

ROS Robotics Projects

Build a variety of awesome robots that can see, sense, move,
and do a lot more using the powerful Robot Operating System

Lentin Joseph

 BIRMINGHAM - MUMBAI

ROS Robotics Projects

Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: March 2017

Production reference: 1290317

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.
ISBN 978-1-78355-471-3

www.packtpub.com

http://www.packtpub.com

Credits

Author
Lentin Joseph

Copy Editor
Madhusudan Uchil

Reviewer
Ruixiang Du

Project Coordinator
Judie Jose

Commissioning Editor
Kartikey Pandey

Proofreader
Safis Editing

Acquisition Editor
Namrata Patil

Indexer
Pratik Shirodkar

Content Development Editor
Amedh Pohad

Graphics
Kirk D'Penha

Technical Editor
Prashant Chaudhari

Production Coordinator
Shantanu Zagade

About the Author
Lentin Joseph is an author, entrepreneur, electronics engineer, robotics enthusiast, machine
vision expert, embedded programmer, and the founder and CEO of Qbotics Labs (h t t p ://w

w w . q b o t i c s l a b s . c o m) from India.

He completed his bachelor's degree in electronics and communication engineering at the
Federal Institute of Science and Technology (FISAT), Kerala. For his final year engineering
project, he made a social robot that can interact with people. The project was a huge success
and was mentioned in many forms of visual and print media. The main features of this
robot were that it could communicate with people and reply intelligently and had some
image processing capabilities such as face, motion, and color detection. The entire project
was implemented using the Python programming language. His interest in robotics, image
processing, and Python started with that project.

After his graduation, he worked for three years at a start-up company focusing on robotics
and image processing. In the meantime, he learned to work with famous robotics software
platforms such as Robot Operating System (ROS), V-REP, and Actin (a robotic simulation
tool) and image processing libraries such as OpenCV, OpenNI, and PCL. He also knows
about 3D robot design and embedded programming on Arduino and Tiva Launchpad.

After three years of work experience, he started a new company called Qbotics Labs, which
mainly focuses on research into building some great products in domains such as robotics
and machine vision. He maintains a personal website (h t t p ://w w w . l e n t i n j o s e p h . c o m) and
a technology blog called technolabsz (h t t p ://w w w . t e c h n o l a b s z . c o m). He publishes his
works on his tech blog. He was also a speaker at PyCon2013, India, on the topic Learning
Robotics Using Python.

Lentin is the author of the books Learning Robotics Using Python (h t t p ://l e a r n - r o b o t i c s . c

o m) and Mastering ROS for Robotics Programming (h t t p ://m a s t e r i n g - r o s . c o m), both by
Packt Publishing. The first book was about building an autonomous mobile robot using
ROS and OpenCV. This book was launched at ICRA 2015 and was featured on the ROS
blog, Robohub, OpenCV, the Python website, and various other such forums. The second
book is on mastering Robot Operating System, which was also launched at ICRA 2016, and
is one of the bestselling books on ROS.

Lentin and his team were also winners of the HRATC 2016 challenge conducted as a part of
ICRA 2016. He was also a finalist in the ICRA 2015 challenge, HRATC (h t t p ://w w w . i c r a

2016. o r g /c o n f e r e n c e /c h a l l e n g e s /).

http://www.qboticslabs.com
http://www.qboticslabs.com
http://www.qboticslabs.com
http://www.qboticslabs.com
http://www.qboticslabs.com
http://www.qboticslabs.com
http://www.qboticslabs.com
http://www.qboticslabs.com
http://www.qboticslabs.com
http://www.qboticslabs.com
http://www.qboticslabs.com
http://www.qboticslabs.com
http://www.qboticslabs.com
http://www.qboticslabs.com
http://www.qboticslabs.com
http://www.qboticslabs.com
http://www.qboticslabs.com
http://www.qboticslabs.com
http://www.qboticslabs.com
http://www.qboticslabs.com
http://www.qboticslabs.com
http://www.qboticslabs.com
http://www.qboticslabs.com
http://www.qboticslabs.com
http://www.qboticslabs.com
http://www.qboticslabs.com
http://www.qboticslabs.com
http://www.qboticslabs.com
http://www.qboticslabs.com
http://www.qboticslabs.com
http://www.qboticslabs.com
http://www.qboticslabs.com
http://www.qboticslabs.com
http://www.qboticslabs.com
http://www.qboticslabs.com
http://www.qboticslabs.com
http://www.qboticslabs.com
http://www.qboticslabs.com
http://www.qboticslabs.com
http://www.qboticslabs.com
http://www.qboticslabs.com
http://www.qboticslabs.com
http://www.qboticslabs.com
http://www.qboticslabs.com
http://www.qboticslabs.com
http://www.lentinjoseph.com
http://www.lentinjoseph.com
http://www.lentinjoseph.com
http://www.lentinjoseph.com
http://www.lentinjoseph.com
http://www.lentinjoseph.com
http://www.lentinjoseph.com
http://www.lentinjoseph.com
http://www.lentinjoseph.com
http://www.lentinjoseph.com
http://www.lentinjoseph.com
http://www.lentinjoseph.com
http://www.lentinjoseph.com
http://www.lentinjoseph.com
http://www.lentinjoseph.com
http://www.lentinjoseph.com
http://www.lentinjoseph.com
http://www.lentinjoseph.com
http://www.lentinjoseph.com
http://www.lentinjoseph.com
http://www.lentinjoseph.com
http://www.lentinjoseph.com
http://www.lentinjoseph.com
http://www.lentinjoseph.com
http://www.lentinjoseph.com
http://www.lentinjoseph.com
http://www.lentinjoseph.com
http://www.lentinjoseph.com
http://www.lentinjoseph.com
http://www.lentinjoseph.com
http://www.lentinjoseph.com
http://www.lentinjoseph.com
http://www.lentinjoseph.com
http://www.lentinjoseph.com
http://www.lentinjoseph.com
http://www.lentinjoseph.com
http://www.lentinjoseph.com
http://www.lentinjoseph.com
http://www.lentinjoseph.com
http://www.lentinjoseph.com
http://www.lentinjoseph.com
http://www.lentinjoseph.com
http://www.lentinjoseph.com
http://www.lentinjoseph.com
http://www.lentinjoseph.com
http://www.lentinjoseph.com
http://www.lentinjoseph.com
http://www.lentinjoseph.com
http://www.technolabsz.com
http://www.technolabsz.com
http://www.technolabsz.com
http://www.technolabsz.com
http://www.technolabsz.com
http://www.technolabsz.com
http://www.technolabsz.com
http://www.technolabsz.com
http://www.technolabsz.com
http://www.technolabsz.com
http://www.technolabsz.com
http://www.technolabsz.com
http://www.technolabsz.com
http://www.technolabsz.com
http://www.technolabsz.com
http://www.technolabsz.com
http://www.technolabsz.com
http://www.technolabsz.com
http://www.technolabsz.com
http://www.technolabsz.com
http://www.technolabsz.com
http://www.technolabsz.com
http://www.technolabsz.com
http://www.technolabsz.com
http://www.technolabsz.com
http://www.technolabsz.com
http://www.technolabsz.com
http://www.technolabsz.com
http://www.technolabsz.com
http://www.technolabsz.com
http://www.technolabsz.com
http://www.technolabsz.com
http://www.technolabsz.com
http://www.technolabsz.com
http://www.technolabsz.com
http://www.technolabsz.com
http://www.technolabsz.com
http://www.technolabsz.com
http://www.technolabsz.com
http://www.technolabsz.com
http://www.technolabsz.com
http://www.technolabsz.com
http://www.technolabsz.com
http://www.technolabsz.com
http://www.technolabsz.com
http://www.technolabsz.com
http://learn-robotics.com/
http://learn-robotics.com/
http://learn-robotics.com/
http://learn-robotics.com/
http://learn-robotics.com/
http://learn-robotics.com/
http://learn-robotics.com/
http://learn-robotics.com/
http://learn-robotics.com/
http://learn-robotics.com/
http://learn-robotics.com/
http://learn-robotics.com/
http://learn-robotics.com/
http://learn-robotics.com/
http://learn-robotics.com/
http://learn-robotics.com/
http://learn-robotics.com/
http://learn-robotics.com/
http://learn-robotics.com/
http://learn-robotics.com/
http://learn-robotics.com/
http://learn-robotics.com/
http://learn-robotics.com/
http://learn-robotics.com/
http://learn-robotics.com/
http://learn-robotics.com/
http://learn-robotics.com/
http://learn-robotics.com/
http://learn-robotics.com/
http://learn-robotics.com/
http://learn-robotics.com/
http://learn-robotics.com/
http://learn-robotics.com/
http://learn-robotics.com/
http://learn-robotics.com/
http://learn-robotics.com/
http://learn-robotics.com/
http://learn-robotics.com/
http://learn-robotics.com/
http://learn-robotics.com/
http://learn-robotics.com/
http://learn-robotics.com/
http://learn-robotics.com/
http://mastering-ros.com/
http://mastering-ros.com/
http://mastering-ros.com/
http://mastering-ros.com/
http://mastering-ros.com/
http://mastering-ros.com/
http://mastering-ros.com/
http://mastering-ros.com/
http://mastering-ros.com/
http://mastering-ros.com/
http://mastering-ros.com/
http://mastering-ros.com/
http://mastering-ros.com/
http://mastering-ros.com/
http://mastering-ros.com/
http://mastering-ros.com/
http://mastering-ros.com/
http://mastering-ros.com/
http://mastering-ros.com/
http://mastering-ros.com/
http://mastering-ros.com/
http://mastering-ros.com/
http://mastering-ros.com/
http://mastering-ros.com/
http://mastering-ros.com/
http://mastering-ros.com/
http://mastering-ros.com/
http://mastering-ros.com/
http://mastering-ros.com/
http://mastering-ros.com/
http://mastering-ros.com/
http://mastering-ros.com/
http://mastering-ros.com/
http://mastering-ros.com/
http://mastering-ros.com/
http://mastering-ros.com/
http://mastering-ros.com/
http://mastering-ros.com/
http://mastering-ros.com/
http://mastering-ros.com/
http://mastering-ros.com/
http://mastering-ros.com/
http://www.icra2016.org/conference/challenges/
http://www.icra2016.org/conference/challenges/
http://www.icra2016.org/conference/challenges/
http://www.icra2016.org/conference/challenges/
http://www.icra2016.org/conference/challenges/
http://www.icra2016.org/conference/challenges/
http://www.icra2016.org/conference/challenges/
http://www.icra2016.org/conference/challenges/
http://www.icra2016.org/conference/challenges/
http://www.icra2016.org/conference/challenges/
http://www.icra2016.org/conference/challenges/
http://www.icra2016.org/conference/challenges/
http://www.icra2016.org/conference/challenges/
http://www.icra2016.org/conference/challenges/
http://www.icra2016.org/conference/challenges/
http://www.icra2016.org/conference/challenges/
http://www.icra2016.org/conference/challenges/
http://www.icra2016.org/conference/challenges/
http://www.icra2016.org/conference/challenges/
http://www.icra2016.org/conference/challenges/
http://www.icra2016.org/conference/challenges/
http://www.icra2016.org/conference/challenges/
http://www.icra2016.org/conference/challenges/
http://www.icra2016.org/conference/challenges/
http://www.icra2016.org/conference/challenges/
http://www.icra2016.org/conference/challenges/
http://www.icra2016.org/conference/challenges/
http://www.icra2016.org/conference/challenges/
http://www.icra2016.org/conference/challenges/
http://www.icra2016.org/conference/challenges/
http://www.icra2016.org/conference/challenges/
http://www.icra2016.org/conference/challenges/
http://www.icra2016.org/conference/challenges/
http://www.icra2016.org/conference/challenges/
http://www.icra2016.org/conference/challenges/
http://www.icra2016.org/conference/challenges/
http://www.icra2016.org/conference/challenges/
http://www.icra2016.org/conference/challenges/
http://www.icra2016.org/conference/challenges/
http://www.icra2016.org/conference/challenges/
http://www.icra2016.org/conference/challenges/
http://www.icra2016.org/conference/challenges/
http://www.icra2016.org/conference/challenges/
http://www.icra2016.org/conference/challenges/
http://www.icra2016.org/conference/challenges/
http://www.icra2016.org/conference/challenges/
http://www.icra2016.org/conference/challenges/
http://www.icra2016.org/conference/challenges/
http://www.icra2016.org/conference/challenges/
http://www.icra2016.org/conference/challenges/
http://www.icra2016.org/conference/challenges/
http://www.icra2016.org/conference/challenges/
http://www.icra2016.org/conference/challenges/
http://www.icra2016.org/conference/challenges/
http://www.icra2016.org/conference/challenges/
http://www.icra2016.org/conference/challenges/
http://www.icra2016.org/conference/challenges/
http://www.icra2016.org/conference/challenges/
http://www.icra2016.org/conference/challenges/
http://www.icra2016.org/conference/challenges/
http://www.icra2016.org/conference/challenges/
http://www.icra2016.org/conference/challenges/
http://www.icra2016.org/conference/challenges/
http://www.icra2016.org/conference/challenges/
http://www.icra2016.org/conference/challenges/
http://www.icra2016.org/conference/challenges/
http://www.icra2016.org/conference/challenges/
http://www.icra2016.org/conference/challenges/
http://www.icra2016.org/conference/challenges/
http://www.icra2016.org/conference/challenges/
http://www.icra2016.org/conference/challenges/
http://www.icra2016.org/conference/challenges/

Acknowledgements
I would like to express my gratitude to the readers of my previous two books on ROS
(ROS). Actually, they encouraged me to write one more book on ROS itself.

I would like to thank the Packt Publishing team for giving support for publishing my books.
It may have been a distant dream without you all.

I would especially like to thank Amedh Pohad and Namrata Patil of Packt Publishing, who
guided me during the writing process. Thanks for all your suggestions.

A special thanks to Ruixiang Du and all other technical reviewers for improving the content
and giving good suggestions. Without your suggestions, this book may not have become a
good product.

The most important thing in my life is my family. Without their support, this would not
have been possible. I would like to dedicate this book to my parents, who gave me the
inspiration to write this book. This is my third book about ROS. Thanks for the constant
support.

I would also like to mention my previous company, ASIMOV Robotics, who provided
components for a few projects in this book. Thank you very much.

I thank all the readers who made by previous books successful. I hope you guys also like
this book and make it successful.

About the Reviewer
Ruixiang Du is a PhD candidate in mechanical engineering at Worcester Polytechnic
Institute (WPI). He currently works in the Systems and Robot Control laboratory with a
research focus on the motion planning and control of autonomous mobile robots. He
received a bachelor's degree in automation from North China Electric Power University in
2011 and a master's degree in robotics engineering from WPI in 2013.

Ruixiang has general interests in robotics and in real-time and embedded systems. He has
worked on various robotic projects, with robot platforms ranging from medical robots and
unmanned aerial/ground vehicles to humanoid robots. He was a member of Team WPI-
CMU for the DARPA Robotics Challenge.

www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

h t t p s ://w w w . p a c k t p u b . c o m /m a p t

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt

Customer Feedback
Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon page
at h t t p s ://w w w . a m a z o n . c o m /d p /1783554711.

If you'd like to join our team of regular reviewers, you can e-mail us at
customerreviews@packtpub.com. We award our regular reviewers with free eBooks and
videos in exchange for their valuable feedback. Help us be relentless in improving our
products!

https://www.amazon.com/dp/1783554711
https://www.amazon.com/dp/1783554711
https://www.amazon.com/dp/1783554711
https://www.amazon.com/dp/1783554711
https://www.amazon.com/dp/1783554711
https://www.amazon.com/dp/1783554711
https://www.amazon.com/dp/1783554711
https://www.amazon.com/dp/1783554711
https://www.amazon.com/dp/1783554711
https://www.amazon.com/dp/1783554711
https://www.amazon.com/dp/1783554711
https://www.amazon.com/dp/1783554711
https://www.amazon.com/dp/1783554711
https://www.amazon.com/dp/1783554711
https://www.amazon.com/dp/1783554711
https://www.amazon.com/dp/1783554711
https://www.amazon.com/dp/1783554711
https://www.amazon.com/dp/1783554711
https://www.amazon.com/dp/1783554711
https://www.amazon.com/dp/1783554711
https://www.amazon.com/dp/1783554711
https://www.amazon.com/dp/1783554711
https://www.amazon.com/dp/1783554711
https://www.amazon.com/dp/1783554711
https://www.amazon.com/dp/1783554711
https://www.amazon.com/dp/1783554711
https://www.amazon.com/dp/1783554711
https://www.amazon.com/dp/1783554711
https://www.amazon.com/dp/1783554711
https://www.amazon.com/dp/1783554711
https://www.amazon.com/dp/1783554711
https://www.amazon.com/dp/1783554711
https://www.amazon.com/dp/1783554711
https://www.amazon.com/dp/1783554711
https://www.amazon.com/dp/1783554711
https://www.amazon.com/dp/1783554711
https://www.amazon.com/dp/1783554711
https://www.amazon.com/dp/1783554711
https://www.amazon.com/dp/1783554711
https://www.amazon.com/dp/1783554711
https://www.amazon.com/dp/1783554711
https://www.amazon.com/dp/1783554711
https://www.amazon.com/dp/1783554711

Table of Contents
Preface 1

Chapter 1: Getting Started with ROS Robotics Application Development 8

Getting started with ROS 9
ROS distributions 10
Supported operating systems 11
Robots and sensors supported by ROS 13
Why ROS 15

Fundamentals of ROS 16
The filesystem level 17
The computation graph level 18
The ROS community level 20
Communication in ROS 21

ROS client libraries 22
ROS tools 23

Rviz (ROS Visualizer) 23
rqt_plot 24
rqt_graph 25

Simulators of ROS 25
Installing ROS kinetic on Ubuntu 16.04 LTS 26

Getting started with the installation 27
Configuring Ubuntu repositories 28
Setting up source.list 29
Setting up keys 30
Installing ROS 30
Initializing rosdep 30
Setting the ROS environment 31
Getting rosinstall 31

Setting ROS on VirtualBox 32
Setting the ROS workspace 34
Opportunities for ROS in industries and research 36
Questions 38
Summary 39

Chapter 2: Face Detection and Tracking Using ROS, OpenCV and
Dynamixel Servos 40

Overview of the project 41

[ii]

Hardware and software prerequisites 41
Installing dependent ROS packages 43

Installing the usb_cam ROS package 43
Creating a ROS workspace for dependencies 43

Interfacing Dynamixel with ROS 55
Installing the ROS dynamixel_motor packages 56

Creating face tracker ROS packages 56
The interface between ROS and OpenCV 58

Working with the face-tracking ROS package 59
Understanding the face tracker code 62
Understanding CMakeLists.txt 66
The track.yaml file 68
The launch files 68
Running the face tracker node 69
The face_tracker_control package 70

The start_dynamixel launch file 71
The pan controller launch file 72

The pan controller configuration file 73
The servo parameters configuration file 73
The face tracker controller node 74
Creating CMakeLists.txt 76
Testing the face tracker control package 77
Bringing all the nodes together 78
Fixing the bracket and setting up the circuit 79
The final run 80

Questions 81
Summary 81

Chapter 3: Building a Siri-Like Chatbot in ROS 82

Social robots 83
Building social robots 85
Prerequisites 86
Getting started with AIML 86

AIML tags 87
The PyAIML interpreter 89
Installing PyAIML on Ubuntu 16.04 LTS 89
Playing with PyAIML 90
Loading multiple AIML files 91
Creating an AIML bot in ROS 94
The AIML ROS package 95

Installing the ROS sound_play package 96

[iii]

Installing the dependencies of sound_play 96
Installing the sound_play ROS package 96
Creating the ros_aiml package 97
The aiml_server node 98
The AIML client node 99
The aiml_tts client node 99
The AIML speech recognition node 100
start_chat.launch 101
start_tts_chat.launch 101
start_speech_chat.launch 102

Questions 105
Summary 105

Chapter 4: Controlling Embedded Boards Using ROS 106

Getting started with popular embedded boards 107
An introduction to Arduino boards 107

How to choose an Arduino board for your robot 108
Getting started with STM32 and TI Launchpads 109
The Tiva C Launchpad 111

Introducing the Raspberry Pi 112
How to choose a Raspberry Pi board for your robot 113

The Odroid board 114
Interfacing Arduino with ROS 115

Monitoring light using Arduino and ROS 119
Running ROS serial server on PC 121
Interfacing STM32 boards to ROS using mbed 123
Interfacing Tiva C Launchpad boards with ROS using Energia 127

Running ROS on Raspberry Pi and Odroid boards 130
Connecting Raspberry Pi and Odroid to PC 132
Controlling GPIO pins from ROS 134

Creating a ROS package for the blink demo 136
Running the LED blink demo on Raspberry Pi and Odroid 139

Questions 140
Summary 141

Chapter 5: Teleoperate a Robot Using Hand Gestures 142

Teleoperating ROS Turtle using a keyboard 143
Teleoperating using hand gestures 145
Setting up the project 149
Interfacing the MPU-9250 with the Arduino and ROS 150

The Arduino-IMU interfacing code 152
Visualizing IMU TF in Rviz 156
Converting IMU data into twist messages 158
Integration and final run 161

[iv]

Teleoperating using an Android phone 163
Questions 167
Summary 167

Chapter 6: Object Detection and Recognition 168

Getting started with object detection and recognition 169
The find_object_2d package in ROS 171

Installing find_object_2d 171
Installing from source code 171

Running find_object_2d nodes using webcams 172
Running find_object_2d nodes using depth sensors 180

Getting started with 3D object recognition 184
Introduction to 3D object recognition packages in ROS 186

Installing ORK packages in ROS 186
Detecting and recognizing objects from 3D meshes 188

Training using 3D models of an object 188
Training from captured 3D models 191

Recognizing objects 197
Questions 199
Summary 200

Chapter 7: Deep Learning Using ROS and TensorFlow 201

Introduction to deep learning and its applications 202
Deep learning for robotics 203
Deep learning libraries 204
Getting started with TensorFlow 205

Installing TensorFlow on Ubuntu 16.04 LTS 205
TensorFlow concepts 208

Graph 208
Session 209
Variables 209
Fetches 210
Feeds 210

Writing our first code in TensorFlow 210
Image recognition using ROS and TensorFlow 214

Prerequisites 215
The ROS image recognition node 215

Running the ROS image recognition node 218
Introducing to scikit-learn 220

Installing scikit-learn on Ubuntu 16.04 LTS 221
Introducing to SVM and its application in robotics 221

Implementing an SVM-ROS application 222

[v]

Questions 225
Summary 225

Chapter 8: ROS on MATLAB and Android 226

Getting started with the ROS-MATLAB interface 227
Setting Robotics Toolbox in MATLAB 228

Basic ROS functions in MATLAB 228
Initializing a ROS network 229

Listing ROS nodes, topics, and messages 229
Communicating from MATLAB to a ROS network 231
Controlling a ROS robot from MATLAB 236

Designing the MATLAB GUI application 238
Explaining callbacks 241
Running the application 243

Getting started with Android and its ROS interface 246
Installing rosjava 247

Installing from the Ubuntu package manager 247
Installing from source code 248

Installing android-sdk from the Ubuntu package manager 249
Installing android-sdk from prebuilt binaries 249

Installing the ROS-Android interface 252
Playing with ROS-Android applications 253

Troubleshooting 254
Android-ROS publisher-subscriber application 256
The teleop application 258
The ROS Android camera application 260
Making the Android device the ROS master 261

Code walkthrough 262
Creating basic applications using the ROS-Android interface 264

Troubleshooting tips 266
Questions 266
Summary 267

Chapter 9: Building an Autonomous Mobile Robot 268

Robot specification and design overview 268
Designing and selecting the motors and wheels for the robot 269

Computing motor torque 269
Calculation of motor RPM 270
Design summary 270

Building 2D and 3D models of the robot body 271
The base plate 271
The pole and tube design 273

[vi]

The motor, wheel, and motor clamp design 273
The caster wheel design 274
Middle plate and top plate design 275
The top plate 276
3D modeling of the robot 277

Simulating the robot model in Gazebo 278
Mathematical model of a differential drive robot 278

Simulating Chefbot 281
Building the URDF model of Chefbot 281

Inserting 3D CAD parts into URDF as links 281
Inserting Gazebo controllers into URDF 282

Running the simulation 283
Mapping and localization 285

Designing and building actual robot hardware 289
Motor and motor driver 289
Motor encoders 290
Tiva C Launchpad 290
Ultrasonic sensor 290
OpenNI depth sensor 290
Intel NUC 290
Interfacing sensors and motors with the Launchpad 291
Programming the Tiva C Launchpad 292

Interfacing robot hardware with ROS 296
Running Chefbot ROS driver nodes 299

Gmapping and localization in Chefbot 301
Questions 304
Summary 304

Chapter 10: Creating a Self-Driving Car Using ROS 305

Getting started with self-driving cars 306
History of autonomous vehicles 306

Levels of autonomy 310
Functional block diagram of a typical self-driving car 310

GPS, IMU, and wheel encoders 311
Xsens MTi IMU 313

Camera 313
Ultrasonic sensors 314
LIDAR and RADAR 315

Velodyne HDL-64 LIDAR 316
SICK LMS 5xx/1xx and Hokuyo LIDAR 317
Continental ARS 300 radar (ARS) 318
Delphi radar 318

On-board computer 318

[vii]

Software block diagram of self-driving cars 318
Simulating the Velodyne LIDAR 321
Interfacing Velodyne sensors with ROS 323
Simulating a laser scanner 325
Explaining the simulation code 328
Interfacing laser scanners with ROS 330
Simulating stereo and mono cameras in Gazebo 330
Interfacing cameras with ROS 332
Simulating GPS in Gazebo 333

Interfacing GPS with ROS 335
Simulating IMU on Gazebo 336
Interfacing IMUs with ROS 338
Simulating an ultrasonic sensor in Gazebo 340
Low-cost LIDAR sensors 342

Sweep LIDAR 342
RPLIDAR 344

Simulating a self-driving car with sensors in Gazebo 344
Installing prerequisites 345
Visualizing robotic car sensor data 348
Moving a self-driving car in Gazebo 349
Running hector SLAM using a robotic car 349

Interfacing a DBW car with ROS 351
Installing packages 352
Visualizing the self-driving car and sensor data 352
Communicating with DBW from ROS 355

Introducing the Udacity open source self-driving car project 355
MATLAB ADAS toolbox 360

Questions 360
Summary 360

Chapter 11: Teleoperating a Robot Using a VR Headset and Leap
Motion 361

Getting started with a VR headset and Leap Motion 362
Project prerequisites 365
Design and working of the project 365
Installing the Leap Motion SDK on Ubuntu 14.04.5 368

Visualizing Leap Motion controller data 369
Playing with the Leap Motion visualizer tool 370
Installing the ROS driver for the Leap Motion controller 371

Testing the Leap Motion ROS driver 372
Visualizing Leap Motion data in Rviz 374

[viii]

Creating a teleoperation node using the Leap Motion controller 375
Building a ROS-VR Android application 378
Working with the ROS-VR application and interfacing with Gazebo 379
Working with TurtleBot simulation in VR 382
Troubleshooting the ROS-VR application 384
Integrating ROS-VR application and Leap Motion teleoperation 385
Questions 386
Summary 386

Chapter 12: Controlling Your Robots over the Web 387

Getting started with ROS web packages 387
rosbridge_suite 388
roslibjs, ros2djs, and ros3djs 389
The tf2_web_republisher package 390

Setting up ROS web packages on ROS Kinetic 390
Installing rosbridge_suite 390
Setting up rosbridge client libraries 391

Installing tf2_web_republisher on ROS Kinetic 392
Teleoperating and visualizing a robot on a web browser 393

Working of the project 394
Connecting to rosbridge_server 396
Initializing the teleop 396
Creating a 3D viewer inside a web browser 396
Creating a TF client 397
Creating a URDF client 397
Creating text input 398
Running the web teleop application 398

Controlling robot joints from a web browser 400
Installing joint_state_publisher_js 401

Including the joint state publisher module 402
Creating the joint state publisher object 402
Creating an HTML division for sliders 403

Running the web-based joint state publisher 403
Prerequisites 404
Installing prerequisites 405

Explaining the code 405
Running the robot surveillance application 406

Web-based speech-controlled robot 407
Prerequisites 408
Enabling speech recognition in the web application 408

Running a speech-controlled robot application 411

[ix]

Questions 413
Summary 414

Index 415

Preface
ROS Robotics Projects is a practical guide to learning ROS by making interesting projects
using it. The book assumes that you have some knowledge of ROS. However, if you do not
have any experience with ROS, you can still learn from this book. The first chapter is
dedicated to absolute beginners. ROS is widely used in robotics companies, universities,
and robot research labs for designing and programming robots. If you would like to work
in the robotics software domain or if you want to have a career as a robotics software
engineer, this book is perfect for you.

The basic aim of this book is to teach ROS through interactive projects. The projects that we
are discussing here can also be reused in your academic or industrial projects. This book
handles a wide variety of new technology that can be interfaced with ROS. For example,
you will see how to build a self-driving car prototype, how to build a deep-learning
application using ROS, and how to build a VR application in ROS. These are only a few
highlighted topics; in addition, you will find some 15 projects and applications using ROS
and its libraries.

You can work with any project after meeting its prerequisites. Most of the projects can be
completed without many dependencies. We are using popular and available hardware
components to build most of the projects. So this will help us create almost all of these
projects without much difficulty.

The book starts by discussing the basics of ROS and its variety of applications. This chapter
will definitely be a starting point for absolute beginners. After this chapter, we will explore
a wide variety of ROS projects.

Let’s learn and make cool projects with ROS!

What this book covers
Chapter 1, Getting Started with ROS Robotics Application Development, is for absolute
beginners to ROS. No need to worry if you don’t have experience in ROS; this chapter will
help you get an idea of the ROS software framework and its concepts.

Preface

[2]

Chapter 2, Face Detection and Tracking Using ROS, OpenCV and Dynamixel Servos, takes you
through a cool project that you can make with ROS and the OpenCV library. This project
basically creates a face tracker application in which your face will be tracked in such a way
that the camera will always point to your face. We will use intelligent servos such as
Dynamixel to rotate the robot on its axis.

Chapter 3, Building a Siri-Like Chatbot in ROS, is for those of you who want to make your
robot interactive and intelligent without much hassle. This project creates a chatterbot in
ROS that you can communicate with using text or speech. This project will be useful if
you're going to create social or service robots.

Chapter 4, Controlling Embedded Boards Using ROS, helps you build a robot using Arduino,
an embedded compatible board, Raspberry Pi, or Odroid and an interface to ROS. In this
chapter, you will see a wide variety of embedded boards and interfacing projects made with
them.

Chapter 5, Teleoperate a Robot Using Hand Gestures, will teach you how to build a gesture-
control device using Arduino and IMU. The gestures are translated into motion commands
by ROS nodes.

Chapter 6, Object Detection and Recognition, has interesting project for detecting objects. You
will learn both 2D and 3D object recognition using powerful ROS packages.

Chapter 7, Deep Learning Using ROS and TensorFlow, is a project made using a trending
technology in robotics. Using the TensorFlow library and ROS, we can implement
interesting deep-learning applications. You can implement image recognition using deep
learning, and an application using SVM can be found in this chapter.

Chapter 8, ROS on MATLAB and Android, is intended for building robot applications using
ROS, MATLAB, and Android.

Chapter 9, Building an Autonomous Mobile Robot, is about creating an autonomous mobile
robot with the help of ROS. You can see how to use packages such as navigation, gmapping,
and AMCL to make a mobile robot autonomous.

Chapter 10, Creating a Self-driving Car Using ROS, is one of the more interesting projects in
this book. In this chapter, we will build a simulation of self-driving car using ROS and
Gazebo.

Chapter 11, Teleoperating Robot Using VR Headset and Leap Motion, shows you how to control
a robot's actions using a VR headset and Leap Motion sensor. You can play around with
virtual reality, a trending technology these days.

Preface

[3]

Chapter 12, Controlling Your Robots over the Web, we will see how to build interactive web
applications using rosbridge in ROS.

What you need for this book
You should have a powerful PC running a Linux distribution, preferably Ubuntu 16.04 LTS.

You can use a laptop or desktop with a graphics card, and RAM of 4-8 GB is preferred. This
is actually for running high-end simulations in Gazebo, as well as for processing point
clouds and computer vision.

You should have the sensors, actuators, and I/O boards mentioned in the book and should
be able to connect them all to your PC.

You also need Git installed to clone the package files.

If you are a Windows user, then it will be good to download VirtualBox and set up Ubuntu
on it. You can have issues when you try to interface real hardware to ROS when working
with VirtualBox. So, it is best if you can work from a real Linux system.

Who this book is for
If you are a robotics enthusiast or researcher who wants to learn more about building robot
applications using ROS, this book is for you. In order to learn from this book, you should
have a basic knowledge of ROS, GNU/Linux, and C++ programming concepts. The book is
also good for programmers who want to explore the advanced features of ROS.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Preface

[4]

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "The next
lines of code read the link and assign it to the to the BeautifulSoup function."

A block of code is set as follows:

 ros::init(argc, argv,"face_tracker_controller");
 ros::NodeHandle node_obj;
 ros::Subscriber number_subscriber =
 node_obj.subscribe("/face_centroid",10,face_callback);
 dynamixel_control = node_obj.advertise<std_msgs::Float64>
 ("/pan_controller/command",10);

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

 ros::init(argc, argv,"face_tracker_controller");
 ros::NodeHandle node_obj;
 ros::Subscriber number_subscriber =
 node_obj.subscribe("/face_centroid",10,face_callback);
 dynamixel_control = node_obj.advertise<std_msgs::Float64>
 ("/pan_controller/command",10);

Any command-line input or output is written as follows:

$ git clone https://github.com/qboticslabs/ros_robotics_projects

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "In order to download new
modules, we will go to Files | Settings | Project Name | Project Interpreter."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[5]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of. To send us general feedback, simply e-
mail feedback@packtpub.com, and mention the book's title in the subject of your
message. If there is a topic that you have expertise in and you are interested in either
writing or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at h t t p ://w w w . p

a c k t p u b . c o m . If you purchased this book elsewhere, you can visit h t t p ://w w w . p a c k t p u b . c

o m /s u p p o r t and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

http://www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support

Preface

[6]

The code bundle for the book is also hosted on GitHub at h t t p s ://g i t h u b . c o m /P a c k t P u b l

i s h i n g /R O S - R o b o t i c s - P r o j e c t s . We also have other code bundles from our rich catalog of
books and videos available at h t t p s ://g i t h u b . c o m /P a c k t P u b l i s h i n g /. Check them out!

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file from h t t p s ://w w w . p a c k t p u b . c o m /s i t e s /d e f a u l t /f i l e s /d o w n

l o a d s /R O S R o b o t i c s P r o j e c t s _ C o l o r I m a g e s . p d f .

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting h t t p ://w w w . p a c k t p u b . c o m /s u b m i t - e r r a t a , selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title.

To view the previously submitted errata, go to h t t p s ://w w w . p a c k t p u b . c o m /b o o k s /c o n t e n

t /s u p p o r t and enter the name of the book in the search field. The required information will
appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

https://github.com/PacktPublishing/ROS-Robotics-Projects
https://github.com/PacktPublishing/ROS-Robotics-Projects
https://github.com/PacktPublishing/ROS-Robotics-Projects
https://github.com/PacktPublishing/ROS-Robotics-Projects
https://github.com/PacktPublishing/ROS-Robotics-Projects
https://github.com/PacktPublishing/ROS-Robotics-Projects
https://github.com/PacktPublishing/ROS-Robotics-Projects
https://github.com/PacktPublishing/ROS-Robotics-Projects
https://github.com/PacktPublishing/ROS-Robotics-Projects
https://github.com/PacktPublishing/ROS-Robotics-Projects
https://github.com/PacktPublishing/ROS-Robotics-Projects
https://github.com/PacktPublishing/ROS-Robotics-Projects
https://github.com/PacktPublishing/ROS-Robotics-Projects
https://github.com/PacktPublishing/ROS-Robotics-Projects
https://github.com/PacktPublishing/ROS-Robotics-Projects
https://github.com/PacktPublishing/ROS-Robotics-Projects
https://github.com/PacktPublishing/ROS-Robotics-Projects
https://github.com/PacktPublishing/ROS-Robotics-Projects
https://github.com/PacktPublishing/ROS-Robotics-Projects
https://github.com/PacktPublishing/ROS-Robotics-Projects
https://github.com/PacktPublishing/ROS-Robotics-Projects
https://github.com/PacktPublishing/ROS-Robotics-Projects
https://github.com/PacktPublishing/ROS-Robotics-Projects
https://github.com/PacktPublishing/ROS-Robotics-Projects
https://github.com/PacktPublishing/ROS-Robotics-Projects
https://github.com/PacktPublishing/ROS-Robotics-Projects
https://github.com/PacktPublishing/ROS-Robotics-Projects
https://github.com/PacktPublishing/ROS-Robotics-Projects
https://github.com/PacktPublishing/ROS-Robotics-Projects
https://github.com/PacktPublishing/ROS-Robotics-Projects
https://github.com/PacktPublishing/ROS-Robotics-Projects
https://github.com/PacktPublishing/ROS-Robotics-Projects
https://github.com/PacktPublishing/ROS-Robotics-Projects
https://github.com/PacktPublishing/ROS-Robotics-Projects
https://github.com/PacktPublishing/ROS-Robotics-Projects
https://github.com/PacktPublishing/ROS-Robotics-Projects
https://github.com/PacktPublishing/ROS-Robotics-Projects
https://github.com/PacktPublishing/ROS-Robotics-Projects
https://github.com/PacktPublishing/ROS-Robotics-Projects
https://github.com/PacktPublishing/ROS-Robotics-Projects
https://github.com/PacktPublishing/ROS-Robotics-Projects
https://github.com/PacktPublishing/ROS-Robotics-Projects
https://github.com/PacktPublishing/ROS-Robotics-Projects
https://github.com/PacktPublishing/ROS-Robotics-Projects
https://github.com/PacktPublishing/ROS-Robotics-Projects
https://github.com/PacktPublishing/ROS-Robotics-Projects
https://github.com/PacktPublishing/ROS-Robotics-Projects
https://github.com/PacktPublishing/ROS-Robotics-Projects
https://github.com/PacktPublishing/ROS-Robotics-Projects
https://github.com/PacktPublishing/ROS-Robotics-Projects
https://github.com/PacktPublishing/ROS-Robotics-Projects
https://github.com/PacktPublishing/ROS-Robotics-Projects
https://github.com/PacktPublishing/ROS-Robotics-Projects
https://github.com/PacktPublishing/ROS-Robotics-Projects
https://github.com/PacktPublishing/ROS-Robotics-Projects
https://github.com/PacktPublishing/ROS-Robotics-Projects
https://github.com/PacktPublishing/ROS-Robotics-Projects
https://github.com/PacktPublishing/ROS-Robotics-Projects
https://github.com/PacktPublishing/ROS-Robotics-Projects
https://github.com/PacktPublishing/ROS-Robotics-Projects
https://github.com/PacktPublishing/ROS-Robotics-Projects
https://github.com/PacktPublishing/ROS-Robotics-Projects
https://github.com/PacktPublishing/ROS-Robotics-Projects
https://github.com/PacktPublishing/ROS-Robotics-Projects
https://github.com/PacktPublishing/ROS-Robotics-Projects
https://github.com/PacktPublishing/ROS-Robotics-Projects
https://github.com/PacktPublishing/ROS-Robotics-Projects
https://github.com/PacktPublishing/ROS-Robotics-Projects
https://github.com/PacktPublishing/ROS-Robotics-Projects
https://github.com/PacktPublishing/ROS-Robotics-Projects
https://github.com/PacktPublishing/ROS-Robotics-Projects
https://github.com/PacktPublishing/ROS-Robotics-Projects
https://github.com/PacktPublishing/ROS-Robotics-Projects
https://github.com/PacktPublishing/ROS-Robotics-Projects
https://github.com/PacktPublishing/ROS-Robotics-Projects
https://github.com/PacktPublishing/ROS-Robotics-Projects
https://github.com/PacktPublishing/ROS-Robotics-Projects
https://github.com/PacktPublishing/ROS-Robotics-Projects
https://github.com/PacktPublishing/ROS-Robotics-Projects
https://github.com/PacktPublishing/ROS-Robotics-Projects
https://github.com/PacktPublishing/ROS-Robotics-Projects
https://github.com/PacktPublishing/ROS-Robotics-Projects
https://github.com/PacktPublishing/ROS-Robotics-Projects
https://github.com/PacktPublishing/ROS-Robotics-Projects
https://github.com/PacktPublishing/ROS-Robotics-Projects
https://github.com/PacktPublishing/ROS-Robotics-Projects
https://github.com/PacktPublishing/ROS-Robotics-Projects
https://github.com/PacktPublishing/ROS-Robotics-Projects
https://github.com/PacktPublishing/ROS-Robotics-Projects
https://github.com/PacktPublishing/ROS-Robotics-Projects
https://github.com/PacktPublishing/ROS-Robotics-Projects
https://github.com/PacktPublishing/ROS-Robotics-Projects
https://github.com/PacktPublishing/ROS-Robotics-Projects
https://github.com/PacktPublishing/ROS-Robotics-Projects
https://github.com/PacktPublishing/ROS-Robotics-Projects
https://github.com/PacktPublishing/ROS-Robotics-Projects
https://github.com/PacktPublishing/ROS-Robotics-Projects
https://github.com/PacktPublishing/ROS-Robotics-Projects
https://github.com/PacktPublishing/ROS-Robotics-Projects
https://github.com/PacktPublishing/ROS-Robotics-Projects
https://github.com/PacktPublishing/ROS-Robotics-Projects
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ROSRoboticsProjects_ColorImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[7]

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us
at questions@packtpub.com, and we will do our best to address the problem.

1
Getting Started with ROS

Robotics Application
Development

Robotics is one of the upcoming technologies that can change the world. Robots can replace
people in many ways, and we are all afraid of them stealing our jobs. One thing is for sure:
robotics will be one of the influential technologies in the future. When a new technology
gains momentum, the opportunities in that field also increase. This means that robotics and
automation can generate lot of job opportunities in the future.

One of the main areas in robotics that can provide mass job opportunities is robotics
software development. As we all know, software gives life to a robot or any machine. We
can expand a robot's capabilities through software. If a robot exists, its capabilities such as
control, sensing, and intelligence are realized using software.

Robotics software involves a combination of related technologies, such as computer vision,
artificial intelligence, and control theory. In short, developing software for a robot is not a
simple task; it may require expertise in many fields.

If you're looking for mobile application development in iOS or Android, there is a software
development kit (SDK) available to build applications in it, but what about robots? Is there
any generic software framework available? Yes. One of the more popular robotics software
frameworks is called Robot Operating System (ROS).

Getting Started with ROS Robotics Application Development

[9]

In this chapter, we will take a look at an abstract concept of ROS and how to install it. The
entire book is dedicated to ROS projects, so this chapter will be a kick-start guide for those
projects.

The following topics are going to be covered in this chapter:

Getting started with ROS
Why we use ROS
Basic concepts of ROS
Robot, sensors, and actuators supporting ROS
Installing ROS
ROS in industries and research

So let's get started discussing ROS.

Getting started with ROS
ROS is an open source, flexible software framework for programming robots. ROS provides
a hardware abstraction layer, in which developers can build robotics applications without
worrying about the underlying hardware. ROS also provides different software tools to
visualize and debug robot data. The core of the ROS framework is a message-passing
middleware in which processes can communicate and exchange data with each other even
when running from different machines. ROS message passing can be synchronous or
asynchronous.

Software in ROS is organized as packages, and it offers good modularity and reusability.
Using the ROS message-passing middleware and hardware abstraction layer, developers
can create tons of robotic capabilities, such as mapping and navigation (in mobile robots).
Almost all capabilities in ROS will be robot agnostic so that all kinds of robots can use it.
New robots can directly use this capability package without modifying any code inside the
package.

ROS has widespread collaborations in universities, and lots of developers contribute to it.
We can say that ROS is a community-driven project supported by developers worldwide.
The active developer ecosystem distinguishes ROS from other robotic frameworks.

Getting Started with ROS Robotics Application Development

[10]

In short, ROS is the combination of Plumbing (or communication), Tools, Capabilities and
Ecosystem. These capabilities are demonstrated in the following figure:

Figure 1: The ROS equation

The ROS project was started in 2007 in Stanford University under the name Switchyard.
Later on, in 2008, the development was undertaken by a robotic research start-up called
Willow Garage. The major development in ROS happened in Willow Garage. In 2013, the
Willow Garage researchers formed the Open Source Robotics Foundation (OSRF). ROS is
actively maintained by OSRF now.

Here are links to their websites:

Willow Garage: http://www.willowgarage.com/
OSRF: http://www.osrfoundation.org/

ROS distributions
The ROS distributions are very similar to Linux distributions, that is, a versioned set of ROS
packages. Each distribution maintains a stable set of core packages up to the end of life
(EOL) of the distribution.

The ROS distributions are fully compatible with Ubuntu, and most of the ROS distributions
are planned according to the respective Ubuntu versions.

http://www.willowgarage.com/
http://www.osrfoundation.org/

Getting Started with ROS Robotics Application Development

[11]

Given here are some of latest ROS distributions recommended for use from the ROS
website (http://wiki.ros.org/Distributions):

Figure 2: Latest ROS distributions

The latest ROS distribution is Kinect Kame. We will get support for this distribution up to
May 2021. One of the problems with this latest ROS distribution is that most of the packages
will not be available on it because it will take time to migrate them from the previous
distribution. If you are looking for a stable distribution, you can go for ROS Indigo Igloo,
because the distribution started in 2015, and most of the packages are available on this
distribution. The ROS Jade Turtle distribution will stop being supported on May 2017, so I
do not recommend you use it.

Supported operating systems
The main operating system ROS is tuned for is Ubuntu. ROS distributions are planned
according to Ubuntu releases. Other than Ubuntu, it is partially supported by Ubuntu
ARM, Debian, Gentoo, Mac OS X, Arch Linux, Android, Windows, and Open Embedded:

http://wiki.ros.org/Distributions

Getting Started with ROS Robotics Application Development

[12]

Figure 3: OSes supporting ROS

This table shows new ROS distributions and the specific versions of the supporting OSes:

ROS distribution Supporting OSes

Kinetic Kame (LTS) Ubuntu 16.04 (LTS) and 15.10, Debian 8, OS X (Homebrew), Gentoo, and
Ubuntu ARM

Jade Turtle Ubuntu 15.04, 14.10, and 14.04, Ubuntu ARM, OS X (Homebrew), Gentoo,
Arch Linux, Android NDK, and Debian 8

Indigo Igloo (LTS) Ubuntu 14.04 (LTS) and 13.10, Ubuntu ARM, OS X (Homebrew), Gentoo,
Arch Linux, Android NDK, and Debian 7

ROS Indigo and Kinetic are long-term support (LTS) distributions, coming with the LTS
version of Ubuntu. The advantage of using LTS distribution is that we will get maximum
lifespan and support.

Getting Started with ROS Robotics Application Development

[13]

Robots and sensors supported by ROS
The ROS framework is one of the successful robotics frameworks, and universities around
the globe contribute to it. Because of the active ecosystem and open source nature, ROS is
being used in a majority of robots and is compatible with major robotic hardware and
software. Here are some of the famous robots completely running on ROS:

Figure 4: Popular robots supported by ROS

The names of the robots listed in the images are Pepper (a), REEM-C (b), TurtleBot (c),
Robonaut (d), Universal Robots (e).

The robots supported by ROS are listed at the following link:

http://wiki.ros.org/Robots.

http://wiki.ros.org/Robots

Getting Started with ROS Robotics Application Development

[14]

The following are links to get ROS packages of robots from:

Pepper: http://wiki.ros.org/Robots/Pepper
REEM-C: http://wiki.ros.org/Robots/Robonaut2
TurtleBot 2: http://wiki.ros.org/Robots/TurtleBot
Robonaut: http://wiki.ros.org/Robots/Robonaut2
Universal Robotic arms: http://wiki.ros.org/universal_robot

Some popular sensors supporting ROS are as follows:

Figure 5: Popular robot sensors supported in ROS

The names of the sensors listed in the image are Velodyne (a), ZED Camera (b), Teraranger
(c), Xsens (d), Hokuyo Laser range finder (e), and Intel RealSense (f).

http://wiki.ros.org/Robots/Pepper
http://wiki.ros.org/Robots/Robonaut2
http://wiki.ros.org/Robots/TurtleBot
http://wiki.ros.org/Robots/Robonaut2
http://wiki.ros.org/universal_robot

Getting Started with ROS Robotics Application Development

[15]

The list of sensors supported by ROS is available at the following link:

http://wiki.ros.org/Sensors

These are the links to the ROS wiki pages of these sensors:

Velodyne(a): http://wiki.ros.org/Velodyne
ZED Camera(b): http://wiki.ros.org/zed-ros-wrapper
Teraranger(c): http://wiki.ros.org/terarangerone
Xsens(d): http://wiki.ros.org/terarangerone
Hokuyo Laser range finder(e): http://wiki.ros.org/hokuyo_node
Intel real sense(f): http://wiki.ros.org/realsense_camera

Why ROS
The main intention behind building the ROS framework is to become a generic software
framework for robots. Even though there was robotics research happening before ROS,
most of the software was exclusive to their own robots. Their software may be open source,
but it is very difficult to reuse.

Compared to existing robotic frameworks, ROS is outperforming in the following aspects:

Collaborative development: As we discussed, ROS is open source and free to use
for industries and research. Developers can expand the functionalities of ROS by
adding packages. Almost all the packages of ROS work on a hardware
abstraction layer, so it can be reused easily for other robots. So if one university is
good in mobile navigation and other in robotic manipulators, they can contribute
that to the ROS community and other developers can reuse their packages and
build new applications.
Language support: The ROS communication framework can be easily
implemented in any modern language. It already supports popular languages
such as C++, Python, and Lisp, and it has experimental libraries for Java and Lua.
Library integration: ROS has an interface to many third-party robotics libraries,
such as Open Source Computer Vision (Open-CV), Point Cloud Library (PCL),
Open-NI, Open-Rave, and Orocos. Developers can work with any of these
libraries without much hassle.

http://wiki.ros.org/Sensors
http://wiki.ros.org/Velodyne
http://wiki.ros.org/zed-ros-wrapper
http://wiki.ros.org/zed-ros-wrapper
http://wiki.ros.org/terarangerone
http://wiki.ros.org/terarangerone
http://wiki.ros.org/hokuyo_node
http://wiki.ros.org/realsense_camera

Getting Started with ROS Robotics Application Development

[16]

Simulator integration: ROS also has ties to open source simulators such as
Gazebo and has a good interface with proprietary simulators such as Webots and
V-REP.
Code testing: ROS offers an inbuilt testing framework called rostest to check
code quality and bugs.
Scalability: The ROS framework is designed to be scalable. We can perform
heavy computation tasks with robots using ROS, which can either be placed on
the cloud or on heterogeneous clusters.
Customizability: As we have discussed, ROS is completely open source and free,
so one can customize this framework as per the robot's requirement. If we only
want to work with the ROS messaging platform, we can remove all the other
components and use only that. One can even customize ROS for a specific robot
for better performance.
Community: ROS is a community-driven project, and it is mainly led by OSRF.
The large community support is a great plus for ROS, and one can easily start
robotics application development.

Given here are the URLs of libraries and simulators integrated with ROS:

Open-CV: http://wiki.ros.org/vision_opencv
PCL: http://wiki.ros.org/pcl_ros
Open-NI: http://wiki.ros.org/openni_launch
Open-Rave: http://openrave.org/
Orocos: http://www.orocos.org/
Webots: https://www.cyberbotics.com/overview
V-REP: http://www.coppeliarobotics.com/

Let's go through some of the basic concepts of ROS; they can help you get started with ROS
projects.

Fundamentals of ROS
Understanding the basic working of ROS and its terminology can help you understand
existing ROS applications and build your own. This section will teach you important
concepts that we are going to use in the upcoming chapters. If you find a topic missed in
this chapter, it will be covered in a corresponding later chapter.

http://wiki.ros.org/vision_opencv
http://wiki.ros.org/pcl_ros
http://wiki.ros.org/pcl_ros
http://wiki.ros.org/openni_launch
http://openrave.org/
http://www.orocos.org/
https://www.cyberbotics.com/overview
http://www.coppeliarobotics.com/

Getting Started with ROS Robotics Application Development

[17]

There are three different concepts in ROS. Let's take a look at them.

The filesystem level
The filesystem level explains how ROS files are organized on the hard disk:

Figure 6: The ROS filesystem level

As you can see from the figure, the filesystem in ROS can be categorized mainly as
metapackages, packages, package manifest, messages, services, codes and miscellaneous
files. The following is a short description of each component:

Metapackages: Metapackages group together a list of packages for a specific
application. For example, in ROS, there is a metapackage called navigation for
mobile robot navigation. It can hold the information on related packages and
helps install those packages during its own installation.
Packages: The software in ROS is mainly organized as ROS packages. We can say
that ROS packages are the atomic build unit of ROS. A package may consist of
ROS nodes/processes, datasets, and configuration files, organized in a single
module.

Getting Started with ROS Robotics Application Development

[18]

Package manifest: Inside every package will be a manifest file called
package.xml. This file consists of information such as the name, version, author,
license, and dependencies required of the package. The package.xml file of a
metapackage consists of the names of related packages.
Messages (msg): ROS communicates by sending ROS messages. The type of
message data can be defined inside a file with the .msg extension. These files are
called message files. We are following a convention that the message files are
kept under our_package/msg/message_files.msg.
Service (srv): One of the computation graph level concepts is services. Similar to
ROS messages, the convention is to put service definitions under
our_package/srv/service_files.srv.

The computation graph level
The ROS computation graph is the peer-to-peer network of the ROS process, and it
processes the data together. The ROS computation graph concepts are nodes, topics,
messages, master, parameter server, services, and bags:

Figure 7: The ROS computational graph concept diagram

Getting Started with ROS Robotics Application Development

[19]

The preceding figure shows the various concepts in the ROS computational graph. Here is a
short description of each concept:

Nodes: ROS nodes are simply a process that is using ROS APIs to communicate
with each other. A robot may have many nodes to perform its computations. For
example, an autonomous mobile robot may have a node each for hardware
interfacing, reading laser scans, and localization and mapping. We can create
ROS nodes using ROS client libraries such as roscpp and rospy, which we will
be discussing in the upcoming sections.
Master: The ROS master works as an intermediate node that aids connections
between different ROS nodes. The master has all the details about all nodes
running in the ROS environment. It will exchange details of one node with
another in order to establish a connection between them. After exchanging the
information, communication will start between the two ROS nodes.
Parameter server: The parameter server is a pretty useful thing in ROS. A node
can store a variable in the parameter server and set its privacy too. If the
parameter has a global scope, it can be accessed by all other nodes. The ROS
parameter runs along with the ROS master.
Messages: ROS nodes can communicate with each other in many ways. In all
methods, nodes send and receive data in the form of ROS messages. The ROS
message is a data structure used by ROS nodes to exchange data.
Topics: One of the methods to communicate and exchange ROS messages
between two ROS nodes is called ROS topics. Topics are named buses, in which
data is exchanged using ROS messages. Each topic will have a specific name, and
one node will publish data to a topic and an other node can read from the topic
by subscribing to it.
Services: Services are another kind of communication method, like topics. Topics
use publish or subscribe interaction, but in services, a request or reply method is
used. One node will act as the service provider, which has a service routine
running, and a client node requests a service from the server. The server will
execute the service routine and send the result to the client. The client node
should wait until the server responds with the results.
Bags: Bags are a useful utility in ROS for the recording and playback of ROS
topics. While working on robots, there may be some situations where we need to
work without actual hardware. Using rosbag, we can record sensor data and can
copy the bag file to other computers to inspect data by playing it back.

Getting Started with ROS Robotics Application Development

[20]

The ROS community level
The community level comprises the ROS resources for sharing software and knowledge:

Figure 8: ROS community level diagram

Here is a brief description of each section:

Distributions: ROS distributions are versioned collections of ROS packages, like
Linux distribution.
Repositories: ROS-related packages and files depend on a version-control
system (VCS) such as Git, SVN, and Mercurial, using which developers around
the world can contribute to the packages.
The ROS Wiki: The ROS community wiki is the knowledge center of ROS, in
which anyone can create documentation for their packages. You can find
standard documentation and tutorials about ROS from the ROS wiki.
Mailing lists: Subscribing to the ROS mailing lists enables users to get new
updates regarding ROS packages and gives them a place to ask questions about
ROS (http://wiki.ros.org/Mailing%20Lists).
ROS Answers: The ROS Answers website is the Stack Overflow of ROS. Users
can ask questions regarding ROS and related areas
(http://answers.ros.org/questions/).
Blog: The ROS blog provides regular updates about the ROS community with
photos and videos (http://www.ros.org/news).

http://wiki.ros.org/Mailing%20Lists
http://answers.ros.org/questions/
http://www.ros.org/news

Getting Started with ROS Robotics Application Development

[21]

Communication in ROS
Let's see how two nodes communicate with each other using ROS topics. The following
diagram shows how it happens:

Figure 9: Communication between ROS nodes using topics

As you can see, there are two nodes, named talker and listener. The talker node publishes a
string message called Hello World into a topic called /talker, and the listener node is
subscribed to this topic. Let's see what happens at each stage, marked (1), (2), and (3):

Before running any nodes in ROS, we should start the ROS Master. After it has1.
been started, it will wait for nodes. When the talker node (publisher) starts
running, it will first connect to the ROS Master and exchange the publishing
topic details with the master. This includes topic name, message type, and
publishing node URI. The URI of the master is a global value, and all nodes can
connect to it. The master maintains tables of the publisher connected to it.
Whenever a publisher's details change, the table updates automatically.

Getting Started with ROS Robotics Application Development

[22]

When we start the listener node (subscriber), it will connect to the master and 2.
exchange the details of the node, such as the topic going to be subscribed to, its
message type, and the node URI. The master also maintains a table of subscribers,
similar to the publisher.
Whenever there is a subscriber and publisher for the same topic, the master node3.
will exchange the publisher URI with the subscriber. This will help both nodes
connect with each other and exchange data. After they've connected with each
other, there is no role for the master. The data is not flowing through the master;
instead, the nodes are interconnected and exchange messages.

ROS client libraries
The ROS client libraries are used to write ROS nodes. All the ROS concepts are
implemented in client libraries. So we can just use it without implementing everything from
scratch. We can implement ROS nodes with a publisher and subscriber, we can write
service callbacks, and so on using client libraries.

The main ROS client libraries are in C++ and Python. Here is a list of popular ROS client
libraries:

roscpp: This is one of the most recommended and widely used ROS client
libraries for building ROS nodes. This client library has most of the ROS concepts
implemented and can be used in high-performance applications.
rospy: This is a pure implementation of the ROS client library in Python. The
advantage of this library is the ease of prototyping, so development time is
shorter. It is not recommended for high-performance applications, but it is perfect
for non-critical tasks.
roslisp: This is the client library for LISP and is commonly used to build robot
planning libraries.

Details of all client ROS libraries are given in the following link:
http://wiki.ros.org/Client%20Libraries.

http://wiki.ros.org/Client%20Libraries

Getting Started with ROS Robotics Application Development

[23]

ROS tools
ROS has a variety of GUI and command-line tools to inspect and debug messages. Let's
look at some commonly used ones.

Rviz (ROS Visualizer)
Rviz (http://wiki.ros.org/rviz) is one of the 3D visualizers available in ROS to visualize
2D and 3D values from ROS topics and parameters. Rviz helps visualize data such as robot
models, robot 3D transform data (TF), point cloud, laser and image data, and a variety of
different sensor data.

Figure 10: Point cloud data visualized in Rviz

http://wiki.ros.org/rviz

Getting Started with ROS Robotics Application Development

[24]

rqt_plot
The rqt_plot program (http://wiki.ros.org/rqt_plot) is a tool for plotting scalar values
that are in the form of ROS topics. We can provide a topic name in the Topic box.

Figure 11: rqt_plot

http://wiki.ros.org/rqt_plot

Getting Started with ROS Robotics Application Development

[25]

rqt_graph
The rqt_graph (http://wiki.ros.org/rqt_graph) ROS GUI tool can visualize the graph of
interconnection between ROS nodes.

Figure 12: rqt_graph

The complete list of ROS tools is available at the following link:
http://wiki.ros.org/Tools

Simulators of ROS
One of the open source robotic simulators tightly integrated with ROS is Gazebo
(http://gazebosim.org). Gazebo is a dynamic robotic simulator with a wide variety the
robot models and extensive sensor support The functionalities of Gazebo can be added via
plugins. The sensor values can be accessed to ROS through topics, parameters and services.
Gazebo can use when your simulation needs full compatibility with ROS. Most of the
robotics simulators are proprietary and expensive; if you can't afford it, you can directly use
Gazebo without any doubt.

http://wiki.ros.org/rqt_graph
http://wiki.ros.org/Tools
http://gazebosim.org

Getting Started with ROS Robotics Application Development

[26]

The ROS interface of Gazebo is available at the following link:
http://wiki.ros.org/gazebo

Figure 13: Gazebo simulator

Installing ROS kinetic on Ubuntu 16.04 LTS
As we have discussed, there are a variety of ROS distributions available to download and
install, so choosing the exact distribution for our needs may be confusing. Following are
answers to some of the frequently asked questions while choosing a distribution:

Which distribution should I choose to get maximum support?
Answer: If you are interested in getting maximum support, choose
an LTS release. It will be good if you choose the second most recent
LTS distribution.

http://wiki.ros.org/gazebo

Getting Started with ROS Robotics Application Development

[27]

I need the latest features of ROS; which should I choose?

Answer: Go for the latest version then; you may not get the latest
complete packages immediately after the release. You may have to wait
for a few months after the release. This is because of the migration
period from one distribution to other.

In this book, we are dealing with two LTS distributions: ROS Indigo, which is a stable
release, and ROS Kinetic, the latest one.

Getting started with the installation
Go to the ROS website (http://www.ros.org/), and navigate to Getting Started | Install.

You will get a screen listing the latest ROS distributions:

Figure 14: Latest ROS distributions on the website

You can get the complete installation instructions for each distribution if you click on the
Install button.

We'll now step through the instructions to install the latest ROS distribution.

http://www.ros.org/

Getting Started with ROS Robotics Application Development

[28]

Configuring Ubuntu repositories
We are going to install ROS on Ubuntu from the ROS package repository. The repository
will have prebuilt binaries of ROS in .deb format. To be able to use packages from the ROS
repository, we have to configure the repository options of Ubuntu first.

Here are the details of the different kinds of Ubuntu repositories:
(https://help.ubuntu.com/community/Repositories/Ubuntu)

To configure the repository, first search for Software & Updates in the Ubuntu search bar.

Figure 15: Ubuntu Software & Updates

https://help.ubuntu.com/community/Repositories/Ubuntu

Getting Started with ROS Robotics Application Development

[29]

Click on Software and & Updates and enable all the Ubuntu repositories, as shown in the
following screenshot:

Figure 16: The Ubuntu Software & Updates centre

Setting up source.list
The next step is to allow ROS packages from the ROS repository server, called
packages.ros.org. The ROS repository server details have to be fed into source.list,
which is in the /etc/apt/.

The following command will do this job for ROS Kinetic, Jade, and Indigo:

 sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu $(lsb_release
-sc) main" > /etc/apt/sources.list.d/ros-latest.list'

Getting Started with ROS Robotics Application Development

[30]

Setting up keys
When a new repository is added to Ubuntu, we should add the keys to make it trusted and
to be able to validate the origin of the packages. The following key should be added to
Ubuntu before starting installation:

 sudo apt-key adv --keyserver hkp://ha.pool.sks-keyservers.net:80 --
recv-key 0xB01FA116

Now we are sure that we are downloading from an authorized server.

Installing ROS
Now, we are ready to install ROS packages on Ubuntu. The first step is to update the list of
packages on Ubuntu. You can use the following command to update the list:

 $ sudo apt-get update

This will fetch all packages from the servers that are in source.list.

After getting the package list, we have to install the entire ROS package suite using the
following command:

ROS Kinect:

 $ sudo apt-get install ros-kinetic-desktop-full

ROS Jade:

 $ sudo apt-get install ros-jade-desktop-full

ROS Indigo:

 $ sudo apt-get install ros-indigo-desktop-full

This will install most of the important packages in ROS. You will need at least 15 GB of
space in your root Ubuntu partition to install and work with ROS.

Initializing rosdep
The rosdep tool in ROS helps us easily install dependencies of packages that we are going
to compile. This tool is also necessary for some core components of ROS.

Getting Started with ROS Robotics Application Development

[31]

This command launches rosdep:

 $ sudo rosdep init
 $ rosdep update

Setting the ROS environment
Congratulations! We are done with the ROS installation, but what next?

The ROS installation mainly consists of scripts and executables, which are mostly installed
to /opt/ros/<ros_version>.

To get access to these commands and scripts, we should add ROS environment variables to
the Ubuntu Terminal. It's easy to do this. To access ROS commands from inside the
Terminal, we have to source the following bash file:

/opt/ros/<ros_version>/setup.bash

Here's the command to do so:

 $ source /opt/ros/kinetic/setup.bash

But in order to get the ROS environment in multiple Terminals, we should add the
command to the .bashrc script, which is in the home folder. The .bashrc script will be
sourced whenever a new Terminal opens.

 $ echo "source /opt/ros/kinetic/setup.bash" >> ~/.bashrc
 $ source ~/.bashrc

We can install multiple ROS distributions on Ubuntu. If there are multiple distributions, we
can switch to each ROS distribution by changing the distribution name in the preceding
command.

Getting rosinstall
Last but not least, there is the ROS command-line tool, called rosinstall, for installing
source trees for particular ROS packages. The tool is based on Python, and you can install it
using the following command:

 $ sudo apt-get install python-rosinstall

We are done with the ROS installation. Just check whether the installation is proper, by
running the following commands.

Getting Started with ROS Robotics Application Development

[32]

Open a Terminal window and run the roscore command:

 $ roscore

Run a turtlesim node in another Terminal:

 $ rosrun turtlesim turtlesim_node

If everything is proper, you will get this:

Figure 17: The turtlesim node

Setting ROS on VirtualBox
As you know, complete ROS support is only present on Ubuntu. So what about Windows
and Mac OS X users? Can't they use ROS? Yes, they can, using a tool called VirtualBox
(https://www.virtualbox.org/). VirtualBox allows us to install a guest OS without
affecting the host OS. The virtual OS can work along with the host OS in a given
specification of a virtual computer, such as the number of processors and RAM and hard
disk size.

https://www.virtualbox.org/

Getting Started with ROS Robotics Application Development

[33]

You can download VirtualBox for popular OSes from the following link:
h t t p s ://w w w . v i r t u a l b o x . o r g /w i k i /D o w n l o a d s

The complete installation procedure for Ubuntu on VirtualBox is shown in
the following tutorial video on YouTube:
https://www.youtube.com/watch?v=DPIPC25xzUM

The Following shows the screenshot of the VirtualBox GUI. You can see the virtual OS list
on the left side and the virtual PC configuration on the right side. The buttons for creating a
new virtual OS and starting the existing VirtualBox can be seen on the top panel. The
optimal virtual PC configuration is shown in the following screenshot:

Figure 18: The VirtualBox configuration

https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.youtube.com/watch?v=DPIPC25xzUM

Getting Started with ROS Robotics Application Development

[34]

Here are the main specifications of the virtual PC:

Number of CPUs: 1
RAM: 4 GB
Display | Video Memory: 128 MB
Acceleration: 3D
Storage: 20 GB to 30 GB
Network adapter on NAT

In order to have hardware acceleration, you should install drivers from the VirtualBox
Guest add-ons disc. After booting into the Ubuntu desktop, navigate to Devices | Insert
Guest Addition CD Image. This will mount the CD image in Ubuntu and ask the user to
run the script to install drivers. If we allow it, it will automatically install all the drivers.
After a reboot, you will get full acceleration on the Ubuntu guest.

There is no difference in ROS installation on VirtualBox .If the virtual network adapter is in
NAT mode, the Internet connection of the host OS will be shared with the guest OS. So the
guest can work the same as the real OS.

Setting the ROS workspace
After setting ROS on a real PC or VirtualBox, the next step is to create a workspace in ROS.
The ROS workspace is a place where we keep ROS packages. In the latest ROS distribution,
we use a catkin-based workspace to build and install ROS packages. The catkin system
(http://wiki.ros.org/catkin) is the official build system of ROS, which helps us build the
source code into a target executable or libraries inside the ROS workspace.

