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Using this eBook

I love eBooks! Loaded onto my Kindle Paperwhite I can take my favourite books with me, in

my pocket, wherever I go and have immediate access to them when and where I want. An

eBook copy of any Ken Follett book is much easier to manage than the oft 800-odd page hard-

back equivalent.

As far as technical books go, it may sometimes not be as straightforward as when reading a

novel. Because eBooks are a one size fits all entity, it makes formatting them for all possible

instances difficult. In fact, it is a lot easier to format a print book than an eBook.

Long program listings, especially which contain copious comments can be unwieldly in an

eBook. Thus, I would strongly advise downloading the source code for the programs and

scrutinising these at the relevant point. There are several tables and figures, and in many cases,

you can click on the highlighted corner to display the table full screen.

Figure. eBook open on Raspberry Pi Desktop, along with appropriate program.
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1. Introduction

It didn't surprise me when, early in 2013, it was announced that the Raspberry Pi had sold one

million units. And counting... It took me back more years -- decades even -- than I care to

remember when it was announced that the BBC Micro had done the same. Both came out of

businesses based in Cambridge in the UK and there were even more links between the two than

you might imagine.

Both systems fascinated me and literally millions of other people. The first system took

every penny of my savings at the time, but the Raspberry Pi didn't even drain the cash in my

wallet. But whist the ticket price for each was vastly different, pretty much everything else about

them was so familiar. Not least their ability to run a wide range of software and educational

tools and how easy it was to connect external devices and control the outside world. I would

suspect that most people who own one Raspberry Pi, own several.

Figure 1a. An Original Raspberry Pi Model B.

 

For the first time since the BBC Micro there is an affordable and infinitely accessible system that

just about anyone can use. Meanwhile, the PC and Mac have dominated the market and other

more games-orientated boxes have been available. But none of these have impacted the technical

home hobbyist user. The techsperts have had a variety of development boards to experiment and



fiddle with, again mostly beyond the scope of the home hobbyist computer market. For the cost

of a couple of CDs or new release DVD, the Raspberry Pi has changed all that.

The launch of the Raspberry Pi Zero in November 2015 took cheapness to a new level. A

fully-fledged ARM-driven computer for just $5. Insane! And if that wasn't enough the December

2015 issue of MagPi (the official Raspberry Pi magazine) had it bound on the cover as a free

give away. Could the Raspberry Pi be classed as the world's first disposable computer?

At the time of updating this introduction for the fourth edition (December 2020) sales had

surpassed 30 million across the various models available. Indeed, that figure was reported to

have been passed by the start of 2020 with a variety of organisations using at the very heart of

their infrastructure and development. Oracle hailed its cluster of 1,060 Raspberry Pi boards the

'world's largest' Pi supercomputer, sporting 4,240 cores. The Jet Propulsion Laboratory (JPL)

also uses the boards for its Mars mission.



Imagination Unlimited
One reason for the birth of the Raspberry Pi was to make it easy for people to take up

programming, with the aid of a competitively priced computer system whose use was limited

only by the user's imagination. I hope this book will help many of you reading it realise that

dream. In fact, it isn't a dream. It is a probability if you continue your way through the pages

that follow --- a first step on a rewarding and educational pastime. And, who knows, you may

become part of a new generation of computer programmers working at the sharp end of what is

possible.

The purpose of this book is to give the reader a better understanding of how computers

really work at a lower level than in programming languages like C or Python. By gaining a

deeper understanding of how computers work, you can often be much more productive

developing software in higher level languages such C and Python. Learning to program in

assembly language is an excellent way to achieve this goal.

This book provides an introductory tutorial in writing assembly language on the Raspberry

Pi and specifically using the Raspberry Pi OS (Raspbian Operating System). Assembly

language generates machine code that can be run directly on your computer.

I first learnt to program assembly language on early Acorn designed machines and

ultimately watched the ARM chip develop on their Archimedes and BBC Micro Second-

Processor systems. Ultimately that assembly language was the forerunner of what the

Raspberry Pi uses today. If anything, that proves that what you learn here should stand you in

good step for many years to come. So, it's been a significant investment.



Start Experimenting
While this is not a book for the complete novice, you certainly do not require any experience

with assembly language or machine code to be able to pick it up and start reading and

experimenting. Programming experience would be beneficial, and any structured language will

have provided the groundwork for many of the fundamental concepts required.

This is a Hands-on-Guide, so there are plenty of programs for you to try for yourself.

Learning to program is about experimenting, making mistakes, and then learning from them.

Experimenting by changing values and information is without doubt the best way to understand

what is happening and is to be encouraged. All programs are available to download from the

companion website. The book is equally applicable to all versions of the Raspberry Pi. More

on this shortly.



GNU C Compiler
There are several operating systems (programming environments) available to download for

using with the Raspberry Pi. As the title suggests, the one we're using here is called the

Raspberry Pi OS (formerly Raspbian), and this comes with everything you'll need to write and

run your programs.

The software we will utilise is GCC, the GNU Compiler Collection. The original author of

the GNU C Compiler (GCC) was Richard Stallman, the founder of the GNU Project. The GNU

project was started in 1984 to create a complete operating system as free software, to promote

freedom and cooperation among computer users and programmers. Every operating system

needs a C compiler, and as there were no free compilers in existence at that time, the GNU

Project had to develop one from scratch.

You may be aware that C is an extremely popular programming language; it is also one that

is very closely tied to the Advanced RISC Machine (ARM) microprocessor which the

Raspberry Pi uses at its very core. You do not need to know C to write assembly language

programs, so don't be too concerned about that.

GCC is a very clever piece of software and can be used in many ways. One of its key

components is as an assembler, and this is the part of GCC we shall be primarily interested in.

The work was funded by donations from individuals and companies to the Free Software

Foundation, a non-profit organisation set up to support the work of the GNU Project. The first

release of GCC came in 1987. Since that time GCC has become one of the most important

tools in the development of free software and is available on almost every operating system

platform in existence.

GCC is free software, distributed under the GNU General Public License (GNU GPL). This

means you have the freedom to use and to modify GCC, as with all GNU software. If you need

support for a new type of CPU, a new language, or a new feature you can add it yourself, or get

someone to do it for you.



Learn by Example
The programs presented in this book are provided to illustrate concepts being explained with a

simple and --- where possible --- practical application. I will not try to baffle you with long and

complex listings; there is no need to. I will leave it to you to take the examples and information

and combine them two, three, four and more at a time to create a useful outcome, learning a

great deal along the way.

Some degree of 'chicken and egg' syndrome has been unavoidable, but I have tried to keep

it to a minimum. Concepts are introduced in an order that goes with knowledge so far acquired.

However, sometimes this is not always possible; in such cases I will highlight the fact. In such

cases, you need to accept that it works, and you will understand the how and why later in the

day!

Programming really is fun. I have written a tonne of books on the subject and a good

percentage of them have been about home computers --- how to program and use them. I have

never had a computer lesson in my life. If I can do it, so can anyone. It is also frustrating! There

is not a programmer who ever lived, novice or expert, who has not spent an inordinate amount

of time trying to solve a programming problem, just to realise later that the issue was right

there in front of them all along. I would go so far as to say the real satisfaction comes when you

solve problems for yourself.

One word of advice: If you can't solve something, walk away, and do something else for a

while. It's amazing how often the solution comes to you when you are doing something else. A

good rule for life in general!



What Will You Learn?

In a nutshell, you will learn to become a proficient assembly language programmer. By the end

of this book, provided you have worked through and applied the example programs and small

snippets of programs that are dotted through the text, you will be able to design, write and

produce machine code programs to undertake any number of tasks. You will also have the

grounding to allow you to delve into the more generic texts relating to the ARM chip and

system programming.

You will also become familiar with using GCC in a whole variety of ways including writing

for the Raspberry Pi Operating System and by combining your assembled programs with

libraries of standalone functions.

You will learn how to interpret and manipulate what your Raspberry Pi is doing at its most

fundamental level. You will be right in there programming, deep inside the ARM chip.

Problem solving is something you will also need to learn. When a machine code program

will not work as you intended it is often a simple logical flaw that is the root cause. GCC comes

with its own debugging tools and we'll see how to use these to good effect. I'll also provide

some useful tips on the best way you can narrow down your search area to the source of the

problem.



Fourth Edition and Compatibility
By and large this book is compatible with the full range of Raspberry Pi computers. One of the

mantras of those developing the hardware and software for the system is to ensure that it remains

backwards compatible (as far as possible). That essentially means that what works on one

Raspberry Pi will work on another, provided it is written correctly (in terms of software).

Hardware should work also, aside from some of the physical changes that have taken place. For

example, the HDMI port works, but the type of lead required to connect to the outside world

may change (standard to micro, for instance).

Figure 1b. Raspberry Pi 4 Model B.

 

Physically, the difference between models and versions is generally obvious. And for the

purposes of this book I would assume you have a model that has a GPIO port fitted as standard,

and this is largely where some of the changes come in from this books point of view, of you are

intending to use some of the examples there that show how use your coding to connect to

attached devices. Where required changes are noted in the text of the book.

Several different versions of the ARM chip have been used in the evolution of the Raspberry Pi

to date, and that may continue in the future as well. For now, just be aware that differences may

exist, but these will become apparent as your knowledge grows. As this is essentially a

beginner's book, it does not change the fundamentals of the programming experience herein. As

such, the contents of this book can be considered applicable as an introduction to ARM

assembly language regardless of the model Raspberry Pi you are using.



Raspberry Pi OS
When the 8GB Raspberry Pi 4 was announced (May 2020), the Raspberry Pi Foundation

revealed that it was changing the name of its official operating system from Raspbian to

Raspberry Pi OS. This is with a view to providing a similar, and stable operating system and

windows-style desktop environment across all platforms and to ensure on-going backwards

compatibility with software and applications as far as possible.

The two main categories of processors are 32-bit and 64-bit. By supporting both 32-bit and

64-bit operating systems, and taking charge of the operating system build, the look and feel of

OS's can be maintained. Simply put, a 64-bit processor is more capable than a 32-bit processor

because it can handle more data at once. A 64-bit processor can store more computational

values, including memory addresses, which means it can access over four billion times the

physical memory of a 32-bit processor. That's just as big as it sounds!

From a user point of view, utilising the standard 32-bit operating system, there is no

functional difference in what this book covers. For 'Raspbian' read 'Raspberry Pi OS' and vice

versa. More importantly, the OS remains backwards compatible so that Raspberry Pi OS will

run on all versions of the Raspberry Pi. You can update and upgrade your current operating

system to the latest Raspberry Pi OS at any point.

The Raspbian project will continue and will undoubtedly continue to be used to build the

32-bit version of Raspberry Pi OS. Considering that several models of Raspberry Pi, including

the very-popular Raspberry Pi Zero, will never work with a 64-bit OS, the 32-bit platform will

continue to be important if not dominant for years to come. It's the common denominator. If

you wish to stay upto-date about the Raspberry Pi OS then DistroWatch maintains relevant

information at: https://distrowatch.com/table.php?distribution=raspios.

 

https://distrowatch.com/table.php?distribution=raspios


What About 64-bit?

The Raspberry Pi 2B (v1.2) was the first to use an ARM 64-bit processor, yet there wasn't an

official 64-bit OS available for it. That's because the Raspberry Pi Foundation has focused

instead on making its 32-bit Raspbian OS run on all generations of the RPi. Since the

Raspberry Pi 2B (v1.2), all RPi releases have been based on 64-bit processors, which can also

run in 32-bit mode.The 32-bit state of the ARM chip is called AArch32 (or A32) and the 64-bit

is AArch64 or A64. This means that 32-bit software can be run on a 64-bit ARM chip in

AArch32 state--the reverse is not true.

At the time of writing there is a beta-version of the 64-bit Raspberry Pi OS available for

download and use. Once this is out of beta it will be released and run on all 64-bit capable

versions (see Chapter 30). Note that the 32-bit version (A32) of ARM assembly language is

different to the 64-bit version (A64), therefore code written in A32 will not run without

modification in A64 state.



Keyboard Computing
The inevitable happened in November 2020 when desktop computing finally arrived for the Raspberry Pi

the board being re-engineered and packaged inside a red and white keyboard for the launch of the

Raspberry Pi 400.

Figure 1c. The Raspberry Pi 400, the ultimate in keyboard computing.

 



The Significance of ARM
All microprocessors are based on a specific instruction set architecture (ISA), and the most

significant of these down the years has been x86-based which has dominated the desktop and

laptop marketplace (PC and Apple). Most recently this includes the 64-bit version called x86-

64 or AMD64.

However, most Apple and Android tablets and smart phones have ARM processors within,

which is incompatible with x86. These devices use the ARM chip because of its low energy

consumption, as in longer battery life. However, the incompatibility means that software

compiled for desktops and laptops cannot be directly run-on ARM-controlled mobile devices.

Reduced Instruction Set Computing or RISC processors, used in ARM devices, execute a lot of

simple instructions to complete task. The x86 processors use CISC or a Complex Instruction

Set and execute a series of more complex instructions to complete an identical task.

ARM chips therefore achieve their lower power consumption as they have fewer transistors

in their core structure than CISC based ones. It also means from a programmers' point of view

you have less instructions to learn as an ARM programmer!

The other significant difference is that ARM Holdings is not a chip manufacture. It designs

the chips and then licenses these core designs for others to include in their own purpose build

chips.

In mid-2020 Apple Computers announced it will be going full tilt with self-manufactured

ARM chips included in its full range of new computers, therefore ensuring applications can run

across its range of devices. Microsoft 365, Adobe Creative Cloud and like software are likely to

be available for a new range of ARM Macs. It doesn't take a great stretch of the imagination to

see they could also be available for other ARM-based computers too.

While the x86 based laptops and desktops will continue in the short term at least dominate

the marketplace in terms of installed numbers ARM-based Apple Macs should bring ARM-

based laptops/desktops computers into the mainstream market place, and may tempt other

players as well.

All this adds to another reason to learn ARM assembly language programming.



Raspberry Pi Through the Ages
The Raspberry Pi has been evolving ever since it was first released in 2012. With each

generation there is often significant improvement, in the type of the central processing unit,

memory capacity, networking support, and peripheral-device support.

The table shown in Figure 1d lists some of the basic specifications for each of the

Raspberry Pi formats (some versions may appear similar in specification, but but have changed

slightly in configuration which is not noted in the table). As a rule, Raspberry Pi comes in three

different formats: Model B: these are the 'full size' boards which include Ethernet and USB

ports. The B+ versions often add enhancements or specific differences.

Model A: these are the square shape boards. Consider these a 'lighter' version of the

Raspberry Pi, usually with lower specifications than the headline Model B, with less USB ports

and often no Ethernet. As such they retail at a lower price point.

Zero: Smallest Raspberry Pi available. Zeros have less computing processing power than

the Model B but use less power as well. No USB, no Ethernet, just a nice simple package!

The amount of memory available on each Raspberry Pi should have no real significance for

the requirements of this book, just be aware that the memory addresses you see when you run

or list a particular program may differ from what is shown herein. That should not hinder the

program operation though.

 

Model Release Specification FPU

RPi 400 Nov 2020
Broadcom BCM2711C0, quad-core Cortex-A72 (ARM

v8) 64-bit SoC at 1.8 GHz, VideoCore VI

VFPv4

+ Neon

RPi 4B
June 2019; May

2020 (8Mb)

Broadcom BCM2711B0, quad-core Cortex-A72 (ARM

v8) 64-bit SoC at 1.5 GHz, VideoCore V

VFPv4

+ Neon

RPi 3B+ May 2018
Broadcom BCM2837B0, quad-core Cortex-A53

(ARMv8-A) 64-bit SoC @ 1.4GHz. VideCore IV

VFPv4

+ Neon

RPi 3B Feb 2016
Broadcom BCM2837 quad-core Cortex-A53 (ARMv8-A)

64-bit SoC @ 1.2GHz. VideCore IV

VFPv4

+ Neon

RPi 3A+ Nov 2018
Broadcom BCM2837B0, quad-core Cortex-A53

(ARMv8-A) 64-bit SoC @ 1.4 GHz. VideCore IV

VFPv4

+ Neon

RPi

2Bv1.2
Nov 2020

Broadcom BCM2837, quad-core Cortex-A53(ARMv8-A)

64-bit SoC @900Mhz. VideoCore IV

VFPv4

+ Neon

RPi 2B Feb 2015
Broadcom BCM2836, quad-core Cortex-A7 (ARM v7-A)

32-bit SoC at 900 MHz, VideoCore IV

VFPv3

+ Neon

RPi 1B+ May 2012
Broadcom BCM2835, 1176JZF-S (ARM v6Z) 32-bit SoC

at 700 MHz, VideoCore IV
VFPv3

RPi 1B May 2012
Broadcom BCM2835, 1176JZF-S (ARM v6Z) 32-bit SoC

at 700 MHz, VideoCore IV
VFPv2

RPi 1A+ Nov 2014
Broadcom BCM2835, 1176JZF-S (ARM v6Z) 32-bit SoC

at 700 MHz, VideoCore IV
VFPv2



Model Release Specification FPU

RPi 1A Feb 2013
Broadcom BCM2835, 1176JZF-S (ARM v6Z) 32-bit SoC

at 700 MHz, VideoCore IV
VFPv2

RPi Zero

W/WH
Feb 2017

Broadcom BCM2835, single-core 1176JF-S(ARM v6Z)

32-bit SoC at 1 GHz, VideoCore IV
VFPv2

RPi Zero

v1.3
May 2016

Broadcom BCM2835, single-core 1176JF-S(ARM v6Z)

32-bit SoC at 1 GHz, VideoCore IV
VFPv2

RPi Zero

v1.2
Nov 2015

Broadcom BCM2835, single-core 1176JF-S(ARM v6Z)

32-bit SoC at 1 GHz, VideoCore IV
VFPv2

 

Figure 1d. Raspberry Pi formats, some base specifications.

 

 

 



Compute Modules
The Compute Module is a stripped-down Raspberry Pi which is intended for industrial or

commercial applications. The idea being that they can be used in development projects by

anyone who wants them. (Ultimately you purchase the boards and finalise them yourself for

whatever need you might have.) As such the Compute Modules don't have the connection bells

and whistles that you may find on the equivalent Raspberry Pi, equally they are not as robust.

As such, and although they do contain ARM processors as they are based on the Raspberry Pi,

they are not covered herein.

But then came the Computer Module 4. Unlike previous Compute Modules this by

purchasing the updated IO Board you get easy access to all the interfaces standard connectors,

providing a ready-made development platform and a starting point for your own designs.



Notation in Use
A standard notation has been adopted throughout this book. Number types and certain

operations on numbers are commonplace in programming books such as this, and it is

important to distinguish among them. The short list here is for reference. Their exact meaning

will be described as we encounter them within the text of the book.

% or 0b Denotes that the number that follows it is in binary or base 2. For example:

%11110000 or 0b11110000

0x Denotes that the number that follows it is hexadecimal or base16. For example: 0xCAFE

< > Angle brackets or chevrons are used extensively to enclose a word that should not be

taken literally but read as the object to use with the command. For example, <Register> means

a register name, R0 for example, should be used in the angled brackets and not the word

'Register' itself.

Dest Short for destination.

Operand1 The commentary in the text often talks about Operand1 and its use. The

relevant values for Operand1 as defined at that point should be used. For Operand1, this is

normally a register.

Operand2 The commentary in the text often talks about Operand2 and its use. The

relevant values for Operand2 as defined at that point should be used. For Operand2, this is

normally either a register or an immediate value.

Op1 Shorthand format for <Operand1> when space is tight.

Op2 Shorthand format for <Operand2> when space is tight.

( ) Brackets show that the item within is optional and may be omitted if not needed. For

example, ADD (S) means that S may or may not be included.



Table Terminology
The table in Figure 1d utilises many acronyms that may or may not be new to you. We'll

examine each of these briefly now and re-address them at the appropriate points in the book, as

required.

SOC: System-on-Chip. One of the key elements of the Raspberry Pi design and generally

the largest chip on the board, it contains all the significant components in one package. This

includes the ARM processor or processors and graphics processing units. Note that each SoC is

defined by a number - viz BCM2771 for the Raspberry Pi 4 B.

CPU: This is the ARM processor or processors used, integrated into the SoC. The table

lists the specific ARM chip along with the number of included cores and the speed of

operation. Thus, on the original Raspberry Pi B, the table tells us that a single ARM 1176JZF-

S running at 700MHz was supplied. More recently the Raspberry Pi 4 B utilises four Cortex-

A72 ARM cores running at 1.5GHz.

FPU: Floating-Point Unit or maths co-processor which provides complex math functions.

This is also part of the SoC and later editions of the SoC include a Neon co-processor allowing

the FPU to undertake multiple operations in parallel. VFP is short for vector floating-point.

GPU: Graphics Processing Unit. Included as part of the Broadcom SoC, this is also

manufactured by Broadcom and is typically a VideoCore IV, changing to VideoCore VI with

the Raspberry Pi 4 B. Effectively it is a multimedia processor that can decode the various

graphics and sound formats (codecs) to ensure great output on your monitor, maintaining low

power consumption.

The final column of the table lists the Instruction Set Architecture implemented and

whether it is 32-bit or 64-bit. As you can see, and referring the item on 64-bits earlier, a 64-bit

instruction set has been available on the Raspberry Pi since the RPi 2 B v1.2, effectively

October 2016.



Centre for Computing History
The Centre for Computing History (CCH) is a pioneering educational charity that opened at its

current site in Cambridge in August 2013. CCH was established as an educational charity to

tell the story of the Information Age through exploring the historical, social, and cultural

impact of developments in personal computing. It maintains a long-term collection of objects to

tell this story and exploits them through education and events programmes.

CCH aims to deliver inspirational learning opportunities to a wide range of audiences --

from pre-schoolers to the over-70s -- so people become confident and creative users of

information and digital technology. It offers a range of education services on site including

programming and electronics workshops and other interactive learning using 1980s BBC

Micros and Raspberry Pi.

Check it out at: https://www.computinghistory.org.uk

https://www.computinghistory.org.uk/


Companion Website and Free Books
Go to https://www.brucesmith.info and follow the directions to the book companion pages.

From the site, you can download all the programs and access updates to the book and

additional information and features. In addition, links to other support websites and useful

downloads can be found, along with details of forthcoming Bruce Smith Books publications

covering the Raspberry Pi.

PDFs for several of my original books can be found to download free-of-charge via my

website. These are books that were published prior to 2004 before the whole eBook and self-

publishing era got full on. Whilst I did author many of them (all but two in fact) using a

wordprocessor the original text has long since washed away (the first two were written

longhand -- blue ink on A4 ruled pages!).

 

https://www.brucesmith.info/


2. Starting Out

Assembly language gives you access to the native language of the Raspberry Pi -- machine

code. This is the tongue of the ARM chip which is the heart and brain of your computer

system. ARM stands for stands for Advanced RISC Machine, and it ultimately controls

everything that takes place on your Raspberry Pi.

Microprocessors such as the ARM, control the use and flow of data. The processor is also

often called the CPU -- Central Processing Unit -- and data the CPU processes are digested as a

continuous, almost never-ending stream of 1s and 0s. The order of these 1s and 0s has meaning

to the ARM, and a particular sequence of them will be translated into a series of actions. Just

like Morse Code where a series of dots and dashes in the correct order has meaning if you

know how each letter is represented. For Example:

-.-. .-.. . ...- . .-. 



Numbers with Meaning
As a machine code program code program is a sequence of endless strings of 1s and 0s. For

example: 11010111011011100101010100001011

01010001011100100110100011111010

01010100011001111111001010010100

10011000011101010100011001010001

 

It would be almost impossible --- or at the very least extremely time-consuming --- to interpret

what these numbers mean. Assembly language helps to overcome these issues.

Assembly language is a form of shorthand that allows machine code programs to be written

using an English style lexicon. An assembler is a program which translates the assembly

language program into the machine code, thereby taking away what would otherwise be a

laborious process. The assembly language program is often just a text file, and this is read by

the assembler before being converted into its binary (1s and 0s) equivalent. The assembly

language program is called the input or source file, and the machine code program the object

file. The assembler translates (or compiles) the source file into an object file.

Assembly language is written using mnemonics. A mnemonic is a device that aids learning

or acts as a reminder. This relies upon associations among easy-to-remember letter sequences

that can be related back to the information to be remembered. You've probably encountered

these at some point as acronyms. For example, to remember the colours of the rainbow you

could take the phrase: 'Richard Of York Gave Battle In Vain'

And use the first letter of each word. Or use the fictitious name: 'Roy G. Biv'

A mnemonic language has developed around SMS messages sent on mobile phones. These

enable text messages to be shorter and more compact. For example, 'L8R' for later', 'GR8' for

Great and '2mrw' for 'tomorrow'.

 



ARM Instructions

The ARM chip has a specific set of machine code instructions that it understands. These

operation codes or 'opcodes' and their use are really what this book is about. The ARM is just

one type of microprocessor; there are many different types, and each has its own unique set of

instructions.

You cannot take a machine code program written for ARM and run it successfully on a

different microprocessor. It simply would not work as expected, if at all. That said, the concepts

introduced here can be applied with a broad brush to most other microprocessors available and

are consistent in application. If you learn to program in one, you are well on your way to

programming others. Essentially you just need to learn a new set of mnemonics, and most

likely many will be like the ones you are about to learn.

