykov & Marcoulides, 2006), and the level-specific 
coefficient alpha (Geldhof et al., 2014). The results of this study not only supported
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the findings of the previous studies, but also showed the importance of checking 
the assumptions underlying the test (e.g., tau-equivalent, congeneric) under the 
multilevel data structure. 

5 Discussions 

To report reliability is one of the conventions in social science studies because 
reliability ensures the test results’ consistency. However, Cortina (1993) and Sijtsma 
(2009) pointed out that the traditional measures of reliability measures, such as 
Cronbach alpha or coefficient omega, would not perform well under complicated 
test administering situations. 

For example, if the researcher repeatedly administers a test to the students 
(by semesters or by years), the test results would have a hierarchy. Also, if the 
researcher is interested in both the students’ and schools’ features simultaneously 
using a questionnaire, then the collected data would be analyzed by the multilevel 
model. In these cases, when reporting the reliabilities of the test or questionnaire, 
the traditional reliabilities might be biased because they cannot handle the data 
hierarchy. Figures 4, 5, 6, and 7 show that when the ICC is large (.296), indicating 
the multilevel model performs better than a single-level one, the between-group 
level reliabilities outperformed the single-level reliabilities. Under the high ICC 
conditions (i.e., above .3), the between-group level coefficient alpha and coefficient 
omega showed lower percentage bias. Thus, the results of this study support the 
necessity of level-specific reliabilities, as suggested by Geldhof et al. (2014) and 
Hancock and An (2020). 

In addition to the multilevel data structure, the missing-data-related condition 
would be the critical factor of reliability estimation. When the examinee skips 
answering some items of the test or when the researcher mistakenly omits responses 
to the questionnaire, missing data could occur. The existence of missing data causes 
bias in the reliability measures because of the loss of the complete test information. 
Even though the impacts of missing data on reliabilities were examined by previous 
studies (Deng & Chan, 2017; Edwards et al., 2021; Enders, 2003, 2004), the authors 
did not consider the multilevel data structure. The findings of this study showed the 
impacts of missing-data-related conditions on reliability estimation, including the 
missing data mechanisms, missing data proportions, and missing data techniques. 
Specifically, the reliability estimates showed the most biased results when the 
missing data were generated under MNAR, over 30%, and using the LD method. It 
implies that when we report the reliability, we should consider these three conditions 
if the data set has missingness. 

This study could be extended. First, more missing data techniques, such as 
the data imputation methods, can be employed and compared. Because it replaces 
missing information with the most plausible values instead of eliminating missing-
ness, the mean imputation method showed better performance than LD methods in 
single-level reliability estimation (Enders, 2003, 2004). Thus, we could investigate
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Fig. 4 Percentage bias of coefficient alpha under MNAR using LD method with the low 
population values of the within-group reliabilities (αw = .372, ωw = .376) 

Fig. 5 Percentage bias of coefficient alpha under MNAR using LD method with the low 
population values of the between-group level reliabilities (αB = .372, ωB = .376) 

the data imputation methods to handle the missing data in level-specific reliability 
estimation. 

Second, in addition to the sample sizes and the ICCs examined, the effects of 
other data features, such as the number of items (i.e., the test length), the number 
of the answer categories (i.e., the point scale of the items), the complexity of the 
model, or the misspecification of the model could be considered in future research.
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Fig. 6 Percentage bias of coefficient omega under MNAR using LD method with the low 
population values of the within-group reliabilities (αw = .372, ωw = .376) 

Fig. 7 Percentage bias of coefficient alpha under MNAR using LD method with the low 
population values of the between-group level reliabilities (αB = .372, ωB = .376) 
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New Flexible Item Response Models for 
Dichotomous Responses with 
Applications 

Jessica Suzana Barragan Alves and Jorge Luis Bazán 

Abstract Some asymmetric Item Characteristic Curves (ICC)s have already been 
introduced in the IRT literature. These proposals include a new item parameter 
associated with the item complexity which explains the asymmetry in the ICC. 
Although the importance of proposing new models that have asymmetric ICC in 
IRT is already known, the relationship between these models and unbalanced binary 
responses in testing data in real applications has not been explored. In this work 
we propose new asymmetric IRT models that have an asymmetric ICC as their 
main feature. A special case of these models is the cloglog IRT model. Bayesian 
estimation of the proposed models is discussed and one application in educational 
data illustrates the benefits of the new ICC when we compare our IRT models with 
other IRT models proposed in the literature. 

Keywords Asymmetric ICC · Bayesian estimation · LPE · Gumbel distribution 

1 Introduction 

Item Response Theory (IRT) is concerned with modeling the relationship between 
the probability of an individual selecting a certain response to an item and the 
individual’s latent traits (characteristics of the individual that cannot be directly 
observed or measured) (Hambleton et al., 1991). Specifically, in this work we are 
interested in working with dichotomous item responses, modeling the probability of 
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selecting the correct response, namely, . pij , as  . pij = .F(mij ), where F is called the 
item’s characteristic curve (ICC), .mij = aj (θi − bj ), for  .i = 1, . . . , n individuals 
with, .j = 1, . . . , k items, where . aj and . bj are parameters associated with the items, 
and . θi is the latent variable associated with the individuals. Parameters . aj and . bj

are called discrimination and difficulty parameters, respectively. 
Traditional item response theory (IRT) models, such as the two- and three-

parameter logistic models or normal ogive, have a symmetric ICC. That is, the 
behavior of ICCs observed to the right of the inflection point is a mirror image 
of what happens to the left of the inflection point (De Ayala, 2013). 

Some asymmetric ICCs have already been introduced in IRT literature. Samejima 
(2000) introduced an exponent parameter in its Logistic Positive Exponent Model 
(LPE). This new parameter included in the exponent was defined as the item 
complexity and produced asymmetry in the ICC. J.L. Bazán, Bolfarine, and Branco 
(2006) in turn proposed a family of asymmetric ICCs called skew-normal IRT 
models, while Bolfarine and Bazán (2010) proposed a new model that is a reflection 
of Samejima’s LPE model and is called the Reflection Logistic Positive Exponent 
Model (RLPE) (Samejima, 2000). Recently, Zhang et al. (2022) proposed a family 
of IRT models with generalized logit links, which include the traditional logistic and 
normal ogive models as special cases. 

Although the importance of proposing new models that have asymmetric ICC 
in IRT is already well-established, as far as we know, generalizations of the 
cloglog ICC have not been introduced in the literature. Motivated by the proposal 
of new links in the context of binary regression in Alves et al. (2022), we will 
propose some of the links in the context of item response theory. All models 
can be considered asymmetric IRT models and have an asymmetric ICC as their 
main feature. Estimation will be developed using a Bayesian approach, specifically 
the NUTS algorithm of the Stan software, which can be used to simulate from 
posterior distributions of item parameters and latent variables (Stan Development 
Team, 2020). The NUTS algorithm is an extension of the Monte Carlo algorithm 
proposed by Hoffman and Gelman (2014). This algorithm allows the Markov 
chain to explore the objective distribution much more efficiently than other widely 
known MCMC methods such as Metropolis Hastings and Gibbs sampling, using 
Hamiltonian dynamics instead of a probability distribution allowing the Markov 
chains to converge quickly (Neal, 2011). 

The main objective is to provide a clear presentation of Bayesian estimation via 
MCMC for the considered asymmetric IRT models. 

The paper is organized as follows: Sect. 2 will describe traditional IRT models, 
in Sect. 3 we present flexible dichotomous models of the Gumbel distribution, 
which can be considered as ICCs for IRT models. In Sect. 4, the Bayesian analysis, 
comparison criteria and residual analysis used in the application are presented. 
Section 5 exemplifies the methodology through an application.
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2 Traditional IRT Models 

Let . Yij be the random variable that denotes the i-th individual’s response to item 
j , where .i = 1, . . . , n and .j = 1, . . . , k. The i-th individual’s response pattern 
is written as .Yi = (Yi1, . . . , Yik). When items are scored dichotomically (correct, 
incorrect), the observed data can assume the values .Yij = 1, for a correct answer, 
and .Yij = 0, otherwise. It is also assumed that of the event .Yij = 1 (correct answer), 
is denoted by . pij , and can be written as 

.pij = P
[
Yij = 1 | θi, aj , bj

] = F(mij ), (1) 

where F is called the ICC, and 

.mij = aj (θi − bj ), i = 1, . . . , n, j = 1, . . . , k. (2) 

is a latent linear predictor where . aj and . bj are parameters associated with the items, 
and . θi is the latent variable associated with the latent ability or trait of the i-th 
individual. The random variables . Yij associated with the items are conditionally 
independent, given . θi . As previously indicated, parameters . aj and . bj are called 
discrimination and difficulty parameters, respectively. 

The first binary IRT model was introduced by Lord (1952). Equation (1) was  
the cumulative distribution function (cdf) of the standard normal distribution. In 
addition, Birnbaum (1968) considered the default logistic distribution cdf. These 
models are often referred to as the normal ogive IRT model and the logistic IRT 
model, respectively, denoted here as the 2P and 2L IRT models. When . aj =
1, for j = 1, . . . , k in Eq. (2), we obtain the 1P and 1L models considering only 
the item’s difficulty parameters. Furthermore, we can consider the models with 
three parameters as 3P and 3L, proposed by Sahu (2002) which are obtained by 
considering .pij = cj+(1−cj )F (mij ) in Eq. (1), where . cj is the guessing parameter, 
indicating that the probability of a correct answer is greater than zero. 

The traditional IRT models presented above have a symmetric ICC. Recently, the 
cloglog link was used by Robitzsch (2022), as an asymmetric link. However, it has 
been noted by Samejima (2000), J.L. Bazán et al. (2006) as well as Bolfarine and 
Bazán (2010) that asymmetric ICCs can be incorporated using a new item parameter 
that controls the shape of the curve. 

The Logistic Positive Exponent Model (LPE) was proposed by Samejima (2000). 
The reflection of the Logistic Positive Exponent or Reverse Logistic Positive 
Exponent Model (RLPE) was formulated by Bolfarine and Bazán (2010). These 
models assume that: .Yij | θi, aj , bj ∼ Bernoulli(pij ), where . pij = P(Yij =
1 | θi, aj , bj ) = Fλj

(mij ), .i = 1, . . . , n and .j = 1, . . . , k. where . λj > 0
is the shape parameter; and .Fλj

is a cumulative distribution function indexed by 
. λj . The LPE and RLPE correspond to c.d.f. .F(mij ) = (1 + exp(−mij ))

−λj and 
.F(mij ) = 1 − (1 + exp(mij ))

−λj respectively. Note that when .λj = 0 in the LPE 
model we have a special case of the IRT 2L model.
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As in binary regression, this asymmetry is necessary in situations where 
responses with low or high proportions of ones are observed. Some authors have 
noted that incorrect specification of the link function can result in considerable bias 
in the mean response estimates (Czado & Santner, 1992). As emphasized in Chen 
et al. (2001), symmetric links do not always provide a good fit for some datasets. 
Alves et al. (2022) emphasizes that some generalizations of the cloglog link turn out 
to be interesting when we have imbalanced data in the context of binary regression. 
This way, we will extend the links presented in Alves et al. (2022) in the context of 
IRT models. 

3 Flexible Dichotomous IRT Models 

In the following section, we propose new dichotomous IRT models by modifying 
Eq. (1). Our proposal starts with the construction of the power and reverse power 
distributions proposed by J. Bazán et al. (2017) and Lemonte and Bazán (2018): 

.pij = FP−RG(mij ) = [
1 − exp

{− exp(mij )
}]δj , (3) 

and 

.pij = FRP−RG(mij ) = 1 − [
1 − exp

{− exp(−mij )
}]δj , (4) 

with .δj > 0. Moreover, in (3) and (4) a convenient reparameterization is given by 
.δj = exp(λj ) for .λj ∈ R

n. When .λj = 0, .∀j = 1, . . . , k we will have the Gumbel 
IRT model and the Reverse Gumbel IRT model as a particular cases, respectively. 
We will call these models standard Power Reverse Gumbel (P-RG) IRT model and 
standard Reverse Power Reverse Gumbel (RP-RG) IRTmodel, respectively, because 
we are using the corresponding cdf of these distributions. 

Furthermore, we will also consider the process based on building Transmuted 
Skew distributions by following Shaw and Buckley (2009). The resulting models 
are given by: 

. pij = FT S−G(mij ) = exp
{− exp(−mij )

} (
1 + δj

[
1 − exp

{− exp(−mij )
}])

,

(5) 
and 

. pij = FT S−RG(mij ) = [
1 − exp

{− exp(mij )
}] (

1 + δj exp
{− exp(mij )

})
,

(6) 
where .| δj |< 1. We considered a reparameterization for (5) and (6) given by 

.δj = e
λj −1

e
λj +1

for .λj ∈ R
n. Note that if .λj = 0, we will have the IRT Gumbel and 

Reverse Gumbel models, respectively, as individual cases. These models are called 
the Transmuted Skew Gumbel (TS-G) IRT model and Transmuted Skew Reverse
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Fig. 1 Probability curves for .λ = −0.9,−0.5, 0, 0.5, 0.9 in P-RG, RP-RG, TS-G and TS-RG 
models considering different ranges for . θ and .a = 1 and . b = 0

Gumbel (TS-RG) IRT model, respectively, because we are using the corresponding 
cdf of these distributions. 

Figure 1 represents the ICCs where the probability of success is given as a 
function of . θ , a (discrimination parameter) and b (difficulty parameter), which 
were set to 1 and 0, respectively. With this we can say that if an item has a more 
accentuated ICC then it can be considered as having a high power of discrimination. 

For .0 < λj < 1, the ICC of the P-RG IRT model is below the ICC of the model 
with the Gumbel link function, and if .λj < 0 the ICCs of both models are above 
the ICC of the model with the Gumbel link function. The opposite happens when 
we consider the RP-RG IRT model, that is, if .0 < λj < 1 we have the ICC of the
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RP-RG IRT model above the model with the Reverse Gumbel link function, and if 
.0 < λj , we have the RP-RG IRT ICC model below the Reverse Gumbel IRT model. 

The TS-G and TS-RG IRT models behave similarly to . λj , that  is, if we have  
.0 < λj < 1 the ICC of these models will be above the ICC of the model with 
Gumbel link, and if .λj < 0 the ICC will be below the ICC of the Gumbel IRT 
model. 