Building an ROS workspace is an easy task; just open a Terminal and follow these
instructions:

The first step is to create an empty workspace folder and another folder called1.
src to store the ROS package in. The following command will do this job. The
workspace folder name here is catkin_ws.

 $ mkdir -p ~/catkin_ws/src

http://wiki.ros.org/catkin

Getting Started with ROS Robotics Application Development

[35]

Switch to the src folder and execute the catkin_init_workspace command.2.
This command will initialize a catkin workspace in the current src folder. We
can now start creating packages inside the src folder.

 $ cd ~/catkin_ws/src
 $ catkin_init_workspace

After initializing the catkin workspace, we can build the packages inside the3.
workspace using the following command, catkin_make. We can build the
workspace even without any packages.

 $ cd ~/catkin_ws/
 $ catkin_make

This will create additional folders called build and devel inside the ROS4.
workspace:

Figure 19: The catkin workspace folders

Once you've built the workspace, in order to access packages inside the5.
workspace we should add the workspace environment to our .bashrc file using
the following command:

 $ echo "source ~/catkin_ws/devel/setup.bash" >>
 ~/.bashrc
 $ source ~/.bashrc

Getting Started with ROS Robotics Application Development

[36]

If everything is done, you can verify it by executing the following command. This6.
command will print the entire ROS package path. If your workspace path is in
the output, you are done!

 $ echo $ROS_PACKAGE_PATH

Figure 20: The ROS package path

Opportunities for ROS in industries and
research
Now that we've installed ROS and set up our ROS workspace, we can discuss the
advantages of using it. Why is learning ROS so important for robotics researchers? The
reason is that ROS is becoming a generic framework to program all kinds of robots. So
robots in universities and industries mainly use ROS.

Getting Started with ROS Robotics Application Development

[37]

Here are some famous robotics companies using ROS for their robots:

Figure 21: The companies using ROS

You can find them here:

Fetch Robotics: http://fetchrobotics.com/
Clearpath Robotics: https://www.clearpathrobotics.com/
PAL Robotics: http://www.pal-robotics.com/en/home/
Yujin Robot: http://en.yujinrobot.com/
DJI: http://www.dji.com/
ROBOTIS: http://www.robotis.com/html/en.php

The following is one of the job listings on Fetch Robotics for a robotics application
development engineer (http://fetchrobotics.com/careers/):

http://fetchrobotics.com/
https://www.clearpathrobotics.com/
http://www.pal-robotics.com/en/home/
http://en.yujinrobot.com/
http://www.dji.com/
http://www.robotis.com/html/en.php
http://fetchrobotics.com/careers/

Getting Started with ROS Robotics Application Development

[38]

Figure 22: A typical job requirement for an ROS application engineer

Knowledge of ROS will help you land a robotics application engineering job easily. If you
go through the skill set of any job related to robotics, you're bound to find ROS on it.

There are independent courses and workshops in universities and industries to teach ROS
development in robots. Knowing ROS will help you get an internship and MS, PhD, and
postdoc opportunities from prestigious robotic institutions such as CMU's Robotics Institute
(http://www.ri.cmu.edu/) and UPenn's GRAP Lab (https://www.grasp.upenn.edu/).

The following chapters will help you build a practical foundation of and core skills in ROS.

Questions
What are the main components of ROS?
What are the advantages of using ROS over other robotics frameworks?
What are the different concepts of ROS?
What are the different concepts of the ROS computation graph?

http://www.ri.cmu.edu/
https://www.grasp.upenn.edu/

Getting Started with ROS Robotics Application Development

[39]

Summary
This chapter was an introductory chapter for starting with robotics application
development using ROS. The main aim of this chapter was to get started with ROS by
installing and understanding it. This chapter can be used as a kick-start guide for ROS
application development and can help you understand the following chapters, which
mainly demonstrate ROS-based applications. At the end of this chapter, we saw job and
research opportunities related to ROS and also saw that lot of companies and universities
are looking for ROS developers for different robotics applications. From the next chapter
onward, we can discuss different ROS-based projects.

2
Face Detection and Tracking

Using ROS, OpenCV and
Dynamixel Servos

One of the capabilities of most service and social robots is face detection and tracking. These
robots can identify faces and can move their heads according to the human face that moves
around it. There are numerous implementations of face detection and tracking systems on
the Web. Most trackers have a pan-and-tilt mechanism, and a camera is mounted on the top
of the servos. In this chapter, we will see a simple tracker that only has a pan mechanism.
We are going to use a USB webcam mounted on an AX-12 Dynamixel servo. The controlling
of Dynamixel servo and image processing are done in ROS.

The following topics will be covered in this chapter:

An overview of the project
Hardware and software prerequisites
Configuring Dynamixel AX-12 servos
The connection diagram of the project
Interfacing Dynamixel with ROS
Creating ROS packages for a face tracker and controller
The ROS-OpenCV interface
Implementing a face tracker and face tracker controller
The final run

Face Detection and Tracking Using ROS, OpenCV and Dynamixel Servos

[41]

Overview of the project
The aim of the project is to build a simple face tracker that can track face only along the
horizontal axis of the camera. The face tracker hardware consists of a webcam, Dynamixel
servo called AX-12, and a supporting bracket to mount the camera on the servo. The servo
tracker will follow the face until it aligns to the center of the image from the webcam. Once
it reaches the center, it will stop and wait for face movement. The face detection is done
using an OpenCV and ROS interface, and the controlling of the servo is done using a
Dynamixel motor driver in ROS.

We are going to create two ROS packages for this complete tracking system; one is for face
detection and finding the centroid of the face, and the other is for sending commands to the
servo to track the face using the centroid values.

Okay! Let's start discussing the hardware and software prerequisites of this project.

The complete source code of this project can be cloned from the following
Git repository. The following command will clone the project repo:
$ git clone
https://github.com/qboticslabs/ros_robotics_projects

Hardware and software prerequisites
The following is a table of the hardware components that can be used for building this
project. You can also see the rough price and a purchase link for each component.

List of hardware components:

No Component name Estimated
price
(USD)

Purchase link

1 Webcam 32 https://amzn.com/B003LVZO8S

2 Dynamixel
AX-12A servo
with mounting
bracket

76 https://amzn.com/B0051OXJXU

3 USB-to-Dynamixel
Adapter

50
http://www.robotshop.com/en/robotis-usb-to-dynamixel-adapter.html

4 Extra 3-pin cables
for AX-12 servos

12 http://www.trossenrobotics.com/p/100mm-3-Pin-DYNAMIXEL-Compatible-Cable-10-Pack

5 Power adapter 5 https://amzn.com/B005JRGOCM

6 6-port AX/MX
power hub

5 http://www.trossenrobotics.com/6-port-ax-mx-power-hub

https://amzn.com/B003LVZO8S
https://amzn.com/B0051OXJXU
http://www.robotshop.com/en/robotis-usb-to-dynamixel-adapter.html
http://www.trossenrobotics.com/p/100mm-3-Pin-DYNAMIXEL-Compatible-Cable-10-Pack
https://amzn.com/B005JRGOCM
http://www.trossenrobotics.com/6-port-ax-mx-power-hub

Face Detection and Tracking Using ROS, OpenCV and Dynamixel Servos

[42]

7 USB extension
cable

1 https://amzn.com/B00YBKA5Z0

Total cost with
shipping and tax

Around
190-200

The URLs and prices can vary. If the links are not available, a Google
search might do the job. The shipping charges and tax are excluded from
the prices.

If you are thinking that the total cost is not affordable, then there are cheap alternatives to
do this project too. The main heart of this project is the Dynamixel servo. We can replace
this servo with RC servos, which only cost around $10, and an Arduino board costing
around $20 can be used to control the servo too. The ROS and Arduino interfacing will be
discussed in the upcoming chapters, so you can think about porting the face tracker project
using an Arduino and RC servo.

Okay, let's look at the software prerequisites of the project. The prerequisites include the
ROS framework, OS version, and ROS packages:

No Name of
the
software

Estimated
price
(USD)

Download link

1 Ubuntu
16.04 LTS

Free http://releases.ubuntu.com/16.04/

2 ROS Kinetic
LTS

Free http://wiki.ros.org/kinetic/Installation/Ubuntu

3 ROS
usb_cam

package

Free http://wiki.ros.org/usb_cam

4 ROS
cv_bridge

package

Free http://wiki.ros.org/cv_bridge

5 ROS
Dynamixel
controller

Free https://github.com/arebgun/dynamixel_motor

6 Windows 7
or higher

Around
$120

https://www.microsoft.com/en-in/software-download/windows7

7 RoboPlus
(Windows
application)

Free http://www.robotis.com/download/software/RoboPlusWeb%28v1.1.3.0%29.exe

https://amzn.com/B00YBKA5Z0
http://releases.ubuntu.com/16.04/
http://wiki.ros.org/kinetic/Installation/Ubuntu
http://wiki.ros.org/usb_cam
http://wiki.ros.org/cv_bridge
https://github.com/arebgun/dynamixel_motor
https://www.microsoft.com/en-in/software-download/windows7
http://www.robotis.com/download/software/RoboPlusWeb%28v1.1.3.0%29.exe

Face Detection and Tracking Using ROS, OpenCV and Dynamixel Servos

[43]

This table gives you an idea of the software we are going to be using for this project. We
may need both Windows and Ubuntu for doing this project. It will be great if you have dual
operating systems on your computer.

Let's see how to install all this software first.

Installing dependent ROS packages
We have already installed and configured Ubuntu 16.04 and ROS Kinetic. Let's look at the
dependent packages we need to install for this project.

Installing the usb_cam ROS package
Let's look at the use of the usb_cam package in ROS first. The usb_cam package is the ROS
driver for Video4Linux (V4L) USB cameras. V4L is a collection of device drivers in Linux
for real-time video capture from webcams. The usb_cam ROS package works using V4L
devices and publishes the video stream from devices as ROS image messages. We can
subscribe to it and perform our own processing using it. The official ROS page of this
package is given in the previous table. You can check out this page for different settings and
configurations this package offers.

Creating a ROS workspace for dependencies
Before starting to install the usb_cam package, let's create a ROS workspace for storing the
dependencies of all the projects mentioned in the book. We can create another workspace
for keeping the project code.

Create a ROS workspace called ros_project_dependencies_ws in the home folder.
Clone the usb_cam package into the src folder:

 $ git clone https://github.com/bosch-ros-pkg/usb_cam.git

Build the workspace using catkin_make.

After building the package, install the v4l-util Ubuntu package. It is a collection of
command-line V4L utilities used by the usb_cam package:

 $ sudo apt-get install v4l-utils

Face Detection and Tracking Using ROS, OpenCV and Dynamixel Servos

[44]

Configuring a webcam on Ubuntu 16.04

After installing these two, we can connect the webcam to the PC to check whether it is
properly detected by our PC.

Open a Terminal and execute the dmesg command to check the kernel logs. If your camera
is detected in Linux, it may give you logs like this:

 $ dmesg

Figure 1: Kernels logs of the webcam device

You can use any webcam that has driver support in Linux. In this project, an iBall Face2Face
(http://www.iball.co.in/Product/Face2Face-C8-0–Rev-3-0-/90) webcam is used for
tracking. You can also go for the popular Logitech C310 webcam mentioned as a hardware
prerequisite. You can opt for that for better performance and tracking.

If our webcam has support in Ubuntu, we can open the video device using a tool called
Cheese. Cheese is simply a webcam viewer.

Enter the command cheese in the Terminal. If it is not installed, you can install it using
the following command:

 $ sudo apt-get install cheese

http://www.iball.co.in/Product/Face2Face-C8-0--Rev-3-0-/90
http://www.iball.co.in/Product/Face2Face-C8-0--Rev-3-0-/90
http://www.iball.co.in/Product/Face2Face-C8-0--Rev-3-0-/90

Face Detection and Tracking Using ROS, OpenCV and Dynamixel Servos

[45]

If the driver and device are proper, you will get a video stream from the webcam, like this:

Figure 2: Webcam video streaming using Cheese

Congratulations! Your webcam is working well in Ubuntu, but are we done with
everything? No. The next thing is to test the ROS usb_cam package. We have to make sure
that it's working well in ROS!

The complete source code of this project can be cloned from the following
Git repository. The following command will clone the project repo:
$ git clone
https://github.com/qboticslabs/ros_robotics_projects

Face Detection and Tracking Using ROS, OpenCV and Dynamixel Servos

[46]

Interfacing the webcam with ROS

Let's test the webcam using the usb_cam package. The following command is used to
launch the usb_cam nodes to display images from a webcam and publish ROS image topics
at the same time:

 $ roslaunch usb_cam usb_cam-test.launch

If everything works fine, you will get the image stream and logs in the Terminal, as shown
here:

Figure 3: Working of the usb_cam package in ROS

Face Detection and Tracking Using ROS, OpenCV and Dynamixel Servos

[47]

The image is displayed using the image_view package in ROS, which is subscribed to the
topic called /usb_cam/image_raw.

Here are the topics that usb_cam node is publishing:

Figure 4: The topics being published by the usb_cam node

We've finished interfacing a webcam with ROS. So what's next? We have to interface an
AX-12 Dynamixel servo with ROS. Before proceeding to interfacing, we have to do
something to configure this servo.

Next, we are going to see how to configure a Dynamixel AX-12A servo.

Configuring a Dynamixel servo using RoboPlus

The Dynamixel servo can be configured using a program called RoboPlus, provided by
ROBOTIS INC (http://en.robotis.com/index/), the manufacturer of Dynamixel servos.

http://en.robotis.com/index/

Face Detection and Tracking Using ROS, OpenCV and Dynamixel Servos

[48]

To configure Dynamixel, you have to switch your operating system to Windows. The
RoboPlus tool works on Windows. In this project, we are going to configure the servo in
Windows 7.

Here is the link to download RoboPlus:

http://www.robotis.com/download/software/RoboPlusWeb%28v1.1.3.0%29.exe

If the link is not working, you can just search in Google for RoboPlus 1.1.3. After installing
the software, you will get the following window. Navigate to the Expert tab in the software
to get the application for configuring Dynamixel:

Figure 5: Dynamixel manager in RoboPlus

http://www.robotis.com/download/software/RoboPlusWeb%28v1.1.3.0%29.exe

Face Detection and Tracking Using ROS, OpenCV and Dynamixel Servos

[49]

Before starting Dynamixel Wizard and configuring, we have to connect the Dynamixel and
properly power it up. The following are images of the AX-12A servo we are using for this
project and a diagram of its pin connection:

Figure 6: The AX-12A Dynamixel and its connection diagram

Unlike other RC servos, AX-12 is an intelligent actuator having a microcontroller that can
monitor every parameter of a servo and customize all of them. It has a geared drive, and the
output of the servo is connected to a servo horn. We can connect any link to this servo horn.
There are two connection ports behind each servo. Each port has pins such as VCC, GND,
and Data. The ports of the Dynamixel are daisy-chained, so we can connect one servo to
another servo. Here is the connection diagram of the Dynamixel with a computer:

Figure 7: The AX-12A Dynamixel and its connection diagram

Face Detection and Tracking Using ROS, OpenCV and Dynamixel Servos

[50]

The main hardware component interfacing Dynamixel with the PC is called a USB-to-
Dynamixel adapter. This is a USB-to-serial adapter that can convert USB to RS232, RS 484,
and TTL. In AX-12 motors, data communication is done using TTL. From the previous
figure, we can see that there are three pins in each port. The data pin is used to send to and
receive from AX-12, and power pins are used to power the servo. The input voltage range of
the AX-12A Dynamixel is from 9V to 12V. The second port in each Dynamixel can be used
for daisy chaining. We can connect up to 254 servos using such chaining.

Official links of the AX-12A servo and USB-to-Dynamixel adapter:
AX-12A:
http://www.trossenrobotics.com/dynamixel-ax-12-robot-actuator.as
px

USB-to-Dynamixel:
http://www.trossenrobotics.com/robotis-bioloid-usb2dynamixel.asp
x

To work with Dynamixel, we should know some more things. Let's have a look at some of
the important specifications of the AX-12A servo. The specifications are taken from the
servo manual.

Figure 8: AX-12A specifications

http://www.trossenrobotics.com/dynamixel-ax-12-robot-actuator.aspx
http://www.trossenrobotics.com/dynamixel-ax-12-robot-actuator.aspx
http://www.trossenrobotics.com/robotis-bioloid-usb2dynamixel.aspx
http://www.trossenrobotics.com/robotis-bioloid-usb2dynamixel.aspx

Face Detection and Tracking Using ROS, OpenCV and Dynamixel Servos

[51]

The Dynamixel servo can communicate with the PC at a maximum speed of 1 Mbps. It can
also provide feedback about various parameters, such as its position, temperature, and
current load. Unlike RC servos, this can rotate up to 300 degrees, and communication is
mainly done using digital packets.

Powering and connecting the Dynamixel to a PC

Now, we are going to connect the Dynamixel to a PC. The following is a standard way of
doing that:

Figure 9: Connecting the Dynamixel to a PC

The three-pin cable is first connected to any of the ports of the AX-12, and the other side has
to connect to the way to connect a six-port power hub. From the six-port power hub,
connect another cable to the USB-to-Dynamixel. We have to set the switch of the USB-to-
Dynamixel to TTL mode. The power can be either be connected through a 12V adapter or
through a battery. The 12V adapter has a 2.1 x 5.5 female barrel jack, so you should check
the specifications of the male adapter plug while purchasing.

Face Detection and Tracking Using ROS, OpenCV and Dynamixel Servos

[52]

Setting up the USB-to-Dynamixel driver on the PC

We have already discussed that the USB-to-Dynamixel adapter is a USB-to-serial converter
with an FTDI chip (http://www.ftdichip.com/) on it. We have to install a proper FTDI
driver on the PC in order to detect the device. The driver is required for Windows but not
for Linux, because FTDI drivers are already present in the Linux kernel. If you install the
RoboPlus software, the driver may already be installed along with it. If it is not, you can
manually install from the RoboPlus installation folder.

Plug the USB-to-Dynamixel into the Windows PC, and check Device Manager. (Right-click
on My Computer and go to Properties | Device Manager). If the device is properly
detected, you'll see something like this:

Figure 10: COM port of the USB-to-Dynamixel

http://www.ftdichip.com/

Face Detection and Tracking Using ROS, OpenCV and Dynamixel Servos

[53]

If you are getting a COM port for the USB-to-Dynamixel, you can start Dynamixel manager
from RoboPlus. You can connect to the serial port number from the list and click on the
Search button to scan for Dynamixel, as shown in the next screenshot.

Select the COM port from the list, and connect to the port marked 1. After connecting to the
COM port, set the default baud rate to 1 Mbps, and click on the Start searching button:

Figure 11: COM Port of the USB-to-Dynamixel

Face Detection and Tracking Using ROS, OpenCV and Dynamixel Servos

[54]

If you are getting a list of servos in the left-hand side panel, it means that your PC has
detected a Dynamixel servo. If the servo is not being detected, you can perform the
following steps to debug:

Make sure that the supply and connections are proper using a multimeter. Make1.
sure that the servo LED on the back is blinking when power is on; if it is not
coming on, it can indicate a problem with the servo or power supply.
Upgrade the firmware of the servo using Dynamixel manager from the option2.
marked 6. The wizard is shown in the next set of screenshots. While using the
wizard, you may need to power off the supply and turn it back on in order to
detect the servo.

After detecting the servo, you have to select the servo model and install the new3.
firmware. This may help you detect the servo in Dynamixel manager if the
existing servo firmware is outdated.

Figure 12: The Dynamixel recovery wizard

If the servos are being listed in Dynamixel Manager, click on one, and you can see its
complete configuration. We have to modify some values inside the configurations for our
current face-tracker project. Here are the parameters:

ID: Set the ID to 1
Baud rate: 1
Moving Speed: 100
Goal Position: 512

Face Detection and Tracking Using ROS, OpenCV and Dynamixel Servos

[55]

The modified servo settings are shown in the following figure:

Figure 13: Modified Dynamixel firmware settings

After making these settings, you can check whether the servo is working well or not by
changing its Goal position.

Nice! You are done configuring Dynamixel; congratulations! What next? We'll want to
interface Dynamixel with ROS.

The complete source code of this project can be cloned from the following
Git repository. The following command will clone the project repo:
$ git clone
https://github.com/qboticslabs/ros_robotics_projects

Interfacing Dynamixel with ROS
If you successfully configured the Dynamixel servo, then it will be very easy to interface
Dynamixel with ROS running on Ubuntu. As we've already discussed, there is no need of
an FTDI driver in Ubuntu because it's already built into the kernel. The only thing we have
to do is install the ROS Dynamixel driver packages.

Face Detection and Tracking Using ROS, OpenCV and Dynamixel Servos

[56]

The ROS Dynamixel packages are available at the following link:

http://wiki.ros.org/dynamixel_motor

You can install the Dynamixel ROS packages using commands we'll look at now.

Installing the ROS dynamixel_motor packages
The ROS dynamixel_motor package stack is a dependency for the face tracker project, so
we can install it to the ros_project_dependencies_ws ROS workspace.

Open a Terminal and switch to the src folder of the workspace:

 $ cd ~/ros_project_dependencies_ws/src

Clone the latest Dynamixel driver packages from GitHub:

 $ git clone https://github.com/arebgun/dynamixel_motor

Remember to do a catkin_make to build the entire packages of the Dynamixel driver.

If you can build the workspace without any errors, you are done with meeting the
dependencies of this project.

Congratulations! You are done with the installation of the Dynamixel driver packages in
ROS. We have now met all the dependencies required for the face tracker project.

So let's start working on face tracking project packages.

Creating face tracker ROS packages
Let's start creating a new workspace for keeping the entire ROS project files for this book.
You can name the workspace ros_robotics_projects_ws.

Download or clone the source code of the book from GitHub using the following link.

 $ git clone https://github.com/qboticslabs/ros_robotics_projects

http://wiki.ros.org/dynamixel_motor

Face Detection and Tracking Using ROS, OpenCV and Dynamixel Servos

[57]

Now, you can copy two packages named face_tracker_pkg and
face_tracker_control from the chapter_2_codes folder into the src folder of
ros_robotics_projects_ws.

Do a catkin_make to build the two project packages!

Yes, you have set up the face tracker packages on your system, but what if you want to
create your own package for tracking? First, delete the current packages that you copied to
the src folder, and use the following commands to create the packages.

Note that you should be in the src folder of
ros_robotics_projects_ws while creating the new packages, and there
should not be any existing packages from the book's GitHub code.

Switch to the src folder:

 $ cd ~/ros_robotics_projects_ws/src

The next command will create the face_tracker_pkg ROS package with the main
dependencies, such as cv_bridge, image_transport, sensor_msgs,
message_generation, and message_runtime.

We are including these packages because these packages are required for the proper
working of the face tracker package. The face tracker package contain ROS nodes for
detecting faces and determining the centroid of the face:

 $ catkin_create_pkg face_tracker_pkg roscpp rospy cv_bridge
image_transport sensor_msgs std_msgs message_runtime message_generation

Next, we need to create the face_tracker_control ROS package. The important
dependency of this package is dynamixel_controllers. This package is used to subscribe
to the centroid from the face tracker node and control the Dynamixel in a way that the face
centroid will always be in the center portion of the image:

 $ catkin_create_pkg face_tracker_pkg roscpp rospy std_msgs
dynamixel_controllers message_generation

Okay, you have created the ROS packages on your own. What's next? Before starting to
code, you may have to understand some concepts of OpenCV and its interface with ROS.
Also, you have to know how to publish ROS image messages. So let's master the concepts
first.

Face Detection and Tracking Using ROS, OpenCV and Dynamixel Servos

[58]

The interface between ROS and OpenCV
Open Source Computer Vision (OpenCV) is a library that has APIs to perform computer
vision applications. The project was started in Intel Russia, and later on, it was supported
by Willow Garage and Itseez. In 2016, Itseez was acquired by Intel.

OpenCV website: h t t p ://o p e n c v . o r g /

Willow Garage: h t t p ://w w w . w i l l o w g a r a g e . c o m /

Itseez: http://itseez.com

OpenCV is a cross-platform library that supports most operating systems. Now, it also has
an open source BSD license, so we can use it for research and commercial applications. The
OpenCV version interfaced with ROS Kinetic is 3.1. The 3.x versions of OpenCV have a few
changes to the APIs from the 2.x versions.

The OpenCV library is integrated into ROS through a package called vision_opencv. This
package was already installed when we installed ros-kinetic-desktop-full in Chapter
1, Getting Started with ROS Robotics Application Development.

The vision_opencv metapackage has two packages:

cv_bridge: This package is responsible for converting the OpenCV image data
type (cv::Mat) into ROS Image messages (sensor_msgs/Image.msg).
image_geometry: This package helps us interpret images geometrically. This
node will aid in processing such as camera calibration and image rectification.

Out of these two packages, we are mainly dealing with cv_bridge. Using cv_bridge, the
face tracker node can convert ROS Image messages from usb_cam to the OpenCV
equivalent, cv::Mat. After converting to cv::Mat, we can use OpenCV APIs to process the
camera image.

http://opencv.org/
http://opencv.org/
http://opencv.org/
http://opencv.org/
http://opencv.org/
http://opencv.org/
http://opencv.org/
http://opencv.org/
http://opencv.org/
http://opencv.org/
http://opencv.org/
http://opencv.org/
http://opencv.org/
http://opencv.org/
http://opencv.org/
http://opencv.org/
http://opencv.org/
http://opencv.org/
http://opencv.org/
http://opencv.org/
http://opencv.org/
http://opencv.org/
http://opencv.org/
http://opencv.org/
http://opencv.org/
http://opencv.org/
http://opencv.org/
http://opencv.org/
http://opencv.org/
http://www.willowgarage.com/
http://www.willowgarage.com/
http://www.willowgarage.com/
http://www.willowgarage.com/
http://www.willowgarage.com/
http://www.willowgarage.com/
http://www.willowgarage.com/
http://www.willowgarage.com/
http://www.willowgarage.com/
http://www.willowgarage.com/
http://www.willowgarage.com/
http://www.willowgarage.com/
http://www.willowgarage.com/
http://www.willowgarage.com/
http://www.willowgarage.com/
http://www.willowgarage.com/
http://www.willowgarage.com/
http://www.willowgarage.com/
http://www.willowgarage.com/
http://www.willowgarage.com/
http://www.willowgarage.com/
http://www.willowgarage.com/
http://www.willowgarage.com/
http://www.willowgarage.com/
http://www.willowgarage.com/
http://www.willowgarage.com/
http://www.willowgarage.com/
http://www.willowgarage.com/
http://www.willowgarage.com/
http://www.willowgarage.com/
http://www.willowgarage.com/
http://www.willowgarage.com/
http://www.willowgarage.com/
http://www.willowgarage.com/
http://www.willowgarage.com/
http://www.willowgarage.com/
http://www.willowgarage.com/
http://www.willowgarage.com/
http://www.willowgarage.com/
http://www.willowgarage.com/
http://www.willowgarage.com/
http://www.willowgarage.com/
http://www.willowgarage.com/
http://www.willowgarage.com/
http://www.willowgarage.com/
http://www.willowgarage.com/
http://www.willowgarage.com/
http://www.willowgarage.com/
http://www.willowgarage.com/
http://itseez.com

Face Detection and Tracking Using ROS, OpenCV and Dynamixel Servos

[59]

Here is a block diagram that shows the role of cv_bridge in this project:

Figure 14: The role of cv_bridge

Here, cv_bridge is working between the usb_cam node and face-tracking node. We'll
learn more about the face-tracking node in the next section. Before that, it will be good if
you get an idea of its working.

Another package we are using to transport ROS Image messages between two ROS nodes is
image_transport (http://wiki.ros.org/image_transport). This package is always used
to subscribe to and publish image data in ROS. The package can help us transport images in
low bandwidth by applying compression techniques. This package is also installed along
with the full ROS desktop installation.

That's all about OpenCV and the ROS interface. In the next section, we are going to work
with the first package of this project: face_tracker_pkg.

The complete source code of this project can be cloned from the following
Git repository. The following command will clone the project repo:
$ git clone
https://github.com/qboticslabs/ros_robotics_projects

Working with the face-tracking ROS package
We have already created or copied the face_tracker_pkg package to the workspace and
have discussed some of its important dependencies. Now, we are going to discuss what this
package exactly does!

http://wiki.ros.org/image_transport

Face Detection and Tracking Using ROS, OpenCV and Dynamixel Servos

[60]

This package consists of a ROS node called face_tracker_node that can track faces using
OpenCV APIs and publish the centroid of the face to a topic. Here is the block diagram of
the working of face_tracker_node:

Figure 15: Block diagram of face_tracker_node

Let's discuss the things connected to face_tracker_node. One of the sections that may be
unfamiliar to you is the face Haar classifier:

Face Haar classifier: The Haar feature-based cascade classifier is a machine
learning approach for detecting objects. This method was proposed by Paul Viola
and Michael Jones in their paper Rapid Object detection using a boosted cascade of
simple features in 2001. In this method, a cascade file is trained using a positive
and negative sample image, and after training, that file is using for object
detection.

In our case, we are using a trained Haar classifier file along with
OpenCV source code. You will get these Haar classifier files from
the OpenCV data folder
(https://github.com/opencv/opencv/tree/master/data). You
can replace the desired Haar file according to your application.
Here, we are using the face classifier. The classifier will be an XML
file that has tags containing features of a face. Once the features
inside the XML match, we can retrieve the region of interest (ROI)
of the face from the image using the OpenCV APIs. You can check
the Haar classifier of this project from
face_tracker_pkg/data/face.xml.

https://github.com/opencv/opencv/tree/master/data

Face Detection and Tracking Using ROS, OpenCV and Dynamixel Servos

[61]

track.yaml: This is a ROS parameter file having parameters such as the Haar
file path, input image topic, output image topic, and flags to enable and disable
face tracking. We are using ROS configuration files because we can change the
node parameters without modifying the face tracker source code. You can get this
file from face_tracker_pkg/config/track.xml.
usb_cam node: The usb_cam package has a node publishing the image stream
from the camera to ROS Image messages. The usb_cam node publishes camera
images to the /usb_cam/raw_image topic, and this topic is subscribed to by the
face tracker node for face detection. We can change the input topic in the
track.yaml file if we require.
face_tracker_control: This is the second package we are going to discuss.
The face_tracker_pkg package can detect faces and find the centroid of the
face in the image. The centroid message contains two values, X and Y. We are
using a custom message definition to send the centroid values. These centroid
values are subscribed by the controller node and move the Dynamixel to track the
face. The Dynamixel is controlled by this node.

Here is the file structure of face_tracker_pkg:

Figure 16: File structure of face_tracker_pkg

Face Detection and Tracking Using ROS, OpenCV and Dynamixel Servos

[62]

Let's see how the face-tracking code works. You can open the CPP file at
face_tracker_pkg/src/face_tracker_node.cpp. This code performs the face
detection and sends the centroid value to a topic.

We'll look at, and understand, some code snippets.

Understanding the face tracker code
Let's start with the header file. The ROS header files we are using in the code lie here. We
have to include ros/ros.h in every ROS C++ node; otherwise, the source code will not
compile. The remaining three headers are image-transport headers, which have functions to
publish and subscribe to image messages in low bandwidth. The cv_bridge header has
functions to convert between OpenCV ROS data types. The image_encoding.h header has
the image-encoding format used during ROS-OpenCV conversions:

 #include <ros/ros.h>
 #include <image_transport/image_transport.h>
 #include <cv_bridge/cv_bridge.h>
 #include <sensor_msgs/image_encodings.h>

The next set of headers is for OpenCV. The imgproc header consists of image-processing
functions, highgui has GUI-related functions, and objdetect.hpp has APIs for object
detection, such as the Haar classifier:

 #include <opencv2/imgproc/imgproc.hpp>
 #include <opencv2/highgui/highgui.hpp>
 #include "opencv2/objdetect.hpp"

The last header file is for accessing a custom message called centroid. The centroid
message definition has two fields, int32 x and int32 y. This can hold the centroid of the
file. You can check this message definition from the
face_tracker_pkg/msg/centroid.msg folder:

 #include <face_tracker_pkg/centroid.h>

The following lines of code give a name to the raw image window and face-detection
window:

 static const std::string OPENCV_WINDOW = "raw_image_window";
 static const std::string OPENCV_WINDOW_1 = "face_detector";

Face Detection and Tracking Using ROS, OpenCV and Dynamixel Servos

[63]

The following lines of code create a C++ class for our face detector. The code snippet is
creates handles of NodeHandle, which is a mandatory handle for a ROS node;
image_transport, which helps send ROS Image messages across the ROS computing
graph; and a publisher for the face centroid, which can publish the centroid values using the
centroid.msg file defined by us. The remaining definitions are for handling parameter
values from the parameter file track.yaml:

 class Face_Detector
 {
 ros::NodeHandle nh_;

 image_transport::ImageTransport it_;

 image_transport::Subscriber image_sub_;

 image_transport::Publisher image_pub_;

 ros::Publisher face_centroid_pub;

 face_tracker_pkg::centroid face_centroid;

 string input_image_topic, output_image_topic, haar_file_face;

 int face_tracking, display_original_image, display_tracking_image,
 center_offset, screenmaxx;

The following is the code for retrieving ROS parameters inside the track.yaml file. The
advantage of using ROS parameters is that we can avoid hard-coding these values inside
the program and modify the values without recompiling the code:

 try{
 nh_.getParam("image_input_topic", input_image_topic);
 nh_.getParam("face_detected_image_topic", output_image_topic);
 nh_.getParam("haar_file_face", haar_file_face);
 nh_.getParam("face_tracking", face_tracking);
 nh_.getParam("display_original_image", display_original_image);
 nh_.getParam("display_tracking_image", display_tracking_image);
 nh_.getParam("center_offset", center_offset);
 nh_.getParam("screenmaxx", screenmaxx);

 ROS_INFO("Successfully Loaded tracking parameters");
 }

Face Detection and Tracking Using ROS, OpenCV and Dynamixel Servos

[64]

The following code creates a subscriber for the input image topic and publisher for the face-
detected image. Whenever an image arrives on the input image topic, it will call a function
called imageCb. The names of the topics are retrieved from ROS parameters. We create
another publisher for publishing the centroid value, which is the last line of the code
snippet:

 image_sub_ = it_.subscribe(input_image_topic, 1,
 &Face_Detector::imageCb, this);
 image_pub_ = it_.advertise(output_image_topic, 1);

 face_centroid_pub = nh_.advertise<face_tracker_pkg::centroid>
 ("/face_centroid",10);

The next bit of code is the definition of imageCb, which is a callback for
input_image_topic. What it basically does is it converts the sensor_msgs/Image data
into the cv::Mat OpenCV data type. The cv_bridge::CvImagePtr cv_ptr buffer is
allocated for storing the OpenCV image after performing the ROS-OpenCV conversion
using the cv_bridge::toCvCopy function:

 void imageCb(const sensor_msgs::ImageConstPtr& msg)
 {

 cv_bridge::CvImagePtr cv_ptr;
 namespace enc = sensor_msgs::image_encodings;

 try
 {
 cv_ptr = cv_bridge::toCvCopy(msg,
 sensor_msgs::image_encodings::BGR8);
 }

We have already discussed the Haar classifier; here is the code to load the Haar classifier
file:

 string cascadeName = haar_file_face;
 CascadeClassifier cascade;
 if(!cascade.load(cascadeName))
 {
 cerr << "ERROR: Could not load classifier cascade" << endl;
 }

Face Detection and Tracking Using ROS, OpenCV and Dynamixel Servos

[65]

We are now moving to the core part of the program, which is the detection of the face
performed on the converted OpenCV image data type from the ROS Image message. The
following is the function call of detectAndDraw(), which is performing the face detection,
and in the last line, you can see the output image topic being published. Using
cv_ptr->image, we can retrieve the cv::Mat data type, and in the next line,
cv_ptr->toImageMsg() can convert this into a ROSImage message. The arguments of the
detectAndDraw() function are the OpenCV image and cascade variables:

 detectAndDraw(cv_ptr->image, cascade);
 image_pub_.publish(cv_ptr->toImageMsg());

Let's understand the detectAndDraw() function, which is adopted from the OpenCV
sample code for face detection: The function arguments are the input image and cascade
object. The next bit of code will convert the image into grayscale first and equalize the
histogram using OpenCV APIs. This is a kind of preprocessing before detecting the face
from the image. The cascade.detectMultiScale() function is used for this purpose
(http://docs.opencv.org/2.4/modules/objdetect/doc/cascade_classification.html).

 Mat gray, smallImg;
 cvtColor(img, gray, COLOR_BGR2GRAY);
 double fx = 1 / scale ;
 resize(gray, smallImg, Size(), fx, fx, INTER_LINEAR);
 equalizeHist(smallImg, smallImg);
 t = (double)cvGetTickCount();
 cascade.detectMultiScale(smallImg, faces,
 1.1, 15, 0
 |CASCADE_SCALE_IMAGE,
 Size(30, 30));

The following loop will iterate on each face that is detected using the
detectMultiScale() function. For each face, it finds the centroid and publishes to the
/face_centroid topic:

 for (size_t i = 0; i < faces.size(); i++)
 {
 Rect r = faces[i];
 Mat smallImgROI;
 vector<Rect> nestedObjects;
 Point center;
 Scalar color = colors[i%8];
 int radius;

 double aspect_ratio = (double)r.width/r.height;
 if(0.75 < aspect_ratio && aspect_ratio < 1.3)
 {
 center.x = cvRound((r.x + r.width*0.5)*scale);

http://docs.opencv.org/2.4/modules/objdetect/doc/cascade_classification.html

Face Detection and Tracking Using ROS, OpenCV and Dynamixel Servos

[66]

 center.y = cvRound((r.y + r.height*0.5)*scale);
 radius = cvRound((r.width + r.height)*0.25*scale);
 circle(img, center, radius, color, 3, 8, 0);

 face_centroid.x = center.x;
 face_centroid.y = center.y;

 //Publishing centroid of detected face
 face_centroid_pub.publish(face_centroid);

 }

To make the output image window more interactive, there are text and lines to alert about
the user's face on the left or right or at the center. This last section of code is mainly for that
purpose. It uses OpenCV APIs to do this job. Here is the code to display text such as Left,
Right, and Center on the screen:

 putText(img, "Left", cvPoint(50,240),
 FONT_HERSHEY_SIMPLEX, 1,
 cvScalar(255,0,0), 2, CV_AA);
 putText(img, "Center", cvPoint(280,240),
 FONT_HERSHEY_SIMPLEX,
 1, cvScalar(0,0,255), 2, CV_AA);
 putText(img, "Right", cvPoint(480,240),
 FONT_HERSHEY_SIMPLEX,
 1, cvScalar(255,0,0), 2, CV_AA);

Excellent! We're done with the tracker code; let's see how to build it and make it executable.

Understanding CMakeLists.txt
The default CMakeLists.txt file made during the creation of the package has to be edited
in order to compile the previous source code. Here is the CMakeLists.txt file used to
build the face_tracker_node.cpp class.

The first two lines state the minimum version of cmake required to build this package, and
next line is the package name:

 cmake_minimum_required(VERSION 2.8.3)
 project(face_tracker_pkg)

Face Detection and Tracking Using ROS, OpenCV and Dynamixel Servos

[67]

The following line searches for the dependent packages of face_tracker_pkg and raises
an error if it is not found:

 find_package(catkin REQUIRED COMPONENTS
 cv_bridge
 image_transport
 roscpp
 rospy
 sensor_msgs
 std_msgs
 message_generation

)

This line of code contains the system-level dependencies for building the package:

 find_package(Boost REQUIRED COMPONENTS system)

As we've already seen, we are using a custom message definition called centroid.msg,
which contains two fields, int32 x and int32 y. To build and generate C++ equivalent
headers, we should use the following lines:

 add_message_files(
 FILES
 centroid.msg
)

 ## Generate added messages and services with any dependencies
 listed here
 generate_messages(
 DEPENDENCIES
 std_msgs
)

The catkin_package() function is a catkin-provided CMake macro that is required to
generate pkg-config and CMake files.

 catkin_package(
 CATKIN_DEPENDS roscpp rospy std_msgs message_runtime
)
 include_directories(
 ${catkin_INCLUDE_DIRS}
)

Face Detection and Tracking Using ROS, OpenCV and Dynamixel Servos

[68]

Here, we are creating the executable called face_tracker_node and linking it to catkin
and OpenCV libraries:

 add_executable(face_tracker_node src/face_tracker_node.cpp)
 target_link_libraries(face_tracker_node
 ${catkin_LIBRARIES}
 ${OpenCV_LIBRARIES}
)

The track.yaml file
As we discussed, the track.yaml file contains ROS parameters, which are required by the
face_tracker_node. Here are the contents of track.yaml:

 image_input_topic: "/usb_cam/image_raw"
 face_detected_image_topic: "/face_detector/raw_image"
 haar_file_face:
 "/home/robot/ros_robotics_projects_ws/
 src/face_tracker_pkg/data/face.xml"
 face_tracking: 1
 display_original_image: 1
 display_tracking_image: 1

You can change all the parameters according to your needs. Especially, you may need to
change haar_file_face, which is the path of the Haar face file. If we set
face_tracking:1, it will enable face tracking, otherwise not. Also, if you want to display
the original and face-tracking image, you can set the flag here.

The launch files
The launch files in ROS can do multiple tasks in a single file. The launch files have an
extension of .launch. The following code shows the definition of
start_usb_cam.launch, which starts the usb_cam node for publishing the camera image
as a ROS topic:

 <launch>
 <node name="usb_cam" pkg="usb_cam" type="usb_cam_node"
 output="screen" >
 <param name="video_device" value="/dev/video0" />
 <param name="image_width" value="640" />
 <param name="image_height" value="480" />
 <param name="pixel_format" value="yuyv" />
 <param name="camera_frame_id" value="usb_cam" />

Face Detection and Tracking Using ROS, OpenCV and Dynamixel Servos

[69]

 <param name="auto_focus" value="false" />
 <param name="io_method" value="mmap"/>
 </node>
 </launch>

Within the <node>…</node> tags, there are camera parameters that can be change by the
user. For example, if you have multiple cameras, you can change the video_device value
from /dev/video0 to /dev/video1 to get the second camera's frames.

The next important launch file is start_tracking.launch, which will launch the face-
tracker node. Here is the definition of this launch file:

 <launch>
 <!-- Launching USB CAM launch files and Dynamixel controllers -->
 <include file="$(find
 face_tracker_pkg)/launch/start_usb_cam.launch"/>

 <!-- Starting face tracker node -->
 <rosparam file="$(find face_tracker_pkg)/config/track.yaml"
 command="load"/>

 <node name="face_tracker" pkg="face_tracker_pkg"
 type="face_tracker_node" output="screen" />
 </launch>

It will first start the start_usb_cam.launch file in order to get ROS image topics, then
load track.yaml to get necessary ROS parameters, and then load face_tracker_node to
start tracking.

The final launch file is start_dynamixel_tracking.launch; this is the launch file we
have to execute for tracking and Dynamixel control. We will discuss this launch file at the
end of the chapter after discussing the face_tracker_control package.

Running the face tracker node
Let's launch the start_tracking.launch file from face_tracker_pkg using the
following command. Note that you should connect your webcam to your PC:

 $ roslaunch face_tracker_pkg start_tracking.launch

Face Detection and Tracking Using ROS, OpenCV and Dynamixel Servos

[70]

If everything works fine, you will get output like the following; the first one is the original
image, and the second one is the face-detected image:

Figure 17: Face-detected image

We have not enabled Dynamixel now; this node will just find the face and publish the
centroid values to a topic called /face_centroid.

So the first part of the project is done-what is next? It's the control part, right? Yes, so next,
we are going to discuss the second package, face_tracker_control.

The face_tracker_control package
The face_tracker_control package is the control package used to track the face using
the AX-12A Dynamixel servo.

Face Detection and Tracking Using ROS, OpenCV and Dynamixel Servos

[71]

Given here is the file structure of the face_tracker_control package:

Figure 18: File organization in the face_tracker_control package

We'll look at the use of each of these files first.

The start_dynamixel launch file
The start_dynamixel launch file starts Dynamixel Control Manager, which can establish
a connection to a USB-to-Dynamixel adapter and Dynamixel servos. Here is the definition
of this launch file:

 <!-- This will open USB To Dynamixel controller and search for
 servos -->
 <launch>
 <node name="dynamixel_manager" pkg="dynamixel_controllers"
 type="controller_manager.py" required="true"
 output="screen">
 <rosparam>
 namespace: dxl_manager
 serial_ports:
 pan_port:
 port_name: "/dev/ttyUSB0"
 baud_rate: 1000000
 min_motor_id: 1
 max_motor_id: 25
 update_rate: 20
 </rosparam>

Face Detection and Tracking Using ROS, OpenCV and Dynamixel Servos

[72]

 </node>
 <!-- This will launch the Dynamixel pan controller -->
 <include file="$(find
 face_tracker_control)/launch/start_pan_controller.launch"/>
 </launch>

We have to mention the port_name (you can get the port number from kernel logs using
the dmesg command). The baud_rate we configured was 1 Mbps, and the motor ID was 1.
The controller_manager.py file will scan from servo ID 1 to 25 and report any servos
being detected.

After detecting the servo, it will start the start_pan_controller.launch file, which will
attach a ROS joint position controller for each servo.

The pan controller launch file
As we can see from the previous subsection, the pan controller launch file is the trigger for
attaching the ROS controller to the detected servos. Here is the definition for the
start_pan_controller.launch file:

This will start the pan joint controller:

 <launch>
 <!-- Start tilt joint controller -->
 <rosparam file="$(find face_tracker_control)/config/pan.yaml"
 command="load"/>
 <rosparam file="$(find
 face_tracker_control)/config/servo_param.yaml" command="load"/>

 <node name="tilt_controller_spawner"
 pkg="dynamixel_controllers" type="controller_spawner.py"
 args="--manager=dxl_manager
 --port pan_port
 pan_controller"
 output="screen"/>
 </launch>

The controller_spawner.py node can spawn a controller for each detected servo. The
parameters of the controllers and servos are included in pan.yaml and
servo_param.yaml.

Face Detection and Tracking Using ROS, OpenCV and Dynamixel Servos

[73]

The pan controller configuration file
The pan controller configuration file contains the configuration of the controller that the
controller spawner node is going to create. Here is the pan.yaml file definition for our
controller:

 pan_controller:
 controller:
 package: dynamixel_controllers
 module: joint_position_controller
 type: JointPositionController
 joint_name: pan_joint
 joint_speed: 1.17
 motor:
 id: 1
 init: 512
 min: 316
 max: 708

In this configuration file, we have to mention the servo details, such as ID, initial position,
minimum and maximum servo limits, servo moving speed, and joint name. The name of the
controller is pan_controller, and it's a joint position controller. We are writing one
controller configuration for ID 1 because we are only using one servo.

The servo parameters configuration file
The servo_param.yaml file contains the configuration of the pan_controller, such as
the limits of the controller and step distance of each movement; also, it has screen
parameters such as the maximum resolution of the camera image and offset from the center
of the image. The offset is used to define an area around the actual center of the image:

 servomaxx: 0.5 #max degree servo horizontal (x) can turn
 servomin: -0.5 # Min degree servo horizontal (x) can turn
 screenmaxx: 640 #max screen horizontal (x)resolution
 center_offset: 50 #offset pixels from actual center to right and
 left
 step_distancex: 0.01 #x servo rotation steps

Face Detection and Tracking Using ROS, OpenCV and Dynamixel Servos

[74]

The face tracker controller node
As we've already seen, the face tracker controller node is responsible for controlling the
Dynamixel servo according to the face centroid position. Let's understand the code of this
node, which is placed at
face_tracker_control/src/face_tracker_controller.cpp.

The main ROS headers included in this code are as follows. Here, the Float64 header is
used to hold the position value message to the controller:

 #include "ros/ros.h"
 #include "std_msgs/Float64.h"
 #include <iostream>

The following variables hold the parameter values from servo_param.yaml:

 int servomaxx, servomin,screenmaxx, center_offset, center_left,
 center_right;
 float servo_step_distancex, current_pos_x;

The following message headers of std_msgs::Float64 are for holding the initial and
current positions of the controller, respectively. The controller only accepts this message
type:

 std_msgs::Float64 initial_pose;
 std_msgs::Float64 current_pose;

This is the publisher handler for publishing the position commands to the controller:

 ros::Publisher dynamixel_control;

Switching to the main() function of the code, you can see following lines of code. The first
line is the subscriber of /face_centroid, which has the centroid value, and when a value
comes to the topic, it will call the face_callback() function:

 ros::Subscriber number_subscriber =
 node_obj.subscribe("/face_centroid",10,face_callback);

The following line will initialize the publisher handle in which the values are going to be
published through the /pan_controller/command topic:

 dynamixel_control = node_obj.advertise<std_msgs::Float64>
 ("/pan_controller/command",10);

Face Detection and Tracking Using ROS, OpenCV and Dynamixel Servos

[75]

The following code creates new limits around the actual center of image. This will be
helpful for getting an approximated center point of the image:

 center_left = (screenmaxx / 2) - center_offset;
 center_right = (screenmaxx / 2) + center_offset;

Here is the callback function executed while receiving the centroid value coming through
the /face_centroid topic. This callback also has the logic for moving the Dynamixel for
each centroid value.

In the first section, the x value in the centroid is checking against center_left, and if it is
in the left, it just increments the servo controller position. It will publish the current value
only if the current position is inside the limit. If it is in the limit, then it will publish the
current position to the controller. The logic is the same for the right side: if the face is in the
right side of the image, it will decrement the controller position.

When the camera reaches the center of image, it will pause there and do nothing, and that is
the thing we want too. This loop is repeated, and we will get a continuous tracking:

 void track_face(int x,int y)
 {
 if (x < (center_left)){
 current_pos_x += servo_step_distancex;
 current_pose.data = current_pos_x;
 if (current_pos_x < servomaxx and current_pos_x > servomin){
 dynamixel_control.publish(current_pose);
 }

 }

 else if(x > center_right){
 current_pos_x -= servo_step_distancex;
 current_pose.data = current_pos_x;
 if (current_pos_x < servomaxx and current_pos_x > servomin){
 dynamixel_control.publish(current_pose);
 }

 }

 else if(x > center_left and x < center_right){

 ;
 }

 }

Face Detection and Tracking Using ROS, OpenCV and Dynamixel Servos

[76]

Creating CMakeLists.txt
Like the first tracker package, there is no special difference in the control package; the
difference is in the dependencies. Here, the main dependency is dynamixel_controllers.
We are not using OpenCV in this package, so there's no need to include it:

 cmake_minimum_required(VERSION 2.8.3)
 project(face_tracker_control)
 find_package(catkin REQUIRED COMPONENTS
 dynamixel_controllers
 roscpp
 rospy
 std_msgs
 message_generation
)
 find_package(Boost REQUIRED COMPONENTS system)
 add_message_files(
 FILES
 centroid.msg
)
 ## Generate added messages and services with any dependencies
 listed here
 generate_messages(
 DEPENDENCIES
 std_msgs
)
 catkin_package(
 CATKIN_DEPENDS dynamixel_controllers roscpp rospy std_msgs
)
 include_directories(
 ${catkin_INCLUDE_DIRS}
)
 add_executable(face_tracker_controller
 src/face_tracker_controller.cpp)
 target_link_libraries(face_tracker_controller ${catkin_LIBRARIES})

The complete source code of this project can be cloned from the following
Git repository. The following command will clone the project repo:
$ git clone
https://github.com/qboticslabs/ros_robotics_projects

Face Detection and Tracking Using ROS, OpenCV and Dynamixel Servos

[77]

Testing the face tracker control package
We have seen most of the files and their functionalities. So let's test this package first. We
have to ensure that it is detecting the Dynamixel servo and creating the proper topic.

Before running the launch file, we may have to change the permission of the USB device, or
it will throw an exception. The following command can be used to get permissions on the
serial device:

 $ sudo chmod 777 /dev/ttyUSB0

Note that you must replace ttyUSB0 with your device name; you can retrieve it by looking
at kernel logs. The dmesg command can help you find it.

Start the start_dynamixel.launch file using the following command:

 $ roslaunch face_tracker_control start_dynamixel.launch

Figure 19: Finding Dynamixel servos and creating controllers

Face Detection and Tracking Using ROS, OpenCV and Dynamixel Servos

[78]

If everything is successful, you will get a message as shown in the previous figure.

If any errors occur during the launch, check the servo connection, power,
and device permissions.

The following topics are generated when we run this launch file:

Figure 20: Face tracker control topics

Bringing all the nodes together
Next, we'll look at the final launch file, which we skipped while covering the
face_tracker_pkg package, and that is start_dynamixel_tracking.launch. This
launch file starts both face detection and tracking using Dynamixel motors:

 <launch>
 <!-- Launching USB CAM launch files and Dynamixel controllers -->
 <include file="$(find
 face_tracker_pkg)/launch/start_tracking.launch"/><include
 file="$(find
 face_tracker_control)/launch/start_dynamixel.launch"/>
 <!-- Starting face tracker node -->

 <node name="face_controller" pkg="face_tracker_control"
 type="face_tracker_controller" output="screen" />

 </launch>

Face Detection and Tracking Using ROS, OpenCV and Dynamixel Servos

[79]

Fixing the bracket and setting up the circuit
Before doing the final run of the project, we have to do something on the hardware side. We
have to fix the bracket to the servo horn and fix the camera to the bracket. The bracket
should be connected in such a way that it is always perpendicular to the center of the servo.
The camera is mounted on the bracket, and it should be pointed toward the center position.

The following image shows the setup I did for this project. I simply used tape to fix the
camera to the bracket. You can use any additional material to fix the camera, but it should
always be aligned to the center first:

Figure 21: Fixing camera and bracket to the AX-12A

If you are done with this, then you are ready to go for the final run of this project.

Face Detection and Tracking Using ROS, OpenCV and Dynamixel Servos

[80]

The final run
I hope that you have followed all instructions properly; here is the command to launch all
the nodes for this project and start tracking using Dynamixel:

 $ roslaunch face_tracker_pkg start_dynamixel_tracking.launch

You will get the following windows, and it would be good if you could use a photo to test
the tracking, because you will get continuous tracking of the face:

Figure 22: Final face tracking

Face Detection and Tracking Using ROS, OpenCV and Dynamixel Servos

[81]

Here, you can see the Terminal message that says the image is in the right and the controller
is reducing the position value to achieve the center position.

Questions
What is the main function of the usb_cam ROS package?
What is the use of the dynamixel_motor package in ROS?
What is the package for interfacing ROS and OpenCV?
What is the difference between face_tracker_pkg and
face_tracker_control?

Summary
This chapter was about building a face tracker using a webcam and Dynamixel motor. The
software we used was ROS and OpenCV. Initially, we saw how to configure the webcam
and Dynamixel motor, and after configuration, we were trying to build two packages for
tracking. One package was for face detection, and the second package was a controller that
can send a position command to Dynamixel to track the face. We have discussed the use of
all the files inside the packages and did a final run to demonstrate the complete working of
the system.

3
Building a Siri-Like Chatbot in

ROS
Artificial intelligence, machine learning, and deep learning are getting very popular
nowadays. All these technologies are linked, and the common goal is to mimic human
intelligence. There are numerous applications for these fields; some of the relevant ones are
as follows:

Logical reasoning: This will generate logical conclusions from existing data.
Reasoning using AI techniques is widely used in areas such as robotics, computer
vision, and analytics.
Knowledge representation: This is the study of how a computer could store
knowledge fragments like our brains do. This is possible using AI techniques.
Planning: This concept is heavily used in robotics; there are AI algorithms such
as A* (star) and Dijkstra for planning a robot's path from its current position to a
goal position. It is also heavily used in swarm robotics for robot planning.
Learning: Humans can learn, right? What about machines? Using machine
learning techniques, we can train artificial neural networks to learn data.
Natural language processing: This is the ability to understand human language,
mainly from text data.
Perception: A robot can have various kinds of sensors, such as camera and mic.
Using AI, we can analyze this sensor data and understand the meaning of it.
Social intelligence: This is one of the trending fields of AI. Using AI, we can
build social intelligence in a machine or robot. Robots such as Kismet and Jibo
have social intelligence.

Building a Siri-Like Chatbot in ROS

[83]

In this chapter, we will discuss knowledge representation and social intelligence. If you are
going to build a robot that has skills to interact with people, you may need to store the
knowledge and create some social skills. This chapter will teach you how to build a base
system for such robots. Before discussing the implementation of this system, let's take a
look at some social and service robots and its characteristics.

MIT Kismet:
http://www.ai.mit.edu/projects/humanoid-robotics-group/kismet/ki
smet.html

Jibo: https://www.jibo.com/

Social robots
In simple words, social robots are personal companions or assistive robots that can interact
with human beings using speech, vision, and gestures. These robots behave like pets that
can express emotions like us and can communicate their emotions using speech or gestures.

Nowadays, most social robots have an LCD display on their heads, actuators for movement,
speakers and microphone for communication, and cameras for perception.

Here are some images of popular social robots:

Figure 1: Famous social robots

http://www.ai.mit.edu/projects/humanoid-robotics-group/kismet/kismet.html
http://www.ai.mit.edu/projects/humanoid-robotics-group/kismet/kismet.html
https://www.jibo.com/

Building a Siri-Like Chatbot in ROS

[84]

Let's learn about them:

Kismet(a): This is a social robot from MIT by Dr. Cynthia Breazeal and team,
made in the 1990s. Kismet can identify people and objects and simulate different
emotions. Kismet was just a research robot, not a commercial product.
Jibo(b): Jibo was conceived by Dr. Cynthia and team in 2014. Jibo has a rotating
head with a screen, and it can communicate with people using speech recognition
and can recognize them using perception techniques.
Pepper(c): Pepper is a humanoid social robot from Softbank. Unlike other social
robots, this robot has two arms and a mobile base similar to a humanoid robot.
Like other social robots, it can communicate with people and has tactile sensors
on its body.
Buddy(d): This robot buddy has similar characteristics to the previous robots. It
has a mobile base for movement and a screen on the head to express emotions.

Pepper: h t t p s ://w w w . a l d . s o f t b a n k r o b o t i c s . c o m /e n /c o o l - r o b o t s /p e p
p e r

Buddy: http://www.bluefrogrobotics.com/en/home/

These may have high intelligence and social skills. But most of the robots' source code is not
open source, so we can't explore much about the software platforms and algorithms they
use to implement them. But in this chapter, we are going to look at some of the open source
solutions to build intelligence and social skills in robots.

https://www.ald.softbankrobotics.com/en/cool-robots/pepper
https://www.ald.softbankrobotics.com/en/cool-robots/pepper
https://www.ald.softbankrobotics.com/en/cool-robots/pepper
https://www.ald.softbankrobotics.com/en/cool-robots/pepper
https://www.ald.softbankrobotics.com/en/cool-robots/pepper
https://www.ald.softbankrobotics.com/en/cool-robots/pepper
https://www.ald.softbankrobotics.com/en/cool-robots/pepper
https://www.ald.softbankrobotics.com/en/cool-robots/pepper
https://www.ald.softbankrobotics.com/en/cool-robots/pepper
https://www.ald.softbankrobotics.com/en/cool-robots/pepper
https://www.ald.softbankrobotics.com/en/cool-robots/pepper
https://www.ald.softbankrobotics.com/en/cool-robots/pepper
https://www.ald.softbankrobotics.com/en/cool-robots/pepper
https://www.ald.softbankrobotics.com/en/cool-robots/pepper
https://www.ald.softbankrobotics.com/en/cool-robots/pepper
https://www.ald.softbankrobotics.com/en/cool-robots/pepper
https://www.ald.softbankrobotics.com/en/cool-robots/pepper
https://www.ald.softbankrobotics.com/en/cool-robots/pepper
https://www.ald.softbankrobotics.com/en/cool-robots/pepper
https://www.ald.softbankrobotics.com/en/cool-robots/pepper
https://www.ald.softbankrobotics.com/en/cool-robots/pepper
https://www.ald.softbankrobotics.com/en/cool-robots/pepper
https://www.ald.softbankrobotics.com/en/cool-robots/pepper
https://www.ald.softbankrobotics.com/en/cool-robots/pepper
https://www.ald.softbankrobotics.com/en/cool-robots/pepper
https://www.ald.softbankrobotics.com/en/cool-robots/pepper
https://www.ald.softbankrobotics.com/en/cool-robots/pepper
https://www.ald.softbankrobotics.com/en/cool-robots/pepper
https://www.ald.softbankrobotics.com/en/cool-robots/pepper
https://www.ald.softbankrobotics.com/en/cool-robots/pepper
https://www.ald.softbankrobotics.com/en/cool-robots/pepper
https://www.ald.softbankrobotics.com/en/cool-robots/pepper
https://www.ald.softbankrobotics.com/en/cool-robots/pepper
https://www.ald.softbankrobotics.com/en/cool-robots/pepper
https://www.ald.softbankrobotics.com/en/cool-robots/pepper
https://www.ald.softbankrobotics.com/en/cool-robots/pepper
https://www.ald.softbankrobotics.com/en/cool-robots/pepper
https://www.ald.softbankrobotics.com/en/cool-robots/pepper
https://www.ald.softbankrobotics.com/en/cool-robots/pepper
https://www.ald.softbankrobotics.com/en/cool-robots/pepper
https://www.ald.softbankrobotics.com/en/cool-robots/pepper
https://www.ald.softbankrobotics.com/en/cool-robots/pepper
https://www.ald.softbankrobotics.com/en/cool-robots/pepper
https://www.ald.softbankrobotics.com/en/cool-robots/pepper
https://www.ald.softbankrobotics.com/en/cool-robots/pepper
https://www.ald.softbankrobotics.com/en/cool-robots/pepper
https://www.ald.softbankrobotics.com/en/cool-robots/pepper
https://www.ald.softbankrobotics.com/en/cool-robots/pepper
https://www.ald.softbankrobotics.com/en/cool-robots/pepper
https://www.ald.softbankrobotics.com/en/cool-robots/pepper
https://www.ald.softbankrobotics.com/en/cool-robots/pepper
https://www.ald.softbankrobotics.com/en/cool-robots/pepper
https://www.ald.softbankrobotics.com/en/cool-robots/pepper
https://www.ald.softbankrobotics.com/en/cool-robots/pepper
https://www.ald.softbankrobotics.com/en/cool-robots/pepper
https://www.ald.softbankrobotics.com/en/cool-robots/pepper
https://www.ald.softbankrobotics.com/en/cool-robots/pepper
https://www.ald.softbankrobotics.com/en/cool-robots/pepper
https://www.ald.softbankrobotics.com/en/cool-robots/pepper
https://www.ald.softbankrobotics.com/en/cool-robots/pepper
https://www.ald.softbankrobotics.com/en/cool-robots/pepper
https://www.ald.softbankrobotics.com/en/cool-robots/pepper
https://www.ald.softbankrobotics.com/en/cool-robots/pepper
https://www.ald.softbankrobotics.com/en/cool-robots/pepper
https://www.ald.softbankrobotics.com/en/cool-robots/pepper
https://www.ald.softbankrobotics.com/en/cool-robots/pepper
https://www.ald.softbankrobotics.com/en/cool-robots/pepper
https://www.ald.softbankrobotics.com/en/cool-robots/pepper
https://www.ald.softbankrobotics.com/en/cool-robots/pepper
https://www.ald.softbankrobotics.com/en/cool-robots/pepper
https://www.ald.softbankrobotics.com/en/cool-robots/pepper
https://www.ald.softbankrobotics.com/en/cool-robots/pepper
https://www.ald.softbankrobotics.com/en/cool-robots/pepper
https://www.ald.softbankrobotics.com/en/cool-robots/pepper
https://www.ald.softbankrobotics.com/en/cool-robots/pepper
https://www.ald.softbankrobotics.com/en/cool-robots/pepper
https://www.ald.softbankrobotics.com/en/cool-robots/pepper
https://www.ald.softbankrobotics.com/en/cool-robots/pepper
https://www.ald.softbankrobotics.com/en/cool-robots/pepper
https://www.ald.softbankrobotics.com/en/cool-robots/pepper
https://www.ald.softbankrobotics.com/en/cool-robots/pepper
https://www.ald.softbankrobotics.com/en/cool-robots/pepper
https://www.ald.softbankrobotics.com/en/cool-robots/pepper
https://www.ald.softbankrobotics.com/en/cool-robots/pepper
https://www.ald.softbankrobotics.com/en/cool-robots/pepper
https://www.ald.softbankrobotics.com/en/cool-robots/pepper
https://www.ald.softbankrobotics.com/en/cool-robots/pepper
https://www.ald.softbankrobotics.com/en/cool-robots/pepper
https://www.ald.softbankrobotics.com/en/cool-robots/pepper
https://www.ald.softbankrobotics.com/en/cool-robots/pepper
https://www.ald.softbankrobotics.com/en/cool-robots/pepper
https://www.ald.softbankrobotics.com/en/cool-robots/pepper
https://www.ald.softbankrobotics.com/en/cool-robots/pepper
https://www.ald.softbankrobotics.com/en/cool-robots/pepper
https://www.ald.softbankrobotics.com/en/cool-robots/pepper
https://www.ald.softbankrobotics.com/en/cool-robots/pepper
https://www.ald.softbankrobotics.com/en/cool-robots/pepper
https://www.ald.softbankrobotics.com/en/cool-robots/pepper
https://www.ald.softbankrobotics.com/en/cool-robots/pepper
https://www.ald.softbankrobotics.com/en/cool-robots/pepper
https://www.ald.softbankrobotics.com/en/cool-robots/pepper
https://www.ald.softbankrobotics.com/en/cool-robots/pepper
http://www.bluefrogrobotics.com/en/home/

Building a Siri-Like Chatbot in ROS

[85]

Building social robots
A service or social robot may have capabilities to perceive the world using inbuilt cameras,
interact with humans using speech and make decisions using artificial intelligence
algorithms. These kinds of robots are a bit complicated in design, we can see a typical
building block diagram of a social robot in the following figure.

Figure 2: Block diagram of a typical social robot

The robot has sensors such as tactile sensor, camera, microphone, and touch screen and will
have some actuators for its movement. The actuators will help the robot to move its head or
body. There may be mobile service robots which has extra motors for navigation.

Inside the software block, you may can find modules for perception which handle camera
data and finding necessary objects from the scene, speech recognition/synthesis, artificial
intelligence modules, robot controller modules for controlling the actuators, decision-
making node which combine all data from sensors and makes the final decision on what to
do next. The ROS driver layer help to interface all sensors, actuators to ROS and the GUI
can be an interactive visualization in the LCD panel.

In this chapter, we are going to implement the speech recognition or synthesis block with
artificial intelligence which can communicate with people using text and speech. The reply
from the bot should be like a human's.

Building a Siri-Like Chatbot in ROS

[86]

We are going to implement a simple AI Chatbot using AIML (Artificial Intelligence
Markup Language) which can be integrated to a social robot.

Let's see how to make software for such an interactive robot, starting with the prerequisites
to build the software.

Prerequisites
Here are the prerequisites for doing this project:

Ubuntu 16.04 LTS
Python 2.7
PyAIML: AIML interpreter in Python
ROS Kinetic
The sound_play ROS package: text-to-speech package in ROS

Let's get start with AIML.

Getting started with AIML
AIML (Artificial Intelligence Markup Language) is an XML-based language to store
segments of knowledge inside XML tags. AIML files help us store knowledge in a
structured way so that we can easily access it whenever required.

AIML was developed by Richard Wallace and the free software community worldwide
between 1995 and 2002. You may have heard about chatter bots such as Artificial
Linguistic Internet Computer Entity (A.L.I.C.E.) and ELIZA. AIML is the base of these
chatter bots. The dataset of the A.L.I.C.E. chatter bot is available under the GNU GPL
license, and there are open source AIML interpreters available in C++, Python, Java, and
Ruby. We can use these interpreters to feed our input to the knowledge base and retrieve
the best possible reply from it.

Building a Siri-Like Chatbot in ROS

[87]

AIML tags
There is a set of AIML tags to represent knowledge inside files. The following are some of
the important tags and their uses:

<aiml>: Each AIML file starts with this tag and ends with the </aiml> tag.
Basically, it holds the version of AIML and character encoding of the file. The
<aiml> tag is not mandatory, but it will be useful when handling a huge AIML
dataset. Here is the basic usage of the <aiml> tag:

 <aiml version="1.0.1" encoding="UTF-8"?>
 </aiml>

<category>: Each knowledge segment is kept under this tag. This tag holds the
input pattern from the user and outputs a response for it. The possible input from
the user is kept under the <pattern> tag, and the corresponding response is
under the <template> tag. Here is an example of the category, pattern, and
template tags:

 <aiml version="1.0.1" encoding="UTF-8">
 <category>
 <pattern> WHAT IS YOUR NAME </pattern>
 <template> MY NAME IS ROBOT </template>
 </category>
 </aiml>

When a user asks the robot, “What is your name?”, the robot replies,
“My name is Robot.” This is how we store knowledge for the robot.