Microprocessors move and manipulate data, so not surprisingly many of the machine code

commands deal with this control, and most instruction sets (the collective term for these

mnemonics), include commands to add and subtract numbers. The assembly language

mnemonics used to represent these tasks are typically in the form:

ADD 

SUB

These examples are straightforward as are many other ARM mnemonics, However, they can

also appear complex when combined in a single line sequence. By breaking them down into

their component parts their action can be determined without any real difficulty.

An assembly language mnemonic is normally three characters in length, but there are

occasions when it may be longer. Like anything new, this may take a bit of 'getting used to', but

if you work through the examples given in this book and apply them in your own examples you

should not have too much trouble.

MOV is the mnemonic for the MOVe command. It takes information from one place and

moves it to another place. How hard was that?



The Transformation Process

Once you have developed your assembly language program you have to convert it into machine

code using the assembler. For example, when the assembler encounters the MOV mnemonic it

will generate the correct number that represents the instruction. It stores the assembled

machine code as a sequential file in memory and then allows you to run or execute it. In the

process of assembling the program, the assembler also checks its syntax to ensure it is correct.

If it spots an error, it will identify it to you and allow you to correct it. You can then try and

assemble the program again. Note that this syntax check will only ensure that you have used

the assembler instructions correctly. It cannot check their logic so if you have written

something that has used instructions correctly, but not in the way that achieves what you

wanted, it will assemble without error but will produce an unwanted result. For example, you

may need to do an addition but programmed a subtraction instead!

There are various ways to write an assembly language program. The first ARM chips were

designed by Acorn and so not surprisingly appeared on a range of Acorn-based computers

running RISC OS. This included the Archimedes and RISC PC. These machines ran BBC

BASIC, which was innovative in that it allowed you to write assembly language programs as an

extension of BBC BASIC. This method is still available to you today should you install RISC

OS on your Raspberry Pi.

As we have already identified, this book assumes you are using the Raspberry Pi Operating

System and the GNU GCC software. Other assembler software does exist --- much of it free ---

and a quick search on the internet will reveal what the offerings are. A major advantage of GCC

Programming is that it can also assemble programs written in the C programming language.

Although this book is not about programming C, there are reasons why some familiarity

with the infrastructure it employs is advantageous, and with just a bit of knowledge this can

help make programming easier. We'll discuss this with examples later in the book. The bottom

line is that there is nothing to stop you trying any or all these other assemblers, and certainly

what you learn here will be beneficial in that process.



Why Machine Code?

This is an easy question to answer. Essentially everything your Raspberry Pi does is done

using machine code. By programming in machine code, you are working at the most

fundamental level of the Raspberry Pi operation.

If you are using a language such as BBC BASIC or Python, then ultimately all its

operations have to be converted into machine code every time you run the program. This takes

a finite amount of time -- in human terms lightning fast -- but still time. This conversion or

interpretation process does therefore slow the operation of the software down. In fact, even the

most efficient languages can be over 30 times slower than their machine code equivalent, and

that's on a good day!

If you program in machine code, your programs will run much faster as there is no

conversion being undertaken. There is a conversion process when you run the assembler, but

once you have created the machine code you can execute this directly --- it is a one-off process.

You do not have to run the assembler every time. Once you are happy with your program you

can save the machine code and use it directly. You can also keep the assembly language source

program and use it again, or perhaps make changes at some later point.



Language Levels
Languages such as C or Python are called high-level languages. High-level languages are often

easier to write as they have a more English-like syntax and also include commands that do a

complex sequence of actions using one command that would otherwise take a long list of

machine code instructions to perform. Machine code is a low-level language level language as it

is working amongst the 'nuts and bolts' of the computer: it spells out every technical step and

detail and as a result is harder to understand.

This is the advantage of a high-level language as opposed to a low-level one. That said, as

you become more proficient in assembly language, there is nothing stopping you from building

libraries of routines to do a specific task and just adding them to your programs as you write

them. As you dig deeper into the world of the ARM, you will find that such libraries already

exist out there in cyberspace. By writing in assembler, you can also transport your assembly

language programs onto other computers or systems that use the ARM chip. You simply load

the assembly language file into an assembler at the new destination, assemble it and run the

machine code program.

The GNU GCC compiler is available for just about all flavours of microprocessor, so being

familiar with the use of GCC will allow you to transport your new-found skill onto other

systems should you so desire.

Provided you take full advantage of the ARM chip's facilities you can even transfer and run

the machine code directly. This has exciting possibilities when you consider that just about

every Smart Phone and Tablet device available these days utilises ARM chips!



Into Orbit
Just to underline the power of the ARM chip and indeed smart phones in general, a whole new

generation of satellites called CubeSats, have been placed into orbit around the Earth. They are

small (about 10cms square) and have specific tasks. The Surrey Space Centre in the south of

England has designed several CubeSats that are powered by Android phones. At around

$100,000 each, these satellites are a fraction of the cost of previous machines. At the same

time, the computing power of a single smart phone is perhaps tens of thousands of times more

than could be found in the computers on all the Apollo moon missions put together! This is all

at your disposal on your Raspberry Pi.

Figure 2a. A CubeSat under construction.

 

Surprise, surprise, the world is not all rosy! There are differences in the CPU releases. As with

software, the ARM chip has gone through continual development and has had new version

issues. But the base instruction set remains the same so 'porting' is not as hard as it might seem.

It only becomes an issue if you are using more advanced features of the microprocessor. For

this introductory guide, these changes are not relevant. Everything in these pages is applicable

to your Raspberry Pi.



RISC and Instruction Sets

The R in ARM stands for RISC. This is an acronym for Reduced Instruction Set Computing.

All CPUs operate using machine code and each of these machine code instructions or opcodes

has a specific task. Together these instructions form the instruction set.

The philosophy behind RISC has been to create a small, highly optimised set of

instructions. This has several advantages --- fewer instructions to learn for one --- but obviously

greater variation in their use.

 



Assembler Structure
Programming in any language, just like speaking in any language, requires us to follow a set of

rules. These rules are defined by the structure and syntax of the language we are using. To

program effectively, we need to know the syntax of the language, and the rules that structure

the language.

The simplest way to design a program is simply to create a simple list of things you want it

to do. It starts at the beginning and executes linearly until it gets to the end. In other words,

each command is executed in turn until there are no more commands left. This works but is

very inefficient.

Program languages today are structured and allow you to build them as a set of

independently executable procedures or subroutines. These subroutines are then called from a

main program as and when they are required. The main program, therefore, controls the flow of

control and executes anything that may not be available as a subroutine.

Programs are smaller and more manageable when they are created using subroutines. In a

linear program concept, we would have probably had to repeat large sections of code several

times to have achieved its goal.

Figure 2b illustrates some pseudo-program language to show how such a structured

program might look. In the example, program commands are listed in capitals -- uppercase

letters. Sections of subroutine code are given names -- in lowercase -- and paradoxically are

identified with a full-stop at their start. The entire flow of the program is contained in the six

lines starting with '.main' and finishing with 'END'. Admittedly it is short, but it is clear to read,

and you can understand just with a glance, what is happening. Each subroutine name is

meaningful.

.main 

DO getkeyboardinput 

DO displayresult 

DO getkeyboardinput 

DO displayresult 

END 

 

.getkeyboardinput 

; Instructions to read input from keyboard 

RETURN

 

.displayresult 

; print the result on the screen 

RETURN

Figure 2b. Pseudo code illustrating a structured approach to programming.

 



 

 

In this example, the main program just calls subroutines. In a perfect world, this would always

be our aim because it also makes it easier to test individual subroutines separately before they

are included in the main program. This helps to ensure our program works as we put it together.



Error Of Your Ways
One big challenge you face when learning any new program is locating errors. This process is

known as debugging. I guarantee (and I have proven this many times) you will first write a

program that does not work as expected. You will look at it until the cows come home and not

see the error of your ways. You will insist you are right, and the computer is the issue. Then

like a bolt out of the blue, you will see the error right there staring at you.

By building a subroutine and then testing it separately, ensuring that it works, you will

know when you come to use it as part of your larger program that your hair is safe for another

day.





Cross Compilers
This is a term you are likely to come across a lot. The GCC compiler can be found on a lot of

other computers, even ones that do not use the ARM chip. You can write and compile ARM

assembler on a totally different computer! However, you cannot run the assembled machine

code. You must first transfer it from the host machine to the target machine (such as Raspberry

Pi). GCC is not the only compiler for the Raspberry Pi or that you can use as a cross-compiler;

there are many more available. The forums on the Raspberry Pi website are a good source of

such information, and I would suggest that you look around on the web for yourself if this is of

interest.

 



The Raspberry Pi ARM Chips(s)
The ARM chip used in the Raspberry Pi Zero, A, B, A+, B+ is (to give it its full title) a

Broadcom BCM2835 System-on-Chip multimedia processor. The System-on-Chip (SoC)

means that it contains just about everything needed to run your Raspberry Pi in the one

structure (and is a reason why the Raspberry Pi can be so small). The BCM2835 uses an

ARM11 design, which is built around the ARMv6 instruction set.

On the Raspberry Pi 2 the chip used is a SoC, BCM2836. This retains all the features of

BCM2835 but replaces the single 700MHz ARM11 with a 900MHz quad-core ARM Cortex-

A7: everything else remains the same. Being faster and containing more memory, it can run

more mainstream software such as Windows 10 and the full range of ARM GNU/Linux

distributions.

The Raspberry Pi 3 has an ARM v8 at its core, again using a SoC structure and operating

even faster still at 1.2GHz. This is based on four high performance ARM CortexA53

processing units working in tandem. This is also a 64-bit processor that can operate in both

AArch32 and AArch64 states.

The Raspberry Pi 4 uses the Broadcom 2711 and is faster again at 1.5GHz. The ARMv8 is

a quad-core A72. This is also a 64-bit processor that can operate in both AArch32 and

AArch64 states. The 8GB version allows the memory for the full 64-bit version to run

efficiently and handle applications that make it a fully-fledged PC!

There is a lot of jargon in those few paragraphs. Right now, from a beginner's point of view

I wouldn't worry about it too much. As you learn more about the Raspberry Pi these things will

start to become second nature. We'll come back to the SoC towards the end of this book and

explain it in a bit more detail.

By the way, one MegaHertZ (1MHz) represents a million cycles per second. The speed of

microprocessors, called the clock speed, often is measured in MHz. For example, a

microprocessor that runs at 700MHz executes 700 million cycles per second. 1.2 GHz

(GigaHertZ) is 1.2 billion cycles per second. We will see later how this speed affects the

execution of instructions.

The term 'quad-core' is used above. A quad-core has four independent units called cores

that read and execute instructions simultaneously. Overall, a quad-core processor is going to

perform faster than a dual-core or single-core processor. Each program you open will work 'in'

its own core, so if the tasks are shared, the speeds are better. This so-called 'parallel-processing'

is a major feature of ARM.



3. First Time Out

In this chapter we'll go step-by-step through creating and running a machine code program,

starting from the moment you turn your Raspberry Pi on right through to making changes to

the working program. This program will not do anything spectacular. In fact, you won't see

anything other than the prompt symbol return, but the process contains every single step you

need to know and implement when entering and running the other programs in this book. Right

now I am assuming you have a copy of the Raspberry Pi OS (Raspbian) image on the SD Card

inserted in your Raspberry Pi and that you have used it at least once, to run through the initial

setup of important things like keyboard and internet. If you haven't done that yet, then do so

now before carrying on here.



The Command Line
When you first boot you will automatically be logged in and deposited at the Desktop screen.

Go to top right and, using your mouse, double click on the small image (icon of a monitor).

This will open a 'Terminal' window and you will be deposited at the command line, and the

prompt facing you will look a little like this:

pi@raspberrypi $ 

The 'command line' is a line onto which you enter commands to be executed by the OS. The

command line starts where you see the cursor flashing. Anything you type in now, which is

executed when you press the 'Return' key (also referred to as the 'Enter' key), is expected to be a

command, so the OS will seek to action that command. Try tying this:

dir 

Type it exactly as it is above. When you press the 'Return' key you will get a list of any

directories or files that are stored in the current directory. (I will omit the 'Return' key detail

from now on but please take it as read that when I suggest entering something at the keyboard-

especially the command line, you should finish by pressing the 'Return' key.) Now type:

Dir 

You will get a response like to this:

bash: Dir: command not found 

This is an error message. The command line is case sensitive, thus:

dir 

and:

Dir 

are not identical in OS eyes which are case sensitive.

This is also the case with program file names so:

program1 

and:

Program1 

are regarded as different.

Command line convention is always to work in lowercase characters. Commands are case

sensitive. File names may have a mixed bag of character cases as long as you are aware of the

difference. It's best always to use lowercase characters so as a matter of course you should

ensure that the Caps Lock light is always off.



Creating A Source File
To create a machine code program, we need to go through a 'write -assemble-link' process

before we can end up with a file that can be executed. The first step is to write the assembly

language program. Because this is the source from which everything flows, this file is called the

sources file. It is also signified by having an '.s' appended to its name. For example:

program1.s 

The source files can be created in any suitable text editor. There are plenty of excellent ones

around to be had at no cost, so it is worth spending time reading reviews and checking the

options out for yourself. You may already have one that you like regardless, so the choice may

already be made.

Equally Raspberry Pi OS comes with a selection of editors already installed as part of

'Recommended Software' and you can locate these on the main Application menu (the

Raspberry on the menu bar of the desktop). They will most likely be in the 'Accessories' drop-

down option. This includes (at the time of writing), both VIM and gVIM, and the Geany

Programmer's Editor. (I suggest you try each and settle on one that it to your liking.)

If neither VIM or gVIM is installed you can either look to do so via the Recommended

Software option, or from a command line by typing:

sudo apt-get install vim 

And then reply to any prompts -- one might ask you about adding extra functionality. It should

be safe to respond 'Y'. Installation takes a few minutes, and the Vim website has a lot of useful

hints and tips.

If you wish to work 'application-style' then you use the GUI version of Vim and install if

needed using:

sudo apt-get install vim-gtk 

As you will spend a lot of your programming time developing assembler it makes sense to

spend time getting to learn the ins and outs of Vim. Many of the actions and operations used in

VIM are performed utilising keypress combinations (especially the Terminal based version).

Figure 3a lists some commands you need to know. The table is not exhaustive by any means

and you will find a complete set on the Vim website. But this is more than enough to get you

started.

When you start Vim, you can also specify the file name you want to create. If the file

already exists it will load the file into the editor window, and you can use it as you please. If the

file does not exist, then Vim creates a new blank file of that name for you. Open a new

Terminal window and at the command line prompt, type:

vim prog3a.s 



Note that there is a space between 'vim' and 'prog3.s' and also note that there is an '.s' at the end

of the name 'prog3' to denote a source file. Convention dictates that 's' represents an assembly

language source file.

The screen/window will now be largely blank apart from a column of tildes ('~') running

down the left-hand edge and the file's name at the bottom -- plus words to denote that it is a

new file.

Press the 'i' key. Note how the text:

-INSERT-- 

has appeared at the bottom left of the screen. This signifies we are in insert mode. Press the

<Esc> key. The 'INSERT--' has disappeared. We are now in Vim command mode.

Pressing 'i' and 'Esc' will become second nature to you. When insert mode is enabled it's a

simple matter to key in the assembly language program and edit until your heart's content. In

command mode, key presses are interpreted as direct commands to Vim, giving it commands to

perform.

 



 



Figure 3a. Important Vim commands.

 

 

The filename for this program, here 'prog3a.s', is not particularly special. I name all the

programs in this book by chapter name. So prog3a.s signifies that the program source file is

from Chapter 3 in the book. The 'a' would suggest it is also the first in the chapter. A file called

'prog4b.s' would signify the program is from Chapter 4 and listed as Program 4b and it is the

second one in the chapter. This is just for your ease of reference. You can use whatever name

you want.

Move back into insert mode (i) and note the flashing cursor at the top left of the screen.

Anything you type now will appear where the cursor is. Enter the listing given below in

Program 3a. You only have to enter the text below that is between the two lines. (A complete

list of programs presented in this book can be found at the end of the Contents list.)

.global _start 

_start:

MOV R0, #65 

MOV R7, #1 

SWI 0

Program 3a. A simple source file.

 

 

Note that of the five lines of the program, the first and third, fourth and fifth lines are indented.

Only the second begins at the start of the line. The amount of indent you add, or even where

you place indents doesn't really matter; they are simply to make it easier to read the program

and see where the different layers of the program are.

You can create the indent by pressing the 'Tab' key. Other keys behave as you would expect

them to, such as arrow keys to move around and the 'Delete' and 'Backspace' keys to move and

edit text. However, there is a space between the words 'global' and '_start' and this space is

important. We'll look at what the listing all means shortly.

Press 'Esc' and then type:

:wq 

This will save your file and in turn also quit Vim. You will now be back at the command

prompt. The source file is now complete!



Come to the Execution

The next step is to convert the source file into an executable file of machine code. We do this

with two commands entered at the command line. Enter the following two lines, one after the

other, at the command line prompt:

as --o prog3a.o prog3a.s 

ld --o prog3a prog3a.o 

These two lines first assemble and then link the assembly language program (linking is

discussed shortly). On completion the machine code can be executed and the syntax for this is:

./<filename> 

The './' means 'run' and the file to be run is named immediately after the command -- no spaces.

Thus:

./prog3a 

When the prompt reappears, the machine code program has completed. Easy as that!

So, we have just written, compiled (assembled and linked) and executed a machine code

program -- all the basic steps needed were involved in the process above. Of course, as the

programs get more complex and we seek to make more use of the tools available then the

process will itself become more involved, as we shall see.

 



Assembler Errors
If at any time during the above process you receive an error message -- or any message at all,

then look carefully at what you have typed. First look carefully at the assembly language

program and then the individual lines of code to assembly, link and finally run the program. If

there was an error and you found it, congratulations, you have just debugged your first assembly

language program.

If you get an error message from the assembler (this will be after you have pressed

<Return> at the end of the first line) it will normally provide you with a line number as a guide.

Even if you do not know what the message means note the line number and then reload the

source file back into Vim. For example:

prog3a.s:5: Error bad expression 

would indicate there is an error in line 5 of the source file.

With a small file such as this you can count down the lines and locate the one containing

the error. Vim also has a line numbering ability. When in Vim command mode type:

:set number 

And notice how line numbers appear down the left of the window. These line numbers do not

get saved as part of your source file -- they are here as a guide only. Figure 3b shows all this in

action using gVim. This shows the line numbers, and that Vim is operating in Insert mode. If

you use gVim you will also notice how the various items of syntax are highlighted by different

colours. This makes it easy to identify the different components of the listing which are

described shortly.

 



 

Figure 3b. How line numbers appear in Vim.

 

 

You can run gVim from the command line using:

gvim <filename> 

So, to create or edit Prog3a you might use:

gvim prog3a.s 



The Components
Let's now look at the above process and understand a bit more the anatomy of the source file

and what we did to make it all come together. Look at prog3a.s again. It consists of just five

lines. Each assembler source files point file must have a starting point, and by default in the

GCC assembler this is the label:

_start:

The first line of this program defines '_start' as a global name and available to the whole

program. We'll see later why making it a global name is important. The second line defines

where 'start:' is in the program. Note the use of the ':' at the end to define it as a 'label'. We've

defined start as global and now marked where _start is.

The next three lines are assembly language mnemonics, and two of the lines are similar,

and use the MOV instruction. When the hash symbol is used in assembly language it is used to

denote an immediate value. In other words, the value after the hash is the value to be used. In

the first case, the value 65 is to be moved in Register 0. Here 'R' stands for register, which is a

special location in the ARM chip, more on which shortly. In the second line, the value 1 is

moved into R7 or Register 7.

The final instruction is SWI 0. This is a special instruction that is used to call the

Raspberry Pi Operating System itself. In this instance it is being used to exit the machine code

program and return control back to the command line prompt (when the program is run of

course).

Just a note on the character case used for the assembly language commands in these source

files. I am using uppercase letters for mnemonics and registers, I could have just as easily used

lower case -- inside the source files the character case does not matter, thus:

MOV R0, #65 

and:

mov r0, #65 

are seen as being one and the same thing-this is different from the Terminal command line

which is case-sensitive. I will be using uppercase characters during this book. This makes the

commands easier to identify in the text of the book, and makes the commands stand out from

labels -- which I will continue to place in lower case.

Run the program again:

./prog3a 

At the prompt type:

echo $? 



The following will be printed on the screen:

65 

This was the immediate value loaded into R0. Try editing the 65 to another number, say 49.

Now save, reassemble and re-link and run. If you now type:

echo $? 

49 should be printed. The operating system has a limited way of returning information from

machine code programs and we'll look at this later.

If you look at prog3a.s again you can see that it consists of two clear sections. At the top

(start), are some definitions, and in the lower half, the actual assembly language instructions.

Assembly language source files always consist of a sequence of statements, one per line. Each

statement has the following format, each part of which is optional:

<label:> <instruction> @ comment 

All three of these components can be entered on the same line, or they can be split across lines.

It's up to you. However, they must be in the order shown. For example, an instruction cannot

come before a label (on the same line).

The 'comment' component is new. When the assembler encounters the '@' it ignores

everything after it until the end of the line. This means you can use it to annotate your program.

For example, go back and edit prog3a.s by typing:

mov r0, #65 

The editor window will display your original source file. The cursor will be at the top of the

file. Enter insert mode, create a new line, and enter the following:

@ prog3a.s -- a simple assembler file 

The comment line, marked by the '@' at the start, is totally ignored by the compiler. Of course,

it does make the source file bigger, but this does not affect the executable's performance in any

way.

You can also add comments using '/*' and '*/' to enclose the comment at the start and end

respectively. For example:

/* This comment will be ignored by the assembler */ 

Both methods are acceptable, and it is simply a matter of taste --- whichever you prefer.

To convert the source file into an executable file we needed two steps. The first was:

as --o prog3a.o prog3a.s 

The 'as' at the start invokes the assembler program itself which expects several arguments after

the command to define the files it will be working with and what it will be doing with them.



The first of these is 'o' and this tells the assembler that we want to produce an object file, here

called 'prog3a.o' from the source file 'prog3a.s' You can choose another name if you wish; the

body of the name does not have to be the same, although keeping it the same makes it easier to

keep track of your files. Of course, the suffix is not the same!

The second and final step is to 'link' the file object file and convert it into an executable file

using the 'ld' command as follows:

ld --o prog3a prog3a.o 

You can think of linking as the final bit of binding that makes the machine code work. What it

produces is an executable file (called an elf file) from the .o (object) file created in the assembly

process. It is this ld command that uses the _start: label to define where the program is to be

run from. (This may sound crazy, but sometimes the start point of a file may not be at the very

front of it, as we shall see!)



Lack of _start
You can learn a lot about the workings of the GCC assembler and linker simply by

experimenting. What do you think would happen if we omitted the _start: label from the source

file?

Open the prog3a.s file in Vim and delete the line '_start:' thereby erasing the label. Exit Vim

and then assemble the program:

as --o prog3a.o prog3a.s 

and now link the program:

ld --o prog3a prog3a.o 

The following error message (or similar) will be produced:

ld: warning: cannot find entry symbol _start; defaulting to 00008054 

The error message is clear enough. Because it can't find a pointer to where the program starts,

the linker is assuming that the program start point is right at the beginning, and the location of

this in memory is at the address 00008054. (This address can and probably will vary depending

on the individual Raspberry Pi.) This is a safety net, but not a fail-safe. Always use '_start:' in

your files to define the start of execution. This program will run perfectly well --- others might

not and probably won't!



Linking Files
The letters 'ld' stand for 'link dynamic' and the linking command can combine or daisy-chaining

several files together into one long executable program. In such cases only one '_start:' label

should be defined across all these files, as there should be only the one start point, and this

defines it. This is easy to demonstrate using our sample program.

Create a new file in Vim and call it:

part1.s 

In this file enter the listing shown below as Program 3b:

/* part1.s file */

.global _start

_start:

MOV R0, #65

BAL _part2

Figure 3b. Part 1 of the source file.

 

 

 

Save the file. Now create a new file called:

part2.s 

and it should contain these lines in the listing below as Program 3c:

/* part2.s file */

. .global _part2

_part2:

MOV R7, #7

SWI 0

Figure 3c. Part 2 of the source file.

 

 

Save and exit this. We have written two source files that we will now compile and link to create

a single executable file. At the end of the part1.s we added a new instruction:

BAL _part2 

BAL means Branch ALways, and here branch always to the point in the program marked with

the label 'part2:' In the second file we have defined a global variable called 'part2' and marked

the point where part2 begins. Because we have used the global labels definition, the location of

the address made known by the global definition will be available to all the program parts.

The next step is to compile both new source files:



as --o part1.o part1.s 

as --o part2.o part2.s 

Now the labels must be identified and linked using the linker thus:

ld --o allparts part1.o part2.o 

Here the linker will create an executable file called 'allparts' from the files 'part1.o' and

'part2.o'. (You can use a different name for the executable file.) Try running the file with:

./allparts 

The order of 'part1.o' and 'part2.o' could have been swapped --- it would not have mattered as

the linker resolves such issues. The key here is that each source file is independently written,

created but then joined (we might say tethered) together by linking. If you tried to link just one

file on its own, you would get an error message because when linking each part references the

other. So, in this case the linker is also a safety check.