The . λj parameter in the proposed IRT models is associated with the asymmetric 
form of the ICC, or equivalently, with the asymmetry considered in the latent error 
of the regression of the latent auxiliary variable in relation to the underlying latent 
trait of the correct or incorrect answer of the item. This extra parameter is interpreted 
in two ways in the literature, as a penalty parameter (Bolfarine & Bazán, 2010) or  
as an acceleration parameter by Samejima (2000). Both terms will be used in this 
work without distinction, because they are part of a complexity parameter (see, Bolt 
& Liao, 2022). 

4 Inference 

Likelihood Function For Expressions 3 to 6 we use .Fλj
(mij ) as general notation. 

For the flexible cloglog models indexed by . λj , the likelihood function is given by 

.L(β, θ | y,X) =
n∏

i=1

k∏

j=1

{
Fλj

(mij )
}yij

{
1 − Fλj

(mij )
}1−yij , (7) 

where .β = (aT , bT ), .a = (a1, . . . , an)
T , .b = (b1, . . . , bn)

T , .mij is the latent linear 
predictor in Eq. 2 for .i = 1, . . . , n and .j = 1, . . . , k, and .Fλj

is the cdf P-RG, 
RP-RG, TS-G and TS-RG in Eq. (3–6), indexed with . λj and evaluated at . mij . 

Bayesian Approach In this work, we specifically consider Bayesian estimation 
with Markov Chain Monte Carlo methods that facilitate the efficient sampling of 
the posterior marginal distribution of the parameters of interest. This choice for 
Bayesian estimation was made considering the works of Swaminathan et al. (2003) 
who demonstrated that the accurate estimation of the parameters of items in small 
samples is obtained by using the Bayesian approach. To do this, we will use the 
rstan package in R Development Core Team (2009) software that uses the No-
U-Turn Sampler (NUTS) algorithm (Hoffman & Gelman, 2014). Luo and Jiao 
(2018) demonstrated in a comparison study with other BUGS software that STAN 
is considerably faster in estimating IRT models. 

Prior Specification Prior specification is an important aspect of Bayesian analysis 
especially in the case of small sample size (Bolfarine & Bazán, 2010). Choosing an 
adequate prior distribution in the latent trait solves particular identification problems 
(Albert & Ghosh, 2000). In the IRT literature there is a consensus regarding the 
specification of the prior for the latent trait θi ∼ N(0, 1), for  i = 1, . . . , n.
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There is no consensus in the literature regarding aj and bj parameters of the 
items, (see, Albert & Ghosh, 2000; Congdon, 2007; Johnson & Albert, 1999; Patz  
& Junker, 1999; Sahu, 2002; Spiegelhalter et al., 1996). Therefore, we choose to 
use independent and common priors for a, b, and λ and let such correlations be data 
dependent as in Bolfarine and Bazán (2010). That is, the prior we consider can be 
written as 

.π(θ, a, b, λ) =
n∏

i=1

�(θi)

k∏

j=1

π1(aj )π2(bj )π3(λj ) (8) 

where �(.) is the pdf of the standard normal distribution and π1(.), π2(.), π3(.) are 
the prior pdf for parameters aj , bj , and λj , respectively. This way, aj ∼ LN(0, 1) 
and bj ∼ N(0, 1) (see, Bolfarine and Bazán (2010)). 

A prior considered for λj was U(−2, 2) based on Alves et al. (2022) with binary 
regression data. 

Model Comparison Criteria Several methodologies exist to compare alternative 
models in a Bayesian framework. In this work, we consider the Watanabe-Akaike 
information criterion (WAIC) based on the complexity parameter (pWAIC), pro-
posed by Watanabe and Opper (2010), and defined as: WAIC  = −2lppd + 2pD 
where lppd is the log pointwise predictive density and pD is the effective number 
of parameters. Another measure called ‘leave-one-out cross-validation’ (LOO) 
proposed by Geisser and Eddy (1979) was used. Finally, Deviance Information 
Criterion (DIC) using the definition found in Brooks (2002): DIC = D(θ) + 
0.5var(D(θ)), where D(θ) is the posterior mean deviance was used for model 
comparison. For all the above criteria, smaller values indicate better fit. 

5 Application 

An application was used to illustrate the Bayesian approaches developed in this 
work for IRT models with binary responses. We used data from Bolfarine and Bazán 
(2010), which corresponds to a math test for fourth-grade students in Peruvian rural 
primary schools. There are 974 students responses to 18 items that qualify as binary 
(correct or incorrect) responses. These data are unbalanced and have proportions of 
ones for each item given by (0.72, 0.61, 0.43, 0.37, 0.50, 0.08, 0.65, 0.27, 0.53, 0.80, 
0.48, 0.67, 0.47, 0.57, 0.30, 0.28, 0.12, 0.42). 

We will show a study on the fit of the parametric IRT models discussed 
earlier in Sect. 3 using the mathematical test data. Logistic IRT models with two 
parameters (2L), LPE and RLPE models proposed by Bolfarine and Bazán (2010) 
are considered in our comparison. In all cases, the prior distributions used are 
.θ ∼ N(0, 1), b ∼ N(0, 1), a ∼ LN(0, 1). For  . λ, we consider a .U(−2, 2) prior. 
The stan code used in this application for the RP-RG model is available at Appendix.



318 J. S. B. Alves and J. L. Bazán

Table 1 Model comparison criteria for Math-test data 

DIC WAIC LOO .R̂a .R̂b .R̂λ . R̂θ

2L 16,332.96 17,754.66 17,769.34 1.00 1.00 – 1.00 

LPE 16,281.30 17,731.34 17,753.75 1.00 1.00 1.00 1.00 

RLPE 16,262.84 17,713.35 17,737.99 1.01 1.00 1.01 1.00 

P-RG 16,230.57 17,723.74 17,744.28 1.12 1.14 1.14 1.11 

RP-RG 16,258.68 17,694.58 17,726.59 1.00 1.00 1.00 1.00 
TS-G 16,273.34 17,701.97 17,726.57 1.05 1.06 1.06 1.02 

TS-RG 16,371.22 17,795.55 17,817.49 1.11 1.15 1.15 1.03 

Table 2 Item parameters for alternative IRT models for item 14, item 2, and item 11 in Math data 

Items parameters 

Discrimination Difficulty Acceleration 

Items Models a .R̂a b .R̂b .λ . R̂λ

Item 14 (Asymmetric) RPLE 2.69 1.00 −1.51 1.01 −1.41 1.01 

RP-RG 1.95 1.00 −1.41 1.00 −0.98 1.00 

Item 02 (some degree of asymmetry) RPLE 1.05 1.00 0.48 1.00 0.69 1.00 

RP-RG 0.54 1.00 0.36 1.00 1.00 1.00 

Item 11 (Asymmetry is not evident) RPLE 1.98 1.00 0.15 1.00 0.01 1.00 

RP-RG 0.95 1.00 0.33 1.00 0.67 1.00 

In this application, we apply the estimation algorithm using R. With the rstan 
R language package, the following MCMC parameters were considered: 20,000 
iterations with 10,000 burn-in iterations, along with a thinning interval of 10 
iterations to achieve convergence using three MCMC chains. We consider the 
convergence check based on the potential reduction statistic .(R̂) (Gelman & Rubin, 
1992). To compare the models, we used the DIC, WAIC, and LOO selection criteria 
discussed in Sect. 4. These values are shown in Table 1. 

We can observe in Table 1 that the best proposed model considering the criteria 
studied is the RP-RG model. Note that for all parameters in the proposed models 
the . R̂ was around 1, which indicates that no convergence problems were detected. 

We now compare the IRT RP-RG and RLPE models. Thus, we will continue 
the analysis describing 3 items: Item 14, Item 2 and Item 11, which are the same 
items analyzed by Bolfarine and Bazán (2010). For the RLPE model, item 14 is 
considered an asymmetric item, item 2 has some degree of asymmetry; and item 11 
has no asymmetry (for more details see Bolfarine & Bazán, 2010). 

Table 2 shows the item parameters for the alternative IRT model that had the best 
performance when compared to the RLPE. It is worth mentioning that the results 
obtained in this paper consider .λ ∼ U(−2, 2) and a change of variable .δ = exp(λ), 
in this document we will call this the indirect prior, which is different from those 
used in the article by Bolfarine and Bazán (2010), where . λ ∼ Gamma(0.25, 0.25)
is used. The .U(−2, 2) prior was chosen because Alves et al. (2022) shows that better
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Fig. 2 Item characteristic curves (ICCs) for Items 14, 2, and 11 under the RP-RG and RLPE IRT 
models in the math data 

results were obtained with said prior than those using the direct prior for binomial 
data. 

When comparing the RP-RG and RLPE IRT models in terms of the . λ parameter, 
we observed different magnitudes in the asymmetric case, but with equal signs. 
In the asymmetric case the magnitudes are similar. We also observed . λ = 0.67
in Item 11 (case in which asymmetry is not evident) for the RP-RG IRT model. 
This is expected for this model, as we know that it does not detect symmetric items. 
Regarding the difficulty and discrimination parameters, we observed equal signs. As 
for the magnitude, we observed a difference between the RP-RG and RLPE models 
for the discrimination parameter, but this magnitude is similar for the difficulty 
parameters. Note that for all parameters in the proposed models we find .R̂ ≈ 1. 

We can observe in Fig. 2 that for item 14, the ICC of the RP-RG model shows 
that if the individual has no skill or this skill is small .(θ < −3), the probability 
of correctly answering the item is practically zero, but if he has some skill level 
.(−2.5 < θ < 0) the probability of correctly answering the item increases 
significantly. And if this skill is greater than 0, the probability of correctly answering 
the item is practically 1. Note that the RP-RG and the RLPE show that this item is 
asymmetric. 

For item 2, note the probability of correctly answering the item even if the 
individual has an extremely low ability .(θ < −6) is non-zero for the RP-RG model. 
Now if the skill is greater than 0 the probability of answering correctly is very near 
to 1. This means that this item is not an extremely complex item. Note that in item 11 
the results for lambda was 0.01 for the RPLE model, which is a particular case where 
the curve is symmetric. As for the RP-RG model, we have .λ = 0.67 which also 
approaches zero, so the curve is close to the Reverse Gumbel model. We can thus 
say that item 11 is an item in which the individual does not need to have sequential 
sub-processes to select a correct answer and therefore it is a symmetric item. 

Figure 3 shows the relationship between the discrimination, difficulty and 
acceleration parameters for the IRT RP-RG model. We can see that there is some 
relationship between the discrimination parameters and the . λ parameter, that is, as 
the value of the discrimination parameter. (a) increases, the value of the precision 
parameter. (λ) decreases. The other parameters are apparently unrelated.
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Fig. 3 Relationship between the discrimination, difficulty and acceleration parameters, for the IRT 
RP-RG model 

6 Final Comments 

In this article, we propose generalizations of link functions based on the cloglog 
ICC as an alternative to traditional Item Response Theory models. Note that cloglog 
was used by Robitzsch (2022) and is a special case of the model proposed there. 
We developed a Bayesian estimation procedure for item response theory models. 
In this study, we observed the importance of using the flexible ICC regarding the 
asymmetry of the latent variable. 

In the application referring to the Mathematics Test data, the RP-RG IRT model 
obtained a better fit than the IRT models proposed by Bolfarine and Bazán (2010), 
thus being an alternative to work with unbalanced dichotomous data in IRT. 

Appendix: RP-RG Stan Code 

data { 
int<lower=0> n; 
int<lower=0> p; 
int<lower=0,upper=1> Y[n,p]; 
} 
parameters { 
vector[n] theta; 
vector[p] b; 
vector<lower=0>[p] a; 
vector[p] lambda; 

} 
transformed parameters{ 
vector[p] m[n]; 
vector[p] pp[n]; 
vector<lower=0,upper=1>[p] prob[n]; 
vector <lower=0>[p] delta;
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for(i in 1:n){ 
for (j in 1:p){ 

delta[j] = exp(lambda[j]); 
m[i,j] = a[j]*(theta[i]-b[j]); 

pp[i,j] = exp(-exp(-m[i,j])); 
prob[i,j] = 1 - pow((1-pp[i,j]), delta[j]); 

} 
} 
} 

model { 
theta ~ normal(0,1); 
b ~ normal(0,1); 
a ~ lognormal(0,1); 

lambda ~ uniform(-2,2); 
for(i in 1:n){ 
for (j in 1:p){ 
Y[i,j] ~ bernoulli(prob[i,j]); 

} 
} 

} 
generated quantities { 
vector[p] loglik_y[n]; 
vector[p] Y_rep[n]; 
for (i in 1: n){ 
for (j in 1: p){ 

loglik_y[i,j] = bernoulli_lpmf(Y[i,j]|prob[i,j]); 
Y_rep[i,j] = bernoulli_rng(prob[i,j]); 

} 
} 

} 
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Estimating Individual Dynamic Factor 
Models Using a Regularized Hybrid 
Unified Structural Equation Modeling 
with Latent Variable 

Ai Ye and Kenneth A. Bollen 

Abstract There has been an increasing call to model multivariate time series 
data with measurement error. The combination of latent factors with a vector 
autoregressive (VAR) model leads to the dynamic factor model (DFM), in which 
dynamic relations are derived within factor series, among factors and observed time 
series, or both. However, two limitations exist in the current DFM representatives 
and estimation: (1) the dynamic component of DFM contains either directed or 
undirected contemporaneous relations, but not both, and (2) selecting the optimal 
model in exploratory DFM is a challenge. Our paper serves to advance and 
evaluate DFM with hybrid VAR representations, which would then be estimated 
using LASSO regularization under the Structural Equation Model framework. This 
approach allows for the selection of the optimal hybrid dynamic relations in a data-
driven manner. A simulation study is presented to investigate the sensitivity of 
finding the true hybrid dynamic relations in the structural model and the specificity 
of excluding the false relations using the LASSO-regularization versus the pseudo-
ML approaches. We aim to offer guidance on model selection and estimation in 
person-centered dynamic assessments. 
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1 Introduction 

With the development of technology to collect intensive longitudinal or time series 
data (TSD), recent decades have been witnessing a surge of psychological and 
neurological research at the individual level. Studies that focused on person-specific 
dynamic assessment emphasize individual differences in individual characteristics 
and development. Within the psychometric field, researchers have developed psy-
chometric modeling frameworks to fit traditional time series models, such as the 
Vector Autoregressive (VAR) models (Hamilton, 1994; Lütkepohl, 2005). There are 
growing number of psychometric literature on modeling individual dynamic models 
for TSD on a manifest level (e.g., Epskamp et al., 2018; Gates et al., 2019; Ye  
et al., 2021). For instance, two representative approaches are the unified Structural 
Equation Model (uSEM; Gates et al., 2010; Kim et al., 2007), as a time series 
extension of the SEM, and the graphical VAR (gVAR; Epskamp et al., 2018) model, 
as a time series extension of the network psychometric model. Recently, researchers 
have extended the VAR model into a hybrid representation (called ‘hybrid VAR’ by 
Molenaar & Lo. (2016), or ‘hybrid uSEM’ by Ye et al. (2021)) that can handle both 
the direct causal effects and undirected contemporaneous associations (Molenaar 
& Lo.,  2016; Ye et al., 2021). These approaches differ in the specific variant of 
VAR representation and in the estimation framework to select and identify the 
optimal model. For instance, uSEM is usually identified by step-wise model search 
algorithms (Gates & Molenaar, 2012), while gVAR (Epskamp et al., 2018) or hybrid  
uSEM (Ye et al., 2021) adopt some variants of machine learning methods (e.g., 
regularization) to select and estimate the identifiable optimal sparse model. 