<pattern>: This tag consists of user input. From the preceding code, we can see
that WHAT IS YOUR NAME is the user input. There will only be one pattern inside
a category, placed after the category tag. Inside a pattern, we can include wild
cards such as * or -, which can replace a string in the corresponding position.
<template>: The template tag consists of responses to user input. In the
previous code, MY NAME IS ROBOT is the response.
<star index = "n" />: This tag helps extract a word from a sentence. The n
indicates which word of the sentence is to be extracted:

<star index= "1" />: This indicates the first fragment of the
template sentence.

Building a Siri-Like Chatbot in ROS

[88]

<star index= "2" />: This indicates the second fragment of the
template sentence.

Using the star index, we can extract the word from user input and insert
the word into the response if needed.

Here is an example of using wildcards and a start index:

 <aiml version="1.0.1" encoding="UTF-8">
 <category>
 <pattern> MY NAME IS * </pattern>
 <template>
 NICE TO SEE YOU <star index="1"/>
 </template>
 </category>

 <category>
 <pattern> MEET OUR ROBOTS * AND * </pattern>
 <template>
 NICE TO SEE <star index="1"/> AND <star
 index="2"/>.
 </template>
 </category>
 </aiml>

Here, we can reuse the word that comes in the * position in the
<template> tag. Consider this input:

 You: MY NAME IS LENTIN
 Robot: NICE TO SEE YOU LENTIN

In the second category, you will get the following reply from the robot
for the given input:

You: MEET OUR ROBOTS ROBIN AND TURTLEBOT
Robot: NICE TO SEE ROBIN AND TURTLEBOT

These are the basic tags used inside AIML files. Next, we'll see how to load these files and
retrieve an intelligent reply from the AIML knowledge base for a random input from the
user.

The following link will give you the list of AIML tags:
http://www.alicebot.org/documentation/aiml-reference.html

http://www.alicebot.org/documentation/aiml-reference.html

Building a Siri-Like Chatbot in ROS

[89]

The PyAIML interpreter
There are AIML interpreters in many languages used to load the AIML knowledge base and
interact with it. One of the easiest ways of loading and interacting with AIML files is using
an AIML interpreter in Python called PyAIML. The PyAIML module can read all the
categories, patterns, and templates and can build a tree. Using a backtracking depth-first
search algorithm, it can search for the appropriate response from the user in order to give
the proper reply.

PyAIML can be installed on Windows, Linux, and Mac OS X. In Ubuntu, there are prebuilt
DEB binaries that we can install from Software Center. We can also install PyAIML from
source code. The current PyAIML will work well in Python 2.7. Let's look at how we can
install it.

Installing PyAIML on Ubuntu 16.04 LTS
Installing PyAIML on Ubuntu is pretty easy and straightforward. We can install the
package using the following command:

 $ sudo apt-get install python-aiml

The version of PyAIML will be 0.86.

We can also install PyAIML from source code. Clone the source code from Git using the
following command:

 $ git clone https://github.com/qboticslabs/pyaiml

After cloning the package, switch to the PyAIML folder and install using the following
command:

 $ sudo python setup.py install

Great! You are done with the installation. Let's check whether your installation is correct.

Building a Siri-Like Chatbot in ROS

[90]

Playing with PyAIML
Take a Python interpreter Terminal and just try to import the AIML module using the
following command:

 >>> import aiml

If the module is loaded properly, the pointer you will come to the next line without getting
an error. Congratulations! Your installation is correct.

Let's see how to load an AIML file using this module.

To play with this module, first we need an AIML file. Save the following content in an
AIML file called sample.aiml in the home folder. You can save the file anywhere, but it
should be in the same path where the Python Terminal was started.

 <aiml version="1.0.1" encoding="UTF-8">
 <category>
 <pattern> MY NAME IS * </pattern>
 <template>
 NICE TO SEE YOU <star/>
 </template>
 </category>

 <category>
 <pattern> MEET OUR ROBOTS * AND * </pattern>
 <template>
 NICE TO SEE <star index="1"/> AND <star index="2"/>.
 </template>
 </category>
 </aiml>

After saving the AIML file, let's try to load it. The first step is to build an object of the
PyAIML module called Kernel(). The object name here is bot:

 >>> bot = aiml.Kernel()

Kernel() is the main class doing the searching from the AIML knowledge base.

We can set the robot name using the following command:

 >>> bot.setBotPredicate("name", ROBIN)

The next step is to load the AIML files; we can load one or more AIML files to memory.

Building a Siri-Like Chatbot in ROS

[91]

To learn a single AIML file, use the following command:

 >>> bot.learn('sample.aiml")

If the AIML file is correct, then you will get a message like this:

 Loading sample.aiml... done (0.02 seconds)

This means that the sample AIML file is loaded properly in memory.

We can retrieve the response from the AIML file using the following command:

 >>> print bot.respond("MY NAME IS LENTIN")
 'NICE TO SEE YOU LENTIN'

If the user input is not in the file, you will get the following message:

 'WARNING: No match found for input:'

Loading multiple AIML files
We have seen how to load a single AIML file to memory and retrieve response for a user
input. In this section, we are going to see how to load multiple AIML files to memory; we
are going to use these files for our AIML-based bots. Various AIML datasets are available
on the Web, and some are also included in the code bundle. Given here is a file called
startup.xml that helps us load all AIML files in a single run. It's a simple AIML file with a
pattern called LOAD AIML B. When it gets this input from the user, it will learn all AIML
files in that path using <learn>*.aiml</learn> tags:

 <aiml version="1.0">
 <category>
 <pattern>LOAD AIML B</pattern>
 <template>
 <!-- Load standard AIML set -->
 <learn>*.aiml</learn>
 </template>
 </category>
 </aiml>

Building a Siri-Like Chatbot in ROS

[92]

We can use the following code to load this XML file and “learn” all the XML files to
memory. After loading the AIML files, we can save the memory contents as a brain file. The
advantage is that we can avoid the reloading of AIML files. Saving into a brain file will be
helpful when we have thousands of AIML files:

 #!/usr/bin/env python
 import aiml
 import sys
 import os
 #Changing current directory to the path of aiml files
 #This path will change according to your location of aiml files
 os.chdir('/home/robot/Desktop/aiml/aiml_data_files') bot =
 aiml.Kernel()
 #If there is a brain file named standard.brn, Kernel() will
 initialize using bootstrap() method
 if os.path.isfile("standard.brn"): bot.bootstrap(brainFile =
 "standard.brn") else:
 #If there is no brain file, load all AIML files and save a new
 brain bot.bootstrap(learnFiles = "startup.xml", commands = "load
 aiml b") bot.saveBrain("standard.brn")
 #This loop ask for response from user and print the output from
 Kernel() object
 while True: print bot.respond(raw_input("Enter input >"))

You can see that the AIML files are stored at
/home/robot/Desktop/aiml/aiml_data_files/. All AIML files including
startup.xml and AIML brain files are stored in the same folder. You can choose any
folder you want. In the previous code, we are using a new API called bootstrap() for
loading, saving, and learning AIML files. The program tries to load a brain file called
standard.brn first, and if there is no brain file, it will learn from startup.xml and save
the brain file as standard.brn. After saving the brain file, it will start a while loop to start
interacting with the AIML file.

Building a Siri-Like Chatbot in ROS

[93]

If you run the code and there is no brain file, you may get output like this:

Figure 3: Loading multiple AIML files

Building a Siri-Like Chatbot in ROS

[94]

Creating an AIML bot in ROS
The previous subsections were about understanding AIML tags and how to work with
them using the PyAIML module. Let's see how to create an interactive AIML bot using
ROS. The following figure shows the complete block diagram of the interactive bot:

Figure 4: Interactive AIML bot

Here is how the entire system works: The speech of the user is converted into text using the
speech recognition system in ROS. Then, it will input either to the AIML engine or send as a
robot command. The robot commands are specific commands meant for robot control. If the
text is not a robot command, it will send it to the AIML engine, which will give an
intelligent reply from its database. The output of the AIML interpreter will be converted to
speech using the text-to-speech module. The speech will be heard through speaker at the
same time a virtual face of the robot will be animated on the screen, syncing with the
speech.

In this chapter, we are mainly dealing with the AIML part and TTS using ROS; you can
refer to other sources to perform speech recognition in ROS as well.

Building a Siri-Like Chatbot in ROS

[95]

The AIML ROS package
In this section, we are going to create a simple package to load the AIML files to memory
using ROS nodes. The following is the block diagram of the working AIML ROS package:

Figure 5: Working of the AIML ROS package

Here's the explanation for the nodes shown in the diagram:

aiml_server: This ROS node loads AIML files from the database and saves them
into brain files. It subscribes to a topic called /chatter (std_msgs/String). The
string data from the /chatter topic is the input of the AIML interpreter. The
response from the AIML interpreter is published through the /response
(std_msgs/String) topic.
aiml_client: This ROS node waits for user input, and once it gets the input, it will
publish it to the /chatter topic.

Building a Siri-Like Chatbot in ROS

[96]

aiml_tts_client: The AIML server publishes the response to the /response topic.
The tts client node will subscribe to this topic and convert it to speech.
aiml_speech_recognition_client: This node will subscribe to the output from the
speech recognition system and publish it to the /chatter topic.

The user can interact with AIML either by text chatting or speech. The speech recognition
node will not do speech recognition; instead, it will receive the converted text from a speech
recognition system and input it to the AIML server.

To create or install the ros-aiml package, you may need to install some dependency
packages.

Installing the ROS sound_play package
The sound_play package is a TTS convertor package in ROS. You can obtain more
information about the package from http://wiki.ros.org/sound_play. To install this
package, you will need install some Ubuntu package dependencies. Let's go through the
commands to install them.

Installing the dependencies of sound_play
Update your Ubuntu repositories using the following command:

 $ sudo apt-get update

These are the dependencies required for the sound_play package:

 $ sudo apt-get install libgstreamer1.0-dev libgstreamer-plugins-
base1.0-dev gstreamer1.0 gstreamer1.0-plugins-base gstreamer1.0-plugins-
good gstreamer1.0-plugins-ugly python-gi festival

After installing these Ubuntu packages, you can install the sound_play package using the
following steps.

Installing the sound_play ROS package
Clone the audio-common packages into ros_project_dependencies_ws:

 ros_project_dependencies_ws/src$ git clone
https://github.com/ros-drivers/audio_common

http://wiki.ros.org/sound_play

Building a Siri-Like Chatbot in ROS

[97]

Install the packages using catkin_make.

After installing these packages, you can make sure it is properly installed using the
following command:

 $ roscd sound_play

If it switches to the sound_play package, you have installed it successfully.

Congratulations! You are done with all dependencies! Next, we will create the ros-aiml
package.

You can clone the source code discussed in the book from the following
Git repository:
https://github.com/qboticslabs/ros_robotics_projects

Creating the ros_aiml package
Using the following command, we can create the ros_aiml package:

 $ catkin_create_pkg ros_aiml rospy std_msgs sound_play

Inside the ros_aiml package, create folders called data, scripts, and launch to store the
AIML files, Python scripts, and ROS launch files. This is the structure of the ros_aiml
package:

Figure 6: Structure of ros_aiml

https://github.com/qboticslabs/ros_robotics_projects

Building a Siri-Like Chatbot in ROS

[98]

You can keep the AIML files inside the data folder, and all launch files can be kept inside
the launch folder. The scripts are saved inside the scripts folder. Let's look at each script.

The aiml_server node
As we've already discussed, aiml_server is responsible for loading and saving the AIML
and AIM brain files. It is subscribed to the /chatter topic, which is the input of the AIML
interpreter and publishes the /response topic, which is the response from the AIML
interpreter. This is the main code snippet of aiml_server.py:

 def load_aiml(xml_file):

 data_path = rospy.get_param("aiml_path")
 print data_path
 os.chdir(data_path)

 if os.path.isfile("standard.brn"):
 mybot.bootstrap(brainFile = "standard.brn")

 else:
 mybot.bootstrap(learnFiles = xml_file, commands = "load aiml
 b")
 mybot.saveBrain("standard.brn")

 def callback(data):

 input = data.data
 response = mybot.respond(input)
 rospy.loginfo("I heard:: %s",data.data)
 rospy.loginfo("I spoke:: %s",response)
 response_publisher.publish(response)

 def listener():

 rospy.loginfo("Starting ROS AIML Server")
 rospy.Subscriber("chatter", String, callback)

 # spin() simply keeps python from exiting until this node is
 stopped
 rospy.spin()

 if __name__ == '__main__':

 load_aiml('startup.xml')
 listener()

Building a Siri-Like Chatbot in ROS

[99]

This ROS node is doing the same thing as the code that we used to load and save the AIML
files. That code is converted into a ROS node that can accept input and send the response
through a topic.

You can clone the source code discussed in the book from the following
Git repository:
https://github.com/qboticslabs/ros_robotics_projects

The AIML client node
The client code will wait for user input and publish the user input to the /chatter topic:

 #!/usr/bin/env python
 import rospy
 from std_msgs.msg import String
 pub = rospy.Publisher('chatter', String,queue_size=10)
 rospy.init_node('aiml_client')
 r = rospy.Rate(1) # 10hz

 while not rospy.is_shutdown():
 input = raw_input("\nEnter your text :> ")
 pub.publish(input)
 r.sleep()

The aiml_tts client node
The TTS client subscribes to the /response topic and converts the response to speech using
the sound_play APIs:

 #!/usr/bin/env python
 import rospy, os, sys
 from sound_play.msg import SoundRequest
 from sound_play.libsoundplay import SoundClient
 from std_msgs.msg import String
 rospy.init_node('aiml_soundplay_client', anonymous = True)

 soundhandle = SoundClient()
 rospy.sleep(1)
 soundhandle.stopAll()
 print 'Starting TTS'

 def get_response(data):
 response = data.data
 rospy.loginfo("Response ::%s",response)
 soundhandle.say(response)

https://github.com/qboticslabs/ros_robotics_projects

Building a Siri-Like Chatbot in ROS

[100]

 def listener():
 rospy.loginfo("Starting listening to response")
 rospy.Subscriber("response",String, get_response,queue_size=10)
 rospy.spin()
 if __name__ == '__main__':
 listener()

The AIML speech recognition node
The speech recognition node subscribes to /recognizer/output and publishes to the
/chatter topic:

 #!/usr/bin/env python
 import rospy
 from std_msgs.msg import String
 rospy.init_node('aiml_speech_recog_client')
 pub = rospy.Publisher('chatter', String,queue_size=10)
 r = rospy.Rate(1) # 10hz

 def get_speech(data):
 speech_text=data.data
 rospy.loginfo("I said:: %s",speech_text)
 pub.publish(speech_text)

 def listener():
 rospy.loginfo("Starting Speech Recognition")
 rospy.Subscriber("/recognizer/output", String, get_speech)
 rospy.spin()

 while not rospy.is_shutdown():
 listener()

The /recognizer/output topic is published by ROS speech recognition packages such as
Pocket Sphinx (http://wiki.ros.org/pocketsphinx).

Next, we'll look at the launch files used for starting each node.

http://wiki.ros.org/pocketsphinx

Building a Siri-Like Chatbot in ROS

[101]

start_chat.launch
The start_chat.launch launch file launches the aiml_server and aiml_client nodes.
Before running this launch file, you have to set the data folder path that is set as the ROS
parameter. You can set it as your AIML data folder path:

 <launch>
 <param name="aiml_path"
 value="/home/robot/ros_robotics_projects_ws/src/ros_aiml/data" />
 <node name="aiml_server" pkg="ros_aiml" type="aiml_server.py"
 output="screen">
 </node>
 <node name="aiml_client" pkg="ros_aiml" type="aiml_client.py"
 output="screen">
 </node>
 </launch>

start_tts_chat.launch
The launch file launches the aiml_server, aiml_client, and aiml_tts nodes. The
difference between the previous launch file and this one is that this will convert the AIML
server response into speech:

 <launch>

 <param name="aiml_path"
 value="/home/robot/ros_robotics_projects_ws/src/ros_aiml/data" />
 <node name="aiml_server" pkg="ros_aiml" type="aiml_server.py"
 output="screen">
 </node>
 <include file="$(find sound_play)/soundplay_node.launch">
 </include>
 <node name="aiml_tts" pkg="ros_aiml" type="aiml_tts_client.py"
 output="screen">
 </node>
 <node name="aiml_client" pkg="ros_aiml" type="aiml_client.py"
 output="screen">
 </node>
 </launch>

Building a Siri-Like Chatbot in ROS

[102]

start_speech_chat.launch
The start_speech_chat.launch launch file will start the AIML server, AIML TTS node,
and speech recognition node:

 <launch>
 <param name="aiml_path"
 value="/home/robot/ros_robotics_projects_ws/src/ros_aiml/data" />
 <node name="aiml_server" pkg="ros_aiml" type="aiml_server.py"
 output="screen">
 </node>
 <include file="$(find sound_play)/soundplay_node.launch">
 </include>
 <node name="aiml_tts" pkg="ros_aiml" type="aiml_tts_client.py"
 output="screen">
 </node>
 <node name="aiml_speech_recog" pkg="ros_aiml"
 type="aiml_speech_recog_client.py" output="screen">
 </node>
 </launch>

After creating the launch file, change its permission using the following command:

 $ sudo chmod +x *.launch

Use the following command to start interacting with the AIML interpreter:

 $ roslaunch ros_aiml start_chat.launch

We can use the following command to start interacting with the AIML interpreter. The
response will be converted to speech as well:

 $ roslaunch ros_aiml start_tts_chat.launch

The following command will enable speech recognition and TTS:

 $ roslaunch ros_aiml start_speech_chat.launch

Building a Siri-Like Chatbot in ROS

[103]

If you set up the pocketsphinx package for speech recognition, you can run it using the
following command:

 $ roslaunch pocketsphinx robotcup.launch

Figure 7: Output of the start_speech_chat launch file

Building a Siri-Like Chatbot in ROS

[104]

Here are the topics generated when we run this launch file:

Figure 8: List of ROS topics

We can test the entire system without the speech recognition system too. You can manually
publish the string to the /recognizer/output topic, as shown here:

Figure 9: Manually publishing input to speech topic

Building a Siri-Like Chatbot in ROS

[105]

Questions
What are the various applications of AI in robotics?
What is AIML and why is it used?
What is a pattern and template in AIML?
What is PyAIML and what are its functions?

Summary
In this chapter, we discussed building a ROS package to make a robot interactive using
artificial intelligence. Using this package, we can talk to a robot and the robot can answer
your queries, like human-to-human interaction. The entire chapter was about building this
communication system using AIML, which is the main component of this project. We
discussed AIML tags, how to work with AIML files using Python, and ultimately, how to
build a ROS package based on AIML for an interactive robot. In the next chapter, we will
discuss interfacing boards with the ROS.

4
Controlling Embedded Boards

Using ROS
Do you know how a robot makes decisions according to its sensor data? It has a processing
unit, right? The processing unit can be either a computer or a microcontroller. We are using
high-end computers to process data if the robot has sensors such as camera, laser scanners,
and LIDARs. On the other hand, microcontrollers are commonly used in all kind of robots
for interfacing low-bandwidth sensors and for performing real-time tasks. Both these units
are commonly found in a standard robotic system.

In small robots such as line follower, we may do everything using a single controller. The
sensors such as ultrasonic distance sensors, Imus can easily interface with a microcontroller.
So in a robotic system, these two units can work independently, and there will be some kind
of communication happening between them.

In this chapter, we will discuss how we can communicate with an embedded controller
board from a computer running on ROS. It is very useful to acquire sensor data from a
controller using a computer, and you can do the remaining processing on the computer. In
most of the high-end robots, both controller and computer are used for low-level and high-
level control and processing.

We'll also look at some popular embedded boards and their interfacing techniques with
ROS.

Controlling Embedded Boards Using ROS

[107]

Here are the topics we will look in this chapter:

Getting started with popular embedded boards
Interfacing Arduino with ROS
Interfacing STM32 with ROS
Working with Raspberry Pi 2 and ROS
Odroid and ROS

Getting started with popular embedded
boards
In this section, we will look at some of the popular microcontroller boards and
microcomputers that can be used in robots.

An introduction to Arduino boards
Arduino is one of the most popular embedded controller boards that can be used in robots.
It is mainly used for prototyping electronics projects and robots. The boards mainly contain
an AVR series controller, in which its pins are mapped as Arduino board pins. The main
reason for the Arduino board's popularity is in its programming and easiness in
prototyping. The Arduino APIs and packages are very easy to use. So we can prototype our
application without much difficulty. The Arduino programming IDE is based on a software
framework called Wiring (http://wiring.org.co/); we are coding using C/ C++ in a
simplified way. The code is compiled using C/C++ compilers. Here is an image of a popular
Arduino board, the Arduino Uno:

http://wiring.org.co/

Controlling Embedded Boards Using ROS

[108]

Figure 1: Arduino Uno board

How to choose an Arduino board for your robot
The following are some of the important specifications of this board that may be useful
while selecting an Arduino board for your robot:

Speed: Almost all Arduino boards work under 100 MHz. Most of the controllers
on boards are 8 MHz and 16 MHz. If you want to do some serious processing
such as implementing a PID on a single chip, then the Arduino may not be the
best choice, especially if we want to run it at a higher rate. The Arduino is best
suited for simple robot control. It is best for tasks such as controlling a motor
driver and servo, reading from analog sensors, and interfacing serial devices
using protocols such as Universal Asynchronous Receiver/Transmitter (UART),
Inter-Integrated Circuit (I2C), and Serial Peripheral Interface (SPI).

Controlling Embedded Boards Using ROS

[109]

GPIO pins: Arduino boards provide different kinds of I/O pins to developers,
such as general purpose input/output (GPIO), analog-to-digital converter
(ADC), and pulse width modulation (PWM), I2C, UART, and SPI pins. We can
choose Arduino boards according to our pin requirements. There are boards
having a pin count from 9 to 54. The more pins the board has, the larger will be
the size of the board.
Working voltage levels: There are Arduino boards working on TTL (5V) and
CMOS (3.3V) voltage levels. For example, if the robot sensors are working only in
3.3V mode and our board is 5V, then we have to either convert 3.3V to the 5V
equivalent using a level shifter or use an Arduino working at 3.3V. Most Arduino
boards can be powered from USB itself.
Flash memory: Flash memory is an important aspect when selecting an Arduino
board. The output hex file generated by the Arduino IDE may not be optimized
when compared with the hex of embedded C and assembly code. If your code is
too big, it is better to go for higher flash memory, such as 256 KB. Most basic
Arduino boards have only 32 KB of flash memory, so you should be aware of this
issue before selecting the board.
Cost: One of the final criteria is of course the cost of the board. If your
requirement is just for a prototype, you can be flexible; you can take any board.
But if you are making a product using this, cost will be a constraint.

Getting started with STM32 and TI Launchpads
What do we do if the Arduino is not enough for our robotic applications? No worries; there
are advanced ARM-based controller boards available, such as STM32 microcontroller based
development boards like NUCLEO and Texas Instrument (TI) microcontrollers based
boards like Launchpads. The STM32 is a family of 32-bit microcontrollers from a company
called STMicroelectronics (http://www.st.com/content/st_com/en.html). They
manufacture microcontrollers based on different ARM architectures, such as the Cortex-M
series. The STM32 controllers offer a lot more clock speed than Arduino boards. The range
of STM32 controllers are from 24 MHz to 216 MHz, and the flash memory sizes are from 16
KB to 2 MB. In short, STM32 controllers offer a stunning configuration with a wider range
of features than the Arduino. Most boards work at 3.3V and have a wide range of
functionalities on the GPIO pins. You may be thinking about the cost now, right? But the
cost is also not high: the price range is from 2 to 20 USD.

http://www.st.com/content/st_com/en.html

Controlling Embedded Boards Using ROS

[110]

There are evaluation boards available in the market to test these controllers. Some famous
families of evaluation boards are as follows:

STM32 Nucleo boards: The Nucleo boards are ideal for prototyping. They are
compatible with Arduino connectors and can be programmed using an Arduino-
like environment called mbed (https://www.mbed.com/en/).
STM32 Discovery kits: These boards are very cheap and come built in with
components such as an accelerometer, mic, and LCD. The mbed environment is
not supported on these boards, but we can program the board using IAR, Keil,
and Code Composer Studio (CCS).
Full evaluation boards: These kinds of boards are comparatively expensive and
are used to evaluate all features of the controller.
Arduino-compatible boards: These are Arduino header-compatible boards
having STM32 controllers. Examples of these boards are Maple, OLIMEXINO-
STM32, and Netduino. Some of these boards can be programmed using the
Wiring language, which is used to program Arduino.

The STM32 boards are not more popular in the hobby/DIY community than the Arduino,
but they are mainly used in high-end robot controllers. Here is an STM 32 Nucleo board:

Figure 2: STM 32 NUCLEO board

https://www.mbed.com/en/

Controlling Embedded Boards Using ROS

[111]

The Tiva C Launchpad
One of the other alternatives to the Arduino is Launchpad from Texas Instruments. The TI
controllers have specifications similar to STM32 controllers, and both are based on ARM's
Cortex-M architecture. The clock speed of the controllers ranges from 48 MHz-330 MHz.
The flash memory capacity is also high: up to 1 MB. The GPIO pins and cost are almost
similar to STM32 boards. Some of the commonly used Launchpad boards are TM4C123G
Launchpad and EK-TM4C1294XL, which is based on an ARM Cortex-M4F-based MCU. The
123G works at 80MHZ and 1294XL at 120 MHz.

The good thing about these boards is that we can program them using a modified Arduino
IDE called Energia (http://energia.nu/).

This is how the EK-TM4C1294XL looks:

Figure 3: The EK-TM4C1294XL board

List of Arduino boards: h t t p s ://w w w . a r d u i n o . c c /e n /M a i n /P r o d u c t s

STM32 boards: h t t p s ://g o o . g l /w 7q F u E

Tiva C Series Launchpad: h t t p ://p r o c e s s o r s . w i k i . t i . c o m /i n d e x . p h p
/T i v a _ C _ S e r i e s _ L a u n c h P a d s

Launchpad boards:
http://www.ti.com/lsds/ti/tools-software/launchpads/launchpads.p
age

http://energia.nu/
https://www.arduino.cc/en/Main/Products
https://www.arduino.cc/en/Main/Products
https://www.arduino.cc/en/Main/Products
https://www.arduino.cc/en/Main/Products
https://www.arduino.cc/en/Main/Products
https://www.arduino.cc/en/Main/Products
https://www.arduino.cc/en/Main/Products
https://www.arduino.cc/en/Main/Products
https://www.arduino.cc/en/Main/Products
https://www.arduino.cc/en/Main/Products
https://www.arduino.cc/en/Main/Products
https://www.arduino.cc/en/Main/Products
https://www.arduino.cc/en/Main/Products
https://www.arduino.cc/en/Main/Products
https://www.arduino.cc/en/Main/Products
https://www.arduino.cc/en/Main/Products
https://www.arduino.cc/en/Main/Products
https://www.arduino.cc/en/Main/Products
https://www.arduino.cc/en/Main/Products
https://www.arduino.cc/en/Main/Products
https://www.arduino.cc/en/Main/Products
https://www.arduino.cc/en/Main/Products
https://www.arduino.cc/en/Main/Products
https://www.arduino.cc/en/Main/Products
https://www.arduino.cc/en/Main/Products
https://www.arduino.cc/en/Main/Products
https://www.arduino.cc/en/Main/Products
https://www.arduino.cc/en/Main/Products
https://www.arduino.cc/en/Main/Products
https://www.arduino.cc/en/Main/Products
https://www.arduino.cc/en/Main/Products
https://www.arduino.cc/en/Main/Products
https://www.arduino.cc/en/Main/Products
https://www.arduino.cc/en/Main/Products
https://www.arduino.cc/en/Main/Products
https://www.arduino.cc/en/Main/Products
https://www.arduino.cc/en/Main/Products
https://www.arduino.cc/en/Main/Products
https://www.arduino.cc/en/Main/Products
https://www.arduino.cc/en/Main/Products
https://www.arduino.cc/en/Main/Products
https://www.arduino.cc/en/Main/Products
https://www.arduino.cc/en/Main/Products
https://www.arduino.cc/en/Main/Products
https://www.arduino.cc/en/Main/Products
https://www.arduino.cc/en/Main/Products
https://www.arduino.cc/en/Main/Products
https://www.arduino.cc/en/Main/Products
https://www.arduino.cc/en/Main/Products
https://www.arduino.cc/en/Main/Products
https://www.arduino.cc/en/Main/Products
https://www.arduino.cc/en/Main/Products
https://www.arduino.cc/en/Main/Products
https://www.arduino.cc/en/Main/Products
https://www.arduino.cc/en/Main/Products
https://www.arduino.cc/en/Main/Products
https://www.arduino.cc/en/Main/Products
https://www.arduino.cc/en/Main/Products
https://www.arduino.cc/en/Main/Products
https://www.arduino.cc/en/Main/Products
https://www.arduino.cc/en/Main/Products
https://www.arduino.cc/en/Main/Products
https://www.arduino.cc/en/Main/Products
https://www.arduino.cc/en/Main/Products
https://www.arduino.cc/en/Main/Products
https://goo.gl/w7qFuE
https://goo.gl/w7qFuE
https://goo.gl/w7qFuE
https://goo.gl/w7qFuE
https://goo.gl/w7qFuE
https://goo.gl/w7qFuE
https://goo.gl/w7qFuE
https://goo.gl/w7qFuE
https://goo.gl/w7qFuE
https://goo.gl/w7qFuE
https://goo.gl/w7qFuE
https://goo.gl/w7qFuE
https://goo.gl/w7qFuE
https://goo.gl/w7qFuE
https://goo.gl/w7qFuE
https://goo.gl/w7qFuE
https://goo.gl/w7qFuE
https://goo.gl/w7qFuE
https://goo.gl/w7qFuE
https://goo.gl/w7qFuE
https://goo.gl/w7qFuE
https://goo.gl/w7qFuE
https://goo.gl/w7qFuE
https://goo.gl/w7qFuE
https://goo.gl/w7qFuE
https://goo.gl/w7qFuE
https://goo.gl/w7qFuE
https://goo.gl/w7qFuE
https://goo.gl/w7qFuE
https://goo.gl/w7qFuE
https://goo.gl/w7qFuE
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPads
http://www.ti.com/lsds/ti/tools-software/launchpads/launchpads.page
http://www.ti.com/lsds/ti/tools-software/launchpads/launchpads.page

Controlling Embedded Boards Using ROS

[112]

We have seen some popular controllers; now let's look at some of the high-level embedded
processing units that can be used in robots.

Introducing the Raspberry Pi
Raspberry Pi is another popular embedded board, and it's a single-board computer on
which we can load an operating system and use it like a full-fledged PC. It has a system on
chip (SoC) comprising of components such as an ARM processor, RAM, and GPU. There is
an Ethernet port, USB ports, HDMI, GPIO pins, sound jack, camera connector, and LCD
connector:

Figure 4: Raspberry Pi 3 board

Controlling Embedded Boards Using ROS

[113]

List of Raspberry Pi boards:
https://www.raspberrypi.org/products/

How to choose a Raspberry Pi board for your robot
The following are some important specifications that may be useful while selecting this
board for your robots:

Speed of the board: The speed of the ARM processor in Raspberry Pi boards
ranges from 700 MHz to 1.2 GHz. These boards are suitable for running an OS
and building robotics applications on top of it. We can perform processor-
intensive tasks such as image processing on the board. Don't pick this board if
you have multiple image-processing applications and other tasks for the robot.
They won't properly run on the board. It can freeze the entire system too. This
board is perfectly suited for a single robotics application. The latest board, the
Raspberry Pi 3, can offer you better performance for robotics applications.
Memory: The RAM of the board ranges from 256 MB to 1 GB. If the robot
application involves a lot of data processing, it may need a good amount of RAM.
So for an image processing application, we should select a board with a large
RAM size.
GPIO: The main feature of Raspberry Pi boards is they have dedicated GPIO
pins. The GPIO pins have multiple functions, such as I2C, UART, SPI, and PWM.
We can't interface an analog sensor with the Pi because there are no inbuilt ADC
pins. The GPIO pins are 3.3V compatible, so to interface with TTL logic, we may
need a level shifter or voltage divider circuit. For interfacing analog sensors, we
may need to interface an external ADC to the Raspberry Pi. The board has a
maximum of 40 GPIO pins.
Power rating: The Raspberry Pi works on 5V, which can take up to 2A current
during operation. It will be good if you can provide this rating for the RPi. The
RPi can even work from a computer USB port, but the power rating can vary
according to the processing. So to be safe, it will be good if we can provide a
5V/2A rating.
Cost: This is one of the most important criteria while choosing an RPi board. The
price range of RPi boards is from 19 USD to 40 USD. You can choose the latest
and most expensive board, the Raspberry Pi 3, to get maximum performance. The
selection of board will depend on your robotics application.

https://www.raspberrypi.org/products/

Controlling Embedded Boards Using ROS

[114]

The Odroid board
If you want more processing power than a Raspberry Pi board and with the same form
factor, then Odroid is for you. The Odroid-C2 and Odroid-XU4 are the latest Odroid
models, with 1.5 GHz and 2 GHz quad-core processors and 2 GB RAM, and almost the
same power consumption as the RPi.

Odroid can be loaded with the latest version of Ubuntu, Android, and many flavors of
Linux. It is a good choice if you are planning for an embedded powerhouse in a very small
form factor. Let's discuss some of the models of Odroid.

The Odroid-XU4 is the most powerful and expensive board in the series. This board is ideal
for running ROS and image-processing application. It has eight cores running at 2 GHz and
with 2 GB of RAM.

The ODROID-C2 runs at 1.5 GHz, on a quad-core processor with 2 GB of RAM. The
Odroid-C1+ and C1 have almost the same configuration as the C2, with the main difference
being that the C1/C1+ only have 1 GB RAM, as opposed to the C2's 2 GB. These two boards
are priced almost the same as Raspberry Pi's high-end boards. They are clear competitors to
the Raspberry Pi.

Figure 5: The Odroid board series

This subsection should be enough for you to get an idea of popular embedded boards that
can be used for robots. Next, we can start discussing interfacing ROS with some of these
boards. We are not going to discuss too deeply about the interfacing concept; rather than
that, we will mainly focus on the procedures to get the board ready to work with ROS. We
will also learn about some of the sensor interfacing, using which we can read sensor values
using a controller board and read into ROS.

Controlling Embedded Boards Using ROS

[115]

List of Odroid boards:
http://www.hardkernel.com/main/products/prdt_info.php

Interfacing Arduino with ROS
Interfacing an Arduino board with ROS simply means running a ROS node on Arduino that
can publish/subscribe like a normal ROS node. An Arduino ROS node can be used to
acquire and publish sensor values to a ROS environment, and other nodes can process it.
Also, we can control devices, for example, actuators such as DC motors, by publishing
values to an Arduino node. The main communication between PC and Arduino happens
over UART. There is a dedicated protocol called ROS Serial
(http://wiki.ros.org/rosserial/Overview), implemented as a ROS metapackage called
rosserial, which can encode and decode ROS Serial messages. Using the ROS Serial
protocol, we can publish and subscribe to Arduino like a ROS node over UART.

To start with ROS interfacing of Arduino, follow these steps:

First, we have to install some ROS packages on Ubuntu. The following1.
commands can be used to install them.
Installing the rosserial metapackage:2.

 $ sudo apt-get install ros-kinetic-rosserial

The following command will install the rosserial-arduino client package on3.
ROS. This client package helps create a client library of the Arduino IDE for ROS.
Using this library, we can create Arduino ROS nodes that work like a normal
ROS node.

 $ sudo apt-get install ros-kinetic-rosserial-arduino

http://www.hardkernel.com/main/products/prdt_info.php
http://wiki.ros.org/rosserial/Overview

Controlling Embedded Boards Using ROS

[116]

After installing these packages, you need to download and set up the Arduino4.
IDE. We need to download this IDE to program Arduino boards. You can
download the latest Arduino IDE from
(https://www.arduino.cc/en/Main/Software).
You can download the Arduino IDE for Linux 64/32-bit according to your OS5.
configuration and run the arduino executable after extracting the package.
To add the ROS library for the Arduino IDE, first you have to go to File |6.
Preference and set the Sketchbook location, as shown in this screenshot:

Figure 6: Arduino board preference

Go to the sketchbook location and create a folder called libraries if it is not7.
present, and open a Terminal inside the libraries folder. We are keeping all
Arduino libraries on this folder. Enter the following command to generate the
ros_lib library for Arduino:

 $ rosrun rosserial_arduino make_libraries.py .

https://www.arduino.cc/en/Main/Software

Controlling Embedded Boards Using ROS

[117]

You will see the following messages printing during the execution of the8.
command. You may get an error after some time, but that's perfectly fine.

Figure 7: Building the Arduino ROS library

After the execution of this command, a folder called ros_lib will be generated,9.
which is the Arduino ROS serial client library.

Controlling Embedded Boards Using ROS

[118]

Now, you can open the Arduino IDE and check that the option highlighted in the10.
following figure is available. You can take any of the ROS examples and compile
and check whether it is building without any errors:

Figure 8: ros_lib on Arduino IDE

Congratulations! You have successfully set up ros_lib on Arduino. Now we can perform a
few experiments using the ROS-Arduino interface.

Controlling Embedded Boards Using ROS

[119]

Monitoring light using Arduino and ROS
We can start coding a basic Arduino-ROS node that can sense the amount of light using a
light-dependent resistor (LDR). You can use any Arduino for this demo; here, we are going
to use the Arduino Mega 2560. Given in the following figure is the circuit of an LDR with
the Arduino. The characteristic of an LDR is that it is basically a resistor in which the
resistance across it changes when light falls on it. The maximum resistance is when there is
no light and minimum when light falls on it.

Figure 9: Arduino-LDR interfacing circuit

We have to connect one pin to 5V from the Arduino board and the next terminal to the
Arduino's A0 pin. That terminal is connected to the GND pin through a 10 KΩ resistor. It is
basically a voltage divider circuit. The equation for finding the voltage at A0 is as follows:

V_a0 = 5 * (R2 / (R1 + R2))

From the equation, it is clear that when there is no light, we will get the minimum voltage,
and when there is light, we'll get the maximum. This value can be read out using an
Arduino program.

Controlling Embedded Boards Using ROS

[120]

Here is the ROS code to read from an LDR:

 #include <Arduino.h>
 #include <ros.h>
 #include <rosserial_arduino/Adc.h>

 ros::NodeHandle nh;

 rosserial_arduino::Adc adc_msg;
 ros::Publisher p("adc", &adc_msg);

 void setup()
 {
 nh.initNode();
 nh.advertise(p);
 }

 //We average the analog reading to elminate some of the noise
 int averageAnalog(int pin){
 int v=0;
 for(int i=0; i<4; i++) v+= analogRead(pin);
 return v/4;
 }

 long adc_timer;

 void loop()
 {
 adc_msg.adc0 = averageAnalog(0);
 p.publish(&adc_msg);
 nh.spinOnce();
 delay(50);
 }

Here is the explanation of the code:

 #include <Arduino.h>
 #include <ros.h>
 #include <rosserial_arduino/Adc.h>

The <Arduino.h> library contains definitions of Arduino-specific functions. The <ros.h>
library contains Arduino-to-ROS client functionalities. The <rosserial_arduino/Adc.h>
header contains message definitions for carrying several ADC values in a single message.

 ros::NodeHandle nh;

Controlling Embedded Boards Using ROS

[121]

This create a ROS node handle. Like other ROS nodes, we are using this handle to publish
and subscribe to Arduino.

 rosserial_arduino::Adc adc_msg;
 ros::Publisher p("adc", &adc_msg);

This code will create an adc_msg instance and create a publisher object.

 void setup()
 {
 nh.initNode();
 nh.advertise(p);
 }

This will initialize the node and bind the publisher object to start publishing the topic called
/adc.

 void loop()
 {
 adc_msg.adc0 = averageAnalog(0);
 p.publish(&adc_msg);
 nh.spinOnce();
 delay(50);
 }

In the loop, the Analog value from pin A0 is read and the average is computed. The average
value will be published to the /adc topic.

After compiling the code, you can select the board from Tools | Board and Serial Port from
the list. You can now burn the code into the Arduino board.

Running ROS serial server on PC
After burning the code, to start subscribing or publishing to the Arduino board, we should
start the ROS serial server on the PC side. Let's see how to do so:

Initialize roscore:1.

 $ roscore

Run the ROS serial server on the PC. The argument of the server is the serial2.
device name of the Arduino device:

 $ rosrun rosserial_python serial_node.py /dev/ttyACM0

Controlling Embedded Boards Using ROS

[122]

Now, you can see the /adc topic using the following command:3.

 $ rostopic list

You can echo the /adc topic using the following command:4.

 $ rostopic echo /adc/adc0

You may get following values:5.

Figure 10: Displaying LDR values from the ROS topic

We can also visualize the sensor value using rqt_plot using the following command. Now
you can vary the light around the sensor and can check the variation of the values. The
readings of the LDR are mapped from 1 to 1023. If there is no light, that means there's a
high resistance in the LDR, so there'll be a low voltage across it and low reading on the
Arduino, and vice versa.

 $ rqt_plot adc/adc0

Controlling Embedded Boards Using ROS

[123]

You can see this in the following graph:

Figure 11: Visualizing LDR values in rqt_plot

Interfacing STM32 boards to ROS using mbed
If Arduino is not enough for your application, the STM 32 boards are ready to serve you. To
demonstrate ROS interfacing, we are going to use an STM 32 NUCLEO L476RG
(https://developer.mbed.org/platforms/ST-Nucleo-L476RG/). Before we begin
programming, let's understand the mbed platform. The mbed platform is a software
platform for programming 32-bit ARM Cortex-M microcontrollers. The mbed platform
developed as a collaborative project by ARM its technology partners. We can use the online
mbed IDE or offline compilers for programming the boards. The advantage of using the
online IDE is it will be updated and will have more hardware support.

https://developer.mbed.org/platforms/ST-Nucleo-L476RG/

Controlling Embedded Boards Using ROS

[124]

Let's start programming the STM 32 board:

The first step is to create an account on the mbed website, which is1.
https://developer.mbed.org.
After creating an account, go to the following link to check our board has support2.
in the mbed platform: https://developer.mbed.org/platforms/.
You can select your board from this website; for this demo, you should choose3.
the NUCLEO L476RG board, which is available at
https://developer.mbed.org/platforms/ST-Nucleo-L476RG/.
You can see an option called Add to your mbed compiler on the right-hand side4.
of this page. You have to click on this button to add this board to the mbed
compiler. We can add any number of boards to the mbed compiler; also, we can
choose the board before compiling.
After adding the board to the compiler, we can compile a ROS node for this5.
board. As we've already discussed, we can program the board using the online
IDE or an offline compiler such as gcc4embed
(https://github.com/adamgreen/gcc4mbed). Using offline compilers, we can
only program a limited number of boards, but the online IDE can handle the
latest boards.
The programming APIs of the ROS node in STM 32 are the same as those for6.
Arduino, only the environment and tools are different.
The online ros_lib files for mbed are available at7.
https://developer.mbed.org/users/garyservin/code/. You can find ros_lib
for the Kinetic, Jade, and Indigo versions. You can try with the ROS version you
are working on.
You can look at Hello World code for each ROS distribution from the preceding8.
link.

You can check out examples for ROS Kinetic at
https://developer.mbed.org/users/garyservin/code/ros_lib_kinetic

.
For ROS Jade, the link is
https://developer.mbed.org/users/garyservin/code/ros_lib_jade/.
For ROS Indigo:
https://developer.mbed.org/users/garyservin/code/ros_lib_indigo/

https://developer.mbed.org
https://developer.mbed.org/platforms/
https://developer.mbed.org/platforms/ST-Nucleo-L476RG/
https://github.com/adamgreen/gcc4mbed
https://developer.mbed.org/users/garyservin/code/
https://developer.mbed.org/users/garyservin/code/ros_lib_kinetic
https://developer.mbed.org/users/garyservin/code/ros_lib_jade/
https://developer.mbed.org/users/garyservin/code/ros_lib_indigo/

Controlling Embedded Boards Using ROS

[125]

You can import the code into the compiler using the following option:9.

Figure 12: Importing code to mbed in the online compiler

This will open the source code in the mbed online IDE, as shown in the next10.
screenshot. Here, we are testing with Hello World code for ROS Indigo.
The area marked 1 is the board we have added to the compiler. Area 2 is11.
imported source code and ros_lib for mbed, and area 3 is the button to compile
the source code. You can see the debugging details at the bottom of the compiler:

Figure 13: The mbed online compiler

Controlling Embedded Boards Using ROS

[126]

The APIs are the same as those of Arduino we saw in the previous section. In this12.
code, we are publishing a string message, Hello from STM32 NUCLEO, to a
topic called /chatter. You can display this string on a PC by running the ROS
serial server.
Click on the Compile button to download the binary file, which can be copied to13.
the board. Plug the board to your PC, and you will see a flash drive of the board.
You can copy the downloaded binary file to the flash storage, as shown here:

Figure 14: Binary file on flash drive

When we copy the binary file, the board will automatically start running it. Now,14.
the procedures have been completed. Just start the ROS server on the PC side to
display topics from the board.
Start roscore:15.

 $ roscore

Start the ROS server:16.

 $ rosrun rosserial_python serial_node.py /dev/ttyACM0

Controlling Embedded Boards Using ROS

[127]

Now you can echo the topic using the following command:17.

 $ rostopic echo /chatter

You will get following messages on the Terminal:18.

Figure 15: String message from an STM 32 board

Interfacing Tiva C Launchpad boards with ROS using
Energia
Interfacing Tiva C Launchpads in ROS is very much similar to Arduino. The IDE we are
using to program Tiva C boards such as the EK-TM4C123GXL and EK-TM4C1294XL is
called Energia (http://energia.nu/). The Energia IDE is a modified version of the Arduino
IDE. The procedure to generate the ROS serial client library is the same as Arduino. We
have to install a few packages on Ubuntu before we start working with the Energia ROS
serial client for Energia.

The following command will install the ROS serial client library for the Energia IDE:

 $ sudo apt-get install ros-kinetic-rosserial-tivac

The following command will install the C libraries for the i386 platform. This library is
required if you run Energia on 64-bit Ubuntu.

 $ sudo dpkg --add-architecture i386
 $ sudo apt-get update
 $ sudo apt-get install libc6:i386

http://energia.nu/

Controlling Embedded Boards Using ROS

[128]

After installing these packages, you can download and extract the Energia IDE. You can
download the latest Energia version from http://energia.nu/download/. We are using
Energia-018 here, and you can launch Energia by running energia from the extracted
folder. You will get an IDE like this, which is very much like the Arduino IDE except the
color:

Figure 16: Energia IDE

http://energia.nu/download/

Controlling Embedded Boards Using ROS

[129]

Creating the ROS library for Energia is the same as for Arduino:

Go to File | Preference and set the sketchbook location.1.
Create a folder called libraries if one doesn't exist inside this location, and run2.
the following command to create ros_lib:

 $ rosrun rosserial_tivac make_libraries_energia

If everything works fine, you can access the ROS examples like this:3.

Figure 17: ros_lib in the Energia IDE

We can try with the rgb example first. The Tiva C board has a tricolor LED integrated with
some port pins. Using this code, we can publish RGB values to a topic, and the board will
turn on and off the LED according to the topic values. We can input values 0 or 1 for each
LED. If the value is 0, that LED will be off, and if it is 1, it will have maximum brightness.

We can compile the code and upload it to the desired board and start the ROS serial server
using the following set of commands.

Controlling Embedded Boards Using ROS

[130]

Starting roscore:

 $ roscore

Starting the ROS serial server:

 $ rosrun rosserial_python serial_node.py /dev/ttyACM0

We will get a topic called /led when we start the ROS serial server, and we can publish the
values to the topic using the following command:

 $ rostopic pub led std_msgs/ColorRGBA "r: 0.0 g: 0.0 b: 1.0 a: 1.0"

Here, the type of /led topic is std_msgs/ColorRGBA, and r, g, and b correspond to red,
green, and blue, and A is for alpha or transparency. We are not using the alpha value.

We have seen how to make a controller board as an ROS node, and now we will see how to
run ROS on a single-board computer.

Running ROS on Raspberry Pi and Odroid boards
As we discussed earlier, Raspberry Pi and Odroid boards work like a PC. We can install
customized Linux on each board and install ROS on it. There are two methods to run ROS
on these boards. We can either install a fresh version of a Linux OS on it and install ROS
from scratch or download a prebuilt image of the OS with ROS. The first option is a long
procedure, and it will take a while to build ROS on Linux. You can follow the procedure at
https://goo.gl/LvW2ZN to install ROS from scratch. In this section, we are dealing with
ROS installation from a prebuilt binary.

Here is the link to download Raspberry Pi 2 images with ROS preinstalled:

http://www.mauriliodicicco.com/raspberry-pi2-ros-images/

Also, you can download Odroid-ROS images from the following links:

http://forum.odroid.com/viewtopic.php?f=112&t=11994

You can burn the OS to an SD card using the following tools:

On Windows, you can use Win32DiskImager, which can be downloaded from the following
link:

https://sourceforge.net/projects/win32diskimager/

https://goo.gl/LvW2ZN
http://www.mauriliodicicco.com/raspberry-pi2-ros-images/
http://forum.odroid.com/viewtopic.php?f=112&t=11994
https://sourceforge.net/projects/win32diskimager/

Controlling Embedded Boards Using ROS

[131]

For Odroid, we need a customized version of Win32DiskImager, and it can be downloaded
from the following link:

http://dn.odroid.com/DiskImager_ODROID/Win32DiskImager-odroid-v1.3.zip

This is what Win32DiskImage looks like in Odroid:

Figure 18: Win32DiskImager for Odroid

In Linux, you can use a tool called dd (Disk Dump); the following command helps you
install OS images to an SD card:

 $ sudo apt-get install pv

http://dn.odroid.com/DiskImager_ODROID/Win32DiskImager-odroid-v1.3.zip

Controlling Embedded Boards Using ROS

[132]

The pv tool can help you monitor the progress of this operation:

 $ dd bs=4M if=image_name.img | pv | sudo dd of=/dev/mmcblk0

Here, image_name.img is the OS image name, and /dev/mmcblk0 is the SD card reader
device.

Boot the board from the SD card and check whether the board is booting properly. If it is,
we can communicate with the board using Wi-Fi or wired LAN with the PC.

Now let's look at the methods to connect a single board computer to your PC.

Connecting Raspberry Pi and Odroid to PC
We can connect the RPi and Odroid boards in two ways to a PC. One is through a router in
which both devices are on same network, or we can directly connect to a PC without a
router. The connection through a router is simple and straightforward. Each device will get
an IP address, and we can communicate with each device using it. But using direct
communication, there is no IP assigned; we can do it using a Wi-Fi hotspot or wired LAN
hotspot from a PC.

The following is the procedure to create a wired hotspot on Ubuntu for interfacing these
boards:

Click on Edit Connection… from the network option in Ubuntu, as shown in the1.
following figure. Click Add button to create a new connection.

Figure 19: Creating a new network connection in Ubuntu

Controlling Embedded Boards Using ROS

[133]

Create a new Ethernet connection, name the connection Share, and in the2.
connection settings, change the IPV4 setting to Shared to other Computers, as
shown here:

Figure 20: Creating a new Ethernet connection in Ubuntu

After creating the connection, you can plug the micro SD card to the board and3.
boot the device; also, connect the wired LAN cable from the board to the PC.
When the board boots up, it will automatically connect to the Share network. If it4.
is not connecting, you can manually click on the Share network name to connect
to it. When it is connected, it means the board has an IP address and the PC can
communicate with the board using this IP; also, the important thing is that the PC
is sharing its Internet connection if it has one.
But how do we find the IP of a board that is connected to a PC? There is a way to5.
find out. The following command will unveil the IP:

 $ cat /var/lib/misc/dnsmasq.leases

The dnsmasq utility is a lightweight DNS and DHCP server. We can get an active6.
client connected to the server by looking at the file called dnsmasq.leases. The
output of this command is as follows:

Controlling Embedded Boards Using ROS

[134]

Figure 21: The IP of active clients connected to dnsmasq

Great going! If you get the IP, you can communicate with the board using Secure7.
Shell (SSH). Here are the commands to start an SSH shell from a PC to each
board:

From PC to Raspberry Pi:

 $ ssh pi@ip_address_of_board

The password is raspberry

From PC to Odroid:

 $ ssh odroid@ip_adress_of_board

The password is odroid

If everything works fine, you will get the board's shell, and you can access the ROS
commands from the shell.

Controlling GPIO pins from ROS
In Arduino and other controller boards, what we have created a did was make a hardware
ROS node. But RPi and Odroid are single-board computers, so we can run ROS on the
board itself. We can run ROS on these two boards in three ways. We can run ROS on the
same board, or we can run the ROS master on the board and connect other ROS nodes from
the PC or make the PC the ROS master and make the board the client.

Controlling Embedded Boards Using ROS

[135]

In this section, we are going to create a simple demo to blink an LED using ROS topics from
the same board. To work with Raspberry Pi and Odroid, we have to use a library called
wiringpi.

Here are the commands to install wiringpi on Raspberry Pi:

 $ git clone git clone git://git.drogon.net/wiringPi
 $ cd wiringPi
 $ sudo ./build

And these are the commands to install wiringpi on Odroid:

 $ git clone https://github.com/hardkernel/wiringPi.git
 $ cd wiringPi
 $ sudo ./build

After installing wiringpi, we should know the GPIO pin layout of each board in order to
program it. The GPIO pin layout of the boards is as follows:

Figure 22: GPIO pin layout of Raspberry Pi

Controlling Embedded Boards Using ROS

[136]

The pin layout of Odroid is similar to RPi. Here is the GPIO pin layout of Odroid C1/C2:

Figure 23: GPIO pin layout of Odroid

Creating a ROS package for the blink demo
We are done with installing wiringpi; let's create a ROS package for the LED blink demo. I
hope you have already created a ROS workspace on the board. For this demo, we are
connecting the LED anode to the twelfth pin of the board (first pin in wiringpi). The LED
cathode is connected to GND.

Controlling Embedded Boards Using ROS

[137]

The following figure shows the circuit of the demo. It is applicable to RPi and Odroid.

Figure 24: Board connected to an LED

Okay! Let's make a ROS package for creating a blinking ROS node. Here is the command to
create a ROS package for this demo:

 $ catkin_create_pkg ros_wiring_example roscpp std_msgs

You will also get the complete package from chapter_4_codes/ros_wiring_example.

Controlling Embedded Boards Using ROS

[138]

Create an src folder inside the new package, and copy the blink.cpp file from the existing
code. The blink code is and is as follows:

 #include "ros/ros.h"
 #include "std_msgs/Bool.h"

 #include <iostream>
 #include "wiringPi.h"

 //Wiring PI 1
 #define LED 1

 void blink_callback(const std_msgs::Bool::ConstPtr& msg)
 {

 if(msg->data == 1){

 digitalWrite (LED, HIGH) ;
 ROS_INFO("LED ON");

 }

 if(msg->data == 0){

 digitalWrite (LED, LOW) ;
 ROS_INFO("LED OFF");

 }
 }

 int main(int argc, char** argv)
 {

 ros::init(argc, argv,"blink_led");
 ROS_INFO("Started Odroid-C1 Blink Node");
 wiringPiSetup ();
 pinMode(LED, OUTPUT);

 ros::NodeHandle n;
 ros::Subscriber sub =
 n.subscribe("led_blink",10,blink_callback);
 ros::spin();

 }

Controlling Embedded Boards Using ROS

[139]

The preceding code will subscribe to a topic called /led_blink, which is a Boolean type. If
the value is true, the LED will turn on, otherwise it'll be off.

The following is the CMakeLists.txt file for compiling the code:

 cmake_minimum_required(VERSION 2.8.3)
 project(ros_wiring_examples)

 find_package(catkin REQUIRED COMPONENTS
 roscpp
 std_msgs
)

 find_package(Boost REQUIRED COMPONENTS system)

 set(wiringPi_include "/usr/local/include")

 include_directories(
 ${catkin_INCLUDE_DIRS}
 ${wiringPi_include}
)

 LINK_DIRECTORIES("/usr/local/lib")

 add_executable(blink_led src/blink.cpp)

 target_link_libraries(blink_led
 ${catkin_LIBRARIES} wiringPi
)

After changing CMakeLists.txt, we can perform a catkin_make to build the ROS node.

If everything builds successfully, we can run the demo using the following procedure.

Running the LED blink demo on Raspberry Pi and Odroid
To run the demo, launch multiple SSH Terminals and execute each command in each
Terminal.

Start roscore:

 $ roscore

Controlling Embedded Boards Using ROS

[140]

Run the executable as root in another Terminal. We are running the node with root
privilege, because GPIO handling needs root. If you are working with RPi, the username
will be pi instead of odroid:

 $ sudo -s
 # cd /home/odroid/catkin_ws/build/ros_wiring_examples
 #./blink_led

You can publish 1 and 0 to /led_blink to test the node working from another Terminal:

 $ rostopic pub /led_blink std_msgs/Bool 1
 $ rostopic pub /led_blink std_msgs/Bool 0

To run on the Raspberry Pi, we have to perform few more steps. We have to add the
following lines to the .bashrc folder of the root user. You can do so using the following
command:

 $ sudo -i
 $ nano .bashrc

Add the following lines to the .bashrc file:

 source /opt/ros/<ros_version>/setup.sh
 source /home/pi/catkin_ws/devel/setup.bash
 export ROS_MASTER_URI=http://localhost:11311

Questions
What are ROS serial client libraries?
What are the functions of a ROS serial server?
What are mbed and Energia?
What are the functions of wiringpi?

Controlling Embedded Boards Using ROS

[141]

Summary
In this chapter, we dealt with ROS interfacing of embedded controller boards and single-
board PCs. We started by discussing popular controller boards, such as Arduino, STM 32-
based boards and Tiva C boards. In the single-board computer category, we went through
Raspberry Pi and Odroid. After discussing each board, we learned about interfacing ROS
with controllers and single computers. We covered LDR interfacing with the Arduino, Hello
World example on the STM 32, and RGB demo on the Tiva C Launchpad. For single-board
computers, we created a basic LED blink demo using ROS.

In the next chapter, we will discuss teleoperating a robot using hand gestures.

5
Teleoperate a Robot Using

Hand Gestures
As you all know, robots can be controlled mainly in the following modes:

Manual: In manual control, the robot is controlling manually by a human. The
controlling is done using a remote controller or teach pendant.
Semiautonomous: The semiautonomous robot will have both manual and
autonomous control. For simple task, it can work autonomously but in complex
task it may change its mode to manual.
Fully autonomous: An autonomous robot has complete control over its action
and can think for itself. It can learn and adapt, and very much everything is
controlled by the robot itself.

We can choose the model of robot control based on our application. In this chapter, we are
mainly discussing implementing a manual robot control; we can call it distance control or
teleoperation. In teleoperation, the robot and human can be far apart, and the operator may
not able to see the real robot moving but may get some visual feedback. Rather than manual
control, some teleoperated robots have different levels of autonomy integrated. The robots
can take action entirely by following the commands sent by the operator or only receiving
high-level commands and taking care of other stuff autonomously.

Teleoperate a Robot Using Hand Gestures

[143]

We are going to be discussing a project to teleoperate a robot using hand gestures. The
major component that we are using to detect the gestures is an inertial measurement unit
(IMU). The IMU is fitted into a hand glove, and with specific hand gestures, we can move
or rotate the robot. The project uses the Arduino-ROS combination to compute IMU
orientation and send it to PC. A ROS node runs on the PC, which maps the orientation data
into twist messages (geometry_msgs/Twist), which is the command velocity of the robot.
We will look at more analysis of the project design in the upcoming sections.

We are going to discuss following topics in this chapter:

Teleoperating a TurtleBot using a keyboard
Gesture teleop: teleoperating using hand gestures
Setting up the project
Interfacing the IMU MPU-9250 with the Arduino and ROS
Visualizing the IMU TF on Rviz
Converting IMU data into twist messages
Integration and final run
Teleoperating using an Android phone

Teleoperating ROS Turtle using a keyboard
This section is for beginners who haven't worked with teleoperation in ROS yet. In this
section, we will see how to teleoperate a robot manually using a keyboard. Using a
keyboard, we can translate and rotate the robot. One of the basic example to demonstrate
keyboard teleoperation is ROS turtlesim.

The following commands launch turtlesim with keyboard teleoperation. You can run
each command on separate Terminals.

Run roscore:

 $ roscore

Teleoperate a Robot Using Hand Gestures

[144]

Run a turtlesim node using the following command. This command will launch the
turtlesim window:

 $ rosrun turtlesim turtlesim_node

Run the keyboard teleoperation node. We can change the turtle's position by pressing arrow
keys on the keyboard:

 $ rosrun turtlesim turtle_teleop_key

The screenshot of the moving turtle using arrow keys is shown here:

Figure 1: Turtlesim keyboard teleoperation

In ROS, most of the robot packages are bundled with a teleop node for manual control of
the robot. This control can either be through keyboard, joystick, or some other input device.

Teleoperate a Robot Using Hand Gestures

[145]

Teleoperating using hand gestures
The idea of this project is converting IMU orientation into the linear and angular velocity of
the robot. Here is the overall structure of this project.

Figure 2: Basic structure of the gesture teleop project

For the IMU device, we are using an IMU called MPU-9250 (h t t p s ://w w w . i n v e n s e n s e . c o m

/p r o d u c t s /m o t i o n - t r a c k i n g /9- a x i s /m p u - 9250/). The IMU will interface with an Arduino
board using the I2C protocol. The orientation values from the IMU are computed by the
Arduino and send to PC through the rosserial protocol. The orientation values are
received on the PC side as ROS topics and converted into twist messages using a ROS node.

Here is the project block diagram with the MPU 9250 and Arduino board:

Figure 3: Functional block diagram of the robot teleop project

https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/

Teleoperate a Robot Using Hand Gestures

[146]

We are using a hand glove in which an Arduino board is fixed in the palm area and an
MPU-9250 is fixed on the finger area, as shown in the following image:

Figure 4: Hand glove with Arduino and MPU-9250

Teleoperate a Robot Using Hand Gestures

[147]

There are four kinds of arm gestures used in this project:

Vertical elbow rotation:
 Clockwise
 Anticlockwise

Up pitch movement of hand
Down pitch movement of hand

Vertical elbow rotation is mapped to the rotation of the robot in the z direction, and up and
down pitch movement of the hand is mapped into forward and reverse movement of the
robot. Here's a depiction of how the movements of our arm and motion of the robot are
mapped:

Figure 5: Hand gestures and corresponding motion mapping

The mapping goes like this: the robot will stop the movement when the IMU in the hand is
horizontal to the ground. We can call this the home position. In the home position, the robot
will not move. When the elbow starts rotating about the vertical axis, the robot's velocity
will be such that it will rotate along the z axis. The robot's rotation will depend on how
many degrees the elbow is rotated. The robot will keep on rotating until the IMU reaches
the home position. For moving the robot forward and backward, we can pitch the hand as
shown in the preceding figure. If the hand pitching is upward, the resultant robot velocity
can move the robot backward, and vice versa.

Teleoperate a Robot Using Hand Gestures

[148]

Here is the coordinate-system representation of the IMU and movement happening along
each axis and the motion assigned to each hand movement:

Figure 6: Hand gestures and its motion mapping

The following table will give you a quick idea about the mapping of hand gestures and
robot motion:

Hand movement Robot motion

Elbow rotation clockwise (IMU yaw) Robot rotates clockwise

Elbow rotation anticlockwise (IMU yaw) Robot rotates anticlockwise

Hand pitch upward (IMU pitch) Robot moves backward

Hand pitch downward (IMU pitch) Robot moves forward

Teleoperate a Robot Using Hand Gestures

[149]

Note that we are using two components of rotation from the IMU, which are yaw and pitch.
The yaw rotation of the IMU is facing upward, and pitch rotation is facing toward you.
When we rotate the elbow, the yaw value of the IMU changes, and when we pitch the hand,
the pitch value of the IMU changes. These changes will converted to the linear and angular
velocity of the robot.

Setting up the project
Let's set up the project. To finish this project, you may need the following electronic
components. You can see the component name and the link to buy it from the following
table:

No Name Link

1 Arduino Mega – 2560 with USB cable https://www.sparkfun.com/products/11061

2 MPU – 9250 breakout https://amzn.com/B00OPNUO9U

3 Male to Female jumper wires https://amzn.com/B00PBZMN7C

4 Hand glove https://amzn.com/B00WH4NXLA

You can use any Arduino having I2C communication. You can also use MPU – 6050 /9150,
both of which are compatible with this project. A few words about the MPU – 9250 IMU: it
is a 9-axis motion tracking device consisting of a gyro, accelerometer, and compass. MPU –
6050/9150/9250 models have an inbuilt Digital Motion Processor (DMP), which can fuse
the accelerometer, gyro, and magnetometer values to get accurate 6DOF/9DOF motion
components. In this project, we are only taking the yaw and pitch rotation components.

If you want to learn more about I2C, check out the following link:
https://learn.sparkfun.com/tutorials/i2c

Read more about the MPU series:
https://www.invensense.com/technology/motion/

https://www.sparkfun.com/products/11061
https://amzn.com/B00OPNUO9U
https://amzn.com/B00PBZMN7C
https://amzn.com/B00WH4NXLA
https://learn.sparkfun.com/tutorials/i2c
https://www.invensense.com/technology/motion/

Teleoperate a Robot Using Hand Gestures

[150]

Interfacing the MPU-9250 with the Arduino
and ROS
So the first step in this project is to interface the IMU to the Arduino to get the rotation
values and send those values to ROS. We're essentially making an Arduino-ROS node that
is receiving IMU values and publishing the yaw, pitch, and roll as well as the
transformation (TF) corresponding to the IMU movement as ROS topics.

The following figure shows the interfacing of IMU with the Arduino. The IMU is interfaced
using the I2C protocol:

Figure 7: Interfacing MPU 9250/9150/6050 with Arduino

Teleoperate a Robot Using Hand Gestures

[151]

The connection from Arduino to MPU-9250 is shown in this table:

Arduino pins MPU – 9250 pins

5V VCC

GND GND

SCL (21) SCL

SDA (20) SDA

Digital PIN2 INT

To start working on IMU values in ROS, we have to create a ROS-Arduino node that is
receiving IMU values and send it as ROS topics. I hope you have set up the Arduino IDE in
your system. For running this code, you will need the Arduino library for the MPU – 9250.
Note that you can use the MPU – 9150 library for working with this IMU, and you can clone
that library's files using the following command:

 $ git clone
https://github.com/sparkfun/MPU-9150_Breakout/tree/master/firmware

Copy firmware/I2Cdev and MPU6050 into the arduino_sketch_location/libraries
folder. The sketchbook location can be obtained from the File | Preferences IDE option.

Once you've copied both of these folders, you can compile the ROS-Arduino node. You can
open the code from chapter_5_codes/MPU9250_ROS_DMP. Just try to compile the code
and check whether it's working or not. I hope that you have already set the Arduino ROS
serial client library , which is ros_lib. The entire procedure was mentioned in Chapter 4,
Controlling Embedded Boards Using ROS.

Teleoperate a Robot Using Hand Gestures

[152]

The following figure shows the flowchart of the complete code. We'll go through a detailed
explanation of code after this.

Figure 8: Flowchart of Arduino-ROS node

The Arduino-IMU interfacing code
Let's discuss the code from the beginning. The following Arduino headers help us read IMU
values using the I2C protocol. The MPU6050_6Axis_MotionApps20.h header has
functions to enable DMP and retrieve values from it.

 #include "Wire.h"
 #include "I2Cdev.h"
 #include "MPU6050_6Axis_MotionApps20.h"

The following line of code will create an MPU6050 handle, which can be used for the
MPU-9250. We can use this object to initialize and retrieve values from the IMU.