What this small demonstration shows is that if you start to think carefully about your source

files, you can start to develop a library of files that you can dip into each time you need a

particular function. If you think back to the last chapter and the concept of a pseudo-program,

this could be created using such functions. We'll look at function creation later.



Tidying Up
If you catalogue the root (raspberrypi) directory by typing:

dir 

you will see that amongst other things there are three prog3 files as follows:

prog3a.s --- the source file 

prog3a.o --- the object file 

prog3a --- the executable file 

(I have added in the description for each file on the right.) Ultimately you only need the source

file as you can create your executable file from this at any time. At the very least you can get rid

of the object file using the rm command (rm = remove files):

rm prog3a.o 

To keep things tidy it is worth creating a separate directory for all your assembler files, and you

can do this using the 'mkdir' command. To create a directory called aal (arm assembly

language) use:

mkdir aal 

Now you can make that directory listing your current directory by typing:

cd aal 

Notice that the command line prompt has been extended to include:

/aal $ 

Anything you now create or do will be done so in the aal directory. To move back up to the

Raspberry Pi root directory type:

cd  

Note how the prompt on the command line always reflects where you currently 'are' within the

hierarchy of the Raspberry Pi filing system.

If when you are looking to load or assemble a file and you get an error message. Check that

you are 'in' the correct directory, and the file name is spelt correctly (including use of capital

letters). Often that's the issue!



A Comment on Comments

Not everyone will agree, but I think it is imperative you comment your assembly language

programs. What you write today will be fresh in your mind, but if you need to upgrade or adapt

it later you will almost certainly be struggling to remember exactly what each segment does,

and another programmer looking at or trying to improve your work will be completely at sea.

To my mind commenting --- that is good commenting --- is an essential part of writing

assembly language programs. All assemblers allow you to place comments in your source file.

Comments do not make the final machine code file any longer or any slower in execution. The

only overhead is that they affect the size of your source program.

So, comments are a good thing but don't comment for comment's sake. If every line of your

assembly language program had a comment it would become ungainly and would detract from

the important comments. For example, look at this simple line and comment relative to the

ADD instruction:

ADD R0, R1, R2 @ R0=R1+R2  

The comment here is pointless from a program documentation perspective, as we already know

--- or we should know --- from the program line itself what the operation does. What would be

relevant here is detailing the significance of the values stored at locations R1 and R2. This

might be a better comment then:

ADD R0, R1, R2 @ Balance of act1 + act2 

If you break your assembly program into segments using the format shown in the previous

chapter, then for a lot of the time a pertinent comment or two at the start of the section is often

also enough. Some things to keep in mind as guidelines: ? Comment all key points in your

program. ? Use plain English; don't invent shorthand that someone, (including you) may not

understand later.

Comment all key points in your program

Use plain English; don't invent shorthand that someone (including you), may not

understand later.

 
If it is worth commenting, then comment properly

Make comments neat, readable, and consistent

Comment all definitions

If you keep these key points in mind you shouldn't go wrong, and I mention them at the start so

you'll hopefully take the point and get into good habits that will last a programming lifetime.

If you are planning to write a lot of machine code, you might want to consider documenting

your files externally, creating a database or perhaps a workbook where you keep their details.



Also, beware the multi-file syndrome. As you develop your files you may several versions

of them during development., And at the end not be sure which one is which. You can end up

with a menagerie of similarly named files. Add a comment at the very start noting why you

have moved on from that file. Move the ones you think you don't need into a holding folder.

When you have the one you want then add a comment it as such and name it as such.



Geany Programmer's Editor
I mentioned earlier in the chapter that there was a third option when it came to software for

creating your source files on the Raspberry Pi Desktop. In the later versions of the Desktop the

Raspberry Menu includes a 'Programming' sub menu and in here you are likely to find the

'Geany Programmer's Editor'.

Geany is an IDE or 'integrated development environment' and provides a variety of

formatting options for various projects and languages. It also uses tabs which allows you to

have multiple source files open. It also provides line numbers automatically.

If you remember to save your file as a text files with a '.s' extension this is a great alternative

option. That said it is good to understand how some of the traditional text editors work in the

first instance.

 

Figure 3c. Geany IDE look and feel.

 

Figure 3c also shows that line numbering is automatic, and a plethora of additional information

is provided around the perimeter of the Geany window.



4. Bits of a RISC Machine

There are 10 types of people in the world --- those that understand binary notation and those

that don't.

If that statement leaves you confused, don't worry. After reading this section of the book

you'll 'get' the joke. If you have already had a smile at it then you're well on your way to racing

through this section. What I will say at the onset though is that a thorough understanding of the

way binary notation is presented and how it can be manipulated is fundamental to effective,

efficient machine code programming.

When you create machine code programs you are working at the most basic level of the

computer. There is nothing below it. In the opening chapters we touched on binary and

hexadecimal numbers. Hex numbers are a compact way of writing numbers which in binary

would be long strings of 1s and 0s. Because of its design as a reduced instruction set computer,

the Raspberry Pi can do many different things using a base set of instructions and does so by

getting the absolute maximum meaning out of every single one of these 1s and 0s. To

understand fully how a RISC machine works we need to understand how binary and hex are

constructed and how they are utilised by the ARM chip.

To recap from the opening chapters: The instructions the ARM CPU operates with consist

of sequences of numbers. Each number represents either an instruction (opcode) or data

(operand) for the machine code to execute or manipulate. Internally these numbers are

represented as binary numbers. A binary number is simply a number constructed of 1s or 0s.

Binary is important as internally these 1s and 0s are represented as 'on' or 'off' conditions

(electronically usually +5V or 0V) within the microprocessor, and as an assembly language

programmer we will often want to know the condition of individual binary digits or bits.

Opcodes and operands are built by combining sets of eight bits, which are collectively

termed a byte. Convention dictates the bits in these bytes are numbered as illustrated in Figure

4a.

 

 7  6  5  4  3  2  1  0 

 

Figure 4a. Numbering of the bits in a byte.

 

 

The number of the bit increases from right to left, (not left to right) but this is not as odd as it

may first seem.

Consider the decimal number 2934, we read this as two thousand, nine hundred and thirty-

four. The highest numerical value, two thousand is on the left, while the lowest, four, is on the

right. We can see from this that the position of the digit in the number is especially important

as it will affect its 'weight'.



The second row of Figure 4b introduces a new numerical representation. Each base value is

suffixed with a small number or power, which corresponds to its overall position in the number.

Thus, 103 is 10 x 10 x 10 = 1000. The number in our example consists of two thousands plus

nine hundreds plus three tens and four units.

 

Value 1000s 100s 10s 1s

Representation 103 102 101 100

Digit 2 9 3 4

 

Figure 4b. Decimal weights of ordinary numbers.

 

 

In binary representation, the weight of each bit is calculated by raising the base value, two, to

the bit position (see table below). For example, bit number 7 (b7) has a notional representation

of 27 which expands to: 2 x 2 x 2 x 2 x 2 x 2 x 2= 128. The weight or value of each bit is

shown in Figure 4c.

 

Bit Number b7 b6 b5 b4 b3 b2 b1 b0

Representation 27 26 25 24 23 22 21 20

Weight 128 64 32 16 8 4 2 1

 

Figure 4c. The binary weights of numbers.

 

 



Binary to Decimal

As it is possible to calculate the weight of individual bits, it is a simple matter to convert

binary to decimal numbers into decimal. The two rules for conversion are:

 
1. If the bit is set ('1') , add its weight

 
2. If the bit is clear ('0'), ignore its weight

 

Let's try an example and convert the binary number 10101010 into its equivalent decimal

value.

 

Bit Weight Value

1 128 128

0 64 0

1 32 32

0 16 0

1 8 8

0 4 0

1 2 2

0 1 0

 

Figure 4d. Converting binary numbers to decimal numbers.

 

 

In Figure 4d, we add the value column to get 170. Therefore, 10101010 binary is 170 decimal

(128+0+32+0+8+0+2+0). Similarly, the binary value 11101110 represents 238 in decimal as

shown in Figure 4e.

 

Bit Weight Value

1 128 128



Bit Weight Value

1 64 64

1 32 32

0 16 0

1 8 8

1 4 4

1 2 2

0 1 0

 

Figure 4e. Converting binary numbers to decimal numbers.

 

 

To convert a decimal number into a binary number, the procedure is reversed --- each binary

weight is, in turn, subtracted. If the subtraction is possible, a 1 is placed into the binary

column, and the remainder carried down to the next row. If the subtraction is not possible, a 0

is placed in the binary column, and the number moved down to the next row. For example, the

decimal number 141 is converted into binary as shown in Figure 4f.

 

Decimal Weight Remainder Binary

141 128 13 1

13 64 13 0

13 32 13 0

13 16 13 0

13 8 7 1

5 4 1 1

1 2 1 0

1 1 0 1

 

Figure 4f. Converting a decimal number to its binary equivalent.

 

 

Therefore, 141 decimal is 10001101 binary.

 



Binary to Hex
Although binary notation is probably as close as we can come to representing the way numbers

are stored within the Raspberry Pi, they are rather unwieldy to deal with. And row after row of

1s and 0s simply get lost as your eyes start to rebel and make funny patterns. When dealing

with binary numbers we more commonly use an alternative form to represent them --

hexadecimal or 'hex' for short. Hexadecimal numbers are numbers to the base of 16. This is not

as awkward as first seems and presents many advantages.

 

Decimal Hex Binary

0 0 0000

1 1 0001

2 2 0010

3 3 0011

4 4 0100

5 5 0101

6 6 0110

7 7 0111

8 8 1000

9 9 1001

10 A 1010

11 B 1011

12 C 1100

13 F 1101

14 E 1110

15 F 1111

 

Figure 4g. Decimal, hexadecimal and binary numbers.

 

 

Base 16 requires sixteen different characters to represent all possible digits in a hex number. To

produce them, the numbers 0 to 9 are retained and then we use the letters A, B, C, D, E, F to

represent values from ten to 15. The binary and decimal values for each hex number are shown

in Figure 4g. If you have followed the previous section on binary numbers something

interesting may stand out when you look at Figure 4g.

 



Notice how four bits of a binary number can be represented in one hex number. Thus, a full

byte (8 binary bits) can be depicted with just two hex characters. Using decimal notation, a byte

would require three characters. Hex is a very compact and easy way of representing binary.

 

To convert a binary number into hex, the byte must be separated into two sets of four bits,

termed nibbles, and the corresponding hex value of each nibble extracted from the table above:

 

Convert 01101001 to hex:

0110 = 6 

1001 = 9 

The answer is 69. Because it is not always apparent whether a number is hex or decimal (69

could be decimal), hex numbers are usually preceded by a unique symbol such as 0x (which is

the notation used in this book):

0x69 

By reversing the process hex numbers can be converted into binary.

 



Hex to Decimal and Back

To transform a hex number into decimal, the decimal weight of each digit should be

summed. Convert 0x31A to decimal:

3 has a value of 3 x 162 = 3 x (16 x 16) = 768 

1 has a value of 1 x 161 = 1 x 16 = 16 

A has a value of 1 x 160 = 10 x 1 = 10 

Add these together to give 794 decimal.

 

Converting decimal to hex is a bit more involved and requires the number to be repeatedly

divided by 16 until a value less than 16 is obtained. This hex value is noted, and the remainder

carried forward for further division. This process is continued until the remainder itself is less

than 16.

 

Example: convert 4072 to hex:

4072/16/16 =15 = F Remainder: 4072-(15*16*16)=232 

232/16   =14 = E  Remainder: 232-(14*16)=8 

Remainder =8 = 8 

Therefore, 4072 decimal is 0xFE8.

 

Both conversions are a little long winded, and you can probably see why it is so much

easier to work in hex and forget about decimal equivalents. In truth, this is what you will get

used to doing. Although it may seem alien at present, it will become second nature as you

develop your assembly language expertise. (Besides, if you want to convert hex to decimal, you

can use the Pi!)

 



Binary Addition
It is easy to add and subtract binary numbers. In fact if you can count to two you will have no

problems whatsoever. Although it is not vital to be able to add and subtract 1s and 0s 'by hand',

this chapter introduces several concepts which are important, and will help you in your

understanding of the next chapters and ultimately in programming the ARM.

 

There are just four simple straightforward rules when it comes to adding binary numbers.

They are:

0+0=0   [nought plus nought equals nought] 

1+0=1   [one plus nought equals one] 

0+1=1   [nought plus one equals one] 

1+1=0(1) [one plus one equals nought, carry one] 

Note in the last rule, one plus one equals nought, carry one. The '1' in brackets is called a carry

bit, and its function is to denote an overflow from one column to another, remember, 10 binary

is 2 decimal (and thus the opening line of the Chapter!). The binary carry bit is like the carry

that may occur when adding two decimal numbers together whose result is greater than 9. For

example, adding together 9+1 we obtain a result of 10 (ten), this was obtained by placing a zero

in the unit column and carrying the 'overflow' across to the next column to give: 9+1=10.

Similarly, in binary addition when the result is greater than 1, we take the carry bit across to

add to the next column (the twos column). Let's try to apply these principles to add the two 4-

bit binary numbers, 0101 and 0100.

0101 0x5 

+0100 0x4 

=1001 0x9 

Going from right to left we have:

1+0=1 

0+0=0 

1+1=0(1) 

0+0+(1)=1 

In the example, a carry bit was generated in the third column, and this is carried to the fourth

column where it is added to two noughts. Adding 8-bit numbers is accomplished in a similar

manner:

01010101 0x55 

+ 01110010 0x72 



= 11000111 0xC7 

If the eighth bit, also called the most significant bit, creates a carry then this can be carried over

into a second byte. However, within the CPU of most chips there is another way to handle this

using something called a Carry flag.

 



Subtraction
So far, we have dealt exclusively with positive numbers, however, in the subtraction of binary

numbers we need to be able to represent negative numbers as well. In binary subtraction though,

a slightly different technique from everyday subtraction is used, in fact we don't really perform a

subtraction at all -- we add the negative value of the number to be subtracted. For example,

instead of executing 4-3 (four minus three) we execute 4 + (-3) (four, plus minus three).

 

Figure 4h. Subtracting numbers.

 

We can use the scale in Figure 4h to perform the example 4+(-3). The starting point is zero. First

move to point 4 (four points in a positive direction) signified by the '>' and add to this -3 (move

three points in a negative direction). We are now positioned at point 1 which is indicated by '<<'.

Try using this method to subtract 8 from 12, to get the principle clear in your mind.

To do this in binary we must first have a way of representing a negative number. We use a

system known as signed binary. In signed binary, bit 7 is used to denote the sign of the number.

Traditionally a '0' in bit 7 denotes a positive number and a '1' a negative number.

Figure 4i. Signed binary representation of -1.

 

Figure 4i shows how a signed binary number is constructed. Here, bits 0-6 give the value, in this

case '1'. The sign bit is set so denoting a negative value, so the value represented in signed binary

is -1.

Figure 4j. Signed binary representation of 127.



 

The value 01111111 would represent 127 in signed binary. Bits 0-6 give 127, and the sign bit is

clear. This is illustrated in Figure 4j.



Twos Complement Numbers
Just adjusting the value of bit 7 in this way is not an accurate way of representing negative

numbers. Adding -1+1 should equal 0, but ordinary addition gives the result of 2 or -2 unless

the operation takes special notice of the sign bit and performs a subtraction instead. Twos

complement representation provides a means to encode negative numbers in ordinary binary,

such that addition still works, without having to take the additional sign adjusting step.

To convert a number into its negative counterpart, we must obtain its twos complement

value. This is done by inverting each bit and then adding one. To represent -3 in binary, first

write the binary for 3:

00000011 

Now invert each bit by flipping its value so that 0s become 1s and 1s become 0s. This is known

as its ones complement value:

11111100  

Now add 1:

11111100 

+ 00000001 

= 11111101 

Thus, the twos complement value of 3 = 1111101. Now apply this to the original sum 4+(-3):

00000100 4 

+ 11111101 -3

=(1)00000001 1 

We can see that the result is '1' as we would expect, but we have also generated a carry due to

an overflow from bit 7 (this is the value in brackets above). This carry bit can be ignored for our

purposes at present, though it does have a certain importance as we shall see later when

performing subtraction in assembly language.

Here's another example that performs 32-16, or: 32+(-16).

32 in binary is: 00100000 

16 in binary is: 00010000 

Twos complement of 16: 11110000 

Now add 32 and -16 together:

00100000 32 

+ 11110000 -16 



=(1) 00010000 16 

Ignoring the carry, we have the result, 16.

We can see from these examples that, using the rules of binary addition, it is possible to add

or subtract signed numbers. If the carry is ignored, the result including the sign is correct. Thus,

it is also possible to add two negative values together and still obtain a correct (negative) result.

Using twos complement signed binary let's perform -2+-2

2 in binary is: 00000010 

Twos complement of 2: 11111110  

We can add this value twice to perform the addition:

11111110 -2 

+ 11111110 -2 

=(1) 11111100 -4 

Ignoring the carry, the result is -4. You might like to confirm this by obtaining the twos

complement value of -4 in the usual manner.

 

Understanding twos complement isn't strictly necessary for most applications, but it can

come in handy as you can discover the value of every bit in a number whether it is positive or

negative.



When Twos Don't Add Up
There are a couple of occasions when twos complement doesn't add up and interestingly, they

are based around representing 0 and -0.

The first is when dealing with 0 (zero). Working with 8-bits for simplicity, the twos

complement of 00000000 is 10000000. When you drop the most significant bit, you get

00000000, which is what you started with. This works as it means that you can't really have -0

and that you can only have one value of 0 in twos complement.

The second situation arises with 10000000 because it can have no negative value. The

inverse of 10000000 is 01111111, and now add one to obtain its twos complement and you get

10000000, which is what you started with.

Because the most significant bit in 10000000 is 1, the value is negative. When you invert it

and add 1, you get 10000000 which is the binary representation of 128 so the original value

must, therefore represent -128.

This anomaly is the reason why integer and long value variables in many forms of BASIC

are asymmetrical. In 8-bits, the values range from -128 to +127 and in 32-bits (four-bytes)

values range from -2,147,483,648 to +2,147,483,647.



Desktop Calculator
Depending on the Desktop settings you have when you installed your Raspberry Pi Operating

System on your Pi, you should find that the Accessories menu has a 'Calculator' included. This

will run on the desktop and can be used to do many of the number exercises that we have

discussed, and other operations that we will cover during the course of the book, when used in

Scientific mode. I'll leave you to explore those possibilities. Converting numbers between bases

such as binary, hex and decimal is certainly possible along with other number bases such as

Octal (8).



5. ARM Arrangements

The ARM has a specific and special design. This is known as its architecture because it refers

to how it is constructed and how it looks from the user's point of view. Understanding this

architecture is an important aspect of learning to program the chip. You need to appreciate how

it all fits together and how the various elements interact. In fact, the purpose of much of the

machine code we will be creating is to gain access and manipulate the various parts in the

ARM itself. Because of its design as a reduced instruction set computer it can do many

different things using a small set of instructions. The way it operates is determined by the

mode. This means that once you have understood the basic layout of the ARM chip you only

then have to understand what its different operational modes are. That said, for almost all

situations that you encounter when learning to program the ARM you will be operating in User

Mode.



Word Lengths
In the binary examples we looked at in the previous chapters we have used single byte values.

Indeed, all the early popular computers worked at this level with machine code. The design of

these circuit boards reflected this in that they had the eight data lines. In broad terms, these

lines were directly related to the bits in the CPU byte. Thus, the CPU could move data around

the board by toggling the logical condition on each line by making it a 1 or 0. It did this by

changing the voltage on the line between 5V and 0V.

An ARM chip is more sophisticated and can operate much faster by manipulating larger

amounts of information. It does this by being designed as a 32-bit or 64-bit CPU. In the case of

32-bit this equates to four-bytes of information. So instead of manipulating eight lines of

information there are 32 lines. Collectively these four-bytes are called a word. The ARM word

length is said to be four-bytes. However, it is more than capable of working with single byte

lengths, and it does this just as effectively. Keep in mind that other computer systems may

define their word length as something different, but on the Raspberry Pi a word is four-bytes or

32-bits in length.

The most significant bit (msb) in an ARM word is located at bit 31 (b31), and the carry bit

in an operation is generated if there is an overflow out of bit 31. If a carry occurred from bit 7 it

would be carried into bit 8, or from the first byte in the second byte.



Byte and Word Accessed Memory

As a computer or smart phone user you will be familiar the role that memory plays in

operation. The more you have the more you can store. Each memory address has a unique

location. Generally, as the number of bits increases then so does the amount of memory that

can be directly addressed. The early ARM chips only used 26-bits of the 32-bits for addressing

memory. This placed certain restrictions on the processor -- and of course, the amount of

memory it could directly address -- so later ARM chips had full 32-bit addressing. The lowest

address in this range is accessed by placing 0s on all the lines, and the highest by placing 1s on

all the lines. The first is addressed as 0x0000 and the highest as 0xFFFFFFFF (or 0x3FFFFFFF

on old pre-Raspberry Pi 26-bit address bus ARMs).

Memory control devices for the ARM allowed for 32-bit addressing. Figure 5a illustrates

schematically how this memory is arranged as word length blocks composed of four-bytes a

piece, so the minimum and maximum memory addresses are extended to 0x00000000 and

0xFFFFFFFF -- this is the case on the Pi.

 

  bit31     bit00

(Word 0) b03 b07 b0B b0F

(Word 1) b07 b06 b05 b04

(Word 2) b0B b0A b09 b08

(Word 3) b0F b0E b0D b0C

 

Figure 5a. Memory word blocks on the ARM.

 

The ARM 'sees' memory in these word blocks but can also address the individual bytes within

each word. From an operation point of view, all memory is arranged as word-aligned blocks.

As illustrated in Figure 5a above the word-aligned blocks corresponded with Word 00, Word

01, Word 02, and Word 03. Note how Word 00 has the byte numbers b00, b01, b02 and b03

within it. Word 01 has bytes b04, b05, b06 and b07 in it, and so on. Word blocks are aligned in

this fashion and cannot be changed. You cannot have a word-aligned block that consists of the

bytes, b02, b03, b04 and b05. (Note that 'b' here relates to byte and not bit, as used in some

previous examples.) ARM saw the need 64-bit processors and started working new designs

long before announcing its new ARMv8 architecture, the first ARM architecture to include a

64-bit instruction set. ARM also learnt from the mistakes and successes of other chip designers

who moved to 64-bits. ARM's new 64-bit architecture is fully compatible with its 32-bit

architecture. This means that if the processor is running on a 64-bit enabled operating system,

the processor can run unmodified ARMv7 32-bit code (or binaries).



The Raspberry Pi 2B v1.2 was the first of the series to have ARMv8 architecture and this

was carried into the Raspberry Pi 3 and 4. Both operate in 32-bit mode but can be run in 64-bit

mode. But this is getting ahead of ourselves and we will return to it later in the book, and for

the most part now you will notice no difference.

Locations in memory are addressed by a unique hexadecimal number. A memory address

that corresponds to the start of a word is called a word boundary and is said to be 'word-

aligned'. A memory address is word-aligned if it is directly divisible by four. The following

addresses are all word-aligned:

0x00009030 

0x00009034 

0x00009038 

0x0000903C 

Word-aligned addresses are especially significant to the ARM as they are fundamental to the

way the ARM chip fetches and executes machine code. For example, the address 0x00009032

is not word-aligned. You cannot store an ARM machine code instruction on a non-word-

aligned address.

The GCC assembler provides a few tools to help ensure word boundaries are correctly

managed. At the very least trying to assemble something that is not correctly addressed will

generate an error message to that effect. For the most part, this is transparent and, as a

'Beginner' it will not raise its head anytime soon.



Registers
The ARM has several internal areas where it stores, tracks and processes information. This

speeds things up and makes operations quicker as there is no external memory access required.

These internal areas are called registers. In User Mode (the standard operating configuration)

there are 16 registers available and each can hold a word (four-bytes) of information. You can

think of these registers as single word locations within the ARM. Figure 5b shows how this

comes together and includes an extra register -- the Status Register.

As you can see from this programmer's model, registers R0-R12 are available for use at any

time. R13-R15 have defined uses, however R13 and R14 are only used occasionally and are

manipulated by just a few instructions. You as the programmer will be controlling these

operations, so can also use them if required. Only R15 should not be used. I don't say cannot

because it can be used, but you should be very clear what you are doing with it, and the

complications it can bring if you do. ARM instructions can access R0 to R14 directly while

most instructions can access R15.

As each register is one word wide, this means that each register can hold an address

location in a single register. In other words, a register can hold a number which points to a

location anywhere in the memory map of the Raspberry Pi. A key function of registers is to

hold such addresses.

The GCC Assembler allows us to use the labels listed above to refer to these registers, for

example, R0 and R10.

 

Register Function

R0 Available

R1 Available

R2 Available

R3 Available

R4 Available

R5 Available

R6 Available

R7 Available

R8 Available

R9 Available

R10 Available

R11 (Frame Pointer)

R12 Available

R13 Stack Pointer

R14 Link Register



Register Function

R15 Program Counter

 

Figure 5b. The ARM User Mode register bank.

 

The LDR and STR instructions are used to LoaD a Register and STore a Register from and to

memory in a variety of ways. Here are a couple of examples:

LDR R1,[R5] @ Load R1 with contents of loc in R5 

STR R1,[R6] @ Store R1 contents at addr in R6 

In both examples, one register is expected to have a memory address in it. The registers are

enclosed in square brackets in these examples, and this tells the assembler that they contain

addresses. This type of specification is called an addressing mode and the ARM have several

addressing modes. We'll examine these in later chapters.