However, so far these studies have focused on models with only manifest 
variables without accounting for measurement error. In practice, it is common 
that more than one, sometimes many, indicators measure the same underlying 
dynamic latent variable. When multiple indicators are available, latent time series 
variables could be formed to adjust for measurement error and to reduce the 
dimensions of the observed variables. The combination of the factor model and 
the time series model result in what we call the dynamic factor model (DFM; 
Browne & Nesselroade, 2005; Molenaar, 1985). In DFM, dynamic relations (e.g., 
lagged and contemporaneous relations) are allowed either within the factor series or 
amongst the factor and the observed time series. In fact, current dynamic modeling 
approaches include a factor model within their restricted VAR version to estimate a 
DFM. For example, the uSEM model in the GIMME framework (Gates & Molenaar, 
2012) has been extended to the uSEM with latent variables (i.e., LV-uSEM), 
which they call the Latent Variable GIMME (or LV-GIMME; Gates et al., 2019). 
LV-GIMME estimates a DFM as a LV-uSEM using the stepwise model building 
algorithm, and an option to estimate parameters by use of the pseudo-maximum 
likelihood (i.e., pseudo-ML; Molenaar & Nesselroade, 1998). 

However, the estimation of DFM with the more flexible VAR representation 
remains to be developed. Therefore, the primary purpose of our paper is to extend 
the regularized hybrid uSEM to the regularized hybrid uSEM with latent variables,
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so that we can estimate a sparse DFM that allows for hybrid contemporaneous 
dynamic relations between the latent factors. Two steps address this overarching 
goal: the first is to reform the structural model of the latent variable uSEM (LV-
uSEM) to its hybrid uSEM version, which the authors refer to as the latent variable 
hybrid uSEM (or LV-huSEM); the second is to perform model selection using the 
LASSO regularization in the search for the optimal sparse LV-huSEM; To evaluate 
the proposed method with existing ones, a simulation study will be conducted to 
compare 1) model recovery performance (sensitivity and specificity) of the LASSO 
regularization versus the pseudo-ML based stepwise model build when they are 
applied under the LV-huSEM context. 

2 The Current Study 

A general DFM for a single multivariate TSD is defined by two components, the 
measurement model and the structural or latent variable model (Molenaar, 1985). 
In the measurement model, LV-uSEM adopts a first-order processing factor series. 
This part adopts a confirmatory factor approach to obtain latent variables with the 
same qualitative meaning. For each individual, let .Yt = [y1t , y2t , . . . , ypt ]T denote 
a vector of a p-variate time series at a given time point t , with .t = 1, . . . , T . 
Assuming . Yt represents a weakly stationary linear time series (i.e., with a constant 
mean, variance and covariance function). To ease the presentation, it is assumed that 
all the time series have zero mean function: 

.Yt = �ηt + εt , εt ∼ N(0,�). (1) 

In the structural model, LV-uSEM inherits a uSEM structure (Kim et al., 2007) 
that unifies temporal dependency and contemporaneous associations among latent 
factors: 

.η = Bη + ζ , ζ ∼ N(0,�). (2) 

where .η = [ηt−1, ηt ] is a .2q × T matrix. The variables are time-embedded by 
appending the data at .t − 1 to that of t , thus expanded to two consecutive time 
points. 

The LV-uSEM operates under the SEM framework for DFM that uses a 
pseudo-ML based model building algorithm and parameter estimation. Ideally, 
the specification for the structural model (1) should be guided by a priori theory. 
Unfortunately, very little is known about the individual dynamic pattern (Nichols 
et al., 2014; Wright et al., 2015, e.g.,). GIMME uses a data-driven forward selection 
algorithm where for every individual, it starts with a null model, and one path with 
the highest and significant modification indices is added iteratively until the model 
arrives at an acceptable fit (Gates et al., 2010). This model building procedure is in 
the open-source R package gimme (Lane et al., 2019).
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However, there are two major ares that we propose to extend the individual 
modeling under the GIMME framework. First, it is imperative to move from the 
restrictive VAR representation in the DFM from a uSEM to the more flexible 
hybrid uSEM. That is, directed regressions and undirected error covariances among 
contemporaneous latent factor variables should be incorporated simultaneously. 
Because they can carry different causal interpretations as well as practical impli-
cations. Therefore, the first goal is to extend the structural model in LV-uSEM to 
the hybrid representation, i.e., LV-huSEM, by freeing up the parameters for the 
covariances of contemporaneous variables in the residual covariance matrix . � in 
Eq. 2. 

Second, the forward selection method of model building is highly dependent on 
the starting model and the intermediate steps, and can arrive at an arbitrary final 
model. Results from the simulation study in Ye et al. (2021) also showed that this 
approach tends to miss relations with moderate to medium strengths even with the 
correct starting model and a large sample size. Regularization, in contrast, is a 
global, continuous model selection and a simultaneous estimation method. When 
using LASSO (Tibshirani, 1996), the sum of the absolute values are shrunken 
towards zero as . λ increases, until they eventually reach exactly zero. Therefore, the 
current method seeks to replace the pseudo-ML stepwise searching and sequential 
estimation with the LASSO regularization for a simultaneous estimation of the 
extended LV-huSEM. 

2.1 The Simulation Design 

We designed a Monte Carlo simulation study to evaluate LASSO regularization 
and the pseudo-ML approach with respect to model recovery under the LV-huSEM 
context. The goal is to investigate the extent to which building LV-huSEM models 
with LASSO regularization is superior to the LV-GIMME approach in terms of (1) 
sensitivity of finding the true dynamic relations in the structural model, and (2) the 
specificity of excluding the false dynamic relations. 

The Data Generating Model (DGM) The DGM is a five-factor DFAS with lag-
1 effects and hybrid contemporaneous relations among the latent factors. In the 
measurement model, each factor has three strong to moderate indicators with 
no cross loadings or lagged relations. We include paths of different types and 
magnitudes to investigate the path recovery for hybrid dynamic relations. This 
includes a lag-1 autoregressive process within each factor, and a cross-lagged 
effect from a lagged factor to a contemporary factor. For the contemporaneous 
relations, we included direct paths as well as covariances. We varied the magnitude 
of coefficients and covariances to see whether these impact the recovery of the true 
DGM. We do not claim that the combination of these parameter values returns a 
common LV-huSEM model in practice.
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Fig. 1 DFM: a time-invariant 
five-factor DFAM with a 
hybrid uSEM structure 

To investigate the influence of sample size on the performance, data is generated 
from the same DGM using time lengths varying from 60, 200, to 1000, representing 
a range from small to large in practice. All the DGMs will be replicated 1000 times, 
resulting in 3000 datasets. A weak stationary test will be performed on the data 
generating process, i.e., we will test that all eigenvalues of . � have modulus less than 
one (Lütkepohl, 2005). All analyses will be performed in R, codes will be released 
and made publicly available on the Open Science Framework (OSF) (Fig. 1). 

2.2 Analytic Procedure 

For the pseudo-ML approach, confirmatory five-factor measurement models are 
estimated by pseudo-ML in lavaan, and factor scores are obtained by the default 
regression method of the ‘lavPredict’ function in lavaan. These factor score series 
will enter the subsequent structural model for model selection using pseudo-ML 
forward search in the GIMME package, function indSEM. The difference from 
the original setting in LV-GIMME is that here the starting structural model is a 
huSEM (with the covariance matrix . ψ∗) instead of the more restricted uSEM (with 
. ψ). Additionally, we focus on individual models only, i.e., no group level model 
is involved. For this reason, we refer to this method “pseudoML-FS-huSEM” to 
indicate that it uses modification indices for the search of sparse huSEM models 
using the factor scores. 

For the proposed method, the LV-huSEM under LASSO regularization (i.e., 
LASSO-LV-huSEM) will be implemented under the regularized SEM framework. 
After the LV-huSEM model structure is specified in lavvan, regsem can import
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the lavvan output and perform LASSO regularization with the user-defined list of 
parameters in the penalty function .λP (θ∗). To ensure that factor series represent 
latent constructs that are consistent with those of “pseudoML-FS-huSEM”, the 
same confirmatory factor structure is estimated without penalty. Factor loading 
parameters belong to the freely estimated set in . θ but not in the regularization 
set . θ∗. Parameters in set . θ∗ are regression coefficients for cross-lagged effects 
and contemporaneous effects except the AR coefficients, as well as the error 
covariance among contemporaneous latent factors. Ideally, the optimal . λ (with 
the lowest BIC) penalizes all unnecessary parameters to zero and estimates the 
remaining ones, unraveling the true type of relation between any two latent factors 
from five possibilities: two cross-lagged effects, two contemporaneous regression 
coefficients, and one contemporaneous error covariance. 

We use sensitivity and specificity to evaluate the accuracy of recovering relations 
with the correct direction. Sensitivity represents the power to detect true relation-
ships; specificity, in comparison, represents the percentage of non-existing paths in 
the DGM that the search procedure accurately omitted in the final model. These 
measures allow for an evaluation of a model’s ability to detect true recovery and to 
reject false ones. 

3 Result 

Let us first turn to the sensitivity for recovering true relations from the starting 
LV-huSEM (Fig. 2). Both methods showed an excellent sensitivity for lag-1 effects 
regardless of the sample size. Besides lag-1 relations, the probability to recover 
another true path by any method depends largely on the sample size: the recovery 
rates were low when the sample size was small (N = 60), overall acceptable at a 
medium sample size (N = 200) and satisfactory given a large sample size (N = 1000). 
Specifically, between the two methods, LASSO-LV-huSEM showed an overall 
higher sensitivity to strong relations (i.e., directed, covariance, and cross-lagged 
relations) when given a medium or large sample size. Surprisingly, pseudoML-
FS-huSEM performed poorly in recovering the strong directed path even with a 
large sample size. A closer examination revealed that the majority of time the model 
tended to recover a true strong directed path as a covariance relation and sometimes 
as a reversed sign directed path (hence a high rate of direction false positive). This 
is a scenario of a recovery that counted as a “path presence recovery” but not as a 
“direction recovery” in Ye et al. (2021). 

We also examined the path-specific “direction false positive rate”, defined as 
the proportion of replication in which a true association was recovered with 
the wrong direction. Not surprisingly, it was observed that some relations were 
recovered with a wrong direction when the sample size was small. However, even 
when the sample size was sufficient and the true path was recovered, sometimes 
additional paths might still be selected when there existed a strong correlation 
between the two variables. Hence, direction false positive rates did not necessary go
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Fig. 2 Sensitivity of path recovery by path type and strength across sample size. Note: 
Small.Dir = small directed path, Large.Dir = large directed path, Small.Cov = small covariance rela-
tion, Large.Cov = large covariance relation, CL = cross-lag effect, Lag-1 = lag-1 effect, Large.FL 
refers to factor loadings of 0.9, Med.FL refers to factor loadings of 0.7 

down with the increase of sample size. Overall, except for cross-lagged relations, 
pseudo-ML methods had higher direction false positive rates in relation to the 
true paths in the DGM than the LASSO methods. This is partly the reason that 
pseudoML-FS-huSEM had very poor sensitivity under some conditions. That is, 
some relations were recovered only with a wrong direction or type of relation. More 
problematically, pseudo-ML showed a high chance (67% at N = 200 or 96% at N = 
1000) of recovering a reversed signed directed path or a covariance when there exists 
a strong directed path. These consistent observations (that all methods using the 
factor scores showed a higher rate of direction false positive than their counterparts) 
suggested that the issue of a wrong direction recovery is very likely tied to the use 
of factor scores in place of the latent variables. 

Finally, both methods reached a path specificity above 90%, suggesting they are 
reliable in rejecting false paths that were unrelated with those pairs of variables that 
have a true relation of another form or direction. However, the direction specificity 
(i.e., the odds of ruling out any path when it is truly false) dropped substantially 
for pseudoML-FS-huSEM (around 72–77%) or any method that used factor scores. 
This is again direction false positive paths.
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4 Discussion 

The current study serves to advance the model search and estimation for a DFM with 
a hybrid VAR representation. Two goals were achieved in the proposed framework. 
First, we extended the structural model of the latent variable uSEM (LV-uSEM) 
to its hybrid uSEM version, i.e., the latent variable hybrid uSEM (or LV-huSEM). 
In this way, the extended LV-huSEM estimates a dynamic factor model with a 
hybrid VAR representation in the structural model. Second, LASSO regularization 
is used to perform both model selection and estimation for the optimal sparse latent 
variable hybrid uSEM. Compared to the current approaches, where the measurement 
model and the structural model are estimated sequentially with a stepwise model 
search procedure using factor scores obtained prior to the model selection (e.g., 
LV-GIMME; Gates et al., 2019), the current method provides a model search on 
a continuum and a simultaneous estimation without calculating factor scores. A 
simulation study was conducted to investigate to what extent the novel estimation 
method for the LV-huSEM models is superior to the pseudo-ML approach similar to 
the individual model in the LV-GIMME framework with respect to model recovery 
performance. 