 MPU6050 mpu;

Teleoperate a Robot Using Hand Gestures

[153]

As you know, we have to include ros.h to access ROS serial client APIs. We are also
including Vector3.h, which has the definition of the Vector3 ROS message. This message
can carry three values of orientation. The tf/transform_broadcaster.h header has TF
broadcaster classes, which basically send transforms of IMU values with respect to a fixed
frame:

 #include <ros.h>
 #include <geometry_msgs/Vector3.h>
 #include <tf/transform_broadcaster.h>

After defining headers, we have to define handles of the TF message and broadcaster, as
given here:

 geometry_msgs::TransformStamped t;
 tf::TransformBroadcaster broadcaster;

In the next line of code, we are creating a NodeHandle, which essentially helps us subscribe
to and publish ROS topics like a normal ROS node:

 ros::NodeHandle nh;

To hold the orientation values, which are yaw, pitch, and roll, we are creating a Vector3
ROS message. This message is published by the Arduino node on a topic named
/imu_data.

 geometry_msgs::Vector3 orient;

The following line of code creates a publisher object for the /imu_data topic. We are
publishing the orientation using this object.

 ros::Publisher imu_pub("imu_data", &orient);

The frameid value is /base_link, which is static, and the child frame is
/imu_frame which moves according to the IMU data.

 char frameid[] = "/base_link";
 char child[] = "/imu_frame";

These are variables to hold orientation values, such as Quaternion, gravity vector, and
yaw, pitch, and roll:

 Quaternion q;
 VectorFloat gravity;
 float ypr[3];

Teleoperate a Robot Using Hand Gestures

[154]

Here is the interrupt-detection routine, for whenever data is ready to be read from the IMU.
The routine basically sets the mpuInterrupt variable as true.

 volatile bool mpuInterrupt = false;
 void dmpDataReady() {
 mpuInterrupt = true;
 }

Next is the setup() function of Arduino, which does several I2C initializations for the
Arduino, ROS node handler, TF broadcaster, ROS publisher, MPU object, and DMP inside
MPU:

 void setup() {
 Wire.begin();
 nh.initNode();
 broadcaster.init(nh);
 nh.advertise(imu_pub);
 mpu.initialize();
 devStatus = mpu.dmpInitialize();

If DMP is initialized, we can enable it and attach an interrupt on the Arduino's second
digital pin, which is the first interrupt pin of the Arduino. Whenever data is ready to be
read from buffer, the IMU will generate an interrupt. The code also checks the DMP status
and sets a variable to check whether DMP is ready or not. This will be useful while
executing the loop() function. We are also using a variable called packetSize to store the
MPU buffer size.

 if (devStatus == 0) {
 mpu.setDMPEnabled(true);
 attachInterrupt(0, dmpDataReady, RISING);
 mpuIntStatus = mpu.getIntStatus();
 dmpReady = true;
 packetSize = mpu.dmpGetFIFOPacketSize();
 }

Inside the loop() function, the code checks whether dmpReady is true or not. If it is not
true, that means DMP is not initialized, so it will not execute any code. If it is ready, it will
wait for interrupts from the MPU.

 if (!dmpReady) return;
 while (!mpuInterrupt && fifoCount < packetSize) {
 ;
 }

Teleoperate a Robot Using Hand Gestures

[155]

If there is an interrupt, it will go to the dmpDataReady() interrupt-detection routine and set
the mpuInterrupt flag as true. If it is true, then the previous while loop will exit and
start running the following code. We are resetting the mpuInterrupt flag to false, reading
the current status of the MPU, and retrieving the first-in first-out (FIFO) count. FIFO is
basically a buffer, and the first entry to the buffer will be processed first.

 mpuInterrupt = false;
 mpuIntStatus = mpu.getIntStatus();
 fifoCount = mpu.getFIFOCount();

After reading the status and FIFO count, we can reset the FIFO if an overflow is detected.
Overflows can happen if your code is too inefficient.

 if ((mpuIntStatus & 0x10) || fifoCount == 1024) {
 mpu.resetFIFO();

If the data is ready, we will again compare the FIFO buffer size and the DMP packet size; if
equal, FIFO data will be dumped into the fifoBuffer variable.

 else if (mpuIntStatus & 0x01) {
 while (fifoCount < packetSize) fifoCount =
 mpu.getFIFOCount();
 mpu.getFIFOBytes(fifoBuffer, packetSize);
 fifoCount -= packetSize;

After storing the DMP data in the buffer, we can extract the rotation components, such as
quaternion, gravity vector, and Euler angle.

 mpu.dmpGetQuaternion(&q, fifoBuffer);
 mpu.dmpGetGravity(&gravity, &q);
 mpu.dmpGetYawPitchRoll(ypr, &q, &gravity);

We need to get the Euler angle in degrees, and it is going to be published in the /imu_data
topic. Here is the code for doing it. The ypr value we're getting from the MPU object will be
in radians, which should be converted to degree using the following equations:

 orient.x = ypr[0] * 180/M_PI;
 orient.y = ypr[1] * 180/M_PI;
 orient.z = ypr[2] * 180/M_PI;
 imu_pub.publish(&orient);

Teleoperate a Robot Using Hand Gestures

[156]

Here is how we'll publish the TF data. We have to insert the frame, quaternion values, and
time stamping to the TF message headers. Using the TF broadcaster, we can publish it.

 t.header.frame_id = frameid;
 t.child_frame_id = child;
 t.transform.translation.x = 1.0;
 t.transform.rotation.x = q.x;
 t.transform.rotation.y = q.y;
 t.transform.rotation.z = q.z;
 t.transform.rotation.w = q.w;
 t.header.stamp = nh.now();
 broadcaster.sendTransform(t);

We have to call nh.spinOnce() to process each operation we have performed using ROS
APIs, so the publishing and subscribing operations are performed only while calling the
spinOnce() function. We are also blinking the onboard LED to indicate the program
activity.

 nh.spinOnce();
 delay(200);
 blinkState = !blinkState;
 digitalWrite(LED_PIN, blinkState);
 delay(200);

That is all about the ROS-Arduino node. Now what you can do is compile and upload this
code to Arduino. Make sure that all other settings on the Arduino IDE are correct.

After uploading the code to the Arduino, the remaining work is on the PC side. We have to
run the ROS serial server node to obtain the Arduino node topics. The first step to verify the
IMU data from Arduino is by visualizing it. We can visualize the IMU data by observing
the TF values in Rviz.

Visualizing IMU TF in Rviz
In this section, we are going to visualize the TF data from Arduino on Rviz. Here's the
procedure to do that.

Plug the Arduino to the PC and find the Arduino's serial port. To get topics from the
Arduino-ROS node, we should start a ROS serial server on the PC, listening on the Arduino
serial port. We did this in Chapter 4, Controlling Embedded Boards Using ROS. Still, let's look
at the commands again in this section too.

Teleoperate a Robot Using Hand Gestures

[157]

Starting roscore first:

 $ roscore

Starting the ROS serial server:

 $ rosrun rosserial_python serial_node.py /dev/ttyACM0

You can get the following topics when you run the previous node:

Figure 9: Listing ROS topics from Arduino

You can simply echo these topics, or visualize the TF data on Rviz. You can run Rviz using
the following command. The base_link option is the fixed frame, and we can mention that
on the command line itself.

 $ rosrun rviz rviz -f base_link

The Rviz window will pop up, and if there is no TF option on the left-hand side of Rviz,
add it from the Add | TF.

You may get a visualization like shown here, where imu_frame will move according to the
rotation of the IMU:

Teleoperate a Robot Using Hand Gestures

[158]

Figure 10: Visualizing IMU data in Rviz

Converting IMU data into twist messages
If you are able to the visualization in Rviz, you are done with the interfacing. The next step
is to convert IMU orientation into command velocity as ROS twist messages. For this, we
have to create a ROS package and a Python script. You can get this package from
chapter_5_codes/gesture_teleop; look for a script called gesture_teleop.py from
the gesture_teleop/scripts folder.

If you want to create the package from scratch, here is the command:

 $ catkin_create_pkg gesture_teleop rospy roscpp std_msgs sensor_msgs
geometry_msgs

Now let's look at the explanation of gesture_teleop.py, which is performing the
conversion from IMU orientation values to twist commands.

Teleoperate a Robot Using Hand Gestures

[159]

In this code, what we basically do is subscribe to the /imu_data topic and extract only the
yaw and pitch values. When these values change in the positive or negative direction, a step
value is added or subtracted from the linear and angular velocity variable. The resultant
velocity is sent using ROS twist messages with a topic name defined by the user.

We need the following modules to perform this conversion. As you know, rospy is a
mandatory header for a ROS Python node.

 import rospy
 from geometry_msgs.msg import Twist
 from geometry_msgs.msg import Vector3

After importing the modules, you will see the initialization of some parameters; these
parameters are keeping in a file called gesture_teleop/config/teleop_config.yaml.
If the node can't retrieve parameters from the file, it will load the default values mentioned
in the code.

Here is the subscriber for the /imu_data topic, in which the topic name is defined as a
variable. The callback function is called Get_RPY and the message type is Vector3.

 rospy.Subscriber(imu_topic,Vector3,Get_RPY)

The Get_RPY simply computes the delta value of the yaw and pitch values of the IMU data
and sends those values along with the yaw value to another function called Send_Twist():

 def Get_RPY(rpy_data):
 global prev_yaw
 global prev_pitch
 global dy,dp
 dy = rpy_data.x - prev_yaw
 dp = rpy_data.y - prev_pitch
 Send_Twist(dy,dp,rpy_data.y)
 prev_yaw = rpy_data.x
 prev_pitch = rpy_data.y

Teleoperate a Robot Using Hand Gestures

[160]

The following code is the definition of Send_Twist(). This is the function generating the
twist message from the orientation values. Here, the linear velocity variable is
control_speed and angular velocity variable is control_turn. When the pitch value is
very less and change in yaw value is zero, the position is called home position. In home
position, the IMU will be horizontal to the ground. In this position, the robot should stop its
movement. We are assigning both the speeds as zero at this condition. In other cases, the
control speed and control turn is computed up to the maximum or minimum speed limits.
If the speed is beyond the limit, it will switch to the limiting speed itself. The computed
velocities are assigned to a twist message header and published to the ROS environment.

 def Send_Twist(dy,dp,pitch):
 global pub
 global control_speed
 global control_turn
 dy = int(dy)
 dp = int(dp)
 check_pitch = int(pitch)
 if (check_pitch < 2 and check_pitch > -2 and dy == 0):
 control_speed = 0
 control_turn = 0
 else:
 control_speed = round(control_speed + (step_size * dp),2)
 control_turn = round(control_turn + (step_size * dy),2)
 if (control_speed > high_speed):
 control_speed = high_speed
 elif (control_turn > high_turn):
 control_turn = high_turn
 if (control_speed < low_speed):
 control_speed = low_speed
 elif (control_turn < low_turn):
 control_turn = low_turn
 twist = Twist()
 twist.linear.x = control_speed; twist.linear.y = 0;
 twist.linear.z = 0
 twist.angular.x = 0; twist.angular.y = 0; twist.angular.z
 = control_turn
 pub.publish(twist)

Teleoperate a Robot Using Hand Gestures

[161]

That is all about the converter node, which converts orientation data to twist commands.
Next is the configuration file of the gesture_teleop.py node. This node stores the
essential parameters of the converter node. The file is named teleop_config.yaml and
placed in the gesture_teleop/config/ folder. The file consists of the IMU data topic,
limits of linear and angular velocity, and step size.

 imu_topic: "/imu_data"
 low_speed: -4
 high_speed: 4
 low_turn: -2
 high_turn: 2
 step_size: 0.02

Integration and final run
We are almost done! But how to test this teleop tool? We can create some launch file that
can start all these nodes and work with some robot simulation. The
gesture_teleop/launch folder has three launch files. Let's take a look at them.

The gesture_teleop.launch file is a generic launch file that can be used for any robot.
The only thing we need to edit is the command velocity topic. Here is the definition of this
launch file:

 <launch>
 <param name="teleop_topic" value="/cmd_vel"/>
 <rosparam command="load" file="$(find
 gesture_teleop)/config/teleop_config.yaml"/>
 <node name="rosserial_server_node" pkg="rosserial_python"
 type="serial_node.py" args="$(arg port)" output="screen"/>
 <node name="gesture_teleop_node" pkg="gesture_teleop"
 type="gesture_teleop.py" output="screen"/>
 </launch>

This launch file defines teleop_topic. You can change the command velocity topic name
according to each robot's configuration. It also loads the config file called
teleop_config.yaml. Then, start the ROS serial server node and then the gesture teleop
node.

Teleoperate a Robot Using Hand Gestures

[162]

The other two launch files are gesture_teleop_turtlebot.launch and
gesture_teleop_turtlebot_2D.launch. The first launch file starts the gesture teleop of
TurtleBot, which also launches the TurtleBot simulation in Gazebo, and the second launch
file launches the ROS turtlesim and its gesture teleop node.

Let's start turtlesim with its gesture teleop node:

 $ roslaunch gesture_teleop gesture_teleop_turtlebot_2D.launch

You may get the turtlesim window and control the turtle using the gesture teleop:

Figure 11: Gesture teleop on turtlesim

You can rotate the turtle by moving the IMU in the Z axis and can move forward and
backward by pitching in the Y-axis. You can stop the robot's movement by bringing the
IMU to the home position.

We can also teleop TurtleBot using the following launch file:

 $ roslaunch gesture_teleop gesture_teleop_turtlebot.launch

Teleoperate a Robot Using Hand Gestures

[163]

You may get the following simulation in Gazebo if the TurtleBot packages are already
installed on your system:

Figure 12: Gesture teleop on TurtleBot simulation.

Similar to turtlesim, we can rotate and translate TurtleBot using yaw and pitch movements.

Teleoperating using an Android phone
If it is difficult to build the previous circuit and set everything up, there is an easy way to do
so with your Android phone. You can manually control either using a virtual joystick or the
tilt of the phone.

Here is the Android application you can use for this:

https://play.google.com/store/apps/details?id=com.robotca.ControlApp.

The application's name is ROS Control. You can also search on Google Play Store for it.

https://play.google.com/store/apps/details?id=com.robotca.ControlApp

Teleoperate a Robot Using Hand Gestures

[164]

Here is the procedure to connect your Android phone to a ROS environment:

Initially, you have to connect both your PC and Android device to a local Wi-Fi network in
which each device can communicate with each other using IP addresses.

After connecting to the same network, you have to start roscore on the PC side. You can
also note the IP address of the PC by entering the command ifconfig.

Figure 13: Retrieving the IP address of a PC with ifconfig

After obtaining the IP address of the PC, you can start the app and create a robot1.
configuration, as shown in this figure:

Figure 14: Configuring ROS Control app in Android

Teleoperate a Robot Using Hand Gestures

[165]

The + symbol in the top-right corner of the app is used to add a robot2.
configuration in the app. Press it and you'll see a window to enter the various
topic names, Robot Name, and Master URI.
You have to change the Master URI from localhost:11311 to3.
IP_of_PC:11311; for example, it is 192.168.1.102.11311 in this case, which
is shown in the preceding figure marked as 2.
We can enter the topic name of the teleop here, so twist messages will be4.
published to that topic. For TurtleBot, the topic name is
/cmd_vel_mux/input/teleop. Press OK if you are done with the
configuration, and you will see the third screen. In case your phone is not
connected to the PC, press that configuration option and it will connect to the PC,
which is shown as 4 in the figure.
When it connects to the PC, you will get another window, in which you can5.
interact with the robot. Those windows are shown here:

Figure 15: Controlling robot using virtual joystick and tilt of the phone.

The control mode can change from Joystick to Tilt, with which will work6.
according to the tilting of phone. You can tilt the phone and change the robot's
rotation and translation. Make sure you're running robot hardware or a
simulation that accepts twist messages to move. You also need confirm that the
topic name that you give the app is the same as the robot teleop topic.

Teleoperate a Robot Using Hand Gestures

[166]

After connecting your phone to the PC through the app, you will get the7.
following topics on the PC side. You can confirm whether you're getting this
before starting the robot simulation on the PC:

Figure 16: Listing the ROS topics from the app

If you are getting these topics, you can start a robot simulation, such as TurtleBot,8.
using the following command:

 $ roslaunch turtlebot_gazebo turtlebot_empty_world.launch

Now you can see that the robot is moving with your commands from your9.
phone. Here is a screenshot of this operation:

Figure 17: Controlling TurtleBot from Android app

Teleoperate a Robot Using Hand Gestures

[167]

Questions
What are the main modes of controlling a differential drive robot?
What is the twist message in ROS for?
What is DMP and what is the use of DMP in this project?
How can we teleoperate a robot from an Android phone?

Summary
This chapter was about making a gesture-based teleoperation project for a ROS-based robot.
We used an IMU to detect gestures and interfaced with the Arduino to get the values from
the IMU. The Arduino is interfaced with ROS using the ROS serial protocol. The PC is
running a ROS node that can convert IMU orientation into linear and angular velocity and
send it as a twist message. This twist message can be used in any robot just by changing the
teleop topic name. We can also visualize the IMU orientation data in Rviz using TF data
from Arduino. If it is too difficult to build this circuit, we can use an Android app called
ROS Control that can move the robot using the inbuilt IMU on the phone.

In the next chapter, we'll be dealing with 3D object recognition using ROS.

6
Object Detection and

Recognition
Object recognition has an important role in robotics. It is the process of identifying an object
from camera images and finding its location. Using this, a robot can pick an object from the
workspace and place it at another location.

This chapter will be useful for those who want to prototype a solution for a vision-related
task. We are going to look at some popular ROS packages to perform object detection and
recognition in 2D and 3D. We are not digging more into the theoretical aspects, but you
may see short notes about the algorithm while we discuss their applications.

You will learn about the following topics:

Getting started with object detection and recognition
The find_object_2d package in ROS
Installing find_object_2d
Detecting and tracking an object using a webcam
Detecting and tracking using 3D depth sensors
Getting started with 3D object recognition
Introducing the object-recognition package in ROS
Installing object-recognition packages
Detecting and recognizing objects using 3D meshes
Training and detecting using real-time capture
Final run

Object Detection and Recognition

[169]

So let's begin with the importance of object detection and recognition in robotics.

Getting started with object detection and
recognition
So what's the main difference between detection and recognition? Consider face detection
and face recognition. In face detection, the algorithm tries to detect a face from an image,
but in recognition, the algorithm can also state information about whose face is detected. It
may be the person's name, gender, or something else.

Similarly, object detection involves the detection of a class of object and recognition
performs the next level of classification, which tells which us the name of the object.

There is a vast number of applications that use object detection and recognition techniques.
Here is a popular application that is going to be used in Amazon warehouses:

Figure 1: A photo from an Amazon Picking Challenge

Object Detection and Recognition

[170]

Amazon is planning to automate the picking and placing of objects from the shelves inside
their warehouses. To retrieve objects from the shelves, they are planning to deploy robotic
arms such as the one shown in the previous image. Whenever the robot gets an order to
retrieve a specific object and place it in a basket, it should identify the position of object first,
right? So how does the robot understand the object position? It should need some kind of
3D sensor, right? And also, on the software side, it should have some object recognition
algorithm for recognizing each object. The robot will get the object coordinates only after
the recognition. The detected coordinates will be relative to the vision sensors, which have
to transform into robot end-effector coordinates of the tip of the robot to reach the object
position. After reaching the object position, what should be the robot do? It should grasp
the object and place it in the basket, right? The task looks simple, doesn't it? But it's not as
simple as we think. Here is the coordinate system of a robotic arm, end effector, Kinect, and
the object:

Figure 2: Coordinate system of each component

Object Detection and Recognition

[171]

Amazon organizes a challenge called the Amazon Picking Challenge, which was first
conducted as a part of ICRA 2015 (h t t p ://w w w . i e e e - r a s . o r g /c o n f e r e n c e /r o b o t - c h a l l e

n g e s), and in 2016, it was conducted along with Robocup (h t t p ://w w w . r o b o c u p 2016. o r g /e

n /e v e n t s /a m a z o n - p i c k i n g - c h a l l e n g e /). The challenge was all about solving the pick-and-
place problem we just discussed. In effect, the object recognition and detection tasks have
immense scope in the industry, not only in Amazon but also in areas such as agriculture,
defense, and space.

In the following section, we will see how to implement object detection and recognition in
our applications. There are some good ROS packages to do this stuff. Let's discuss each
package one by one.

The find_object_2d package in ROS
One of the advantages of ROS is that it has tons of packages that can be reused in our
applications. In our case, what we want is to implement an object recognition and detection
system. The find_object_2d package (http://wiki.ros.org/find_object_2d)
implements SURF, SIFT, FAST, and BRIEF feature detectors (https://goo.gl/B8H9Zm) and
descriptors for object detection. Using the GUI provided by this package, we can mark the
objects we want to detect and save them for future detection. The detector node will detect
the objects in camera images and publish the details of the object through a topic. Using a
3D sensor, it can estimate the depth and orientation of the object.

Installing find_object_2d
Installing this package is pretty easy. Here is the command to install it on Ubuntu 16.04 and
ROS Kinetic:

 $ sudo apt-get install ros-kinetic-find-object-2d

Installing from source code
Switch into the ROS workspace:

 $ cd ~/catkin_ws/src

http://www.ieee-ras.org/conference/robot-challenges
http://www.ieee-ras.org/conference/robot-challenges
http://www.ieee-ras.org/conference/robot-challenges
http://www.ieee-ras.org/conference/robot-challenges
http://www.ieee-ras.org/conference/robot-challenges
http://www.ieee-ras.org/conference/robot-challenges
http://www.ieee-ras.org/conference/robot-challenges
http://www.ieee-ras.org/conference/robot-challenges
http://www.ieee-ras.org/conference/robot-challenges
http://www.ieee-ras.org/conference/robot-challenges
http://www.ieee-ras.org/conference/robot-challenges
http://www.ieee-ras.org/conference/robot-challenges
http://www.ieee-ras.org/conference/robot-challenges
http://www.ieee-ras.org/conference/robot-challenges
http://www.ieee-ras.org/conference/robot-challenges
http://www.ieee-ras.org/conference/robot-challenges
http://www.ieee-ras.org/conference/robot-challenges
http://www.ieee-ras.org/conference/robot-challenges
http://www.ieee-ras.org/conference/robot-challenges
http://www.ieee-ras.org/conference/robot-challenges
http://www.ieee-ras.org/conference/robot-challenges
http://www.ieee-ras.org/conference/robot-challenges
http://www.ieee-ras.org/conference/robot-challenges
http://www.ieee-ras.org/conference/robot-challenges
http://www.ieee-ras.org/conference/robot-challenges
http://www.ieee-ras.org/conference/robot-challenges
http://www.ieee-ras.org/conference/robot-challenges
http://www.ieee-ras.org/conference/robot-challenges
http://www.ieee-ras.org/conference/robot-challenges
http://www.ieee-ras.org/conference/robot-challenges
http://www.ieee-ras.org/conference/robot-challenges
http://www.ieee-ras.org/conference/robot-challenges
http://www.ieee-ras.org/conference/robot-challenges
http://www.ieee-ras.org/conference/robot-challenges
http://www.ieee-ras.org/conference/robot-challenges
http://www.ieee-ras.org/conference/robot-challenges
http://www.ieee-ras.org/conference/robot-challenges
http://www.ieee-ras.org/conference/robot-challenges
http://www.ieee-ras.org/conference/robot-challenges
http://www.ieee-ras.org/conference/robot-challenges
http://www.ieee-ras.org/conference/robot-challenges
http://www.ieee-ras.org/conference/robot-challenges
http://www.ieee-ras.org/conference/robot-challenges
http://www.ieee-ras.org/conference/robot-challenges
http://www.ieee-ras.org/conference/robot-challenges
http://www.ieee-ras.org/conference/robot-challenges
http://www.ieee-ras.org/conference/robot-challenges
http://www.ieee-ras.org/conference/robot-challenges
http://www.ieee-ras.org/conference/robot-challenges
http://www.ieee-ras.org/conference/robot-challenges
http://www.ieee-ras.org/conference/robot-challenges
http://www.ieee-ras.org/conference/robot-challenges
http://www.ieee-ras.org/conference/robot-challenges
http://www.ieee-ras.org/conference/robot-challenges
http://www.ieee-ras.org/conference/robot-challenges
http://www.ieee-ras.org/conference/robot-challenges
http://www.ieee-ras.org/conference/robot-challenges
http://www.ieee-ras.org/conference/robot-challenges
http://www.ieee-ras.org/conference/robot-challenges
http://www.ieee-ras.org/conference/robot-challenges
http://www.ieee-ras.org/conference/robot-challenges
http://www.ieee-ras.org/conference/robot-challenges
http://www.ieee-ras.org/conference/robot-challenges
http://www.ieee-ras.org/conference/robot-challenges
http://www.ieee-ras.org/conference/robot-challenges
http://www.ieee-ras.org/conference/robot-challenges
http://www.ieee-ras.org/conference/robot-challenges
http://www.ieee-ras.org/conference/robot-challenges
http://www.ieee-ras.org/conference/robot-challenges
http://www.ieee-ras.org/conference/robot-challenges
http://www.ieee-ras.org/conference/robot-challenges
http://www.ieee-ras.org/conference/robot-challenges
http://www.ieee-ras.org/conference/robot-challenges
http://www.ieee-ras.org/conference/robot-challenges
http://www.ieee-ras.org/conference/robot-challenges
http://www.ieee-ras.org/conference/robot-challenges
http://www.ieee-ras.org/conference/robot-challenges
http://www.ieee-ras.org/conference/robot-challenges
http://www.ieee-ras.org/conference/robot-challenges
http://www.ieee-ras.org/conference/robot-challenges
http://www.ieee-ras.org/conference/robot-challenges
http://www.ieee-ras.org/conference/robot-challenges
http://www.ieee-ras.org/conference/robot-challenges
http://www.ieee-ras.org/conference/robot-challenges
http://www.ieee-ras.org/conference/robot-challenges
http://www.ieee-ras.org/conference/robot-challenges
http://www.ieee-ras.org/conference/robot-challenges
http://www.ieee-ras.org/conference/robot-challenges
http://www.ieee-ras.org/conference/robot-challenges
http://www.ieee-ras.org/conference/robot-challenges
http://www.ieee-ras.org/conference/robot-challenges
http://www.robocup2016.org/en/events/amazon-picking-challenge/
http://www.robocup2016.org/en/events/amazon-picking-challenge/
http://www.robocup2016.org/en/events/amazon-picking-challenge/
http://www.robocup2016.org/en/events/amazon-picking-challenge/
http://www.robocup2016.org/en/events/amazon-picking-challenge/
http://www.robocup2016.org/en/events/amazon-picking-challenge/
http://www.robocup2016.org/en/events/amazon-picking-challenge/
http://www.robocup2016.org/en/events/amazon-picking-challenge/
http://www.robocup2016.org/en/events/amazon-picking-challenge/
http://www.robocup2016.org/en/events/amazon-picking-challenge/
http://www.robocup2016.org/en/events/amazon-picking-challenge/
http://www.robocup2016.org/en/events/amazon-picking-challenge/
http://www.robocup2016.org/en/events/amazon-picking-challenge/
http://www.robocup2016.org/en/events/amazon-picking-challenge/
http://www.robocup2016.org/en/events/amazon-picking-challenge/
http://www.robocup2016.org/en/events/amazon-picking-challenge/
http://www.robocup2016.org/en/events/amazon-picking-challenge/
http://www.robocup2016.org/en/events/amazon-picking-challenge/
http://www.robocup2016.org/en/events/amazon-picking-challenge/
http://www.robocup2016.org/en/events/amazon-picking-challenge/
http://www.robocup2016.org/en/events/amazon-picking-challenge/
http://www.robocup2016.org/en/events/amazon-picking-challenge/
http://www.robocup2016.org/en/events/amazon-picking-challenge/
http://www.robocup2016.org/en/events/amazon-picking-challenge/
http://www.robocup2016.org/en/events/amazon-picking-challenge/
http://www.robocup2016.org/en/events/amazon-picking-challenge/
http://www.robocup2016.org/en/events/amazon-picking-challenge/
http://www.robocup2016.org/en/events/amazon-picking-challenge/
http://www.robocup2016.org/en/events/amazon-picking-challenge/
http://www.robocup2016.org/en/events/amazon-picking-challenge/
http://www.robocup2016.org/en/events/amazon-picking-challenge/
http://www.robocup2016.org/en/events/amazon-picking-challenge/
http://www.robocup2016.org/en/events/amazon-picking-challenge/
http://www.robocup2016.org/en/events/amazon-picking-challenge/
http://www.robocup2016.org/en/events/amazon-picking-challenge/
http://www.robocup2016.org/en/events/amazon-picking-challenge/
http://www.robocup2016.org/en/events/amazon-picking-challenge/
http://www.robocup2016.org/en/events/amazon-picking-challenge/
http://www.robocup2016.org/en/events/amazon-picking-challenge/
http://www.robocup2016.org/en/events/amazon-picking-challenge/
http://www.robocup2016.org/en/events/amazon-picking-challenge/
http://www.robocup2016.org/en/events/amazon-picking-challenge/
http://www.robocup2016.org/en/events/amazon-picking-challenge/
http://www.robocup2016.org/en/events/amazon-picking-challenge/
http://www.robocup2016.org/en/events/amazon-picking-challenge/
http://www.robocup2016.org/en/events/amazon-picking-challenge/
http://www.robocup2016.org/en/events/amazon-picking-challenge/
http://www.robocup2016.org/en/events/amazon-picking-challenge/
http://www.robocup2016.org/en/events/amazon-picking-challenge/
http://www.robocup2016.org/en/events/amazon-picking-challenge/
http://www.robocup2016.org/en/events/amazon-picking-challenge/
http://www.robocup2016.org/en/events/amazon-picking-challenge/
http://www.robocup2016.org/en/events/amazon-picking-challenge/
http://www.robocup2016.org/en/events/amazon-picking-challenge/
http://www.robocup2016.org/en/events/amazon-picking-challenge/
http://www.robocup2016.org/en/events/amazon-picking-challenge/
http://www.robocup2016.org/en/events/amazon-picking-challenge/
http://www.robocup2016.org/en/events/amazon-picking-challenge/
http://www.robocup2016.org/en/events/amazon-picking-challenge/
http://www.robocup2016.org/en/events/amazon-picking-challenge/
http://www.robocup2016.org/en/events/amazon-picking-challenge/
http://www.robocup2016.org/en/events/amazon-picking-challenge/
http://www.robocup2016.org/en/events/amazon-picking-challenge/
http://www.robocup2016.org/en/events/amazon-picking-challenge/
http://www.robocup2016.org/en/events/amazon-picking-challenge/
http://www.robocup2016.org/en/events/amazon-picking-challenge/
http://www.robocup2016.org/en/events/amazon-picking-challenge/
http://www.robocup2016.org/en/events/amazon-picking-challenge/
http://www.robocup2016.org/en/events/amazon-picking-challenge/
http://www.robocup2016.org/en/events/amazon-picking-challenge/
http://www.robocup2016.org/en/events/amazon-picking-challenge/
http://www.robocup2016.org/en/events/amazon-picking-challenge/
http://www.robocup2016.org/en/events/amazon-picking-challenge/
http://www.robocup2016.org/en/events/amazon-picking-challenge/
http://www.robocup2016.org/en/events/amazon-picking-challenge/
http://www.robocup2016.org/en/events/amazon-picking-challenge/
http://www.robocup2016.org/en/events/amazon-picking-challenge/
http://www.robocup2016.org/en/events/amazon-picking-challenge/
http://www.robocup2016.org/en/events/amazon-picking-challenge/
http://www.robocup2016.org/en/events/amazon-picking-challenge/
http://www.robocup2016.org/en/events/amazon-picking-challenge/
http://www.robocup2016.org/en/events/amazon-picking-challenge/
http://www.robocup2016.org/en/events/amazon-picking-challenge/
http://www.robocup2016.org/en/events/amazon-picking-challenge/
http://www.robocup2016.org/en/events/amazon-picking-challenge/
http://www.robocup2016.org/en/events/amazon-picking-challenge/
http://www.robocup2016.org/en/events/amazon-picking-challenge/
http://www.robocup2016.org/en/events/amazon-picking-challenge/
http://www.robocup2016.org/en/events/amazon-picking-challenge/
http://www.robocup2016.org/en/events/amazon-picking-challenge/
http://www.robocup2016.org/en/events/amazon-picking-challenge/
http://www.robocup2016.org/en/events/amazon-picking-challenge/
http://www.robocup2016.org/en/events/amazon-picking-challenge/
http://www.robocup2016.org/en/events/amazon-picking-challenge/
http://www.robocup2016.org/en/events/amazon-picking-challenge/
http://www.robocup2016.org/en/events/amazon-picking-challenge/
http://www.robocup2016.org/en/events/amazon-picking-challenge/
http://www.robocup2016.org/en/events/amazon-picking-challenge/
http://www.robocup2016.org/en/events/amazon-picking-challenge/
http://www.robocup2016.org/en/events/amazon-picking-challenge/
http://www.robocup2016.org/en/events/amazon-picking-challenge/
http://www.robocup2016.org/en/events/amazon-picking-challenge/
http://wiki.ros.org/find_object_2d
https://goo.gl/B8H9Zm

Object Detection and Recognition

[172]

Clone the source code into the src folder:

 $ git clone https://github.com/introlab/find-object.git
src/find_object_2d

Build the workspace:

 $ catkin_make

Running find_object_2d nodes using webcams
Here is the procedure to run the detector nodes for a webcam. If we want to detect an object
using a webcam, we first need to install the usb_cam package,which was discussed in
Chapter 2, Face Detection and Tracking Using ROS, OpenCV, and Dynamixel Servos.

Start roscore:1.

 $ roscore

Plug your USB camera into your PC, and launch the ROS usb_cam driver:2.

 $ roslaunch usb_cam usb_cam-test.launch

This will launch the ROS driver for USB web cameras, and you can list
the topics in this driver using the rostopic list command. The list of
topics in the driver is shown here:

Figure 3: Topics being published from the camera driver

Object Detection and Recognition

[173]

From the topic list, we are going to use the raw image topic from the cam, which3.
is being published to the /usb_cam/image_raw topic. If you are getting this
topic, then the next step is to run the object detector node. The following
command will start the object detector node:

 $ rosrun find_object_2d find_object_2d image:=/usb_cam/image_raw

This command will open the object detector window, shown in the
previous screenshot, in which we can see the camera feed and the
feature points on the objects.

So how can we use it for detecting an object? Here are the procedures to perform4.
a basic detection using this tool:

Figure 4: The Find-Object detector window

Object Detection and Recognition

[174]

You can right-click on the left-hand side panel (Objects) of this window, and you5.
will get an option to Add objects from scene. If you choose this option, you will
be directed to mark the object from the current scene, and after completing the
marking, the marked object will start to track from the scene. The previous
screenshot shows the first step, which is taking a snap of the scene having the
object.
After aligning the object toward the camera, press the Take Picture button to take6.
a snap of the object:

Figure 5: The Add object wizard for taking a snap of the object

Object Detection and Recognition

[175]

The next window is for marking the object from the current snap. The following7.
figure shows this. We can use the mouse pointer to mark the object. Click on the
Next button to crop the object, and you can proceed to the next step:

Figure 6: The Add object wizard for marking the object

Object Detection and Recognition

[176]

After cropping the object, it will show you the total number of feature descriptors8.
on the object, and you can press the End button to add the object template for
detection. The following figure shows the last stage of adding an object template
to this detector application:

Figure 7: The last step of the Add object wizard

Object Detection and Recognition

[177]

Congratulations! You have added an object for detection. Immediately after9.
adding the object, you will be able to see the detection shown in the following
figure. You can see a bounding box around the detected object:

Figure 8: The Find-Object wizard starting the detection

Object Detection and Recognition

[178]

Is that enough? What about the position of the object? We can retrieve the10.
position of the object using the following command:

 $ rosrun find_object_2d print_objects_detected

Figure 9: The object details

Object Detection and Recognition

[179]

You can also get the complete information about the detected object from the11.
/object topic. The topic publishes a multi-array that consist of the width and
height of the object and the homography matrix to compute the position and
orientation of the object and its scale and shear values. You can echo the
/objects topic to get output like this:

Figure 10: The /object topic values

We can compute the new position and orientation from the following equations:12.

Figure 11: The equation to compute object position

Object Detection and Recognition

[180]

Here, H is the homography 3×3 matrix, (x1, y1) is the object's position in
the stored image, and (x2, y2) is the computed object position in the
current frame.

You can check out the source code of the print_objected_src node to
get the conversion using a homography matrix.
Here is the source code of this node:
https://github.com/introlab/find-object/blob/master/src/ros/prin

t_objects_detected_node.cpp.

Running find_object_2d nodes using depth
sensors
Using a webcam, we can only find the 2D position and orientation of an object, but what
should we use if we need the 3D coordinates of the object? We could simply use a depth
sensor like the Kinect and run these same nodes. For interfacing the Kinect with ROS, we
need to install some driver packages. The Kinect can deliver both RGB and depth data.
Using RGB data, the object detector detects the object, and using the depth value, it
computes the distance from the sensor too.

Here are the dependent packages for working with the Kinect sensor:

If you are using the Xbox Kinect 360, which is the first Kinect, you have to install
the following package to get it working:

 $ sudo apt-get install ros-kinetic-openni-launch

If you have Kinect version 2, you may need a different driver package, which is
available on GitHub. You may need to install it from the source code. The
following is the ROS package link of the V2 driver. The installation instructions
are also given:https://github.com/code-iai/iai_kinect2

If you are using the Asus Xtion Pro or other PrimeSense device, you may need to install the
following driver to work with this detector:

 $ sudo apt-get install ros-kinetic-openni2-launch

https://github.com/introlab/find-object/blob/master/src/ros/print_objects_detected_node.cpp
https://github.com/introlab/find-object/blob/master/src/ros/print_objects_detected_node.cpp
https://github.com/code-iai/iai_kinect2

Object Detection and Recognition

[181]

In this book, we will be working with the Xbox Kinect, which is the first version of Kinect.

Before starting the Kinect driver, you have to plug the USB to your PC and make sure that
the Kinect is powered using its adapter. Once everything is done, you can launch the
drivers using the following command:

 $ roslaunch openni_launch openni.launch depth_registration:=true

If the driver is running without errors, you should get the following list of topics:1.

Figure 12: List of topics from the Kinect openNI driver

Object Detection and Recognition

[182]

If you are getting this, start the object detector and mark the object as you did for2.
the 2D object detection. The procedure is the same, but in this case, you will get
the 3D coordinates of the object. The following diagram shows the detection of
the object and its TF data on Rviz. You can see the side view of the Kinect and the
object position in Rviz.

Figure 13: Object detection using Kinect

To start the object detection, you have to perform some tweaks in the existing3.
launch file given by this package. The name of the launch file for object detection
is find_object_3d.launch.

You can directly view this file from the following link:
https://github.com/introlab/find-object/blob/master/launch/find_

object_3d.launch.
This launch file is written for an autonomous robot that detects objects
while navigating the surrounding.

https://github.com/introlab/find-object/blob/master/launch/find_object_3d.launch
https://github.com/introlab/find-object/blob/master/launch/find_object_3d.launch

Object Detection and Recognition

[183]

We can modify this file a little bit because in our case, there is no robot, so we can4.
modify it in such a way that the TF information should be published with respect
to Kinect's camera_rgb_frame, which is shown in the previous diagram. Here is
the launch file definition we want for the demo:

 <launch>
 <node name="find_object_3d" pkg="find_object_2d"
 type="find_object_2d" output="screen">
 <param name="gui" value="true" type="bool"/>
 <param name="settings_path"
 value="~/.ros/find_object_2d.ini" type="str"/>
 <param name="subscribe_depth" value="true"
 type="bool"/>
 <param name="objects_path" value="" type="str"/>
 <param name="object_prefix" value="object"
 type="str"/>
 <remap from="rgb/image_rect_color"
 to="camera/rgb/image_rect_color"/>
 <remap from="depth_registered/image_raw"
 to="camera/depth_registered/image_raw"/>
 <remap from="depth_registered/camera_info"
 to="camera/depth_registered/camera_info"/>
 </node>
 </launch>

In this code, we just removed the static transform required for the
mobile robot. You can also change the object_prefix parameter to
name the detected object.

Using the following commands, you can modify this launch file, which
is already installed on your system:

 $ roscd find_object_2d/launch
 $ sudo gedit find_object_3d.launch

Now, you can remove the unwanted lines of code and save your
changes. After saving this launch file, launch it to start detection:

 $ roslaunch find_object_2d find_object_3d.launch

You can mark the object and it will start detecting the marked object.

Object Detection and Recognition

[184]

To visualize the TF data, you can launch Rviz, make the fixed frame5.
/camera_link or /camera_rgb_frame, and add a TF display from the left
panel of Rviz.
You can run Rviz using the following command:6.

 $ rosrun rviz rviz

Other than publishing TF, we can also see the 3D position of the object in the detector
Terminal. The detected position values are shown in the following screenshot:

Figure 14: Printing the 3D object's position

Getting started with 3D object recognition
In the previous section, we dealt with 2D object recognition using a 2D and 3D sensor. In
this section, we will discuss 3D recognition. So what is 3D object recognition? In 3D object
recognition, we take the 3D data or point cloud data of the surroundings and 3D model of
the object. Then, we match the scene object with the trained model, and if there is a match
found, the algorithm will mark the area of detection.

In real-world scenarios, 3D object recognition/detection is much better than 2D because in
3D detection, we use the complete information of the object, similar to human perception.
But there are many challenges involved in this process too. Some of the main constrains are
computational power and expensive sensors. We may need more expensive computers to
process 3D information; also, the sensors for this purpose are costlier.

Object Detection and Recognition

[185]

Some of the latest applications using 3D object detection and recognition are autonomous
robots, especially self-driving cars. Self-driving cars have a LIDAR such as Velodyne
(http://velodynelidar.com/) that can provide a complete 3D point cloud around the
vehicle. The computer inside takes the 3D input and run various detectors to find
pedestrians, cyclists, and other obstacles for a collision-free ride.

Like we discussed in the beginning, in the Amazon Picking Challenge and other such
applications, the picking and placing needs 3D recognition capability. The following figure
shows how an autonomous car perceives the world. The data shown around the car is the
3D point cloud, which helps it detect objects and predict a collision-free route.

Figure 15: Typical 3D data from an autonomous car

3D object recognition has many applications, and in this section, you are going to see how
to perform a basic 3D object recognition using ROS and cheap depth sensors.

http://velodynelidar.com/

Object Detection and Recognition

[186]

Introduction to 3D object recognition
packages in ROS
ROS has packages for performing 3D object recognition. One of the popular packages we
are dealing with in this section is the Object Recognition Kitchen (ORK). This project was
started at Willow Garage mainly for 3D object recognition. The ORK is a generic way to
detect any kind of object, whether it be textured, nontextured, transparent, and so on. It is a
complete kit in which we can run several object-recognition techniques simultaneously. It is
not just a kit for object recognition, but it also provides non-vision aspects, such as database
management to store 3D models, input/output handling, robot-ROS integration, and code
reuse.

ORK home page:
http://wg-perception.github.io/object_recognition_core/.
ORK ROS page:
http://wiki.ros.org/object_recognition

Installing ORK packages in ROS
Here are the installation instructions to set up the object_recognition package in ROS.
We can install it using prebuilt binaries and source code. The easiest way to install is via
binaries.

Here is the command to install ORK packages in ROS:

 $ sudo apt-get install ros-kinetic-object-recognition-*

If you want to install these packages in ROS Indigo, replace kinetic with indigo.

This command will install the following ROS packages:

object-recognition-core: This package contains tools to launch several
recognition pipelines, train objects, and store models.
object-recognition-linemod: This is an object recognition pipeline that uses
linemod from OpenCV. The linemod pipeline is best for rigid body detection.

http://wg-perception.github.io/object_recognition_core/
http://wiki.ros.org/object_recognition

Object Detection and Recognition

[187]

object-recognition-tabletop: This is a pipeline use for pick-and-place
operations from a flat surface
object-recognition-tod: Textured Object Recognition is another pipeline for
textured objects that uses features for detection.
object-recognition-reconstruction: This is a basic 3D reconstruction of an
object from aligned Kinect data.
object-recognition-renderer: This is code that generates random views of
an object.
object-recognition-msgs: This package contains the ROS message and the
actionlib definition used in object_recognition_core.
object-recognition-capture: Capture is a set of tools to capture objects in
3D and perform odometry.
object-recognition-transparent-objects: This is a technique to recognize
and estimate poses of transparent objects.
object-recognition-ros-visualization: This package contains Rviz
plugins to visualize ORK detection results.

Here are the commands to install the packages from source. This command is basically
based on the rosinstall tool, which helps set up a list of packages in a single command.
You can run this commands from the /home/<user> folder.

 $ mkdir ws && cd ws
 $ wstool init src
https://raw.github.com/wg-perception/object_recognition_core/master/doc/sou
rce/ork.rosinstall.kinetic.plus
 $ cd src && wstool update -j8
 $ cd .. && rosdep install --from-paths src -i -y
 $ catkin_make
 $ source devel/setup.bash

You can find more about LINE-MODE from the following link:
h t t p ://f a r . i n . t u m . d e /M a i n /S t e f a n H i n t e r s t o i s s e r

This is the GitHub repository of the object-recognition packages:
h t t p s ://g i t h u b . c o m /w g - p e r c e p t i o n

Here are the possible issues you may have while working with this
package:
h t t p s ://g i t h u b . c o m /w g - p e r c e p t i o n /o b j e c t _ r e c o g n i t i o n _ r o s /i s s u e s
h t t p s ://g i t h u b . c o m /w g - p e r c e p t i o n /l i n e m o d /i s s u e s
https://github.com/wg-perception/object_recognition_core/issues

http://far.in.tum.de/Main/StefanHinterstoisser
http://far.in.tum.de/Main/StefanHinterstoisser
http://far.in.tum.de/Main/StefanHinterstoisser
http://far.in.tum.de/Main/StefanHinterstoisser
http://far.in.tum.de/Main/StefanHinterstoisser
http://far.in.tum.de/Main/StefanHinterstoisser
http://far.in.tum.de/Main/StefanHinterstoisser
http://far.in.tum.de/Main/StefanHinterstoisser
http://far.in.tum.de/Main/StefanHinterstoisser
http://far.in.tum.de/Main/StefanHinterstoisser
http://far.in.tum.de/Main/StefanHinterstoisser
http://far.in.tum.de/Main/StefanHinterstoisser
http://far.in.tum.de/Main/StefanHinterstoisser
http://far.in.tum.de/Main/StefanHinterstoisser
http://far.in.tum.de/Main/StefanHinterstoisser
http://far.in.tum.de/Main/StefanHinterstoisser
http://far.in.tum.de/Main/StefanHinterstoisser
http://far.in.tum.de/Main/StefanHinterstoisser
http://far.in.tum.de/Main/StefanHinterstoisser
http://far.in.tum.de/Main/StefanHinterstoisser
http://far.in.tum.de/Main/StefanHinterstoisser
http://far.in.tum.de/Main/StefanHinterstoisser
http://far.in.tum.de/Main/StefanHinterstoisser
http://far.in.tum.de/Main/StefanHinterstoisser
http://far.in.tum.de/Main/StefanHinterstoisser
http://far.in.tum.de/Main/StefanHinterstoisser
http://far.in.tum.de/Main/StefanHinterstoisser
http://far.in.tum.de/Main/StefanHinterstoisser
http://far.in.tum.de/Main/StefanHinterstoisser
http://far.in.tum.de/Main/StefanHinterstoisser
http://far.in.tum.de/Main/StefanHinterstoisser
http://far.in.tum.de/Main/StefanHinterstoisser
http://far.in.tum.de/Main/StefanHinterstoisser
http://far.in.tum.de/Main/StefanHinterstoisser
http://far.in.tum.de/Main/StefanHinterstoisser
http://far.in.tum.de/Main/StefanHinterstoisser
http://far.in.tum.de/Main/StefanHinterstoisser
http://far.in.tum.de/Main/StefanHinterstoisser
http://far.in.tum.de/Main/StefanHinterstoisser
http://far.in.tum.de/Main/StefanHinterstoisser
http://far.in.tum.de/Main/StefanHinterstoisser
http://far.in.tum.de/Main/StefanHinterstoisser
http://far.in.tum.de/Main/StefanHinterstoisser
http://far.in.tum.de/Main/StefanHinterstoisser
http://far.in.tum.de/Main/StefanHinterstoisser
http://far.in.tum.de/Main/StefanHinterstoisser
http://far.in.tum.de/Main/StefanHinterstoisser
http://far.in.tum.de/Main/StefanHinterstoisser
http://far.in.tum.de/Main/StefanHinterstoisser
http://far.in.tum.de/Main/StefanHinterstoisser
http://far.in.tum.de/Main/StefanHinterstoisser
http://far.in.tum.de/Main/StefanHinterstoisser
http://far.in.tum.de/Main/StefanHinterstoisser
http://far.in.tum.de/Main/StefanHinterstoisser
http://far.in.tum.de/Main/StefanHinterstoisser
http://far.in.tum.de/Main/StefanHinterstoisser
http://far.in.tum.de/Main/StefanHinterstoisser
http://far.in.tum.de/Main/StefanHinterstoisser
http://far.in.tum.de/Main/StefanHinterstoisser
http://far.in.tum.de/Main/StefanHinterstoisser
http://far.in.tum.de/Main/StefanHinterstoisser
http://far.in.tum.de/Main/StefanHinterstoisser
http://far.in.tum.de/Main/StefanHinterstoisser
http://far.in.tum.de/Main/StefanHinterstoisser
http://far.in.tum.de/Main/StefanHinterstoisser
http://far.in.tum.de/Main/StefanHinterstoisser
http://far.in.tum.de/Main/StefanHinterstoisser
http://far.in.tum.de/Main/StefanHinterstoisser
http://far.in.tum.de/Main/StefanHinterstoisser
http://far.in.tum.de/Main/StefanHinterstoisser
http://far.in.tum.de/Main/StefanHinterstoisser
http://far.in.tum.de/Main/StefanHinterstoisser
http://far.in.tum.de/Main/StefanHinterstoisser
http://far.in.tum.de/Main/StefanHinterstoisser
http://far.in.tum.de/Main/StefanHinterstoisser
http://far.in.tum.de/Main/StefanHinterstoisser
http://far.in.tum.de/Main/StefanHinterstoisser
http://far.in.tum.de/Main/StefanHinterstoisser
http://far.in.tum.de/Main/StefanHinterstoisser
http://far.in.tum.de/Main/StefanHinterstoisser
http://far.in.tum.de/Main/StefanHinterstoisser
https://github.com/wg-perception
https://github.com/wg-perception
https://github.com/wg-perception
https://github.com/wg-perception
https://github.com/wg-perception
https://github.com/wg-perception
https://github.com/wg-perception
https://github.com/wg-perception
https://github.com/wg-perception
https://github.com/wg-perception
https://github.com/wg-perception
https://github.com/wg-perception
https://github.com/wg-perception
https://github.com/wg-perception
https://github.com/wg-perception
https://github.com/wg-perception
https://github.com/wg-perception
https://github.com/wg-perception
https://github.com/wg-perception
https://github.com/wg-perception
https://github.com/wg-perception
https://github.com/wg-perception
https://github.com/wg-perception
https://github.com/wg-perception
https://github.com/wg-perception
https://github.com/wg-perception
https://github.com/wg-perception
https://github.com/wg-perception
https://github.com/wg-perception
https://github.com/wg-perception
https://github.com/wg-perception
https://github.com/wg-perception
https://github.com/wg-perception
https://github.com/wg-perception
https://github.com/wg-perception
https://github.com/wg-perception
https://github.com/wg-perception
https://github.com/wg-perception
https://github.com/wg-perception
https://github.com/wg-perception
https://github.com/wg-perception
https://github.com/wg-perception
https://github.com/wg-perception
https://github.com/wg-perception
https://github.com/wg-perception
https://github.com/wg-perception
https://github.com/wg-perception
https://github.com/wg-perception
https://github.com/wg-perception
https://github.com/wg-perception
https://github.com/wg-perception
https://github.com/wg-perception
https://github.com/wg-perception
https://github.com/wg-perception
https://github.com/wg-perception
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/object_recognition_ros/issues
https://github.com/wg-perception/linemod/issues
https://github.com/wg-perception/linemod/issues
https://github.com/wg-perception/linemod/issues
https://github.com/wg-perception/linemod/issues
https://github.com/wg-perception/linemod/issues
https://github.com/wg-perception/linemod/issues
https://github.com/wg-perception/linemod/issues
https://github.com/wg-perception/linemod/issues
https://github.com/wg-perception/linemod/issues
https://github.com/wg-perception/linemod/issues
https://github.com/wg-perception/linemod/issues
https://github.com/wg-perception/linemod/issues
https://github.com/wg-perception/linemod/issues
https://github.com/wg-perception/linemod/issues
https://github.com/wg-perception/linemod/issues
https://github.com/wg-perception/linemod/issues
https://github.com/wg-perception/linemod/issues
https://github.com/wg-perception/linemod/issues
https://github.com/wg-perception/linemod/issues
https://github.com/wg-perception/linemod/issues
https://github.com/wg-perception/linemod/issues
https://github.com/wg-perception/linemod/issues
https://github.com/wg-perception/linemod/issues
https://github.com/wg-perception/linemod/issues
https://github.com/wg-perception/linemod/issues
https://github.com/wg-perception/linemod/issues
https://github.com/wg-perception/linemod/issues
https://github.com/wg-perception/linemod/issues
https://github.com/wg-perception/linemod/issues
https://github.com/wg-perception/linemod/issues
https://github.com/wg-perception/linemod/issues
https://github.com/wg-perception/linemod/issues
https://github.com/wg-perception/linemod/issues
https://github.com/wg-perception/linemod/issues
https://github.com/wg-perception/linemod/issues
https://github.com/wg-perception/linemod/issues
https://github.com/wg-perception/linemod/issues
https://github.com/wg-perception/linemod/issues
https://github.com/wg-perception/linemod/issues
https://github.com/wg-perception/linemod/issues
https://github.com/wg-perception/linemod/issues
https://github.com/wg-perception/linemod/issues
https://github.com/wg-perception/linemod/issues
https://github.com/wg-perception/linemod/issues
https://github.com/wg-perception/linemod/issues
https://github.com/wg-perception/linemod/issues
https://github.com/wg-perception/linemod/issues
https://github.com/wg-perception/linemod/issues
https://github.com/wg-perception/linemod/issues
https://github.com/wg-perception/linemod/issues
https://github.com/wg-perception/linemod/issues
https://github.com/wg-perception/linemod/issues
https://github.com/wg-perception/linemod/issues
https://github.com/wg-perception/linemod/issues
https://github.com/wg-perception/linemod/issues
https://github.com/wg-perception/linemod/issues
https://github.com/wg-perception/linemod/issues
https://github.com/wg-perception/linemod/issues
https://github.com/wg-perception/linemod/issues
https://github.com/wg-perception/linemod/issues
https://github.com/wg-perception/linemod/issues
https://github.com/wg-perception/linemod/issues
https://github.com/wg-perception/linemod/issues
https://github.com/wg-perception/linemod/issues
https://github.com/wg-perception/linemod/issues
https://github.com/wg-perception/linemod/issues
https://github.com/wg-perception/linemod/issues
https://github.com/wg-perception/linemod/issues
https://github.com/wg-perception/linemod/issues
https://github.com/wg-perception/linemod/issues
https://github.com/wg-perception/linemod/issues
https://github.com/wg-perception/linemod/issues
https://github.com/wg-perception/linemod/issues
https://github.com/wg-perception/linemod/issues
https://github.com/wg-perception/linemod/issues
https://github.com/wg-perception/linemod/issues
https://github.com/wg-perception/linemod/issues
https://github.com/wg-perception/linemod/issues
https://github.com/wg-perception/linemod/issues
https://github.com/wg-perception/linemod/issues
https://github.com/wg-perception/linemod/issues
https://github.com/wg-perception/object_recognition_core/issues

Object Detection and Recognition

[188]

Detecting and recognizing objects from 3D
meshes
After installing these packages, let's start the detection. What are the procedures involved?
Here are the main steps:

Building a CAD model of the object or capturing its 3D model1.
Training the model2.
Detecting the object using the trained model3.

The first step in the recognition process is building the 3D model of the desired object. We
can do it using a CAD tool, or we can capture the real object using depth-sensing cameras. If
the object is rigid, then the best procedure is CAD modelling, because it will have all the 3D
information regarding the object. When we try to capture and build a 3D model, it may
have errors and the mesh may not be look like the actual object because of the accumulation
of errors in each stage. After building the object model, it will be uploaded to the object
database. The next phase is the training of the uploaded object on the database. After
training, we can start the detection process. The detection process will start capturing from
the depth sensors and will match with the trained model in the database using different
methods, such as Random Sample Consensus (RANSAC). If there is a match, it will
marked the area and print the result. We can see the final detection output in Rviz.

Let's see how to add a mesh of an object to the object database. There are ORK tutorial
packages that provide meshes of some objects, such as soda bottles. We can use one of these
object and add it to the object database.

Training using 3D models of an object
We can clone the ORK tutorial package using the following command:

 $ git clone https://github.com/wg-perception/ork_tutorials

You can see that the ork_tutorials/data folder contains some mesh files that we can use
for object detection. Navigate to that folder and execute the following commands from the
same path. The following command will add an entry to the object database:

 $ rosrun object_recognition_core object_add.py -n "coke" -d "A
universal coke" --commit

Object Detection and Recognition

[189]

The object name is mentioned after that -n argument and the object description after -d.
The -commit argument is to commit these operations. When the operation is successful,
you will get the ID of the object. This ID is used in the next command. The next command is
to upload the mesh file of the object to the created entry:

 $ rosrun object_recognition_core mesh_add.py <ID_OF_OBJECT> coke.stl --
commit

Here's an example:

 $ rosrun object_recognition_core mesh_add.py
cfab1c4804c316ea23c698ecbf0026e4 coke.stl --commit

We are mentioning the name of object model–coke.stl–in this command, which is in the
data folder. We are not mentioning the path here because we are already in that path. If not,
we have to mention the absolute path of the model.

If it is successful, you will get output saying the model has been stored in the database.

Do you want to see the uploaded model? Here is the procedure:

Install couchapp. The object recognition package uses couchdb as the database.1.
So we need the following application to view the model from the database:

 $ sudo pip install git+https://github.com/couchapp/couchapp.git

After setting up the application, you can run the following command:2.

 $rosrun object_recognition_core push.sh

If everything is successful, you will get a message like this:3.

[INFO] Visit your CouchApp here:

http://localhost:5984/or_web_ui/_design/viewer/index.html

Object Detection and Recognition

[190]

Click on the link, and you will get the list of objects and their visualizations in4.
your web browser. Here is a set of screenshots of this web interface:

Figure 16: Web interface for viewing object models

All right! The object model has been properly uploaded to the
database.

After uploading the model, we have to train it. You can use the following5.
command:

 $ rosrun object_recognition_core training -c `rospack find
object_recognition_linemod`/conf/training.ork

Object Detection and Recognition

[191]

If the training is successful, you will see a message like this:6.

Figure 17: Training 3D objects

Training from captured 3D models
If you don't have a 3D mesh of the object, you can also create one by capturing the 3D point
cloud data and reconstructing the mesh. Here are the steps to capture and build the mesh of
an object:

Before the capture, we have to print a pattern for better capturing and1.
reconstruction. You can download the pattern from
http://wg-perception.github.io/capture/_downloads/capture_board_big_5x

3.svg.pdf.

http://wg-perception.github.io/capture/_downloads/capture_board_big_5x3.svg.pdf
http://wg-perception.github.io/capture/_downloads/capture_board_big_5x3.svg.pdf

Object Detection and Recognition

[192]

Figure 18: Capture pattern for 3D objects

Print the pattern, stick it to some hard board, and place it on a rotating2.
mechanism that you can manually rotate the board along an axis. The object has
to be placed at the center of the pattern. The size of the pattern doesn't matter, but
the larger the size, the better the detection. We can place the object at the center
and place the Kinect where it can detect all the markers. The capture program
only capture the object once it detect the markers. Here is an example setup made
for the object capture:

Figure 19: Capturing 3D model of object using patterns

Object Detection and Recognition

[193]

If the setup is ready, we can start running the tools to capture the object mode.3.
First, start roscore:

 $ roscore

Launch the Kinect driver node, ensuring that Kinect is properly powered on and4.
plugged in to the PC:

 $ roslaunch openni_launch openni.launch

Set these parameters for the Kinect ROS driver:5.

 $ rosrun dynamic_reconfigure dynparam set /camera/driver
depth_registration True
 $ rosrun dynamic_reconfigure dynparam set /camera/driver
image_mode 2
 $ rosrun dynamic_reconfigure dynparam set /camera/driver
depth_mode 2

The topic_toolsrelay parameter basically subscribes to the first topic and6.
republished it in another name. You can run the following two commands on two
Terminals:

 $ rosrun topic_tools relay /camera/depth_registered/image_raw
/camera/depth/image_raw
 $ rosrun topic_tools relay /camera/rgb/image_rect_color
/camera/rgb/image_raw

This command will start the visualization and start capturing the object.

While running this command, you have to rotate the pattern board to acquire7.
maximum features from the object. Here, object.bag is the bag file used to store
the captured data.

 $ rosrun object_recognition_capture capture --seg_z_min 0.01 -o
object.bag

Object Detection and Recognition

[194]

Here is the screenshot of the capture operation:

Figure 20: Capturing 3D model

If the detector gets enough 3D data of an object, it will print that it is satisfied8.
with the data and quit.
After the capture, we need to upload the data to the database. We have to9.
mention the bag file name, name of the object, and its description. Here is an
example command to do that:

 $ rosrun object_recognition_capture upload -i object.bag -n
'Tropicana' It is a Tropicana --commit

The next phase is the reconstruction of the captured data into a mesh. Here is the10.
command to do that:

 $ rosrun object_recognition_reconstruction mesh_object --all --
visualize --commit

Object Detection and Recognition

[195]

You will see the conversion as shown here:11.

Figure 21: Reconstruction of mesh (with a different object)

You can see the point cloud of the captured object and the image during12.
reconstruction. After reconstruction, we can train the models in the database
using the following command:

 $ rosrun object_recognition_core training -c `rospack find
object_recognition_linemod`/conf/training.ork

You can use different pipelines here for training, such as tod, tabletop, or13.
linemod. Here, we've used the linemod pipeline. Each pipeline has its own merits
and demerits.

Object Detection and Recognition

[196]

After training, we can check whether the object has been uploaded to the14.
database by going to the following link and checking whether it looks like the
screenshot shown after it:

http://localhost:5984/_utils/database.html?object_recogn
ition/

Figure 22: List of object in database

The next process is recognizing the object using the trained model. Let's discuss how to do
that.

Object Detection and Recognition

[197]

Recognizing objects
There are several commands to start recognition using a trained model.

Starting roscore:

 $ roscore

Starting the ROS driver for Kinect:

 $ roslaunch openni_launch openni.launch

Setting the ROS parameters for the Kinect driver:

 $ rosrun dynamic_reconfigure dynparam set /camera/driver
depth_registration True
 $ rosrun dynamic_reconfigure dynparam set /camera/driver image_mode 2
 $ rosrun dynamic_reconfigure dynparam set /camera/driver depth_mode 2

Republishing the depth and RGB image topics using topic_tools relay:

 $ rosrun topic_tools relay /camera/depth_registered/image_raw
/camera/depth/image_raw
 $ rosrun topic_tools relay /camera/rgb/image_rect_color
/camera/rgb/image_raw

Here is the command to start recognition; we can use different pipelines to perform
detection. The following command uses the tod pipeline. This will work well for textured
objects.

 $ rosrun object_recognition_core detection -c `rospack find
object_recognition_tod`/conf/detection.ros.ork --visualize

Alternatively, we can use the tabletop pipeline, which can detect objects placed on a flat
surface, such as a table itself:

 $ rosrun object_recognition_core detection -c `rospack find
object_recognition_tabletop`/conf/detection.object.ros.ork

Object Detection and Recognition

[198]

You could also use the linemod pipeline, which is the best for rigid object recognition:

 $ rosrun object_recognition_core detection -c `rospack find
object_recognition_linemod`/conf/detection.object.ros.ork

After running the detectors, we can visualize the detections in Rviz. Let's start Rviz and
load the proper display type, shown in the screenshot:

 $ rosrun rviz rviz

Figure 23: Object detection visualized in Rviz

The Fixed Frame can be set to camera_rgb_frame. Then, we have to add a PointCloud2
display with the /camera/depth_registered/points topic. To detect the object and
display its name, you have to add a new display type called OrkObject, which is installed
along with the object-recognition package. You can see the object being detected, as shown
in the previous screenshot.

Object Detection and Recognition

[199]

If it is a tabletop pipeline, it will mark the plane area in which object is placed, as shown in
the next screenshot. This pipeline is good for grasping objects from a table, which can work
well with the ROS MoveIt! package.

Figure 24: Tabletop detection visualized in Rviz

For visualizing, you need to add OrkTable with the /table_array topic and
MarkerArray with the /tabletop/clusters topic.

We can add any number of objects to the database; detection accuracy depends on the
quality of model, quality of 3D input, and processing power of the PC.

Questions
What is the main difference between object detection and recognition?
What is 2D and 3D object recognition?
What are the main functions of the find_object_2d package in ROS?
What are the main steps involved in detecting 3D objects using an object
recognition package in ROS?

Object Detection and Recognition

[200]

Summary
In this chapter, we dealt with object detection and recognition. Both these things are
extensively used in robotic applications. The chapter started with a popular ROS package
for 2D object detection. The package is called find_2d_object, and we covered object
detection using a webcam and Kinect. After going through a demo using this package, we
discussed 3D object recognition using a ROS package called object_recognition, which
is mainly for 3D object recognition. We saw methods to build and capture the object model
and its training procedure. After training, we discussed the steps to start detecting the
object using a depth camera. Finally, we visualized the object recognition in Rviz.

In the next chapter, we will deal with interfacing ROS and Google TensorFlow.

7
Deep Learning Using ROS and

TensorFlow
You may have come across deep learning many times on the Web. Most of us are not fully
aware of this technology, and many people are trying to learn it too. So in this chapter, we
are going to see the importance of deep learning in robotics and how we can implement
robotics applications using deep learning and ROS.

Here are the main topics we are going to discuss in this chapter:

Introducing deep learning and its applications
Deep learning for robotics
Software frameworks and programming languages for deep learning
Getting started with Google TensorFlow
Installing TensorFlow for Python
Embedding TensorFlow APIs in ROS
Image recognition using ROS and TensorFlow
Introduction to scikit-learn
Implementing SVM using scikit-learn
Embedding SVM on a ROS node
Implementing an SVM-ROS application

Deep Learning Using ROS and TensorFlow

[202]

Introduction to deep learning and its
applications
So what actually is deep learning? It is a buzzword in neural network technology. What is a
neural network then? An artificial neural network is a computer software model that
replicates the behaviour of neurons in the human brain. A neural network is one way to
classify data. For example, if we want to classify an image by whether it contains an object
or not, we can use this method. There are several other computer software models for
classification like logistic regression, Support Vector Machine (SVM); a neural network is
one among them.

So why we are not calling it neural network instead of deep learning? The reason is that in
deep learning, we use a large number of artificial neural networks. So you may ask, “So
why it was not possible before?” The answer: to create a large number of neural networks
(multilayer perceptron), we may need a high amount of computational power. So how has
it become possible now? It's because of the availability of cheap computational hardware.
Will computational power alone do the job? No, we also need a large dataset to train with.

When we train a large set of neurons, it can learn various features from the input data. After
learning the features, it can predict the occurrence of an object or anything we have taught
to it.

To teach a neural network, we can either use the supervised learning method or go
unsupervised. In supervised learning, we have a training dataset with input and its
expected output. These values will be fed to the neural network, and the weights of the
neurons will be adjusted in such a way that it can predict which output it should generate
whenever it gets a particular input data. So what about unsupervised learning? This type of
algorithm learns from an input dataset without having corresponding outputs. The human
brain can work like supervised or unsupervised way, but unsupervised learning is more
predominant in our case.

The main applications of deep neural networks are in the classification and recognition of
objects, such as image recognition and speech recognition.

In this book, we are mainly dealing with supervised learning for building deep learning
applications for robots.