R15 - Program Counter
The Program Counter R15 is important. If you don't treat it with respect, your whole program

can crash. Its function is simple --- to keep track of where your program is in its execution of

machine code. In fact, the PC holds the address of next instruction to be fetched. We will look

at this register in more detail later in the book, Chapter 13 is dedicated to it.

The GCC Assembler allows you to use PC as well as R15 when referring to the Program

Counter. For example:

MOV PC, R0 @ Move R0 into R15, Program Counter5 

The PC in the instruction will resolve correctly as if you had used R15.



Current Program Status Register
The CPSR--- or just plain Status Register --- is used to store significant information about the

current program and the results of operations it is carrying out and has carried out. Specific bits

within the register are used to denote pre-assigned conditions and whether they have occurred

or not. So how does the information get flagged inside the one register? It does this by

manipulating the values of individual bits within the register. Figure 5c illustrates how this is

configured.

 

 

Figure 5c. The Status Register configuration.

 

The four most significant bits hold what are known as flags, called as such as they are designed

to flag a certain condition when it happens. These flags are:

N = Negative flag 

Z = Zero flag 

C = Carry flag 

V = Overflow flag 

When an instruction executes, if it has been requested to, the ARM updates the Status Register.

If the condition under test occurred, then a 1 is placed in the relative flag bit: it is set. If the

condition has not occurred, then the flag bit is cleared: a 0 is placed in it.



Bits and Flags
If you followed the previous sections on binary arithmetic, then some of the concepts here will

be familiar to you. We have discussed negative numbers, and the Negative flag is used to signify

a potential negative number. The Carry flag represents the Carry bit --- we discussed this in 8-

bit operations, but the addition of 32-bit numbers works the same. The Zero flag is

straightforward; it's set if the result is zero. Finally, the Overflow flag is new, but simply sets if

the operation caused a carry from bit 30 into the top bit at bit 31. If this occurred using signed

numbers, it could indicate a negative result, even if a negative number was not generated.

(Remember, bits start numbering at zero so, the 32nd bit is, in fact, numbered bit 31, or b31.)

For example, if the result of an operation gave 0, the Zero flag would be set. This is the Z bit in

Figure 5c. If an addition instruction generated a carry bit, then the Carry flag would be set to 1.

If a carry were not generated, then the Carry flag would be clear (C=0).

Assembly language has mnemonics that allow us to test these Status Register flags and act

based on their condition. Here are a couple of examples:

BEQ zeroset @ jump to zeroset if Z=1 

BNE zeroclear @ jump to zeroclear if Z=0 

BEQ is Branch if EQual and this instruction will cause a 'jump' to a named label if the Zero

flag is set. BNE is Branch if Not Equal and this instruction will cause a jump to the named

label if the Zero flag is clear.

There are instructions to test the other flags in a like manner. The BNE instruction is often

used to make sections of program repeat or loop a predetermined number of times until a

counter decrements to 0 at which point the Zero flag will be set.

In Figure 5c, the I and F bits are called interrupt disable bits and discussed in Chapter 26.

The T bit is to do with processor states. At this point we'll assume that it is always set to 0 to

signify ARM State (we will come back to this in Chapter 24). The final five bits are used to

signify the processor mode --- we will be largely using User Mode (but this will be touched on

again in Chapter 26 as well).

Interestingly there is no one single instruction that you can use to gain access to the Status

Register. You can only manipulate its contents at bit level by carrying out an associated action.



Setting Flags
There are two instructions that have a direct effect on the Status Register flags, they are CMP

(CoMPare) and CMN (CoMpare Negative). Of these the first is the more common in use and it

takes the form:

CMP <Operand1> <Operand2> 

CMP performs a notational subtraction, taking Operand2 away from Operand1. The physical

result of the subtraction is ignored, but it updates the Status Register flags according to the

outcome of the subtraction, which will be positive, zero or negative (there can never be a

carry). If the result of the subtraction were 0 the Zero flag would be set.

Operand1 is always a register, but Operand2 can be a register or a specific or immediate

value. For example:

CMP R0, R1 @ Compare R0 with R1. R0 minus R1 

CMP R0, #1 @ Compare R0 with 1. R0 minus 1 

The CMP instruction is often used in combination with the BEQ instruction, to create a branch

or jump to a new part of the program:

CMP R0, R1 

BEQ zeroflagset 

Here control will be transferred to the part of the program marked by the label 'zeroflagset' if

the comparison between R0 and R1 is zero. If the branch does not take place then it would

show that the result of the CMP was not zero -- there would be no need to perform a BNE

function. The code following could handle that situation.

CMP and CMN are the only instructions that directly affect the condition of the Status

Register. By default, the rest of the ARM instruction set does not update the Status Register.

For example, if R0 and R1 both contained 1 and we performed:

SUB R0, R0, R1 

The result would be 0. But none of the flags in the Status Register would be altered in any way.

They would retain the status they had before the instruction was performed.

 



S Suffix

However, the ARM does provide a method of allowing an operation such as SUB to update the

Status Register. This is done by using the Set suffix. All we do is append an 'S' to the end of the

mnemonic we want to use to modify the flags:

SUBS R0, R0, R1 

This subtracts the contents of R1 from R0, leaving the result in R0 and at the same time

updating the flags in the Status Register.

This S suffix effectively allows you as the programmer to use one less set of instructions.

Without it we might use:

SUB R0, R0, R1 

CMP R0, #0 

BEQ iszero 

But with it we can remove the CMP line thus:

SUBS R0, R0, R1 

BEQ iszero 

The GCC Assembler recognises the use of the S suffix. It is also tolerant of spaces between the

instruction and the S, so these two examples will assemble perfectly:

SUBS R0, R0, R1 

SUB S R0, R0, R1 

The Set suffix is one of many that exist, and we'll have a look at more of these in Chapter 9.

This example shows one of the many ways the reduced instruction set was developed.



R14: The Link Register
The BEQ and BNE instructions illustrated above are examples of conditional branch

instructions. These are absolute in that they offer a definitive change of direction --- branch if

equal or branch if negative. There is a second style of branch instructions known as Branch and

Branch with Link (BL). The BL implements a subroutine operation; effectively it jumps to

somewhere else in the program and allows you to come back to the point right after the BL

instruction in the program.

When the BL instruction has executed, this return address (the address of the next

instruction) is loaded into R14, the Link Register (LR). When the subroutine has completed,

the Link Register is copied into the Program Counter, R15, and the program continues

operating where it left off before the call was made.

One way of copying the Link Register into the Program Counter would be thus:

MOV R15, R14 

The following is also accepted by the assembler:

MOV PC, LR 

If you are familiar with any form of BASIC, you can think of BEQ and BNE as being the

equivalent of GOTO commands and BL as being a GOSUB command.



R13: The Stack Pointer

The Stack Pointer contains an address that points to an area of memory which we can use to

save information. This area of memory is called a 'stack' and it has some special properties that

we will look at in Chapter 17. It is worth noting at this point that there is only one ARM

implemented stack, but you can create as many stacks as you like, which must also be manged

by you.



6. Data Processing

In this chapter we'll look at some of the data processing instructions. This is the largest group

of instructions, 18 in all, which manipulate information. They can be divided further into sub-

groups as follows:

ADD, ADC, SUB, SBC, RSB, RSC 

MOV, MVN, CMP, CMN 

AND, ORR, EOR 

BIC, TST, TEQ 

MUL, MLA 

The AND, ORR, EOR, BIC, TST and TEQ instructions are examined in Chapter 8.

Each of the remaining instructions expect information to be supplied to them in the

following configuration:

<Instruction> <Dest>, <Operand1>, <Operand2> 

Let's look at each field in more detail:

 

<Instruction>

This is the assembly language mnemonic to be assembled. It can be used in its raw form as

listed above, or with the additions of suffixes, such as S.

 

<Dest>

 

This is the destination where the result is to be stored, and the destination is always an

ARM Register, in the range R0-R15.

 

<Operand1>

This is the first item of information to be manipulated and, again, will always be an ARM

Register in the range R0-R15. Operand1 may be the same as the Destination register.

 

<Operand2>

Operand2 has more flexibility than Operand1 in that it can be specified in three different

ways. As with Operand1, it may be an ARM Register in the range R0-R15. It may also be a

specified value or constant --- a number for example. For a constant, the exact number to be

used is quoted in the assembler listing. The hash, '#'', is used to signify an immediate constant.

Operand2 may also be what is called a shifted operand and we will look at this instance in

Chapter 11 when we have looked at the arithmetic shifting of numbers.

 



Here are some examples of data processing instructions in use:

ADD R0, R1, R2 @ R0=R1+R2 

ADDS R2, R3, #1 @ R2=R3+1 and set flags 

MOV R7, #128 @ R7=128 

Some instructions do not require both operands. For instance, the MOV instruction does not

use Operand1; it only requires Operand2. The reason for Operand2 rather than Operand1 is that

it can use a Register definition or a constant value (or shifted, as we shall see).



Addition Instructions
In this section we'll look at the ADD and SUB commands in a little more detail, and we'll also

start looking at what is happening in the registers themselves, including the Status Register and

its flags.

There are two instructions that handle addition. They are ADD and ADC. The latter is ADd

with Carry. They both take a similar form:

ADD (<suffix>) <dest>, <Operand1>, <Operand2> 

ADC (<suffix>) <dest>, <Operand1>, <Operand2> 

Here's some code that uses the ADDS instruction. This program clears R0, places 1 in R1 and

sets all 32-bits of R2. This is the largest number we can store in a four-byte register. What will

happen if we were to run this program?

MOV R0, #0 

MOV R1, #1 

MOV R2, #0xFFFFFFFF 

ADDS R0, R1, R2 

On completion the registers will show:

R1: 0x00000001 

R2: 0xFFFFFFFF 

R0: 0x00000000 

Nothing seems to have happened! The values have all been loaded, but no addition seems to

have taken place as R0 still has 0 in it. In fact, it has, but by adding the 1, we created a carry bit

(remember the binary additions we did in the earlier chapters?). So, if we were to look at the

Status Register, we would see:

NZCV 

0110 

If we had run this program using only ADD and not ADDS then the Carry flag would not have

been updated and would merely reflect the condition they were in when they were last updated

via an appropriate instruction. Of course, the Carry flag may have been set by a previous

instruction, so we might have received a correct answer, but only by good fortune. The good

fortune method is not an efficient way to program in any language. It pays to double check.

Program 6a shows how simply two numbers can be added together in machine code. Enter

this in Vim or Geany using the filename:

prog6a.s 



 

Program 6a. Simple 32-bit addition.

 

 

/* Perform R0=R1+R2 */ 

.global _start 

_start:

MOV R1, #50 @ Get 50 into R 

MOV R2, #60 @ Get 60 into R2 

ADDS R0, R1, R2 @ Add the two, result in R0 

 

MOV R7, #1 @ exit through syscall 

SWI 0 

You can assemble, link, and run this using the following:

as -o prog6a.o prog6a.s 

ld -o prog6a prog6a.o 

./prog6a 

Now print the result with:

echo $? 

The result will be 110.

(Remember, to be able to print a result from the machine code using bash, we need to

ensure that the result is held in R0 and that the operating system exit is used.)

Whenever we add two values, unless we are 100% sure that there will have been no carry,

or the significance of that fact is not important to us, a check for the carry should always be

made.

Program 6b below adds two 64-bit numbers. This relates to two-words, so two registers are

needed to hold the number, with one holding the low four-bytes and the other the high four-

bytes. Because we have a potential carry situation from low-word to high-word when we add

the two it is imperative, we take the Carry flag into consideration. For this we need to use the

ADC instruction.

The code assumes that the first number is in R2 and R3 and the second is in R4 and R5.

The result is placed in R0 and R1. By convention, the lower register always holds the lower half

of the number:

/* Add two 64-bit numbers together */

.global _start

_start:

MOV R2, #0xFFFFFFFF @ low half number 1 

MOV R3, #0x1 @ hi half number 1 



MOV R4, #0xFFFFFFFF @ low half number 2 

MOV R5, #0xFF @ hi half number 2 

ADDS R0, R2, R4 @ add low and set flags 

ADCS R1, R3, R5 @ add hi with carry 

 

MOV R7, #1 @ exit through syscall SWI 0

You can assemble, link, and run this using the following:

as -o prog6b.o prog6b.s 

ld -o prog6b prog6b.o 

./prog6b 

Now print the result with:

echo $? 

The result will be 254. Why?

On completion, registers R0 and R1 will contain 0xFFFFFFFE and 0x101, respectively.

The result was therefore:

0x101FFFFFFFE 

In the first ADDS instruction, the addition caused the Carry flag to be set, and this was picked

up in the ADCS operation. If we substitute the ADCS with another ADDS the result is:

0x100FFFFFFFE 

In decimal terms the result is starker, out by 4,294,967,296!

You may be wondering why the ADCS instruction was not used in both parts of the

addition. Generally, if you set out doing any addition you would want to ensure the Carry flag

is clear before starting. If not and you used ADCS and it was set from a previous operation you

would get an erroneous result. Use of ADDS ensures that the carry is ignored but gets updated

at the end of the addition.

In answer to the question earlier about why the echo command returned 254, this is 0xFE in

hex, which is the least significant byte of the value stored in R0. The echo command does not

return what is stored in R0 but what is in the least significant byte of R0.

How would you modify this segment to add two three-word values? The temptation might

be to repeat the ADDS and ADCS sequence. This would be wrong. You should continue using

the ADCS instruction until all the words have been added. You only use ADDS on the first

word to define the Carry condition in the first instance. From then on it is ADCS.

If you are writing a program that does not produce the correct result and the values it is

returning are wildly out, it is always worth checking that you have used the correct sequence of

addition instructions. Chances are that is where the 'bug' sits.

If the three-word numbers were held in R4, R5, R6 and R7, R8, R9 we could sum the result

in R1, R2, R3 as follows:



ADDS R1, R4, R7 @ Add low-words & check for carry 

ADCS R2, R5, R8 @ Add middle words with carry 

ADCS R3, R6, R9 @ Add high-words with carry 

It should go without saying that you need to check to see if the Carry flag is set as it is the most

significant bit in your result.



Subtraction

While there are two instructions that deal with addition, there are four for subtraction.

SUB (<suffix>) <dest>, <Operand1>, <Operand2> 

SBC (<suffix>) <dest>, <Operand1>, <Operand2> 

RSB (<suffix>) <dest>, <Operand1>, <Operand2> 

RSC (<suffix>) <dest>, <Operand1>, <Operand2> 

You can see that there are complementary instructions to addition: a straightforward

subtraction that ignores the flags and then one that considers the Carry flag (SBC). The second

set of subtraction instructions works in an identical fashion but uses the operands in the reverse

order. For example:

SUB R0, R1, R2 

subtracts the contents of R2 from R1 and puts the result in R0. However,

RSB R0, R1, R2 

subtracts the contents of R1 from R2 and puts the result in R0. As with the previous examples

the S suffix can be used with the instructions:

SUBS R0, R1, R2 

If R0=0, R1=0xFF and R2=0xFE, the SUBS instruction is performing:

0xFF-0xFE 

which is:

255-254 

The result should be 1, and this is indeed so. However, on investigation the Status Register

would show that the Carry flag has been set. Why?

If we change SUBS to RSB so that:

RSBS R0, R1, R2 

Then by loading the same values into the registers the result in R0 is 0xFFFFFFFF and the

Carry flag is clear! In subtraction, the Carry flag is used the 'wrong' way round so that if a

borrow is required the flag is unset or clear. It acts like a NOT Carry flag! This is useful when

dealing with numbers over 32-bits and ensures the correct result. The result in this last instance

also sets the Negative flag as 0xFFFFFFFF represents a negative value in signed numbers. The

above example illustrates this perfectly and is because of the use of twos complement numbers.

When a section of code is not giving you the result you expect it always makes good sense

to check the condition of the Status Register flags. They may not behave as you expect.

The two rules here to remember then are:

If a borrow is generated, then the Carry flag is clear, C=0

If a borrow is not generated, then the Carry flag is set, C=1



 

When we perform a multi-word subtraction, borrowing from one word means we need to

subtract an extra one from the next word. However, as we have seen, a borrow results in the

Carry flag being zero, not one as we would have liked. To compensate for this, the ARM inverts

the Carry flag before using it in the SBC operation. This system can be extended to subtract

operands which require any number of words to represent them --- simply repeat the SBC

instruction as many times as required.

You may be wondering why the ARM instruction set has reverse subtract instructions.

Again, this ties in with the overall philosophy of speed. By being able to specify which operand

is subtracted from which, we effectively remove the necessity of having to go through a data

swapping process to get the operands in the right order.



Multiplication
The ARM has a couple of instructions that will perform 32-bit multiplication. The first of

these, MUL provides a direct multiplication and takes the form:

MUL (<suffix>) <dest>, <Operand1>, <Operand2> 

MUL is a bit different to instructions such as ADD and SUB in that it has certain restrictions

on how its operands can be specified. The rules are:

Dest: Must be a register and cannot be the same as Operand1. R15 may not be used as the

destination of a result.

Operand1: Must be a register and cannot be the destination register.

Operand2: Must be a register and cannot be an immediate constant or shifted operation.

In summary, you can only use registers with MUL, cannot use R15 as the destination, and

the destination register cannot be used as an operand. Here's an example:

MUL S R0,R4,R5 ; R0=R4*R5 and set status 

 

Program 6c demonstrates MUL in action. Two numbers are placed in R1 and R2 and the

multiplied result into R0. 

 

Program 6c. 32-bit multiplication

/* multiply two numbers R0=R1*R2 */ 

.global _start 

_start:

MOV R1, #20 @ R1=20 

MOV R2, #5 @ R2=5 

MUL R0, R1, R2 @ R0=R1*R2

MOV R7, #1 @ exit through syscall 

SWI 0 

You can assemble, link, and run this using the following:

as -o prog6c.o prog6c.s

ld -o prog6c prog6c.o 

./prog6c 

Now print the result with:

echo $? 



MLA is MuLtiply with Accumulate. It differs from MUL in that it allows you to add the results

of a multiplication to a total. In other words, you can accumulate values. The format of the

command is:

MLA (<suffix>) <dest>, <Op1>, <Op2>, <sum> 

The rules stipulated at the start of this section still apply here. There is an extra operand,

<sum>, which must be specified as a register. For example:

MLA R0, R1, R2, R3 @R0=(R1 * R2) + R3

The register specified by <sum> may be the same as the <dest> register, in which case the

result of the multiplication will be accumulated in the destination register, thus:

MLA R0, R1, R2, R0 @ R0=(R1 * R2) + R0

is possible. Let's adapt Program 6c to use it, creating Program 6d, as listed below:

 

Program 6d. Using MLA - Multiply with Accumulate.

 

/* Multiply two numbers with accumulate R0=(R1*R2)+R3 */ 

.global _start 

_start:

MOV R1, #20 @ R1=20 

MOV R2, #5 @ R2=5 

MOV R3, #10 @ R3=10 

MLA R0, R1, R2, R3 @ R0=(R1*R2)+R3

 

MOV R7, #1 @ exit through syscall 

SWI 0 

You can assemble, link, and run this using the following:

as -o prog6d.o prog6d.s 

ld -o prog6d prog6d.o 

./prog6d 

Now print the result with:

echo $? 

The result returned will always be 10 more than the product of the two values in R1 and R2.

This is because the value 10 was seeded into R3.

Note that the <dest> register cannot be used as <op1> nor <op2>. So:



MLA R0, R0, R2, R3 @ R0=(R0 * R2) + R3

 

Would fail to assemble and generate an error message.



Divide Arrives
The ARM processor used on the Raspberry Pi 1 and Raspberry Pi Zero did not provide a

division instruction, so dividing two numbers either required some ingenuity or performed

using a count-subtraction methodology.

With the Raspberry Pi 2, and subsequent releases, the SDIV and UDIV instructions were

available for use, signed and unsigned division, respectively. The instructions, which have no

effect on the status register flags, operate directly on registers, and take the form:

SDIV <dest>, <numerator>, <denominator> 

UDIV <dest>, <numerator>, <denominator> 

Here <dest> is the destination register which contains the quotient on completion. The

remainder must be calculated separately. If <dest> is omitted, then the result is in <numerator>.

Program 6e below shows an example of use.

 

Program 6e. Signed Division with SDIV.

/* Signed Division Example RPi 2 and Greater */ 

.global _start 

_start:

MOV R3, #20 @ Numerator 

MOV R4, #5 @ Denominator 

SDIV R0, R3, R4 @ R0=R3/R4 

 

@ Do not use SP or PC,  

@ SR flags not altered 

@ div by 0 returns 0 

 

MOV R7, #1 @ exit through syscall 

SWI 0 

The result can be printed out by typing:

echo $? 

Which will return '4'' based on the listing.

Chapter 12 shows how division can be performed without these instructions. It also shows

how the remainder can be calculated, as this is invariably required also.

The Raspberry Pi 2 included a new SoC and this utilised the BCM2836 and associated FPU

with saw the division infrastructure implemented. This has continued since with subsequent

releases of the SoC (System on Chip).



Move Instructions

There are two data move related instructions. MOV and MVN are used to load data into a

register from another register or to load register with a specific value. The instructions do not

have an Operand1 and take the form:

MOV (<suffix>) <dest>, <Operand2> 

MVN (<suffix>) <dest>, <Operand2>

Here are a couple of examples:

MOV R0, R1 @ Copy contents of R1 to R0 

MOV R5, #0xFF @ Place 255 in R5 

If you look at the comment in the first example above, although the instruction is MOVe it is

important to realise that the contents of the source register are unchanged. A copy is being

made. Also, unless the S Flag is used the Status Register is not changed either. This instruction:

MOVS R0, #0 

would place zero into R0 and set the Zero flag at the same time.

MVN is MoVe Negative (or MoVe Not). The value being moved is negated in the process.

This means that 1s become 0s and 0s become 1s or the one's complement form of the number

is taken.:

MVN R0, #9 @ Move -9 into R0 

 

9:   0x00000009 00000000 00000000 00000000 00001001 

MNV  0xFFFFFFF6 11111111 11111111 11111111 11110110 

Here are some examples of the instruction:

MVN R0, #0 @ set R0 to -1 

MVN R1, #1 @ set R1 to -2 

We will learn in Chapter 11 that there are restrictions on the value of contents being loaded

into registers as immediate values. Put simply, there are some numbers you just can't use

directly, and it is not because they are too big, for instance. This can also be an issue when

dealing with addresses in memory. We'll examine why, and how to circumvent the problem in

due course.



Compare Instructions
We encountered these instructions when we looked at the Status Register and flags in the

previous chapter. They are two comparison instructions, and they have the format:

CMP <Operand1>, <Operand2> @ Set flags of <Op1>-<Op2> 

CMN <Operand1>, <Operand2> @ Set flags of <Op1>+<Op2> 

These instructions do not move information or change the contents of any of the registers. What

they do is update the Status Register flags. Since the purpose of CMP and CMN is to directly

affect the Status Register flags there is no reason to use the S suffix. CMP works by subtracting

Operand2 from Operand1 and discarding the result.

CMP R3, #0 

The example above would only set the Zero flag if R3 itself contained 0, otherwise the Zero

flag would be clear.

CMP R3, #128 

Here, the Zero flag would be set if R3 contained 128. If R3 held anything less than 128 the

Negative flag would be set. What would cause the Overflow flag to be set? If you are ever in any

doubt what the result would be, then simply check it out longhand by doing the binary

arithmetic!

CMN is the negative version of compare. This is good if you want to control a loop

decrements past zero. In such case you could use:

CMN R0, #1 @ Compare R0 with -1 

The idea is the same behind the reason of the MVN instruction. It allows comparisons to be

made with small negative immediate constants which could not be represented otherwise.

An important point to be wary of is that, in MVN, the logical NOT of Operand2 is taken. In

CMN it is the negative of the operand that is used. Thus, to compare R0 with minus 3 we

would write:

CMN R0, #3

The ARM will automatically form the negative of Operand2 and then make the comparison.

As with CMP, the purpose of CMN is to affect the Status Register flags and the S suffix is

not applicable.



Ordering Numbers
The order that information is stored in memory is of some considerable significance. Consider

the hexadecimal number below:

0xFF00AA99 

If this is stored in four consecutive bytes of memory how are they ordered? Thus:

0xFF, 0x00, 0xAA, 0x99 

or:

0x99, 0xAA, 0x00, 0xFF 

These two methods are called big-endian and little-endian, respectively. As you can see the

bytes are stored in the reverse order to each other depending on the method used.

ARM chips are bi-endian, but can use either method, which is defined by a specific bit in

the CPSR which defines which 'endianness' to use. By default, Raspberry Pi OS uses the little-

endian methodology. For the most part the order of the bytes will be transparent in use as the

assembler takes care of this for us.



7. ROS Ins and Outs

When we use computers and operating systems such as Raspberry Pi OS, we take an awful lot

for granted. We type commands at the keyboard, these get 'actioned' and more often than not,

provide output in the form of information or results by way of what is displayed on the screen.

There's a lot going on. Consider a couple of what would seem relatively simple tasks, typing a

command at the keyboard and then getting a response on the screen. These are things we do

every time we interact with the Raspberry Pi OS command line. The question is then, how do

we get input from the keyboard and write information to the screen in our machine code

programs?