For model recovery, we found that the two approaches have comparable recovery 
rates for some relations such as lagged effects and moderate contemporaneous 
effects among factors, and they both are reliable in recovering a close-to-true 
structural model when the sample size is medium to large. However, the pseudo-
ML methods using factor scores have a higher chance to commit a direction false 
positive on strong directed relations, that is, a tendency to recover a strong directed 
path as one with a reversed direction or as an undirected covariance relation. The 
result suggests that the use of factor scores instead of latent variables is more likely 
to select a model with a higher false positive rate. 

The simultaneous analysis using LASSO regularization under the LV-huSEM is 
easy to implement and can avoid biases from the use of factor scores, but it might 
be more limited in the size and complexity of the model than sequential analyse 
like the GIMME approach. This is because the use of factor scores reduces the 
dimension of the parameter space. Optimizing the covariance matrix of observed 
variables with a higher dimension is more difficult than that of the latent factors. Our 
DGM might represent an over-simplified, over-sparse DFM, with a very standard 
measurement structure without cross-loadings or local dependency structures. In 
practice, the latent variable relations in a DFM could be much denser with many 
weak to moderate relations. Another aspect that is out of the scope of the current 
study is DFMs for multiple subject time series. The focus of this study is on 
individual dynamic models, for which there is no consideration of between-person 
effects nor attempt to aggregate individual models. However, the use of group-level 
or between-person information (i.e., similarities and variances across individuals) 
has been shown as an effective way to extract true effects from noise so that it 
avoids the risk of over-fitting individual dynamic models (Asparouhov et al., 2018; 
Gates et al., 2019).
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Our results of the LASSO regularized hybrid uSEM with latent variables 
highlights the flexibility of the LASSO regularized SEM in estimating individual 
DFMs. The data-driven LASSO penalty opens up a variety of possibilities in 
the development and appraisal of individual dynamic theories. The penalization 
structure relies on which part of the model is more supported by theory, and 
which part is more uncertain and needs to be explored by the data. The flexibility 
of regularization with user-defined estimation and penalization structure lifts the 
dichotomous boundary between the exploratory approach and the confirmatory one 
and allows for an expansion and refining of theory on a continuum. 
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Abstract Multistage adaptive testing (MST) is used by several large-scale survey 
assessments to enhance measurement efficiency and improve test-taker experi-
ence. In large-scale survey assessments, the target populations (e.g., countries in 
an international comparative assessment) can be of different proficiency levels. 
Accordingly, when designing an MST, multiple competing goals need to be 
considered: (a) to better match the proficiency level of a given respondent and the 
difficulty of assessment; and (b) to get sufficient quality data (i.e., enough responses 
per item across the proficiency levels) to support the estimation of item parameters. 
In developing the instruments for large-scale survey assessments, it is critical to 
ensure content coverage as well as use of the full item pool. Seeking an optimal 
design for the Programme for the International Assessment of Adult Competencies 
(PIAAC), in this paper we address comparing the performance of different designs 
in terms of various evaluation criteria and demonstrate instrument development 
using optimization methods. We also discuss results and implications. 
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1 Introduction 

Digital delivery has become the default assessment mode in this era in national 
and international large-scale survey assessments (LSAs). Such digital delivery 
enables competencies to be measured more efficiently and effectively, allows the 
measurement of new competencies, and makes the collection and analysis of process 
data possible. Digital delivery also permits for more personalized assessments 
via adaptive tests (Bennett, 2018). Such adaptive testing leads to a better match 
between test difficulty and student proficiency and enhances measurement precision 
across the entire proficiency distribution when compared to linear tests. Multistage 
adaptive tests (MSTs) have became so popular that several LSAs have adopted or are 
considering adopting MSTs in order to gain advantages such as improved test taker 
experience. For instance, the Programme for International Assessment of Adult 
Competencies (PIAAC) has used an MST design since 2012 and the Programme 
for International Student Assessment (PISA) since 2018 (Yamamoto et al., 2018). 
In LSAs, the target populations (e.g., countries in an international comparative 
assessment or regions in a national assessment) can be of different proficiency 
levels. PIAAC, as one of the largest and most innovative international assessments 
focusing on measuring knowledge, skills, and attributes in adult populations, is 
implemented across 38 countries in more than 50 languages (Kirsch & Lennon, 
2017). 

In designing an MST system, multiple competing objectives need to be con-
sidered. Among these is to match the proficiency level of a given respondent and 
the difficulty level of the assessment better than can be accomplished with a linear 
testing system. Another important objective is to get sufficient quality data (i.e., 
enough responses per item collected from respondents of different proficiencies 
across the proficiency continuum) to support the estimation of item parameters and 
to properly detect any item misfit at the national level. Furthermore, in developing 
the testlets for an MST system, it is critical to ensure content coverage and use 
the full item pool in addition to other constraints (e.g., considering the assessment 
time limit). Hence, the assembly of the assessment instruments in this context is an 
optimization problem that is subject to a wide range of constraints and research is 
required to identify designs best suited for LSAs. 

The paper is outlined as follows. In the next section, we illustrate a stepwise 
assembly approach along with the various constraints to be considered. We then 
demonstrate this assembly framework via an application of the proposed MST 
design of PIAAC. We compare the performance of different designs in terms of 
various evaluation criteria.
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2 Stepwise Assembly 

Our proposed stepwise assembly approach splits the optimization problem outlined 
above into multiple manageable steps where each step has its own objectives and 
constraints (van der Linden, 2005). Let us assume an MST design with m stages. In 
our assembly approach, the item pool is to be partitioned into m mutually exclusive 
sets of items. Each set is then used to assemble testlets (i.e., modules or item blocks) 
for each stage (e.g., medium difficulty testlets for the routing stage and of varying 
levels of difficulty for the subsequent adaptive stages). This approach lends itself to 
build a balanced MST design that rotates all items across all relevant test positions 
(i.e., stages). Also, this approach allows for developing linear tests, where only the 
testlets assembled for the routing stage from each item set are delivered across all 
testing stages. Furthermore, hybrid designs can be specified so that some proportion 
of test takers is randomly assigned to the linear tests and the others are assigned 
to the MST (e.g., this is done in PISA 2022 mathematics and PIAAC cycle 2 
literacy and numeracy designs). Linear administration to some subsample can help 
to facilitate item calibration by ensuring sufficient item-level data and prevents the 
need for misrouting. 

In the assembly practices for PIAAC and PISA, we consider the constraints 
related to testlet length, linking (trend) versus new items, content specifications 
(e.g., context, process), item format (e.g., simple multiple-choice, complex multiple-
choice), scoring (e.g., human versus machine scored), the unit structure (i.e., items 
from the same unit are always administered together), and timing information. In 
addition, constraints on the amount of overlap between testlets and item pairs can 
be added to enhance the efficiency of the item calibration. The following steps 
generally follow the optimization methods described in van der Linden (2005) 

The stepwise assembly approach can be summarized in the following main steps, 
where the binary decision variables are different for each step: 

(a) Item set assembly: 
.xjt = 1 if unit j is in item set t . 

(b) Testlet assembly: 
.xjt = 1 if unit j is in testlet t . 

(c) Multistage path assembly: 
.xjt = 1 if testlet j is in path t . 

(d) Linear form assembly: 
.xjt = 1 if testlet j is in form t . 

The objective function and constraints are different for each step as well. 
Regarding the target function in the testlet assembly step, both information and 
expected score functions can be used. Under conditional independence, the unit 
information function .Ij (θi) is the sum of item information functions in unit j 
evaluated at . θi . A target test information function .I(θi) can be specified. Then, 
the minimax principle can be used to minimize .ε ≥ 0 subject to
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. I(θi) − ε ≤
J∑

j=1

Ij (θi)xjt ≤ I(θi) + ε, for all i and t.

Similarly, the unit characteristic curve (i.e., the expected score as a function of . θ ) is  
the sum of item characteristic curves. A target test characteristic function .T(θi) can 
be used in a similar fashion (Ali & van Rijn, 2016). 

For the testlet assembly step, other binary decision variables can be added to 
control item pairs and overlap (connectedness; Eccleston & Hedayat, 1974). For 
controlling item pairs, we can let .yjj ′t = 1 if units j and . j ′ are in testlet t with 
.j < j ′. For item overlap, we can introduce .zjtt ′ = 1 if unit j is in testlet t and . t ′
with .t < t ′. However, when using pairs of units and pairs of testlets, the number of 
decision variables can quickly become very large. 

For each testlet t , constraints of category c can be formulated as: 

. nmin
c ≤

J∑

j=1

ncj xjt ≤ nmax
c , for all c and t.

Constraints of this type can be categorical ones such as item format or quantitative 
ones such as expected response time. Other constraints (e.g., “enemy” units) can be 
added as well. 

3 Application 

We set up a simulation study based on the PIAAC cycle 2 main study design 
proposed for literacy and numeracy measures, see Fig. 1. It is a hybrid multistage 
adaptive/linear design. To address the uncertainty in item parameters, 25% of 
respondents are assigned to linear (non-adaptive) tests consisting only of testlets 
prepared for the routing stage where routing is therefore not dependent on the 
performance of test takers during the assessment. Stage 1 is the locator where all 
respondents receive the same set of items (e.g., eight numeracy items). Regardless 
of their assignment to the adaptive or linear routes, all respondents are randomly 
assigned to Design A or Design B to balance the item positions between Stages 2 
and 3. This design depicted in Fig. 1 allowed us to study three different designs by 
changing the percentage of respondents that take the linear tests: the linear design 
(100%), the MST design (0%), and the hybrid design (25%).
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Fig. 1 PIAAC literacy and numeracy hybrid MST design 

3.1 Simulation Study 

In the simulation study, we took the following steps: 

1. We used the PIAAC numeracy item pool consisting of 72 items (structured in 44 
units) and their estimated item parameters (see Table 1) to develop Stages 2 and 
3 testlets for the different designs. In addition to these items, the Stage 1 testlet 
with eight locator items is designed to be the same across all studied designs. 

2. We selected seven groups out of 28 countries to represent the heterogeneous 
PIAAC populations including both the least able group (mean = 206, standard 
deviation [SD] = 59) and the most able one (mean = 288, SD = 44) based on cycle 
1 published means and standard deviations, see Table 2 for the selected groups. 
Then, the ability parameters were generated for each simulee in each of these 
simulated groups. Each group consisted of 3000 simulees. This sample size was 
chosen to reflect the sampling design and is actually the expected target sample 
size. 

3. Given that we were only assembling the testlets for Stages 2 and 3, we partitioned 
the 72-item pool into two item sets, each with 36 items (22 units), then 
assembled the following testlets (12 items per testlet) using mixed-integer linear 
programming (Diao and van der Linden, 2011):
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Table 1 Item pool statistics 
(72 items) 

Parameter Minimum Mean SD Maximum 

a 0.42 0.97 0.29 1.65 

b −1.62 0.32 0.94 3.62 

Table 2 Mean and standard 
deviation of the seven studied 
groups 

Group 1 2 3 4 5 6 7 

Mean 206 247 256 265 273 278 288 

SD 59 50 54 56 46 51 44 

(a) six adaptive Stage 2 testlets (targeting two levels of difficulty: three low-
difficulty and three high-difficulty testlets) from each item set. The low-
and high-difficultly testlets are centered around the middle of numeracy 
proficiency Level 2 and middle of proficiency Level 3 cut scores1 on the 
PIAAC scale, respectively. 

(b) six adaptive Stage 3 testlets (targeting three levels of difficulty: two low-
difficulty, two medium-difficulty, and two high-difficulty testlets) from each 
item set. The low-, medium-, and high-difficultly testlets are centered around 
the middle of proficiency Level 2, Level 3, and middle of Level 3 cut scores 
on the PIAAC scale, respectively. 

(c) six linear testlets of medium difficulty from each item set. 

4. Based on the known item parameters and simulees ability parameters, item 
responses were generated using the two-parameter logistic model (e.g., Lord, 
1980). The datasets were created for three different designs: linear, MST, and 
hybrid (where 25% of the simulees take the linear test). 

To evaluate the results across the different designs, we used a set of evaluation 
criteria. We checked item exposure (i.e., the number of responses per item) and 
the ratio of the maximum and minimum item exposure for each design. Since 
expected a posteriori (EAP) estimates of the proficiency (. θ ) and their variances 
(VAP; variance a posteriori) are used to estimate latent regression parameters in 
group-score assessments (see e.g., Thomas, 1993), we use them to evaluate the 
measurement precision in the different designs. Item response theory (IRT)-based 
reliability was calculated using Kim’s (2012) formula:  

.R = Var(EAP)

Var(EAP) + Mean(VAP)
. (1) 

Additionally, the relative efficiency (RE) of the EAP estimates can be used to 
compare the designs with respect to measurement precision and item calibration. 
The relative efficiency with respect to the EAP can be determined using the ratio of 
their variances (VAP) following the approach outlined by Yamamoto et al. (2019),

1 For more details about description of PIAAC proficiency levels in each domain, refer to the 
technical report (OECD, 2019). 
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which we refer to as relative EAP-efficiency: 

.REEAP(θ) = VAP2(θ)

VAP1(θ)
. (2) 

3.2 Selection of Findings 

Figure 2 shows the distribution of the simulees across the four adaptive paths 
within the MST design for each of the seven groups. The distribution changes with 
increasing mean PIAAC numeracy scores as more simulees are being routed to paths 
of higher difficulty. 

Figure 3 shows boxplots for the number of observed responses per item in each 
of the seven groups for each of the three studied designs. It is clear that the linear 
design leads to a uniform distribution of item responses per item across groups. 
The expected number of responses per item in the linear design is 1000 (given that 
Design A and Design B each had 1500 respondents, with each respondent taking 24 
out of 72 items). The expected minimum number of responses per item in the hybrid 
MST design is 250 (given that one out of four simulees was randomly assigned to 
the linear test). Such data (e.g., minimum sample size per item) in the hybrid design 
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Fig. 3 Distribution of number of responses per item across groups by design 

Fig. 4 Average IRT reliability of EAP estimates for the studied groups by design 

would be sufficient to detect potential item-by-country interactions and recover item 
parameters. As illustrated by Fig. 3, the ratios of maximum to minimum exposure 
are: 1 for the linear design, 5.1 for the MST design, and 3.1 for the hybrid design. 