Deep Learning Using ROS and TensorFlow

[203]

Deep learning for robotics
Here are the main robotics areas where we apply deep learning:

Deep-learning-based object detector: Imagine a robot wants to pick a specific
object from a group of objects. What could be the first step for solving this
problem? It should identify the object first, right? We can use image processing
algorithms such as segmentation and Haar training to detect an object, but the
problem with those techniques is they are not scalable and can't be used for many
objects. Using deep learning algorithms, we can train a large neural network with
a large dataset. It can have good accuracy and scalability compared to other
methods. Datasets such as ImageNet (http://image-net.org/), which have a
large collection of image datasets, can be used for training. We also get trained
models that we can just use without training. We will look at an ImageNet-based
image recognition ROS node in an upcoming section.
Speech recognition: If we want to command a robot to perform some task using
our voice, what will we do? Will the robot understand our language? Definitely
not. But using deep learning techniques, we can build more a accurate speech
recognition system compared to the existing Hidden Markov Model (HMM)
based recognizer. Companies such as Baidu (http://research.baidu.com/) and
Google (http://research.google.com/pubs/SpeechProcessing.html) are trying
hard to create a global speech recognition system using deep learning techniques.
SLAM and localization: Deep learning can be used to perform SLAM and
localization of mobile robots, which perform much better than conventional
methods.
Autonomous vehicles: The deep learning approach in self-driving cars is a new
way of controlling the steering of vehicles using a trained network in which
sensor data can be fed to the network and corresponding steering control can be
obtained. This kind of network can learn by itself while driving.
Deep reinforcement learning: Do you want to make your robot act like a
human? Then use this technique. Reinforcement learning is a kind of machine
learning technique that allows machines and software agents to automatically
determine the ideal behavior within a specific context, in order to maximize its
performance. By combining it with deep learning, robots can truly behave as
truly intelligent agents that can solve tasks that are considered challenging by
humans.

http://image-net.org/
http://research.baidu.com/
http://research.google.com/pubs/SpeechProcessing.html

Deep Learning Using ROS and TensorFlow

[204]

One of the companies doing a lot in deep reinforcement learning is
DeepMind owned by Google. They have built a technique to master the
Atari 2600 games to a superhuman level with only the raw pixels and
score as inputs (https://deepmind.com/research/dqn/). AlphaGo is
another computer program developed by DeepMind, which can even beat
a professional human Go player
(https://deepmind.com/research/alphago/).

Deep learning libraries
Here are some of the popular deep learning libraries used in research and commercial
applications:

Figure 1: Popular deep learning libraries

TensorFlow: This is an open source software library for numerical computation
using data flow graphs. The TensorFlow library is designed for machine
intelligence and developed by the Google Brain team. The main aim of this
library is to perform machine learning and deep neural network research. It can
be used in a wide variety of other domains as well (h t t p s ://w w w . t e n s o r f l o w . o r

g /).

https://deepmind.com/research/dqn/
https://deepmind.com/research/alphago/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/

Deep Learning Using ROS and TensorFlow

[205]

Theano: This is an open source Python library
(http://deeplearning.net/software/theano/) that enables us to optimize and
evaluate mathematical expressions involving multidimensional arrays efficiently.
Theano is primarily developed by the machine learning group at the University
of Montreal , Canada.
Torch: Torch is again a scientific computing framework with wide support for
machine learning algorithms that puts GPUs first. It's very efficient, being built
on the scripting language LuaJIT and has an underlying C/CUDA
implementation (http://torch.ch/).
Caffe: Caffe (http://caffe.berkeleyvision.org/) is a deep learning library
made with a focus on modularity, speed, and expression. It is developed by the
Berkeley Vision and Learning Centre (BVLC).

Getting started with TensorFlow
As we discussed, TensorFlow is an open source library mainly designed for fast numerical
computing. This library mainly works with Python and was released by Google.
TensorFlow can be used as a foundation library to create deep learning models.

We can use TensorFlow both for research and development and in production systems. The
good thing about TensorFlow is it can run on a single CPU all the way to a large-scale
distributed system of hundreds of machines. It also works well on GPUs and mobile
devices.

You can check out the Tensorflow library at the following link:

https://www.tensorflow.org/

Installing TensorFlow on Ubuntu 16.04 LTS
Installing TensorFlow is not a tedious task if you have a fast Internet connection. The main
tool we need to have is pip. It is a package management system used to install and manage
software packages written in Python.

You may get latest installation instruction for Linux from following link:
https://www.tensorflow.org/install/install_linux

http://deeplearning.net/software/theano/
http://torch.ch/
http://caffe.berkeleyvision.org/
https://www.tensorflow.org/
https://www.tensorflow.org/install/install_linux

Deep Learning Using ROS and TensorFlow

[206]

Here is the command to install pip on Ubuntu:

 $ sudo apt-get install python-pip python-dev

After installing pip, you have to execute the following command to set a BASH variable
called TF_BINARY_URL. This is for installing the correct binaries for our configuration. The
following variable is for the Ubuntu 64 bit, Python 2.7, CPU only version:

 $ export
TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/cpu/tensorflo
w-0.11.0-cp27-none-linux_x86_64.whl

If you have an NVIDIA GPU, you may need a different binary. You may also need to install
CUDA toolkit 8.0 cuDNN v5 for installing this:

 $ export
TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/gpu/tensorflo
w-0.11.0-cp27-none-linux_x86_64.whl

Installing TensorFlow with NVIDIA acceleration:
h t t p ://w w w . n v i d i a . c o m /o b j e c t /g p u - a c c e l e r a t e d - a p p l i c a t i o n s - t e n s
o r f l o w - i n s t a l l a t i o n . h t m l
h t t p s ://a l l i s e e s o l u t i o n s . w o r d p r e s s . c o m /2016/09/08/i n s t a l l - g p u -
t e n s o r f l o w - f r o m - s o u r c e s - w - u b u n t u - 16- 04- a n d - c u d a - 8- 0- r c /

Installing cuDNN:
h t t p s ://d e v e l o p e r . n v i d i a . c o m /c u d n n

For more Python distributions and other OS configuration, check out the
following link:
https://www.tensorflow.org/versions/r0.11/get_started/os_setup.h
tml

After defining the BASH variable, use the following command to install the binaries for
Python 2:

 $ sudo pip install --upgrade $TF_BINARY_URL

If everything works fine, you will get the following kind of output in Terminal:

http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0-rc/
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/cudnn
https://www.tensorflow.org/versions/r0.11/get_started/os_setup.html
https://www.tensorflow.org/versions/r0.11/get_started/os_setup.html

Deep Learning Using ROS and TensorFlow

[207]

Figure 2: Installing TensorFlow on Ubuntu 16.04 LTS

If everything has been properly installed on your system, you can check it using a simple
test.

Open a Python Terminal, execute the following lines, and check whether you are getting the
results shown in the following screenshot. We will look at an explanation of the code in the
next section.

Figure 3: Testing a TensorFlow installation on Ubuntu 16.04 LTS

Deep Learning Using ROS and TensorFlow

[208]

Here is our hello world code in TensorFlow

 import tensorflow as tf
 hello = tf.constant('Hello, TensorFlow!')
 sess = tf.Session()
 print (sess.run(hello))
 a = tf.constant(12)
 b = tf.constant(34)
 print(sess.run(a+b))

TensorFlow concepts
Before you start programming using TensorFlow functions, you should understand its
concepts. Here is the block diagram of TensorFlow concepts demonstrated using addition
operation in Tensorflow.

Figure 4: Block diagram of Tensorflow concepts

Let's look at each concepts:

Graph
In TensorFlow, all computations are represented as graphs. A graph consists of nodes. The
nodes in a graph are called operations or ops. An op or node can take tensors. Tensors are
basically typed multi-dimensional arrays. For example, an image can be a tensor. So, in
short, the TensorFlow graph has the description of all the computation required.

Deep Learning Using ROS and TensorFlow

[209]

In the preceding example, the ops of the graphs are as follows:

 hello = tf.constant('Hello, TensorFlow!')
 a = tf.constant(12)
 b = tf.constant(34)

These tf.constant() methods create a constant op that will be added as a node in the
graph. You can see how a string and integer are added to the graph.

Session
After building the graph, we have to execute it, right? For computing a graph, we should
put it in a session. A Session class in TensorFlow places all ops or nodes onto
computational devices such as CPU or GPU.

Here is how we create a Session object in TensorFlow:

 sess = tf.Session()

For running the ops in a graph, the Session class provides methods to run the entire
graph:

 print(sess.run(hello))

It will execute the op called hello and print “Hello, TensorFlow” in Terminal.

Variables
During execution, we may need to maintain the state of the ops. We can do so by using
tf.Variable(). Let's check out an example declaration of tf.Variable():

This line will create a variable called counter and initialize it to scalar value 0.

 state = tf.Variable(0, name="counter")

Here are the ops to assign a value to the variable:

 one = tf.constant(1)
 update = tf.assign(state, one)

If you are working with variables, we have to initialize them all at once using the following
function:

 init_op = tf.initialize_all_variables()

Deep Learning Using ROS and TensorFlow

[210]

After initialization, we have to run the graph for putting this into effect. We can run the
previous ops using the following code:

 sess = tf.Session()
 sess.run(init_op)
 print(sess.run(state))
 sess.run(update)

Fetches
To fetch the outputs from the graph, we have to execute the run() method, which is inside
the Session object. We can pass the ops to the run() method and retrieve the output as
tensors:

 a = tf.constant(12)
 b = tf.constant(34)
 add = tf.add(a,b)
 sess = tf.Sessions()
 result = sess.run(add)
 print(result)

In the preceding code, the value of result will be 12+34.

Feeds
Until now, we have been dealing with constants and variables. We can also feed tensors
during the execution of a graph. Here we have an example of feeding tensors during
execution. For feeding a tensor, first we have to define the feed object using the
tf.placeholder() function. After defining two feed objects, we can see how to use it
inside sess.run():

 x = tf.placeholder(tf.float32)
 y = tf.placeholder(tf.float32)

 output = tf.mul(input1, input2)

 with tf.Session() as sess:
 print(sess.run([output], feed_dict={x:[8.], y:[2.]}))

 # output:
 # [array([16.], dtype=float32)]

Deep Learning Using ROS and TensorFlow

[211]

Writing our first code in TensorFlow
Let's start coding using TensorFlow. We are again going to write basic code that performs
matrix operations such as matrix addition, multiplication, scalar multiplication and
multiplication with a scalar from 1 to 99. The code is written for demonstrating basic
capabilities of TensorFlow, which we have discussed previously.

Here is the code for all these operations:

 import tensorflow as tf
 import time

 matrix_1 = tf.Variable([[1,2,3],[4,5,6],[7,8,9]],name="mat1")
 matrix_2 = tf.Variable([[1,2,3],[4,5,6],[7,8,9]],name="mat2")

 scalar = tf.constant(5)
 number = tf.Variable(1, name="counter")

 add_msg = tf.constant("\nResult of matrix addition\n")
 mul_msg = tf.constant("\nResult of matrix multiplication\n")
 scalar_mul_msg = tf.constant("\nResult of scalar multiplication\n")
 number_mul_msg = tf.constant("\nResult of Number multiplication\n")

 mat_add = tf.add(matrix_1,matrix_2)
 mat_mul = tf.matmul(matrix_1,matrix_2)
 mat_scalar_mul = tf.mul(scalar,mat_mul)
 mat_number_mul = tf.mul(number,mat_mul)

 init_op = tf.initialize_all_variables()
 sess = tf.Session()
 tf.device("/cpu:0")
 sess.run(init_op)

 for i in range(1,100):

 print "\nFor i =",i

 print(sess.run(add_msg))
 print(sess.run(mat_add))

 print(sess.run(mul_msg))
 print(sess.run(mat_mul))
 print(sess.run(scalar_mul_msg))
 print(sess.run(mat_scalar_mul))

Deep Learning Using ROS and TensorFlow

[212]

 update = tf.assign(number,tf.constant(i))
 sess.run(update)
 print(sess.run(number_mul_msg))
 print(sess.run(mat_number_mul))

 time.sleep(0.1)

 sess.close()

As we know, we have to import the tensorflow module to access its APIs. We are also
importing the time module to provide a delay in the loop:

 import tensorflow as tf
 import time

Here is how to define variables in TensorFlow. We are defining matrix_1 and matrix_2
variables, two 3×3 matrices:

 matrix_1 = tf.Variable([[1,2,3],[4,5,6],[7,8,9]],name="mat1")
 matrix_2 = tf.Variable([[1,2,3],[4,5,6],[7,8,9]],name="mat2")

In addition to the preceding matrix variables, we are defining a constant and a scalar
variable called counter. These values are used for scalar multiplication operations. We will
change the value of counter from 1 to 99, and each value will be multiplied with a matrix:

 scalar = tf.constant(5)
 number = tf.Variable(1, name="counter")

The following is how we define strings in TF. Each string is defined as a constant.

 add_msg = tf.constant("\nResult of matrix addition\n")
 mul_msg = tf.constant("\nResult of matrix multiplication\n")
 scalar_mul_msg = tf.constant("\nResult of scalar multiplication\n")
 number_mul_msg = tf.constant("\nResult of Number multiplication\n")

The following are the main ops in the graph doing the computation. The first line will add
two matrices, second line will multiply those same two, the third will perform scalar
multiplication with one value, and the fourth will perform scalar multiplication with a
scalar variable.

 mat_add = tf.add(matrix_1,matrix_2)
 mat_mul = tf.matmul(matrix_1,matrix_2)
 mat_scalar_mul = tf.mul(scalar,mat_mul)
 mat_number_mul = tf.mul(number,mat_mul)

Deep Learning Using ROS and TensorFlow

[213]

If we have TF variable declarations, we have to initialize them using the following line of
code:

 init_op = tf.initialize_all_variables()

Here, we are creating a Session() object:

 sess = tf.Session()

This is one thing we hadn't discussed earlier. We can perform the computation on any
device according to our priority. It can be a CPU or GPU. Here, you can see that the device
is a CPU:

 tf.device("/cpu:0")

This line of code will run the graph to initialize all variables:

 sess.run(init_op)

In the following loop, we can see the running of a TF graph. This loop puts each op inside
the run() method and fetches its results. To be able to see each output, we are putting a
delay on the loop:

 for i in range(1,100):

 print "\nFor i =",i

 print(sess.run(add_msg))
 print(sess.run(mat_add))

 print(sess.run(mul_msg))
 print(sess.run(mat_mul))

 print(sess.run(scalar_mul_msg))
 print(sess.run(mat_scalar_mul))

 update = tf.assign(number,tf.constant(i))
 sess.run(update)
 print(sess.run(number_mul_msg))
 print(sess.run(mat_number_mul))

 time.sleep(0.1)

Deep Learning Using ROS and TensorFlow

[214]

After all this computation, we have to release the Session() object to free up the resources:

 sess.close()

The following is the output:

Figure 5: Output of basic TensorFlow code

Image recognition using ROS and
TensorFlow
After discussing the basics of TensorFlow, let's start discussing how to interface ROS and
TensorFlow to do some serious work. In this section, we are going to deal with image
recognition using these two.

There is a simple package to perform image recognition using TensorFlow and ROS. Here is
the ROS package to do this:

https://github.com/qboticslabs/rostensorflow

https://github.com/qboticslabs/rostensorflow

Deep Learning Using ROS and TensorFlow

[215]

This package was forked from https://github.com/OTL/rostensorflow. The package
basically contains a ROS Python node that subscribes to images from the ROS webcam
driver and performs image recognition using TensorFlow APIs. The node will print the
detected object and its probability.

This code was developed using TensorFlow tutorials from the following
link:
https://www.tensorflow.org/versions/r0.11/tutorials/image_recogn

ition/index.html.

The image recognition is mainly done using a model called deep convolution network. It
can achieve high accuracy in the field of image recognition. An improved model we are
going to use here is Inception-v3 (https://arxiv.org/abs/1512.00567).

This model is trained for the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC)
(http://image-net.org/challenges/LSVRC/2016/index) using data from
2012.

When we run the node, it will download a trained Inception-v3 model to the computer and
classify the object according to the webcam images. You can see the detected object's name
and its probability in Terminal.

There are a few prerequisites to run this node. Let's go through the dependencies.

Prerequisites
For running a ROS image recognition node, you should install the following dependencies.
The first is cv-bridge, which helps us convert a ROS image message into OpenCV image
data type and vice versa. The second is cv-camera, which is one of the ROS camera drivers.
Here's how to install them:

 $sudo apt-get install ros-kinetic-cv-bridge ros-kinetic-cv-camera

The ROS image recognition node
You can download the ROS image recognition package from GitHub; it's also available in
the book's code bundle. The image_recognition.py program can publish detected results
in the /result topic, which is of the std_msgs/String type and is subscribed to image
data from the ROS camera driver from the /image (sensor_msgs/Image) topic.

https://github.com/OTL/rostensorflow
https://www.tensorflow.org/versions/r0.11/tutorials/image_recognition/index.html
https://www.tensorflow.org/versions/r0.11/tutorials/image_recognition/index.html
https://arxiv.org/abs/1512.00567
http://image-net.org/challenges/LSVRC/2016/index

Deep Learning Using ROS and TensorFlow

[216]

So how does image_recognition.py work?

First take a look at the main modules imported to this node. As you know, rospy has ROS
Python APIs. The ROS camera driver publishes ROS image messages, so here we have to
import Image messages from sensor_msgs to handle those image messages. To convert a
ROS image to the OpenCV data type and vice versa, we need cv_bridge and, of course,
the numpy, tensorflow, and tensorflow imagenet modules to classify of images and
download the Inception-v3 model from tensorflow.org. Here are the imports:

 import rospy
 from sensor_msgs.msg import Image
 from std_msgs.msg import String
 from cv_bridge import CvBridge
 import cv2
 import numpy as np
 import tensorflow as tf
 from tensorflow.models.image.imagenet import classify_image

The following code snippet is the constructor for a class called RosTensorFlow():

 class RosTensorFlow():
 def __init__(self):

The constructor call has the API for downloading the trained Inception-v3 model from
tensorflow.org:

 classify_image.maybe_download_and_extract()

Now, we are creating a TensorFlow Session() object, then creating a graph from a saved
GraphDef file, and returning a handle for it. The GraphDef file is available in the code
bundle.

 self._session = tf.Session()
 classify_image.create_graph()

This line creates a cv_bridge object for the ROS-OpenCV image conversion:

 self._cv_bridge = CvBridge()

Here are the subscriber and publisher handles of the node:

 self._sub = rospy.Subscriber('image', Image, self.callback,
 queue_size=1)
 self._pub = rospy.Publisher('result', String, queue_size=1)

https://www.tensorflow.org/

Deep Learning Using ROS and TensorFlow

[217]

Here are some parameters used for recognition thresholding and the number of top
predictions:

 self.score_threshold = rospy.get_param('~score_threshold', 0.1)
 self.use_top_k = rospy.get_param('~use_top_k', 5)

Here is the image call back in which a ROS image message is converted to OpenCV data
type:

 def callback(self, image_msg):
 cv_image = self._cv_bridge.imgmsg_to_cv2(image_msg, "bgr8")
 image_data = cv2.imencode('.jpg', cv_image)[1].tostring()

The following code runs the softmax tensor by feeding image_data as input to the graph.
The 'softmax:0' part is a tensor containing the normalized prediction across 1,000 labels.

 softmax_tensor =
 self._session.graph.get_tensor_by_name('softmax:0')

The 'DecodeJpeg/contents:0' line is a tensor containing a string providing JPEG
encoding of the image:

 predictions = self._session.run(
 softmax_tensor, {'DecodeJpeg/contents:0': image_data})
 predictions = np.squeeze(predictions)

The following section of code will look for a matching object string and its probability and
publish it through the topic called /result:

 node_lookup = classify_image.NodeLookup()
 top_k = predictions.argsort()[-self.use_top_k:][::-1]
 for node_id in top_k:
 human_string = node_lookup.id_to_string(node_id)
 score = predictions[node_id]
 if score > self.score_threshold:
 rospy.loginfo('%s (score = %.5f)' % (human_string,
 score))
 self._pub.publish(human_string)

Deep Learning Using ROS and TensorFlow

[218]

The following is the main code of this node. It simply initializes the class and calls the
main() method inside the RosTensorFlow() object. The main method will spin() the
node and execute a callback whenever an image comes into the /image topic.

 def main(self):
 rospy.spin()
 if __name__ == '__main__':
 rospy.init_node('rostensorflow')
 tensor = RosTensorFlow()
 tensor.main()

Running the ROS image recognition node
Let's go through how we can run the image recognition node.

First, you have to plug a UVC webcam, which we used in Chapter 2, Face Detection and
Tracking Using ROS, OpenCV and Dynamixel Servos
Run roscore:

 $ roscore

Run the webcam driver:

 $ rosrun cv_camera cv_camera_node

Run the image recognition node, simply using the following command:

 $ python image_recognition.py image:=/cv_camera/image_raw

When we run the recognition node, it will download the inception model and extract it into
the /tmp/imagenet folder. You can do it manually by downloading inception-v3 from the
following link:

http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz

http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz

Deep Learning Using ROS and TensorFlow

[219]

You can copy this file into the /tmp/imagenet folder:

Figure 6: Inception model in the /tmp/imagenet folder

You can see the result by echoing the following topic:

 $ rostopic echo /result

You can view the camera images using following command:

 $ rosrun image_view image_view image:= /cv_camera/image_raw

Here is the output from the recognizer. The recognizer detects the device as a cell phone.

Figure 7: Output from recognizer node

Deep Learning Using ROS and TensorFlow

[220]

In the next detection, the object is detected as a water bottle:

Figure 8: Output from recognizer node detecting a water bottle

Introducing to scikit-learn
Until now, we have been discussing deep neural networks and some of their applications in
robotics and image processing. Apart from neural networks, there are a lot of models
available to classify data and predict using them.

Generally, in machine learning, we can teach the model using supervised or unsupervised
learning. In supervised learning, we training the model against a dataset, but in
unsupervised, it discover groups of related observations called clusters instead.

There are lot of libraries available for working with other machine learning algorithms.
We'll look at one such library called scikit-learn; we can play with most of the standard
machine learning algorithms and implement our own application using it.

scikit-learn (http://scikit-learn.org/) is one of the most popular open source machine
learning libraries for Python. It provides an implementation of algorithms for performing
classification, regression, and clustering. It also provides functions to extract features from a
dataset, train the model, and evaluate it.

http://scikit-learn.org/

Deep Learning Using ROS and TensorFlow

[221]

scikit-learn is an extension of a popular scientific python library called SciPy
(https://www.scipy.org/). scikit-learn strongly binds with other popular Python libraries,
such as NumPy and matplotlib. Using NumPy, we can create efficient multidimensional
arrays, and using matplotlib, we can visualize the data.

scikit-learn is well documented and has wrappers for performing Support Vector Machine
(SVM) and natural language processing functions.

Installing scikit-learn on Ubuntu 16.04 LTS
Installing scikit-learn on Ubuntu is easy and straightforward. You can install it either using
apt-get install or pip.

Here is the command to install scikit-learn using apt-get install:

 $ sudo apt-get install python-sklearn

We can install it using pip using the following command:

 $ sudo pip install scikit-learn

After installing scikit-learn, we can test the installation by doing following commands in
Python Terminal.

>>> import sklearn
>>> sklearn.__version__
'0.17'

Congratulations, you have successfully set up scikit-learn!

Introducing to SVM and its application in
robotics
We have set up scikit-learn, so what is next? Actually, we are going to discuss a popular
machine learning technique called SVM and its applications in robotics. After discussing the
basics, we can implement a ROS application using SVM.

So what is SVM? SVM is a supervised machine learning algorithm that can be used for
classification or regression. In SVM, we plot each data item in n-dimensional space along
with its value. After plotting, it performs a classification by finding a hyper-plane that
separates those data points. This is how the basic classification is done!

https://www.scipy.org/

Deep Learning Using ROS and TensorFlow

[222]

SVM can perform better for small datasets, but it does not do well if the dataset is very
large. Also, it will not be suitable if the dataset has noisy data.

SVM is widely used in robotics, especially in computer vision for classifying objects and
also for classifying various kinds of sensor data in robots.

In the next section, we will see how we can implement SVM using scikit-learn and make an
application using it.

Implementing an SVM-ROS application
Following shows the aim of this project.

In this application we are going to classify a sensor data in three ways. The sensor values
are assumed to be in between 0 to 30,000 and we are having a dataset which is having the
sensor value mapping. For example, for a sensor value, you can assign the value belongs to
1, 2, or 3. To test the SVM, we are making another ROS node called virtual sensor node,
which can publish value in between 0 to 30000. The trained SVM model can able to classify
the virtual sensor value. This method can be adopted for any kind of sensors for classifying
its data.

Before embedding SVM in ROS, here's some basic code in Python using sklearn to
implement SVM.

The first thing is importing the sklearn and numpy modules. The sklearn module has the
svm module, which is going to be used in this code, and numpy is used for making multi-
dimensional arrays:

 from sklearn import svm
 import numpy as np

For training SVM, we need an input (predictor) and output (target); here, X is the input and
y is the required output:

 X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]])
 y = np.array([1, 1, 2, 2])

After defining X and y, just create an instance of SVM Classification (SVC) object.

Deep Learning Using ROS and TensorFlow

[223]

Feed X and y to the SVC object for training the model. After feeding X and y, we can feed an
input that may not be in X, and it can predict the y value corresponding to the given input:

 model = svm.SVC(kernel='linear',C=1,gamma=1)
 model.fit(X,y)
 print(model.predict([[-0.8,-1]]))

The preceding code will give an output of 1.

Now, we are going to implement a ROS application that does the same thing. Here, we are
creating a virtual sensor node that can publish random values from 0 to 30,000. The ROS-
SVM node will subscribe to those values and classify them using the preceding APIs. The
learning in SVM is done from a CSV data file.

You can view the complete application package in book code; it's called ros_ml. Inside the
ros_ml/scripts folder, you can see nodes such as ros_svm.py and
virtual_sensor.py.

First, let's take a look at the virtual sensor node. The code is very simple and self-
explanatory. It simply generates a random number between 0 and 30,000 and publishes it to
the /sensor_read topic:

 #!/usr/bin/env python
 import rospy
 from std_msgs.msg import Int32
 import random

 def send_data():
 rospy.init_node('virtual_sensor', anonymous=True)
 rospy.loginfo("Sending virtual sensor data")
 pub = rospy.Publisher('sensor_read', Int32, queue_size=1)
 rate = rospy.Rate(10) # 10hz

 while not rospy.is_shutdown():
 sensor_reading = random.randint(0,30000)
 pub.publish(sensor_reading)
 rate.sleep()

 if __name__ == '__main__':
 try:
 send_data()
 except rospy.ROSInterruptException:
 pass

Deep Learning Using ROS and TensorFlow

[224]

The next node is ros_svm.py. This node reads from a data file from a data folder inside the
ros_ml package. The current data file is named pos_readings.csv, which contains the
sensor and target values. Here is a snippet from that file:

 5125,5125,1
 6210,6210,1

 10125,10125,2
 6410,6410,2
 5845,5845,2

 14325,14325,3
 16304,16304,3
 18232,18232,3

The ros_svm.py node reads this file, trains the SVC, and predicts each value from the
virtual sensor topic. The node has a class called Classify_Data(), which has methods to
read the CSV file and train and predict it using scikit APIs.

We'll step through how these nodes are started:

Start roscore:

 $ roscore

Switch to the script folder of ros_ml:

 $ roscd ros_ml/scripts

Run the ROS SVM classifier node:

 $ python ros_svm.py

Run the virtual sensor in another Terminal:

 $ rosrun ros_ml virtual_sensor.py

Here is the output we get from the SVM node:

Deep Learning Using ROS and TensorFlow

[225]

Figure 9: ROS – SVM node output

Questions
What basically is a neural network?
What is deep learning?
Why do we use TensorFlow for deep learning?
What are the main concepts in TensorFlow?
Why do we use scikit-learn for machine learning?

Summary
In this chapter, we mainly discussed the various machine learning techniques and libraries
that can be interfaced with ROS. We started with the basics of machine learning and deep
learning. Then we started working with TensorFlow, which is an open source Python
library mainly for performing deep learning. We discussed basic code using TensorFlow
and later combined those capabilities with ROS for an image recognition application. After
discussing Tensorflow and deep learning, we discussed another Python library called scikit-
learn used for machine learning applications. We saw what SVM is and saw how to
implement it using scikit-learn. Later, we implemented a sample application using ROS and
scikit-learn for classifying sensor data.

In the next chapter, we will discuss ROS on Android and MATLAB.

8
ROS on MATLAB and Android

As you all know, MATLAB is one of the powerful numerical computation tools available for
research, education, and commercial applications. Also, we don't need any more
explanation of the Android OS, which is one of the most popular mobile operating systems.
In this chapter, we will mainly work with the ROS interface of MATLAB and Android.

By combining the capabilities of MATLAB and Android in ROS, we can create powerful
robotic projects. Here are the main topics we will discuss in this chapter:

Getting started with the ROS-MATLAB interface
Communicating from MATLAB to a ROS network
Controlling a ROS robot from MATLAB
Getting started with Android and its ROS interface
Installing the ROS-Android interface
Playing with ROS-Android applications
ROS-Android code walk through
Creating a basic application using the ROS-Android interface

ROS on MATLAB and Android

[227]

Getting started with the ROS-MATLAB
interface
The ROS-MATLAB interface is a useful interface for researchers and students for
prototyping their robot algorithms in MATLAB and testing it on ROS-compatible robots.
The robotics system toolbox in MATLAB provides the interface between MATLAB and
ROS. We can prototype our algorithm and test it on a ROS-enabled robot or in robot
simulators such as Gazebo and V-REP
(http://www.coppeliarobotics.com/downloads.html). From MATLAB, we can publish or
subscribe to a topic, such as a ROS node, and we can make it a ROS master. The MATLAB-
ROS interface has most of the ROS functionalities that we need.

Here is a block diagram shows how MATLAB is communicating with a robot which is
running on ROS.

Figure 1: The MATLAB – Robot communication diagram

From the preceding figure, you can understand, MATLAB is equipped with powerful
toolboxes such as computer vision, control system and signal processing. We can fetch the
data from robot through ROS interface and process using these toolbox. After processing
sensor data, we can also send control commands to robot. These communications are all
occurs via ROS-MATLAB interface.

http://www.coppeliarobotics.com/downloads.html

ROS on MATLAB and Android

[228]

Here are some of the main features of the ROS – MATLAB interface:

It can seamlessly connect to another ROS network and can work with various
robot capabilities. We can also visualize the robot sensor data in MATLAB.
We can create ROS nodes, publishers, and subscribers directly from MATLAB
and Simulink.
We can send and receive topics using ROS messages and ROS custom messages.
It has full support for ROS services.
We get ROS functionality from any OS platform (Windows, Linux, or Mac).
We can make MATLAB the ROS master.
We can import ROS bag files and analyze, visualize, and post-process logged
data.
It provides full-fledged communication with robot simulators such as Gazebo
and V-REP for offline programming.
We can create standalone ROS C++ nodes from a Simulink model.

Setting Robotics Toolbox in MATLAB
Here is the link to download a trial or purchase the Robotics Toolbox in MATLAB
(https://in.mathworks.com/products/robotics.html). This toolbox is compatible with
MATLAB version 2013 onward. If you don't have MATLAB, you can test the chapter's code
using a trial version; if you have it, buy or download a trial version of Robotic Toolbox.

Basic ROS functions in MATLAB
After setting up Robotics Toolbox in MATLAB, we can start working on the important
functions of MATLAB that are used to interact with a ROS network. Let's look at them with
examples.

https://in.mathworks.com/products/robotics.html

ROS on MATLAB and Android

[229]

Initializing a ROS network
Before running a ROS node, we have to run the roscore command, right? The roscore
command will start a ROS master, and other ROS nodes can find each other through it. In
MATLAB, instead of the roscore command, we can use the rosinit function to start a
ROS master.

Figure 2 : The rosinit function in MATLAB

The rosinit function can start a ROS master and a global node that is connected to the
master. Here, we can see that MATLAB itself can act as a ROS master and other nodes can
connect to it. We can also connect to a ROS network from MATLAB. We'll cover that in the
next section. In such a setup, the ROS master is running on a different system, either on a
ROS robot or ROS PC. Let's try some of the ROS commands in MATLAB to list ROS nodes,
topics, and all that. The good thing about the MATLAB – ROS interface is that the
commands of Robotics Toolbox are similar to the actual ROS bash commands. Let's go
through a few commands to list out ROS parameters.

Listing ROS nodes, topics, and messages
The commands to inspect nodes, topics, and messages are similar to ROS bash commands.
MATLAB provides a command to start sample ROS nodes that can publish topics. You can
just call exampleHelperROSCreateSampleNetwork to start these nodes.

ROS on MATLAB and Android

[230]

Figure 3: ROS-MATLAB commands

You can see that the usage of rosnode and rostopic is the same as with real ROS
commands. You can even echo the rostopic using rostopic echo /topic_name. Here
is one example, in which we are echoing a topic called /pose:

Figure 4: ROS topic echo output

ROS on MATLAB and Android

[231]

You can get the complete list of ROS commands in MATLAB using the help command.

Here is the syntax for doing so:

 >> help robotics.ros

This is the screenshot of the list of commands with MATLAB for ROS:

Figure 5: List of ROS-MATLAB commands

Communicating from MATLAB to a ROS
network
We have worked with some MATLAB commands and we've understood that we can
communicate with ROS from MATLAB. But the previous commands were executed in a
MATLAB terminal by making MATLAB the ROS master. But what do we do when we need
to communicate with a ROS network or a ROS-based robot? The method is simple.

ROS on MATLAB and Android

[232]

Assuming your PC has MATLAB and the ROS PC/robot is connected to the same network.
It can be connected either through LAN or Wi-Fi. If the PC and robot are connected to the
same network, both should have identical IP addresses. The first step is to find each device's
IP address.

If your MATLAB installation is in Windows, you can open Command Prompt window by
simply searching for cmd in the search window; then, enter the ipconfig command. This
will list the network adapters and their details:

Figure 6: Wi-Fi adapter details and its IP in a MATLAB system

Here you can see that the PC running MATLAB and the ROS system are connected through
Wi-Fi, and the IP is marked. If you are using MATLAB from Linux, you can use the
ifconfig command instead of ipconfig. You can also get the IP of the ROS-running PC,
which could be a Linux PC, using the same command.

Figure 7: Wi-Fi adapter details and IP of ROS system

ROS on MATLAB and Android

[233]

So in this case, the IP address of the MATLAB system is 192.168.1.101 and that of the
ROS system is 192.168.1.102. Here is how the network looks like:

Figure 8: Connecting MATLAB to a ROS network

Connecting from MATLAB to the ROS network is pretty easy. First, we have to set the
ROS_MASTER_URI variable, which is the IP of the ROS PC/robot where the ROS master is
running. You have to mention the port along with the IP; the default port is 11311.

Before connecting to the ROS network, be sure that you run roscore on the ROS PC/robot.
MATLAB can connect to the ROS network if there is a ROS master running on it.

The following command helps us connect to the ROS network:

 >> setenv('ROS_MASTER_URI','http://192.168.1.102:11311')
 >> rosinit

Figure 9: Connecting to ROS network

You can also do this using following command:

 >> rosinit('192.168.1.102', 'NodeHost', '192.168.1.101')

Here, the first argument is the ROS network IP and next one is the IP of the host. If the
connection is successful, we will get a message like in preceding screenshot.

ROS on MATLAB and Android

[234]

After connecting to the network, run an example node on the ROS PC/robot. You can use
following node for testing:

 $ rosrun roscpp_tutorials talker

This node basically publishes string data (std_msgs/String) to the /chatter topic. You
can see the node output from the following screenshot:

Figure 10: roscpp talker node

Now list the topics in MATLAB and see the magic!

 >> rostopic list

You will see something like the following screenshot:

Figure 11: roscpp talker node

We can also publish values from MATLAB to ROS. Let's see how.

This will connect to the ROS network:

>>setenv('ROS_MASTER_URI','http://192.168.1.102:11311')
>> rosinit

ROS on MATLAB and Android

[235]

This will create a handle for the ROS publisher. The publisher topic name is /talker and
message type is std_msgs/String.

>> chatpub = rospublisher('/talker', 'std_msgs/String');

This line will create a new message definition:

>> msg = rosmessage(chatpub);

Here, we are putting data into the message:

>> msg.Data = 'Hello, From Matlab';

Now let's send the message through the topic:

>> send(chatpub,msg);

With this command, we are latching the message to the topic:

>> latchpub = rospublisher('/talker', 'IsLatching', true);

After executing these commands in MATLAB, check the topic list from the ROS PC and
echo it. You will get the same message, like this:

Figure 12: Listing rostopic from MATLAB on a ROS PC

ROS on MATLAB and Android

[236]

Controlling a ROS robot from MATLAB
Here is an interesting MATLAB GUI application that uses ROS APIs to remotely control a
robot. The final application will look like the following:

Figure 13: MATLAB-ROS application GUI

In this application, we can put in the ROS master IP, port, and the teleop topic of the robot
in its GUI itself. When we press the connect button, the MATLAB application will connect
to the ROS network. Now, we can move the robot by pressing the Forward, Backward, Left,
and Right buttons.

ROS on MATLAB and Android

[237]

Here is the design block diagram of this application:

Figure 14: MATLAB-ROS application design block diagram

So let's look at how we can build an application like this.

Here are some of the frequently asking questions in ROS-MATLAB interface

How to run multiple ROS nodes in MATLAB?1.

Yes, we can run multiple ROS nodes in MATLAB. The following
command in MATLAB will give you an example to do it.

>>>openExample('robotics/RunMultipleROSNodesToPerformDifferentTasksExample'
)

Does MATLAB support launch files?2.

No, there is no XML kind launch files in MATLAB, but we can start and
end nodes in a MATLAB script which will work almost like a launch
file.

ROS on MATLAB and Android

[238]

What features exist in both MATLAB and ROS?3.

For example plotting data, any recommendations for the use of each?

There are plotting tools available in ROS and MATLAB. The tools such as4.
rqt_gui help to plot different kind of data which are coming as topics. If you
want to play with data and its analysis, MATLAB is the good choice.

Designing the MATLAB GUI application
MATLAB provides easy ways to design a GUI. Here is one popular method to create a GUI
using GUI development environment (GUIDE)
(https://in.mathworks.com/discovery/matlab-gui.html). To start GUIDE in MATLAB,
just type guide in your MATLAB command line:

Figure 15: MATLAB GUI wizard

https://in.mathworks.com/discovery/matlab-gui.html

ROS on MATLAB and Android

[239]

You can select a Blank GUI and press OK. You will get a blank GUI, and you can add
buttons and text boxes according to your requirements. The following figure shows the
basic GUI elements in GUIDE. You can see an empty GUI form and toolbox. We can just
drag components from the toolbox to the form. For example, if we need a push button and
text edit box, we can just drag and drop those items to the empty form and align them on
the form:

Figure 16: MATLAB GUI empty form

ROS on MATLAB and Android

[240]

After assigning buttons, we have to generate a callback function for them, which will be
executed once the button is pressed (or the text edit box is changed). You can create the
callback function from the option highlighted in the following figure. When you save it, you
will get a *.m file too. This is the MATLAB code file, in which we are going to write the
callback functions.

Figure 17: Inserting callback functions

ROS on MATLAB and Android

[241]

The preceding figure shows how to insert a callback for each button. Right-click on the
button and press the Callback option. You'll see the empty callback function for this button:

Figure 18: An empty callback function

In the next section, we will discuss the content of each callback of the application.

Explaining callbacks
You can get the complete code from chapter_8_codes/Matlab/teleop.m. Let's look at
the content and functions of each callback. The first callback we are going to see is for the
ROS MASTER IP edit box:

 function edit1_Callback(hObject, eventdata, handles)
 global ros_master_ip
 ros_master_ip = get(hObject,'String')

When we enter an IP address from the ROS network in this edit box, it will store the IP
address as a string in a global variable called ros_master_ip. If you don't enter the IP,
then a default value is loaded, defined outside the callback.

Here are the initial values of ros_master_ip, ros_master_port, and teleop topic.

 ros_master_ip = '192.168.1.102';
 ros_master_port = '11311';
 teleop_topic_name = '/cmd_vel_mux/input/teleop';

If we don't provide any values in the textbox, these initial values get loaded.

The next GUI element is for obtaining the ROS MASTER PORT. This is the callback of this
edit box:

 function edit2_Callback(hObject, eventdata, handles)
 global ros_master_port
 ros_master_port = get(hObject,'String')

ROS on MATLAB and Android

[242]

In this function too, the port from the edit box is stored as string type in a global variable
called ros_master_port.

The next edit box is for obtaining the teleop_topic_name. Here is its callback function
definition:

 function edit3_Callback(hObject, eventdata, handles)
 global teleop_topic_name
 teleop_topic_name = get(hObject,'String')

Similar to ros_master_port and port, this too is stored as string in a global variable.

After obtaining all these values, we can press the Connect to Robot button for connecting to
the ROS robot/ROS PC. If the connection is successful, you can see proper messages in the
command line. Here are the callback definitions of the Connect to Robot button:

 function pushbutton6_Callback(hObject, eventdata, handles)

 global ros_master_ip
 global ros_master_port
 global teleop_topic_name
 global robot
 global velmsg

 ros_master_uri =
 strcat('http://',ros_master_ip,':',ros_master_port)
 setenv('ROS_MASTER_URI',ros_master_uri)

 rosinit

 robot = rospublisher(teleop_topic_name,'geometry_msgs/Twist');
 velmsg = rosmessage(robot);

This callback will set the ROS_MASTER_URI variable by concatenating ros_master_ip and
the port. Then, it initialize the connection by calling rosinit. After connecting, it will
create a publisher of geometry_msgs/Twist, which is for sending the command velocity.
The topic name is the name that we give in the edit box.

After successful connection, we can control the robot by pressing keys such as Forward,
Backward, Left, and Right.

ROS on MATLAB and Android

[243]

The speeds of linear and angular velocity are initialized as follows:

 global left_spinVelocity
 global right_spinVelocity

 global forwardVelocity
 global backwardVelocity

 left_spinVelocity = 2;
 right_spinVelocity = -2;
 forwardVelocity = 3;
 backwardVelocity = -3;

Let's look at the function definition of Forward first:

 function pushbutton4_Callback(hObject, eventdata, handles)
 global velmsg
 global robot
 global teleop_topic_name
 global forwardVelocity
 velmsg.Angular.Z = 0;
 velmsg.Linear.X = forwardVelocity;

 send(robot,velmsg);
 latchpub = rospublisher(teleop_topic_name, 'IsLatching', true);

What it basically does is it publishes a linear velocity and latches it on the topic. In the
Backward callback, we are providing a negative linear velocity. In the Left and Right
callbacks, we are only providing an angular velocity.

After doing all this, we can save the figure file, which is the .fig and .m file, which is the
MATLAB file.

Running the application
You can load your own application or the application that came along with the book. Here's
how to run the application:

ROS on MATLAB and Android

[244]

Figure 19: Running MATLAB application

First, you have to click on the Browse button, marked 1, to go to the application folder. If
you are in the application folder, you can see the application files listed in the folder
marked 2. After obtaining the files, double-click on the application file, which will pop up in
the editor, and click on the Run button, marked 3.

Now, you will get the GUI and can fill the input arguments. After filling it all in, press the
Enter key; only then it will give the value to the main code. You can fill the form like shown
in the following screenshot. You can see the main GUI entries here.

Figure 20: Running the MATLAB application

ROS on MATLAB and Android

[245]

Before connecting to the ROS robot, confirm whether robot or robot simulation is running
on the ROS PC. For doing a test, you can start a TurtleBot simulation on the ROS PC using
the following command:

 $ roslaunch turtlebot_gazebo turtlebot_world.launch

The teleop topic of TurtleBot is /cmd_vel_mux/input/teleop, which we have already
provided in the application.

After starting the simulation, you can connect to the MATLAB application by pressing the
Connect to Robot button. If the connection is successful, you can see that the robot is
moving when you press the corresponding buttons, as shown here:

Figure 21: Controlling a robot in a ROS network

You can echo the command velocity topic using the following command:

 $ rostopic echo /cmd_vel_mux/input/teleop

ROS on MATLAB and Android

[246]

After working with the robot, you can press the Disconnect button to disconnect from the
ROS network.

 You can clone the book code using the following command
 $ git clone https://github.com/qboticslabs/ros_robotics_projects

Getting started with Android and its ROS
interface
There exists a cool interface between ROS and Android. As you know, Android is one of
most popular operating systems in mobile devices. Just imagine: if we can access all
features of a mobile devices on the ROS network, we can build robots using it, right? We
can build Android apps with ROS capabilities and can make any kind of robot using it, its
scope is unlimited.

The following shows how the communication between android device and ROS robot is
happening. The figure shows an example Android-ROS application which can teleoperate
robot from an android device. Each android application should inherit from RosActivity
which is getting from Android-ROS interface, then only we can access ROS API's in our
application. We can see more about the API's after this section.

Figure 22: Android – ROS teleop interface

ROS on MATLAB and Android

[247]

The core backend of the Android ROS library is RosJava (http://wiki.ros.org/rosjava),
which is an implementation of ROS in Java. There is also Android core libraries
(http://wiki.ros.org/android_core) which are built using RosJava API's. Using Android-
ROS APIs we can create ROS nodes and ROS master, but compared to actual ROS API's in
C++/Python, the Android-ROS features are less.

So what is the importance of Android-ROS interface? The main reason is, an Android
device is like a mini computer, which is having all the sensors and other peripherals. We
may can use an android device itself as a robot too. So if there is a ROS interface, we may
can expand its capabilities by performing high level functionalities like navigation,
mapping and localization. Nowadays, android devices are having high quality cameras, so
we can even do image processing application via ROS interface.

Smartphone based robots are already in the market, we can also expand existing robots
features by using ROS interface.

In the next section, we are going to see how to set up the ROS-Android interface on your PC
and generate the Android Package Kit (APK) file, which can be directly installed on
Android devices. Let's start setting up the ROS-Android interface on Ubuntu.

Before setting up Android, there is a long list of prerequisites that have to be satisfied for
compiling and building it. Let's see what they are.

Installing rosjava
As you know, Android is based on Java, so it need rosjava to work.

Here are the methods to install rosjava.

Installing from the Ubuntu package manager
Here is the command to install rosjava from the package manager:

 $ sudo apt-get install ros-<rosversion_name>-rosjava

For example, for Kinetic, use the following command:

 $ sudo apt-get install ros-kinetic-rosjava

http://wiki.ros.org/rosjava
http://wiki.ros.org/android_core

ROS on MATLAB and Android

[248]

For Indigo, you can use the following command:

 $ sudo apt-get install ros-indigo-rosjava

Installing from source code
Here is the procedure to install rosjava from source code:

First, you have to create a catkin workspace folder called rosjava:

 $ mkdir -p ~/rosjava/src

Initialize the workspace and clone the source files using the following command:

 $ wstool init -j4 ~/rosjava/src
https://raw.githubusercontent.com/rosjava/rosjava/indigo/rosjava.rosinstall

If you getting any issues related to wstool, you can install it using the following command:

 $ sudo apt-get install python-wstool

Switch to the rosjava workspace:

 $ cd ~/rosjava

Install the dependencies of the rosjava source files:

 $ rosdep update
 $ rosdep install --from-paths src -i -y

After installing the dependencies, build the entire workspace:

 $ catkin_make

After successfully building the repository, you can execute the following command to add
the rosjava environment inside bash:

 $ echo 'source ~/rosjava/devel/setup.bash' >> ~/.bashrc

For more reference, you can check the following link:
http://wiki.ros.org/rosjava/Tutorials/kinetic/Installation

http://wiki.ros.org/rosjava/Tutorials/kinetic/Installation

ROS on MATLAB and Android

[249]

The next step is to set up android-sdk in Ubuntu. We can do it in two ways. One is
through the Ubuntu package manager and the other is from the prebuilt binaries we can get
from the Android website.

Let's see how to install the android-sdk using command line

Installing android-sdk from the Ubuntu package
manager
Installing android-sdk using a command is pretty simple. Here is the command to install
it. It may not be the latest version.

 $ sudo apt-get install android-sdk

Install the latest version of android-sdk available on the Android website. For building
android-ros applications, you only need to install android-sdk; an IDE is not
mandatory.

Installing android-sdk from prebuilt binaries
Here is the link for downloading latest android-sdk version from the website:

https://developer.android.com/studio/index.html#downloads

You only need to download the Android tools for building android-ros apps:

Figure 23: Standalone Android SDK

https://developer.android.com/studio/index.html#downloads

ROS on MATLAB and Android

[250]

You can download and extract this into the home folder, and you have to set up
environment variables to access the SDK tools.

Let's look at the variables you have to append on your .bashrc file. You can set them using
the following commands.

Here is how we set the ANDROID_HOME variable, which is required while building
android-ros applications. You can set your own SDK location here:

 $ export ANDROID_HOME=~/android-sdk-linux

This command will help you access Android commands from bash:

 $ export PATH=${PATH}:~/android-sdk-linux/tools
 $ export PATH=${PATH}:~/android-sdk-linux/platform-tools

To run those Android commands, we also need to install the 32-bit Ubuntu libraries. It is
required for running most Android tool commands.

We can install it using the following command:

 $ sudo dpkg --add-architecture i386
 $ sudo apt-get update
 $ sudo apt-get install libc6:i386 libncurses5:i386 libstdc++6:i386
lib32z1 libbz2-1.0:i386

You can also refer to the following instructions to set android-sdk in Linux:

https://developer.android.com/studio/install.html?pkg=tools

Congratulations, you are almost there!

Now, you can run the following command to start Android SDK manager:

 $ android

https://developer.android.com/studio/install.html?pkg=tools

ROS on MATLAB and Android

[251]

From the pop-up window, you have to install the following Android platforms and their
build tools to make the ROS-Android interface work:

Figure 24: Android SDK manager

ROS on MATLAB and Android

[252]

Here is the list of things you may need to install in Android SDK manager:

SDK Platforms
Android 2.3.3 (API 10)
Android 4.0.3 (API 15)
Android 5.0.1 (API 21)
Android 6.0 (API 23)

Android SDK Build-tools
Revision: 19.1
Revision: 20
Revision: 21.1.2
Revision: 22.0.1
 Revision: 23.0.1

Android SDK Platform-tools
Revision: 23.0.1

Android SDK Tools
Revision: 24.2

Your configuration may vary; this was the configuration used to build the apps for this
book.

With this, we should have met all the dependencies for the Android-ROS interface.

Let's clone the Android-ROS source code.

Installing the ROS-Android interface
If all the dependencies are satisfied, you can easily build the ROS-Android interface and
build a bunch of Android-ROS applications. Here is how we can do that:

Initially, we have to create a workspace folder for the Android interface. We can name it
android_core:

 $ mkdir -p ~/android_core

After creating this folder, you can initialize the workspace using the following command:

 wstool init -j4 ~/android_core/src
https://raw.github.com/rosjava/rosjava/indigo/android_core.rosinstall

ROS on MATLAB and Android

[253]

Now switch to the workspace and build the workspace using catkin_make:

 $ cd ~/android_core
 $ catkin_make

After building the workspace successfully, you can source it by adding it to .bashrc:

 $ echo 'source ~/android_core /devel/setup.bash' >> ~/.bashrc

You are now done with setting up the android_core package in ROS. So what do you get
after building this workspace? You will get a bunch of Android-ROS applications that can
be installed on your Android device. You will also get the Android-ROS library, which we
can use in our custom application

For more reference, you can check following link:
http://wiki.ros.org/android/Tutorials/kinetic.

Playing with ROS-Android applications
In this section, we will see how to install the ROS-Android application generated from the
preceding build process on your Android phone.

Let's take the android_core folder and search for .apk files; you may get a bunch of
applications, as shown in the following figure:

Figure 25: List of generated APK files

You can copy the APK files and install them on your phone.

http://wiki.ros.org/android/Tutorials/kinetic

ROS on MATLAB and Android

[254]

Troubleshooting
You may get errors while installing these APK files. One of the errors is shown in the
following screenshot:

Figure 26: Parse error during installation of APK

Here are the tips to solve this issue:

The first step is to enable installation from Unknown sources, as shown in section 1 of the
following figure:

Figure 27: Tips to solve parse error

ROS on MATLAB and Android

[255]

Install an Android app called APK Editor, which can be downloaded from following the
link:

https://play.google.com/store/apps/details?id=com.gmail.heagoo.apkeditor&hl=en

You can also buy the Pro version, which you may require in the future. Here's the link to
the Pro version:

https://play.google.com/store/apps/details?id=com.gmail.heagoo.apkeditor.pro

What this app does is enable us to edit the APK that we created and do more stuff with it.
For example, the APK that we built was unsigned; using this app, we can sign it. We can
also change the minimum and target SDK using the app.

Here is how we can edit the APK and install our APKs:

Figure 28: Working with APK Editor

https://play.google.com/store/apps/details?id=com.gmail.heagoo.apkeditor&hl=en
https://play.google.com/store/apps/details?id=com.gmail.heagoo.apkeditor.pro

ROS on MATLAB and Android

[256]

What we need to do with this app is simple. Just choose an APK from this app, click on the
Full Edit option, and save it. After saving, you can see a wizard that shows an option for
installing our app:

Figure 29: Installing the ROS-Android app

Once you've installed the application successfully, we can work with the ROS-Android
examples.

Android-ROS publisher-subscriber application
You can first find the publisher-subscriber application with the name
android_tutorial_pubsub-release.apk. Install it using the preceding procedure, and
let's learn how we can work with it.

ROS on MATLAB and Android

[257]

You can open the PubSub Tutorial application, and you'll see the following window
marked 1:

Figure 30: PubSub Tutorial ROS-Android app

Assuming you have connected your Android device and ROS PC over Wi-Fi and in the
same network, launch roscore on your ROS PC and note its IP too.

In the first window of the app, you have to provide the ROS_MASTER_URI. In that, you can
replace the 'localhost' variable with your ROS PC IP address; here, it is 192.168.1.102.

When you press the Connect button, the app tries to reach the ROS master, which is
running on the ROS PC, and if it is successful, it will start publishing the Hello World
message to a topic called /chatter.

ROS on MATLAB and Android

[258]

Now you can check the ROS PC and list the topics; you'll see the /chatter topic, and you
can also echo the topic, as shown in the following screenshot:

Figure 31: Echoing the /chatter topic on ROS PC

The teleop application
One of the commonly used apps in this list is the Android teleop application. Using this
app, you can control the ROS robot from your Android phone.

ROS on MATLAB and Android

[259]

Like the previous app, the setup is the same, and using a virtual joystick in this app, we can
control the movement and rotation of the robot. Here are the screenshots of the app:

Figure 32: Android teleop application

ROS on MATLAB and Android

[260]

Here are the topics and output that we may get on the ROS PC or robot. You can see a
bunch of topics, actually, which are useful for robot navigation. Now we only need the
command velocity topic:

Figure 33: Android teleop application data

The ROS Android camera application
The final application that we are going to check out is the Android-ROS camera application.
This application will stream Android phone camera images over ROS topics. You can install
the Camera Tutorial app on your Android device and try to connect to the ROS master. If
the connection is successful, you will see the camera view open up on the mobile device.

ROS on MATLAB and Android

[261]

Now, check the ROS PC, and you can visualize the camera topic from the phone. Here is the
command to perform the visualization:

 $ rosrun image_view image_view image:=/camera/image
_image_transport:=compressed

Figure 34: Android-ROS camera app

Making the Android device the ROS master
In the previous test, we made the Android ROS application a ROS node; we can also
configure it as a ROS master. Show the advanced option from the app and click on PUBLIC
MASTER. Now the app itself act as the ROS master. You can connect from your PC to the
Android device as a node.

ROS on MATLAB and Android

[262]

Figure 35: Android-ROS app as ROS MASTER

For listing topics on the ROS PC, you have to set ROS_MASTER_URI inside the .bashrc file:

Here, I have defined ROS_MASTER_URI like this:

 $ export ROS_MASTER_URI=http://192.168.1.100:11311

The IP is the IP address of the Android device.

Code walkthrough
Let's check out the Android-ROS application code for the basic publisher-subscriber app.
You can get it from ~/android_core/android_tutorial_pubsub/src. You'll see a file
called MainActiviy.java, and now I'll explain the code.

In the beginning of the code, you can see the package name and required Android modules
for this application. The important modules are RosActivity and NodeConfiguration.
These will help us create a new ROS node in an Android activity
(https://developer.android.com/guide/components/activities.html).

 package org.ros.android.android_tutorial_pubsub;

 import android.os.Bundle;
 import org.ros.android.MessageCallable;
 import org.ros.android.RosActivity;

https://developer.android.com/guide/components/activities.html

ROS on MATLAB and Android

[263]

 import org.ros.android.view.RosTextView;
 import org.ros.node.NodeConfiguration;
 import org.ros.node.NodeMainExecutor;
 import org.ros.rosjava_tutorial_pubsub.Talker;

Here is where the Android MainActivity starts, which is inherited from RosActivity. It
is also creates a Talker object for publishing topics.

 public class MainActivity extends RosActivity {

 private RosTextView<std_msgs.String> rosTextView;
 private Talker talker;

 public MainActivity() {
 // The RosActivity constructor configures the notification
 title and ticker
 // messages.
 super("Pubsub Tutorial", "Pubsub Tutorial");
 }

This is one of the important callback functions whenever an activity is initialized. We have
to define the essential components of activities inside this function.

In this code, we are creating a rosTextView for ROS_MASTER_URI and also performing
topic creation and creating a callback for sending the ROS message through the topic:

 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 rosTextView = (RosTextView<std_msgs.String>)
 findViewById(R.id.text);
 rosTextView.setTopicName("chatter");
 rosTextView.setMessageType(std_msgs.String._TYPE);
 rosTextView.setMessageToStringCallable(new
 MessageCallable<String, std_msgs.String>() {
 @Override
 public String call(std_msgs.String message) {
 return message.getData();
 }
 });
 }

ROS on MATLAB and Android

[264]

The following function is inherited from RosActivity, and what it does is when the
MainActivity gets initialized, it will run as a thread and query for ROS_MASTER_URI. If it
gets the URI, it will start a ROS node itself.

 protected void init(NodeMainExecutor nodeMainExecutor) {
 talker = new Talker();

 // At this point, the user has already been prompted to either
 enter the URI
 // of a master to use or to start a master locally.

 // The user can easily use the selected ROS Hostname in the
 master chooser
 // activity.
 NodeConfiguration nodeConfiguration =
 NodeConfiguration.newPublic(getRosHostname());
 nodeConfiguration.setMasterUri(getMasterUri());
 nodeMainExecutor.execute(talker, nodeConfiguration);
 // The RosTextView is also a NodeMain that must be executed in
 order to
 // start displaying incoming messages.
 nodeMainExecutor.execute(rosTextView, nodeConfiguration);
 }
 }

You can see more code of ROS-Android applications from the android_core package.

Creating basic applications using the ROS-
Android interface
We have covered Android – ROS applications provided from the ROS repository. So how
can we create our own application using it? Let's take a look.

First, we have to create a separate workspace for our application. Here, it is named
myandroid:

 $ mkdir -p ~/myandroid/src

ROS on MATLAB and Android

[265]

Switch to the workspace's src folder:

 $ cd ~/myandroid/src

Create a package called android_foo that depends on android_core, rosjava_core,
and std_msg:

 $ catkin_create_android_pkg android_foo android_core rosjava_core
std_msgs

Switch into android_foo and add sample libraries to check whether the project is building
properly:

 $ cd android_foo
 $ catkin_create_android_project -t 10 -p
com.github.ros_java.android_foo.bar bar
 $ catkin_create_android_library_project -t 13 -p
com.github.ros_java.android_foo.barlib barlib
 $ cd ../..

And finally, you can build the empty project using catkin_make:

 $ catkin_make

If it is building properly, you can add a custom project, such as a bar project. The custom
project should be inside the android_foo folder, and it should be included in the
settings.gradle file, which is in the android_foo folder.

Here is how we can do that. You need to include our app, named my_ros_app, in this file to
build it. For the application source code, you can modify one of the existing ROS-Android
applications' code and write new lines:

include 'my_ros_app'
include 'bar'
include 'barlib'

Also, inside my_ros_app, you should include the ROS Android dependencies in the
build.gradle file; otherwise, the package will not build properly. Here is a sample
build.gradle file. You can also mention the minimum SDK, target SDK, and compiled
SDK versions in the same file.

 dependencies {
 compile 'org.ros.android_core:android_10:[0.2,0.3)'
 compile 'org.ros.android_core:android_15:[0.2,0.3)'
 }
 apply plugin: 'com.android.application'

ROS on MATLAB and Android

[266]

 android {
 compileSdkVersion 15

 defaultConfig {
 minSdkVersion 15
 applicationId "org.ros.android.my_ros_app"
 targetSdkVersion 21
 versionCode 1
 versionName "1.0"
 }
 }

If you've entered all this information correctly, you can build your own custom ROS-
Android application.

For more reference, you can check the following link:
http://wiki.ros.org/rosjava_build_tools/Tutorials/indigo/Creatin
g%20Android%20Packages

Troubleshooting tips
There are chances of getting errors while building packages. Errors are mainly because of
missing Android platform or build tools. If any platforms are missing, you can install them
through the Android SDK manager.

Questions
What are the main features of MATLAB Robotics Toolbox?
How to set up MATLAB as a ROS master?
What is the main backend of the ROS-Android interface?
How to set up a ROS-Android application as a ROS master?

http://wiki.ros.org/rosjava_build_tools/Tutorials/indigo/Creating%20Android%20Packages
http://wiki.ros.org/rosjava_build_tools/Tutorials/indigo/Creating%20Android%20Packages

ROS on MATLAB and Android

[267]

Summary
In this chapter, we mainly discussed two important interfaces of ROS: MATLAB and
Android. Both are very popular platforms, and this chapter will be very useful if you are
working on the interfacing of ROS with MATLAB and Android. In MATLAB interfacing,
we covered Robotics Toolbox and APIs to connect to ROS networks. Using these APIs, we
built a GUI application to teleoperate a ROS robot. In the Android-ROS interfacing section,
we saw how to set up and build Android-ROS applications from a Linux PC. After that, we
successfully built ROS-Android applications and saw demos of important applications. We
also saw the Android-ROS application code and its functions, and finally, we saw how to
build a custom Android-ROS application.

9
Building an Autonomous Mobile

Robot
An autonomous mobile robot can move from its current position to the goal position
autonomously with the help of mapping and localizing algorithms. ROS provides some
powerful packages to prototype an autonomous mobile robot from scratch. Some of the
packages used in an autonomous robot are the ROS navigation stack, gmapping, and amcl.
Combining these packages, we can build our own autonomous mobile robot. In this
chapter, we will see a DIY autonomous mobile robot platform that works using ROS. This
project is actually the updated version of the work mentioned in my first book, Learning
Robotics Using Python, Packt Publishing (http://learn-robotics.com). In this chapter, we
will mainly go through designing and building the simulation of a robot, then the hardware
of robot, and finally the software framework. The chapter will be an abstract of all these
things, since explaining everything in a single chapter will be a tedious task.

The following are the main topics we will discuss on this chapter:

Robot specification and design overview
Designing and selecting motors and wheels for the robot
Building a 2D and 3D model of the robot body
Simulating the robot model in Gazebo
Designing and building actual robot hardware
Interfacing robot hardware with ROS
Setting up the ROS navigation stack and gmapping packages
Final run

http://learn-robotics.com

Building an Autonomous Mobile Robot

[269]

Robot specification and design overview
Here are the main specifications of the robot we are going to design in this chapter:

A maximum payload of 2 kg
Body weight of 3 kg
A maximum speed of 0.35 m/s
Ground clearance of 3 cm
Two hours of continuous operation
Differential drive configuration
Circular base footprint
Autonomous navigation and obstacle avoidance
Low-cost platform

We are going to design a robot that satisfies all these specifications.

Designing and selecting the motors and
wheels for the robot
The robot we are going to design should have a differential drive configuration, and from
the preceding specification, we can first determine the motor torque values. From the
payload value and robot body weight, we can easily compute the motor torque.

Computing motor torque
Let's calculate the torque required to move this robot.

The number of wheels is four, including two caster wheels. The number of wheels
undergoing actuation is only two. We can assume the coefficient of friction is 0.6 and of
wheel radius is 4.5 cm. We can use the following formula:

Total weight of robot = Weight of robot + Payload

Weight of the robot: 3 x 9.8 ≈ 30 N (W = mg)

Payload: 2 x 9.8 ≈ 20 N

Total weight: 30 + 20 = 50 N

Building an Autonomous Mobile Robot

[270]

This total weight should be split among the four wheels of the robot, so we can write it as W
= 2 x N1 + 2 x N2, where N1 is the weight acting on each robot wheel and N2 is the weight
acting on each caster wheels. The configuration of wheels of the robot is shown in Figure 1.
The C1 and C2 shows the caster wheels of the robot and M1 and M2 shows the motor
position in which wheels can attach on the slots just near to the motor shaft.

If the robot is stationary, the motors attached to the wheels have to exert maximum torque
to get moving. This is the maximum torque equation:

µ x N x r – T = 0

Here, µ is the coefficient of friction, N is the average weight acting on each wheel, r is the
radius of the wheels, and T is the maximum torque to get moving.

We can write N = W/2 since the weight of the robot is equally distributed among all four
wheels, but two are only actuated. We are taking W/2 as the average weight here.

We can write 0.6 x (50/2) x 0.045 – T = 0

Hence, T = 0.675 N-m or 6.88 kg-cm. We can use a standard value, 10 kg-cm.

Calculation of motor RPM
From the specification, we get to know that the maximum speed of the robot is 0.35 m/s. We
took the wheel radius as 4.5 cm in the preceding section, and one of the other specifications
we need to satisfy is ground clearance. The specified ground clearance is 3 cm, so this wheel
is satisfying those requirements too. We can find the rotations per minute (RPM) of the
motors using the following equation:

RPM = ((60 x Speed / (3.14 x Diameter of wheel)

RPM = (60 x 0.35) / (3.14 x 0.09) = 21 / 0.2826 = 74 RPM

We can choose a standard 80 RPM or 100 RPM for this robot.

Design summary
After designing, we have the following design values:

Motor RPM: 80
Motor torque: 10 kg-cm
Wheel diameter: 9 cm

Building an Autonomous Mobile Robot

[271]

Building 2D and 3D models of the robot
body
Chassis design is the next step in designing the robot. We can create the 2D drawing of the
robot and then draw a 3D model of it. The only specification need to satisfy is that the
robot's base footprint should be circular. Here, we are discussing a drawing that is
satisfying this condition. If your requirements are different, you may need to modify your
design accordingly. Now let's look at some illustrations of the robot's footprint.

The base plate
Following figure shows the base footprint of our robot:

Figure 1: Base plate of the robot

Building an Autonomous Mobile Robot

[272]

The preceding figure shows the base footprint of our robot. You can see that it is circular
and there are two slots on the left and right for attaching motors and wheels. M1 and M2
are the positions of the motor body, and the shaft will be in the slots. The motors can be put
on the top of the plate or on the bottom. Here, we are attaching the motors to the bottom of
this plate. The wheels should be inside these two slots. We have to make sure that the slot
length is greater than the wheel diameter. You can see C1 and C2, which are the positions
where we are attaching the caster wheels. Caster wheels are freely rotating wheels without
any actuation. We can select available caster wheels for this purpose. Some caster wheels
may have issues moving on uneven terrain. In that case, we may need to use a caster wheel
with spring suspension. This ensures that it always touches the ground even when the
terrain is slightly uneven.

You can also see parts such as P1-1 and P1-4, which are the poles from the base plate. If we
want to attach an additional layer above the base plate, we can use these poles as the pillars.
Poles can be hard plastic or steel, which are fixed to the base plate and have a provision to
attach a hollow tube on them. Each poles is screwed on to the base plate.

The center of the base plate is hollow; this will be useful when we have to take wires from
the motors. Mainly, we will attach the electronic board required for the robot to this plate.

Here are the dimensions of base plate and each part:

Parts of base plate Dimensions (length x height) or (radius) in cm

M1 and M2 5 x 4

C1 and C2 Radius = 1.5

S (screw) 0.15

P1-1, P1-2, P1-3, P1-4 Outer radius 0.7, Height 3.5

Left and right wheel section 2.5 x 10

Base plate Radius = 15

Building an Autonomous Mobile Robot

[273]

The pole and tube design
The following figure shows how to make a pole and tube for this robot. Again, this design is
all up to you. You can design customized poles too:

Figure 2: Pole and tube dimension of the robot

From the preceding figure, you can see the dimension of the pole and tube. It's 3.5 cm by 1.4
cm. The poles that we've used here are basically hard plastic. We are using hollow tubes to
connect to the poles and extend them for the second layer. The length of the hollow tube is
15 cm, and it has a slightly bigger diameter than the poles, that is, 1.5 cm. Only then will we
be able to insert this tube into the pole. A hard plastic piece is inserted at one side of the
hollow tube, which helps connect the next layer.