In the strictest sense you do it yourself. But this involves a good deal of knowledge about

the various hardware components of the Raspberry Pi, because to write a message to the screen

for instance, we have to know exactly where the hardware that drives the screen is located

within the computer's memory and, in turn how to write the information to it. Equally, to read

input from the keyboard we need to understand how the keyboard is mapped and how to read

that matrix to identify which keys are being pressed.

Reading and writing to the hardware to do this is often termed bare metal programming,

because you are 'talking' to the computer hardware directly. Whilst this is potentially exciting, it

is rather an advanced topic and not necessarily the domain of a beginner's book such as this.

Equally though unless you are specifically bare metal programming as an exercise there is

absolutely no need for you to do it. Instead, we can access the operating systems own routines

to do this.



SWI and SVC Commands

The SWI instruction allows you as the programmer to gain access to predefined routines or

libraries of operating systems functions. SWI stands for SoftWare Interrupt because when it is

encountered it causes the flow of your program to be paused and handed over to the appropriate

routine. Once the SWI instruction has been completed, control is handed back to the calling

program which can continue on its way. The SWI command is also often referred to as SVC or

SuperVisor Call as this is a mode of operation that is invoked in the ARM chip when called.

You will probably recall that we have used a SWI command in all our assembler programs

so far. We used it to exit the code back to the command line prompt. This use took the form:

MOV R7, #1 

SWI 0 

All SWI calls are executed with SWI 0 (or SVC 0 can be used instead). The actual function to

be performed is determined by the number held in register R7. This is called the Operating

System Call or 'Syscall' for short, number. In addition, other registers may also have to be

seeded with information, so a call to SWI 0 often requires some setting up before being

executed. For example, to write a string of characters to the screen three other items of

information must be placed in specific registers.

To use these SWI calls effectively then, we need to know what they do, what information

must be passed and into what registers. Information may be passed back by the SWI call and in

such cases, we need to know what information and in what registers.

Appendix B contains a list of the Syscalls available in the Raspberry Pi OS. A detailed

description of all the SWI calls is not provided, but the more common and useful ones are

described at various points in this book. No official list of Syscalls exist but there are various

sources on independent websites.

Let's look at what are arguably the two most important Syscalls at this stage in our learning

---printing to the screen and reading from the keyboard. These are important as we will use

them a lot in the program examples in the rest of this book. In using them we will need to look

at a few more features of the GCC assembler and use a few assembly language techniques that

we won't learn about in detail until later.



Writing to the Screen
To write a sequence or string of ASCII characters to the screen we need to use the 'write'

function. This is Syscall 4. The parameters required by Syscall 4 are as follows:

R0= the output stream, 1 for the monitor 

R1= the address of the string of characters 

R2= the number of characters to be written 

R7= the number of the Syscall, so R7=4 

(Incidentally, ASCII stands for American Standard Code for Information Interchange, and an

ASCII code is a simple number used to represent the character. Appendix A contains the

ASCII character table, and this is universal in acceptance as a standard.)

The GCC assembler provides us with a facility to store an ASCII string of characters within

the body of our machine code file. Program 7a illustrates the setup for this. The key here is to

note the GCC assembler directive '.ascii' on the last line. This directive informs the assembler

that an ASCII string of characters follows the string that is enclosed by quotes. You will also

notice '\n' at the end of the character string, but within the quotes. The backslash character

signifies that the next character is a 'control-character' and as such has an action. Here '\n'

means generate a new line. A label is used to mark the start of the location of the string --- in

this case I have been original and called it 'string'.

 

Program 7a. Syscall 4 to write a string to the screen.

 

/* How to use Syscall 4 to write a string */ 

.global _start 

 

_start:

MOV R7, #4 @ Syscall number 

MOV R0, #1 @ Stdout is monitor

MOV R2, #19 @ string is 19 chars long 

LDR R1,=string @ string located at string: 

SWI 0  

 

_exit: @ exit syscall 

MOV R7, #1 

SWI 0 

 

.data 

string: 

.ascii "Hello World String\n" 



End Program 7a. 

Create, assemble, and link the program and try it out for yourself. The instruction:

LDR R1,=string 

Can be read as: LoaD Register R1 with the address of the label string.

 

When Syscall 4 is made it identifies the output stream, the 1 passed in R0 defines the standard

output device, the monitor. It then extracts the length of the string from R2 and prints that

number of characters out starting at the address held in R1. The number of characters held in

R2 includes spaces and any punctuation. The final '\n' character is regarded as one character.

Try altering the value loaded into R2 and see if you can predict the result. For example, try:

MOV R2, #11 

You will also note that there is an extra directive in the program:

.data 

This informs the assembler that what follows should be treated as a subsection containing data,

as opposed to assembly language code.

The data subsection could have been placed at the start of the source file had we desired.

We would then have needed to signify the start of the assembly language subsection by using a

directive thus:

.text 

 

How you structure your files is entirely a matter of which way you wish to work. I tend to

prefer placing data and data areas at the end of programs to avoid any alignment problems. You

may recall from Chapter 5 that ARM machine code must be assembled on four-byte word

boundaries, in other words start at an address that is directly divisible by four. This may not be

the case if a string of 10 characters was used, for example. This can be corrected by using an

align directive, something discussed later.



Reading from the Keyboard
To read a sequence (or string) of ASCII letters from the keyboard we need to use the 'read'

function. This is Syscall 3. The parameters required by Syscall 3 are similar to Syscall 4 and are

as follows:

R0= input stream, this is 0 for the  

R1= buffer address for string of characters read to be placed 

R2= the number of characters to be read 

R7= the number of the Syscall, so R7=3 

You can use Program 7a as a basis for the new program. You can make a copy of it at the

command line by using the cp command as follows:

cp prog7a.s prog7b.s 

Now edit the source file to contain the new _read routine. The entire program is given below.

Program 7b. Syscall 3 to read from the keyboard.

 

 

/* How to use Syscall 3 to read from keyboard */

.global _start 

 

_start:

_read:     @ read syscall 

MOV R7, #3 @ Syscall number 

MOV R0, #0 @ Stdin is keyboard 

MOV R2, #5 @ read first 5 characters  

LDR R1,=string @ string placed at string: 

SWI 0 

 

_write:     @ write syscall 

MOV R7, #4 @ Syscall number 

MOV R0, #1 @ Stdout is monitor

MOV R2, #19 @ string is 19 chars long 

LDR R1,=string @ string located at string: 

SWI 0  

 

_exit:     @ exit syscall 

MOV R7, #1 

SWI 0 

.data 

string: 

.ascii "Hello World String\n" 



End Program 7b.

 

Here we still need to define the ASCII string. I have purposely left the original text in place so

that you can see what results from using the function. The label string: points to what is

effectively a buffer or place for the input read from the keyboard to be placed. We could have

just defined an empty string, for example:

.ascii "       " 

(There are other ways to reserve empty spaces in memory in programs and these will be

discussed later.) R2 is now used to hold the number of characters we want from the read

process. It is important to remember that this is not the number of characters that can be typed.

When _read: is executed it accepts all input at the keyboard until the Return key is pressed.

Only at that stage does it extract the first x characters as defined by the value in R2. Thus

typing:

123456789 

 

At the keyboard would see 12345 (the first five characters) placed into the string buffer. The

rest would then be dealt with as though a Bash command had been entered and therefore

generates an error message. (Bash being the name given to the Raspberry Pi OS command line

shell you have been working within.) The '_write:' routine would print out the newly created

string which in this instance would be:

12345 World String 

12345 having overwritten 'Hello'.

12 

lo World String 

Run the program again and just type in:12

Now the string printed is:

Note here that a newline has been generated. This is because the <Return> was inserted

into the string buffer as well. We will come back to Syscalls in Chapter 18.



eax and Others
Much of the Syscall documentation you come across with have been written with non-ARM

machines in mind and specifically i386 processor systems. As such you will find yourself

dealing with an alien set of register references. Figure 7a lists these registers and their ARM

equivalents which should assist you in breaking down what needs to go where.

 

i386 ARM Function

eax R7 Syscall Number

ebx R0 Argument 1

ecx R1 Argument 2

edx R2 Argument 3

esi R3 Argument 4

edi R4 Argument 5

eax on return R0 Value or error number

 

 

 

Figure 7a. 386 v ARM registers for Syscalls.

 

 

So far as we have developed new source files and we have assembled and linked the files by

typing the commands at the command line. This is repetitive but made easier by the Terminal

history feature. By using the up and down arrow keys while in Terminal you can scroll through

previously entered commands, which in turn can be edited.

GNU also provide a very clever piece of software called 'Make'. This is a tool that allows

programmers to control the generation of executable files from a single controlling file. When

you see a piece of software installing on your computer then chances are that the whole process

is bring controlled by a Make file. Make is a very sophisticated tool and you can find out more

about it in detail from the GNU website.

Program 7c is a source file (although you save it without the '.s' suffix) that will automate

the whole assemble and link process for you. It is extremely flexible and can deal with most

possibilities. (Note the '#' characters are equivalent of the '@' in assembler files. They allow

comments to follow.)

 

Program 7c. Automate assembly and linking with Make.



PROGRAMS = prog7a prog7b

 

# If we've supplied a goal on the command line 

# then set it as the list of programs we already know about. 

 

ifneq ($(MAKECMDGOALS),) 

ifneq ($(MAKECMDGOALS),clean) 

  PROGRAMS = $(MAKECMDGOALS) 

endif 

endif 

 

# The default rule if none specified on the command line

 

all: $(PROGRAMS) 

# Make knows how to compile .s files, so all 

# we need to do is link them. 

 

$(PROGRAMS): % : %.o ld -o $@ $< 

clean: 

rm -f *.o $(PROGRAMS)

End Program 7c.

 

 

Create the above file and call it 'makefile' - there is no need to append an '.s' to the filename,

just plain 'makefile'. Ensure your file is saved in the same directory as your source file. 

Also, note that the two lines:  

ld -o $@ $< 

rm -f *.o $(PROGRAMS) 

must be indented by a single tab character for Make to work. Run the makefile script by typing

(at the command prompt): 

make 

 

The variable PROGRAMS (first line in makefile) is being used to hold the names of the

source files to be assembled and linked. You can enter one or as many names as you like here,

with each being separated by a space. And effectively that is all you need to do. The rest of the

program will assemble each of the files, create the object files and then link them.

In the listing above this would mean the source files called prog7a and prog7b. Note the '.s'

suffix is implied, and you do not need to include it.



PROGRAMS = prog7a prog7b 

This also implies the makefile exists in the same directory as your source code files. If the

source files have previously been assembled and linked, they will be overwritten provided the

target files are older than their associated source files. If the files do not exist, then make will

complain with an error message. You can 'force' the re-make by using:

make -B 

If you want to assemble and link a specific file or files, you can enter the file name after the

commands thus:

make prog7a 

This would assemble and link the source file called 'prog6a' provided it existed. This would be

in preference to any filenames listed on that first makefile line.

At the command line, typing:

make clean 

Will delete the '.o' files from the directory based on initial definition for PROGRAMS.

It makes good sense to include a makefile in each and any directory where you create and

save your source files that need to be assembled and linked.

The 'make' utility is very versatile is and can be utilised in several ways. If you wish to

study 'make' in more detail the GNU website has plenty of manuals and examples at:

 

www.gnu.org/software/make/  

 

Some further 'makefile' examples are provided at further points in the book, and the source files

that can be downloaded as previously mentioned include relevant makefile examples in the

respective directory, where appropriate.

If you downloaded the program files from my website, you would find that a makefile (or

similar) is included for each of the programs if appropriate.



8. Logical Operations

In computer terms, logic can be defined as the non-arithmetic operations performed that

involve yes/no decisions. The ARM has three different logical operators: AND, OR and EOR.

In each case, the logical operation is performed between the corresponding bits of two separate

numbers. As such there can only ever be two possibilities: yes or no. In binary these are

represented as 1 and 0. These instructions are useful when it comes to identifying or forcing the

state of individual bits in sets of data.

Logical AND
The four rules for AND are:

0 AND 0 = 0 [Nought and nought is nought] 

1 AND 0 = 0 [One and nought is nought] 

0 AND 1 = 0 [Nought and one is nought] 

1 AND 1 = 1 [One and one are one]br/>

The AND operation will only generate a 1 if both corresponding bits being tested are 1. If a 0

exists in either of the corresponding bits being ANDed, the resulting bit will always be 0.

Example:

1010 

0011 

0010 AND 

In the result only bit 1 is set; the other bits are all clear because in each case one of the

corresponding bits being tested contains a 0. It is important to remember in these logical

operations that there is no carry bit. The tests are done on the individual bits, and we are not

adding or subtracting numbers here.

The main use of the AND operation is to 'mask' bits or 'preserve' bits. For example, to

preserve the low nibble (bits 0 to 3) of a byte and completely clear the high nibble (bits 4 to 7)

so that the byte is set to all zeros we use the AND operator, masking the original with the value

00001111. If the byte we wished to preserve was the low nibble of say, 10101100, we would

logically AND it thus:

10101100  

00001111  

00001100 AND  

Here, the top four bits are cleared, and the lower four bits have had their condition preserved.

Logical OR



The four rules for OR are:

0 OR 0 = 0 [Nought or nought is nought] 

1 OR 0 = 1 [One or nought is one] 

0 OR 1 = 1 [Nought or one is one] 

1 OR 1 = 1 [One or one are one] 

Here the OR operation will result in a 1 if either or both the bits contain a 1. A 0 will only

occur if neither of the bits contains a 1. Example:

1010 

0011 

1011 OR  

Here, only bit 2 of the result is clear, the other bits are all set as each pair of tested bits contains

at least one 1.

One common use of the OR operation is to ensure that a certain bit (or bits) is set --- this is

sometimes called 'forcing bits'. For example, if you wish to force bit 0 and bit 7 you would need

to OR the byte with 10000001.

00110110 

10000001 

10110111 OR  

The initial bits are preserved, but bit 0 and bit 7 are 'forced' to 1. These two bits were originally

clear. The other bits remain unaffected.

Logical EOR
The Exclusive OR operation has the four rules:

0 EOR 0 = 0 [Nought exclusive or nought is nought] 

1 EOR 0 = 1 [One exclusive or is one] 

0 EOR 1 = 1 [Nought exclusive or one is one] 

1 EOR 1 = 0 [One exclusive or one is nought] 

This operation sets the bit if it is Exclusive to the OR operation. If both bits being tested are

identical, 0 and 0 or 1 and 1 then the result is 0. A 1 will only result if both bits being tested are

not alike.

0101 

1110 

1011 EOR  

This instruction is often used to complement, or invert, a number. This is done by performing

an exclusive or with 11111111.



00110110 

11111111 

11001001 EOR  

Compare the result with the first byte --- they are completely opposite: 1s where 0s were and 0s

where 1s were.

The MVN instruction introduced in the last chapter effectively performs an EOR on

Operand2 to obtain its result.



Logical Instructions
The process remains the same no matter how wide the data is. The examples above are one byte

wide. The operation is the same in four-bytes (or as many bytes as you need). The operation

takes place on the directly associated bits, and no Status Register flags are involved or

considered, and there is no Carry involved at any point.

AND, ORR and EOR are the instructions used to perform the three main logical

operations. The form is the same as previous commands:

AND (<suffix>) <dest>, <Operand1>, <Operand2> 

ORR (<suffix>) <dest>, <Operand1>, <Operand2> 

EOR (<suffix>) <dest>, <Operand1>, <Operand2> 

In these cases, Operand1 is a register, while Operand2 can be a register or immediate value.

The operations themselves do not set the Status Register flags but can be forced to do so with

the suffix.

Here are a few examples of these instructions in use:

AND R0, R0, #1 @ preserve state of b0 in R0 

ORR R1, R1, #2 @ ensure bit 1 in R1 is set 

EOR R2, R2, #255 @ invert bits in low byte R2  

Here's a short segment of code to look at:

MOV R0, #129 

AND R0, R0, #1 

ORR R0, R0, #2 

EOR R0, R0, #255  

The result is 0xFC and here's how we arrived at it (dealing with just the low byte of the word):

 

Load 129 10000001

AND with 1 00000001

Result 00000001

OR with 2 00000010

Result 00000011

EOR with 255 11111111

Result 11111100

 

Here are some practical examples of the ORR and EOR commands in use, with a typical

application of each of them.



ORR to Convert Character Case
Program 8a illustrates how the ORR instruction converts a character from upper case to lower

case. For example, it will take 'A' and convert it to 'a'. The ASCII value of the letter 'A' is 0x41

(65) and the ASCII character for 'a' is 0x61 (97). By comparing the hex numbers, we can see

that the difference between 'A' and 'a' is 0x20.

 

 ASCII

  Value
 Binary

 
A 0x41 0100 0001

a 0x61 0110 0001

Difference 0x20 0010 0000

 

 

Figure 8a. Binary difference between ASCII 'A' and 'a'. 

 

As both these characters mark the start of their section of the alphabet, it follows that the

difference between an uppercase and lowercase value would always be the same. Figure 8a

shows how this pans out in 8 bits of binary.

I hope you can see that we can achieve this difference by using the ORR instruction with

the binary value 0010 0000 or 0x20 (32).

 

 

Program 8a. Converting character case. 

/* Using ORR to toggle a character case */ 

.global _start 

 

_start:

_read: @ read syscall 

MOV R7, #3 @ Syscall number 

MOV R0, #0 @ Stdin is keyboard 

MOV R2, #1 @ read one character only  

LDR R1,=string @ string at string: 

SWI 0 

 

_togglecase: 

LDR R1, =string @ address of char 

LDR R0, [R1] @ load it into R0 



ORR R0, R0, #0x20 @ change case 

STR R0, [R1] @ write char back 

 

_write: @ write syscall 

MOV R7, #4 @ Syscall number 

MOV R0, #1 @ Stdout is monitor

MOV R2, #1 @ string is 1 char long 

LDR R1,=string @ string at start: 

SWI 0  

 

_exit: @ exit syscall 

MOV R7, #1 

SWI 0 

.data 

string: .ascii " " 

End Program 8a.

 

 

Program 8a above does this in the section called 'togglecase'. The routine starts by reading a

character at the keyboard (press a capital letter and press Return) which it then stores at 'string'.

The togglecase routine then places the address of the stored character into R1 and uses a

technique called indirect addressing to load the character into R0. (This form of addressing is

discussed in Chapter 15.) The value in R0 is then masked with 0x20 and the indirect addressing

technique used to store the modified contents of R0 back at the address held in R1.

Note that no check is made here to ensure that the character entered is in the range A-Z.

How would you adjust the program to convert a lowercase character into an uppercase one?



Bit Clear with BIC

The BIC instruction sets or clears individual bits in registers or memory locations. Its format is:

BIC (<suffix>) <dest>, <Operand1>, <Operand2> 

The Bit Clear instruction forces individual bits in a value to zero.

BIC R0, R0, #%1111 @ clear low 4 bits of R0. 

If R0 held 0xFFFFFFFF then the example above would clear the lowest four bits to leave

0xFFFFFFF0.

R0:    11111111 11111111 11111111 11111111 

BIC #0xF: 00000000 00000000 00000000 00001111 

Result:  11111111 11111111 11111111 11110000 

The BIC command performs an AND NOT operation on Operand1 with Operand2.



Flag Tests
There are two instructions whose sole purpose is to test the status of bits within a word. Like

CMP there is no destination for the result, which is reflected directly in the Status Register

(therefore the S suffix is not required). The two instructions are TeSt BiTs (TST) and Test

EQuivalence (TEQ). The formats are:

TST <Operand1>, <Operand2> 

TEQ <Operand1>, <Operand2> 

TST is a test bits instruction, and Operand2 contains a mask to test on Operand1. It performs

the equivalent of a logical AND with the outcome updating the Zero flag:

TST R0, #128 @ Test if b7 of R0 is set  

 

TEQ is test equivalence and uses an EOR process. It is a handy way of seeing if particular

bits in registers are the same.

TEQ R0, R1 @ Test if R0 & R1 are same 

You can use suffixes with both the TST and TEQ instructions so that you can test for other

conditions as well as that of the Zero flag (detailed in the next chapter).

Program 8b uses the TST instruction to convert a number held in R6 into a binary number,

which is then displayed on the screen. The number to be printed is placed in R6. There are a

few things of interest in this program which we have not encountered yet and they will be

explained in detail in the following chapters. Note how the program is broken into clearly

named sections.

 

 

Program 8b. Printing a number as a binary string. 

 

/* Convert number to binary for printing */ 

.global _start 

 

_start:

MOV R6, #251 @ Number to print in R6 

MOV R10, #1 @ set up mask 

MOV R9, R10, LSL #31  



LDR R1, = string @ Point R1 to string 

 

_bits: 

TST R6, R9 @ TST no, mask 

BEQ _print0  

MOV R8, R6 @ MOV preserve, no 

MOV R0, #49 @ ASCII '1' 

STR R0, [R1] @ store 1 in string 

BL _write @ write to screen 

MOV R6, R8 @ MOV no, preserve 

BAL _noprint1 

 

_print0: 

MOV R8, R6 @ MOV preserve, no 

MOV R0, #48 @ ASCII '0' 

STR R0, [R1] @ store 0 in string 

BL _write 

MOV R6, R8 @ MOV no, preserve 

 

_noprint1: 

MOVS R9, R9, LSR #1 @ shuffle mask bits 

BNE _bits 

 

_exit: 

MOV R7, #1 

SWI 0 

 

_write: 

MOV R0, #1 

MOV R2, #1 

MOV R7, #4 

SWI 0 

MOV PC, LR 

 

.data 

string: .ascii " " 

 

End Program 8b.

 

 

The mnemonic LSL is used in a couple of places. This stands for logical shift left and is used

to shuffle the bits in a word along --- left in this case. In the program it is used as follows:



MOV R10, #1  

MOV R9, R10, LSL #31 

Here #1 is being placed into R10, via R9, and shifted 31 times to the left, so that only the most

significant bit in the register is set. This is because we cannot load the value, we require directly

into the register due to constraints that are imposed on use of immediate values (more on this

shortly).

So, the line does this:

MOV R10, #1: 00000000 00000000 00000000 00000001 

LSL #31:    10000000 00000000 00000000 00000000 

       << shift left by 31 places << 

We now enter the 'bits' loop:

 

_bits: 

TST R6, R9 @ TST no, mask 

BEQ _print0  

MOV R8, R6 @ MOV preserve, no 

MOV R0, #49 @ ASCII '1' 

STR R0, [R1] @ store 1 in string 

BL _write @ write to screen 

MOV R6, R8 @ MOV no, preserve 

BAL _noprint1 

 

_print0: 

MOV R8, R6 @ MOV preserve, no 

MOV R0, #48 @ ASCII '0' 

STR R0, [R1] @ store 0 in string 

BL _write 

MOV R6, R8 @ MOV no, preserve 

R6 holds the number ('no'). We know that the most significant bit of the mask is set (b31) and

TST tests to see if it is in 'number' too. If it is, then the following BEQ will occur and a 1 will

be printed. If not a 0 will be printed. Note that in each case we preserve the value in R6 as this

is our number to be tested, and we need to use R0 to print the 1 or 0 in the _write routine. The

ASCII value for '1' (49) or '0' (48) is placed in R0 and stored in string: in either case. (This

should be familiar to you now as we have used this technique a few times in previous

programs.)

In either case we now use the _write routine as a subroutine, this means that we only need

to assemble it once in the program. The program uses:

BL _write 



 

to jump to the routine. BL stands for Branch with Link. When this occurs the address of the

next instruction is saved, and the program jumps to the named label. If you look at the end of

the _write routine, it ends with:

MOV PC, LR 

 

This effectively puts the saved address (in the Link Register) back into the Program Counter

(PC) thereby causing program flow to restart after the original BL instruction. These concepts

are dealt with in some detail in Chapter 10, so all will become clearer.

In the _noprint1 section we use a logical shift right to shift the mask bit along one place to

the right, making sure that we update the Status Register flags using the S suffix. The program

continues to loop, and print 1s and 0s as required, until all 32-bits have been tested.

_noprint1: 

MOVS R9, R9, LSR #1 @shuffle mask bits 

BNE _bits 

This program is a great visual aid to see how bit patterns develop. When you run it, work your

way up through the numbers from '1' to see the output. You should recognise the binary very

clearly now.

You could have a go at improving this program by requesting a number to be entered at the

keyboard and then displaying its value in binary. To do that though you would need to be able

to convert an ASCII value into hex so you can store it in a register. A technique to do this is

given later in the book.

In Program 9a there are a few instances where the ASCII value of 1 or 0 has been required.

In these cases we have used the ASCII number as an immediate value, thus:

MOV R0, #49 

 

It is also possible to do this using the character itself:

MOV R0, #'1' 

Here the ASCII character is enclosed in single quotes. This is certainly more readable and also

means that you don't have to go looking for the number representation.



System Call Registers
One of the downsides of using operating system calls is that you need to think carefully about

register usage. Most Syscalls need information passed to them via registers for them to

complete their function. So, if you plan to use Syscalls, plan your register usage from the start.

It could save a lot of editing later.