Figure 4 displays the IRT reliability as a function of the mean numeracy score 
for each of the designs. The curves are as expected, with the MST design providing
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Fig. 5 Smoothed relative EAP-efficiency (left) and relative efficiency (right) of MST and hybrid 
MST designs to the linear design (Note that the horizontal line at 1.0 in each panel refers to the 
threshold of equal efficiency.) 

the highest reliabilities with some variation across groups due to the differences in 
their variances. 

The left panel of Fig. 5 shows the smoothed relative efficiency of the EAP 
estimates comparing the MST and hybrid designs with the linear design. For 
extreme proficiencies, average precision gains for the MST design is up to 37% 
with slightly less gain for the hybrid design. The right panel provides the relative 
efficiency as defined by the ratio of the average test information function of the 
linear design divided by the average test information function for the different 
routing paths of the MST design. The maximum gain in measurement precision 
can reach up to about 50%. 

4 Discussion 

The rapid increase in technology has allowed LSA to move towards more personal-
ized tests that would improve the test-taking experience through matching person 
proficiency and test difficulty. The adaptive testing designs are also expected to 
improve measurement precision. In this paper, we presented a stepwise assembly 
approach used recently for developing the cognitive instruments for LSAs using 
automated test assembly methods. We shared the main steps for this approach 
to help address this highly constrained optimization problem. In summary, the 
assembly framework works well in developing the instruments to achieve the 
various competing goals necessary for LSAs. Furthermore, with the automated 
procedure we assign items to testlets satisfying several important constraints in a 
more efficient way than the manual assembly that was heavily dependent on content 
experts.
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In the context of the PISA 2018 reading assessment, Yamamoto et al. (2019) 
found that measurement precision could be improved by 4–5% overall and up to 
10% for extreme proficiencies with MST. This result supports the use of MST in 
LSAs. However, some limitations can be mentioned. For one, we did not include 
comparisons with other approaches for test assembly (e.g, on-the-fly assembly; 
Zheng & Chang, 2015). In addition, it would be of interest to study the impact 
of different designs on the final reporting results (e.g., plausible values, group 
statistics). 

Regarding the recommended assessment design, the hybrid MST design does 
seem to provide a robust design to be implemented operationally by ensuring 
the construct representation in the assembled testlets, collecting sufficient data 
to recover item parameters and detect any potential item misfit, and increasing 
measurement precision. It also provides other features such as balancing item 
exposure and assessment time across respondents of varied proficiency levels. For 
future developments, other aspects to consider based on real data are checking levels 
of missing data (omit/not reached) that reflect the test-taking experience and level of 
engagement, and the quality of item parameter estimation. Other adaptive designs 
can be considered as well such as targeted testing (e.g., Mislevy & Wu, 1996) 
and targeted MST (e.g., Berger et al., 2019). Given that the context is group-score 
assessments, it is also critical to investigate how to optimize the design in order to 
get more accurate group-level inferences. 
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Psychometric Modeling of Handwriting 
as a Nonverbal Assessment Instrument 
and Its Properties 

Yury Chernov 

Abstract In psychological practice, there are often conditions, when experts cannot 
use traditional psychometric instruments. That relates in particular to forensic and 
criminal psychology. In these cases, experts apply nonverbal instruments, to which 
belongs handwriting psychological analysis. Its major advantages: it is based on 
the normal person’s activity and practically cannot be manipulated. However, the 
validity of nonverbal methods and procedures is typically poor. To improve that a 
method should be formalized. In the current work, we present formalized models of 
handwriting. The models are based on statistical regressions and are implemented 
in the HSDetect framework. Although handwriting features still must be evaluated 
manually, since the proper automated solutions are not available, the formalized 
character of the procedure ensures objectivity and transparency. The modeled 
traits, to which belong psychological characteristics, cognitive states, typological 
dimensions, or disease markers, are evaluated algorithmically. HSDetect includes 
several models, which psychometric properties allow the selection of a proper one 
in a particular case. The procedure has been successfully validated against several 
well-known psychometric tests. HSDetect was applied in several practical cases. 
In the current work, we present two: the screening instrument for of Alzheimer’s 
disease and the model of aggressiveness. 

Keywords Formalization · Handwriting analysis · Handwriting modeling · 
Psychometric properties · Forensic and criminal psychology · Alzheimer’s 
disease · Aggressiveness 

1 Introduction 

In psychological practice, there are often conditions, under which experts cannot 
use traditional psychometric instruments. That relates in particular to forensic 
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and criminal psychology. The reasons for this are rather objective. For instance, 
the person under the expertise can be not available, or his/her answers should 
not be trusted due to the obvious tendency to manipulate them. In these cases, 
experts base their conclusions on nonverbal instruments. However, the validity of 
these instruments is typically poor. That is due to the subjective character of the 
methods. To make a method more objective and to improve its validity, it should be 
formalized: a formalized method allows for proper statistical research and validation 
studies. One such method is handwriting analysis. 

Handwriting analysis has some advantages over questionnaire-based instru-
ments. The major ones are that it is based on the normal person’s activity and 
practically cannot be manipulated. In the current work, we present formalized 
models of handwriting and evaluate their psychometric properties. The models are 
based on statistical regressions and are implemented in the HSDetect computer-
aided framework. Due to the formalized character, the application is highly objective 
and transparent. The procedure has been successfully validated both against several 
well-known psychometric tests and against expert evaluations. 

Different models based on HSDetect were applied in several practical cases. In 
the current work, we present two examples. The first one relates to the markers 
of Alzheimer’s disease in handwriting. The second one presents psychological 
construct aggressiveness. 

Formalized handwriting analysis has three important properties that make it 
especially effective in certain cases. First, it provides wide coverage of personal 
characteristics. That makes it very flexible in the modeling of different psycholog-
ical constructs. Secondly, it ensures the exclusion of social desirability. It could be 
thus a good supplement to the standard psychological assessment. Thirdly, it enables 
the creation and maintenance of a normative database. That allows not just abstract 
formal quantification, but modeling based on normative data. 

2 Method 

2.1 A Subsection Sample 

The fact that handwriting might reflect a person’s physiological and health status 
(Caligiuri & Mohammed, 2012; Harralson & Miller, 2018), as well as his/her 
permanent psychological characteristics (Seibt, 1994; Michel, 1982), is well known. 
The last was traditionally the area of graphology. However, traditional graphology 
lacks profound scientific background and sufficient validation. It has been often 
rightly criticized for this (Chamorro-Premuzic & Furnham, 2014; Kanning, 2019). 
Although graphology did have a long path of successful experiences, mainly in 
human resource assessment, it does not satisfy the actual requirements for a valid 
psychometric method. Graphology lacks systematization and objectivity. The work 
of an expert is not transparent. The less-structured and intuition-based procedure
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makes the result very dependent on the expert. Besides, the typical outcome is a 
plain text, which depends mostly upon the ability of the expert to compile such 
texts, which become the subject of an ambiguous interpretation. However, they aim 
the criticism rather at the way graphology is being practiced, than at the idea of the 
relation between handwriting and traits itself. 

A formalized handwriting analysis allows for solving the mentioned problems 
at the same time while keeping the positive historical experience, where it is 
appropriate. In the current article, we refer to the HSDetect framework (Chernov, 
2011, 2021). It implements an analytical approach to handwriting modeling. 
HSDetect demonstrates promising validation results (Chernov, 2018; Chernov & 
Caspers 2020) against a series of psychometric tests. 

The model includes three major objects: first, handwriting characteristics as 
independent variables. They are derived during the analysis and evaluation of a 
handwriting specimen. Second, traits as dependent variables and, third, so-called 
graphometric functions. The graphometric functions represent the relations between 
handwriting characteristics and traits. Under a trait, we understand any feature of a 
person, which can be reflected in his/her handwriting. That can be a psychological 
feature, e.g., aggressiveness, a dimension of a psychological typology or model, 
e.g., Big Five neuroticism, or a disease marker, e.g., Alzheimer’s. 

The evaluation of a handwriting specimen in HSDetect must be done manually. 
The available computer programs for the automatic evaluation of scanned texts (e.g. 
MovaAlyzeR,1 CEDAR-FOX,2 or Masquerade3 ) do not provide a proper solution. 
First, they can cover only very few simplest handwriting signs. Secondly, their 
reliability is very low. That relates both to the analytical approach and to the neural 
network solutions, proposed in many publications. 

To adequately model handwriting, HSDetect includes about 200 handwriting 
signs and over 700 handwriting characteristics. Under a handwriting sign, we 
understand a general quality of handwriting, for example, letter size. A handwriting 
characteristic is a particular manifestation of a handwriting sign in the analyzed 
sample. Letter size can have the following five characteristics: medium (2–3 mm), 
small (1–2 mm), very small (<1 mm), large (3–5 mm), and very large (>5 mm). 

To provide an objective, unambiguous and reliable evaluation of handwriting 
signs it is very important to formally define them. Therefore, for instance, for the 
size experts consider letters of the middle zone (a, c, e, m, n, o, u, v, w). Moreover, 
only inner letters in words, i.e. without the first and the last ones, are taken. Such 
definitions for every sign and characteristic are necessary. First, often handwriting 
experts do not agree on the evaluation of a particular specimen. Especially when it 
is complicated and signs are not consistent. Secondly, unambiguity and modeling 
require a quantitative evaluation. The formalized definition includes an algorithm of 
evaluation, which should work in all cases.

1 www.neuroscript.net 
2 www.cedartech.com 
3 www.nitesrl.com 
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In HSDetect, both handwriting characteristics and traits are presented on a 
continuous scale from 0 to 1. A graphometric function is a linear regression. The 
trait level y is defined as a function of levels of handwriting characteristics xi: 

y =
∑

ai · xi (1) 

Coefficients ai are the result of analytical and statistical analysis of every individual 
trait. Every trait depends upon several dozen of handwriting characteristics. For 
them ai > 0. For the rest characteristics, they equal 0. The procedure of evaluation 
of coefficients is not in the scope of the article. 

Evaluation of xi depends upon the definition of this handwriting characteristic. 
For instance, xi for handwriting sign size reflects just the number of letters of a 
particular size category related to the total number of measured letters. Therefore, if 
in a specimen there are n inner letters of the middle zone and m of them belong to 
the big size, the corresponding xi = m/n. 

Expression (1) requires some refinement. First, not all handwriting signs can be 
evaluated at every text given for expertise. For instance, a small note on a piece 
of paper does not allow evaluation of margins. If a text is written on lined paper, 
we cannot evaluate inter-line distances. A specimen might not include diacritic 
signs or capital letters, thus we cannot evaluate the corresponding signs, etc. That 
is, the reliability of the trait evaluation depends upon the number of involved 
characteristics. Secondly, some traits in the model are presented through very few 
handwriting characteristics, others depend upon several dozen ones. It is clear that 
in the second case the model is more reliable. To consider this we are using an 
explicit reliability component. With this, the value of the modeled trait t depends 
upon calculated level y and reliability r (we are using a well-known Cobb-Douglas 
function for two factors): 

t = yα · r1−a (2) 

Empirically we came to α = 0.6. For r we are proposing the following expression: 

r = 1–(1 − μ)k (3) 

Here μ is the reliability of the correct evaluation of the trait, assuming that we base 
the evaluation just on one handwriting characteristic. Therefore, 1-μ is actually the 
probability of an erroneous evaluation in this case. By μ = 0.2, we come to the 
reliability value of 0.95 by 14 handwriting characteristics. Variable k is the number 
of handwriting characteristics. 

The values for α and μ are empirical ones. That is quite acceptable since we 
are interested not in absolute values in the model (2), but rather in the possibility 
to formally compare different handwritings, i.e. different persons, to each other. 
We achieve that by means of the normalization of t. The HSDetect database 
contains hundreds of evaluated handwriting specimens. For normally distributed t
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the normalized value (tN) is calculated as followers: 

tN = t − T 
σ 

(4) 

Since not all traits are normally distributed, the normalization in a general form can 
be calculated in the following way: 

tN = t − tmin 

tmax − tmin
(5) 

T is the average value of t, σ – standard deviation, tmin and tmax are correspondingly 
minimal and maximal values of t. 

Model (1)–(5) is the most elaborated one. We call it E-Model. It is intended for 
particular psychological traits, where the number of independent variables, those 
for which ai > 0 is relatively small and the differences in xi values are important. 
Examples of such traits are flexibility, ambition, arrogance, etc. 

Relatively simple psychological constructs and test dimensions are presented 
with a bigger number of handwriting characteristics, e.g. 16 PF. This makes the 
usage of the reliability model and the quantitative presentation of individual hand-
writing characteristics less effective. The handwriting characteristics are modeled as 
binomial variables, that is, all xi take values 0 or 1. This model is called W-Model. 
It includes (1), (2), and (5), where α = 1. 

The plain P-Model is the further simplification of the W-Model, where all 
ai = 1. That is, just the number of relevant handwriting characteristics, which are 
present in the specimen, defines the t value. P-Model is used for more complicated 
psychological constructs, like e.g. Big Five or some disease screening indicators. 

Independent of the form any model must be thoroughly validated before it is 
practically implemented (Chernov, 2018; Chernov & Caspers, 2020). Below is an 
example of the Alzheimer’s disease indicator. 

2.2 Alzheimer’s Disease Screening Indicator 

Automatic writing is a learned skill. One of the leading American handwriting 
experts (Allen, 2016, p. 15) formulated it as follows: “Handwriting is a highly 
developed skill which we usually start to acquire in childhood and develop in the 
following years of adolescence and early adulthood. This is when handwriting 
becomes mature with an established form, barely changing over the years until 
factors such as illness and age start to impair it”. 

Handwriting requires cognitive work to retrieve the learned movements from the 
brain while at the same time compiling the text. Different diseases, which influence 
the brain and motoric functions, might affect handwriting at their earliest stages. 
Therefore, handwriting can effectively identify certain markers of dementia in
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general and Alzheimer’s disease (AD) in particular. Of course, handwriting analysis 
should not be seen as a diagnostic method. Diagnostics belongs to medicine. 
Handwriting analysis should be seen rather as an auxiliary instrument. However, 
in the forensic context, it can be very helpful. 