The motor, wheel, and motor clamp design
You can choose a motor and wheels that satisfy the design criteria. Most of the standard
motors come with clamps. The motor can be connected to the base plate using this clamp. If
you don't have one, you may need to make it. This is the drawing of a standard clamp that
goes with one of the motors:

Building an Autonomous Mobile Robot

[274]

Figure 3: The clamp design

The clamp can be fixed on the base plate, and the motor shaft can be put through the clamp
slot which is perpendicular to the clamp base.

The caster wheel design
You can use any caster wheel that can be move freely on the ground. The main use of caster
wheels is distributing the weight of the robot and balancing it. If you can use a spring
suspension on the caster wheel, it can help you navigate the robot on uneven terrain.

Here are some caster wheels that you can use for this robot:

http://www.robotshop.com/en/robot-wheel.html.

http://www.robotshop.com/en/robot-wheel.html

Building an Autonomous Mobile Robot

[275]

Middle plate and top plate design
If you want a more layers for the robot, you can simply make circular plates and hollow
tubes which are compatible with the base plate. Here you can see middle plate design and
the tubes used to connect it to the base plate:

Figure 4: The middle plate design

The middle plate is simply a circular plate having screw holes to connect it to the tubes
from the base plate. We can use following kind of hollow tubes to connect the base plate
tubes and middle plate.

Figure 5: The hollow tube from the second plate

Building an Autonomous Mobile Robot

[276]

Here you can see that a screw is mounted on one side of the tube; the screw can be used to
connect tubes to the base plate. We can mount the top plate on top of the tube too.

The top plate
Here is a diagram of the top plate:

Figure 6: The top plate

Building an Autonomous Mobile Robot

[277]

The top plate can be placed in a hollow tube. If we want to put anything on top of the robot,
we can put it on the top plate. On the middle plate, we can put vision sensors, PC, and so on
for processing.

These are the main structural elements that we need for this robot. These drawing can be
develop in any CAD software like AutoCAD and LibreCAD. AutoCAD is a proprietary
software whereas LibreCAD is free (http://librecad.org/cms/home.html). We have used
LibreCAD for developing the preceding sketches.

You can simply install LibreCAD in Ubuntu using the following command:

 $ sudo apt-get install librecad

In the next section, we can see how we can model the robot in 3D. The 3D modeling is
mainly using for robot simulation.

3D modeling of the robot
The 3D modeling of the robot can be done in any 3D CAD software. You can use popular
commercial software such as AutoCAD, SOLIDWORKS, and CATIA or free software such
as Blender. The design can be customized according to your specification. Here, you can see
a 3D model of the robot built using Blender. Using the 3D model, we can perfect the robot's
design without building the actual hardware. We can also create the 3D simulation of the
robot using this model. The following screenshot shows the 3D model of a robot designed
using Blender:

Figure 7: The 3D model

You can check out this model at chapter_9_codes/chefbot.

http://librecad.org/cms/home.html

Building an Autonomous Mobile Robot

[278]

Simulating the robot model in Gazebo
After modeling the robot, the next stage that we have to do is simulation. The simulation is
mainly for mimicking the behavior of designed robot. For the simulation, normally we are
putting ideal parameters to the simulated model. When we do the actual robot, there can be
some changes from the simulated parameters. We can simulate the robot using Gazebo.
Before simulating the robot, it will be good if you understand the mathematical model of a
differential robot. The mathematical representation will give you more insight about the
working of robot. We are not going to implement the robot controllers from scratch. Instead
of that, we are using existing one.

Mathematical model of a differential drive
robot
As you may know, robot kinematics is the study of motion without considering the forces
that affect the motion, and robot dynamics is the study of the forces acting on a robot. In
this section, we will discuss the kinematics of a differential robot.

Typically, a mobile robot or vehicle can have six degrees of freedom (DOF), which are
represented as x, y, z, roll, pitch, and yaw. The x, y, and z degrees are translation, and roll,
pitch, and yaw are rotation values. The roll movement of robot is sideways rotation, pitch is
forward and backward rotation, and yaw is the heading and orientation of the robot. A
differential robot moves along a 2D plane, so we can say it will have only three DOF, such
as x, y, and theta, where theta is the heading of the robot and points along the forward
direction of the robot.

Building an Autonomous Mobile Robot

[279]

The following figure shows the coordinate system of a differential-drive robot:

Figure 8: The coordinate system representation of a differential-drive robot

So how to control this robot? It has two wheels, right? So the velocity of each wheel
determines the new position of the robot. Let's say V-left and V-right are the respective
wheel velocities, (x, y, θ) is the standing position of the robot at time t, and (x', y', θ') is the
new position at time t+ δt, where δt is a small time interval. Then, we can write the standard
forward kinematic model of a differential robot like this:

Figure 9: Forward kinematics model of a differential drive robot

Building an Autonomous Mobile Robot

[280]

Here are the unknown variables in the preceding equation:

R = l/2 (nl + nr) / (nr – nl)

ICC = [x-R sinθ, y+R cosθ]

ωδt = (nr – nl) step / l

nl and nr are encoder counts for left and right wheels. l is the length of the wheel axis and
step is the distance covered by the wheel in each encoder ticks.

ICC stands for instantaneous center of curvature, and it is the common point for rotation of
the robot wheels.

Figure 10: Forward kinematic diagram of differential drive

You can also refer the equations of inverse kinematics of mobile robotics from the following
reference.

Building an Autonomous Mobile Robot

[281]

For more information, check the publication titled Kinematics Equations for
Differential Drive and Articulated Steering, ISSN-0348-0542 and the first
author is Thomas Hellstrom.

So we've seen the kinematics equations of this robot; the next stage is to simulate the robot.

Simulating Chefbot
The robot in the book is actually designed for carrying food and delivering to the customers
in a hotel. It is called Chefbot. Now let's see what are the steps involved for simulating
Chefbot. We are using the Gazebo simulator along with ROS for simulating the capabilities
of a robot. We'll look at the basic teleoperation of the mapping and localization of a robot in
Gazebo.

Building the URDF model of Chefbot
The first step in the simulation is building a robot model compatible with ROS. The URDF
(http://wiki.ros.org/urdf) file is the robot model that is compatible with ROS. We are
not going to discuss how to write a URDF model; instead, we will see the important
sections we have to focus on while creating the URDF of a robot.

Inserting 3D CAD parts into URDF as links
Creating URDF is a time-consuming task; in this section, we will learn how to create a
URDF package for a robot and insert 3D CAD models as a robot link in URDF. The first step
is to create a robot description package; in this case,
chapter_9_codes/chefbot_code/chefbot_description is our robot model ROS
package. This package contains all the URDF files and 3D mesh files required for a robot.
The chefbot_description/meshes folder has some 3D models that we designed earlier.
These 3D models can be inserted into the URDF file. You can check the existing URDF file
from chefbot_description/urdf. Here is a snippet that inserts a 3D model into URDF,
which can act as a robot link. The code snippet can be found in
urdf/chefbot_base.urdf.xacro.

 <joint name="base_joint" type="fixed">
 <origin xyz="0 0 0.0102" rpy="0 0 0" />
 <parent link="base_footprint"/>
 <child link="base_link" />
 </joint>
 <link name="base_link">

http://wiki.ros.org/urdf

Building an Autonomous Mobile Robot

[282]

 <visual>
 <geometry>

 <!-- new mesh -->
 <mesh
 filename="package://chefbot_description/meshes/base_plate.dae" />
 </geometry>

Here, you can see we are inserting the base_plate.dae mesh into the URDF file.

Inserting Gazebo controllers into URDF
After inserting the link and assigning joints, we need to insert Gazebo controllers for
simulating differential drive and the depth camera plugin, which is done with software
models of actual robots. Here is a snippet of the differential drive Gazebo plugin. You can
find this code snippet in urdf/chefbot_base_gazebo.urdf.xacro.

 <gazebo>
 <plugin name="kobuki_controller"
 filename="libgazebo_ros_kobuki.so">

 <publish_tf>1</publish_tf>
 <left_wheel_joint_name>wheel_left_joint
 </left_wheel_joint_name>
 <right_wheel_joint_name>wheel_right_joint
 </right_wheel_joint_name>
 <wheel_separation>.30</wheel_separation>
 <wheel_diameter>0.09</wheel_diameter>
 <torque>18.0</torque>
 <velocity_command_timeout>0.6</velocity_command_timeout>
 <imu_name>imu</imu_name>
 </plugin>
 </gazebo>

In this plugin, we are providing the designed values of the robot, such as motor torque,
wheel diameter, and wheel separation. The differential drive plugin that we are using here
is kobuki_controller, which is used in the TurtleBot simulation.

After creating this controller, we need to create a depth sensor plugin for mapping and
localization. Here is the code snippet to simulate the Kinect, a depth sensor. You can find
the code snippet from urdf/chefbot_gazebo.urdf.xacro.

 <plugin name="kinect_camera_controller"
 filename="libgazebo_ros_openni_kinect.so">
 <cameraName>camera</cameraName>
 <alwaysOn>true</alwaysOn>

Building an Autonomous Mobile Robot

[283]

 <updateRate>10</updateRate>
 <imageTopicName>rgb/image_raw</imageTopicName>
 <depthImageTopicName>depth/image_raw
 </depthImageTopicName>
 <pointCloudTopicName>depth/points</pointCloudTopicName>
 <cameraInfoTopicName>rgb/camera_info
 </cameraInfoTopicName>
 <depthImageCameraInfoTopicName>depth/camera_info
 </depthImageCameraInfoTopicName>
 <frameName>camera_depth_optical_frame</frameName>
 <baseline>0.1</baseline>
 <distortion_k1>0.0</distortion_k1>
 <distortion_k2>0.0</distortion_k2>
 <distortion_k3>0.0</distortion_k3>
 <distortion_t1>0.0</distortion_t1>
 <distortion_t2>0.0</distortion_t2>
 <pointCloudCutoff>0.4</pointCloudCutoff>
 </plugin>

In the depth sensor plugin, we can provide necessary design values inside it for simulating
the same behavior.

You can clone the book code using the following command:
$ git clone
https://github.com/qboticslabs/ros_robotics_projects

Running the simulation
To simulate the robot, you may need to satisfy some dependencies. The differential robot
controller used in our simulation is of Turtlebot. So we have to install Turtlebot packages to
get those plugins and run the simulation:

 $ sudo apt-get install ros-kinetic-turtlebot-simulator ros-kinetic-
turtlebot-navigation ros-kinetic-create-node ros-kinetic-turtlebot-bringup
ros-kinetic-turtlebot-description

Building an Autonomous Mobile Robot

[284]

You can also install ROS packages such as chefbot_bringup, chefbot_description,
chefbot_simulator to start the simulation. You can copy these package into your ROS
workspace and launch the simulation using the following command:

 $ roslaunch chefbot_gazebo chefbot_empty_world.launch

If everything is working properly, you will get this window, which has the designed robot:

Figure 11: Simulation of Chefbot in Gazebo

You can move the robot around using a teleop node. You can start teleop using the
following command:

 $ roslaunch chefbot_bringup keyboard_teleop.launch

Building an Autonomous Mobile Robot

[285]

You can move the robot with your keyboard, using the keys shown in the following
screenshot:

Figure 12: Keyboard teleop

If you can move the robot using teleop, you can now implement its remaining capabilities.

Mapping and localization
Now we can perform mapping and localization of the simulated robot. Mapping is done
using the ROS gmapping package, which is based on the Simultaneous Localization and
Mapping (SLAM) algorithm, and localization is done using the amcl Adaptive Monte
Carlo Localization (AMCL) package, which has an implementation of the AMCL
algorithm.

In this section, we will launch a new simulated world and see how to map and localize in
the world.

Mapping

Here is the command to start the simulated world that has our robot:

 $ roslaunch chefbot_gazebo chefbot_hotel_world.launch

Building an Autonomous Mobile Robot

[286]

This will launch the world as shown in the following screenshot. The environment is similar
to a hotel conference room with tables placed in it:

Figure 13: Hotel environment in Gazebo

To start mapping the environment, we can use the following launch file. This will start the
gmapping node and finally create the map file.

 $ roslaunch chefbot_gazebo gmapping_demo.launch

After launching gmapping nodes, we can start Rviz for visualizing the map building done
by the robot. The following command will start Rviz with necessary settings to view the
map file:

 $ roslaunch chefbot_bringup view_navigation.launch

Building an Autonomous Mobile Robot

[287]

You can start the teleop node and move around the world; this will create a map like the
following:

Figure 14: The map visualized in Rviz

After building the map, we can save it using the following command:

 $ rosrun map_server map_saver -f ~/hotel_world

This will save the map in the home folder with the name hotel_world.

Congratulations; you have successfully built the map of the world and saved it. The next
step is to use this map and navigate autonomously around the world. We need the amcl
package to localize on the map. Combining this with the amcl package and ROS navigation,
we can autonomously move around the world.

Navigation and localization

Close all the Terminals we have used for mapping, and launch the simulated world in
Gazebo using the following command:

 $ roslaunch chefbot_gazebo chefbot_hotel_world.launch

Building an Autonomous Mobile Robot

[288]

Start localization using the following command:

 $ roslaunch chefbot_gazebo amcl_demo.launch
map_file:=/home/<user_name>/hotel_world.yaml

This will load the saved map and amcl nodes. To visualize the robot, we can start Rviz
using the following command:

 $ roslaunch chefbot_bringup view_navigation.launch

Now, we can start navigating the robot autonomously. You can click on the 2D Nav Goal
button and click on the map to set the destination. When we set the position, the robot will
autonomously move from its starting point to the destination, as shown here:

Figure 15: Visualizing autonomous navigation with AMCL particles

Congratulations! You have successfully set up the robot simulation and performed
autonomous navigation using the simulator. Now let's see how can we create the actual
robot hardware and program it.

Building an Autonomous Mobile Robot

[289]

Designing and building actual robot
hardware
Let's build the actual hardware of this robot. We need components that satisfy our design
values and additional vision sensors to perform SLAM and AMCL. Here is the list::

No Component
name

Link

1 DC gear
motor with
encoder

https://www.pololu.com/product/2824

2 Motor
driver

https://www.pololu.com/product/708

3 Tiva C 123
or 129
Launchpad

http://www.ti.com/tool/EK-TM4C123GXL or
http://www.ti.com/tool/EK-TM4C1294XL

4 Ultrasonic
sensor

http://www.robotshop.com/en/hc-sr04-ultrasonic-range-finder.html

5 MPU 6050
(IMU)

http://www.robotshop.com/en/mpu-6050-6-dof-gyro-accelerometer-imu.html
http://www.robotshop.com/en/imu-breakout-board-mpu-9250.html

6 OpenNI
compatible
depth
sensor
(Astra Pro)

https://orbbec3d.com/product-astra-pro/

7 Intel NUC http://www.intel.in/content/www/in/en/nuc/products-overview.html

8 12V, 10AH
battery

Any battery with the specifications provided

Let's discuss the use of each hardware part of the robot.

Motor and motor driver
The motors are controlled using a motor driver circuit. Adjusting the speed of the motors
will adjust the speed of the robot. The motor drivers are basically H-bridges that are used to
control the speed and direction of the motors. We are using motors and drivers from Pololu.
You can check them out from the link in the table.

https://www.pololu.com/product/2824
https://www.pololu.com/product/708
http://www.ti.com/tool/EK-TM4C123GXL
http://www.ti.com/tool/EK-TM4C1294XL
http://www.robotshop.com/en/hc-sr04-ultrasonic-range-finder.html
http://www.robotshop.com/en/mpu-6050-6-dof-gyro-accelerometer-imu.html
http://www.robotshop.com/en/imu-breakout-board-mpu-9250.html
https://orbbec3d.com/product-astra-pro/
http://www.intel.in/content/www/in/en/nuc/products-overview.html

Building an Autonomous Mobile Robot

[290]

Motor encoders
Motor encoders are sensors that provide a count corresponding to the speed of the robot
wheel. Using the encoder counter, we can compute the distance travelled by each wheel.

Tiva C Launchpad
The Tiva C Launchpad is the embedded controller board used to control the motor and
interface with other sensors. The board we are using here is running at 80 MHz and on 256
KB of flash memory. We can program this board using the Arduino language, called Wiring
(http://wiring.org.co/).

Ultrasonic sensor
The ultrasonic sensor is used to detect nearby obstacles, if any, in front of the robot. This
sensor is an optional one; we can enable or disable it in the embedded controller code.

MPU 6050 The IMU of the robot is used improve the odometry data from the robot. The
odometry data provides the current robot position and orientation with respect to its initial
position. Odometry data is important while building a map using SLAM.

OpenNI depth sensor
To map the environment, we will need a laser scanner or a depth sensor. Laser scanner data
is one of the inputs to the SLAM node. One of the latest depth sensors we can use is the
Orbbec Astra Pro (https://orbbec3d.com/product-astra-pro/). You can also use a Kinect
for this purpose. Using the depthimage_to_laserscan
(http://wiki.ros.org/depthimage_to_laserscan) ROS package, we can convert the depth
value to laser scan data.

Intel NUC
To run ROS and its packages, we need a computer. A compact PC we can use is the Intel
NUC. It can smoothly run all the packages needed for our robot.

http://wiring.org.co/
https://orbbec3d.com/product-astra-pro/
http://wiki.ros.org/depthimage_to_laserscan

Building an Autonomous Mobile Robot

[291]

Interfacing sensors and motors with the
Launchpad
In this section, we will see how to interface each sensor with the Launchpad. The
Launchpad can be used to interface motor controllers and also to interface sensors. Here is a
block diagram showing how to connect the Launchpad and sensors:

Figure 16: Interconnection between the Launchpad and sensors

The Launchpad works on 3.3V (CMOS) logic, so we may need a logic level shifter to convert
from 3.3V to 5V and vice versa. In board like Arduino UNO is having 5V level, so it can
directly interface to motor driver without any need of level shifter. Most of the ARM based
controller boards are working in 3.3V, so level shifter circuit will be essential while
interfacing to a 5V compatible sensor or circuit.

Building an Autonomous Mobile Robot

[292]

You can clone the book code using the following command:
$ git clone
https://github.com/qboticslabs/ros_robotics_projects

Programming the Tiva C Launchpad
The programming of the Tiva C Launchpad is done using the Energia IDE, which is the
customized version of the Arduino IDE. You can download it from http://energia.nu/.
As with Arduino, you can choose the serial port of the board and the board name.

Figure 17: Energia IDE

http://energia.nu/

Building an Autonomous Mobile Robot

[293]

The embedded code is placed in the chapter_9_codes/
chefbot_code/tiva_c_energia_code_final folder. Let's look at some important
snippets from the main embedded code.

Here are headers files of the main code. We need to include the following MPU 6050
headers to reading values from it. The MPU6050 library for Energia is also given along with
the book's code:

 #include "Wire.h"
 #include "I2Cdev.h"
 #include "MPU6050_6Axis_MotionApps20.h"

The Messenger library is used to handle serial data from the PC:

 #include <Messenger.h>
 #include <limits.h>

In the following code, the first line is the object of the MPU6050 class for handling data from
the IMU, and the second one is the object of the Messenger library for handling serial
input:

 MPU6050 accelgyro(0x68);

 Messenger Messenger_Handler = Messenger();

The following is the main setup() function of the code. This will initialize all sensors and
motors of the robot. The setup() function will initialize the serial port with a baud rate of
115200 and initialize encoders, motors, ultrasonic, MPU6050, and the messenger object. You
can see the definition of each function in the code itself.

 void setup()
 {
 //Init Serial port with 115200 baud rate
 Serial.begin(115200);
 //Setup Encoders
 SetupEncoders();
 //Setup Motors
 SetupMotors();
 //Setup Ultrasonic
 SetupUltrasonic();
 //Setup MPU 6050
 Setup_MPU6050();
 //Setup Reset pins
 SetupReset();
 //Set up Messenger
 Messenger_Handler.attach(OnMssageCompleted);

Building an Autonomous Mobile Robot

[294]

 }

The following is the main loop() function of the code. It will read sensor values and send
motor speed commands to the motor driver. The speed commands are received from the
PC.

 void loop()
 {

 //Read from Serial port
 Read_From_Serial();
 //Send time information through serial port
 Update_Time();
 //Send encoders values through serial port
 Update_Encoders();
 //Send ultrasonic values through serial port
 Update_Ultra_Sonic();

 //Update motor values with corresponding speed and send speed
 values through serial port
 Update_Motors();

 //Send MPU 6050 values through serial port
 Update_MPU6050();
 //Send battery values through serial port
 Update_Battery();
 }

We can compile the code and upload it into the board using Energia. If the upload is
successful, we can communicate with the board using the miniterm.py tool.

Assume that the serial port device is /dev/ttyACM0. First, change the permission using
following command:

 $ sudo chmod 777 /dev/ttyACM0

We can communicate with the board using the following command:

 $ miniterm.py /dev/ttyACM0 115200

Building an Autonomous Mobile Robot

[295]

If everything is successful, you will get values like these:

Figure 18: The serial port values from the board

Building an Autonomous Mobile Robot

[296]

The messages that you are seeing can be decoded like this: the first letter denotes the device
or parameter. Here is what the letters mean:

Letter Device or parameter

b Battery

t Time

e Encoder

u Ultrasonic sensor

s Motor speed

i IMU value

The serial messages are separated by spaces and tabs so that each value can be decoded
easily.

If we are getting serial messages, we can interface the board with ROS.

The latest ROS Tiva C Launchpad interface can be found here:
http://wiki.ros.org/rosserial_tivac.

Interfacing robot hardware with ROS
In this section, we will see how we can interface a robot's embedded controller with ROS.
The embedded controller can send speed commands to the motors and obtain speed
commands from robot controller nodes. The ROS robot controller nodes receive linear and
angular Twist command from the ROS navigation stack. The Twist command will be
subscribed to by the robot controller node and converted into equivalent motor velocity,
that is Vl and Vr.

The robot controller nodes also receive encoder ticks from the embedded controller and
calculate the distance traveled by each wheel. Let's take a look at the robot controller nodes.

http://wiki.ros.org/rosserial_tivac

Building an Autonomous Mobile Robot

[297]

The Chefbot robot controller nodes are placed in chefbot_bringup/scripts. You can
check out each node; they're all written in Python.

launchpad_node.py: This is the ROS driver node for handling Launchpad
boards. This node will receive serial data from Launchpad and also send data to
the board. After running this node, we will get serial data from the board as
topics, and we can send data to the board through topics too.
SerialDataGateway.py: This Python module is used to handle serial receive or
transmit data in a thread. The launchpad_node.py node uses this module to
send or receive data to or from the board.
Twist_to_motors.py: This node will subscribe to Twist messages from the
ROS navigation stack or teleop node and convert them into wheel target
velocities.
pid_velocity.py: This is a node that implements the PID controller, which
subscribes to the wheel target velocity and converts it into equivalent motor
velocity.
diff_tf.py: This node basically subscribes to the encoder data and calculates
the distance traversed by the robot. It then publishes as the odometry and
transformation (TF) topic.

Here is the graph showing the communication between the nodes:

Figure 19: Communication among ROS driver nodes

Building an Autonomous Mobile Robot

[298]

Here is the list of ROS launch files that we need in order to work with the actual robot. All
launch files are placed in the chefbot_bringup/launch folder:

robot_standalone.launch: This will launch the ROS driver nodes of Chefbot.
model_robot.launch: This launch file loads the URDF file of Chefbot.
view_robot.launch: This will display the robot model on Rviz.
keyboard_teleop.launch: This will start the keyboard teleop node, which can
drive the robot using a keyboard.
3dsensor.launch: This will launch OpenNI to enable depth camera drivers.
There may changes to this launch file according to the sensor.
gmapping_demo.launch: This will launch the gmapping nodes, which will help
us map the robot environment.
amcl_demo.launch: This will launch the AMCL nodes, which help us localize
the robot on the map.
view_navigation.launch: This will visualize the map and robot, which helps
us command the robot to move to the destination on the map.

Orbbec Astra camera ROS driver:
http://wiki.ros.org/astra_camera
https://github.com/orbbec/ros_astra_camera

http://wiki.ros.org/astra_camera
https://github.com/orbbec/ros_astra_camera

Building an Autonomous Mobile Robot

[299]

Running Chefbot ROS driver nodes
The following is the block diagram of the connection. Make sure that you are all set with
connecting the devices. Make sure you have connected all sensors and the Launchpad
board to your PC before running the driver.

Figure 20: Block diagram of the Chefbot

If we want to launch all driver nodes of the robot, you can simply do it using the following
command. Don't forget to change the serial port permission.

 $ roslaunch chefbot_bringup robot_standalone.launch

Building an Autonomous Mobile Robot

[300]

If everything working fine, you will get the following ROS topics:

Figure 21: The Chefbot driver topics

You can also visualize the ROS computational graph using rqt_graph. Here is the
visualization of rqt_graph, showing the communication between all nodes:

Figure 22: The computation graph view of Chefbot driver nodes

Building an Autonomous Mobile Robot

[301]

Gmapping and localization in Chefbot
After launching the ROS driver, we can teleop the robot using keyboard teleop. We can use
the following command to start keyboard teleoperation:

 $ roslaunch chefbot_bringup keyboard_teleop.launch

If we want to map the robot environment, we can start the gmapping launch file like we did
in the simulation:

 $ roslaunch chefbot_bringup gmapping_demo.launch

You can visualize the map building in Rviz using the following command:

 $ roslaunch chefbot_bringup view_navigation.launch

You can build the map by teleoperating the robot around the room. After mapping, save the
map as we did in the simulation:

 $ rosrun map_server map_saver -f ~/test_map

After getting the map, launch AMCL nodes to perform final navigation. You have to restart
all the launch files and start again.

Let's look at the commands to launch the AMCL nodes.

First, start the ROS driver nodes using the following command:

 $ roslaunch chefbot_bringup robot_standalone.launch

Now start the AMCL nodes:

 $ roslaunch chefbot_bringup amcl_demo.launch map_file:=~/test_map.yaml

Then start Rviz to command the robot on the map:

 $ roslaunch chefbot_bringup view_navigation.launch

Building an Autonomous Mobile Robot

[302]

You will see Rviz showing something like the following screenshot, in which you can
command the robot and the robot can run autonomously:

Figure 23: Localization and navigation with Chefbot

Building an Autonomous Mobile Robot

[303]

The following diagram shows the actual robot hardware. As per our design, we can see
circular plate and hollow tubes to add additional layers to the robot. You can also see the
Intel NUC and Kinect camera for robot navigation:

Figure 24: The actual Chefbot prototype

Building an Autonomous Mobile Robot

[304]

Questions
How to convert encoder data to estimate the robot's position?
What is the role of SLAM in robot navigation?
What is AMCL and why is it used?
What is the importance of the ROS navigation stack?

Summary
In this chapter, we designed and built an autonomous mobile robot from scratch. The
design of the robot started with its specification. From the specification, we designed
various parameters of the robot, such as motor torque and speed. After finding out each
parameter, we modeled the robot chassis and simulated it using ROS and Gazebo. After
simulation, we saw how to create the actual hardware. We selected the components and
interconnected the sensors and actuators to the embedded board. We wrote the firmware of
the embedded board. The board can communicate with the PC on which the ROS is
running. The ROS driver node receives the data from the robot and interfaces with the
gmapping and AMCL packages to perform autonomous navigation.

In the next chapter, we will see how to create a self-driving car and interface to Robot
Operating System.

10
Creating a Self-Driving Car

Using ROS
In this chapter, we will discuss a big technology that is trending in the robotics industry:
driverless cars, or self-driving cars. Many of you may have heard about this technology;
those who haven't will get an introduction in the first section of the chapter. In this chapter,
you can find the following important topics.

Getting started with self-driving cars
Software block diagram of a typical self-driving car
Simulating and interfacing self-driving car sensors in ROS
Simulating a self-driving car with sensors in Gazebo
Interfacing a DBW car into ROS
Introducing the Udacity open source self-driving car project
Open source self-driving car simulator from Udacity

Creating a self-driving car from scratch is out of the scope of this book, but this chapter may
give you an abstract idea of self-driving car components, and tutorials to simulate it.

Creating a Self-Driving Car Using ROS

[306]

Getting started with self-driving cars
Just imagine a car driving by itself without the help of anyone. Self-driving cars are robot
cars that can think about and decide how to reach the destination. The passenger only needs
to specify the destination, and the robot car will take you to the destination safely. To
convert an ordinary car into a robotic car, we should add some robotic sensors to it. We
know that for a robot, there should be at least three important capabilities. It should be able
to sense, plan, and act. Self-driving cars satisfy all these requirements. We'll discuss all the
components we need for building a self-driving car. Before discussing the building of self-
driving car, let's go through some milestones in self-driving car development.

History of autonomous vehicles
The concept of automating vehicles started long ago. From 1930, people have been trying to
automate cars and aircraft, but the hype of self-driving cars increased between 2004 and
2013. To encourage autonomous vehicle technology, the U.S. Department of Defense's
research arm, DARPA, conducted a challenge called the Grand DARPA Grand Challenge in
2004. The aim of the challenge was to autonomously drive for 150 miles through a desert
roadway. In this challenge, no team was able to complete the goal, so they again challenged
engineers in 2007 (http://archive.darpa.mil/grandchallenge/), but this time, the aim
was slightly different. Instead of a desert roadway, there was an urban environment spread
across 60 miles. In this challenge, four teams were able to finish the goal. The winner of the
challenge was Team Taran Racing from Carnegie Mellon University
(http://www.tartanracing.org/). The second-place team was Stanford Racing from
Stanford University (http://cs.stanford.edu/group/roadrunner/).

http://archive.darpa.mil/grandchallenge/
http://www.tartanracing.org/
http://cs.stanford.edu/group/roadrunner/

Creating a Self-Driving Car Using ROS

[307]

Here is the autonomous car that won the DARPA challenge:

Figure 1: Boss, the Tartan autonomous vehicle

After the DARPA Challenge, car companies started working hard to implement
autonomous driving capabilities in their cars. Now, almost all car companies have their
own autonomous car prototype. In 2009, Google started to develop their self-driving car
project, now known as Waymo (https://waymo.com/). This project greatly influenced other
car companies, and the project was lead by Sebastian Thrun
(http://robots.stanford.edu/), the former director of the Stanford Artificial Intelligence
Laboratory (http://ai.stanford.edu/).

https://waymo.com/
http://robots.stanford.edu/
http://ai.stanford.edu/

Creating a Self-Driving Car Using ROS

[308]

The car autonomously traveled around 2.7 million kilometers in 2016. Take a look at it:

Figure 2: The Google self-driving car

In 2015, Tesla motors introduced a semi-autonomous autopilot feature in their electric cars.
It enables hands-free driving mainly on highways and everything. In 2016, Nvidia
introduced their own self-driving car (http://www.nvidia.com/object/drive-px.html),
built using their AI car computer called NVIDIA-DGX-1
(http://www.nvidia.com/object/deep-learning-system.html). This computer was
specially designed for the self-driving car and is the best for developing autonomous
training driving models.

http://www.nvidia.com/object/drive-px.html
http://www.nvidia.com/object/deep-learning-system.html

Creating a Self-Driving Car Using ROS

[309]

Other than self-driving cars, there are self-driving shuttles for campus mobility. A lot of
startups are building self-driving shuttles now, and one of these startups is called Auro
robotics (http://www.auro.ai/). Here is the shuttle they're building for campuses:

Figure 3: Self-driving shuttle from Auro robotics

There is tremendous progress happening in self-driving car technology. Latest reports say
that by the end of 2020, self-driving cars will conquer our roads
(http://www.businessinsider.com/report-10-million-self-driving-cars-will-be-on-
the-road-by-2020-2015-5-6?IR=T). One of the most common terms used when describing
autonomous cars is a level of autonomy. Let's go through the different levels of autonomy
used when describe an autonomous vehicle.

http://www.auro.ai/
http://www.businessinsider.com/report-10-million-self-driving-cars-will-be-on-the-road-by-2020-2015-5-6?IR=T
http://www.businessinsider.com/report-10-million-self-driving-cars-will-be-on-the-road-by-2020-2015-5-6?IR=T

Creating a Self-Driving Car Using ROS

[310]

Levels of autonomy
Level 0: Vehicles having level 0 autonomy are completely manual, with a human
driver. Most old cars belong in this category.
Level 1: Vehicles with level 1 autonomy will have a human driver, but they will
also have a driver assistance system that can either automatically control the
steering system or acceleration/deceleration using information from the
environment. All other functions have to be controlled by the driver.
Level 2: In level 2 autonomy, the vehicle can perform both steering and
acceleration/deceleration. All other tasks have to be controlled by the driver. We
can say that the vehicle is partially automated in this level.
Level 3: In this level, it is expected that all tasks be performed autonomously, but
at the same time, it is expected that a human will intervene whenever required.
This level is called conditional automation.
Level 4: At this level, there is no need for a driver; everything is handled by an
automated system. This kind of autonomous system will work in a particular
area under specified weather conditions. This level is called high automation
Level 5: This level is called full automation. In this level, everything is heavily
automated and can work on any road and any weather condition. There is no
need for a human driver.

Functional block diagram of a typical self-
driving car
The following shows the important components of a self-driving vehicle. The list of parts
and their functionalities will be discussed in this section. We'll also look at the exact sensor
that was used in the autonomous car for the DARPA Challenge.

Creating a Self-Driving Car Using ROS

[311]

Figure 4: Important components of a self-driving car

GPS, IMU, and wheel encoders
As you know, the Global Positioning System (GPS) helps us determine the global position
of a vehicle with the help of GPS satellites. The latitude and longitude of the vehicle can be
calculated from the GPS data. The accuracy of GPS can vary with the type of sensor; some
sensors have an error in the range of meters, and some have less than 1 meter of error. We
can find vehicle state by combining GPS, inertial measurement unit (IMU) and wheel
odometry data, and by using sensor fusion algorithms. This can give better estimate of the
vehicle. Let's look at the position estimation modules used for the DARPA Challenge 2007.

POS LV modules from Applanix: This is the module used in the Standford autonomous
car, Junior. It is a combination of GPS, IMU, and wheel encoders or distance measurement
indicator (DMI). You can find it at http://www.applanix.com/products/poslv.html.

http://www.applanix.com/products/poslv.html

Creating a Self-Driving Car Using ROS

[312]

Here is what the module looks like:

Figure 5: Applanix module for autonomous navigation

As you can see from the preceding image, there are wheel encoders, an IMU, and a GPS
receiver provided with this package.

OxTS module: This is another GPS/IMU combo module from Oxford Technical Solution
(OxTS) (http://www.oxts.com/). This module was extensively used in the DARPA
Challenge in 2007. The module is from the RT 3000 v2 family
(http://www.oxts.com/products/rt3000-family/). The entire range of GPS modules from
OxTS can be found at http://www.oxts.com/industry/automotive-testing/. Here is the
list of the autonomous vehicles that use these modules:
http://www.oxts.com/customer-stories/autonomous-vehicles-2/. The following image
shows the RT-3000 v2 module:

http://www.oxts.com/
http://www.oxts.com/products/rt3000-family/
http://www.oxts.com/industry/automotive-testing/
http://www.oxts.com/customer-stories/autonomous-vehicles-2/

Creating a Self-Driving Car Using ROS

[313]

Figure 6: RT-3000 v2 module

Xsens MTi IMU
The Xsens MTi series has independent IMU modules that can be used in autonomous cars.
Here is the link to purchase this product:

http://www.xsens.com/products/mti-10-series/

Camera
Most autonomous vehicles are deployed with stereo or monocular cameras to detect
various things, such as traffic signal status, pedestrians, cyclists, and vehicles. Companies
such as MobileEye (http://www.mobileye.com/) which has been acquired by Intel built
their advanced driving assistance system (ADAS) using a sensor fusion of cameras and
LIDAR data to predict obstacles and path trajectory.

http://www.xsens.com/products/mti-10-series/
http://www.mobileye.com/

Creating a Self-Driving Car Using ROS

[314]

Other than ADAS, we can also use our own control algorithms by only using camera data.
One of the cameras used by the Boss robot car in DARPA 2007 was Point Grey Firefly
(PGF) (https://www.ptgrey.com/firefly-mv-usb2-cameras). These are high dynamic
range cameras and have a 45-degree field of view (FOV):

Figure 7: Point Grey Firefly camera

Ultrasonic sensors
In an ADAS system, ultrasonic sensors play an important role in the parking of vehicles,
avoiding obstacles in blind spots, and detecting pedestrians. One of the companies
providing ultrasound sensors for ADAS systems is Murata (http://www.murata.com/).
They provide ultrasonic sensors for up to 10 meters, which are optimum for a parking
assistance system (PAS). The following diagram shows where ultrasonic sensors are placed
on a car:

https://www.ptgrey.com/firefly-mv-usb2-cameras
http://www.murata.com/

Creating a Self-Driving Car Using ROS

[315]

Figure 8: Placement of ultrasonic sensors for PAS

LIDAR and RADAR
The LIDAR (Light Detection and Ranging)
(http://oceanservice.noaa.gov/facts/lidar.html) sensors are the core sensors of a self-
driving car. A LIDAR sensor basically measures the distance to an object by sending a laser
signal and receiving its reflection. It can provide accurate 3D data of the environment,
computed from each received laser signal. The main application of LIDAR in autonomous
car is mapping the environment from the 3D data, obstacle avoidance, object detection, and
so on. Some of the LIDARs used in the DARPA Challenge are will be discussed here.

http://oceanservice.noaa.gov/facts/lidar.html

Creating a Self-Driving Car Using ROS

[316]

Velodyne HDL-64 LIDAR
The Velodyne HDL-64 sensor is designed for obstacle detection, mapping, and navigation
for autonomous cars. It can give us 360-degree view laser-point cloud data with a high data
rate. The range of this laser scan is 80 to 120 m. This sensor is used for almost all the self-
driving cars available today. A list of Velodyne sensors available on the market can be
found at http://velodynelidar.com/products.html.

Here are a few of them:

Figure 9: Some Velodyne sensors

http://velodynelidar.com/products.html

Creating a Self-Driving Car Using ROS

[317]

SICK LMS 5xx/1xx and Hokuyo LIDAR
The company SICK (https://www.sick.com/) provides a variety of laser scanners that can
be used indoor or outdoor. The SICK Laser Measurement System (LMS) 5xx and 1xx
models are commonly used in autonomous cars for obstacle detection. It provides a
scanning range of 180 degrees and has high-resolution laser data. The list of SICK laser
scanners available in the market is at https://www.sick.com/in/en. Another company,
called Hokuyo (http://www.hokuyo-aut.jp/index.html), also builds laser scanners for
autonomous vehicles. Here is the list of laser scanners provided by Hokuyo:
http://www.hokuyo-aut.jp/02sensor/.

These are two laser scanners by SICK and Hokuyo:

Figure 10: SICK and Hokuyo laser scanners

Some of the other LIDARs used in the DARPA Challenge provided given
here:
h t t p ://w w w . c o n t i - o n l i n e . c o m /w w w /i n d u s t r i a l _ s e n s o r s _ d e _ e n /
https://www.ibeo-as.com/aboutibeo/lidar/

https://www.sick.com/
https://www.sick.com/in/en
http://www.hokuyo-aut.jp/index.html
http://www.hokuyo-aut.jp/02sensor/
http://www.conti-online.com/www/industrial_sensors_de_en/
http://www.conti-online.com/www/industrial_sensors_de_en/
http://www.conti-online.com/www/industrial_sensors_de_en/
http://www.conti-online.com/www/industrial_sensors_de_en/
http://www.conti-online.com/www/industrial_sensors_de_en/
http://www.conti-online.com/www/industrial_sensors_de_en/
http://www.conti-online.com/www/industrial_sensors_de_en/
http://www.conti-online.com/www/industrial_sensors_de_en/
http://www.conti-online.com/www/industrial_sensors_de_en/
http://www.conti-online.com/www/industrial_sensors_de_en/
http://www.conti-online.com/www/industrial_sensors_de_en/
http://www.conti-online.com/www/industrial_sensors_de_en/
http://www.conti-online.com/www/industrial_sensors_de_en/
http://www.conti-online.com/www/industrial_sensors_de_en/
http://www.conti-online.com/www/industrial_sensors_de_en/
http://www.conti-online.com/www/industrial_sensors_de_en/
http://www.conti-online.com/www/industrial_sensors_de_en/
http://www.conti-online.com/www/industrial_sensors_de_en/
http://www.conti-online.com/www/industrial_sensors_de_en/
http://www.conti-online.com/www/industrial_sensors_de_en/
http://www.conti-online.com/www/industrial_sensors_de_en/
http://www.conti-online.com/www/industrial_sensors_de_en/
http://www.conti-online.com/www/industrial_sensors_de_en/
http://www.conti-online.com/www/industrial_sensors_de_en/
http://www.conti-online.com/www/industrial_sensors_de_en/
http://www.conti-online.com/www/industrial_sensors_de_en/
http://www.conti-online.com/www/industrial_sensors_de_en/
http://www.conti-online.com/www/industrial_sensors_de_en/
http://www.conti-online.com/www/industrial_sensors_de_en/
http://www.conti-online.com/www/industrial_sensors_de_en/
http://www.conti-online.com/www/industrial_sensors_de_en/
http://www.conti-online.com/www/industrial_sensors_de_en/
http://www.conti-online.com/www/industrial_sensors_de_en/
http://www.conti-online.com/www/industrial_sensors_de_en/
http://www.conti-online.com/www/industrial_sensors_de_en/
http://www.conti-online.com/www/industrial_sensors_de_en/
http://www.conti-online.com/www/industrial_sensors_de_en/
http://www.conti-online.com/www/industrial_sensors_de_en/
http://www.conti-online.com/www/industrial_sensors_de_en/
http://www.conti-online.com/www/industrial_sensors_de_en/
http://www.conti-online.com/www/industrial_sensors_de_en/
http://www.conti-online.com/www/industrial_sensors_de_en/
http://www.conti-online.com/www/industrial_sensors_de_en/
http://www.conti-online.com/www/industrial_sensors_de_en/
http://www.conti-online.com/www/industrial_sensors_de_en/
http://www.conti-online.com/www/industrial_sensors_de_en/
http://www.conti-online.com/www/industrial_sensors_de_en/
http://www.conti-online.com/www/industrial_sensors_de_en/
http://www.conti-online.com/www/industrial_sensors_de_en/
http://www.conti-online.com/www/industrial_sensors_de_en/
http://www.conti-online.com/www/industrial_sensors_de_en/
http://www.conti-online.com/www/industrial_sensors_de_en/
http://www.conti-online.com/www/industrial_sensors_de_en/
http://www.conti-online.com/www/industrial_sensors_de_en/
http://www.conti-online.com/www/industrial_sensors_de_en/
http://www.conti-online.com/www/industrial_sensors_de_en/
http://www.conti-online.com/www/industrial_sensors_de_en/
http://www.conti-online.com/www/industrial_sensors_de_en/
http://www.conti-online.com/www/industrial_sensors_de_en/
http://www.conti-online.com/www/industrial_sensors_de_en/
http://www.conti-online.com/www/industrial_sensors_de_en/
http://www.conti-online.com/www/industrial_sensors_de_en/
http://www.conti-online.com/www/industrial_sensors_de_en/
http://www.conti-online.com/www/industrial_sensors_de_en/
http://www.conti-online.com/www/industrial_sensors_de_en/
http://www.conti-online.com/www/industrial_sensors_de_en/
http://www.conti-online.com/www/industrial_sensors_de_en/
http://www.conti-online.com/www/industrial_sensors_de_en/
http://www.conti-online.com/www/industrial_sensors_de_en/
http://www.conti-online.com/www/industrial_sensors_de_en/
http://www.conti-online.com/www/industrial_sensors_de_en/
http://www.conti-online.com/www/industrial_sensors_de_en/
http://www.conti-online.com/www/industrial_sensors_de_en/
http://www.conti-online.com/www/industrial_sensors_de_en/
http://www.conti-online.com/www/industrial_sensors_de_en/
http://www.conti-online.com/www/industrial_sensors_de_en/
http://www.conti-online.com/www/industrial_sensors_de_en/
http://www.conti-online.com/www/industrial_sensors_de_en/
http://www.conti-online.com/www/industrial_sensors_de_en/
http://www.conti-online.com/www/industrial_sensors_de_en/
http://www.conti-online.com/www/industrial_sensors_de_en/
http://www.conti-online.com/www/industrial_sensors_de_en/
http://www.conti-online.com/www/industrial_sensors_de_en/
http://www.conti-online.com/www/industrial_sensors_de_en/
http://www.conti-online.com/www/industrial_sensors_de_en/
http://www.conti-online.com/www/industrial_sensors_de_en/
http://www.conti-online.com/www/industrial_sensors_de_en/
http://www.conti-online.com/www/industrial_sensors_de_en/
http://www.conti-online.com/www/industrial_sensors_de_en/
http://www.conti-online.com/www/industrial_sensors_de_en/
http://www.conti-online.com/www/industrial_sensors_de_en/
http://www.conti-online.com/www/industrial_sensors_de_en/
http://www.conti-online.com/www/industrial_sensors_de_en/
http://www.conti-online.com/www/industrial_sensors_de_en/
http://www.conti-online.com/www/industrial_sensors_de_en/
http://www.conti-online.com/www/industrial_sensors_de_en/
http://www.conti-online.com/www/industrial_sensors_de_en/
http://www.conti-online.com/www/industrial_sensors_de_en/
http://www.conti-online.com/www/industrial_sensors_de_en/
http://www.conti-online.com/www/industrial_sensors_de_en/
http://www.conti-online.com/www/industrial_sensors_de_en/
http://www.conti-online.com/www/industrial_sensors_de_en/
http://www.conti-online.com/www/industrial_sensors_de_en/
https://www.ibeo-as.com/aboutibeo/lidar/

Creating a Self-Driving Car Using ROS

[318]

Continental ARS 300 radar (ARS)
Apart from LIDARs, self-driving cars are also deployed with long-range radars. One of the
popular long-range radars is ARS 30X by Continental
(http://www.conti-online.com/www/industrial_sensors_de_en/themes/ars_300_en.htm
l). It works using the Doppler principle and can measure up to 200 meters. Bosch also
manufactures radars suitable for self-driving cars. The main application of radars is
collision avoidance. Commonly, radars are deployed at the front of the vehicles.

Delphi radar
Delphi has a new radar for autonomous cars. Here is the link to view the product:

http://www.delphi.com/manufacturers/auto/safety/active/electronically-scanning-
radar

On-board computer
The onboard computer is the heart of the self-driving car. It may have high-end processors
such as Intel Xenon and GPUs to crunch data from various sensors. All sensors are
connected to this computer, and it finally predicts the trajectory and sends control
commands, such as steering angle, throttle, and braking for the self-driving car.

Software block diagram of self-driving cars
In this section, we will discuss a basic software block diagram of a self-driving car that was
in DARPA Challenge:

http://www.conti-online.com/www/industrial_sensors_de_en/themes/ars_300_en.html
http://www.conti-online.com/www/industrial_sensors_de_en/themes/ars_300_en.html
http://www.delphi.com/manufacturers/auto/safety/active/electronically-scanning-radar
http://www.delphi.com/manufacturers/auto/safety/active/electronically-scanning-radar

Creating a Self-Driving Car Using ROS

[319]

Figure 11: Software block diagram of a self-driving car

Let's learn what each block means. Each block can interact with others using inter-process
communication (IPC) or shared memory. ROS messaging middleware is a perfect fit in this
scenario. In DARPA Challenge, they implemented a publish/subscribe mechanism to do
these tasks. One of the IPC library development by MIT for 2006 DARPA challenge was
Lightweight Communications and Marshalling (LCM). You may can learn more about
LCM from the following link (https://lcm-proj.github.io/).

Sensor interface modules: As the name of the module indicates, all the
communication between the sensors and the vehicle is done in this block. The
block enables us to provide the various kinds of sensor data to all other blocks.
The main sensors include LIDAR, camera, radar, GPS, IMU, and wheel encoders.
Perception modules: These modules perform processing on perception data from
sensors such as LIDAR, camera, and radar and segment the data to find moving
and static objects. They also help localize the self-driving car relative to the digital
map of the environment.

https://lcm-proj.github.io/

Creating a Self-Driving Car Using ROS

[320]

Navigation modules: This module determines the behavior of the autonomous
car. It has motion planners and finite state machines for different behaviors in the
robot.
Vehicle interface: After the path planning, the control commands, such as
steering, throttle, and brake control, are sent to the vehicle through a drive-by-
wire (DBW) interface. DBW basically works through the CAN bus. Only some
vehicles support the DBW interface. Examples are the Lincoln MKZ, VW Passat
Wagon, and some models from Nissan.
User interface: The user interface section provides controls to the user. It can be a
touch screen to view maps and set the destination. Also, there is an emergency
stop button for the user.
Global services: This set of modules helps log the data and has time stamping
and message-passing support to keep the software running reliably.

Simulating and interfacing self-driving car sensors in ROS

In the preceding section, we discussed the basic concepts of a self-driving car. That
understanding will definitely help in this section too. In this section, we are simulating and
interfacing some of the sensors that we are using in self-driving cars. Here is the list of
sensors that we are going to simulate and interface with ROS:

Velodyne LIDAR
Laser scanner
Camera
Stereo camera
GPS
IMU
Ultrasonic sensor

We'll discuss how to set up the simulation using ROS and Gazebo and read the sensor
values. This sensor interfacing will be useful when you build your own self-driving car
simulation from scratch. So if you know how to simulate and interface these sensors, it can
definitely accelerate your self-driving car development.

Creating a Self-Driving Car Using ROS

[321]

Simulating the Velodyne LIDAR
The Velodyne LIDAR is becoming an integral part of a self-driving car. Because of high
demand, there are enough software modules available for working with this sensor. We are
going to simulate two popular models of Velodyne, called HDL-32E and VLP-16. Let's see
how to do it in ROS and Gazebo.

In ROS-Kinetic and Indigo, we can install from a binary package or compile from source
code. Here is the command to install Velodyne packages on ROS Kinetic:

 $ sudo apt-get install ros-kinetic-velodyne-simulator

In ROS Indigo, just replace the ROS distribution name:

 $ sudo apt-get install ros-indigo-velodyne-simulator

To install it from source code, just clone the source package to the ROS workspace using the
following command:

 $ git clone https://bitbucket.org/DataspeedInc/velodyne_simulator.git

After cloning the package, you can build it using the catkin_make command. Here is the
ROS wiki page of the Velodyne simulator:

http://wiki.ros.org/velodyne_simulator

So you are installed the packages. Now it's time to start the simulation of the Velodyne
sensor. You can start the simulation using the following command:

 $ roslaunch velodyne_description example.launch

This command will launch the sensor simulation in Gazebo. Note that this simulation will
consume a lot of RAM of your system; your system should have at least 8 GB before start
the simulation.

http://wiki.ros.org/velodyne_simulator

Creating a Self-Driving Car Using ROS

[322]

You can add some obstacles around the sensor for testing, like this:

Figure 12: Simulation of Velodyne in Gazebo

Creating a Self-Driving Car Using ROS

[323]

You can visualize the sensor data in Rviz by adding display types such as PointCloud2 and
Robot Model to visualize sensor data and sensor models. You have to set the Fixed Frame
to velodyne. You can clearly see the obstacles around the sensor in the following figure:

Figure 13: Visualization of a Velodyne sensor in Rviz

Interfacing Velodyne sensors with ROS
We have seen how to simulate a Velodyne sensor; now let's have a look at how we can
interface a real Velodyne sensor with ROS.

Creating a Self-Driving Car Using ROS

[324]

The following commands are to install the velodyne ROS driver package to convert
Velodyne data to point cloud data.

ROS Kinetic:

 $ sudo apt-get install ros-kinetic-velodyne

ROS Indigo:

 $ sudo apt-get install ros-indigo-velodyne

These commands will install the ROS Velodyne driver and point cloud converter packages.

This driver supports models such as the HDL-64E, HDL-32E, and VLP-16.

Here are the commands to start the driver nodelets:

 $ roslaunch velodyne_driver nodelet_manager.launch model:=32E

Here, you need to mention the model name along with the launch file to start the driver for
a specific model.

The following command will start the converter nodelets to convert Velodyne messages
(velodyne_msgs/VelodyneScan) to a point cloud (sensor_msgs/PointCloud2). Here is
the command to perform this conversion:

 $ roslaunch velodyne_pointcloud cloud_nodelet.launch
calibration:=~/calibration_file.yaml

This will launch the calibration file for Velodyne, which is necessary for correcting noise
from the sensor.

We can write all these commands to a launch file, which is shown in the following code
block. If you run this launch file, the driver node and point cloud convertor nodelets will
start, and we can work with the sensor data:

 <launch>
 <!-- start nodelet manager and driver nodelets -->
 <include file="$(find
 velodyne_driver)/launch/nodelet_manager.launch" />

 <!-- start transform nodelet -->
 <include file="$(find
 velodyne_pointcloud)/launch/transform_nodelet.launch">
 <arg name="calibration"
 value="$(find
 velodyne_pointcloud)/params/64e_utexas.yaml"/>

Creating a Self-Driving Car Using ROS

[325]

 </include>
 </launch>

The calibration files for each model are available in the velodyne_pointcloud package.

Note: The connection procedure of Velodyne to PC is given here:
http://wiki.ros.org/velodyne/Tutorials/Getting%20Started%20with%
20the%20HDL-32E

Simulating a laser scanner
In this section, we will see how to simulate a laser scanner in Gazebo. We can simulate it by
providing custom parameters according to our application. When you install ROS, you also
automatically install several default Gazebo plugins, which include Gazebo laser scanner
plugin.

We can simply use this plugin and apply our custom parameters. For demonstration, you
can use a tutorial package inside chapter_10_codes called sensor_sim_gazebo. You
can simply copy the package to the workspace and build it using the catkin_make
command. This package contains a basic simulation of the laser scanner, camera, IMU,
ultrasonic sensor, and GPS.

Before starting with this package, you should install a package called hector-gazebo-
plugins using the following command. This package contains Gazebo plugins of several
sensors that can be used in self-driving car simulations.

 $ sudo apt-get install ros-kinetic-hector-gazebo-plugins

To start the laser scanner simulation, just use the following command:

 $ roslaunch sensor_sim_gazebo laser.launch

We'll first look at the output of the laser scanner and then dig into the code.

http://wiki.ros.org/velodyne/Tutorials/Getting%20Started%20with%20the%20HDL-32E
http://wiki.ros.org/velodyne/Tutorials/Getting%20Started%20with%20the%20HDL-32E

Creating a Self-Driving Car Using ROS

[326]

When you launch the preceding command, you will see an empty world with an orange
box. The orange box is our laser scanner. You can use any mesh file to replace this shape
according to your application. To show laser scanner data, we can place some objects in
Gazebo, as shown here. You can add models from Gazebo's top panel.

Figure 14: Simulation of a laser scanner in Gazebo

You can visualize the laser data in Rviz, as shown in the next screenshot. The topic to which
the laser data is coming is /laser/scan. You can add a LaserScan display type to view this
data:

Creating a Self-Driving Car Using ROS

[327]

Figure 15: Visualization of laser scanner data in Rviz

You have to set the Fixed Frame to a world frame and enable the RobotModel and Axes
display types in Rviz.

The following is the list of topics generated while simulating this sensor. You can see the
/laser/scan topic.

Figure 16: List of topics from the laser scanner simulation

Creating a Self-Driving Car Using ROS

[328]

Explaining the simulation code
The sensor_sim_gazebo package has the following list of files for simulating all self-
driving car sensors. Here is the directory structure of this package:

Figure 17: List of files in sensor_sim_gazebo

To simulate a laser, launch the laser.launch file; similarly, to start simulating the IMU,
GPS, and camera, launch the corresponding launch files. Inside URDF, you can see the
Gazebo plugin definition for each sensor. The sensor.xacro file is the orange box
definition that you saw in the preceding simulation. It is just a box for visualizing a sensor
model. We are using this model for representing all the sensors inside this package. You can
use your own model instead of this, too.

The laser.xacro file has the Gazebo plugin definition of the laser, as shownhere:

 <gazebo reference="sensor">
 <sensor type="ray" name="head_hokuyo_sensor">
 <pose>0 0 0 0 0 0</pose>
 <visualize>false</visualize>
 <update_rate>40</update_rate>
 <ray>
 <scan>

Creating a Self-Driving Car Using ROS

[329]

 <horizontal>
 <samples>720</samples>
 <resolution>1</resolution>
 <min_angle>-1.570796</min_angle>
 <max_angle>1.570796</max_angle>
 </horizontal>
 </scan>
 <range>
 <min>0.8</min>
 <max>30.0</max>
 <resolution>0.01</resolution>
 </range>
 <noise>
 <type>gaussian</type>
 <!-- Noise parameters based on published spec for Hokuyo
 laser
 achieving "+-30mm" accuracy at range < 10m. A mean
 of 0.0m and
 stddev of 0.01m will put 99.7% of samples within
 0.03m of the true
 reading. -->
 <mean>0.0</mean>
 <stddev>0.01</stddev>
 </noise>
 </ray>
 <plugin name="gazebo_ros_head_hokuyo_controller"
 filename="libgazebo_ros_laser.so">
 <topicName>/laser/scan</topicName>
 <frameName>world</frameName>
 </plugin>
 </sensor>
 </gazebo>

Here, you can see various parameters of the laser scanner plugin. We can fine-tune these
parameters for our custom applications. The plugin we've used here is
libgazebo_ros_laser.so, and all the parameters are passed to this plugin.

In the laser.launch file, we are creating an empty world and spawning the laser.xacro
file. Here is the code snippet to spawn the model into Gazebo and start a joint-state
publisher to start publishing TF data:

 <param name="robot_description" command="$(find xacro)/xacro --
 inorder '$(find sensor_sim_gazebo)/urdf/laser.xacro'" />

 <node pkg="gazebo_ros" type="spawn_model" name="spawn_model"
 args="-urdf -param /robot_description -model example"/>

Creating a Self-Driving Car Using ROS

[330]

 <node pkg="robot_state_publisher" type="robot_state_publisher"
 name="robot_state_publisher">
 <param name="publish_frequency" type="double" value="30.0" />
 </node>

Interfacing laser scanners with ROS
Now that we've discussed the simulation of the laser scanner, let's see how to interface real
sensors with ROS.

Here are some links to guide you with setting up Hokuyo and SICK laser scanners in ROS.
The complete installation instructions is available.

Hokuyo sensors: http://wiki.ros.org/hokuyo_node

SICK lasers: http://wiki.ros.org/sick_tim

You can install Hokuyo drivers from binary packages using the following commands:

Hokuyo laser scanners.

 $ sudo apt-get install ros-kinetic-hokuyo3d

SICK laser scanners.

 $ sudo apt-get install ros-kinetic-sick-tim ros-kinetic-lms1xx

Simulating stereo and mono cameras in Gazebo
In the previous section, we discussed laser scanner simulation. In this section, we will see
how to simulate a camera. A camera is an important sensor for all kinds of robots. We will
see how to launch both mono and stereo camera simulations. You can use the following
commands to launch the simulations.

Mono camera:

 $ roslaunch sensor_sim_gazebo camera.launch

Stereo camera:

 $ roslaunch sensor_sim_gazebo stereo_camera.launch

http://wiki.ros.org/hokuyo_node
http://wiki.ros.org/sick_tim
http://wiki.ros.org/sick_tim

Creating a Self-Driving Car Using ROS

[331]

You can view the image from the camera either using Rviz or using a tool called
image_view.

You can look at the mono camera view using the following command:

 $ rosrun image_view image_view image:=/sensor/camera1/image_raw

Figure 18: Image from simulated camera

To view images from a simulated stereo camera, use the following commands:

 $ rosrun image_view image_view image:=/stereo/camera/right/image_raw
 $ rosrun image_view image_view image:=/stereo/camera/left/image_raw

Creating a Self-Driving Car Using ROS

[332]

This commands will display two image windows from each camera of the stereo camera,
which is shown here:

Figure 19: Image from simulated stereo camera

Similar to the laser scanner plugin, we are using a separate plugin for mono and stereo
cameras. You can see the Gazebo plugin definition in
sensor_sim_gazebo/urdf/camera.xacro and stereo_camera.xacro.

The lib_gazebo_ros_camera.so plugin is used to simulate a mono camera, and
libgazebo_ros_multicamera.so for a stereo camera.

Interfacing cameras with ROS
In this section, we will see how to interface an actual camera with ROS. There are a lot of
cameras available in the market. We'll look at some of the commonly used cameras and how
to interface with them.

There are some links to guide you with setting up each driver in ROS.

Creating a Self-Driving Car Using ROS

[333]

For the Point Grey camera, you can refer to the following link:
http://wiki.ros.org/pointgrey_camera_driver

If you are working with a Mobileye sensor, you may get ROS drivers by contacting the
company. All details of the driver and its SDK are available at the following link:

https://autonomoustuff.com/product/mobileye-camera-dev-kit

If you are working on IEEE 1394 digital cameras, the following drivers can be used to
interface with ROS:

http://wiki.ros.org/camera1394

One of the latest stereo cameras available is the ZED camera
(https://www.stereolabs.com/). The ROS drivers of this camera are available at the
following link:

http://wiki.ros.org/zed-ros-wrapper

If you are working with some normal USB web camera, the
usb_cam

driver package will be best for interfacing with ROS:

http://wiki.ros.org/usb_cam

Simulating GPS in Gazebo
In this section, we will see how to simulate a GPS sensor in Gazebo. As you know, GPS is
one of the essential sensors in a self-driving car. You can start a GPS simulation using the
following command:

 $ roslaunch sensor_sim_gazebo gps.launch

http://wiki.ros.org/pointgrey_camera_driver
https://autonomoustuff.com/product/mobileye-camera-dev-kit
http://wiki.ros.org/camera1394
https://www.stereolabs.com/
http://wiki.ros.org/zed-ros-wrapper
http://wiki.ros.org/usb_cam

Creating a Self-Driving Car Using ROS

[334]

Now, you can list out the topic and find the GPS topics published from the Gazebo plugin.
Here is a list of topics from the GPS plugin:

Figure 20: List of topics from the Gazebo GPS plugin

You can echo the /gps/fix topic to confirm that the plugin is publishing the values
correctly.

Creating a Self-Driving Car Using ROS

[335]

You can use the following command to echo this topic:

 $ rostopic echo /gps/fix

Figure 21: Values published to the /gps/fix topic

If you look at the code in sensor_sim_gazebo/urdf/gps.xacro, you will find <plugin
name="gazebo_ros_gps" filename="libhector_gazebo_ros_gps.so">; these
plugins belong to the hector_gazebo_ros_plugins package, which we installed at the
beginning of the sensor interfacing. We can set all parameters related to GPS in this plugin
description, and you can see the test parameters values in the gps.xacro file. The GPS
model is visualized as a box, and you can test the sensor values by moving this box in
Gazebo.

Interfacing GPS with ROS
In this section, we will see how to interface some popular GPS modules with ROS. One of
the popular GPS modules we discussed earlier was Oxford Technical Solutions (OxTS).
You can find GPS/IMU modules at http://www.oxts.com/products/. The ROS interface of
this module can be found at http://wiki.ros.org/oxford_gps_eth. The Applanix
GPS/IMU ROS module driver can be found at the following links:

http://wiki.ros.org/applanix_driver

http://wiki.ros.org/applanix

http://www.oxts.com/products/
http://wiki.ros.org/oxford_gps_eth
http://wiki.ros.org/applanix_driver
http://wiki.ros.org/applanix

Creating a Self-Driving Car Using ROS

[336]

Simulating IMU on Gazebo
Similar to GPS, we can start the IMU simulation using the following command:

 $ roslaunch sensor_sim_gazebo imu.launch

You will get orientation values, linear acceleration, and angular velocity from this plugin.
After launching this file, you can list out the topics published by the imu plugin. Here is the
list of topics published by this plugin:

Figure 22: List of topics published from the imu ROS plugin

We can check out the /imu topic by echoing the topic. You can find orientation, linear
acceleration, and angular velocity data from this topic. The values are shown here:

Creating a Self-Driving Car Using ROS

[337]

Figure 23: Data from the /imu topic

If you look at the IMU plugin definition code from
sensor_sim_gazebo/urdf/imu.xacro, you can find the name of the plugin and its
parameters.

The name of the plugin is mentioned in the following code snippet:

 <gazebo>
 <plugin name="imu_plugin" filename="libgazebo_ros_imu.so">
 <alwaysOn>true</alwaysOn>
 <bodyName>sensor</bodyName>
 <topicName>imu</topicName>
 <serviceName>imu_service</serviceName>
 <gaussianNoise>0.0</gaussianNoise>
 <updateRate>20.0</updateRate>
 </plugin>
 </gazebo>

The plugin's name is libgazebo_ros_imu.so, and it is installed along with a standard
ROS installation.

Creating a Self-Driving Car Using ROS

[338]

You can also visualize IMU data in Rviz. Choose the Imu display type to view it. The IMU
is visualized as a box itself, so if you move the box in Gazebo, you can see an arrow moving
in the direction of movement. The Gazebo and Rviz visualizations are shown here:

Figure 24: Visualization of the /imu topic

Interfacing IMUs with ROS
Most self-driving cars use integrated modules for GPS, IMU, and wheel encoders for
accurate position prediction. In this section, we will look at some popular IMU modules
that you can use if you want to use IMU alone.

Creating a Self-Driving Car Using ROS

[339]

I'll point you to a few links for ROS drivers used to interface with it. One of the popular
IMUs is the MicroStrain 3DM-GX2 (http://www.microstrain.com/inertial/3dm-gx2):

Figure 25: Microstrain-3DM-GX2 IMU

Here are the ROS drivers for this IMU series:

http://wiki.ros.org/microstrain_3dmgx2_imu

http://wiki.ros.org/microstrain_3dm_gx3_45

Other than that, there are IMUs from Phidget (http://wiki.ros.org/phidgets_imu) and
popular IMUs such as InvenSense MPU 9250, 9150, and 6050 models
(https://github.com/jeskesen/i2c_imu). Another IMU sensor series called MTi from
Xsens and its drivers can be found at http://wiki.ros.org/xsens_driver.

http://www.microstrain.com/inertial/3dm-gx2
http://wiki.ros.org/microstrain_3dmgx2_imu
http://wiki.ros.org/microstrain_3dm_gx3_45
http://wiki.ros.org/phidgets_imu
https://github.com/jeskesen/i2c_imu
http://wiki.ros.org/xsens_driver

Creating a Self-Driving Car Using ROS

[340]

Simulating an ultrasonic sensor in Gazebo
Ultrasonic sensors also play a key role in self-driving cars. We've already seen that range
sensors are widely used in parking assistant systems. In this section, we are going to see
how to simulate a range sensor in Gazebo. The range sensor Gazebo plugin is already
available in the hector Gazebo ROS plugin, so we can just use it in our code.

Like we did in earlier demos, we will first see how to run the simulation and watch the
output.

The following command will launch the range sensor simulation in Gazebo:

 $ roslaunch sensor_sim_gazebo sonar.launch

In this simulation, we are taking the actual 3D model of the sonar, and it's very small. You
may need to zoom in Gazebo to view the model. We can test the sensor by putting an
obstacle in front of it. We can start Rviz and can view the distance using the Range display
type. The topic name is /distance and the Fixed Frame is world.

Here is the range sensor value when the obstacle is far away:

Figure 26: Range sensor value when the obstacle is far away

Creating a Self-Driving Car Using ROS

[341]

You can see that the marked point is the ultrasonic sound sensor, and on the right, you can
view the Rviz range data as a cone-shaped structure. If we move the obstacle near the
sensor, we can see what happens to the range sensor data:

Figure 27: Range sensor value when the obstacle is near

When the obstacle is too near the sensor, the cone size is reduced, which means the distance
to the obstacle is very low.

Open the Gazebo sonar plugin definition from sensor_sim_gazebo/urdf/
sonar.xacro. This file includes a reference to another file called sonar_model.xacro,
which has the complete sonar plugin definition.

We are using the libhector_gazebo_ros_sonar plugin to run this simulation, which is
given in the following code snippet from sonar_mode.xacro:

 <plugin name="gazebo_ros_sonar_controller"
 filename="libhector_gazebo_ros_sonar.so">

Creating a Self-Driving Car Using ROS

[342]

Low-cost LIDAR sensors
This is an add-on section for hobbyists. If you are planning to build a miniature model of a
self-driving car, you can use the following LIDAR sensors.