 



9. Conditional Execution

The concept of the suffix was introduced in an earlier chapter to illustrate how S can be

appended onto instructions to force the Status Register flags to be updated. For example:

ADDS R0, R1, R2 @ R0=R1+R2 & set flags 

Without the S, using the instruction in its basic form, ADD has no effect on the Status flags. S

is just one of many suffixes that exist and can be used in a similar way to expand the

functionality of just about every operation in the ARM's instruction set.

Almost all ARM instructions can have a suffix applied to them that will only allow the

command to be executed if the condition under test is true. If the condition is not met, then the

instruction will be ignored. The suffix CS denotes Carry Set, so the instruction it is appended

to will only be executed if the Carry flag is set at the time the ARM reaches the instruction. In

programming terms, it gives you the ability to make every instruction a conditional operation.

The list of condition codes is extensive and is given in Figure 9a. The GCC Assembler

understands these conditional codes, and you can append them for use in your programs by

adding the letters onto the end of the mnemonic. You can leave spaces between the mnemonic

and the condition code as well if this aids readability. These two examples are both acceptable:

MOVCS R0, R1 

MOV CS R0, R1 

In these examples:

MOV CS R0, R1 

the contents of R1 will only be moved into R0 if the Carry flag is set. Likewise:

MOV CC R0,R1 

will only move the contents of R1 into R0 if the Carry flag is clear.

Some suffixes alter more than one flag and in such instances these operations might require

certain combinations of flags to be at a combination of set or clear. Thus, we can conveniently

group the condition codes into two sets: those that are performed on the result of a single Status

Register flag and those that are executed based on the result in two or more flags.

 

Suffix Meaning

EQ Equal

NE Not Equal

VS Overflow Set

VC Overflow Clear

AL Always

NV Never

HI Higher

LS Lower Than or Same

PL Plus clear



Suffix Meaning

MI Minus Set

CS/HS Carry Set

CC/LO Carry Clear

GE Greater Than or Equal

LT Less Than

GT Greater Than

LE Less Than or Equal

 

 

 

Figure 9a. ARM assembly language condition codes.

 

 

Condition codes act on the status of the flags; they do not set the Status Register flags in the

first instance. You will need to use a compare instruction or an associated S suffix instruction to

do that. A good understanding of binary and arithmetic operations will aid your understanding

of how instructions are affected by these condition flags.

There are examples of the use of conditional execution throughout the programs in this

book. Indeed, Chapter 10 also includes a perfect illustration of how the use of conditional

codes can greatly reduce the size of your program.

This chapter contains an awful lot of information. Even for the experienced programmer it

can be quiet daunting, so don't be too concerned it if you don't fully understand it at this staged.

Note its contents and refer to it when you need to. Use Figure 9a as your reference point.



Single Flag Condition Codes
Falling into this group are the suffixes:

EQ, NE, VS, VC, MI, PL, CC, AL, NV

These conditional flags are provided in complementary pairs. In the first set below, EQ and NE,

they both act on the condition of the Zero flag --- one when it is set, and the other when it is

clear. If you are testing one condition and it is false then you do not have to test for the

alternative condition as, by definition, it must be true as it can only be one of two states.

EQ: Equal
Z=1: Instructions that use the EQ suffix will only be executed if the Zero flag is set. This will

be the case if the previous operation resulted in zero. Subtracting two numbers of the same

value will result in zero and accordingly set the Zero flag. A compare operation would set the

Zero flag if the two values being compared were the same. If the result of any operation is not

zero, then the Zero flag is clear (Z=0).

Example:

MOVS R0, R1 @ Move R1 into R0 and set flags 

MOVEQ R0, #1 @ If 0, load R0 with 1 

Here, the Zero flag will be set if 0 is moved into R0 from R1. If this is the case then the next

instruction will be executed, and 1 will be written into R0. The instruction will not be executed

if the Zero flag is clear, thereby proving that the value in R0 was non-zero.

NE: Not Equal
Z=0: Instructions that use the NE suffix will only be executed if the Zero flag is clear. This will

be the case if the previous operation did not result in zero. Subtracting two unlike numbers will

clear the Zero flag. A compare operation would set the Zero flag if the two values being

compared were the same. If the result of any operation is not zero, then the Zero flag is clear

(Z=0).

Example:

CMP R5, R6 @ Compare R6 with R5 & set flags 

ADDNE R5, R5, R6 @ If not zero R5+R6 and put in R5 

Here, the CMP instruction is used to compare contents of R5 and R6. If they are not the same

(so that the Zero flag will be clear, Z=0) then R5 and R6 are summed and the result placed in

R5.

VS: Overflow Set
V=1: Instructions that use the VS suffix will only be executed if the Overflow flag is set. This

flag is set because of an arithmetic operation producing a result which cannot be represented in



the 32-bit destination register, creating a potential overflow situation. In cases like this, data

placed in the destination register may not have value and thus require corrective action by the

programmer. Examples of this can be found in Chapter 5.

VC: Overflow Clear
V=0: Instructions that use the VC suffix will only be executed if the Overflow flag is clear. This

flag is set because of an arithmetic operation producing a result which cannot be represented in

the 32-bit destination register. That is, an overflow situation. If the flag is clear, then no such

overflow has occurred. This condition tests for the no overflow condition.

MI: Minus Set
N=1: Instructions that use the MI suffix will only be executed if the Negative flag is set. This

flag is set because of an arithmetic operation producing a result which is less than zero. This

would occur if a large number is subtracted from a smaller one. Logical operations may also set

the Negative flag if they cause bit-31 of the destination register to be set.

Example:

SUBS R1, R1, #1 @ Subtract 1 from R1 & set flags 

ADDMI R0,R0, #15 @ If negative add 0x0F to R0 

Here, the SUB instruction takes 1 from the contents of R1, and the S suffix is used to update

the flags as the result is stored into R1. The ADD in the next line only takes place if the N flag

is set and if so 15 is added to R0.

PL: Plus Clear
N=0: Instructions that use the PL suffix will only be executed if the Negative flag is clear. This

flag is cleared if the result of an arithmetic operation is positive, one that is greater than or

equal to zero. Note that the EQ suffix will test for zero only, the PL instruction tests for a plus

or non-negative result. It is important to note the subtle difference here.

Example:

SUBS R1, R1, #1 @ Sub 1 from R1 & set flags 

ADDMI R0, R0, #15 @ If neg add 0x0F to R0 

ADDPL R0, R0, #255 @ If pos add 0xFF to R0 

This example illustrates how compilations of conditional instructions act on alternative results.

This builds on the MI example above: if the result was a positive number then 255 is added to

the contents of R0 and stored there. As you can see, only one of these instructions can take

place and both act on the result of the SUBS instruction. Because neither of the following ADD

instructions has used the S suffix, the status flags will not have changed since the CMP

instruction.

CS: Carry Set (HS: Higher or Same)



C=1: Instructions that use the CS or HS suffix will only be executed if the Carry flag is set.

This flag is set if an arithmetic operation creates a result bigger than 32-bits. The Carry flag can

be thought of as the 33rd bit. The Carry flag can also be set by using an ARM shift operation

which is examined in Chapter 11.

Example:

ADDS R0,R0,#255 @ Add 0xFF to R0 and save in R0 

ADDCS R1,R1,#15 @ Carry set add 0x0F to R1 save in R1 

CC: Carry Clear (LO: Lower)
C=0: Instructions that use the CC or LO suffix will only be executed if the Carry flag is clear.

This flag is clear if an arithmetic operation creates a result that fits inside 32-bits. The Carry

flag is also affected by using any ARM shift operation which are examined in Chapter 11.

Example:

ADDS R0,R0,#255 @ Add 0xFF to R0 and save in R0 

ADDCS R1,R1,#15 @ If Carry=1 add 0x0F to R1 save in R1 

ADDCC R1,R1,#128 @ If Carry=0 add 0xF0 to R1 save in R1 

As with the PL example, this has a definitive action that is controlled by the status of the Carry

flag.

AL: Always
Instructions that use the AL suffix are always executed and do not rely on the setting of any of

the Status Register flags. Given that instructions will always execute if there are no conditional

suffixes, the AL suffix is the default setting for all appropriate instructions.

Example:

ADDAL, R0,R1,R2 @ Add R1 and R2 and save in R0 

ADD R0,R1,R2 @ Add R1 and R2 and save in R0 

These two instructions have the same result.

A common use of the AL suffix is with the Branch instruction to provide a three-letter

mnemonic and greater clarity:

 

B start @ Branch to start 

BAL start @ Branch to start 

 

NV: Never
Instructions that use the NV suffix are never executed and do not rely on the setting of any of

the status flags. This suffix is included for completeness. It can be used as a way of making



space within a program as the instruction will be assembled. This space might be used to store

data or modify the program itself at some point, and in more advanced cases, allow for

pipelining effects (Chapter 12).

Example:

ADDNV R0, R1, R2 @ Never perform the addition. 



Multiple Flag Condition Code
Falling into this group are six suffixes:

HI, LS, GE, LT, GT, LE

These condition codes are executed based on the condition of two or more Status Register flags.

They are most often used after a CMP or CMN instruction. This set of condition codes is

further divided into two groups: those that operate on unsigned numbers (HI and LS) and those

that operate on signed numbers (GE, LT, GT and LE).

HI: Higher (Unsigned)
C=1 AND Z=0: Instructions that use the HI suffix will only be executed if the Carry flag is set

and the Zero flag is clear. This happens in a comparison if Operand1 is greater than Operand2.

Example:

CMP R10, R5 @ Compare Registers R10 and R5 

MOVHI R10,#0 @ If R10 > R5 then set R10 to zero 

It is important to remember that this condition assumes the two values being compared are

unsigned and that negative values are not being used in a twos complement format.

LS: Lower Than or Same (Unsigned)
C=0 OR Z=1: Instructions that use the LS suffix will only be executed if the Carry flag is clear

and the Zero flag is set. This happens in a comparison if Operand1 is less than Operand2.

Again, it is important to remember that the condition assumes that the two numbers being

compared are unsigned.

Example:

CMP R10, R5 @ Compare Registers R10 and R5 

ADDLS R10,R10,#1 @ If R10<=R5 add 1 & save in R10 

GE: Greater or Equal (Signed)
(N=1,V=1) OR (N=0,V=0): This instruction will execute if both the Negative flag and

Overflow flag are the same. This happens when two values are being compared: Operand1 was

greater than or equal to, Operand2.

Example:

 

CMP R5, R6 @ Compare contents of R5 and R6 

ADDGE R5,R5,#255 @ If R5 >= R6 then add 0xFF to R5 



It is important to remember that this condition assumes the two values being compared are

signed quantities.

LT: Less Than (Signed)
(N=1, V=0) OR (N=0, V=1): This instruction will execute if the Negative and Overflow flags

are different. This happens if Operand1 is less than Operand2. Again, the condition assumes

that the two values being compared are signed quantities.

Example:

CMP R5, #255 @ Compare contents of R5 with 0xFF 

SUBLT R5,R5,R6 @ If R5<0xFF subtract R6 from R5,  

        @save result in R5 

GT: Greater Than (Signed)
(N=1, V=1) OR (N=0, V=0) AND Z-0: This instruction will execute if the result is a positive

number and not zero. Here, Operand1 is greater than Operand2 and the assumption is that

signed numbers are used. So, both the Negative flag and Overflow flag must be the same, and

the Zero flag clear.

Example:

 

CMP R5, R6 @ Compare R5 with R6 

ADDGT R0,R1,R2 @ If R5>R6 add R1+R2 & put in R0 

LE: Less Than or Equal To (Signed)
(N=1, V=0) OR (N=0,V=1) OR Z=1: This instruction will execute if the result between two

values, Operand1 is less than or equal to Operand2. The assumption is that signed numbers are

used. To achieve this both Negative flag and Overflow flag must be different, or the Zero flag

must be set.

Example:

CMP R5, #10 @ Does R5 contain 0x0A? 

SUBLE R0,R1,R2 @ If R5<=0x0A subtract R2 from R1  

     and put result in R0 



Mixing the S Suffix
The S suffix can be mixed with conditional suffixes. This ensures that the result of whatever

action taking place will also update the Status Register flags. We saw in a couple of earlier

examples how preserving the status of flags after an action means that it is possible to act on

the outcome of a conditional execution for both results. This assumes that the Status Register

flags are not updated. If you want the Status Register flags to be updated by the conditional

operation, then the S suffix should be added after the conditions suffix thus:

ADDCSS R0, R1, R2 @ R2+R1 if C=1, Update flags as well 

It is important to place the S suffix after the condition code otherwise the assembler will miss it

if it is placed before.

Trying to assemble:

ADDSCS R0, R1, R2 

gives an error.



10. Branch and Compare

This chapter has a more detailed look at the use of the compare instructions and the most

economical ways of using them.



Branch Instructions

A machine code program will run linearly executing each action, one after the other. A branch

instruction allows the program flow to be transferred to a different point in the program, where

the linear execution recommences until another branch is encountered. The two common

variants of the branch instruction have the format:

B (<suffix>) <label> 

BL (<suffix>) <label> 

In effect, combined with conditional flags, there is a branch for every occasion. Although it' is

perfectly possible to use the B instruction on its own, it is preferable to use the AL suffix so as

not to lose the 'B' in a bigger program:

BAL start 

But this is also perfectly acceptable:

B start 

The <label> is a marked position in the assembly language program. There is a physical limit to

the distance a branch can occur. This is plus or minus 32 Mb, as this is the largest address that

can be represented in the space allocated for the label position. The named label is not stored in

the machine code, nor is the absolute address of the label.; what is stored is the offset from the

current position. When the ARM encounters the branch instruction it treats the value following

as a positive (forward) or negative (backward) adjustment to the PC from the current position.

Chapter 13 looks at Register 15 in more detail and discusses how branches are calculated.



The Link Register
The Branch with Link instruction, BL, allows you to pass control to another part of your

program -- a subroutine -- and then return on completion. BL works like the normal branch

instruction in that it takes its destination as an address, normally specified by a label in an

assembly language program. However, before it branches it copies the contents of the Program

Counter (R15) into the Link Register (R14).

BLEQ subroutine @ Branch & save PC if Z flag set

Once the subroutine has completed the contents of the Link Register, can be transferred

into the Program Counter to return control to the calling segment of code:

MOV R15, R14 

This is arguably the least elegant instruction implementation on the ARM chip. It is effective

and does the job; however, other CPUs have specific subroutine call and return instructions. For

example, on the 6502 chip the mnemonics JSR <label> and RTS are used to jump and return to

and from subroutines.

A MOV instruction is used to move the return address from R14 back into the Program

Counter. This will have no effect on the Status Register flags, and therefore, flags are preserved

from whatever was going on before the return.

It is important to remember that each time a BL instruction is executed the contents of R15

are copied into R14. This means that if the program is already in a subroutine and another is

called, the original link address will be overwritten with the new link address.

If your program is going to nest BL calls inside one another, the Link Register must be

preserved on each occasion. The Link Register can then be re-seeded with the return address

each time the subroutine is completed. In such cases, housekeeping is important. Re-seeding

the wrong address back into the Program Counter will most likely crash your program.

A common way to store these nested addresses is to utilise the stack as a store. This is

described in Chapter 17.



Using Compare Instructions
Your machine code will regularly need to check the result of an operation and then, depending

on that result, take a course of action. There are a range of instructions that allow you to do this

and a couple also that jump, or 'branch' to another part of the program. These comparisons

instructions directly affect the Status Register flags at which point you can act on what you find.

The following segment will count from 1 to 50 and uses compare and branch instructions to

control the loop to do so:

MOV R0,#1 @Initialise count  

loop: 

ADD R0,R0,#1 @ Increment count  

CMP R0,#50 @ Compare with limit  

BLE loop 

This program continues to add 1 to the value in R0, which was initially set at 1. R0 is compared

to 50, and a BLE occurs if Less than or Equal to is the result. So, the loop control continues

until R0=50. Then the loop continues until R0=51, because R0 would have been incremented

to 51 in the instruction before the CMP, which is the point when the BLE instruction fails to

loop back to 'loop'.

This segment of code is perfectly acceptable, but we can reduce its length, by making the

loop count down thus:

MOV R0,#50 @ Initialise count  

loop: 

SUBS R0,R0,#1 @ Decrement count  

BNE loop @ Loop if not Zero 

Here, we use SUBS to decrement and set the flags and can therefore, get away with excluding

the CMP instruction. If you are counting a sequence of iterations and do not need the count

value for anything, it is better and more efficient to count down. This means fewer instructions

and a faster execution.



Compare Forward Thinking
Because the only effect of the comparison instructions is to test the condition of Status Register

flags, by thinking about what you require, you can get away without using them. Let's look at an

example. The segment below is a loop that will cycle until R0 and R1 are the same. If R0 is

greater than R1 it will subtract R1 from R0 and place the result in R0. If on the other hand R0

is less than R1, it will subtract R0 from R1 and place the result in R1. When they are the same,

the program will finish.

MOV R0, #100 @ arbitrary values in R0 & R1 MOV R1, #20

loop: 

CMP R0, R1 @ Are they the same: Z=1? 

BEQ stop @ if so stop 

BLT less @ if R0 < than R1 go to less 

SUB R0,R0,R1 @ otherwise sub R1 from R0 

BAL loop @ branch always back to start 

less:  

SUB R1,R1,R0 @ subtract R0 from R1 

BAL loop @ branch always to the start 

 

While this code is perfectly acceptable and does the job, we can reduce it by taking full

advantage of conditional execution of instructions:

MOV R0, #100 @ arbitrary values in R0 & R1 

MOV R1, #20 

loop: 

CMP R0, R1 @ Are they the same: Z=1? 

SUBGT R0,R0,R1 @ sub R1 from R0 if Great Than 

SUBLT R1,R1,R0 @ else sub R0 from R1 as Less 

BNE loop @ branch is not equal 

 

As we are testing for greater than and less than conditions, we can make direct use of the GT

and LT suffixes respectively and tag them onto the end of the SUB subtraction instruction.

Using Conditionals Effectively

In Chapter 8, we saw how to use the TST instruction to print out a binary number. There,

Program 8b used the section of code below to select whether a '1' or '0' will be used for

printing:

_bits: 



TST R6, R9 @ TST no, mask 

BEQ _print0  

MOV R8, R6 @ MOV preserve, no 

MOV R0, #49 @ ASCII '1' 

STR R0, [R1] @ store 1 in string 

BL _write @ write to screen 

MOV R6, R8 @ MOV no, preserve 

BAL _noprint1  

_print0: 

MOV R8, R6 @ MOV preserve, no 

MOV R0, #48 @ ASCII '0' 

STR R0, [R1] @ store 0 in string 

BL _write 

MOV R6, R8 @ MOV no, preserve 

On the face of things, this is a perfectly acceptable way to archive the result of printing either a

1 or 0 to the screen dependent on the result of a test. Indeed, it is, but that is without a full

understanding of the ARM instruction set. Now consider the listing for Program 10a and the

new section of code from _bits down which, using conditional instructions, is half the size of

the original segment. Now, dependent on the result of the TST instruction one of the MOV

commands -- and only one -- will get executed, dependent on the condition of the Zero flag.

This is much more elegant and easier to follow.

 

Figure 10a. Conditional execution to improve program size.

/* Convert to binary for printing */ 

.global _start 

_start:

MOV R6, #251 @ Number to print in R6 

MOV R10, #1 @ set up mask 

MOV R9, R10, LSL #31  

LDR R1, = string @ Point R1 to string 

_bits: 

TST R6, R9 @ TST no, mask 

MOVEQ R0, #48 @ ASCII '0' 

MOVNE R0, #49 @ ASCII '1' 

STR R0, [R1] @ store 1 in string 

MOV R8, R6 @ MOV preserve, no 

BL _write @ write to screen  

MOV R6, R8 @ MOV no, preserve 

MOVS R9, R9, LSR #1 @ shuffle mask bits 

BNE _bits 

_exit: 

MOV R7, #1 

SWI 0 



_write: 

MOV R0, #1 

MOV R2, #1 

MOV R7, #4 

SWI 0 

BX LR @ Branch eXchange 

.data 

string: .ascii " " 

End Program 10a.



Branch Exchange
The Branch Exchange (BX) and Branch with Link (BLX) offer a third way of branching within

a program. However, it should be said they are most commonly used to effect an entry into

Thumb code -- a subset of ARM -- a subject addressed in Chapter 27, and as such should be

avoided until that point and when you are familiar with their added implications. How would

you rewrite the routine so that there is no need to use the BX instruction?

 



11. Shifts and Rotates

The ARM has an internal mechanism called the 'barrel shifter' which can shuffle the bits in a

word left or right. Most microprocessors have standalone instructions that allow you to perform

this directly. However, the ARM only allows these movements as part of other instructions. It is

a significant process because moving bits left or right can be a simple way of multiplying or

dividing numbers quickly.

Three types of shifts that can be performed. They are logical, arithmetic and rotate. Rotate

is the only one that does not have an arithmetic function---it is included purely to move bits.

Figure 11a lists the six types of bit moves available for use.

Mnemonic Meaning

LSL Logical Shift Left

LSR Logical Shift Right

ASL Arithmetic Shift Left

ASR Arithmetic Shift Right

ROR Rotate Right

RRX Rotate Right eXtend

 

 

Figure 11a.  Shift instructions available for use.

 

Although the barrel shifter is in operation during shifts and rotates, practically, its operation is

transparent to the user.



Logical Shifts
Logically shifting a number left or right by one position has the effect of doubling it or halving

it. By increasing the number of logical shifts, you can multiply and divide numbers accordingly.

Figure 11b shows how a single Logical Shift Left (LSL) moves the bits on a full word of

data. In an LSL, the most significant bit (b31) drops out and into the Carry flag and the hole

made by b0 shifting along into b1 is filled with a 0.

Figure 11b. Logically shifting bits left.

 

Consider the single byte binary value 00010001. In decimal this is 17. If we perform a logical

shift on this number by one place to the left (LSL #1) we get: 00100010 which is 34. We have

effectively doubled, or multiplied the number, by two. This assumes that we drop off the top

digit and insert a 0 at the least significant bit. This is illustrated in Figure 11c.

Figure 11c.  Doubling a number with a single LSL.

 

This is a single byte example. The ARM uses four-bytes, so the whole word is shifted to the left

in this fashion. The bit that was in b7 gets moved across into the next byte and into what is

effectively b8, and so on. The bit that gets shifted out at the very top, bit 31, gets moved into the

Carry flag. The Carry flag can be tested to see if there is an overflow in the number

multiplication.

As mentioned, the ARM does not have any standalone shift instructions, but it does

implement them as an add-on to Operand2 to use within instructions and they affect the whole

32-bits of the register specified. Using the example illustrated above, we might code it thus:

MOV R1, #17 

MOVS R0, R1, LSL#1 

Note the structure of the syntax for this. Operand1 is the destination for the result (R0), and the

LSL is performed on Operand2 (R1). Here, the logical shift is given as an immediate value, but



it could also have been specified in a register, which makes it available for alteration. A value

from 0 to 31 can be used in a shift command. Using:

LSL #5 

would multiply a value by two, five times =32 (2 x 2 x 2 x 2 x 2). It would perform LSL five

times. Here, the new spaces would be filled with 0s and the Carry flag would reflect the value

of the last bit 'falling out' from b31. All the other bits moved out are 'lost'. This means that the

multiplication only remains true provided we do not lose any significant bits through the Carry

flag. Therefore, for large numbers care must be taken that significance is retained. In other

words, the result must fit inside 32-bits. This multiplication rule breaks down if we were using

twos complement numbers.



Logical Shift Right
Figure 11d shows how a Logical Shift Right (LSR) affects the bits in a word of data. The most

significant bit (b31) goes right with a 0 taking its place. The least significant bit, b0 drops into

the Carry flag.

Figure 11d.  Logically shifting bits right.

 

The effect of LSR is to divide the number by two. Figure 11e shows this using our previous

example. We start with 34 and perform an LSR #1 to arrive back at our original value of 17.

Here a 0 is drawn in at the top end (b31) and any value falling out on the right (b0) is taken into

the Carry flag. As with LSL the Carry flag is used to capture what is falling out so it can be

tested if required. Figure 11e.

Figure 11e.  Dividing a number by two with a single LSR.

 



Arithmetic Shift Right
In an arithmetical shift the sign bit is preserved. Here b31 is saved; everything else is shifted

one place to the right with b0 dropping into the Carry flag. These examples are shifted by one

place only, but the principle is the same for multiple shifts with b31, the sign bit being

preserved, and the last bit moved out of b0 is dropped into the Carry flag. This is illustrated in

Figure 11f:

Figure 11f.  Arithmetic shift right preserving sign bit.

 

The advantage of ASR is that the shift considers the sign of the data and so a twos complement

number may be represented. It extends the original sign of the number from b31 to b30 and

ensures the division is performed correctly for both positive and negative numbers.

MOV R1, #255 

MOV R2, #1 

MOVS R0, R1, ASR R2 

When we execute the segment above it would leave a value of 0x7F (128) in R0 with R1 and

R2 unchanged, but the Carry flag set.

The conditional tests can also be used as with a normal MOV instruction. This following

line would only be executed if the Carry flag is set:

MOV CS S R0, R1, ASR R2 

An arithmetic shift left (ASL) is identical in operation to LSL, and there is no difference

between them in the result. As a matter of course, you should always use LSL instead of ASL

as some assemblers may not compile it and issue an error message. Others may just give a

warning.