Numerous studies confirm the strong relationship between AD and handwriting 
deterioration. So Croisile (Croisile, 1999) states: “Writing disorders are an early 
manifestation of Alzheimer’s disease (AD), often more severe than language 
difficulties.” Based on numerous studies by many researchers and the author’s 
ownwa studies, the Alzheimer’s Indicator (ADI) has been developed (Chernov & 
Zholdasova, 2021). It includes 40 handwriting and 2 linguistic characteristics. The 
formalization of this approach is defined by us as AD-HS instrument. Among the 
handwriting characteristics of AD-HS are different inconsistencies of handwriting 
(size, width, inter-letter, and inter-word intervals, slant, and pressure), big letter 
size, deterioration of letter forms and stroke quality, disconnected writing, specifics 
of diacritic and punctuation marks, and others. Linguistic characteristics include 
misspellings and obvious punctuation errors. 

ADI is evaluated as P-Model, that is, the number of markers detected in the 
handwriting specimen of an investigated person divided by 42 (total number of 
characteristics). The subjects in our research were 47 participants, with whom AD 
was diagnosed by neurologists. They provided samples of their handwriting, mostly 
not written as part of the experiment, but rather their free writings. As a control 
group, 182 samples from the HSDetect database were taken. 

The ADI value is calculated in the following steps. First step: an expert 
evaluates the analyzed handwriting and fills in the sign protocol, where all included 
handwriting and linguistic characteristics are listed. The protocol and the evaluation 
part were implemented for this experiment in Excel (all results are transferred 
also in the HSDetect database). To make the conclusion, whether a handwriting 
characteristic is present or not (that is enough for P-Model), he/she uses strict and 
unambiguous definitions of handwriting signs and characteristics, as it was stated 
above. As well above, we presented the example for the handwriting size. Second 
step: Excel calculates the number of present characteristics and divides it by 42 – 
the result is the ADI value. 

The average ADI value for the control group was 0.26, with a standard deviation 
equal to 0.09. The average ADI value for the participants was 0.46. The comparison 
is shown in Fig. 1. The solid line (the ordinate dimension) denotes the ADI values 
of 47 subjects (their serial numbers are presented on the abscissa dimension), and 
the dashed lines from the center to the periphery denote correspondingly the average 
value, the 75% quantile, and the 95% quantile of the control group. 

Besides, the correlation between ADI and the severity level of AD revealed by 
neurologists was 0.64 (based on 16 subjects). That is a high value and means that 
ADI can be effective for screening.
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Fig. 1 Indicator of possible AD and its severity 

2.3 Aggressivity Indicator 

Aggressivity is a much more complicated construct than just aggressive behavior. 
Aggression can be defined as any act that harms another individual who is motivated 
to avoid such harm (Baron and Richardson 1994). This definition is very broad and 
covers a wide range of behaviors, starting from those without any harmful actions 
or passive-aggressive behaviors and ending with verbal and physical aggression that 
inflicts violence. It includes affective or reactive aggression, which is associated 
with a negative affect, typically anger, and instrumental aggression, which is 
typically goal-driven and could be free from affect. Aggressive actions are not 
always caused by the aggressiveness of the individual, and the aggressiveness is not 
always manifested in clearly aggressive actions. Therefore, modern studies empha-
size the difference between the concepts of “aggression” and “aggressiveness”. 
Aggressiveness is seen not only as the tendency of a person to act hostilely and 
aggressively, but as well as readiness for aggression. Aggressiveness is expressed in 
the conscious or unconscious aspiration of a person to cause someone or something 
harm, destroy, or damage it. 

Aggressiveness is modeled in HSDetect by 31 handwriting characteristics (Cher-
nov & Yengalychev, 2019). Among them are, for instance, angular connections, 
strong pressure, long in-stroke, tapering end-stroke, accented last letters in words, 
diminished upper zone, and others. The value of the aggressiveness construct



354 Y. Chernov

Table 1 Aggressiveness 
evaluation 

Names CL JN CM CB JD JG JV 

AGI 0.52 0.52 0.71 0.39 0.35 0.52 0.35 

(AGI) was calculated in the same way as in the previously described steps for the 
Alzheimer’s indicator evaluation. In this case, also P-Model was used. Actually, we 
mostly use P-Model when the number of included handwriting signs is big (over 
two dozen). The average level of AGI in the HSDetect database equals 0.19 with a 
standard deviation of 0.09. To illustrate the model we evaluated the aggressiveness 
of seven famous American criminals,4 in whose aggressiveness there is no doubt. 
The result is presented in Table 1. 

In the first row, there are the initials of criminals, and in the second row – the 
value of the aggressiveness indicator. The values are much higher than with the 
“normal” people. 

3 Discussion 

The presented modeling of handwriting meets the standard requirements for a 
psychometric instrument: objectivity, reliability, and validity. Objectivity is ensured 
because, first, subjects cannot intentionally influence their handwriting. Secondly, 
the evaluation of handwriting signs is unambiguous and defined by formalized 
procedures. Thirdly, the evaluation of traits in HSDetect is computerized. The 
algorithms of evaluation are transparent; they implement the above-described 
models. 

Reliability is ensured if experts by the building of sign protocol as the input for 
HSDetect follow the prescribed formal procedures of evaluation. 

Validation should be provided for every individual trait. HSDetect database with 
hundreds of evaluated handwriting specimens is a proper reference base for that. 
Values can be normalized and compared. 

With all mentioned advantages, the usage of handwriting psychology should not 
be overestimated. Handwriting is individual and unique, but we must not forget 
that many external factors can influence the analyzed specimen. Among them are 
paper, pen, external conditions (temperature and humidity), the changing culture of 
longhand, etc. Experts can consider them by their evaluation when they possess 
additional information about the specimen. However, often that is not the case. 
The best situation to overcome these difficulties is if we have several handwriting 
specimens of the same person. We just have to be very careful with the conclusions 
of the expertise. Nevertheless, formalized handwriting analysis can be of great help

4 Charles Luciano (CL), John Hinckley (JN), Charles Manson (CM), Clyde Barrow (CB), John 
Dillinger (JD), John Gotti (JG), Joseph Valachi (JV). 
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for experts under special conditions, when other methods cannot be applied and can 
serve as an auxiliary instrument together with other psychometric methods. 
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Analyzing Spatial Responses: A 
Comparison of IRT-Based Approaches 

Amanda Luby, Thomas Daillak, and Sherry Huang 

Abstract We investigate two approaches for analyzing spatial coordinate responses 
using models inspired by Item Response Theory (IRT). In the first, we use a 
two-stage approach to first construct a pseudo-response matrix using the spatial 
information and then apply standard IRT techniques to estimate proficiency and 
item parameters. In the second approach, we introduce the Spatial Error Model and 
use the spatial coordinates directly to infer information about the true locations and 
participant precision. As a motivating example, we use a study from forensic science 
designed to measure how fingerprint examiners use minutiae (small details in the 
fingerprint that form the basis for uniqueness) to come to an identification decision. 
The study found substantial participant variability, as different participants tend to 
focus on different areas of the image and some participants mark more minutiae than 
others. Using simulated data, we illustrate the relative strengths and weaknesses of 
each modeling approach, and demonstrate the advantages of modeling the spatial 
coordinates directly in the Spatial Error Model. 
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1 Introduction 

There are a number of tasks which may require individuals to identify spatial fea-
tures on images including radiology, ‘citizen science’ image collection initiatives, 
epidemiology, and forensic science. There may be substantial variability in the 
number and location of coordinates that are marked by different individuals on the 
same image, which naturally lead to questions that Item Response Theory (IRT) is 
well-equipped to answer. For example, are some individuals stronger than others in 
identifying “true” features within the image? How much variability is attributable 
to individual differences, and how much is attributable to item differences (such as 
image quality)? While IRT exhibits potential to answer these questions, applying 
it to spatial data requires new techniques. IRT-based methods have been developed 
to incorporate spatial information (Santos-Fernandez & Mengersen, 2021; Cançado 
et al, 2016), but these approaches largely have a pre-defined set of .(x, y) coordinates 
where responses occur. In cases where there can be any number of .(x, y) coordinates 
marked by each individual, additional spatial considerations are needed. 

Our aim is to apply IRT-based models for estimating participant proficiency 
in marking .(x, y) coordinates when there is no ground truth for the expected 
responses. Such a model should allow for any number of coordinates to be marked 
on a given image. The motivating example for this work comes from forensic 
fingerprint analysis, where fingerprint examiners use minutiae, or small details in 
the fingerprint, to decide whether two prints came from the same source or not (See 
Fig. 1 for example). In studies designed to measure the accuracy and variability of 
fingerprint identification (Ulery et al., 2016b, 2014), multiple participants are asked 
to mark minutiae on a series of different fingerprints. In this setting, there is no 
ground truth for the number of minutiae or their .(x, y) locations. 

Two major national reports in the United States (PCAST, 2016; Council et al., 
2009) have highlighted the subjectivity inherent to fingerprint analysis and the need 

Fig. 1 Illustration of (a) a fingerprint with minutiae marked in orange, (b) a ridge ending, one 
type of minutiae, and (c) a bifurcation, a second type of minutiae
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for research to quantify the variability in decision-making. These reports led to a 
variety of ‘black box’ error rate studies, e.g. Ulery et al. (2011), Pacheco et al. 
(2014), designed to estimate error rates in realistic casework. Ulery et al. (2016b) 
and Ulery et al. (2014) instead treated examiners as ‘white box’ decision-makers and 
measured the factors used to come to a final decision. Since minutiae identification is 
a key part of the decision-making process, individual differences could have massive 
downstream impacts on the final results. We would like to be able to use IRT-like 
machinery to quantify performance of individuals in these minutiae identification 
tasks. 

2 Background 

2.1 White Box Study 

As a motivating example, we use results from the FBI “White Box” study (Ulery 
et al., 2016b). One-hundred and seventy fingerprint examiners were recruited to 
participate. Participants were shown a subset (generally 20–25 per examiner) of 
320 fingerprint pairs, intentionally chosen to represent a broad range of quality 
including low-quality fingerprints that would likely not progress through casework. 
Participants were first shown the latent print, the image of a fingermark taken from 
a crime scene, and were asked to select minutiae and provide a quality assessment. 
Next, they were shown the reference print, a high-quality, known-source image 
taken under idealized conditions, and asked to do the same minutiae identification 
task. After marking both the latent and reference print, they were shown the two 
marked up images together and were asked to compare the two and come to a final 
decision. In this stage, they were allowed to add, delete, or move minutiae on either 
print. 

Because of the complexity of the task and variety of skill sets involved, we 
focus solely on the analysis phase of the latent print. This allows us to isolate 
a single latent trait of the examiners: their proficiency at marking minutiae on 
a latent print. For further details on the fingerprint examination process and 
current recommendations and practices, see Friction Ridge Subcommittee of the 
Organization of Scientific Area Committees for Forensic Science (2017, 2019). 

Figure 2 shows the total number of minutiae marked by each examiner through-
out the entire study, along with whether each minutiae was classified as a superma-
jority (minutiae was marked by .> 2

3 of participants who were assigned the image), 
a majority (minutiae was marked by .> 1

2 of assigned participants), a minority 
(More than 1, but fewer than . 12 of participants marked it), or a singleton (that 
minutiae was marked by only one participant). Singletons make up the majority 
of the marked minutiae for every examiner in the study. Figure 3 shows the 
percentage of classified minutiae for each examiner after excluding minutiae that 
were only marked by one or two participants. This allows us to visualize the
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Fig. 2 Number of marked minutiae and their classifications for each participating examiner. 
Singletons are by far the most common, and there is a large discrepancy in the total number of 
marked minutiae across examiners 

Fig. 3 Percentage of marked minutiae classified as supermajority, majority, and minority for each 
participating examiner (excluding clusters of size 2 or fewer) 

variability in how often participants agree with the majority, even after excluding the 
highest variability markings. Taken together, these figures demonstrate substantial 
variability in examiner markup, but examiners cannot be directly compared to one 
another, since each examiner was assigned a different subset of fingerprint images. 

3 Methods 

We will compare two approaches for analyzing this type of data: (1) a two-stage 
procedure that firsts clusters the data according to the original study to create a 
pseudo item response matrix and then applies a Rasch model (Rasch, 1960; Fischer 
and Molenaar, 2012), and (2) an IRT-like model that uses the .(x, y) coordinates 
directly as a response that we call the Spatial Rater Model. 

3.1 Two-Stage Rasch Model 

In Ulery et al. (2016a), the marked minutiae were clustered using the DBSCAN 
algorithm (Hahsler et al., 2019), followed by hierarchical clustering to split over-
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Fig. 4 An example of the creation of cluster labels for each recorded .(x, y) coordinate followed 
by the creation of the pseudo item response matrix 

large clusters (Anderberg, 2014). This results in each .(x, y) ∈ X being assigned 
a cluster label .k = 1, 2, . . . , K . After cluster labels have been determined, each 
cluster can be treated as a pseudo-item. This results in a .I × K pseudo item 
response matrix, . Y , where .Yik = 1 if examiner i marked a minutiae in cluster 
k and 0 otherwise. The clustering approach allows us to pool information across 
different fingerprints, since not every examiner was shown every fingerprint. A 
visual representation of constructing the pseudo-response matrix is shown in Fig. 4. 

Once . Y , the pseudo-response matrix, has been constructed, a standard Rasch 
model can be used to estimate participant (. θi) and cluster (. bk) parameters: 

.P(Yik = 1) = logit−1(θi + bk). (1) 

The latent scale of this Rasch model is different than the usual latent proficiency 
scale of a Rasch model, and represents a ‘liberal to conservative’ scale in marking 
minutiae. We expect that there are some examiners who mark liberally, and others 
who mark more conservatively (see, e.g., Figs. 2 and 3). Since we have not applied 
any type of scoring to the marking of clusters, larger . θ values will indicate examiners 
who mark more liberally, and smaller . θ values will indicate examiners who mark 
more conservatively. Likewise, higher b values will indicate minutiae that were 
marked by more participants, and smaller b values will indicate minutiae that were 
marked by fewer participants. 

However, a more concerning problem is that this model ignores any systematic 
error in the location that minutiae are marked, and so it is impossible to distinguish 
participants who are more precise (i.e. closer to the true location) from participants 
who are less precise. 