Sweep LIDAR
The Sweep 360-degree rotating LIDAR (http://scanse.io/) has a range of 40 meters.
Compared to high-end LIDARs such as Velodyne, it is very cheap and good for research
and hobby projects:

Figure 28: Sweep LIDAR

There is a good ROS interface available for this sensor. Here's the link to the Sweep sensor
ROS package: https://github.com/scanse/sweep-ros. Before building the package, you
need to install some dependencies:

 $ sudo apt-get install ros-kinetic-pcl-conversions ros-kinetic-
pointcloud-to-laserscan

Now you can simply copy the sweep-ros package to your Catkin workspace and build it
using the catkin_make command.

After building the package, you can plug the LIDAR to your PC through a serial-to-USB
converter. If you plug this converter into a PC, Ubuntu will assign a device called
/dev/ttyUSB0. First, you need to change the permission of the device using the following
command:

 $ sudo chmod 777 /dev/ttyUSB0

http://scanse.io/
https://github.com/scanse/sweep-ros

Creating a Self-Driving Car Using ROS

[343]

After changing the permission, we can start launching any of the launch files to view the
laser's /scan point cloud data from the sensor.

The launch file will display the laser scan in Rviz:

 $ roslaunch sweep_ros view_sweep_laser_scan.launch

The launch file will display the point cloud in Rviz:

 $ roslaunch sweep_ros view_sweep_pc2.launch

Here is the visualization of the Sweep LIDAR:

Figure 29: Sweep LIDAR visualization in Rviz

Creating a Self-Driving Car Using ROS

[344]

RPLIDAR
Similar to the Sweep LIDAR, RPLIDAR (http://www.slamtec.com/en/lidar) is another
low-cost LIDAR for hobby projects. RPLIDAR and Sweep have the same applications:
SLAM and autonomous navigation:

Figure 30: RPLIDAR

There is a ROS driver for interfacing the RPLIDAR with ROS. The ROS package is at
http://wiki.ros.org/rplidar. The GitHub link of the package is
https://github.com/robopeak/rplidar_ros.

Simulating a self-driving car with sensors in
Gazebo
In this section, we are going to discuss an open-source self-driving car project done in
Gazebo. In this project, we will learn how to implement a robot car model in Gazebo and
how to integrate all sensors into it. Also, we will move the robot around the environment
using a keyboard, and finally, we will build a map of the environment using SLAM.

http://www.slamtec.com/en/lidar
http://wiki.ros.org/rplidar
https://github.com/robopeak/rplidar_ros

Creating a Self-Driving Car Using ROS

[345]

Installing prerequisites
This project is fully compatible with ROS Indigo, but some packages are yet to be released
in ROS Kinetic. Let's take a look at the prerequisites for setting up packages in ROS Indigo.

The commands given here will install the ROS Gazebo controller manager:

 $ sudo apt-get install ros-indigo-controller-manager
 $ sudo apt-get install ros-indigo-ros-control ros-indigo-ros-
controllers
 $ sudo apt-get install ros-indigo-gazebo-ros-control

After installing this, we can install the Velodyne simulator packages in Indigo using the
following command:

 $ sudo apt-get install ros-indigo-velodyne

This project uses SICK laser scanners, so we have to install the SICK ROS toolbox packages:

 $ sudo apt-get install ros-indigo-sicktoolbox ros-indigo-sicktoolbox-
wrapper

After installing all these dependencies, we can clone the project files into a new ROS
workspace. Use these commands:

 $ cd ~
 $ mkdir -p catvehicle_ws/src
 $cd catvehicle_ws/src
 $ catkin_init_workspace

We have created a new ROS workspace, and now it's time to clone the project files to the
workspace. The following commands will do this:

 $ cd ~/catvehicle_ws/src
 $ git clone https://github.com/sprinkjm/catvehicle.git
 $ git clone https://github.com/sprinkjm/obstaclestopper.git
 $ cd ../
 $ catkin_make

Creating a Self-Driving Car Using ROS

[346]

If all packages have compiled successfully, you can add the following line to the .bashrc
file:

 $ source ~/catvehicle_ws/devel/setup.bash

You can launch the vehicle simulation using the following command:

 $ roslaunch catvehicle catvehicle_skidpan.launch

This command will only start simulation in the command line.

In another Terminal window, run the following command:

 $ gzclient

Figure 31: Robot car simulation in Gazebo

Creating a Self-Driving Car Using ROS

[347]

You can see the Velodyne scan in front of the vehicle. We can list out all ROS topics from
the simulation using the rostopic command. Here are the main topics generated in the
simulation:

Figure 32: Main topics generated by robotic car simulation

Creating a Self-Driving Car Using ROS

[348]

Visualizing robotic car sensor data
We can view each type of sensor data from the robotic car in Rviz. Just run Rviz and open
the catvehicle.rviz configuration from chapter_10_codes. You can see the Velodyne
points and robot car model from Rviz, as shown here:

Figure 33: Complete robot car simulation in Rviz

You can also add a camera view in Rviz. There are two cameras, on the left and right side of
the vehicle. We have added some obstacles in Gazebo to check whether the sensor is
detecting obstacles. You can add more sensors, such as SICK laser and IMU, to Rviz.

Creating a Self-Driving Car Using ROS

[349]

Moving a self-driving car in Gazebo
Okay, so we are done with simulating a complete robotic car in Gazebo; now, let's move the
robot around the environment. We can do this using a keyboard teleop node.

We can launch an existing TurtleBot teleop node using the following command:

 $ roslaunch turtlebot_teleop keyboard_teleop.launch

The TurtleBot teleop node is publishing Twist messages to /cmd_vel_mux/input/teleop,
and we need to convert them into /catvehicle/cmd_vel.

The following command can do this conversion:

 $ rosrun topic_tools relay /cmd_vel_mux/input/teleop
/catvehicle/cmd_vel

Now, you can move the car around the environment using the keyboard. This will be useful
while we perform SLAM.

Running hector SLAM using a robotic car
After moving the robot around the world, let's do some mapping of the world. There are
launch files present to start a new world in Gazebo and start mapping. Here is the
command to start a new world in Gazebo:

 $ roslaunch catvehicle catvehicle_canyonview.launch

This will launch the Gazebo simulation in a new world. You can enter the following
command to view Gazebo:

 $ gzclient

Creating a Self-Driving Car Using ROS

[350]

The Gazebo simulator with a new world is shown here:

Figure 34: Visualization of a robotic car in an urban environment

You can start the teleoperation node to move the robot, and the following command will
start the hector SLAM:

 $ roslaunch catvehicle hectorslam.launch

To visualize the map generated, you can start Rviz and open the configuration file called
catvehicle.rviz.

Creating a Self-Driving Car Using ROS

[351]

You will get the following kind of visualization in Rviz:

Figure 35: Visualization of a map in Rviz using a robotic car

After completing the mapping process, we can save the map using the following command:

 $ rosrun map_server map_saver -f map_name

The preceding command will save the current map as two files, called map_name.pgm and
map_name.yaml.

For more details of this project, you can check the following link:
http://cps-vo.org/group/CATVehicleTestbed

Interfacing a DBW car with ROS
In this section, we will see how to interface a real car with ROS and make it autonomous. As
we discussed earlier, the DBW interface enables us to control a vehicle's throttle, brake, and
steering using the CAN protocol.

http://cps-vo.org/group/CATVehicleTestbed

Creating a Self-Driving Car Using ROS

[352]

There's an existing open source project that is doing this job. The project is owned by a
company called Dataspeed Inc. (http://dataspeedinc.com/). Here is the list of projects
related to self-driving cars from Dataspeed:

https://bitbucket.org/DataspeedInc/

We are going to discuss Dataspeed's ADAS vehicle development project.

First, we will see how to install the ROS packages of this project and look at the
functionality of each package and node.

Installing packages
Here are the complete instructions to install these packages. We only need a single
command to install all these packages.

We can install this on ROS Indigo and ROS Kinetic using the following command:

 bash <(wget -q -O -
https://bitbucket.org/DataspeedInc/dbw_mkz_ros/raw/default/dbw_mkz/scripts/
ros_install.bash)

You will get other methods of installation from the following link:

http://wiki.ros.org/dbw_mkz

Visualizing the self-driving car and sensor data
The previous packages help you interface a DBW car with ROS. If we don't have a real car,
we can work with ROS bag files, visualize data, and process it offline.

The following command helps you visualize the URDF model of a self-driving car:

 $ roslaunch dbw_mkz_description rviz.launch

http://dataspeedinc.com/
https://bitbucket.org/DataspeedInc/
http://wiki.ros.org/dbw_mkz

Creating a Self-Driving Car Using ROS

[353]

You will get following model when you execute it:

Figure 36: Visualization of a self-driving car

If we want to visualize the Velodyne sensor data, other sensors such as GPS and IMU, and
control signal such as steering commands, brake, and acceleration, you can use the
following commands:

Use this command to download the ROS bag file:

 $ wget
https://bitbucket.org/DataspeedInc/dbw_mkz_ros/downloads/mkz_20151207_extra
.bag.tar.gz

You will get a compressed file from the preceding command; extract it to your home folder.

Now you can run the following command to read data from the bag file:

 $ roslaunch dbw_mkz_can offline.launch

Creating a Self-Driving Car Using ROS

[354]

The following command will visualize the car model:

 $ roslaunch dbw_mkz_description rviz.launch

And finally, we have to run the bag file:

 $ rosbag play mkz_20151207.bag -clock

To view the sensor data in Rviz, we have to publish a static transform:

 $ rosrun tf static_transform_publisher 0.94 0 1.5 0.07 -0.02 0
base_footprint velodyne 50

This is the result:

Figure 37: Visualization of a self-driving car

You can set Fixed Frame as the base_footprint and view the car model and Velodyne
data.

Creating a Self-Driving Car Using ROS

[355]

The following commands can helps to communicate using ROS with DBW-based cars.

This is the command to do so:

 $ roslaunch dbw_mkz_can dbw.launch

Now you can test the car using a joystick. Here is the command to launch its nodes:

 $ roslaunch dbw_mkz_joystick_demo joystick_demo.launch sys:=true

Data provided by Dataspeed Inc, located in Rochester Hills, Michigan. For more information
please visit http://dataspeedinc.com.

Communicating with DBW from ROS
In this section, we will see how we can communicate from ROS with DBW-based cars.

This is the command to do so:

 $ roslaunch dbw_mkz_can dbw.launch

Now you can test the car using a joystick. Here is the command to launch its nodes:

 $ roslaunch dbw_mkz_joystick_demo joystick_demo.launch sys:=true

Introducing the Udacity open source self-
driving car project
There is another open source self-driving car project by Udacity
(https://github.com/udacity/self-driving-car) that was created for teaching their
Nanodegree self-driving car program. The aim of this project is to create a complete
autonomous self-driving car using deep learning and using ROS as middleware for
communication. The project is split into a series of challenges, and anyone can contribute to
the project and win a prize. The project is trying to train a convolution neural network
(CNN) from a vehicle camera dataset to predict steering angles. This approach is a
replication of end-to-end deep learning from NVIDIA
(https://devblogs.nvidia.com/parallelforall/deep-learning-self-driving-cars/),
used in their self-driving car project called DAVE-2.

http://dataspeedinc.com
http://dataspeedinc.com
https://github.com/udacity/self-driving-car
https://devblogs.nvidia.com/parallelforall/deep-learning-self-driving-cars/

Creating a Self-Driving Car Using ROS

[356]

The following is the block diagram of DAVE-2. DAVE-2 stands for DARPA Autonomous
Vehicle-2, which is inspired by the DAVE project by DARPA.

Figure 38: DAVE-2 block diagram

This system basically consists of three cameras and an NVIDIA supercomputer called
NVIDIA PX. This computer can train images from this camera and predict the steering
angle of the car. The steering angle is fed to the CAN bus and controls the car.

The following are the sensors and components used in the Udacity self-driving car:

2016 Lincoln MKZ: This is the car that is going to be made autonomous. In the
previous section, we saw the ROS interfacing of this car. We are using that project
here too.
Two Velodyne VLP-16 LiDARs
Delphi radar
Point Grey Blackfly cameras
Xsens IMU
Engine control unit (ECU)

Creating a Self-Driving Car Using ROS

[357]

This project uses the dbw_mkz_ros package to communicate from ROS to the Lincoln MKZ.
In the previous section, we set up and worked with the dbw_mkz_ros package. Here is the
link to obtain a dataset for training the steering model:
https://github.com/udacity/self-driving-car/tree/master/datasets. You will get a
ROS launch file from this link to play with these bag files too.

Here is the link to get an already trained model that can only be used for research purposes:
https://github.com/udacity/self-driving-car/tree/master/steering-models. There is
a ROS node for sending steering commands from the trained model to the Lincoln MKZ.
Here, dbw_mkz_ros packages act as an intermediate layer between the trained model
commands and the actual car.

Open source self-driving car simulator from Udacity

Udacity also provides an open source simulator for training and testing self-driving deep-
learning algorithms. The simulator project is available at
https://github.com/udacity/self-driving-car-sim. You can also download the
precompiled version of a simulator for Linux, Windows, and Mac from the same link.

Here are the screenshots of this simulator. We can discuss the working of the simulator
along with the screenshots.

Figure 39: Udacity self-driving car simulator

https://github.com/udacity/self-driving-car/tree/master/datasets
https://github.com/udacity/self-driving-car/tree/master/steering-models
https://github.com/udacity/self-driving-car-sim

Creating a Self-Driving Car Using ROS

[358]

You can see two options in the simulator; the first is for training and the second is for
testing autonomous algorithms. We can also select the Track in which we have to drive the
vehicle. When you click on the Training Mode button, you will get a racing car on the
selected track. You can move the car using the WASD key combination, like a game. Here is
a screenshot of the training mode.

Figure 40: Udacity self-driving car simulator in training mode

You can see a RECORD button in the top-right corner, which is used to capture the front
camera images of the car. We can browse to a location, and those captured images will be
stored in that location.

Creating a Self-Driving Car Using ROS

[359]

After capturing the images, we have to train the car using deep-learning algorithms to
predict steering angle, acceleration, and braking. We are not discussing the code, but I'll
provide a reference for you to write it. The complete code reference to implement the
driving model using deep learning and the entire explanation for it are at
https://github.com/thomasantony/sdc-live-trainer. The live_trainer.py code helps
us train the model from captured images.

After training the model, we can run hybrid_driver.py for autonomous driving. For this
mode, we need to select autonomous mode in the simulator and execute the
hybrid_driver.py code.

Figure 41: Udacity self-driving car simulator in autonomous mode

You can see the car moving autonomously and manually override the steering control at
any time.

https://github.com/thomasantony/sdc-live-trainer

Creating a Self-Driving Car Using ROS

[360]

This simulator can be used to test the accuracy of the deep learning algorithm we are going
to use in a real self-driving car.

MATLAB ADAS toolbox
MATLAB also providing toolbox for working with ADAS and autonomous system. You can
design, simulate, and test ADAS and autonomous driving systems using this toolbox. Here
is the link to check the new toolbox.

https://in.mathworks.com/products/automated-driving.html

Questions
What is the level of autonomy of a self-driving car?
What are the different levels of autonomy?
What are the important block diagrams of a self-driving car?
List down five important sensors used in a self-driving car.

Summary
This chapter was a deep discussion of self-driving cars and their implementation. The
chapter started by discussing the basics of self-driving car technology and its history.
Afterward, we discussed the core blocks of a typical self-driving car. We also discussed the
concept of autonomy levels in self-driving cars. Then, we took a look at different sensors
and components commonly used in a self-driving car. We discussed how to simulate such a
car in Gazebo and interfacing it with ROS. After discussing all sensors, we saw an open-
source self-driving car project that incorporates all sensors and simulated the car model
itself in Gazebo. We visualized its sensor data and moved the robot using a teleoperation
node. We also mapped the environment using hector SLAM. The next project was from
Dataspeed Inc., in which we saw how to interface a real DBW-compatible vehicle with ROS.
We visualized the offline data of the vehicle using Rviz. Finally, we took a look at the
Udacity self-driving car project and its simulator.

In the next chapter, we will see how to teleoperate a robot using the VR headset and Leap
motion.

https://in.mathworks.com/products/automated-driving.html

11
Teleoperating a Robot Using a
VR Headset and Leap Motion

The term virtual reality is gaining popularity nowadays, even though it started long ago.
The concept of virtual reality began in the 1950s as science fiction, but it took 60 years to
become more popular and acceptable. Why it is more popular now? The answer is the
availability of cheap computing. Before, a virtual reality headset was very expensive. Now,
we can build one for $5. You may have heard about Google Cardboard, which is the
cheapest virtual reality headset available currently, and there are many upcoming models
based on it. Now we only need a good smartphone and cheap virtual reality (VR) headset
to get the virtual reality experience. There are also high-end VR headsets such as the Oculus
Rift and HTC Vive that have a high frame rate and response.

In this chapter, we will discuss a ROS project in which we can control a robot using a Leap
Motion sensor and experience the robot environment using a virtual reality headset. We
will demonstrate this project using a TurtleBot simulation in Gazebo and control the robot
using Leap Motion. To visualize the robot environment, we will use a cheap VR headset
along with an Android smartphone.

Here are the main topics we will discuss in this chapter:

Getting started with a VR headset and Leap Motion
Project prerequisites
Design and working of the project
Installing the Leap Motion SDK on Ubuntu
Playing with the Leap Motion visualizer tool

Teleoperating a Robot Using a VR Headset and Leap Motion

[362]

Installing ROS packages for Leap Motion
Visualizing Leap Motion data in Rviz
Creating a teleoperation node for Leap Motion
Building and installing the ROS-VR Android application
Working with the ROS-VR application and interfacing with Gazebo
Working with the TurtleBot simulation in VR
Troubleshooting the ROS-VR application
Integrating the ROS-VR application and Leap Motion teleoperation

Getting started with a VR headset and Leap
Motion
This section is for beginners who haven't worked with VR headsets and Leap Motion yet. A
(VR) headset is a head-mounted display in which we can either put a smartphone or that
has an inbuilt display that can be connected to HDMI or some other display port. A VR
headset can create a virtual 3D environment by mimicking human vision, that is, stereo
vision. Human vision works like this: we have two eyes and get two separate and slightly
different images in each eye. The brain then combines these two images and generates a 3D
image of the surroundings. Similarly, VR headsets have two lenses and a display. The
display can be inbuilt or a smartphone. This screen will show a separate view of the left and
right image, and when we put the smartphone or inbuilt display into the headset, it will
focus and reshape using two lenses and will simulate 3D stereoscopic vision. In effect, we
can explore a 3D world inside this headset. Rather than just visualizing the world, we can
also control the event in the 3D world and hear sound too. Cool, right?

Teleoperating a Robot Using a VR Headset and Leap Motion

[363]

Here is the internal structure of a Google Cardboard VR headset:

Figure 1: Google Cardboard VR headset

There is a variety of models of VR headsets available in addition to the high-end models
such as Oculus Rift, HTC Vive, and so on. The following is one of the VR headsets, which
we will use in this chapter. It works based on the same principle of Google Cardboard, but
instead of cardboard, it uses a plastic body:

Figure 2: VR-SHINECON headset

Teleoperating a Robot Using a VR Headset and Leap Motion

[364]

You can test the VR feature by downloading Android VR applications from Google Play
Store.

You can search for Cardboard in Google Play Store to get the Google VR
application. You can use it for testing VR on your smartphone.

The next device we are using in this project is the Leap Motion controller
(https://www.leapmotion.com/). The Leap Motion controller is basically an input device
like a PC mouse in which we can control everything using hand gestures. The Leap can
accurately track the hands of a user and map the position and orientation of each finger
joint accurately. It has two IR cameras and several IR projectors facing upward. The user
can position their hand above the device and move their hand. The position and orientation
of hands and fingers can be accurately retrieved from their SDK.

Here is the Leap Motion controller and how we can interact with it:

Figure 3: Interacting with the Leap Motion controller

https://www.leapmotion.com/

Teleoperating a Robot Using a VR Headset and Leap Motion

[365]

Project prerequisites
So let's start discussing the project. The following are the software and hardware
prerequisites of this project:

No Component/software Link

1 Low-cost VR headset https://vr.google.com/cardboard/get-cardboard/

2 Leap Motion controller https://www.leapmotion.com/

3 Wi-Fi router Any router can connect to a PC or Android phone

4 Ubuntu 14.04.5 LTS http://releases.ubuntu.com/14.04/

5 ROS Indigo http://wiki.ros.org/indigo/Installation/Ubuntu

6 Leap Motion SDK https://www.leapmotion.com/setup/linux

This project has been tested on ROS Indigo, and the code is compatible with ROS Kinetic
too, but the Leap Motion SDK is still in development for Ubuntu 16.04 LTS. So here the code
is tested using Ubuntu 14.04.5 and ROS Indigo. If you are ready with the components, let's
look at the design of the project and how it works.

Design and working of the project
This project can be divided into two sections: teleoperation using Leap Motion and
streaming images to an Android phone to get a VR experience inside a VR headset. Before
going to discuss each design aspect, let's see how we have to interconnect these devices.

https://vr.google.com/cardboard/get-cardboard/
https://www.leapmotion.com/
http://releases.ubuntu.com/14.04/
http://wiki.ros.org/indigo/Installation/Ubuntu
https://www.leapmotion.com/setup/linux

Teleoperating a Robot Using a VR Headset and Leap Motion

[366]

The following figure shows how the components are interconnected for this project:

Figure 4: Hardware components and connection

You can see that each device (that is, PC and Android phone) is connected to a Wi-Fi router,
and the router has assigned an IP to each device. Each device communicates using these IP
addresses. You will see the importance of these addresses in the upcoming sections.

Next, we will see how we can teleoperate a robot in ROS using Leap Motion. We will be
controlling it while wearing the VR headset. So, we don't need to press any buttons to move
the robot; rather, we can just move it with our hands.

Teleoperating a Robot Using a VR Headset and Leap Motion

[367]

The basic operation involved here is converting the Leap Motion data into ROS Twist
messages. Here, we are only interested in reading the orientation of the hand. We are taking
roll, pitch, and yaw and mapping them into ROS Twist messages. Here is how:

Figure 5: Leap Motion data to ROS command velocity

The preceding figure shows how Leap Motion data is manipulated into ROS Twist
messages. The Leap Motion PC Driver/SDK interfaces the controller with Ubuntu, and the
Leap Motion ROS Driver, which works on top of this driver/SDK, fetches the hand and
finger position and publishes it as ROS topics. The node we are going to write can convert
the hand position to Twist data, which will subscribe to the Leap Motion data topic called
/leapmotion/data, convert it into corresponding command velocities, and publish to the
topic called /cmd_vel_mux/input/teleop. The conversion algorithm is based on
comparing the hand orientation value. If the value is in a particular range, we will publish a
particular Twist value.

Teleoperating a Robot Using a VR Headset and Leap Motion

[368]

Here is the simple algorithm that converts Leap Motion orientation data into Twist
messages:

Take the orientation values of hand, such as yaw, pitch, and roll, from the Leap1.
Motion ROS driver.
The roll movement of the hand corresponds to robot rotation. If the hand rotates2.
anticlockwise, then the robot will be triggered to rotate anticlockwise by sending
a command velocity. This will be the opposite case of a roll of the hand in the
clockwise direction.
If the hand is pitched down, the robot will move forward, and if the hand is3.
pitched up, the robot will move backward.
If there is no hand movement, the robot will stop.4.

This is a simple algorithm to move a robot using Leap Motion. Okay, let's start with setting
up a Leap Motion controller in Ubuntu and working with its ROS interface.

Installing the Leap Motion SDK on Ubuntu
14.04.5
In this project, we have chosen Ubuntu 14.04.5 LTS and ROS Indigo because the Leap
Motion SDK will smoothly work with this combination. The Leap Motion SDK is not fully
supported by Ubuntu 16.04 LTS; if there are any further fixes from the company, this code
will work on Ubuntu 16.04 LTS with ROS Kinetic.

The Leap Motion SDK is the core of the Leap Motion controller. The Leap Motion controller
has two IR cameras facing upwards and also has several IR projectors. This is interfaced
with a PC, and the Leap SDK runs on the PC, which has drivers for the controller. It also has
algorithms to process the hand image to produce the joint values of each finger joint.

Here is the procedure to install the Leap Motion SDK in Ubuntu:

Download the SDK from https://www.leapmotion.com/setup/linux; you can1.
extract this package and you will find two DEB files that can be installed on
Ubuntu.

https://www.leapmotion.com/setup/linux

Teleoperating a Robot Using a VR Headset and Leap Motion

[369]

Open Terminal on the extracted location and install the DEB file using the2.
following command (for 64-bit PCs):

 $ sudo dpkg -install Leap-*-x64.deb

If you are installing it on a 32-bit PC, you can use the following command:

 $ sudo dpkg -install Leap-*-x86.deb

If you can install this package without any errors, then you are done with3.
installing the Leap Motion SDK and driver.

There are more detailed installation and debugging tips are given on the
following website:
https://support.leapmotion.com/hc/en-us/articles/223782608-Linux
-Installation

Visualizing Leap Motion controller data
If you successfully installed the Leap Motion driver/SDK, we can start the device by
following these steps:

Plug the Leap Motion controller into a USB port; you can plug it into USB 3.0, but1.
2.0 is fine too.
Open Terminal and execute the dmesg command to verify that the device is2.
properly detected on Ubuntu:

 $ dmesg

It may give you the following result if it's detected properly.3.

Figure 6: Kernel message when plugging in Leap Motion

https://support.leapmotion.com/hc/en-us/articles/223782608-Linux-Installation
https://support.leapmotion.com/hc/en-us/articles/223782608-Linux-Installation

Teleoperating a Robot Using a VR Headset and Leap Motion

[370]

If you are getting this message, you're ready to start the Leap Motion controller manager.

Playing with the Leap Motion visualizer tool
You can invoke the Leap Motion controller manger by executing the following command:

 $ sudo LeapControlPanel

If you want to start just the driver, you can use the following command:

 $ sudo leapd

Use this command to restart the driver:

 $ sudo service leapd stop

If you are running the Leap control panel, you can see an additional menu on the left-hand
side of the screen. Select the Diagnostic Visualizer to view the data from Leap Motion:

Figure 7: Leap Motion control panel

When you click on this option, a window will pop up in which you can see your hand, and
figures get tracked when you put your hand over the device. You can also see the two IR
camera views from the device. Here is the screenshot of the Visualizer application.

Teleoperating a Robot Using a VR Headset and Leap Motion

[371]

You can quit the driver from the same drop-down menu, too:

Figure 8: Leap Motion controller Visualizer application

You can interact with the device and visualize the data here. If everything is working well,
we can proceed to the next stage: installing ROS driver for the Leap Motion.

You can get more shortcuts to Visualizer from the following link:
https://developer.leapmotion.com/documentation/cpp/supplements/L
eap_Visualizer.html

Installing the ROS driver for the Leap Motion
controller
To interface the Leap Motion with ROS, we will need the ROS driver for it. Here is the link
to get the ROS driver for Leap Motion; you can clone it using the command:

 $ git clone https://github.com/ros-drivers/leap_motion

https://developer.leapmotion.com/documentation/cpp/supplements/Leap_Visualizer.html
https://developer.leapmotion.com/documentation/cpp/supplements/Leap_Visualizer.html

Teleoperating a Robot Using a VR Headset and Leap Motion

[372]

Before installing the leap_motion driver package, we have to do a few things to have it
properly compiled.

The first step is to set the path of the Leap Motion SDK in the .bashrc file. Assuming that
the Leap SDK is in the user's home folder with the name LeapSDK, we have to set the path
variable in .bashrc as follows.

 $ export LEAP_SDK=$LEAP_SDK:$HOME/LeapSDK

This environment variable is needed for compiling the code of the ROS driver, which has
Leap SDK APIs.

We also have to add the path of the Python extension of the Leap Motion SDK to .bashrc.
Here is the command used to do it:

 export PYTHONPATH=$PYTHONPATH:$HOME/LeapSDK/lib:$HOME/LeapSDK/lib/x64

This will enable Leap Motion SDK APIs in Python. After going through the preceding steps,
you can save .bashrc and take a new Terminal, so that we will get the preceding variables
in the new Terminal.

The final step is to copy the libLeap.so file to /usr/local/lib. Here is how we do it:

 $ sudo cp $LEAP_SDK/lib/x64/libLeap.so /usr/local/lib

After copying, execute ldconfig:

 $ sudo ldconfig

Okay, you are finished with setting the environment variables. Now you can compile the
leap_motion ROS driver package. You can create a ROS workspace or copy the
leap_motion package to an existing ROS workspace and use catkin_make.

You can use the following command to install the leap_motion package:

 $ catkin_make install --pkg leap_motion

This will install the leap_motion driver; check whether the ROS workspace path is
properly set.

Testing the Leap Motion ROS driver
If everything has been installed properly, we can test it using a few commands.

Teleoperating a Robot Using a VR Headset and Leap Motion

[373]

First, launch the Leap Motion driver or control panel using the following command:

 $ sudo LeapControlPanel

After launching the command, you can verify that the device is working by opening the
Visualizer application. If it's working well, you can launch the ROS driver using the
following command:

 $ roslaunch leap_motion sensor_sender.launch

If it's working properly, you will get topics with this:

 $ rostopic list

Figure 9: Leap ROS driver topics

If you can see rostopic/leapmotion/data in the list, you can confirm that the driver is
working. You can just echo the topic and see that the hand and finger values are coming in,
as shown in the following screenshot:

Figure 10: Data from the Leap ROS driver topic

Teleoperating a Robot Using a VR Headset and Leap Motion

[374]

Visualizing Leap Motion data in Rviz
We can visualize Leap Motion data in Rviz too. There is a ROS package called
leap_client (https://github.com/qboticslabs/leap_client). You can install this
package by setting the following environment variable in .bashrc:

 export LEAPSDK=$LEAPSDK:$HOME/LeapSDK

Note that, when we add new variables in .bashrc, you may need to open new Terminal or
type bash in the existing Terminal.

Now, we can clone the code in a ROS workspace and build the package using
catkin_make.

Let's play around with this package. To launch nodes, we have to start LeapControlPanel:

 $ sudo LeapControlPanel

Then start the ROS Leap driver launch file:

 $ roslaunch leap_motion sensor_sender.launch

Now launch the leap_client launch file to start the visualization nodes. This node will
subscribe to the leap_motion driver and convert it into visualization markers in Rviz.

 $ roslaunch leap_client leap_client.launch

Now, you can open Rviz using the following command and select the
leap_client/launch/leap_client.rviz configuration file to visualize the markers
properly:

 $ rosrun rviz rviz

If you load the leap_client.rviz configuration, you may get hand data like the
following (you have to put your hand over the Leap):

https://github.com/qboticslabs/leap_client

Teleoperating a Robot Using a VR Headset and Leap Motion

[375]

Figure 11: Data from the Leap ROS driver topic

Creating a teleoperation node using the
Leap Motion controller
In this section, we can see how to create a teleoperation node for a robot using Leap Motion
data. The procedure is very simple. We have to create a ROS package for this node. The
following is the command to create a new package. You can also find this package from
chapter_11_codes/vr_leap_teleop.

 $ catkin_create_pkg vr_leap_teleop roscpp rospy std_msgs
visualization_msgs geometry_msgs message_generation visualization_msgs

After creation, you can use catkin_make. Now, let's create the node to convert Leap
Motion data to Twist. You can create a folder called scripts inside the vr_leap_teleop
package. Now you can copy the node called vr_leap_teleop.py from the existing
package. Let's see how this code works.

We need the following Python modules in this node. Here, we require message definitions
from the leap_motion package, which is the driver package.

Teleoperating a Robot Using a VR Headset and Leap Motion

[376]

 import rospy
 from leap_motion.msg import leap
 from leap_motion.msg import leapros
 from geometry_msgs.msg import Twist

Now we have to set some range values, in which we have to check whether the current
hand value is within range. We are also defining the teleop topic name here.

 teleop_topic = '/cmd_vel_mux/input/teleop'

 low_speed = -0.5
 stop_speed = 0
 high_speed = 0.5

 low_turn = -0.5
 stop_turn = 0
 high_turn = 0.5

 pitch_low_range = -30
 pitch_high_range = 30

 roll_low_range = -150
 roll_high_range = 150

Here is the main code of this node. In this code, you can see that the topic from the Leap
Motion driver is being subscribed to here. When a topic is received, it will call the
callback_ros()function:

 def listener():
 global pub
 rospy.init_node('leap_sub', anonymous=True)
 rospy.Subscriber("leapmotion/data", leapros, callback_ros)
 pub = rospy.Publisher(teleop_topic, Twist, queue_size=1)

 rospy.spin()

 if __name__ == '__main__':
 listener()

The following is the definition of the callback_ros() function. What it basically does is
that it will receive the Leap Motion data and extract the orientation components of the palm
only. So we will get yaw, pitch, and roll from this function. We are also creating a Twist()
message to send the velocity values to the robot.

 def callback_ros(data):

Teleoperating a Robot Using a VR Headset and Leap Motion

[377]

 global pub

 msg = leapros()
 msg = data
 yaw = msg.ypr.x
 pitch = msg.ypr.y
 roll = msg.ypr.z

 twist = Twist()

 twist.linear.x = 0; twist.linear.y = 0; twist.linear.z = 0
 twist.angular.x = 0; twist.angular.y = 0; twist.angular.z = 0

We are performing a basic comparison with the current roll and pitch values again within
the following ranges. Here are actions we've assigned for each movement of the robot:

Hand gesture Robot movement

Hand pitch low Move forward

Hand pitch high Move backward

Hand roll anticlockwise Rotate anticlockwise

Hand roll clockwise Rotate clockwise

Here is a code snippet taking care of one condition. So in this case, if the pitch is low, then
we are providing a high value for linear velocity in the x direction for moving forward.

 if(pitch > pitch_low_range and pitch < pitch_low_range + 30):
 twist.linear.x = high_speed; twist.linear.y = 0;
 twist.linear.z = 0
 twist.angular.x = 0; twist.angular.y = 0; twist.angular.z = 0

Okay, so we have built the node, and we can test it at the end of the project. In the next
section, we will see how to implement VR in ROS.

Teleoperating a Robot Using a VR Headset and Leap Motion

[378]

Building a ROS-VR Android application
In this section, we will see how to create a virtual reality experience in ROS, especially in
robotics simulators such as Gazebo. Luckily, we have an open source Android project called
ROS Cardboard (https://github.com/cloudspace/ros_cardboard). This project is exactly
what we want we want for this application. This application is based on ROS-Android
APIs, which help us visualize compressed images from a ROS PC. It also does the splitting
of the view for the left and right eye, and when we put this on a VR headset, it will feel like
3D.

Here is a figure that shows how this application works:

Figure 12: Communication between a ROS PC and Android phone

From the preceding figure, you can see that the image topic from Gazebo can be accessed
from a ROS environment, and the compressed version of that image is sent to the ROS-VR
app, which will split the view into left and right to provide 3D vision. Setting the ROS_IP
variable on PC is important for the proper working of the VR application. The
communication between PC and phone happens over Wi-Fi, both on same network.

https://github.com/cloudspace/ros_cardboard

Teleoperating a Robot Using a VR Headset and Leap Motion

[379]

Building this application is not very tough; first, you can clone this app into some folder.
You need to have all of the Android development environment and SDK installed. To do so,
you can refer to Chapter 8, ROS on MATLAB and Android. Just clone it and you can simply
build it using the following instructions:

Plug your Android device into Ubuntu and execute the following command to check
whether the device is detected on your PC:

 $ adb devices

The adb command, which stands for Android Debug Bridge, will help you communicate
with an Android device and emulator. If this command lists out the devices, then you are
done; otherwise, do a Google search to find out how to make it work. It won't be too
difficult.

After getting the device list, clone the ROS Cardboard project using the following
command. You can clone into home or desktop.

 $ git clone https://github.com/cloudspace/ros_cardboard.git

After cloning, enter the folder and execute the following command to build the entire
package and install it on the device:

 $./gradlew installDebug

You may get an error saying the required Android platform is not available; what you need
is to simply install it using the Android SDK GUI. If everything works fine, you can able
install the APK on an Android device. If you are unable to build the APK, you can also find
it in chapter_11_codes/ros_cardboard. If installing the APK to the device directly
failed, you can find the generated APK from
ros_cardboard/ros_cardboard_module/build/outputs/apk. You can copy this APK
to the device and try to install it. If you have any difficulty installing it, you can use the APK
editor app, mentioned in Chapter 8, ROS on MATLAB and Android.

Working with the ROS-VR application and
interfacing with Gazebo
The new APK will be installed with a name such as ROSSerial; before starting this app, we
need to set a few things up on the ROS PC.

Teleoperating a Robot Using a VR Headset and Leap Motion

[380]

The next step is to set the ROS_IP variable in the .bashrc file. Execute the ifconfig
command and retrieve the Wi-Fi IP address of the PC, as shown here:

Figure 13: PC Wi-Fi adapter IP address

For this project, the IP address was 192.168.1.101, so we have to set the ROS_IP variable
as the current IP in .bashrc. You can simply copy the following line to the .bashrc file:

 $ export ROS_IP=192.168.1.101

We need to set this; only then will the Android VR app work.

Now start the roscore command on the ROS PC:

 $ roscore

The next step is to open the Android app, and you will get a window like the following.
Enter ROS_IP in the edit box and click on the CONNECT button.

Figure 14: ROS-VR application

Teleoperating a Robot Using a VR Headset and Leap Motion

[381]

If the app is connected to the ROS master on the PC, it will show up as connected and show
a blank screen with a split view. Now list out the topics on the ROS PC:

Figure 15: Listing ROS-VR topics on PC

You can see topics such as /usb_cam/image_raw/compressed or
/camera/image/compressed in the list, and what we want to do is feed a compressed
image to whatever image topic the app is going to subscribe to. If you've installed the
usb_cam (https://github.com/bosch-ros-pkg/usb_cam) ROS package already, you can
launch the webcam driver using the following command:

 $ roslaunch usb_cam usb_cam-test.launch

This driver will publish the camera image in compressed form to the
/usb_cam/image_raw/compressed topic, and when there is a publisher for this topic, it
will display it on the app also. If you are getting some other topics from the app, say,
/camera/image/compressed, you can use topic_tools (http://wiki.ros.org/topic_tools)
for remapping the topic to the app topic. You can use the following command:

 $ rosrun topic_tools relay /usb_cam/image_raw/compressed
/camera/image/compressed

https://github.com/bosch-ros-pkg/usb_cam

Teleoperating a Robot Using a VR Headset and Leap Motion

[382]

Now, you can see the camera view in the VR app like this:

Figure 16: ROS-VR app

This is the split view that we are getting in the application. We can also display images from
Gazebo in the similar manner. Simple, right? Just remap the robot camera compressed
image to the app topic. In the next section, we will learn how to view Gazebo images in the
VR app.

Working with TurtleBot simulation in VR
We can start a TurtleBot simulation using the following command:

 $ roslaunch turtlebot_gazebo turtlebot_playground.launch

Teleoperating a Robot Using a VR Headset and Leap Motion

[383]

You will get the TurtleBot simulation in Gazebo like this:

Figure 17: TurtleBot simulation in Gazebo

You can move the robot by launching the teleop node with the following command:

 $ roslaunch turtlebot_teleop keyboard_teleop.launch

You can now move the robot using the keyboard. Launch the app again and connect to the
ROS master running on the PC. Then, you can remap the Gazebo RGB image compressed
data into an app image topic, like this:

 $ rosrun topic_tools relay /camera/rgb/image_raw/compressed
/usb_cam/image_raw/compressed

Teleoperating a Robot Using a VR Headset and Leap Motion

[384]

Now, what happens is that the robot camera image is visualized in the app, and if you put
the phone into a VR headset, it will simulate a 3D environment. The following screenshot
shows the split view of the images from Gazebo:

Figure 18: Gazebo image view in ROS-VR app

You can move the robot using a keyboard as of now. In the next section, we can see the
possible issues and the solutions that you may encounter when you work with the
application.

Troubleshooting the ROS-VR application
You may get issues working with ROS-VR applications. One of the issues may be the size of
the image. The left and right image size can vary according to the device screen size and
resolution. This project was tested on a full-HD 5-inch screen, and if you have a different
screen size or resolution, you may need to hack the application code. You can go to the
app's project folder and open the code:
ros_cardboard/ros_cardboard_module/src/main/java/com/cloudspace/cardboa

rd/CardboardOverlayEyeView.java. You can change the final float imageSize =
1.0f valueto 1.8f or 2f; this will stretch the image and fill the screen, but we might lose
some part of the image. After this change, build it again and install it.

Teleoperating a Robot Using a VR Headset and Leap Motion

[385]

One of the other issues associated with the working of this app is that the app will not work
until we set the ROS_IP value on the PC. So you should check whether ROS_IP is set.

If you want to change the topic name of the app, then go to
ros_cardboard/ros_cardboard_module/src/main/java/com/cloudspace/cardboa

rd/CardboardViewerActivity.java and change this line:

 mOverlayView.setTopicInformation("/camera/image/compressed",
 CompressedImage._TYPE);

If you want to work with other high-end VR headsets such as Oculus and
HTC Vive, you can follow these links:
h t t p s ://g i t h u b . c o m /O S U r o b o t i c s /r o s _ o v r _ s d k
h t t p s ://g i t h u b . c o m /r o b o s a v v y /v i v e _ r o s
http://wiki.ros.org/oculus_rviz_plugins

In the next section, we will combine the power of the VR headset and Leap Motion robot
controller node.

Integrating ROS-VR application and Leap
Motion teleoperation
In this section, we are going to replace the keyboard teleoperation with Leap Motion-based
teleoperation. When we roll our hand to the anticlockwise direction, the robot also rotate
anticlockwise, and vice versa. If we pitch our hand down, the robot will move forward, and
if we pitch it up, it will move backward. So we can start the VR application and Turtlebot
simulation like the previous section and, instead of keyboard teleop, run the Leap teleop
node.

So before starting the Leap teleop node, launch the PC driver and ROS driver using the
following commands:

 $ sudo LeapControlPanel

Start the ROS driver using the following command:

 $ roslaunch leap_motion sensor_sender.launch

Now launch Leap Motion on the Twist node using the following command:

 $ rosrun vr_leap_teleop vr_leap_teleop.py

https://github.com/OSUrobotics/ros_ovr_sdk
https://github.com/OSUrobotics/ros_ovr_sdk
https://github.com/OSUrobotics/ros_ovr_sdk
https://github.com/OSUrobotics/ros_ovr_sdk
https://github.com/OSUrobotics/ros_ovr_sdk
https://github.com/OSUrobotics/ros_ovr_sdk
https://github.com/OSUrobotics/ros_ovr_sdk
https://github.com/OSUrobotics/ros_ovr_sdk
https://github.com/OSUrobotics/ros_ovr_sdk
https://github.com/OSUrobotics/ros_ovr_sdk
https://github.com/OSUrobotics/ros_ovr_sdk
https://github.com/OSUrobotics/ros_ovr_sdk
https://github.com/OSUrobotics/ros_ovr_sdk
https://github.com/OSUrobotics/ros_ovr_sdk
https://github.com/OSUrobotics/ros_ovr_sdk
https://github.com/OSUrobotics/ros_ovr_sdk
https://github.com/OSUrobotics/ros_ovr_sdk
https://github.com/OSUrobotics/ros_ovr_sdk
https://github.com/OSUrobotics/ros_ovr_sdk
https://github.com/OSUrobotics/ros_ovr_sdk
https://github.com/OSUrobotics/ros_ovr_sdk
https://github.com/OSUrobotics/ros_ovr_sdk
https://github.com/OSUrobotics/ros_ovr_sdk
https://github.com/OSUrobotics/ros_ovr_sdk
https://github.com/OSUrobotics/ros_ovr_sdk
https://github.com/OSUrobotics/ros_ovr_sdk
https://github.com/OSUrobotics/ros_ovr_sdk
https://github.com/OSUrobotics/ros_ovr_sdk
https://github.com/OSUrobotics/ros_ovr_sdk
https://github.com/OSUrobotics/ros_ovr_sdk
https://github.com/OSUrobotics/ros_ovr_sdk
https://github.com/OSUrobotics/ros_ovr_sdk
https://github.com/OSUrobotics/ros_ovr_sdk
https://github.com/OSUrobotics/ros_ovr_sdk
https://github.com/OSUrobotics/ros_ovr_sdk
https://github.com/OSUrobotics/ros_ovr_sdk
https://github.com/OSUrobotics/ros_ovr_sdk
https://github.com/OSUrobotics/ros_ovr_sdk
https://github.com/OSUrobotics/ros_ovr_sdk
https://github.com/OSUrobotics/ros_ovr_sdk
https://github.com/OSUrobotics/ros_ovr_sdk
https://github.com/OSUrobotics/ros_ovr_sdk
https://github.com/OSUrobotics/ros_ovr_sdk
https://github.com/OSUrobotics/ros_ovr_sdk
https://github.com/OSUrobotics/ros_ovr_sdk
https://github.com/OSUrobotics/ros_ovr_sdk
https://github.com/OSUrobotics/ros_ovr_sdk
https://github.com/OSUrobotics/ros_ovr_sdk
https://github.com/OSUrobotics/ros_ovr_sdk
https://github.com/OSUrobotics/ros_ovr_sdk
https://github.com/OSUrobotics/ros_ovr_sdk
https://github.com/OSUrobotics/ros_ovr_sdk
https://github.com/OSUrobotics/ros_ovr_sdk
https://github.com/OSUrobotics/ros_ovr_sdk
https://github.com/OSUrobotics/ros_ovr_sdk
https://github.com/OSUrobotics/ros_ovr_sdk
https://github.com/OSUrobotics/ros_ovr_sdk
https://github.com/OSUrobotics/ros_ovr_sdk
https://github.com/OSUrobotics/ros_ovr_sdk
https://github.com/OSUrobotics/ros_ovr_sdk
https://github.com/OSUrobotics/ros_ovr_sdk
https://github.com/OSUrobotics/ros_ovr_sdk
https://github.com/OSUrobotics/ros_ovr_sdk
https://github.com/OSUrobotics/ros_ovr_sdk
https://github.com/OSUrobotics/ros_ovr_sdk
https://github.com/OSUrobotics/ros_ovr_sdk
https://github.com/OSUrobotics/ros_ovr_sdk
https://github.com/OSUrobotics/ros_ovr_sdk
https://github.com/OSUrobotics/ros_ovr_sdk
https://github.com/OSUrobotics/ros_ovr_sdk
https://github.com/OSUrobotics/ros_ovr_sdk
https://github.com/OSUrobotics/ros_ovr_sdk
https://github.com/OSUrobotics/ros_ovr_sdk
https://github.com/robosavvy/vive_ros
https://github.com/robosavvy/vive_ros
https://github.com/robosavvy/vive_ros
https://github.com/robosavvy/vive_ros
https://github.com/robosavvy/vive_ros
https://github.com/robosavvy/vive_ros
https://github.com/robosavvy/vive_ros
https://github.com/robosavvy/vive_ros
https://github.com/robosavvy/vive_ros
https://github.com/robosavvy/vive_ros
https://github.com/robosavvy/vive_ros
https://github.com/robosavvy/vive_ros
https://github.com/robosavvy/vive_ros
https://github.com/robosavvy/vive_ros
https://github.com/robosavvy/vive_ros
https://github.com/robosavvy/vive_ros
https://github.com/robosavvy/vive_ros
https://github.com/robosavvy/vive_ros
https://github.com/robosavvy/vive_ros
https://github.com/robosavvy/vive_ros
https://github.com/robosavvy/vive_ros
https://github.com/robosavvy/vive_ros
https://github.com/robosavvy/vive_ros
https://github.com/robosavvy/vive_ros
https://github.com/robosavvy/vive_ros
https://github.com/robosavvy/vive_ros
https://github.com/robosavvy/vive_ros
https://github.com/robosavvy/vive_ros
https://github.com/robosavvy/vive_ros
https://github.com/robosavvy/vive_ros
https://github.com/robosavvy/vive_ros
https://github.com/robosavvy/vive_ros
https://github.com/robosavvy/vive_ros
https://github.com/robosavvy/vive_ros
https://github.com/robosavvy/vive_ros
https://github.com/robosavvy/vive_ros
https://github.com/robosavvy/vive_ros
https://github.com/robosavvy/vive_ros
https://github.com/robosavvy/vive_ros
https://github.com/robosavvy/vive_ros
https://github.com/robosavvy/vive_ros
https://github.com/robosavvy/vive_ros
https://github.com/robosavvy/vive_ros
https://github.com/robosavvy/vive_ros
https://github.com/robosavvy/vive_ros
https://github.com/robosavvy/vive_ros
https://github.com/robosavvy/vive_ros
https://github.com/robosavvy/vive_ros
https://github.com/robosavvy/vive_ros
https://github.com/robosavvy/vive_ros
https://github.com/robosavvy/vive_ros
https://github.com/robosavvy/vive_ros
https://github.com/robosavvy/vive_ros
https://github.com/robosavvy/vive_ros
https://github.com/robosavvy/vive_ros
https://github.com/robosavvy/vive_ros
https://github.com/robosavvy/vive_ros
https://github.com/robosavvy/vive_ros
https://github.com/robosavvy/vive_ros
https://github.com/robosavvy/vive_ros
https://github.com/robosavvy/vive_ros
https://github.com/robosavvy/vive_ros
https://github.com/robosavvy/vive_ros
http://wiki.ros.org/oculus_rviz_plugins

Teleoperating a Robot Using a VR Headset and Leap Motion

[386]

Now you can put the VR headset on your head and control the robot using your hand.

Questions
How does a virtual reality headset work?
How does the Leap Motion controller work?
What is the algorithm to map from hand coordinates to Twist commands?
We have installed PC driver for Leap Motion and for working with ROS, we have
installed ROS driver. What is the difference between a ROS driver and PC driver?

Summary
This chapter was about creating a project to teleoperate a robot using a Leap Motion
controller and VR headset. The basic aim of the chapter was to teleoperate the robot with
hand gestures using a Leap Motion controller. After that, we visualized the robot camera
image in a VR headset with the help of an Android phone. We started with discussing the
general idea of VR and the Leap Motion controller, and then we switched to the design of
the project. Then, we discussed the Leap Motion interface with PC and the driver
installation. Later, we saw how to build a ROS node to control the robot using our hand.
After building a teleop node, we saw how to create a VR app for ROS and then integrated
both the app and the teleop node to experience 3D control of the robot using our hands.

12
Controlling Your Robots over

the Web
Until now, we have been controlling and interacting with robots from the command line.
What about creating a frontend GUI? If your robot is in a distant location and you want to
visualize and control it through the web, this chapter can help you. This is the final chapter
of this book, and deals with building a cool interactive web application based on ROS and
controlling a robot using it. The projects in this chapter can be mainly used for creating a
frontend robot commander in your browser. We'll discuss a few projects using the ROS web
framework. Here is a list of the projects and topics we are going to cover in this chapter:

Getting started with ROS web packages
Setting up ROS web packages
Teleoperating and visualizing a robot from a web browser
Controlling robot joints from a web browser
Robot surveillance application
Web-based speech-controlled robot application

Getting started with ROS web packages
ROS offers several powerful and very useful packages to communicate over the Web and
interact with robots from web browsers . In the first section, we will discuss some of the
open source modules and packages for building cool robot web applications. The packages
that we will discuss here are developed and maintained by the ROS web tools community
(http://robotwebtools.org/). After discussing the basic web frameworks, we can start
discussing projects that use it.

http://robotwebtools.org/

Controlling Your Robots over the Web

[388]

rosbridge_suite
If we want to interact with the ROS framework from our web browser, there should be
some system that can convert the web browser commands to the ROS topics/services.
rosbridge provides a JSON interface to ROS, allowing any client to send JSON commands
(http://www.json.org/) to publish or subscribe to ROS topics, call ROS services, and more.
rosbridge supports a variety of transport layers, including WebSockets (h t t p s ://e n . w i k i

p e d i a . o r g /w i k i /W e b S o c k e t) and TCP.

The rosbridge_suite (http://wiki.ros.org/rosbridge_suite) is a meta-ROS package
having an implementation of the rosbridge protocol. The JSON commands are converted
to ROS topics/services using a node called rosbridge_server. This node can send or
receive JSON commands from web browsers to ROS over web sockets. The
rosbridge_server is the intermediate layer between the ROS system and web browser.
The complete description of the rosbridge and rosbridge_suit can be found at h t t p s ://g

i t h u b . c o m /R o b o t W e b T o o l s /r o s b r i d g e _ s u i t e .

The following figure shows how the communication between the rosbridge server and web
browser happens:

Figure 1: rosbridge_suite connection diagram

http://www.json.org/
https://en.wikipedia.org/wiki/WebSocket
https://en.wikipedia.org/wiki/WebSocket
https://en.wikipedia.org/wiki/WebSocket
https://en.wikipedia.org/wiki/WebSocket
https://en.wikipedia.org/wiki/WebSocket
https://en.wikipedia.org/wiki/WebSocket
https://en.wikipedia.org/wiki/WebSocket
https://en.wikipedia.org/wiki/WebSocket
https://en.wikipedia.org/wiki/WebSocket
https://en.wikipedia.org/wiki/WebSocket
https://en.wikipedia.org/wiki/WebSocket
https://en.wikipedia.org/wiki/WebSocket
https://en.wikipedia.org/wiki/WebSocket
https://en.wikipedia.org/wiki/WebSocket
https://en.wikipedia.org/wiki/WebSocket
https://en.wikipedia.org/wiki/WebSocket
https://en.wikipedia.org/wiki/WebSocket
https://en.wikipedia.org/wiki/WebSocket
https://en.wikipedia.org/wiki/WebSocket
https://en.wikipedia.org/wiki/WebSocket
https://en.wikipedia.org/wiki/WebSocket
https://en.wikipedia.org/wiki/WebSocket
https://en.wikipedia.org/wiki/WebSocket
https://en.wikipedia.org/wiki/WebSocket
https://en.wikipedia.org/wiki/WebSocket
https://en.wikipedia.org/wiki/WebSocket
https://en.wikipedia.org/wiki/WebSocket
https://en.wikipedia.org/wiki/WebSocket
https://en.wikipedia.org/wiki/WebSocket
https://en.wikipedia.org/wiki/WebSocket
https://en.wikipedia.org/wiki/WebSocket
https://en.wikipedia.org/wiki/WebSocket
https://en.wikipedia.org/wiki/WebSocket
https://en.wikipedia.org/wiki/WebSocket
https://en.wikipedia.org/wiki/WebSocket
https://en.wikipedia.org/wiki/WebSocket
https://en.wikipedia.org/wiki/WebSocket
https://en.wikipedia.org/wiki/WebSocket
https://en.wikipedia.org/wiki/WebSocket
https://en.wikipedia.org/wiki/WebSocket
https://en.wikipedia.org/wiki/WebSocket
https://en.wikipedia.org/wiki/WebSocket
https://en.wikipedia.org/wiki/WebSocket
https://en.wikipedia.org/wiki/WebSocket
https://en.wikipedia.org/wiki/WebSocket
https://en.wikipedia.org/wiki/WebSocket
https://en.wikipedia.org/wiki/WebSocket
https://en.wikipedia.org/wiki/WebSocket
https://en.wikipedia.org/wiki/WebSocket
https://en.wikipedia.org/wiki/WebSocket
https://en.wikipedia.org/wiki/WebSocket
https://en.wikipedia.org/wiki/WebSocket
https://en.wikipedia.org/wiki/WebSocket
https://en.wikipedia.org/wiki/WebSocket
https://en.wikipedia.org/wiki/WebSocket
https://en.wikipedia.org/wiki/WebSocket
https://en.wikipedia.org/wiki/WebSocket
https://en.wikipedia.org/wiki/WebSocket
https://en.wikipedia.org/wiki/WebSocket
https://en.wikipedia.org/wiki/WebSocket
https://en.wikipedia.org/wiki/WebSocket
https://en.wikipedia.org/wiki/WebSocket
https://en.wikipedia.org/wiki/WebSocket
https://en.wikipedia.org/wiki/WebSocket
https://en.wikipedia.org/wiki/WebSocket
https://en.wikipedia.org/wiki/WebSocket
https://en.wikipedia.org/wiki/WebSocket
http://wiki.ros.org/rosbridge_suite
https://github.com/RobotWebTools/rosbridge_suite
https://github.com/RobotWebTools/rosbridge_suite
https://github.com/RobotWebTools/rosbridge_suite
https://github.com/RobotWebTools/rosbridge_suite
https://github.com/RobotWebTools/rosbridge_suite
https://github.com/RobotWebTools/rosbridge_suite
https://github.com/RobotWebTools/rosbridge_suite
https://github.com/RobotWebTools/rosbridge_suite
https://github.com/RobotWebTools/rosbridge_suite
https://github.com/RobotWebTools/rosbridge_suite
https://github.com/RobotWebTools/rosbridge_suite
https://github.com/RobotWebTools/rosbridge_suite
https://github.com/RobotWebTools/rosbridge_suite
https://github.com/RobotWebTools/rosbridge_suite
https://github.com/RobotWebTools/rosbridge_suite
https://github.com/RobotWebTools/rosbridge_suite
https://github.com/RobotWebTools/rosbridge_suite
https://github.com/RobotWebTools/rosbridge_suite
https://github.com/RobotWebTools/rosbridge_suite
https://github.com/RobotWebTools/rosbridge_suite
https://github.com/RobotWebTools/rosbridge_suite
https://github.com/RobotWebTools/rosbridge_suite
https://github.com/RobotWebTools/rosbridge_suite
https://github.com/RobotWebTools/rosbridge_suite
https://github.com/RobotWebTools/rosbridge_suite
https://github.com/RobotWebTools/rosbridge_suite
https://github.com/RobotWebTools/rosbridge_suite
https://github.com/RobotWebTools/rosbridge_suite
https://github.com/RobotWebTools/rosbridge_suite
https://github.com/RobotWebTools/rosbridge_suite
https://github.com/RobotWebTools/rosbridge_suite
https://github.com/RobotWebTools/rosbridge_suite
https://github.com/RobotWebTools/rosbridge_suite
https://github.com/RobotWebTools/rosbridge_suite
https://github.com/RobotWebTools/rosbridge_suite
https://github.com/RobotWebTools/rosbridge_suite
https://github.com/RobotWebTools/rosbridge_suite
https://github.com/RobotWebTools/rosbridge_suite
https://github.com/RobotWebTools/rosbridge_suite
https://github.com/RobotWebTools/rosbridge_suite
https://github.com/RobotWebTools/rosbridge_suite
https://github.com/RobotWebTools/rosbridge_suite
https://github.com/RobotWebTools/rosbridge_suite
https://github.com/RobotWebTools/rosbridge_suite
https://github.com/RobotWebTools/rosbridge_suite
https://github.com/RobotWebTools/rosbridge_suite
https://github.com/RobotWebTools/rosbridge_suite
https://github.com/RobotWebTools/rosbridge_suite
https://github.com/RobotWebTools/rosbridge_suite
https://github.com/RobotWebTools/rosbridge_suite
https://github.com/RobotWebTools/rosbridge_suite
https://github.com/RobotWebTools/rosbridge_suite
https://github.com/RobotWebTools/rosbridge_suite
https://github.com/RobotWebTools/rosbridge_suite
https://github.com/RobotWebTools/rosbridge_suite
https://github.com/RobotWebTools/rosbridge_suite
https://github.com/RobotWebTools/rosbridge_suite
https://github.com/RobotWebTools/rosbridge_suite
https://github.com/RobotWebTools/rosbridge_suite
https://github.com/RobotWebTools/rosbridge_suite
https://github.com/RobotWebTools/rosbridge_suite
https://github.com/RobotWebTools/rosbridge_suite
https://github.com/RobotWebTools/rosbridge_suite
https://github.com/RobotWebTools/rosbridge_suite
https://github.com/RobotWebTools/rosbridge_suite
https://github.com/RobotWebTools/rosbridge_suite
https://github.com/RobotWebTools/rosbridge_suite
https://github.com/RobotWebTools/rosbridge_suite
https://github.com/RobotWebTools/rosbridge_suite
https://github.com/RobotWebTools/rosbridge_suite
https://github.com/RobotWebTools/rosbridge_suite
https://github.com/RobotWebTools/rosbridge_suite
https://github.com/RobotWebTools/rosbridge_suite
https://github.com/RobotWebTools/rosbridge_suite
https://github.com/RobotWebTools/rosbridge_suite
https://github.com/RobotWebTools/rosbridge_suite
https://github.com/RobotWebTools/rosbridge_suite
https://github.com/RobotWebTools/rosbridge_suite
https://github.com/RobotWebTools/rosbridge_suite
https://github.com/RobotWebTools/rosbridge_suite
https://github.com/RobotWebTools/rosbridge_suite
https://github.com/RobotWebTools/rosbridge_suite
https://github.com/RobotWebTools/rosbridge_suite
https://github.com/RobotWebTools/rosbridge_suite
https://github.com/RobotWebTools/rosbridge_suite

Controlling Your Robots over the Web

[389]

The rosbridge server can communicate with the ROS nodes. It can be a robot controller or
ROS nodes. The rosbridge can also receive data from ROS which can send to web browser.

The rosbridge_suite collection consists of three packages:

rosbridge_library: This package contains Python APIs to convert JSON
messages to ROS messages and vice versa.
rosbridge_server: This package has the WebSocket implementation of the
rosbridge library. We have to start this tool for communicating with the web
browser.
rosapi: This provides service calls to fetch meta-information from ROS, such as
a list of ROS topics and ROS parameters.

In the web browser, we can see rosbridge client. A rosbridge client is a program that
communicates with rosbridge using its JSON API. In the preceding figure, we are using
roslibjs as the client. Let's understand the main capabilities of these clients.

roslibjs, ros2djs, and ros3djs
In the previous section we have discussed about rosbridge, rosbridge server and rosbridge
clients. In this section, we can see a list of rosbridge clients which can be used to send JSON
commands from web browsers. Each client is used in different scenario.

Using roslibjs (http://wiki.ros.org/roslibjs), we can implement basic functionalities of
ROS topics, services, actionlib, TF support, URDF, and many more ROS features–using this
module.

The ros2djs (http://wiki.ros.org/ros2djs) is built on top of roslibjs. This library
provides a 2D visualization manager for ROS. Using this library, we can visualize 2D maps
in a web browser.

The ros3djs (http://wiki.ros.org/ros3djs) library is another cool JavaScript library that
can visualize 3D data, such as URDF, TF, interactive markers, and maps. We can create a
web-based Rviz instance using its APIs. We will look at some interesting projects using
these libraries in the upcoming sections.

http://wiki.ros.org/roslibjs
http://wiki.ros.org/ros2djs
http://wiki.ros.org/ros3djs

Controlling Your Robots over the Web

[390]

The tf2_web_republisher package
The tf2_web_republisher (http://wiki.ros.org/tf2_web_republisher) is a useful tool
for interacting with robots via web browser. The main function of this package is to
precompute TF data and send it via rosbridge_server to a ros3djs client. The TF data is
essential to visualizing the posture and movement of the robot in a web browser.

Setting up ROS web packages on ROS
Kinetic
In this section, we are going to see how to set up the previously mentioned libraries on our
PC.

Installing rosbridge_suite
We can install rosbridge_suite using apt-get or build from the source code. First, let's
see how to install it via apt-get.

Here are the commands to install it:

 $ sudo apt-get update

On ROS Kinetic:

 $ sudo apt-get install ros-kinetic-rosbridge-suite

On ROS Indigo:

 $ sudo apt-get install ros-indigo-rosbridge-suite

If you are looking for the latest package, you can clone it and install it.

You can switch to your catkin workspace's src folder and clone the source code using the
following command:

 $ git clone https://github.com/RobotWebTools/rosbridge_suite

http://wiki.ros.org/tf2_web_republisher

Controlling Your Robots over the Web

[391]

After cloning the folder, you can use catkin_make:

 $ catkin_make

If you encounter any dependency issues, install that package too.

Now we can work with the rosbridge client libraries roslibjs, ros2djs, and ros3djs.

Setting up rosbridge client libraries
To store all these library files, you can create a folder called ros_web_ws. Actually, there is
no need to create a catkin workspace because we don't need to build the modules. You will
get the prebuilt modules once you download it from the repositories.

Switch to the ros_web_ws folder and run the following commands to clone each ROS
JavaScript library:

For roslibjs:

 $ git clone https://github.com/RobotWebTools/roslibjs.git

For ros2djs:

 $ git clone https://github.com/RobotWebTools/ros2djs

For ros3djs:

 $ git clone https://github.com/RobotWebTools/ros3djs

Controlling Your Robots over the Web

[392]

If you check out the ros3djs folder, you will see the following:

Figure 2: The ros3d_js module folder

The build folder contains the ros3djs.js modules, which can be used in our web
application, and in the examples folder, you can find starter web applications. Similar to
ros3djs, you can also find examples from roslibjs and ros2djs.