Rotations
There are two instructions that allow you to rotate bits to the right and in conjunction with the

Carry flag. Rotate Right (ROR) moves the bits out from the low end and feeds them straight

back in the high end. The last bit rotated out is also copied into the Carry flag as well as being

rotated around. Figure 11g illustrates how the bits move. The Rotate instructions have no

arithmetic action of significance and are included to shift bit patterns.

Figure 11g.  The Rotate Right instruction.

 

The following segment:

MOV R1, #0xF000000F 

MOVS R0, R1, ROR #4 

would give a result of 0xFF000000 with the Negative and Carry flags set. The ROR #4 shuffles

the bits four places to the right.

The top bytes, 0xF000 move to the right by four giving 0x0F00; The low bytes 0x000F

move to the right by four to give 0x0000; The 0xF, which has dropped out of the lower byte, is

rotated to the top four bits of the high byte to give 0xFF00. Of course, the bits in the middle

would all be shuffled along as well, but as they are 0s this is not noticeable. Finally, a copy is

made of the last bit out, which was originally in the position bit 4, and placed in the Carry flag.



Extended Rotate
There is also an extended version or Rotate Right called RRX:

MOV R0, R1, RRX 

This RRX operation is unique in that you cannot specify the number of movements it makes as

you are only allowed one. RRX always and only rotates data right by one position. The Carry

flag value is dropped into b31, and the value in b0 is moved into the Carry flag. Figure 11h

shows how the bits are moved.

All bits are preserved albeit in a different order. RRX uses the Carry flag as a 33rd bit and

so everything is preserved.

Figure 11h.  Rotate Right with Extend.

 



Uses of Shifts and Rotates

The shifts and rotate commands can be used with any of the following data processing

instructions:

 

ADC, ADD, AND 

BIC 

CMN, CMP 

EOR 

MOV, MVN 

ORR 

RSB 

SBC, SUB 

TEQ, TST 

 

They can also be used to manipulate the index value of LDR and STR operations as described

in Chapter 13/15. This also illustrates some handy uses for this group of modifiers. Chapter 12

also illustrates use of some of the logical instructions.



Immediate Constant Range
We have seen the use of immediate constants in instructions:

SUB R0, R1, #3 

Here the immediate constant is specified as Operand2, '3' in this case. However, there is a limit

to the size of the number that can be specified in this constant, and more particularly, some

numbers just can't be used --- 257, for example.

The reason for this is in the way ARM instructions are encoded. There are only 12-bits

available for storing an immediate value as the operand. The encoding of ARM instructions is

beyond the scope of this book. However, accepting that 12-bits are available, this is how the

ARM uses these bits: The 12-bit-field is split into two, one part of 8-bits and one of 4-bits. The

8-bit-field is used to represent a numeric constant and the 4-bit-field one of 16 different

positions (each themselves then shifted by two) which the 8-bit value may be rotated to through

an even number of positions.

Figure 11i summarises this scheme showing the position of the 8-bit value afforded within

the 32-bits as defined by the position bits, 0-15. The '+' is used in the diagram to represent 0s,

in the hope it makes it easier to read. The ROR column shows the value to be used in the shift.

A couple of examples should make this clearer. Suppose we wanted to use 173 as

immediate constant. In binary this is:

00000000 00000000 00000000 10101101 

This value can be presented in 8-bits, so no shift is required, and the position bits will be set to

0.

Let's now examine the number 19,968. In binary across 32-bits this is:

00000000 00000000 01001110 00000000 

If we compare this to the patterns in Figure 11i, we can see this has the value placed at position

12. To create this number as an immediate operand we would use 78 (01001110) and rotate it

right by 24.

This provides us with the second way that an immediate operand can be specified as a

shifted operand, and this takes the format shown in the following line:

Instruction (<Suffix>) <Op1>, <Op2>, <Op3> <Shift> 

Here's an example:

MOV R1, #78 

MOV R0, R1, ROR #24 

 



Here, R1 is loaded with 78, then rotated right 24 places and the result placed in R0. The

result generated would be 19,968. Of course, we can use all these values directly as immediate

constants as the assembler will resolve them directly for us, so we can use: MOV R0, #19968

and the assembler works it out. It is the values that cannot be calculated in this way through

Figure 11i that are the issue.

Figure 11i.  Immediate operands calculation.

 

Although 257 cannot be used as an immediate constant, it can be seeded by storing it in a

register and then using the register to specify the value.

ADD R0, R1, #257 

would cause an error, along the lines of:

Invalid constant 

but the following would achieve the same result:



MOV R2, #256 @ Load R2 with 256 

ADD R2, R2, #1 @ Add one to make 257 

ADD R0, R1, R2 @ Add 257 to R1 and save in R0. 

If we are using MOV instructions, then the assembler allows us the omit this and use the

logical instruction directly to the same effect:

LSL R0, R1, #1 

LSR R0, R1, #2 

LSR R0, R1, #3 

ROR R0, R1, #4 

RRX R0, R1 



Top Move
The MOVT instruction assists in loading values into registers, that might now be possible using

other methods. More particularly it can load a two-word value into the top bytes of a specified

register without disturbing the lower two words. For example, we can use it to assist in the

loading of an address into a register:

MOV R1, #0x0008 

MOVT R1, #0x3F20 

R1 would now contain, 0x3F200008.

Generally, the MOVT instruction it is used to load a value that could not otherwise be done

using an immediate value. So, if the assembler throws out an error message along the lines:

Error: invalid constant (xxxxxxxx) after fixup. 

Here 'xxxxxxxx' is the value you specified. The 'fixup' refers to the assembler trying to resolve

the issue but couldn't and thus the error message! Thus, you will need to use the MOV/MOVT

combination.



12. Smarter Numbers

In Chapter 6 we introduced the two basic multiplication instructions MUL and MLA. These

were the original multiplication instructions wired into the ARM. Since v3 of the ARM

additional instructions have been added to deal with signed and unsigned numbers up to 64-bits

long. We'll look at some of the more useful ones here. Several have specific uses and are aimed

at more complex tasks such as digital processing.



Long Multiplication
The SMULL and UMULL instructions offer signed and unsigned multiplication using two

registers containing 32-bit operands to produce a 64-bit result, which is split across two

destination registers. The format of the instruction is:

SMULL (<suffix>) <destlLo>, <destHi>, <Op1>, <Op2> 

UMULL (<suffix>) <destlLo>, <destHi>, <Op1>, <Op2> 

For signed multiplication, the values passed through Operand1 and Operand2 are assumed to

be in twos complement form. You cannot use the PC in these instructions and the SP should be

avoided as it is not supported in some later ARM chips, although it can be used on the

Raspberry Pi. It should go without saying that the two destination registers should be different.

The following example will produce the full 64-bits from the product of two unsigned 32-

bit numbers, assuming the two unsigned numbers are in R1 and R2. On exit R3 and R4 hold

the result with the low-word of the product in R3 and R4 the high-word.

UMULL R3, R4, R1, R2 

To give you an idea of how code-saving these newer instructions are, the listing presented as

Program 12a will perform the same operation using the original MUL instruction. As with the

above example the routine assumes that the two unsigned numbers are in R1 and R2 and on

exit R3 and R4 hold the result, with the low-word of the product in R3 and R4 the high-word.

On exit, both R1 and R2 are non-defined. R5, an extra register, is also used.

 

Program 12a. Long multiplication 'the hard way'

/* Multiply without use of UMULL */ 

/* mult: routine can be replaced with one instruction! */ 

 

@ R1=Unsigned 32-bit number 1 (low) 

@ R2=Unisgned 32-bit number 2 (high) 

 

@ On Exit: 

@ R3=Result (low-word product) 

@ R4=Result (high-word product) 

@ R1= Undefined, R2= Undefined, R5= Undefined

 

.global _start 

_start: 

MOV R1, #0xF0000002 @ Going to do... 

MOV R2, #0x2 @ [R3,R4]=R1*R2 

 



mult:  

MOVS R4, R1, LSR #16 @ R4 is ms 16-bits of R1 

BIC R1, R1, R4, LSL #16 @ R1 is ls 16-bits of R1 

MOV R5, R2, LSR #16 @ R5 is ms 16-bits of R2 

BIC R2, R2, R5, LSL #16 @ R2 is ls 16-bits of R2 

 

MUL R3, R1, R2 @ Low partial product 

MUL R2, R4, R2 @ First mid-partial product 

MUL R1, R5, R1 @ Second mid-partial product  

MULNE R4, R5, R4 @ High partial product 

 

ADDS R1, R1, R2 @ Add mid-partial 

ADDCS R4, R4, #0x10000 @ Add Carry to high partial 

ADDS R3, R3, R1, LSL #16 @ Add middle partial product 

ADC R4, R4, R1, LSR #16 @ Sum into low & high-words 

 

MOV R7, #1 @ Exit Syscall 

SWI 0 

End Program 12a.

 

The ADDS following the MULNE test is used in preference to MLA here as we need to

preserve the Carry flag for the ADDCS that follows.

If you do not follow this example, try writing it out longhand, or work through it using GDB,

after you have read Chapter 14, so that you can view register contents during a step-through

process.



Long Accumulation
SMLAL and UMALA are the signed and unsigned equivalents of MLA. As with the previous

instructions the signed or unsigned values acting at Operand1 and Operand2 are multiplied

together, but in this instance the result is added to any value already in destLo and destHi.

SMLALS R1, R2, R5, R6 

There are also a couple of interesting variants of the command which are only applicable with

signed multiplication.

SMLAxy permits multiplication with accumulate using 16-bit operands with a 32-bit

accumulator. This is interesting and the full syntax is:

SMLA<x><y> (<suffix>)><dest>, <Op1>, <Op2>, <Op3> 

Here <x> and <y> can be either B or T which stand for Bottom and Top, referring to the

bottom or top two bytes of Operand1 and Operand2, respectively. Operand3 contains the value

to be added to the result of the multiplication of the bytes identified in Operand1 and

Operand2.

For example:

SMLABTCC R0, R1, R2, R3 

Here if the Carry is clear (CC) then the low half-word of R1 will be multiplied with the top

half-word of R2. The result will be added to the value in R3 and the result stored in R0.

The SMLAWy instruction (Signed Multiply Wide) is similar but in this circumstance either

the top two or bottom two bytes of Operand2 are utilised to multiply with Operand1. The upper

32-bits of the result (which may be 48-bits long) are placed in the destination register. This is

therefore a 16-bit by 32-bit multiplication with accumulation. The full syntax is:

SMLAW<y> <dest>, <Operand1>, <Operand2>, <Operand3> 

For example:

SMLAWB R0, R5, R6, R7 

Here the bottom half-word of R6 is multiplied with the full word in R5 and the value in R7 is

added to the result, which is dropped into R0.

SMUAD and SMUSD work on 16-bit values and offer Signed Multiply with Addition and

Signed Multiply with Subtraction, with the twist of allowing optional exchange of operand

halves. The syntax for the commands is:

SMUAD<X> (<suffix>) <dest>, <Operand1>, <Operand2>

SMUSD<X> (<suffix>) <dest>, <Operand1>, <Operand2> 



If 'X' is included in the instruction, then the most and least significant half-words of Operand2

are exchanged. If 'X' is omitted, then no exchange takes place. The instruction then multiplies

the contents of the two lower half-words of Operand1 and Operand2 and saves the result, and

then multiplies the contents of the two upper half-words of the operands and saves the result.

For SMUAD (Dual Signed 16-Bit Multiply with Addition) the two partial products are then

added, and the result placed in the destination register. For SMUSD (Dual Signed 16-Bit

Multiply with Subtraction) the second partial product (the upper half-word) is subtracted from

the first partial product. Example:

SMUSD R5, R7, R9 



Division and Remainder
In Chapter 6 we saw that the early versions of the Raspberry Pi, namely the original A and B

along with the Zero, did not support an instruction to undertake division. The ARM chips used

in the subsequent versions, had SDIV and UDIV introduced. Program 12b shows how you can

carry out a division using two 32-bit values without division specific instructions.

It assumes that the dividend is in R1, and the divisor is in R2. On exit R3 holds the

quotient, R1 the remainder and R2 the original divisor. No check is made to see if the divisor is

zero, which will fail --- but this is a simple check to add. You will recall that the SDIV and

UDIV instructions do not calculate the remainder, so this routine might be useful if you require

that value as well.

On completion R0 contains the quotient so, typing:

echo $? 

Will print '5'. The remainder of the division ('11') is in R1.

 

Program12b. Division the long way.

 

/* Long Divide using no specific Divide instruction */ 

/* Provides Quotient and Remainder as result */ 

@ On Entry: R1=Dividend, R2=Divisor

@ On Exit: R3=Quotient, R1=Remainder, R2 Original Divisor 

.global _start 

_start:

MOV R1, #111 @ Going to do 111/20 

MOV R2, #20 

MOV R4, R2 @ Preserve Divisor 

CMP R4, R1, LSR #1  

 

Div1:  

MOVLS R4, R4, LSL #1 @ Double Divisor until  

CMP R4, R1, LSR #1 @ 2xR4>divisor 

BLS Div1 

MOV R3, #0 @ Initialise quotient 

 

Div2: 

CMP R1, R4 @ Can we subtract R4? 

SUBCS R1, R1, R4 @ Do so if possible 

ADC R3, R3, R3 @ Double quotient, add new bit 

MOV R4, R4, LSR #1 @ Halve R4 

CMP R4, R2 @ Loop until gone past... 

BHS Div2 @ ..original divisor 



MOV R0, R3 @ Move quotient into R0 

 

MOV R7, #1 @ Exit Syscall 

SWI 0 

End Program 12b.



Smarter Multiplication
We had a look at simple multiplication in an earlier chapter. Now armed with the knowledge of

shifts and bit operators, we can look at easier ways to achieve multiplication results. In the

examples that follow R0 is used as the main register, However, any register may be used.

If you want to multiply by a factor of two then you should use LSL directly:

MOV R0, R0, LSL #n 

Where 'n' is the constant. Replacing n above by, say 4, would produce:

R0=R0 x 2 x 2 x 2 x 2 

This is, in effect, 2n.

To multiply by (2n)+1, examples being 3, 5, 9, 17 etc., use:

ADD R0, R0, R0, LSL #n 

again, where n is the value.

Conversely to multiply by (2n)-1, examples being 3, 7, 15 etc., use:

RSB R0, R0, R0, LSL #n 

where n is the value.

To multiply a number by 6 first multiply by three and then by two:

ADD R0, R0, R0, LSL #1 

MOV R0, R0, LSL #1 



Much More Inside

I have only touched on some of the more advanced arithmetical instructions available on the

ARM chip inside the Raspberry Pi. There are many, many more along with several variations

on the ones I have covered here. The best way to examine these is simply to set up seed

programs, that is programs which load numbers into registers before executing a particular

command, and then step-through the executing program using GDB, examining the registers

along the way as you do so.



13. Program Counter R15

Register 15 is the Program Counter, and it is important. If you don't treat it with respect your

program can crash. If this happens your Raspberry Pi will most likely 'freeze' and will not

recognise anything you do until you turn the power switch off and re-boot. Time-consuming,

annoying, and frustrating. It will happen occasionally, but it's good for the soul to keep those

occasions to a minimum!

R15 performs a simple function. It keeps track of where your program is in an executing

machine code program. It holds the 32-bit addresses of a physical memory location. In fact, the

PC holds the address of the next instruction to be fetched. So, if you happen to load it with a

number which relates to your step count for the day, you will understand why the program

might crash.

The PC can be used within instructions in a variety of ways. R15 can be used in data

processing instructions, which means that it can be used as either Operand1 or Operand2.

Example:

ADD R0, R15, #8 

This is an example of R15 acting as Operand1. This line would add 8 to the value (address) in

R15 and save the result in R0.

SUB R0, R9, R15 

Here, as Operand2, the value in R15 is subtracted from R9 and the result stored in R0.

R15 can also be used as the destination register in an instruction. In such instances, it

should expect to be loaded with an appropriate value for the Program Counter as it will seek to

fetch the next instruction from it.

MOV R15, R14 

places the value held in R14 into R15. As R14 is the Link Register, this is an effective way of

returning from a previously called routine. Generally, it (or a variation of it) will be used to

hand control back to the point from where the machine code was called.



Pipelining
It is important to understand how the ARM goes about fetching, decoding, and executing

instructions. The instruction pipeline is a design feature of the ARM that is fundamental to its

execution speed. This is because when it comes to executing machine code the ARM is doing

three things almost simultaneously: fetching, decoding, and executing. As these operations

cannot be performed on the same instruction at the same time, the ARM has three instructions

on the go at once. It is executing one, decoding a second and fetching a third. When an

instruction is executed everything gets shuffled along one place as a new instruction is fetched.

The instruction that was previously fetched is then being decoded, and the one that was being

decoded is now being executed. There is a continuous stream running through the pipeline as

illustrated in Figure 13a.

 

Cycle Fetched Decoded Executed

Cycle 1 Op1 empty empty

Cycle 2 Op2 Op1 empty

Cycle 3 Op3 Op2 Op1

Cycle 4 Op4 Op3 Op2

 

 Figure 13a. The Fetch, Decode and Execute cycle of the ARM.

 

It takes three cycles for the ARM to fill the pipeline when it starts operating. Once an

instruction has been executed it is discarded as the next instruction overwrites it. It is because

of this multi-tasking process that the ARM can achieve great processing speeds. During the

process of decoding, the ARM is identifying what registers are to be used in the instruction

when it is executed.

In Figure 13a, on Cycle 4, the PC holds the address of Op4 --- the next one to be fetched.

Figure 13b shows where each cycle of the pipeline is relative to the PC.

 

Contents Action

PC Next instruction to Fetch

PC-4 Being Decoded

PC-8 Currently Executing

PC-12 Previously Executed

 

 Figure 13b. The PC relative to instruction processing.

 

This three-stage pipeline was the original design of the ARM chip. In fact, today's ARM

processors are even more sophisticated and the ARM chip in your Raspberry Pi has a pipeline



that is no less than eight operations long. But for this book and the concepts we are evaluating

the original model remains sound for evaluating the pipeline effect (although we'll come back

to the subject in Chapter 27). The effect of pipelining must always be considered. Otherwise in

certain circumstances your program may not function as you might expect. Consider this

instruction:

MOV R15,R15 

If you place this in your program it will cause the next instruction to be skipped. This is

because the address accessed from the PC is two-words (eight bytes) more than the address of

the MOV instruction. When written back into the PC by the operation, execution resumes a

couple of words (instructions) further on, thereby skipping the instruction in between.

Remember that the address held in the PC is always eight bytes more than the address of the

instruction being executed.



Calculating Branches
We looked at branches in Chapter 10. Let's examine how they are handled by the Program

Counter.

A branch typically takes this format:

BAL label 

Here 'label' is taken to be a label or a marked position in the assembly language program.

Remember there is a physical limit to the distance a branch can occur; it is plus or minus 32

Mb as this is the largest address that can be represented in the space allocated for the label

position. An absolute address is not stored. What is stored is the offset from the current

position. When the ARM encounters the Branch instruction it treats the value following as a

positive (forward) or negative (backward) adjustment to the PC from the current position.

Because of the way instructions are encoded, the branch value is a 24-bit signed offset in

twos complement form. The word offset is shifted left by two places (bits) to form a byte offset.

This offset is added to the PC. Look at the following example shown in Figure 13c:

 

Address Label Instruction

0x1000   BEQ zero

    .....

    .....

0x0120   BL notzero

    .....

0x1C30 zero: <instructions>

    .....

    .....

0x2C30 notzero: <instructions>

 

 Figure 13c. Calculating branches.

 

The first column is the address of the instruction. Here we have two labels whose addresses are

0x1C30 and 0x2C30. The first instruction:

BEQ zero 

is located at 0x0100, and the second instruction:



BL notzero 

is located at 0x0120.

Because of pipelining when the BEQ zero instruction is executing, the instruction that is

being fetched will be two instructions later, which is eight bytes later. So, the byte offset for the

BEQ instruction will be:

0x1C30 - 0x0100 - 8 = 0x1B28 

So, the word offset for the BEQ zero instruction is:

0x1B28 / 4 = 0x6CA 

For the 'BL notzero' instruction the calculation is:

0x23C0 - 0x0120 - 8 = 0x2B08 

0x2B08 / 4 = 0xAC2 

Backward branches work in a similar way but must have the pipeline affected added to the

calculation.

By using relative or offset values as branch destinations, it becomes possible to write

machine code programs that are totally relocatable. In other words, they can be loaded and run

into any part of memory. As soon as you hard code the actual definitive address into place it

ties the machine code into one location.



14. Debugging with GDB

The Raspberry Pi OS comes with a complete debugging tool, GDB, which you will find useful

when the time comes to unravel your programs and are trying to understand why something

doesn't work the way you expected. It is also a great way to learn about the operation of your

programs.

One of two things generally happens when your machine code program doesn't work

correctly. The first is that the result returned is not the one expected. The second is that no

result is returned, and the system freezes requiring a hard reset. Of course, both situations can

occur together as well!

For a wrong result, the likelihood is that a constant or address are out-of-kilter. The positive

side is that your routine seems to be functioning, and there are no logical or branch errors.

Here, it is a matter of trying to track down where the 'error' is occurring. The type of result

being returned might give you a clue, and you will need to examine this and make some

deductions of your own. For example, if you are getting a result that is one more than you were

expecting (and 'one' in this case might not be a number) then perhaps a loop is being executed

more times than it should. The loop counter might need adjusting, or your conditional branch

instruction might need changing. Being able to see what a loop counter value is at this point

would be useful. It may also be that values in registers have been mixed or not referenced

correctly in your assembler --- for instance, you might have used R1 when you should have

used R3, or you may have wished to code an immediate value but didn't specify it as such.



Frozen Cases
For a frozen Pi, things can be a bit more involved. Perhaps a routine is trapped in a continuous

loop. The loop counter may not be decremented and so will continue to process while power is

applied. It might also be that you have mismanaged a stack or corrupted the Program Counter.

Trapping all these types of errors will become an everyday programming task for you. It is

part and parcel of programming. That is why it is useful to develop your programs in small

sections or functions. Each has a purpose, and each can be tested independently.

If you find that a program crashes or hangs, one key issue is to locate at what point this

happens. The best way to do this is to get some visual feedback on how far the machine code

gets before being upset. This allows you to at least narrow down your search. For example, if

you are getting screen output from your code then you will have some idea that most likely you

ignore everything that went before the last item displayed.

If you are having issues with your code and cannot narrow down the segment creating the

issue then you can populate your code with an instruction to print out a marker on the screen,

to show you where you are, and therefore have a good idea exactly where the issue lies.

Let's say a machine code program has five areas of operation. We could place an

appropriate call to a '_write' style routine at the start of each one as illustrated in Figure 14a.

.area1 

BL _write @ PRINT A

... 

.area2 

BL _write @ PRINT B 

... 

.area3 

BL _write @ PRINT C 

... 

.area4 

BL _write @ PRINT D

... 

.area5 

BL _write @ PRINT E 

... 

 Figure 14a. Locating issues by use of a _write style function.

 

Now when the program is run, as each area is reached, a letter will be printed to the screen.

Let's say we had the following result:

ABC 



before the program froze. This would show that the program had seized somewhere in area3,

because 'D' was never printed. Now you can concentrate your efforts in this area. You might

add in additional calls to print out more letters or numbers inside area3. This will then narrow

your search and allow you to concentrate your debugging efforts in the right area. Once you

have narrowed the area down you can look more closely at the segment.



Assembling for GDB
GDB is the GNU project debugger. It is supplied with Raspberry Pi OS and is run from the

command line. It provides a wide range of tools that will allow you to interrogate your machine

code programs in many ways from within an enclosed environment. GDB can operate on many,

many levels and it would be fair to say that it has a command for almost every occasion. It is

customisable as well. As with most GNU software it has extensive documentation available

online. In this chapter we'll look at some practical examples, and we'll use Program 10a as the

centrepiece of the demonstration.

Before you can use GDB the core program has to be assembled using an additional

directive so that it generates additional information that can be used by GDB:

as -g -o prog10a.o prog10a.s 

ld -o prog10a prog10a.o 

The -g option generates the additional data for the debugger. From your point of view nothing

different has happened. You can start GDB as follows:

gdb <filename> 

where <filename> is the name of the assembled file to be interrogated. So:

gdb prog10a 

will launch the debugger and load the information relating to prog10a. If you forget to specify a

filename then you can use the 'file' command at the gdb prompt:

file prog10a 

Now typing:

list 

will produce the output shown in Figure 14b. (You may need to press the <Return> key to

continue the listing. This is where you see the '(gdb') lines.) The numbers at the start are simply

line numbers. They relate to what you would see if you had line numbers enabled when editing

your source code. However, within GDB you can utilise these numbers with many of the

commands that are at your disposal.

Important: The line numbers you have may differ from those shown here, equally the

memory addresses given here may also be different on your system. This doesn't make the

listing wrong; you just need to relate to the changes in your listing.

$ gdb prog10a 

GNU gdb (Raspbian 8.2.1-2) 8.2.1 



Copyright (C) 2018 Free Software Foundation, Inc. 

License GPLv3+: GNU GPL version 3 or later &<http://gnu.org/licenses/gpl.html> 

This is free software: you are free to change and redistribute it. 

There is NO WARRANTY, to the extent permitted by law. 

Type "show copying" and "show warranty" for details. 

This GDB was configured as "arm-linux-gnueabihf". 