3.2 Spatial Rater Model 

The second analysis approach attempts to correct for the weakness identified above 
by modeling the marked .(x, y) coordinates explicitly. We assume that each marked
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minutiae, . Xik , corresponds to a ground truth minutiae location . Tk , that is located 
with some error (. εik) that depends on participant spatial competency, . θi . Participants 
with strong spatial competency (corresponding to more negative . θ values) should 
generally mark .Xik that are very close to . Tk (small . εik). Participants with weaker 
spatial competency will generally mark .Xik that are further away from . Tk (larger 
. εik). The hierarchical Bayesian model specification is as follows: 

. Tk ∼ MV N(0,Σ) True minutiae locations (scaled)

Xik = Tk + εik Respondent i’s appraisal of minutiae k

εik ∼ lognormal(θi, 1) Error depends on participant competency

θi ∼ N(μθ , σθ ) Participant competencies are normally distributed

Σ = σT LT L′
T σT Cholesky decomposition is used for efficiency

σT ∼ Half-Cauchy(0, 5) Weakly informative prior

LT ∼ LKJ(2) Correlation mildly concentrates around the identity

We assume that the true minutiae locations (. Tk) follow a multivariate normal 
distribution. Since minutiae locations must have an x and y coordinate, this allows 
us to model them jointly. It also assumes that minutiae are more likely near the core 
of fingerprint (assumed to be .(0, 0)). We assume that the error, . εik , is log-normally 
distributed. This ensures that the error is positive, so error in all directions is treated 
equivalently. In the future, it may desirable to, e.g., model the error in the x-direction 
different than the y-direction, in which case a different prior distribution should be 
chosen. 

There are a few notable advantages of the Spatial Rater Model as compared to 
the two-stage Rasch model. First, the ground truth locations, . Tk , need not be defined 
a priori but are estimated by the model. Second, the . θ parameter corresponds to how 
precise an individual is at marking minutiae. Smaller . θ values correspond to higher 
precision (and smaller error) while larger . θ values correspond to less precision 
(and larger error). However, no additional pseudo-item parameters are estimated 
beyond the locations, and so the model does not account for the possibility that 
some minutiae are harder to locate than other minutiae. 

4 Results 

The images of the fingerprints themselves are not available, and so we cannot verify 
the true minutiae locations. We instead use simulated data to assess the performance 
of each modeling approach.
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4.1 Simulated Data 

In order to evaluate the two modeling approaches, we must first simulate data 
for which the true participant parameters and minutiae locations are known. The 
following simulation procedure was used. 

1. Fit the Spatial Rater Model (as defined in Sect. 3.2) to the White Box dataset to 
find a reasonable distribution for . Tk . In our case, 

. Tk ∼ MV N(0,
[
0.90 0.07
0.07 1.06

]
)

2. Simulate 20 minutiae (.T1, T2, . . . , TK , .K = 20) for each of 10 items .(J = 10). 
3. Draw .θi ∼ N(−7, 3) for .i = 1, . . . , 100 participants (The distribution 

parameters can be chosen from the results of the fit in Step 1). 
4. Simulate participant i’s location of minutiae k, . Xik , according to .Xik = Tk +εik , 

where .εik ∼ lognormal(θi, 1). 

Following steps 1–4 of this simulation procedure results in minutiae locations that 
are fully observed, where every participant has marked every minutiae. As shown 
in Fig. 2, this scenario is far from realistic in practice. To create a more realistic 
dataset, an additional parameter for each individual was simulated (. πi) to determine 
the probability that they mark any given minutiae. 

5. For each participant, draw . πi ∼ Unif(0.1, 0.4)
6. For each participant . × minutiae pair, draw . Zik ∼ Bernoulli(πi)

7. Define 

. X′
ik =

{
Xik Zik = 1

Xik = NA Zik = 0

and use .X′
ik as the simulated responses. 

The resulting true minutiae locations .(Tk) for each simulated fingerprint, along 
with the corresponding simulated marked minutiae, . X′

ik , are  shown in Fig. 5. While 
the marked minutiae are generally close to the true minutiae locations, some are 
further away and there is considerable overlap in certain areas (e.g. near the center 
of Simulated Fingerprint 8). 

4.2 Two-Stage Approach 

Following the model outlined in Sect. 3.1, we first cluster the minutiae locations 
from each participant in order to create a pseudo item response matrix . Y (as 
displayed in Fig. 4). In this matrix, each row corresponds to a (simulated) participant
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Fig. 5 Simulated fingerprints (minutiae shown in black) and corresponding simulated minutiae 
markup from 100 examiners (in orange) 

Fig. 6 Estimated parameters from the two-stage Rasch model on the simulated data. Plots (a) and  
(b) display  the . θ̂ estimates, with 95% posterior intervals, compared to the true Spatial Error Model 
. θ and . π values used to simulate the minutiae markings. Plot (c) displays the . b̂ estimates, with 95% 
posterior intervals, compared to the total number of participants (out of 100) that marked each of 
the pseudo-items 

and each column corresponds to a cluster. After the response matrix . Y has been 
constructed, a Rasch model is fit in order to estimate participant ‘proficiency’ and 
cluster ‘difficulty’. However, the data generating process outlined in Sect. 4.1 does 
not rely on proficiency of individual participants, or difficulty of particular minutiae, 
since the data were generated with only spatial error for each participant. Instead, 
the estimated . θ represents a tendency to mark more or less minutiae. 

Figure 6a shows the estimated proficiencies from the Rasch model compared to 
the true spatial competency of each participant. As expected, there is no clear rela-
tionship between these two quantities. The two-stage approach is unable to recover 
the true spatial competencies of each participant, since the .(x, y) coordinates were 
transformed into a pseudo-response matrix. Instead, the Rasch . θ ’s correspond to
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how likely an individual is to mark any given minutiae, which is governed in the 
simulation by the . π parameter. This relationship is shown in Fig. 6b and shows a 
strong trend. Finally, Fig. 6c shows the estimated cluster . bk’s from the Rasch model, 
which are determined by how often each cluster was marked in the simulation. 
Clusters that were marked more often were assigned larger . bk’s than clusters that 
were marked less often. 

These results underscore the weakness of using the two-stage approach. It is 
impossible to recover the spatial competencies of each participant, and the . θ and b 
parameters estimated by the Rasch model are both driven by participant propensity 
to mark additional minutiae (. π ). 

4.3 Spatial Rater Model 

Finally, we fit the Spatial Rater Model defined in Sect. 3.2 on the simulated data. 
Since the data were generated according to this model, the parameters should be 
able to be recovered. Figure 7 shows the true minutiae locations, . Tk , in black and 
the detected minutiae in green. In general, the model is able to recover the true 
locations well, but misses some true minutiae in high-density areas (e.g. the center 
of Fingerprints 3 and 8) or minutiae that are close to others (e.g. Fingerprints 4 and 
10). 

Next, we investigate whether the estimated spatial competencies (. θ̂) recover the 
true spatial competency values .(θ) in Fig. 8a, and if there is any relationship to 
the tendency to mark minutiae (. π ) in Fig. 8b. While Fig. 8a shows a very strong 
correlation between . θ̂ and . θ , the model does tend to systematically under-estimate 

Fig. 7 Recovery of minutiae locations (. Tk) in the Spatial Error Model. True minutiae locations 
are shown in black, and estimated . Tk are shown in green. The model generally recovers the true . Tk

well, but misses some true minutiae in high-density areas
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Fig. 8 Parameter recovery in the Spatial Error Model. The . θ estimates are strongly correlated with 
the true values, but the model tends to under-estimate the spatial competency of individuals. There 
is no discernible relationship between . θ̂ and . π

the . θ values, likely due to shrinkage from the prior distribution. As expected, there is 
no discernible relationship between . θ̂ and . π . Overall, the model shows promise for 
modeling error in spatial responses when the number of marked spatial features per 
item may vary, but further study and refinement is needed prior to implementation 
in practice. 

5 Discussion 

Measuring individual performance in identifying spatial coordinates could provide 
novel and valuable information about variability in decision-making in a variety of 
settings. Using fingerprint analysis as a motivating example, we demonstrate the 
use of a two-stage procedure with standard IRT machinery on simulated data, and 
introduce the Spatial Error Model as an alternative that models the spatial responses 
directly. Overall, parameter recovery of the Spatial Error Model was strong and 
provided improvements over the two-stage approach, which required some loss of 
information. 

However, the results presented here represent a single simulation, and correspond 
to one set of chosen parameter values. A natural next step of this work is to evaluate 
the model on further replications of these parameter values, as well as additional 
sets of parameter values and data-generating processes. The primary consideration 
of this initial model was also to recover the true minutiae locations, and future 
iterations of the model will focus on improvements to the interpretability of the 
participant spatial competencies and associated errors. The model must be shown 
to be consistent and robust prior to implementation in practice, which requires 
additional simulation studies and model refinement. 

Additionally, the algorithm used to initially cluster the .(x, y) coordinates 
(DBSCAN, Hahsler et al., 2019) is sensitive to small changes in the . ε parameter. 
Since we do not have access to the original images, there is no way to independently



Spatial Responses 367

perform a sensitivity analysis on the original data and resulting cluster labels. A 
further area of future work is varying this parameter on the simulated data to 
determine how sensitive the resulting latent parameter estimates are to such changes. 

Both modeling approaches discussed in the current paper rely on the initial 
clustering step in order to determine which .(x, y) coordinates marked by different 
individuals correspond to the same minutiae. This introduces a “double-dipping” 
problem (Kriegeskorte et al., 2009), where the data are used twice: once to construct 
the clusters and once to fit the model. This can result in artificially small uncertainty 
estimates and uncontrolled Type I error. A future area of expansion is correcting for 
this through incorporating the clustering step in a hierarchical model. 
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Application of the Network Psychometric 
Framework to Measurement Burst 
Designs 
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Abstract Network Psychometrics emerged in the last years as an approach that 
allows investigating how different elements of a system interact and how these 
interactions change across occasions. The present work aims to show the potential-
ities of the Network Psychometric framework to examine the stability of dynamics 
of change of psychological processes. Specifically, we tested the applicability of 
the recently introduced psychonetrics toolbox to (a) model within-subjects (both 
contemporaneous and temporal) and between-subject (stable individual differences) 
dynamics with data collected with a measurement burst design (MBD, two 14-
day bursts); and (b) examine the temporal stability (or instability) of the process’ 
dynamics by directly comparing the two bursts in terms of both within and between 
parameters’ invariance. The illustrative example was about the process of meaning-
making, whose dynamics of change were examined across two different contextual 
conditions during the COVID-19 pandemic. A step-by-step procedure to apply 
psychonetrics to MBDs is provided in an Open Science Framework project. 
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1 Introduction 

The network psychometric approach offers the best representation of the concept 
of dynamic system of interacting elements (Borsboom et al., 2021). This approach 
emerged in the last decade as an alternative way to the traditional latent variable 
approach to investigate patterns of associations among variables in a multivariate 
framework (Borsboom & Cramer, 2013). Based on the idea of the mutualism 
model (van der Maas et al., 2006), each psychological process (e.g., intelligence) 
is conceptualized as a complex system made of several elements (i.e., memory, 
decision, reasoning) in a dynamical interaction, from which the development of the 
entire system is generated (Borsboom et al., 2021; Marsman & Rhemtulla, 2022). 
Within this framework, a psychological process can therefore be visualized as a 
network of intercorrelation (“edges”) between the constitutive elements (“nodes”) of 
the system (Borsboom et al., 2021). A cross-sectional network is usually estimated 
modelling observed indicators as the nodes of the system and the connections 
between these nodes as partial correlations, that are unique associations between 
each couple of nodes after controlling for the associations with all the other nodes 
(Epskamp et al., 2018). 

1.1 Psychonetrics: A Toolbox for Confirmatory Testing 
in Network Psychometrics 

Thanks to its data driven approach, the network analysis methodology was intro-
duced as a powerful tool for exploratory research (Epskamp et al., 2018), to be 
used when prior knowledge about process dynamics is not sufficient to make 
strong causal hypothesis. However, recently researchers dealt with the challenge 
of extending the network psychometrics to test confirmatory hypothesies, for 
instance evaluating group differences in the network structure (Marsman & Rhem-
tulla, 2022). To fill this gap, a new toolbox was developed named Psychonetrics 
(Epskamp, 2020a). The psychonetrics toolbox allows combining the exploratory 
search of the Gaussian Network Modeling with the Confirmatory testing of the SEM 
framework, by introducing fit indices, parameter significance and the possibility to 
evaluate group differences in the network structure by comparing nested models 
(http://psychonetrics.org/). 

Recently, network models from time-series and panel data have been developed 
to offer a thoughtful insight into multivariate pattern of temporal dynamics of 
psychological processes collected from multiple individuals (Borsboom et al., 
2021; Epskamp, 2020b). Multilevel temporal networks (when time is nested within 
people) can be estimated as mlVAR models that possess three basic assumptions to 
be verified before running models: the normality of item distribution, the stationarity 
of parameters, and the equality of time intervals (Epskamp et al., 2018). Currently, 
despite several modelling techniques for intensive and longitudinal data have been 
implemented in the psychonetrics package, there is a lack of empirical studies

http://psychonetrics.org/
http://psychonetrics.org/
http://psychonetrics.org/
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testing the applicability of its confirmatory approach to real data collected with 
intensive longitudinal designs. 

This work presents an application of the ml_ts-lvgvar model (Epskamp, 2020b), 
that combines the multilevel graphical vector-autoregression (mlGVAR) framework 
with the latent variable modelling (lvm) for time series data with a nested structure 
(days nested within person). The model is estimated following the variance decom-
position in a within-level variance, encoding dynamic effects, and a between-level 
variance, representing individual differences (Epskamp, 2020b). At the within-level, 
two networks are generated: the temporal network is generated from a matrix of 
directed vector autoregressive coefficients to assess if a deviation from a subject’s 
mean predicted a deviation from a subject’s mean in the same component (i.e., 
inertia) or in another component (i.e., temporal influence) at the next measurement 
occasion; the residual matrix is further modelled as a contemporaneous net-
work mapping the within-person partial correlations (i.e., concurrent associations) 
between the components within the same day, after conditioning for the previous 
measurement occasion. A third matrix can be estimated to form a GGM (gaussian 
graphical model) encoding how the stationary means of different subjects relate to 
one another, this is called between-person network. 

In the present study we applied the multilevel ts-lvgvar model to real data 
collected with a measurement burst design made of two 14-days diary studies. The 
multi-group function available for this model in psychonetrics was used to directly 
compare the dynamic structure of the two waves and infer about the stability of 
process dynamics across time. 