This is the API list of these three modules:
roslibjs APIs: h t t p ://r o b o t w e b t o o l s . o r g /j s d o c /r o s l i b j s /c u r r e n t /

ros2djs APIs: h t t p ://r o b o t w e b t o o l s . o r g /j s d o c /r o s 2d j s /c u r r e n t /

ros3djs APIs: http://robotwebtools.org/jsdoc/ros3djs/current/

Installing tf2_web_republisher on ROS
Kinetic
We can install the tf2_web_republisher package by following these steps:

First, switch to your ROS catkin workspace and clone the package code using the following
command:

 $ git clone https://github.com/RobotWebTools/tf2_web_republisher

http://robotwebtools.org/jsdoc/roslibjs/current/
http://robotwebtools.org/jsdoc/roslibjs/current/
http://robotwebtools.org/jsdoc/roslibjs/current/
http://robotwebtools.org/jsdoc/roslibjs/current/
http://robotwebtools.org/jsdoc/roslibjs/current/
http://robotwebtools.org/jsdoc/roslibjs/current/
http://robotwebtools.org/jsdoc/roslibjs/current/
http://robotwebtools.org/jsdoc/roslibjs/current/
http://robotwebtools.org/jsdoc/roslibjs/current/
http://robotwebtools.org/jsdoc/roslibjs/current/
http://robotwebtools.org/jsdoc/roslibjs/current/
http://robotwebtools.org/jsdoc/roslibjs/current/
http://robotwebtools.org/jsdoc/roslibjs/current/
http://robotwebtools.org/jsdoc/roslibjs/current/
http://robotwebtools.org/jsdoc/roslibjs/current/
http://robotwebtools.org/jsdoc/roslibjs/current/
http://robotwebtools.org/jsdoc/roslibjs/current/
http://robotwebtools.org/jsdoc/roslibjs/current/
http://robotwebtools.org/jsdoc/roslibjs/current/
http://robotwebtools.org/jsdoc/roslibjs/current/
http://robotwebtools.org/jsdoc/roslibjs/current/
http://robotwebtools.org/jsdoc/roslibjs/current/
http://robotwebtools.org/jsdoc/roslibjs/current/
http://robotwebtools.org/jsdoc/roslibjs/current/
http://robotwebtools.org/jsdoc/roslibjs/current/
http://robotwebtools.org/jsdoc/roslibjs/current/
http://robotwebtools.org/jsdoc/roslibjs/current/
http://robotwebtools.org/jsdoc/roslibjs/current/
http://robotwebtools.org/jsdoc/roslibjs/current/
http://robotwebtools.org/jsdoc/roslibjs/current/
http://robotwebtools.org/jsdoc/roslibjs/current/
http://robotwebtools.org/jsdoc/roslibjs/current/
http://robotwebtools.org/jsdoc/roslibjs/current/
http://robotwebtools.org/jsdoc/roslibjs/current/
http://robotwebtools.org/jsdoc/roslibjs/current/
http://robotwebtools.org/jsdoc/roslibjs/current/
http://robotwebtools.org/jsdoc/roslibjs/current/
http://robotwebtools.org/jsdoc/roslibjs/current/
http://robotwebtools.org/jsdoc/roslibjs/current/
http://robotwebtools.org/jsdoc/roslibjs/current/
http://robotwebtools.org/jsdoc/roslibjs/current/
http://robotwebtools.org/jsdoc/roslibjs/current/
http://robotwebtools.org/jsdoc/roslibjs/current/
http://robotwebtools.org/jsdoc/roslibjs/current/
http://robotwebtools.org/jsdoc/roslibjs/current/
http://robotwebtools.org/jsdoc/roslibjs/current/
http://robotwebtools.org/jsdoc/roslibjs/current/
http://robotwebtools.org/jsdoc/roslibjs/current/
http://robotwebtools.org/jsdoc/roslibjs/current/
http://robotwebtools.org/jsdoc/roslibjs/current/
http://robotwebtools.org/jsdoc/roslibjs/current/
http://robotwebtools.org/jsdoc/roslibjs/current/
http://robotwebtools.org/jsdoc/roslibjs/current/
http://robotwebtools.org/jsdoc/roslibjs/current/
http://robotwebtools.org/jsdoc/roslibjs/current/
http://robotwebtools.org/jsdoc/roslibjs/current/
http://robotwebtools.org/jsdoc/roslibjs/current/
http://robotwebtools.org/jsdoc/roslibjs/current/
http://robotwebtools.org/jsdoc/roslibjs/current/
http://robotwebtools.org/jsdoc/roslibjs/current/
http://robotwebtools.org/jsdoc/roslibjs/current/
http://robotwebtools.org/jsdoc/roslibjs/current/
http://robotwebtools.org/jsdoc/roslibjs/current/
http://robotwebtools.org/jsdoc/roslibjs/current/
http://robotwebtools.org/jsdoc/roslibjs/current/
http://robotwebtools.org/jsdoc/roslibjs/current/
http://robotwebtools.org/jsdoc/roslibjs/current/
http://robotwebtools.org/jsdoc/roslibjs/current/
http://robotwebtools.org/jsdoc/roslibjs/current/
http://robotwebtools.org/jsdoc/roslibjs/current/
http://robotwebtools.org/jsdoc/roslibjs/current/
http://robotwebtools.org/jsdoc/roslibjs/current/
http://robotwebtools.org/jsdoc/roslibjs/current/
http://robotwebtools.org/jsdoc/roslibjs/current/
http://robotwebtools.org/jsdoc/roslibjs/current/
http://robotwebtools.org/jsdoc/roslibjs/current/
http://robotwebtools.org/jsdoc/roslibjs/current/
http://robotwebtools.org/jsdoc/roslibjs/current/
http://robotwebtools.org/jsdoc/roslibjs/current/
http://robotwebtools.org/jsdoc/roslibjs/current/
http://robotwebtools.org/jsdoc/roslibjs/current/
http://robotwebtools.org/jsdoc/roslibjs/current/
http://robotwebtools.org/jsdoc/roslibjs/current/
http://robotwebtools.org/jsdoc/ros2djs/current/
http://robotwebtools.org/jsdoc/ros2djs/current/
http://robotwebtools.org/jsdoc/ros2djs/current/
http://robotwebtools.org/jsdoc/ros2djs/current/
http://robotwebtools.org/jsdoc/ros2djs/current/
http://robotwebtools.org/jsdoc/ros2djs/current/
http://robotwebtools.org/jsdoc/ros2djs/current/
http://robotwebtools.org/jsdoc/ros2djs/current/
http://robotwebtools.org/jsdoc/ros2djs/current/
http://robotwebtools.org/jsdoc/ros2djs/current/
http://robotwebtools.org/jsdoc/ros2djs/current/
http://robotwebtools.org/jsdoc/ros2djs/current/
http://robotwebtools.org/jsdoc/ros2djs/current/
http://robotwebtools.org/jsdoc/ros2djs/current/
http://robotwebtools.org/jsdoc/ros2djs/current/
http://robotwebtools.org/jsdoc/ros2djs/current/
http://robotwebtools.org/jsdoc/ros2djs/current/
http://robotwebtools.org/jsdoc/ros2djs/current/
http://robotwebtools.org/jsdoc/ros2djs/current/
http://robotwebtools.org/jsdoc/ros2djs/current/
http://robotwebtools.org/jsdoc/ros2djs/current/
http://robotwebtools.org/jsdoc/ros2djs/current/
http://robotwebtools.org/jsdoc/ros2djs/current/
http://robotwebtools.org/jsdoc/ros2djs/current/
http://robotwebtools.org/jsdoc/ros2djs/current/
http://robotwebtools.org/jsdoc/ros2djs/current/
http://robotwebtools.org/jsdoc/ros2djs/current/
http://robotwebtools.org/jsdoc/ros2djs/current/
http://robotwebtools.org/jsdoc/ros2djs/current/
http://robotwebtools.org/jsdoc/ros2djs/current/
http://robotwebtools.org/jsdoc/ros2djs/current/
http://robotwebtools.org/jsdoc/ros2djs/current/
http://robotwebtools.org/jsdoc/ros2djs/current/
http://robotwebtools.org/jsdoc/ros2djs/current/
http://robotwebtools.org/jsdoc/ros2djs/current/
http://robotwebtools.org/jsdoc/ros2djs/current/
http://robotwebtools.org/jsdoc/ros2djs/current/
http://robotwebtools.org/jsdoc/ros2djs/current/
http://robotwebtools.org/jsdoc/ros2djs/current/
http://robotwebtools.org/jsdoc/ros2djs/current/
http://robotwebtools.org/jsdoc/ros2djs/current/
http://robotwebtools.org/jsdoc/ros2djs/current/
http://robotwebtools.org/jsdoc/ros2djs/current/
http://robotwebtools.org/jsdoc/ros2djs/current/
http://robotwebtools.org/jsdoc/ros2djs/current/
http://robotwebtools.org/jsdoc/ros2djs/current/
http://robotwebtools.org/jsdoc/ros2djs/current/
http://robotwebtools.org/jsdoc/ros2djs/current/
http://robotwebtools.org/jsdoc/ros2djs/current/
http://robotwebtools.org/jsdoc/ros2djs/current/
http://robotwebtools.org/jsdoc/ros2djs/current/
http://robotwebtools.org/jsdoc/ros2djs/current/
http://robotwebtools.org/jsdoc/ros2djs/current/
http://robotwebtools.org/jsdoc/ros2djs/current/
http://robotwebtools.org/jsdoc/ros2djs/current/
http://robotwebtools.org/jsdoc/ros2djs/current/
http://robotwebtools.org/jsdoc/ros2djs/current/
http://robotwebtools.org/jsdoc/ros2djs/current/
http://robotwebtools.org/jsdoc/ros2djs/current/
http://robotwebtools.org/jsdoc/ros2djs/current/
http://robotwebtools.org/jsdoc/ros2djs/current/
http://robotwebtools.org/jsdoc/ros2djs/current/
http://robotwebtools.org/jsdoc/ros2djs/current/
http://robotwebtools.org/jsdoc/ros2djs/current/
http://robotwebtools.org/jsdoc/ros2djs/current/
http://robotwebtools.org/jsdoc/ros2djs/current/
http://robotwebtools.org/jsdoc/ros2djs/current/
http://robotwebtools.org/jsdoc/ros2djs/current/
http://robotwebtools.org/jsdoc/ros2djs/current/
http://robotwebtools.org/jsdoc/ros2djs/current/
http://robotwebtools.org/jsdoc/ros2djs/current/
http://robotwebtools.org/jsdoc/ros2djs/current/
http://robotwebtools.org/jsdoc/ros2djs/current/
http://robotwebtools.org/jsdoc/ros2djs/current/
http://robotwebtools.org/jsdoc/ros2djs/current/
http://robotwebtools.org/jsdoc/ros2djs/current/
http://robotwebtools.org/jsdoc/ros2djs/current/
http://robotwebtools.org/jsdoc/ros2djs/current/
http://robotwebtools.org/jsdoc/ros2djs/current/
http://robotwebtools.org/jsdoc/ros3djs/current/

Controlling Your Robots over the Web

[393]

After cloning the code, install the following package, which may be required to build the
preceding package:

 $ sudo apt-get install ros-kinetic-tf2-ros

After installing the dependent package, you can install tf2_web_republisher, by using
the catkin_make command from the workspace.

If you are getting an error regarding message generation, you can add the
following line of code to package.xml:
<build_depend>message_generation</build_depend>

Teleoperating and visualizing a robot on a
web browser
This is the first project in this chapter. As we have seen in the other chapters, we are starting
with a simple project. This web application can teleoperate the robot from the web browser
itself using a keyboard. Along with the teleoperation, we can also visualize the robot in the
browser itself. Here is the working block diagram of this project:

Figure 3: Working of web-based robot keyboard teleoperation project

Controlling Your Robots over the Web

[394]

Working of the project
In this section, we can see the basic working of this project. Imagine that a Turtlebot
simulation is running on your PC. We have to control the robot from the web based
teleoperation, so when we press a button from web browser, the key press is detected using
JavaScript code and map each key press to ROS Twist message. This is done by using
rosbridge clients. The rosbridge client sends Twist message as JSON command to the
rosbridge server. The communication is happening over WebSockets as shown in the
preceding image. When ROS system receives this topic, it can feed to the robot.

At the same time, the TF data and robot description are sending to the rosbridge client for
visualizing the robot movement inside the browser. This is done by
tf2_web_republisher.

We are using a ROS package called keyboardteleopjs
(http://wiki.ros.org/keyboardteleopjs), which can send Twist messages from a web
browser according to the key press. Along with that, we are using ros3djs to visualize the
robot model in the browser. Upon getting the JSON Twist command, the rosbridge server
will convert it into the corresponding ROS topic. You find web keyboard teleoperation
application keyboardteleop.html from chapter_12_code/ros_web_ws.

Before running the application, let's discuss the code. Open keyboardteleop.html in a
text editor, and let's now look at the use of each section of the code.

Basically, web applications are written in HTML/CSS and JavaScript. Similar to other
programming languages, initially we have to include the CSS/JS modules that we are going
to use in the HTML code. We can call the APIs of these modules and use them in our code.
Let's go through the various modules we are using in this code.

The following code snippet includes a CSS file and standard jQuery (https://jquery.com/)
modules into this code:

 <link rel="stylesheet" type="text/css"
 href="http://ajax.googleapis.com/
 ajax/libs/jqueryui/1.8/themes/base/jquery-ui.css" /><script
 src="https://ajax.googleapis.com/
 ajax/libs/jquery/1.8.0/jquery.min.js"></script><script
 src="https://ajax.googleapis.com/
 ajax/libs/jqueryui/1.8.23/jquery-ui.min.js"></script>

http://wiki.ros.org/keyboardteleopjs
https://jquery.com/

Controlling Your Robots over the Web

[395]

The following code snippet loads JavaScript modules required for loading mesh files into
the web browser. We can load mesh files such as STL and COLLADA files, primarily.

 <script src="http://cdn.robotwebtools.org/
 threejs/current/three.js"></script><script
 src="http://cdn.robotwebtools.org/
 threejs/current/ColladaLoader.js"></script><script
 src="http://cdn.robotwebtools.org/ threejs/current/STLLoader.js">
 </script><script src="http://cdn.robotwebtools.org/
 ColladaAnimationCompress/current/ColladaLoader2.js"></script>

The following JS modules are importing roslibjs and ros3djs. The roslibjs and
ros3djs are imported from the build folder.

 <script src="http://cdn.robotwebtools.org/
 EventEmitter2/current/eventemitter2.min.js"></script>
 <script src="../build/roslib.js"></script>
 <script src="../build/ros3d.js"></script>

We can also include this from web resources:

 <script src="http://cdn.robotwebtools.org/
 roslibjs/current/roslib.js"></script>
 <script src="http://cdn.robotwebtools.org/
 ros3djs/current/ros3d.min.js"></script>

The following script will help you to perform keyboard teleoperation from a web browser.
The script is actually got by downloading the keyboardteleop ROS package:

 <script src="../build/keyboardteleop.js"></script>

Alternatively, we can use the following line from the web resource:

 <script src="http://cdn.robotwebtools.org/
 keyboardteleopjs/current/keyboardteleop.js"></script>

So we are done with including necessary modules for this application. Next, we have to add
JavaScript code inside this HTML code. Following are the main section of the code, which is
doing tasks such as connecting to the WebSocket, creating a handler for sending Twist
messages, creating a handler for keyboard teleoperation, and creating a new 3D viewer,
URDF, and TF client. Let's go through each section one by one.

Controlling Your Robots over the Web

[396]

Connecting to rosbridge_server
The whole initialization of this project is written inside a single function called init().
Let's take a look at all the things inside this function.

The first part of the code connects to rosbridge_server if it is running. The following
code snippet does this:

 var ros = new ROSLIB.Ros({
 url : 'ws://localhost:9090'
 });

As you can see, we are creating an object of ROSLIB.Ros for communicating with
rosbridge_server. When this code runs, it will connect to rosbridge_server, which is
listening on ws://localhost:9090. Instead of running both on the same system, we can
provide the IP address of the system that is running ROS and rosbridge_server.

Initializing the teleop
In this section, we'll see how to initialize keyboard teleoperation. We've already discussed a
JS module to handle keyboard teleoperation. The following code shows the initialization of
that module:

 var teleop = new KEYBOARDTELEOP.Teleop({
 ros : ros,
 topic : teleop_topic
 });

This will create a handler of the KEYBOARDTELEOP.Teleop class with the given topic name.
The topic name is already defined in the beginning of the code. We also need to pass the
ROS node object we created earlier.

Creating a 3D viewer inside a web browser
In this section, we will see how to create a 3D viewer for visualizing URDF models inside a
web browser. We can define properties of the viewer and the HTML ID for displaying the
viewer in the corresponding area:

 var viewer = new ROS3D.Viewer({
 background : 000,
 divID : 'urdf',
 width : 1280,

Controlling Your Robots over the Web

[397]

 height : 600,
 antialias : true

 });

The following line of code will add a 3D grid into the 3D viewer:

 viewer.addObject(new ROS3D.Grid());

Creating a TF client
The following code creates a TF client, which can subscribe to the TF data from the
tf2_web_republisher package and update the 3D viewer according to it. Here, we have
to mention the fixed frame name, such as Rviz. The fixed frame is already defined in the
beginning of our code. For a TurtleBot simulation, it will be odom.

 var tfClient = new ROSLIB.TFClient({
 ros : ros,
 fixedFrame : base_frame,
 angularThres : 0.01,
 transThres : 0.01,
 rate : 10.0
 });

Creating a URDF client
This section of code creates a URDF client, which is responsible for loading the robot's
URDF file. For proper working of the URDF client, we should provide a ROS node object,
TF client object, base URL for COLLADA files to load, and the 3D viewer scene object to
render the URDF file. To load the meshes into the 3D viewer, we may have to use a mesh
loader such as ROS3D.COLLADA_LOADER from Three.js, which is included in the
beginning of the code. This loader can retrieve the COLLADA file from the
robot_description parameter:

 var urdfClient = new ROS3D.UrdfClient({
 ros : ros,
 tfClient : tfClient,
 path : 'http://resources.robotwebtools.org/',
 rootObject : viewer.scene,
 loader : ROS3D.COLLADA_LOADER
 });

Controlling Your Robots over the Web

[398]

After the init() function, we can see two other functions. One is for handling the slider,
which can set the speed of the robot, and next function is submit_values(), which will
execute when the Submit button is clicked on. This function retrieves the teleop topic and
base frame name from the input text box and calls the init() function using it. This tool
can be used for teleoperating all robots without changing the code.

Creating text input
The following is the HTML snippet that creates a textbox to enter the teleoperation topic
and base frame ID inside the web application. When the button is pressed, the teleop object
will start publishing Twist messages to the given input teleoperation topic.

 <form >
 Teleop topic:

 <input type="text" name="Teleop Topic" id='tele_topic'
 value="/cmd_vel_mux/input/teleop">

 Base frame:

 <input type="text" name="Base frame" id='base_frame_name'
 value="/odom">

 <input type="button" onmousedown="submit_values()" value="Submit">

 </form>

The following code tries to load the init() function when the web page is loaded, but
we've coded it in a way that it will initialize only when the Submit button is pressed:

 <body onload="init()">

The slider and 3D viewer are displayed in the following HTML:

 <div id="speed-label"></div>
 <div id="speed-slider"></div>
 <div id="urdf"></div>

Running the web teleop application
Let's see how we can run this web application.

Controlling Your Robots over the Web

[399]

First, we have to start a robot simulation in Gazebo. Here, we are testing with a TurtleBot
simulation. You can launch the TurtleBot simulation using the following command:

 $ roslaunch turtlebot_gazebo turtlebot_world.launch

Now, we can set the parameter use_gui to true. The robot will only visualize on the
browser if this parameter is set.

 $ rosparam set use_gui true

After running this command, run tf2_web_republisher in another Terminal window,
using the following command:

 $ rosrun tf2_web_republisher tf2_web_republisher

After launching it, let's launch the rosbridge server to start WebSocket communication. You
can start it using the following command:

 $ roslaunch rosbridge_server rosbridge_websocket.launch

Congratulations; you are done with the commands that need to be executed from ROS;
now, let's open keyboardteleop.html in Chrome or Firefox.

You will see the following window in the browser:

Figure 4: Initial components in keyboard teleoperation

Controlling Your Robots over the Web

[400]

When you submit the teleop topic and base frame, you can see the 3D visualizer appear in
the same window with the robot model. Now you can use keys such as W, S, A, and D to
move the robot around the workspace. You can adjust the speed of the robot by moving the
slider. Here is the window you will get when you press the Submit button:

Figure 5: Web-based keyboard teleoperation

In the previous screenshot, you can see a JavaScript console window too. You can enable it
by pressing Ctrl + Shift + I or right-clicking on the page and using the Inspect option. This
window will be useful for debugging.

If you keep on clicking on the Submit button, a new 3D viewer will be
created. So refresh the page to change the teleop topic and base frame ID.

Controlling robot joints from a web browser
This is the second project we are going discuss in this chapter. The aim of this project is to
control robot joints from the web browser itself.

Controlling Your Robots over the Web

[401]

Here is the block diagram of the working of a joint state publisher from the web browser:

Figure 6: Block diagram of web-based joint state controller

From the block diagram, we can see that we are using another JavaScript module called
jointstatepublisherjs. This module has a class to create a joint state publisher for all
joints defined inside the URDF file.

Installing joint_state_publisher_js
To use this joint state control module, we need to clone the following package into the ROS
catkin workspace. Here is the command:

 $ git clone https://github.com/DLu/joint_state_publisher_js

You can use catkin_make after executing the preceding command.

Controlling Your Robots over the Web

[402]

You can see the JavaScript module from the joint_state_publisher_js/build folder.
You can copy this module and use it for your own applications.

You will get HTML code for the joint state publisher from
chapter_12_codes/ros_web_ws/joint_state_publisher.html. The code is very
similar to our first project, but you can see some new APIs inside this code. Let's look at the
new code snippets that you can see in this code.

Including the joint state publisher module
As we have discussed, to enable sliders inside the web browser, we need to include some
JavaScript modules. We can insert them from the build folder or directly from the Web
itself.

Including from the build folder:

 <script src="../build/jointstatepublisher.js"></script>

Including directly from the Web:

 <script src="http://cdn.robotwebtools.org/
 jointstatepublisherjs/current/jointstatepublisher.min.js">
 </script>

Creating the joint state publisher object
Here is the code snippet for creating the joint state publisher. The sliders will be placed in
the HTML divID called sliders.

 var jsp = new JOINTSTATEPUBLISHER.JointStatePublisher({
 ros : ros,
 divID : 'sliders'
 });

Controlling Your Robots over the Web

[403]

Creating an HTML division for sliders
Here is the definition of the HTML div element with an id of sliders.

 <div id="sliders" style="float: right"></div>

That's all about the code. Now let's go through the procedure to run this project.

Running the web-based joint state publisher
First, start a robot simulation or load a robot description. Here, we are using the robot
model of the PR2 robot. If you don't have this model, you can install it using the following
command:

 $ sudo apt-get install ros-kinetic-pr2-description

After installing, you can load the PR2 description using the following command:

 $ roslaunch pr2_description upload_pr2.launch

After uploading the code, you can set the ROS parameter called use_gui to true using the
following command:

 $ rosparam set use_gui true

After doing this, you can start the joint_state_publisher_js node using the following
command. This will launch joint state publisher, rosbridge, and tf2_web_republisher
node in a single launch file.

 $ roslaunch joint_state_publisher_js core.launch

Okay, you are done launching the ROS nodes; now, it's time to open the HTML code in a
web browser. You can open joint_state_publisher.html from
chapter_12_codes/ros_web_ws.

Controlling Your Robots over the Web

[404]

You will get the following window if everything works fine:

Figure 7: Web-based joint state publisher

Congratulations, you have successfully set up a joint state publisher inside a web browser.
Now you can move robot joints by moving the sliders.

Robot surveillance application

This is another interesting web application, which can move a robot and display the camera
view of the robot in a browser. This application is best used to teleoperate a robot for
surveillance. Let's see how to set it up in ROS Kinetic.

Prerequisites
web_video_server: This is a ROS package for the HTTP streaming of ROS
images in multiple image formats. You can find the package from the following
ROS wiki page: http://wiki.ros.org/web_video_server
mjpegcanvasjs: This JavaScript module can display the MJPEG stream from
web_video_server in an HTML canvas. You can get the code from the
following link: http://wiki.ros.org/mjpegcanvasjs

http://wiki.ros.org/web_video_server
http://wiki.ros.org/mjpegcanvasjs

Controlling Your Robots over the Web

[405]

keyboardteleopjs: This JS module helps us teleoperate a robot from a web
browser using a keyboard. We used this module in the first project. You can get it
from here: http://wiki.ros.org/keyboardteleopjs

Installing prerequisites
Install the web_video_server package. Switch to your catkin workspace and clone the
package code to the src folder:

 $ git clone https://github.com/RobotWebTools/web_video_server.git

Build the package using the catkin_make command.

Download the mjpegcanvasjs module. You can simply use the following command:

 $ git clone https://github.com/rctoris/mjpegcanvasjs

Okay, you are done with the packages and modules. Now you can check the code in
chapter_12_codes/ros_web_ws/ws/Robot_Surveillance.html.

We'll now discuss the main parts of the code.

Explaining the code
Initially, we have to include the JS module, which is mjpegcanvas.js, to get streamer
functionality inside the browser. The following code does this job:

 <script src=" http://cdn.robotwebtools.org/
 mjpegcanvasjs/current/mjpegcanvas.js">
 </script>

The following is the function to start an MJPEG viewer inside the browser. You can set
parameters such as width, height, and ROS image topic to display in the viewer.

 var viewer = new MJPEGCANVAS.Viewer({
 divID : 'mjpeg',
 host : 'localhost',
 width : 640,
 height : 480,
 topic : '/camera/rgb/image_raw',
 interval : 200
 });
 }

http://wiki.ros.org/keyboardteleopjs

Controlling Your Robots over the Web

[406]

To visualize multiple camera views, we can use code like this. Here, you can add any
number of image topics. We also need to mention the image label. In the viewer, we have a
provision to select the desired view from the list:

 var viewer = new MJPEGCANVAS.MultiStreamViewer({
 divID : 'mjpeg',
 host : 'localhost',
 width : 640,
 height : 480,
 topics : ['/camera/rgb/image_raw', '/camera/rgb/image_raw',
 '/camera/rgb/image_raw'],
 labels : ['Robot View', 'Left Arm View', 'Right Arm View']
 });

Running the robot surveillance application
Okay, so we are ready to run the application. Let's begin.

You can run any robot simulation that has some sort of image topic or camera topic.

For a demo, we will launch the TurtleBot simulation using the following command:

 $ roslaunch turtlebot_gazebo turtlebot_world.launch

After launch the simulation, run the HTTPS streamer node from web_video_server:

 $ rosrun web_video_server web_video_server

After running web_video_server, launch rosbridge_server to send Twist messages to
ROS from the keyboard teleoperation module:

 $ roslaunch rosbridge_server rosbridge_websocket.launch

Now, open Robot_Surveillance.html to look at the output.

Controlling Your Robots over the Web

[407]

Here is the output you will get for the Robot_Surveillance application.

Figure 8: The robot surveillance application

Now you can move the robot and look at the camera view from inside the browser itself.

Web-based speech-controlled robot
The next project we will discuss is to control a robot from a web browser using speech
commands. It enables teleoperation of the robot using a button interface and speech. If we
are not interested in moving the robot with voice commands, we can try moving the robot
using buttons.

Controlling Your Robots over the Web

[408]

We can assign a set of voice commands in this application, and when a voice command is
given, the robot will perform the corresponding task.

In this application, we are using basic commands such as move forward, move backward,
turn left, and turn right to move the mobile robot. We will demo this application
using the TurtleBot simulation.

Prerequisites
We need a few things installed for the proper working of this application.

We need to install the apache2 webserver to run this application. We can install it using the
following command:

 $ sudo apt-get install apache2

This project is actually adapted from a project from roswebtools. The current project can
send the command velocity to the robot, but there is no visualization to get feedback of
robot motion. So we are adding a 3D viewer inside this application. Here is the existing
project:

https://github.com/UbiquityRobotics/speech_commands

You can find the new application's code from
chapter_12_codes/ros_web_ws/speech_commands/speechcommands.html. We'll
now look at the new APIs and code you may need to customize to work with your own
robot.

Enabling speech recognition in the web
application
Speech recognition functionality is something we haven't discussed yet in any of our
projects. Actually, performing speech recognition from a web browser is better than using
offline speech recognizers. The reason is that web-based speech recognition uses Google's
speech recognition system, which is one of the best speech recognition systems available
today. So let's see how we can implement speech recognition in our application.

https://github.com/UbiquityRobotics/speech_commands

Controlling Your Robots over the Web

[409]

The web speech API specification
(https://dvcs.w3.org/hg/speech-api/raw-file/tip/speechapi.html) provides speech
recognition and synthesis APIs for a web application, but the majority of web browsers
don't support it anymore. Google introduced their own speech recognition and synthesis
platform and integrated into these APIs. Now these APIs can work well with Google
Chrome.

Let's look at the procedure to enable web-based speech recognition APIs.

The first step is to check whether the browser supports the speech APIs. We can check this
using the following code:

 if (!('webkitSpeechRecognition' in window)) {
 //Speech API not supported here...
 } else { //Let's do some cool stuff :)

If the browser supports speech recognition, we can start the speech recognizer.

First, we have to create a speech recognizer object, which will be used throughout the code:

 var recognition = new webkitSpeechRecognition();

Now we will configure the speech recognizer object. If we want to implement continuous
recognition, we need to mark this as true. This is suitable for dictation.

 recognition.continuous = true;

The following settings enable intermediate speech recognition results even if they are not
final:

 recognition.interimResults = true;

Now we configure the recognition language and accuracy of detection:

 recognition.lang = "en-US";
 recognition.maxAlternatives = 1;

After configuring the speech recognition object, we can fill in the callback functions. The
callback functions handle each speech recognition object event. Let's look at the main
callback of the speech recognition object.

https://dvcs.w3.org/hg/speech-api/raw-file/tip/speechapi.html

Controlling Your Robots over the Web

[410]

The start()callback function calls when the recognition starts, and we may add some
visual feedback, such as flashing a red light or something here to alert the user:

 recognition.onstart = function() {

 ;
 };

Also, if the speech recognition is finished, the onend() callback will be called, and you can
give some visual feedback here too:

 recognition.onend = function() {

 };

The following callback, onresult(), give the final recognized results of speech recognition:

 recognition.onresult = function(event) {

 if (typeof(event.results) === 'undefined') {
 recognition.stop();
 return;
 }

After getting the results, we have to iterate inside the result object to get the text output:

 for (var i = event.resultIndex; i < event.results.length; ++i) {
 if (event.results[i].isFinal) {
 console.log("final results: " +
 event.results[i][0].transcript);

 }

 else {
 console.log("interim results: " +
 event.results[i][0].transcript);
 }
 } };

Controlling Your Robots over the Web

[411]

Now we can start the speech recognition through a user-defined function called
startButton(). Whenever this function is called, the recognition will start.

 <div onclick="startButton(event);"</div>

 function startButton(event) {
 recognition.start();
 }

Running a speech-controlled robot
application
To run the application, you have to copy the
chapter_12_codes/ros_web_ws/speech_commands folder to /var/www/html. If you
are in the ros_web_ws folder in Terminal, you can use the following command to do this:

 $ sudo cp -r speech_commands /var/www/html

Now run the following ROS launch files to start the TurtleBot simulation, rosbridge, and
tf2_republisher nodes:

 $ roslaunch turtlebot_gazebo turtlebot_world.launch

Launch the rosbridge server:

 $ roslaunch rosbridge_server rosbridge_websocket.launch

Now launch the tf2_web_republisher node using the following command:

 $ rosun tf2_web_republisher tf2_web_republisher

Okay, you are done with launching all the ROS nodes. Now, let's open Chrome and enter
the following address:

localhost/speech_commands/speechcommands.html

Controlling Your Robots over the Web

[412]

If everything works fine, you will get a window like this:

Figure 9: Speech controller Robot App screen

Here, find the Robot URL box, which has to be set to ws://localhost:9090, and click on
the Connect button. If it connects, you'll get a confirmation, and the Connect button will
become Disconnect. After connecting to rosbridge, you can see the 3D viewer inside the
browser. Now you can click on the mic symbol. If the mic symbol turns green, then you are
done. You can give it a command and the robot will start moving. If the mic did not turn
green, you may need to check Chrome's mic settings to allow mic access to this app. The
complete app will look like this:

Controlling Your Robots over the Web

[413]

Figure 10: Speech controller Robot App screen

You can see the detected commands in the Command Log box. You can also move the robot
using the arrow keys shown in the window.

Questions
What is the main use of the rosbridge_server package?
What is the use of roslibjs and ros3djs?
What is the ROS package used to stream images from ROS to a web browser?
How is the robot surveillance application used?

Controlling Your Robots over the Web

[414]

Summary
This chapter was about creating interactive web applications using ROS. The chapter was
started with discussing basic ROS packages and JavaScript modules used for building a
robot web application. After discussing the packages, we discussed how to install it them.
After setting up all the packages, we started our first project, teleoperating the robot from a
web browser. In that application, we controlled the robot using a keyboard and visualized
the robot at the same time. The next project was about controlling the joint state of the
robot. We created the application and tested it on the PR2 robot. The third project was about
creating a robot surveillance application, which combines keyboard teleoperation and
image streaming from the robot. The last project was about creating a cool speech
recognition-based robot controller application.

Index

2
2D models
 building, of robot body 271

3
3D meshes
 object, detecting 188
 object, recognizing 188
3D models
 building, of robot body 271
 captured, from training 191, 193, 195, 196
 used, for training of object 188, 189, 190, 191
3D object recognition 184, 185
3D object recognition packages
 in ROS 186
3D viewer
 creating, in web browser 396

A
Adaptive Monte Carlo Localization (AMCL) 285
ADAS systems
 reference 314
adb command 379
advanced driving assistance system (ADAS) 313
AIML (Artificial Intelligence Markup Language) 86
AIML ROS package
 aiml_client node 95
 aiml_server node 95
 aiml_speech_recognition_client node 96
 aiml_tts_client node 96
AIML tags
 about 87
 aiml 87
 category 87
 pattern 87
 reference 88

AlphaGo
 about 203
 reference 203
analog-to-digital converter (ADC) 109
Android core libraries
 reference 247
Android Debug Bridge 379
Android device
 ROS master, making 261
Android Package Kit (APK) 247
Android phone
 used, for teleoperating 163, 164, 165, 166
Android-ROS application
 code 262, 264
Android-ROS publisher-subscriber application 256,

257, 258
android-sdk
 installing, from prebuilt binaries 249, 250, 251,

252

 installing, from Ubuntu package manager 249
APK Editor
 download link 255
Applanix module driver
 reference 335
Arduino boards
 about 107
 cost 109
 flash memory 109
 GPIO pins 109
 interfacing, with ROS 115, 116, 117, 118
 reference 112
 ROS, executing on Odroid board 130, 131, 132
 ROS, executing on Raspberry Pi board 130,

131, 132
 selecting, for robot 108, 109
 speed 108
 STM32 Launchpad 109, 110

[416]

 TI Launchpads 109, 110
 Tiva C Launchpad 111
 voltage levels, working 109
Arduino IDE
 reference 116
Arduino-compatible boards 110
Arduino
 MPU-9250, interfacing with 150, 151, 152
 used, for monitoring light 119, 120, 121
Artificial Linguistic Internet Computer Entity

(A.L.I.C.E.) 86
Astra camera
 reference 298
Auro robotics
 about 309
 reference 309
autonomous robot 142
autonomous vehicles, history
 levels of autonomy 310
AX-12A
 reference 50

B
base plate 271
basic applications
 creating, ROS-Android interface used 264, 265
basic ROS functions, MATLAB 228
Berkeley Vision and Learning Centre (BVLC) 205
block diagram, face_tracker_node
 Face Haar classifier 60
 face_tracker_control package 61
 track.yaml 61
 usb_cam node 61
Buddy
 about 84
 reference 84

C
Caffe
 about 205
 reference 205
camera 313, 314
caster wheel design
 about 274
 reference 274

centroid 62
Chefbot ROS driver nodes
 executing 299, 300
Chefbot
 Gmapping in 301, 302
 localization in 301, 302
 simulating 281
 simulation, executing 283, 284, 285
 URDF model, building 281
Clearpath Robotics
 reference 37
CMU's Robotics Institute
 reference 38
Code Composer Studio (CCS) 110
communication, in ROS 21, 22
communication
 to ROS network, from MATLAB 231, 232, 233,

234, 235
computation graph level, ROS
 about 18
 bags 19
 master 19
 messages 19
 nodes 19
 parameter server 19
 services 19
 topics 19
Continental ARS 300 radar (ARS)
 reference 318
convolution neural network (CNN) 355
cuDNN
 reference 206

D
DARPA Grand Challenge
 about 306
 reference 306
Dataspeed
 reference 352
DBW car
 communicating, from ROS 355
 interfacing, with ROS 351
 packages, installing 352
 self-driving cars, visualizing 352, 353, 354, 355
 sensor data, visualizing 353, 354, 355

[417]

DBW methods, of installation
 reference 352
deep learning, for robotics
 autonomous vehicles 203
 deep reinforcement learning 203
 deep-learning-based object detector 203
 SLAM and localization 203
 speech recognition 203
deep learning, libraries
 about 204
 Caffe 205
 TensorFlow 204
 Theano 205
 Torch 205
deep learning
 about 202
 applications 202
degrees of freedom (DOF) 278
Delphi radar
 reference 318
depth sensors
 used, for executing find_object_2d nodes 180,

181, 182, 183, 184
depthimage_to_laserscan
 reference 290
design values 270
Diagnostic Visualizer
 reference 371
differential drive robot
 mathematical model 278, 279, 280, 281
digital motion processor (DMP) 149
Disk Dump (DD) 131
distance measurement indicator (DMI) 311
DJI
 reference 37
drive-by-wire (DBW) 320
Dynamixel
 interfacing, with ROS 55

E
ELIZA 86
embedded boards
 Arduino boards 107
 Odroid board 114
 Raspberry Pi board 112

 used, in robots 107
end of life (EOL) 10
end-to-end deep learning
 reference 355
Energia
 about 111
 reference 111, 127, 292
evaluation boards 110

F
Face Haar classifier 60
face tracker project
 bracket, fixing 79
 circuit, setting up 79
 CMakeLists.txt file 66, 67, 68
 CMakeLists.txt, creating 76
 dependent ROS packages, installing 43
 Dynamixel servo, configuring with RoboPlus 47,

48, 49, 50, 51
 Dynamixel, connecting to PC 51
 Dynamixel, powering 51
 face tracker code 62, 63, 64, 65
 face tracker control package, testing 77, 78
 face tracker controller node 74, 75
 face tracker node, running 69, 70
 face_tracker_control package 70, 71
 face_tracker_node, block diagram 60, 61
 final run 80
 hardware requisites 41
 launch file, viewing 78
 launch files, in ROS 68
 overview 41
 pan controller configuration file 73
 pan controller launch file 72
 ROS workspace, creating for dependencies 43
 servo parameters configuration file 73
 software requisites 42
 start_dynamixel launch file 71
 track.yaml file 68
 USB-to-Dynamixel driver, setting up on PC 52,

53, 54, 55
 usb_cam ROS package, installing 43
 webcam, configuring on Ubuntu 16.04 44, 45
 webcam, interfacing with ROS 46, 47
face tracker ROS packages

[418]

 creating 56, 57
face-tracking ROS package
 working with 59, 60, 61
face_tracker_node
 block diagram 60
Fetch Robotics
 reference 37
field of view (FOV) 314
find_object_2d nodes
 executing, depth sensors used 180, 181, 182,

183, 184
 executing, webcams used 172, 173, 174, 175,

176, 177, 178, 179, 180
find_object_2d package
 find_object_2d nodes, executing webcams used

172, 173, 174, 175, 176, 177, 178, 179, 180
 find_object_2d nodes, executing, depth sensors

used 180, 181, 182, 183, 184
 in ROS 171
 installing 171
 installing, from source code 171, 172
 reference 171
first-in-first-out (FIFO) 155
flash memory 109
FTDI chip
 reference 52
full automation 310
full evaluation boards 110
fundamentals, Robot Operating System (ROS)
 communication 21, 22
 community level 20
 computational graph level 18, 19
 filesystem level 17

G
Gazebo
 about 25
 interfacing 379, 380, 381, 382
 reference 25
 self-driving cars, simulating with sensors 344
general purpose input/output (GPIO) 109
Global Positioning System (GPS)
 about 311
 interfacing, with ROS 335
 simulating, in Gazebo 333, 334, 335

graph 208, 209

H
hand gestures
 used, for teleoperating 145, 147, 148, 149
hardware components, face tracker project
 purchase link 41
HDL-32E 321
hector SLAM
 executing, robotic car used 349, 350, 351
Hidden Markov Model (HMM) 203
high automation 310
Hokuyo Laser range finder
 reference 15
Hokuyo sensors
 reference 330
Hokuyo
 about 317
 reference 317

I
iBall Face2Face
 reference 44
IEEE 1394
 reference 333
image recognition
 prerequisites 215
 reference 215
 ROS image recognition node, downloading 215,

216, 217, 218
 ROS image recognition node, executing 218,

219, 220
 with ROS and TensorFlow 214, 215
image_transport
 reference 59
ImageNet Large Scale Visual Recognition

Challenge (ILSVRC)
 reference 215
ImageNet
 reference 203
IMU data
 converting, into twist messages 158, 159, 160,

161

IMU TF
 visualizing, in Rviz 156, 157

[419]

IMU
 interfacing, with ROS 338
 references 339
 simulating, on Gazebo 336, 337, 338
 Xsens MTi IMU 313
Inception-v3
 reference 215
 URL, for downloading 218
inertial measurement unit (IMU) 143, 311
Intel real sense
 reference 15
Inter-Integrated Circuit (I2C)
 about 108
 reference 149
inter-process communication (IPC) 319
Itseez
 reference 58

J
Jibo
 about 84
 reference 83
joint_state_publisher_js
 HTML division, creating for sliders 403
 joint state publisher module, including 402
 joint state publisher object, creating 402
jQuery
 reference 394
JSON
 reference 388

K
keyboard
 used, for teleoperating ROS Turtle 143, 144
keyboardteleopjs
 about 394, 405
 reference 394, 405
Kismet 84
knowledge representation 82

L
Laser Measurement System (LMS) 317
laser scanners
 interfacing, with ROS 330
 reference 317

 simulating 325, 326, 327
Launchpad boards
 reference 112
Leap Motion controller
 data, visualizing 369
 references 364
 ROS driver, installing 371
 used, for creating teleoperation node 375
Leap Motion data
 visualizing, in Rviz 374
Leap Motion PC Driver/SDK 367
Leap Motion ROS Driver 367
Leap Motion ROS driver
 testing 372
Leap Motion SDK
 installing, on Ubuntu 14.04.5 368, 369
 Leap Motion controller, data visualizing 369
 Leap Motion visualizer tool, playing 370, 371
 reference 365
 ROS driver, installing, for Leap Motion controller

371

 URL, for downloading 368
 URL, for installation 369
Leap Motion teleoperation
 integrating 385
Leap Motion visualizer tool
 playing 370, 371
Leap Motion
 about 362, 363
 design 365, 367, 368
 prerequisites 365
 working 365, 367, 368
leap_client
 reference link 374
learning 82
LED blink demo
 executing, on Odroid board 139, 140
 executing, on Raspberry Pi board 139, 140
LibreCAD
 reference 277
Light Detection and Ranging (LIDAR)
 about 315
 Continental ARS 300 radar (ARS) 318
 Delphi radar 318
 Hokuyo LIDAR 317

[420]

 reference 315
 reference link 317
 SICK LMS 5xx/1xx 317
 Velodyne HDL-64 LIDAR 316
light-dependent resistor (LDR) 119
Lightweight Communications and Marshalling

(LCM)
 about 319
 reference 319
LINE-MODE
 reference 187
listener node 22
logical reasoning 82
long-term support (LTS) 12
low-cost LIDAR sensors
 RPLIDAR 344
 Sweep LIDAR 342, 343
Low-cost VR headset
 reference 365

M
manual control, robot 142
MATLAB ADAS toolbox
 about 360
 reference 360
MATLAB GUI application
 callbacks 241, 243
 designing 238, 239, 240, 241
 running 243, 245, 246
MATLAB
 about 226
 basic ROS functions 228
 Robotics Toolbox, setting in 228
 ROS robot, controlling from 236, 237, 238
mbed
 about 110
 reference 110
 references 124
MicroStrain 3DM-GX2
 reference 339
middle plate design 275, 276
MIT Kismet
 reference 83
mjpegcanvasjs
 about 404

 reference 404
MobileEye
 reference 313
mono cameras
 simulating, in Gazebo 330, 331, 332
motor clamp design 273
motor RPM
 calculation 270
motor torque
 computing 269, 270
motor
 interfacing, with Launchpad 291
MPU series
 reference 149
MPU-9250
 interfacing, with Arduino 150, 151, 152
 interfacing, with ROS 150, 151, 152
 reference 145

N
natural language processing 82
navigation metapackage 17
NVIDIA GPU
 reference 206
NVIDIA-DGX-1
 about 308
 reference 308
Nvidia
 reference 308

O
object detection 169
Object Recognition Kitchen (ORK)
 about 186
 references 186
object recognition
 about 169
 reference 187
object
 3D models, captured from training 191
 3D models, captured from traning 193, 195, 196
 3D models, used for training 188, 189, 190, 191
 detecting, from 3D meshes 188
 recognizing 197, 198, 199
 recognizing, from 3D meshes 188

[421]

Oculus SDK
 reference link 385
Odroid board
 about 114
 connecting, to PC 132, 133
 reference 115
 ROS, executing 130, 131, 132
Odroid-ROS images
 URL, for downloading 130
on-board computer 318
Open Source Computer Vision (OpenCV)
 about 58
 reference 58
Open Source Robotics Foundation (OSRF)
 about 10
 reference 10
Open-CV
 reference 16
Open-NI
 reference 16
Open-Rave
 reference 16
Orbbec Astra Pro
 reference 290
ORK packages
 installing, in ROS 186, 187
Orocos
 reference 16
Oxford Technical Solution (OxTS)
 about 312
 references 312

P
PAL Robotics
 reference 37
parking assistance system (PAS) 314
Pepper
 about 84
 reference 14, 84
perception 82
planning 82
Point Cloud Library (PCL)
 about 15
 reference 16
Point Grey camera

 about 333
 reference 333
Point Grey Firefly (PGF) 314
pole 273
POS LV modules from Applanix
 about 311
 reference 311
prebuilt binaries
 android-sdk, installing from 249, 250, 251, 252
pulse width modulation (PWM) 109
PyAIML interpreter 89
PyAIML
 installing, on Ubuntu 16.04 LTS 89
 working with 90, 91

R
Random Sample Consensus (RANSAC) 188
Raspberry Pi 2 images
 URL, for downloading 130
Raspberry Pi board
 about 112
 connecting, to PC 132, 133
 reference 113
 ROS, executing 130, 131, 132
 selecting, for robot 113
REEM-C
 reference 14
region of interest (ROI) 60
resources, for obtaining ROS packages of robots
 Pepper 13
 REEM-C 13
 Robonaut 13
 Turtlebot 2 13
 Universal Robotic arms 13
Robonaut
 reference 14
RoboPlus
 download link 48
 reference 47
robot body
 2D models, building 271
 3D modeling 277
 3D models, building 271
 base plate 271
 caster wheel design 274

[422]

 middle plate design 275, 276
 motor 273, 274
 motor clamp design 273, 274
 pole 273
 top plate design 275, 276, 277
 tube design 273
 wheel 273, 274
robot hardware
 Chefbot ROS driver nodes, executing 299, 300
 interfacing, with ROS 296, 297
robot joints
 controlling, from web browser 400
 joint_state_publisher_js, installing 401
 web-based joint state publisher, executing 403
robot model
 simulating, in Gazebo 278
Robot Operating System (ROS)
 3D object recognition packages 186
 about 8, 9
 and TensorFlow, used for image recognition 214,

215

 Arduino boards, interfacing with 115, 116, 117,
118

 cameras, interfacing 332
 capabilities 10
 code testing 16
 collaborative development 15
 community 16
 customizability 16
 DBW car, communicating 355
 Dynamixel, interfacing with 55
 executing, on Odroid board 130, 131, 132
 executing, on Raspberry Pi board 130, 131, 132
 find_object_2d package 171
 fundamentals 16
 GPIO pins, controlling from 134, 135, 136
 language support 15
 laser scanners, interfacing 330
 library integration 15
 MPU-9250, interfacing with 150, 151, 152
 need for 15
 opportunities, in industries and research 36, 37
 ORK packages, installing 186, 187
 reference 214
 scalability 16

 serial server, executing on PC 121, 123
 setting, on VirtualBox 32, 33
 simulator integration 16
 STM32 boards, interfacing mbed used 123, 124,

125, 126, 127
 Tiva C Launchpad boards, interfacing Energia

used 127, 130
 used, for monitoring light 119, 120, 121
 Velodyne sensors, interfacing 323, 324
robot teleoperating project
 Arduino-IMU interfacing code 152, 153, 154,

155, 156
 setting up 149
 teleop tool, testing 161, 162, 163
robot
 about 8
 design values 270
 design, overview 269
 hardware, building 289
 hardware, designing 289
 Intel NUC 290
 motor 289
 motor driver 289
 motor encoders 290
 motor RPM, calculation 270
 motor torque, computing 269
 motors, designing 269
 motors, selecting 269
 MPU 6050 290
 OpenNI depth sensor 290
 sensor, interfacing with Launchpad 291
 specification 269
 Tiva C Launchpad 290
 Tiva C Launchpad, programming 292, 293, 295
 ultrasonic sensor 290
 wheels, designing 269
 wheels, selecting 269
robotic car sensor data
 visualizing 348
robotics 8
Robotics Toolbox
 setting, in MATLAB 228
ROBOTIS
 reference 37
robots, supported by ROS

[423]

 reference 13
ROS Android camera application 260, 261
ROS Answers
 reference 20
ROS blog
 reference 20
ROS Cardboard
 reference link 378
ROS client libraries
 about 22
 reference 22
 roscpp 22
 roslisp 22
 rospy 22
ROS community level
 about 20
 distributions 20
 mailing lists 20
 repositories 20
 ROS Answers 20
 ROS blog 20
 ROS Wiki 20
ROS distributions
 about 10
 reference 11
 supported operating systems 11, 12
 supported robots 13
 supported sensors 13, 15
ROS driver
 installing, for Leap Motion controller 372
 Leap Motion ROS driver, testing 372
 references 339
ROS Dynamixel packages
 reference 56
ROS dynamixel_motor packages
 installing 56
ROS filesystem level
 about 17
 messages (msg) 18
 metapackages 17
 package manifest 18
 packages 17
 service (srv) 18
ROS Indigo Igloo distribution 11
ROS Indigo

 reference 124
 reference link 365
ROS Jade Turtle distribution 11
ROS Jade
 reference 124
ROS kinetic installation, on Ubuntu 16.04 LTS
 about 26
 keys, setting up 30
 ROS environment, setting up 31
 ROS packages, installing 30
 rosdep, initializing 30
 rosinstall, obtaining 31, 32
 source.list, setting up 29
 starting 27
 Ubuntu repositories configuration 28, 29
ROS Kinetic
 reference 124
 ROS web packages, setting up on 390
 tf2_web_republisher package, installing on 392
ROS mailing lists
 reference 20
ROS master 19
ROS message
 about 19
 listing 229
ROS network
 initializing 229
ROS nodes
 about 19
 listing 229
ROS package
 creating, for blink demo 136, 137, 138
ROS robot
 controlling, from MATLAB 236, 237, 238
ROS Serial
 about 115
 reference 115
ROS tools
 about 23
 reference 25
 rqt_graph 25
 rqt_plot 24
 Rviz 23
ROS topics
 about 19

[424]

 listing 229
ROS Turtle
 teleoperating, keyboard used 143, 144
ROS web packages
 about 387
 ros2djs 389
 ros3djs 389
 rosbridge client libraries, setting up 391
 rosbridge_suite 388
 rosbridge_suite, installing 390
 roslibjs 389
 setting up, on ROS Kinetic 390
 tf2_web_republisher package 390
ROS web tools
 reference 387
ROS workspace
 setting 34, 35, 36
ROS-Android applications
 troubleshooting 254, 256
 working with 253
ROS-Android interface
 installing 252
 used, for creating basic applications 264, 265
ROS-MATLAB interface
 about 227
 features 228
ROS-OpenCV interface 58, 59
ROS-VR Android application
 building 378, 379
 integrating 385
 troubleshooting 384, 385
 working 379, 380, 382
ros2djs APIs
 reference 392
ros2djs
 about 389
 reference 389
ros3djs APIs
 reference 392
ros3djs
 reference 389
RosActivity 246
rosbag 19
rosbridge client libraries
 setting up 391

rosbridge_server
 connecting 396
rosbridge_suite
 about 388
 installing 390
 references 388
 rosapi 389
 rosbridge_library 389
 rosbridge_server 389
roscpp library 22
rosjava
 installing 247
 installing, from source code 248
 installing, from Ubuntu package manager 247,

248

RosJava
 reference 247
roslibjs APIs
 reference 392
roslibjs
 about 389
 reference 389
roslisp library 22
rospy library 22
rostest 16
rotations per minute (RPM) 270
RPLIDAR
 references 344
rqt_graph
 reference 25
rqt_plot program
 reference 24
RT3000 v2 family
 reference 312
Rviz
 IMU TF, visualizing in 156, 157
 Leap Motion data, visualizing 374
 reference 23

S
scikit-learn
 about 220, 221
 installing, on Ubuntu 16.04 LTS 221
 URL 220
SciPy

[425]

 reference 221
sdc-live-trainer
 reference 359
Secure Shell (SSH) 134
self-driving cars
 about 306
 autonomous vehicles, history 306, 307, 308,

309

 camera 313, 314
 cameras, interfacing with ROS 332
 functional block diagram 310
 GPS 311, 312
 GPS, simulating in Gazebo 333, 334, 335
 hector SLAM executing, robotic car used 349,

350, 351
 IMU 311, 312
 IMU, interfacing with ROS 338
 IMU, simulating on Gazebo 336, 337, 338
 laser scanner, simulating 325, 326, 327
 laser scanners, interfacing with ROS 330
 Light Detection and Ranging (LIDAR) 315
 low-cost LIDAR sensors 342
 mono cameras, simulating in Gazebo 330, 331,

332

 moving, in Gazebo 349
 on-board computer 318
 prerequisites, installing 345, 346
 robotic car sensor data, visualizing 348
 simulating, with sensors in Gazebo 344
 simulation code, explaining 328
 software block diagram 318
 stereo cameras, simulating in Gazebo 330, 331,

332

 ultrasonic sensor, simulating in Gazebo 340
 ultrasonic sensors 314
 Velodyne LIDAR, simulating 321, 322
 Velodyne sensors, interfacing with ROS 323,

324

 visualizing 352, 353, 354, 355
 wheel encoders 311, 312
semiautonomous robot 142
sensor data
 visualizing 352, 353, 354, 355
sensors, supported by ROS
 reference 15
Serial Peripheral Interface (SPI) 108

session 209
SICK lasers
 reference link 330
SICK
 reference 317
simulation code
 explaining 328
simulation, Chefbot
 localization 285, 286, 287
 mapping 285, 286, 287
simulators, of ROS 25
Simultaneous Localization and Mapping (SLAM)

285

Siri-Like Chatbot project
 AIML bot, creating in ROS 94
 AIML ROS package 95, 96
 multiple AIML files, loading 91, 92, 93
 prerequisites 86
 PyAIML interpreter 89
 PyAIML, installing on Ubuntu 16.04 LTS 89
 ROS sound_play package, installing 96
social intelligence 82
social robots
 about 83
 Buddy 84
 building 85
 Jibo 84
 Kismet 84
 Pepper 84
software block diagram, of self-driving cars
 global services 320
 navigation modules 320
 perception modules 319
 sensor interface modules 319
 user interface 320
 vehicle interface 320
software development kit (SDK) 8
software requisites, face tracker project
 download link 42
sound_play package
 AIML client node 99
 AIML speech recognition node 100
 aiml_server node 98
 aiml_tts client node 99
 dependencies, installing 96

[426]

 installing 96, 97
 reference 96
 ros_aiml package, creating 97
 start_chat.launch file 101
 start_speech_chat.launch file 102, 103
 start_tts_chat.launch file 101
speech recognition system
 references 203
speech_commands
 reference link 408
steering model
 references 357
stereo cameras
 simulating in Gazebo 330, 331, 332
STM 32 NUCLEO L476RG
 reference 123
STM32 Discovery kits 110
STM32 Launchpad
 reference 112
STM32 Launchpads 109
STM32 Nucleo boards 110
STMicroelectronics
 about 109
 reference 109
Support Vector Machine (SVM)
 about 202, 221
 applications, in robotics 221, 222
 SVM-ROS application, implementing 222, 223,

224

SVM Classification (SVC) object 222
SVM-ROS application
 implementing 222, 223, 224
Sweep LIDAR
 about 342, 343
 reference link 342
Sweep sensor ROS
 reference link 342

T
talker node 21
teleop application 258, 259, 260
teleoperating
 with Android phone 163, 164, 165, 166
 with hand gestures 145, 147, 148, 149
teleoperation node

 creating, Leap Motion controller used 375
TensorFlow
 about 204, 205
 and ROS, used for image recognition 214, 215
 code, writing 211, 213, 214
 concepts 208
 feeding 210
 graph 208, 209
 installing, on Ubuntu 16.04 LTS 205, 206, 207,

208

 output, fetching 210
 reference 204, 205
 session 209
 URL, for Linux installation 205
 variables 209
Teraranger
 reference 15
Texas Instrument (TI) 109
Texas Instrument (TI) Launchpads 109
text input
 creating 398
tf2_web_republisher package
 about 390
 installing, on ROS Kinetic 392
 reference link 390
Theano
 about 205
 reference 205
Tiva C Launchpad
 about 111
 reference 112, 296
top plate design 275, 276, 277
Torch
 about 205
 reference 205
transformation (TF) 150
tube design 273
Turtlebot 2
 reference 14
TurtleBot simulation
 working, in virtual reality (VR) 382, 383, 384
twist messages
 IMU data, converting to 158, 159, 160, 161

[427]

U
Ubuntu 14.04.5 LTS
 reference 365
Ubuntu 14.04.5
 Leap Motion SDK, installing 368, 369
Ubuntu 16.04 LTS
 scikit-learn, installing 221
 TensorFlow, installing 205, 206, 207, 208
Ubuntu package manager
 android-sdk, installing from 249
 rosjava, installing from 247, 248
Udacity open source self-driving car project
 2016 Lincoln MKZ 356
 about 355, 356, 357, 359, 360
 Delphi radar 356
 Engine control unit (ECU) 356
 MATLAB ADAS toolbox 360
 Point Grey Blackfly cameras 356
 reference link 355
 Two Velodyne VLP-16 LiDARs 356
 Xsens IMU 356
ultrasonic sensor
 simulating, in Gazebo 340
ultrasonic sensors 314
Universal Asynchronous Receiver/Transmitter

(UART) 108
Universal Robotic arms
 reference 14
UPenn's GRAP Lab
 reference 38
URDF client
 creating 397
URDF model, of Chefbot
 3D CAD parts, inserting as links 281
 Gazebo controllers, inserting 282
URDF model
 reference 281
USB web camera
 reference link 333
USB-to-Dynamixel
 reference 50
usb_cam
 reference 381

V
V-REP
 reference 16
variables 209
Velodyne HDL-32E
 reference link 325
Velodyne LIDAR
 simulating 321, 322
Velodyne sensors
 interfacing, with ROS 323, 324
 reference 316
Velodyne simulator
 reference link 321
Velodyne
 reference 15, 185
version-control system (VCS) 20
Video4Linux (V4L) 43
virtual reality (VR) 361
 TurtleBot simulation, working 382, 383, 384
VirtualBox
 reference 32, 33
 ROS, setting on 32, 33
vision_opencv metapackage
 cv_bridge package 58
 image_geometry package 58
VLP-16 321
VR headset
 about 362, 363
 design 365, 367, 368
 prerequisites 365
 working 365, 367, 368

W
web browser
 robot joints, controlling from 401
 web-based robot keyboard teleoperation,

teleoperating on 393
 web-based robot keyboard teleoperation,

visualizing on 393
web speech API specification
 reference 409
web-based joint state publisher
 code, explaining 405
 executing 403

 prerequisites 404
 prerequisites, installing 405
 robot surveillance application, executing 406
web-based robot keyboard teleoperation
 3D viewer, creating in web browser 396
 executing 398
 initializing 396
 rosbridge_server, connecting 396
 teleoperating, on web browser 393
 text input, creating 398
 TF client, creating 397
 URDF client, creating 397
 visualizing, on web browser 393
 working 394
web-based speech-controlled robot
 about 407
 application, executing 411, 413
 prerequisites 408
 speech recognition, enabling 408, 410
web_video_server
 about 404
 reference 404
webcams
 used, for executing find_object_2d nodes 172,

173, 174, 175, 176, 177, 178, 179, 180

Webots
 reference 16
WebSockets
 reference 388
Willow Garage
 about 10
 reference 10, 58
Win32DiskImager
 reference 130, 131
Wiring
 about 107, 290
 reference 107, 290

X
Xsens MTi IMU 313
Xsens
 reference 15

Y
Yujin Robot
 reference 37

Z
ZED Camera
 reference 15

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgements
	About the Reviewer
	www.PacktPub.com
	Customer Feedback
	Table of Contents
	Preface
	Chapter 1: Getting Started with ROS Robotics Application Development
	Getting started with ROS
	ROS distributions
	Supported operating systems
	Robots and sensors supported by ROS
	Why ROS

	Fundamentals of ROS
	The filesystem level
	The computation graph level
	The ROS community level
	Communication in ROS

	ROS client libraries
	ROS tools
	Rviz (ROS Visualizer)
	rqt_plot
	rqt_graph

	Simulators of ROS
	Installing ROS kinetic on Ubuntu 16.04 LTS
	Getting started with the installation
	Configuring Ubuntu repositories
	Setting up source.list
	Setting up keys
	Installing ROS
	Initializing rosdep
	Setting the ROS environment
	Getting rosinstall

	Setting ROS on VirtualBox
	Setting the ROS workspace
	Opportunities for ROS in industries and research
	Questions
	Summary

	Chapter 2: Face Detection and Tracking Using ROS, OpenCV and Dynamixel Servos
	Overview of the project
	Hardware and software prerequisites
	Installing dependent ROS packages
	Installing the usb_cam ROS package
	Creating a ROS workspace for dependencies

	Interfacing Dynamixel with ROS
	Installing the ROS dynamixel_motor packages

	Creating face tracker ROS packages
	The interface between ROS and OpenCV

	Working with the face-tracking ROS package
	Understanding the face tracker code
	Understanding CMakeLists.txt
	The track.yaml file
	The launch files
	Running the face tracker node
	The face_tracker_control package
	The start_dynamixel launch file
	The pan controller launch file

	The pan controller configuration file
	The servo parameters configuration file
	The face tracker controller node
	Creating CMakeLists.txt
	Testing the face tracker control package
	Bringing all the nodes together
	Fixing the bracket and setting up the circuit
	The final run

	Questions
	Summary

	Chapter 3: Building a Siri-Like Chatbot in ROS
	Social robots
	Building social robots
	Prerequisites
	Getting started with AIML
	AIML tags
	The PyAIML interpreter
	Installing PyAIML on Ubuntu 16.04 LTS
	Playing with PyAIML
	Loading multiple AIML files
	Creating an AIML bot in ROS
	The AIML ROS package
	Installing the ROS sound_play package
	Installing the dependencies of sound_play
	Installing the sound_play ROS package
	Creating the ros_aiml package
	The aiml_server node
	The AIML client node
	The aiml_tts client node
	The AIML speech recognition node
	start_chat.launch
	start_tts_chat.launch
	start_speech_chat.launch

	Questions
	Summary

	Chapter 4: Controlling Embedded Boards Using ROS
	Getting started with popular embedded boards
	An introduction to Arduino boards
	How to choose an Arduino board for your robot
	Getting started with STM32 and TI Launchpads
	The Tiva C Launchpad

	Introducing the Raspberry Pi
	How to choose a Raspberry Pi board for your robot

	The Odroid board

	Interfacing Arduino with ROS
	[Monitoring light using Arduino and ROS]
	Monitoring light using Arduino and ROS
	Running ROS serial server on PC
	Interfacing STM32 boards to ROS using mbed
	Interfacing Tiva C Launchpad boards with ROS using Energia

	Running ROS on Raspberry Pi and Odroid boards
	Connecting Raspberry Pi and Odroid to PC
	Controlling GPIO pins from ROS
	Creating a ROS package for the blink demo
	Running the LED blink demo on Raspberry Pi and Odroid

	Questions
	Summary

	Chapter 5: Teleoperate a Robot Using Hand Gestures
	Teleoperating ROS Turtle using a keyboard
	Teleoperating using hand gestures
	Setting up the project
	Interfacing the MPU-9250 with the Arduino and ROS
	The Arduino-IMU interfacing code

	Visualizing IMU TF in Rviz
	Converting IMU data into twist messages
	Integration and final run
	Teleoperating using an Android phone
	Questions
	Summary

	Chapter 6: Object Detection and Recognition
	Getting started with object detection and recognition
	The find_object_2d package in ROS
	Installing find_object_2d
	Installing from source code

	Running find_object_2d nodes using webcams
	Running find_object_2d nodes using depth sensors

	Getting started with 3D object recognition
	Introduction to 3D object recognition packages in ROS
	Installing ORK packages in ROS

	Detecting and recognizing objects from 3D meshes
	Training using 3D models of an object
	Training from captured 3D models

	Recognizing objects
	Questions
	Summary

	Chapter 7: Deep Learning Using ROS and TensorFlow
	Introduction to deep learning and its applications
	Deep learning for robotics
	Deep learning libraries
	Getting started with TensorFlow
	Installing TensorFlow on Ubuntu 16.04 LTS
	TensorFlow concepts
	Graph
	Session
	Variables
	Fetches
	Feeds

	Writing our first code in TensorFlow

	Image recognition using ROS and TensorFlow
	Prerequisites
	The ROS image recognition node
	Running the ROS image recognition node

	Introducing to scikit-learn
	Installing scikit-learn on Ubuntu 16.04 LTS

	Introducing to SVM and its application in robotics
	Implementing an SVM-ROS application

	Questions
	Summary

	Chapter 8: ROS on MATLAB and Android
	Getting started with the ROS-MATLAB interface
	Setting Robotics Toolbox in MATLAB
	Basic ROS functions in MATLAB
	Initializing a ROS network

	Listing ROS nodes, topics, and messages

	Communicating from MATLAB to a ROS network
	Controlling a ROS robot from MATLAB
	Designing the MATLAB GUI application
	Explaining callbacks
	Running the application

	Getting started with Android and its ROS interface
	Installing rosjava
	Installing from the Ubuntu package manager
	Installing from source code

	Installing android-sdk from the Ubuntu package manager
	Installing android-sdk from prebuilt binaries

	Installing the ROS-Android interface
	Playing with ROS-Android applications
	Troubleshooting
	Android-ROS publisher-subscriber application
	The teleop application
	The ROS Android camera application
	Making the Android device the ROS master

	Code walkthrough
	Creating basic applications using the ROS-Android interface
	Troubleshooting tips

	Questions
	Summary

	Chapter 9: Building an Autonomous Mobile Robot
	Robot specification and design overview
	Designing and selecting the motors and wheels for the robot
	Computing motor torque
	Calculation of motor RPM
	Design summary

	Building 2D and 3D models of the robot body
	The base plate
	The pole and tube design
	The motor, wheel, and motor clamp design
	The caster wheel design
	Middle plate and top plate design
	The top plate
	3D modeling of the robot

	Simulating the robot model in Gazebo
	Mathematical model of a differential drive robot
	Simulating Chefbot
	Building the URDF model of Chefbot
	Inserting 3D CAD parts into URDF as links
	Inserting Gazebo controllers into URDF

	Running the simulation
	Mapping and localization

	Designing and building actual robot hardware
	Motor and motor driver
	Motor encoders
	Tiva C Launchpad
	Ultrasonic sensor
	
	OpenNI depth sensor
	Intel NUC
	Interfacing sensors and motors with the Launchpad
	Programming the Tiva C Launchpad

	Interfacing robot hardware with ROS
	Running Chefbot ROS driver nodes

	Gmapping and localization in Chefbot
	Questions
	Summary

	Chapter 10: Creating a Self-Driving Car Using ROS
	Getting started with self-driving cars
	History of autonomous vehicles
	Levels of autonomy

	Functional block diagram of a typical self-driving car
	[GPS, IMU, and wheel encoders]
	GPS, IMU, and wheel encoders
	Xsens MTi IMU

	Camera
	Ultrasonic sensors
	LIDAR and RADAR
	Velodyne HDL-64 LIDAR
	SICK LMS 5xx/1xx and Hokuyo LIDAR
	Continental ARS 300 radar (ARS)
	Delphi radar

	On-board computer

	Software block diagram of self-driving cars
	Simulating the Velodyne LIDAR
	Interfacing Velodyne sensors with ROS
	Simulating a laser scanner
	Explaining the simulation code
	Interfacing laser scanners with ROS
	Simulating stereo and mono cameras in Gazebo
	Interfacing cameras with ROS
	Simulating GPS in Gazebo
	Interfacing GPS with ROS

	Simulating IMU on Gazebo
	Interfacing IMUs with ROS
	Simulating an ultrasonic sensor in Gazebo
	Low-cost LIDAR sensors
	Sweep LIDAR
	RPLIDAR

	Simulating a self-driving car with sensors in Gazebo
	Installing prerequisites
	Visualizing robotic car sensor data
	Moving a self-driving car in Gazebo
	Running hector SLAM using a robotic car

	Interfacing a DBW car with ROS
	Installing packages
	Visualizing the self-driving car and sensor data
	Communicating with DBW from ROS

	Introducing the Udacity open source self-driving car project
	[MATLAB ADAS toolbox]
	MATLAB ADAS toolbox

	Questions
	Summary

	Chapter 11: Teleoperating a Robot Using a VR Headset and Leap Motion
	Getting started with a VR headset and Leap Motion
	Project prerequisites
	Design and working of the project
	Installing the Leap Motion SDK on Ubuntu 14.04.5
	Visualizing Leap Motion controller data
	Playing with the Leap Motion visualizer tool
	Installing the ROS driver for the Leap Motion controller
	Testing the Leap Motion ROS driver

	Visualizing Leap Motion data in Rviz
	Creating a teleoperation node using the Leap Motion controller
	Building a ROS-VR Android application
	Working with the ROS-VR application and interfacing with Gazebo
	Working with TurtleBot simulation in VR
	Troubleshooting the ROS-VR application
	Integrating ROS-VR application and Leap Motion teleoperation
	Questions
	Summary

	Chapter 12: Controlling Your Robots over the Web
	Getting started with ROS web packages
	rosbridge_suite
	roslibjs, ros2djs, and ros3djs
	The tf2_web_republisher package

	Setting up ROS web packages on ROS Kinetic
	Installing rosbridge_suite
	Setting up rosbridge client libraries

	Installing tf2_web_republisher on ROS Kinetic
	Teleoperating and visualizing a robot on a web browser
	Working of the project
	Connecting to rosbridge_server
	Initializing the teleop
	Creating a 3D viewer inside a web browser
	Creating a TF client
	Creating a URDF client
	Creating text input
	Running the web teleop application

	Controlling robot joints from a web browser
	Installing joint_state_publisher_js
	Including the joint state publisher module
	Creating the joint state publisher object
	Creating an HTML division for sliders

	Running the web-based joint state publisher
	Prerequisites
	Installing prerequisites

	Explaining the code
	Running the robot surveillance application

	Web-based speech-controlled robot
	Prerequisites
	Enabling speech recognition in the web application

	Running a speech-controlled robot application
	Questions
	Summary

	Index