2 Illustrative Example 

The illustrative example is dedicated to examining the stability of dynamics of 
change of the meaning-making process, defined as the process by which individuals 
build the meaning of their life (Park et al., 2012; Steger et al., 2009). The meaning-
making process has been conceptualized as a system of interacting elements made 
of six basic components (presence of meaning, presence of significance, presence of 
purpose, search for presence, search for significance, search for purpose; Zambelli 
& Tagliabue, 2023). 

2.1 Method 

Data was collected with a measurement burst design composed of two 14-days daily 
diary studies from a sample of emerging and young adults (18–35 years; Arnett, 
2007). The first burst occurred in March 2020 during the first Italian lock-down, the 
second burst was 10 months later (February 2021), when the restrictions imposed 
due to the pandemic were temporally eased. Participants signed an informed consent 
before participating in both waves. Ethical approval was issued by the Ethics
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Committee of Università Cattolica del Sacro Cuore of Milan (Italy). Among the 
529 participants (Mage = 25.5; SD = 4.1; Males = 27%; Students = 44%), the 
27.6% (N = 146) took part in both waves, the 34.4% (N = 182) completed only 
the first wave and the 38% (N = 201) only the second wave. Participants completed 
on average 12.6 daily questionnaires (range = 1–14; SD = 2.9) in Wave 1, and 11 
questionnaires (range = 1–14; SD = 4.1) in Wave 2. 

In both waves, participants completed a short online questionnaire at 7 p.m. 
for 14 consecutive days, including the SMILE measure (Zambelli & Tagliabue, 
2023). Following Nezlek (2017) indications, an unconditional two-level model 
(days nested within person) was conducted to extract multilevel descriptive statistics 
of the six items (mean and within- and between-person variance) in the two 
waves. Descriptive statistics and mean-level comparisons across the two waves are 
presented in Table 1. 

Table 1 Multilevel descriptive statistics of the SMILE items and comparison across the two waves 

Variance 
Within-level Between-level Grand-mean Grand-mean comparison 

SMILE – items W1 W2 W1 W2 W1 W2 t(df), p value 

Presence of 
comprehension 
Today, I think I comprehend 
the meaning of my life  
during this pandemic 

1.20 1.07 2.27 2.09 3.46 3.61 24.96 (7848), <.001 

Presence of significance 
Today, I feel that my life has 
value during this pandemic 

1.22 1.23 2.26 1.95 4.04 4.04 7.68 (7852), .89 

Presence of purpose 
Today, I think I have goals 
for my life that push me to 
move forward during this 
pandemic 

1.20 1.31 2.15 1.85 4.25 4.14 7.80 (7855), .01 

Search for comprehension 
Today, I tried to understand 
the meaning of my life  
during this pandemic 

1.14 1.10 1.56 1.60 2.61 2.81 3.44 (7847), <.001 

Search for significance 
Today, I tried to understand 
what values my life in this 
pandemic 

1.39 1.21 1.67 1.62 2.90 2.96 17.21 (7854), .08 

Search for purpose 
Today, I searched goals for 
my life that will push me to 
move forward during this 
pandemic 

1.59 1.35 1.74 1.59 3.11 3.10 31.64 (7850), .77 

W1: wave 1,  W2: wave 2,  t: statistical value of Student’s t-test. Items were rated on a 7-point Likert 
scale
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2.2 Analytic Strategy 

Statistical analyses were conducted with the R Version 4.1.2. Codes are available at: 
https://osf.io/bsmhn/?view_only=d8395f62a25e4eed8e6e54de8ee1a26e 

Step 1 – Verify Model’s Assumptions Before running the multilevel network 
model, it is necessary to verify that the three basic assumptions of VAR (vector 
auto-regressive) models are respected in the data. These are: the normality of items 
distribution; the stationarity of temporal dynamics (i.e., dynamic parameters are 
constant over time); and the equality of time-intervals (i.e., measurement occasions 
are equally spaced). The normality of distribution was examined by verifying that 
items’ values of kurtosis and skewness did not exceed 1.2 (Muthén & Kaplan, 
1985). To examine the stationarity of the process, we fitted a series of fixed-effects 
linear regressions (with alpha set to .05) with the day number as predictor to each of 
the six variables of the SMILE to check for any linear trends over time, represented 
by a systematical increase or decrease of values across measurement occasions. 
If trends were present, data were detrended following the procedure presented in 
Borsboom et al. (2021). Finally, the equality of time intervals was guaranteed by the 
research design as data were collected every 24 hours. 

Step 2 – Estimate a Multilevel Network Model To answer the first aim, we 
examined data from the first wave. The multilevel network model that we planned 
to apply required the dataset to be set in long format (each row indicated one person 
at one time point). A ml_ts-lvgvar model was estimated using version 0.10 of the 
psychonetrics package. The six detrended SMILE items were included as the nodes 
of the network and missing data were handled with the FIML (full information 
maximum likelihood) estimator (Epskamp, 2020b). The adaptability of the model to 
our data was evaluated through fit indices provided by the psychonetrics R package: 
the χ2 (Cheung & Rensvold, 2002), the comparative fit index (CFI; acceptable fit for 
values ≥.90; Little, 2013), the root mean square error of approximation (RMSEA; 
acceptable fit for values ≤.08; Little, 2013), the AIC (Akaike Information Criterion; 
Akaike, 1987) and the BIC (Bayesian Information Criterion; Schwarz, 1978) for  
which lower values are desirable. After that, we estimated three network structures 
from the respective matrices (contemporaneous, temporal and between-person), and 
we visualized the networks with the qgraph package (Epskamp et al., 2012). 

Step 3 – Estimate a Multi-group Multilevel Network Model A multi-group 
ml_ts_lvgvar model was estimated using the groups function available in the 
psychonetrics package by indicating as grouping variable a dummy variable indi-
cating the belongingness to wave 1 or wave 2. In this study the two waves of 
the measurement burst design were considered as independent samples, in the 
discussion section the implications of this choice are discussed. In this model, the 
parameters of the three matrices (contemporaneous, temporal and between) were 
free to vary across the two levels of the grouping variable. Then, we fitted three 
constrained models, in which the parameters of the three matrices were forced to 
equality across the two groups one by one, by using the groupequal function. The

https://osf.io/bsmhn/?view_only=d8395f62a25e4eed8e6e54de8ee1a26e
https://osf.io/bsmhn/?view_only=d8395f62a25e4eed8e6e54de8ee1a26e
https://osf.io/bsmhn/?view_only=d8395f62a25e4eed8e6e54de8ee1a26e
https://osf.io/bsmhn/?view_only=d8395f62a25e4eed8e6e54de8ee1a26e
https://osf.io/bsmhn/?view_only=d8395f62a25e4eed8e6e54de8ee1a26e
https://osf.io/bsmhn/?view_only=d8395f62a25e4eed8e6e54de8ee1a26e
https://osf.io/bsmhn/?view_only=d8395f62a25e4eed8e6e54de8ee1a26e
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fit indexes of the constrained models were compared with the free model to evaluate 
the existence of any significant differences. We relied on the BIC (Schwarz, 1978) to  
identify significant differences between the nested models as it is the most restrictive 
index that penalizes model complexity. The BIC weights the estimate according 
to the degrees of freedom of the model as indicated by the following equation: 
BIC = T − df ln(N), where T is the chi-square test statistic of the model, df are 
the degrees of freedom of the model, and N is the number of cases (Lin et al., 2017). 

2.3 Results 

Participants with less than 80% of missing values in the SMILE items within each 
wave were retained for a total of 318 cases in Wave 1 and 320 case in Wave 
2. The VAR model’s assumptions were verified in both waves. To obtain model 
convergence, a standardization with s-scores was required. 

Investigating the Dynamics of the Meaning-Making Process in a Daily Frame-
work The overall model, conducted on the first wave, showed acceptable fit 
indices (χ2(3570) = 32670.5, p < .001; CFI = .89; RMSEA = .053 [.051–.055]; 
AIC = 43859.7; BIC = 44175.7). The three network structures are represented in 
the wave 1 section in Fig. 1. Since the aim of the current paper is to elucidate 
the application of the multilevel network psychometric, below we report the 
interpretation of the main effects to clarify what kind of information on the process 
dynamics can be obtained from each network. 

Contemporaneous Network From the graphical visualization two clusters of nodes 
are visible; first cluster encloses the three items of presence of meaning, the second 
cluster is formed by the three items of search for meaning. Within each cluster, the 
nodes were connected by thick lines, with partial correlations always above .20. 

Temporal Network All the nodes showed a significant autoregressive effect (self-
loops), thus suggesting the presence of a trait dimension for each meaning-making 
features that is rather stable over time. Each node has a specific role within the 
network; some nodes are more central as they share lot of connections with other 
nodes (e.g., search for purpose; MILSP) while other nodes have a marginal role 
in the dynamics of the system (e.g., presence of purpose; MILPP). Some bi-
directional temporal associations (directional arrows between couples of nodes) 
are also present. For instance, presence of comprehension (MILPC) and presence 
of significance (MILPS), such that an increase in presence of comprehension on 
one day predicted an increase in presence of significance the day after and vice-
versa. 

Between Network This network includes the partial correlations between the mean 
levels of nodes across the 14 days. The three items belonging to the same cluster 
were positively correlated, meaning that, over the 14 days of the first wave, people 
experienced similar levels in the three presence of meaning components, and similar
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Fig. 1 Representation of the contemporaneous, temporal and between-person network across 
the two waves Note. Left: contemporaneous network; center: temporal network; right: 
between-person network. MILPC=presence of comprehension, MILPS=presence of significance, 
MILPP=presence of purpose, MILSC=search for comprehension, MILSS=search for significance, 
MILSP=search for purpose. Blue lines represent positive partial correlations, red lines represent 
negative partial correlations 

levels in the three search for meaning components. It is also possible to examine 
each node singularly, for example young people with high average levels of presence 
of comprehension (MILPC) across the 14 days also showed high levels of search of 
comprehension (MILSC), but low levels of search for purpose and significance. 

Examining the Stability of the Dynamics of the Meaning-Making After 
10 Months 
The multi-group model showed good fit indices (χ2(7140) = 13029.9, p < .001; 
CFI = .90; RMSEA = .051 [.049–.052]; AIC = 80374.9; BIC = 81123.9). The 
three network structures plotted separately for the two waves are represented in 
Fig. 1. Results indicated that only the contemporaneous matrix was non-invariant 
across the two waves (Table 2), as constraining the matrices to equality determined 
an increase of the BIC, suggesting that at least one of the constrained parameters 
was different across the two waves. To identify the non-invariant parameters, the 
contemporaneous matrix of the two waves was inspected from the free model. 
The parameters of contemporaneous matrices in the two waves, together with their 
confidence intervals can be consulted in supplementary materials. The global path 
of contemporaneous associations was very similar across the two waves, however, 
in wave 2 the associations between nodes within the same cluster (presence and
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Table 2 Model comparison of multi-group network analysis across the two waves 

X2 �χ2 p RMSEA AIC BIC 

Model_free 13029.9 (7140) – – .05 80374.9 81123.9 
Contemporaneous_constrained 13326.3 (7155) 296.4 <.001 .05 80641.3 81323.4 
Temporal_constrained 13085.2 (7176) 89.2 <.001 .05 80392.1 80980.6 
Between_constrained 13077.5 (7155) 47.6 <.001 .05 80392.5 81074.6 

X2: Chi-square, �χ2: Chi-square difference between nested models, RMSEA: Root Mean Square 
Error of Approximation, AIC: Akaike Information Criterion, BIC: Bayesian Information Criterion 

search) were stronger than wave 1, meaning that young people perceived the three 
components of presence and search for meaning in a much more similar way on the 
same day while they were living in a more stable contextual condition. 

3 Discussion 

In the present work, the potentialities of the psychonetrics toolbox to investigate 
the dynamics of change of psychological processes and test their stability over time 
were examined through the application of the ml_ts_lvgvar model, in the basic and 
the multi-group version. The model converged properly and showed sufficient fit 
indexes. Considering the complexity of the model and the limited variability of our 
data (only 14 measurement occasions in each wave) it is noteworthy that the model 
converged. However, the models used are based on the multiple decomposition of 
variance, and our sample may not have been large enough, both in terms of sample 
size and number of assessments, to have good statistical power, especially for the 
multi-group extension. Results are therefore to be interpreted with caution, and 
further studies should be conducted on larger samples in order to fully exploit the 
potential of these statistical models. 

A second innovation of the psychonetrics toolbox is the extension to test 
confirmatory hypothesis by conducting multi-group comparisons. With the classical 
exploratory approach any difference between two groups was usually inspected 
visually, with psychonetrics confirmatory approach, it becomes possible to have an 
empirical proof of the invariance of parameters across groups. In our illustrative 
example, we compared each single matrix across the two waves, and we found out 
that only one matrix (contemporaneous) changed across the measurement occasions. 
The psychonetrics toolbox also offer the possibility to constrain single edges to 
equality or specific values, thus potentially allowing the identification of even 
the smallest discrepancies between different groups. In the present study we had 
to consider the two waves as independent samples to conduct the multi-group 
comparison, although some participants took part in both waves; in this regard, 
a statistical reflection on the best way to manage non-independence in repeated 
measures designs must be opened.
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To conclude, the psychometrics toolbox emerged as a promising tool to inves-
tigate within and between process dynamics thanks to the multitude of available 
models dedicated to longitudinal and intensive designs and the possibility of 
confirmatory testing. Psychonetrics is a user-friendly toolbox that can be used by 
a vast array of researchers in the psychological field, as it doesn’t require advanced 
psychometric and statistical competences to be applied. Indeed, its extension to 
confirmatory testing directly comes from the SEM framework, from which the use 
of well-known fit indexes to evaluate the goodness of models directly come. The 
logic behind the multi-group testing also comes from the SEM framework. From a 
computational level, psychonetrics offers a much easier approach to test multi-group 
comparisons compared to other recently developed techniques such as permutation 
methods (e.g., Van Borkulo et al., 2022). The disadvantages of this framework are 
mainly due to its young age, in fact, computational warnings or errors might occur 
for which, at the moment, there is not an easy solution. Further simulation studies 
and applications to real data should be conducted to improve the reliability of the 
estimates obtained from this kind of data with the aim of promoting its applications 
to different research designs. 
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