Type "show configuration" for configuration details. 

For bug reporting instructions, please see: 

<http://www.gnu.org/software/gdb/bugs/>. 

Find the GDB manual and other documentation resources online at: 

<http://www.gnu.org/software/gdb/documentation/>. 

For help, type "help". 

Type "apropos word" to search for commands related to "word"... 

Reading symbols from prog10a...done. 

(gdb) list 

1 /**** Convert number to binary for printing */ 

2 /* */ 

3 /* Registers: R6=number, R8=preserve, R9=mask */ 

4 /* R7 needed for syscall, R1 points to string */ 

5  

6 .global _start 

7  

8 _start:

9 MOV R6, #251 @ Number to print in R6 

10 MOV R10, #1 @ set up mask 

(gdb)  

11 MOV R9, R10, LSL #31  

12 LDR R1, = string @ Point R1 to string 

13  

14 _bits: 

15 TST R6, R9 @ TST no, mask 

16 MOVEQ R0, #48 @ ASCII '0' 

17 MOVNE R0, #49 @ ASCII '1' 

18 STR R0, [R1] @ store 1 in string 

19 MOV R8, R6 @ MOV preserve, no 

20 BL _write @ write to screen  

(gdb)  

21 MOV R6, R8 @ MOV no, preserve 

22 MOVS R9, R9, LSR #1 @ shuffle mask bits 

23 BNE _bits 

24  

25 _exit: 

26 MOV R7, #1 

27 SWI 0 

28  



29 _write: 

30 MOV R0, #1 

(gdb)  

31 MOV R2, #1 

32 MOV R7, #4 

33 SWI 0 

34 BX LR 

35  

36 .data 

37 string: .ascii " " 

(gdb)  

Line number 38 out of range; prog10a.s has 37 lines. (gdb)  

 

 Figure 14b. Listing a loaded file in GDB.

 



The Disassembler
A disassembler does the opposite to an assembler. It takes the values stored in memory and

converts them back into an assembly language listing. For example, at the GDB prompt enter:

disassemble _start 

You should get output that looks something like that shown in Figure 14c.

One thing the -g option did when it assembled the source code was to create a list of the

labels or functions defined in the original source code, which allows us to refer to these directly

when using GDB. The first column in the listing generated is the address in memory where the

code is assembled. (This address may differ on your output.) The second column inside the

chevrons shows the number of bytes from the start of the function.

 Figure 14c. Disassembling a function in GDB.

 

Notice the last line in this listing has disassembled to something a little different than was in

our original source. It has converted the original:

LDR R1, = string 

into an absolute address. In this case:

ldr r1, [pc, #60] 

This means load R1 with the address which is 60 ahead of the current PC address

(R1=PC+60). So here pipelining is taken into account. The actual address is 0x100c4 and is

given after the semi colon at the end of the line, as is the label it is referring to!

You can also disassemble an area of memory by specifying a start and end address. By

using the '/r' switch at the start it is also possible to include the hexadecimal opcodes and

operands.. For example:

disassemble /r _bits 

will give the output shown in Figure 14d:



 Figure 14d. Using the /r switch when disassembling.

 

The third set of figures listed are the opcodes and operands for each of the instructions. If you

look at the address line starting 0x00010098 you can see that the offset for the BL instruction

has been calculated (0xb0). If the program is 'running' (discussed below) the current position of

the PC is shown by a '\=>' on the left of one of the addresses.

Figure 14e provides a summary of some of the more common disassembly options in GDB.



 Figure 14e. Common disassembly commands.



Breakpoints
The major debugging facility at your disposal is without a doubt the use of breakpoints, and the

ability to step-through commands one-by-one, single-stepping, and allow you to watch your

program in action.

Breakpoints are temporary halt signs in a machine code program, which GDB allows you to

place where and when you want, so when you run your program from within GDB the program

will be halted each time a breakpoint is reached, at the same point, preserving all registers. By

inserting one or more breakpoints in a machine code program, it is possible to 'stop and look at

register and flag contents at any chosen point. This can come in very handy when a program is

not working as it should. By examining the contents of registers and the setting of flags you

should be able to narrow down and kill the culprit causing the problem. As you might imagine

it is also a great way to learn the operation of each instruction.

Breakpoints can be set using labels or line numbers using the 'b' command at the GDB

prompt thus:

b _bits 

In the first case the breakpoint is set at the address where '_bits' is assembled. This will be

confirmed visually thus:

Breakpoint 1 at 0x10084: file prog10a.s, line 15 

Let's set a second breakpoint immediately after the two conditional MOV statements. From the

file listing we can see this is at line 18:

b 18 

Which returns:

Breakpoint 2 at 0x10090: file prog10a.s, line 18 

Typing:

info b 

will print a listing of any breakpoints set so far, as shown in Figure 14f:

 Figure 14f. Breakpoint listings.

 

This shows the two breakpoints set. Deleting breakpoints is just as easy:

 

would delete breakpoint 2.



We can execute programs and get them to stop at defined breakpoints. If the above two

breakpoints are in place, typing:

run 

at the GDB prompt would produce:

Breakpoint 1, _bits () at prog10a.s:15 

15 TST R6, R9 @ TST no, mask 

The program has run but has stopped before executing the command on line 15. We can now

get a dump of all the register contents by typing:

info r 

This would give a listing like that shown in Figure 14g:

 Figure 14g. Register dump after breakpoint 1 has halted the program.

 

At this point in the program the code listed through to line 14 will have been executed and this

is reflected in the contents of the registers. To continue to the next breakpoint type:

continue 

and then list the register contents again. These are shown in Figure 14h.



 Figure 14h. Register dump after breakpoint 2 has halted the program.

 

Here we can see that the ASCII code for '0' has been placed into R0 so the MOVEQ command

was the one that was executed. This is reflected in the CPSR where the Zero flag is set. Note

how the PC reflects where we are in the execution cycle.

Try setting a third breakpoint at line 25 (this can be done while the program is 'running')

and continue to the breakpoint. Listing the register contents will show output as depicted in

Figure 14i.

R9 has been updated with the new mask value and note now how the link register has an

address in it. Compare the source listing so you can see where these new values have come

from.

You can execute your program in GDB a line at a time by simply pressing the 's' key. This is

called 'single stepping'. You should try this and watch the program cycle through the _write

function as well. You can also print the register contents at any point. GDB is totally interactive

and Figure 14j lists some of the more popular commands to experiment with.



 Figure 14i. Register dump after breakpoint 3 has halted the program.

 





Breakpoint Labels
Rather than worrying about program line numbers for setting breakpoints, you can always

devise a system of predefined labels to use within your source files. Typically, this might be

after data has been loaded from memory or a register, so you can examine to see if it is loaded

correctly; after a round of processing; and equally on completion.

 

 Figure 14j. Common breakpoint commands.

 



Memory Dump
You can look at sections of memory, including your code and data areas. The latter is useful to

see how data is changed in response to your program's operation. If you know that you have

cleared memory or filled a section with 0s before running your program, you can be sure that

what is there after you have.

The 'x' (for examine) command produces output in a variety of formats. To get a hex dump

of memory of the program itself type the following at the GDB prompt:

x/22xw _start 

This will produce a listing like that shown in Figure 14k.

 Figure 14k. A hex dump of memory in GDB.

 

The command format is as follows:

x/nfu <addr> 

Here the '/' is used to signify a change in the defaults; f being format which is hexadecimal by

default; and u the unit size. <addr> is the start address from which this is to happen. In the

example above 'w' specifies word or four-byte wide units and to show 22 of them, starting at

0x08. Other unit sizes that are available are: b=bytes, h=halfwords (bytes), g=giant words

(eighth bytes).

When you specify a unit for x then that becomes the default value until it is changed again.

When GDB is started the default value is 1. The 'i' command in combination with 'x' can be

used as an alternate way to produce a disassembly listing. Here:

x /13i 0x10084 

will disassemble the _bits function, as shown in Figure 14l.

The combinations are almost endless, and it is a good investment of time to print a copy of

the GDB Manual out and keep it bound and close to hand. GDB is really one of those tools that

you will always be looking to get more from, and a printed copy is a good place to make notes

and keep track of your favourite formats.



 Figure 14l. Disassembling combinations.

 

Finally, if you are wondering, typing 'quit' will exit GDB and return you to the Raspberry Pi OS

command line.



Shortcuts

Most of the GDB commands can be limited to their starting letters:

info registers >> i r 

continue     >> c 

step       >> s 

quit       >> q 



GDB Make Options
You should consider working through the long multiplication example provided as 'prog12a'

using GDB. Stepping through the code line-by-line and printing the register contents out is

highly informative. It should also get you used to the ways of workings with the debugging tool.

Of course, your use of makefile will arguably change as well. Now there is the debug

assembled code it is a good option therefore to use Make to assemble in this manner utilising

the 'g' option. The program listed as Program 14a provides an updated makefile that allows this

to happen. The format here is a bit different.

 

Program 14a. Flexible makefile for debugging code.

OBJX = prog10a 

OBJS = prog10a.o 

 

ifdef GFLAG 

STATUS = -g 

else 

STATUS = 

endif 

 

%.o : %.s 

as $(STATUS) $< -o $@  

 

debugfile: $(OBJS) 

ld -o $(OBJX) $(OBJS) 

 

gdbdebug: $(OBJX) 

gdb $(OBJX) 

 

clean: 

rm -f *.o $(OBJS) 

rm -f *.o $(OBJX) 

End Program 14a.

 

You will need to save this as 'makefile' as well---be careful not to overwrite any previous

makefile you may have modified. Ultimately you will arrive at a way of working that suits you.

As previously adjust the names of the source make file accordingly in the first two lines.

You can now assemble and link this with or without the -g option. The key to doing this is

remembering the 'force option' using the -B flag. Use either:



make GFLAG=1 -B 

To include the debug details, or:

make GFLAG= -B 

In either case you can see from the resultant output in each case how the file is being assembled

and linked. You can also jump straight into gdb if you wish after with:

make gdbdebug 

You can delete all files other than the source files with:

make clean 



15. Data Transfer

In most of the examples we have used so far, all data instructions have come from either the

contents of a register or an immediate constant, a specified value:

ADD R0, R1, R2 

SUB R0, R1, #7 

There is only so much information that can be held in a set of registers, and registers generally

must be kept clear to perform operations on data. In general, data is created and then held at

known memory locations. In such cases, we need to manage these memory blocks. To load and

store data in memory we must know two things. First, the actual address of the data, and

second, its ultimate destination -- where it's coming from or going to. Registers are used in both

circumstances, and the method of doing so depends on the addressing mode used. There are

three addressing modes offered by the ARM:

Indirect Addressing

Pre-Indexed Addressing

 
Post-Indexed Addressing

These methods load or store the contents of a specified register, but in each case the data source

or destination is different.



ADR Directive
In Chapter 6 we examined the use of immediate constants and saw that although the MOV and

MVN instructions can be used to load constants into a register, not all constant values are

accessible in this way. The knock-on of this is that they cannot be used to generate every

available memory address for the same reason. Therefore, the GCC Assembler provides a

method that will load any 32-bit address. In its simplest form it looks like this:

ADR <Register>, <Label> 

An example would be:

ADR R0, datastart 

Despite its appearance, the ADR is a directive and not an ARM instruction. It is part of the

assembler. What it does is take the hard work out of calculating the right number for you.

When the assembler encounters this directive, it does the following:

Notes the address of where the instruction is being assembled.

Notes the address of the specified label.

Calculates the offset between the two memory positions.

 

It will then use this information as part of an appropriate instruction, normally ADD or SUB,

to reconstruct the location of the address or label containing the information.

It's worth looking at what we write in an example program and what gets assembled to

illustrate the point. Look at the listing given in Program 15a:

Program 15a. Use of the ADR directive.

/**** Using the ADR directive ****/ 

.global _start 

_start:

ADR R0, value 

MOV R1, #15 

 

_exit: 

MOV R7, #1 

SWI 0 

 

value: 

.word 255 

 

End Program 15a.



 

Program 15a does nothing really, other than point ADR at the data label and show R0 as the

destination register. When this is assembled using the -g option, it will produce something like

what is shown in Figure 15a, if you use GDB and enter:

x/5i _start 

the ADR directive has not assembled an address. It has assembled a relative address that will be

used as an offset for the Program Counter. Here the ADD instruction is used to add 8 to the PC,

the address of value which comes right after the last instruction.

 Figure 15a. Disassembly of Program 15a.

 

Note also that the instruction:

SWI 0 

Has been disassembled to:

SVC 0x00000000 

Showing the mnemonics are interchangeable. The preferred method is probably SVC these

days, but I am still old hat and use SWI. The final line in the listing is where the value 255 is

stored. GDB tried to interpret this but didn't recognise it thus the message.

In GDB type:

x/5w _start 

The output will be similar to that shown in Figure 15b:

 Figure 15b. Hex dump of Program 15a.

 

Here the 255 (0xFF or 0x000000ff) stored at the label marked by 'value:' can clearly be seen.

This illustrates another new feature of the assembler. In an earlier chapter we used the directive

called '.string' to load an ASCII character string into memory. Here the '.word' directive allows

us to store a word --- or four-bytes --- into memory. The format of this is shown clearly in



Program 15a and it can be referred to by using a named label. (We'll look at '.word' and other

directives in Chapter 18.) This also illustrates another particularly important aspect of the ADR

pseudo-instruction. The values it references must always be within the '.text' or executable

section of the code. You will recall that use of the .string directive, which was being accessed

by the LDR instruction, was placed in the .data section of the code. If you try and use ADR to

access information in a data area you will get an error message.



Indirect Addressing
The ARM is constructed with a 'load and store' architecture, but you cannot access memory

locations directly. You can only access them indirectly via a register. The beauty of indirect

addressing is that it enables the whole of the ARMs memory map to be reached through a

single register.

There are two instructions that read and write memory data:

LDR LoaD Register from memory  

STR STore Register to memory 

Indirect addressing provides an easy method to read or write to a memory location. The address

of the location is held in a register. So, the address location is accessed indirectly. The

advantage of this method is that you can change the source or destination location simply by

changing the contents of the register. This makes it a handy way to dip into tables of data.

Rather than writing a separate routine for each, a general purpose one can be developed, with

the address operand being 'seeded' on each occasion the routine is called.

In its simplest form indirect addressing takes the format:

LDR (<suffix>) <Operand1> [<Operand2>]  

STR (<suffix>) <Operand1> [<Operand2>]  

For example:

LDR R0,[R1] @ Load R0 with contents of location in R1 

STR R0,[R2] @ Store R0 at memory location in R2 

Executing the above two instructions would effectively transfer a word of data from one point in

memory to another. Figure 15c illustrates this and is based on the instruction:

LDR R0, [R1] 

At the onset R1 holds the memory address, here 0x9308, and that memory address contains the

value 0xF80A. This value is loaded into R0. So, on completion of the instruction R0 will

contain 0xF80A. The value in R1 is unaltered.

All the addressing modes allow use of suffixes to effect conditional execution. So, for

example:

LDREQ R0, [R1] 

Here, the load operation into R0 from the address in R1 will only take place if the Zero flag is

set.



 

 Figure 15c. Indirect addressing of memory using LDR R0, [R1].



ADR and LDR

In previous examples we have seen that LDR can be used in a pseudo-instruction manner to

load the address of a label directly into a register. For example:

LDR R0, =string 

would load R0 directly with the address of the label called string. The advantage of LDR used

in this way is that it can access memory across the board and is the preferred method if you are

using data sections specifically to hold information. Labels accessed by ADR must be within

.text sections of code and within the executable code area.



Pre-Indexed Addressing
Pre-indexed addressing provides the ability to add an offset to the base address to give the final

address. The offset can be an immediate constant or a value in a register, or indeed, the shifted

contents of a register. The format of the instruction is:

LDR (<suffix>) <destination>, [(<base>,(<offset>)] 

STR (<suffix>) <destination>, [(<base>,(<offset>)] 

The modifying constant or register is simply placed as part of Operand2, separated by a

comma, within the square brackets. For example:

LDR R0, [R1, #8] 

Here, 0x08 is added to the address in R1 and the four-byte value at that address (R1+8) is

placed in R0. The value of R1 is not changed or adjusted by the constant. This is depicted in

Figure 15d. R1 contains the memory address 0x9300. This is added to the specified constant

value 8, to give a final source address of 0x9308. The contents of this location, 0xFBOA are

loaded into R0.



 

 Figure 15d. Pre-Indexed Addressing.

 

You can use two registers inside the square brackets too:

STR R0, [R1, R2] 

This instruction, when executed, would store the value in R0 at the address given by adding the

contents of registers R1 and R2 together. R1 and R2 are not adjusted in any way. You can also

subtract the offset as well, simply by using a minus sign:

LDR R0, [R1, #-8] 

STR R0, [R1, -R2 

Finally, the offset operand may be rotated using one of the shift operations thus:

LDR R0, [R1, R2, LSR#4] 



The value in R2 is shifted right by two bits and added to R1. This gives the address of the data

to be loaded into R0. This final construction is useful when it comes to moving through data

held in memory, given that it is located in four-byte blocks (viz, 32-bits and the size of a

register) and that an LSL #2 operation (which is 2 x 2 = 4) moves you elegantly to the next

word boundary.

The following segment replaces the third item in a four-byte wide list with the second item

in the list, with the address of the start of the list held in R1, in this example held as 0x9300:

MOV R2, #4 @ four-byte offset 

LDR R4, [R1, R2] @ load R4 from (0x9300+4) 

STR R4, [R1, R2, LSL #1] @ store R4 at(0x9300+8) 

Here, 4 is given as the offset, tfor the first LSR. Then the LSL #1 shifts the bits along by four

places. The #4 in R2 becomes #8 which is added to the address in R1. The value in R2 does not

change itself. If you wanted to locate the next item in this list, you would need to increment

either R1 or R2 by four. But there is a far more elegant way as we shall see.



Accessing Memory Bytes
Program 15b illustrates the use of pre-indexed indirect addressing, using an offset to extract

characters from a string located at a base address. It also uses the instruction, LDRB to load a

register with a single byte, and STRB to store a single byte.

ASCII characters are represented in single bytes, so LDRB will allow us to load single

bytes of memory, rather than a word, at the specified location. To start with, R1 is loaded with

the address of the string, and 26 as an offset into R2. The STRB instruction is complementary

to LDRB in that it writes a single byte of information into memory. Program 15b uses both

commands to overwrite one string with another:

 

Program 15b. Use of pre-indexed indirect addressing.

/* Use of pre-indexed addr to move characters */ 

.global _start 

_start:

LDR R1, =string @ Get 1st string location 

LDR R3, =numbers @ Get 2nd string location  

MOV R2, #26 @ chars in alphabet  

_loop: 

LDRB R0, [R1, R2] @ get byte at R1+R2 

STRB R0, [R3, R2] @ save byte to R3+R2 

SUBS R2, R2, #1 @ decrement and flag set 

BPL _loop @ and loop while positive  

_write: 

MOV R0, #1 

LDR R1, =numbers 

MOV R2, #26 

MOV R7, #4 

SWI 0 

_exit: 

MOV R7, #1 

SWI 0 

.data 

string: 

.ascii "ABCDEFGHIJKLMNOPQRSTUVWXYZ" 

numbers: 

.ascii "01234567891011121314151617" 

End Program 15b.



 

At entry, _start sets up R1 and R3 with the address of the two strings. R2 is used to hold the

counter which is initialised at 26 --- the number of letters in the alphabet.

The LDRB instruction loads the byte at R1+R2 into R0 and this is then stored at R3+R2.

So, first time around the last character in string: is stored over the last character in numbers: R2

is decremented by one and while the number is not zero or below the loop cycles again. When

R2 reaches zero, the read/write is completed and the _write routine prints the new string out.

Although we haven't used immediate constants in these examples, they are certainly

available to you and may also be specified as negative values. Here are a couple of examples:

STR R0, [R1, #0xF0] 

LDR R0, [R1,#-4] 

In the latter example, R0 would be loaded with data taken from an address which is one word

lower than the address contained in R1.



Address Write Back

In calculating the location in memory of the word or byte, the ARM adds the contents of the

items held inside the square brackets, the first being a register with an address, and the second

being a register or immediate constant. Once the result of the addition of these values has been

used it is discarded.

It is sometimes useful to retain the calculated address, and this can be done in pre-indexed

addressing, using a method called 'write-back'. This is done by including a '!' at the end of the

instruction, after the closing square bracket:

LDR R0, [R1, R2]! 

LDRB R0, [R2, #10]! 

In the first example, if we refer to our earlier programs, let's assume that R1 holds the address

0x9300 and R2 contains the index initially set at 26. Now, on the first iteration R1 and R2 point

to the address given by 0x9300+26 which is 0x931A. This address is used to source the

information and then 0x931A is written back into R1.

To step-through an array of data held in memory we might use the instruction:

LDR R0, [R1, #4]! 

The value 4 will be added to R1 and thus create a single word step. The value in R1 is updated

to reflect R1+4. By including this in a loop we can quickly step-through memory with little

hindrance.



Post-Indexed Addressing
Post-indexed addressing uses the write-back feature by default. However, the offset field isn't

optional and must be supplied. The offset is also handled differently. Post-indexed addressing

takes this format:

LDR (<suffix>) <Destination>, [<Operand1>],<Operand2> 

The first thing to note is that the compulsory Operand2 is based outside the square brackets to

signify the difference in addressing mode. Here are a few examples of how the instruction is

formatted:

LDR R0, [R1], R2 

STR R3, [R4], #4 

LDRB R6,[R1], R5, LSL#1 

When post-indexed addressing is used, the contents of the base register alone are taken as the

source or destination address (word or byte depending on the format of instruction). Only after

the memory has been extracted or deposited are the contents of the offset field (Operand2)

added to the base register and the value written there. Thus, the offset is added post and not pre

memory access. Figure 15e illustrates this diagrammatically for the command:

LDR R0, [R1], #8 

The left-hand side of the diagram shows the situation before the command executes. The

contents of R0 are undefined at this stage. R1 contains the address 0x9300. The contents of

0x9300 contain 0xFF01, and this is taken and placed in R0. The intermediate value 8 is then

added to the contents of R1 (0x9300+08) and the result written back into R1, which now

contains 0x9308 as now reflected on the right-hand side of the diagram.



 Figure 15e. Post-indexed addressing process.

 

If the LDR line was executed again then the contents of 0x9308 would be extracted and

deposited in R0, and after 8 is added to it R1 would contain 0x9310.

Program 15c will create a machine code routine that uses post-indexed addressing to join

two strings to create one single string.

Note that in the data definitions for the string we use a slight twist on the '.ascii' directive.

Here we use '.asciz' --- which will place a zero byte (0x0) at the end of the string, and we use

this to see if we have reached the end of the strings during the load and compare portions of the

program.

 

Program 15c. Using post-indexed addressing.

/* Post-indexed addr to concatenate strings */ 

.global _start 

_start:

LDR R2, =string1 @ load locations 

LDR R3, =string2 @ of both strings 

_loop: 

LDRB R0, [R3], #1 @ Get string2 byte & +1 

CMP R0, #0 @ is it end of string? 

BNE _loop @ no, then get next byte 

SUB R3, R3, #1 @ Yes, decrement back 1  

 

_copyloop: 



LDRB R0, [R2], #1 @ get byte from string 1 

STRB R0, [R3], #1 @ add to end of string 2 

CMP R0, #0 @ is it 0? 

BNE _copyloop @ if not get next char 

_write: 

MOV R0, #1 @ is 0 so print new 

LDR R1, =string2 

MOV R2, #24 

MOV R7, #4 

SWI 0 

 

_exit: 

MOV R7, #1 

SWI 0 

 

.data 

string1: 

.asciz "ABCDEFGHIJKL" 

string2: 

.asciz "012345678910" 

padding: 

.ascii " " 

End Program 15c.



Byte Conditions
Conditional suffixes may be used with the load and store instructions in a similar fashion to

others. However, when you are using the byte modifier with conditionals, you should express

the conditional instruction first, thus:

LDREQB R0, [R1] 

Note the condition test EQ comes before B, the byte modifier. If they are not in this order, an

error message will result when you try to assemble the program.



PC Relative Addressing
Besides pre-and post-index addressing, the GCC Assembler implements an additional pseudo-

addressing mode itself -- PC relative addressing. We have already used this in previous

examples, but it is worth highlighting its usefulness under a separate sub-heading here.

The general format of instructions that use PC relative addressing is as follows:

LDR <dest>, <address> 

As before, the destination is always a register, into which --- or from which --- the data is

transferred. The address is either an absolute number or an assembler label. In the latter case,

the label marks the address from where the data will be placed or gathered. Let's look at a

couple of examples:

LDR R0, 0x9300 

STR R0, data 

In the first case, the word located at 0x9300 would be loaded into R0. In the second, the

location which the label 'data' was assembled at would be used as the destination of the word to

be held in R0.

When the assembler encounters an instruction in such a format it looks at the address or

location of the address and calculates the distance from where it is to the specified location.

This distance is called the offset, and when added to the Program Counter would provide the

absolute address of the data location. Knowing this, the assembler can compile an instruction

that uses pre-indexed addressing. The base register in this instruction will be the Program

Counter, R15. If we ignore effects of pipelining, the PC will contain the instructions address

when executed. The offset field contains the absolute offset number as previously calculated by

the assembler, with a correction for pipelining. (This is a similar method to the one described

for branches in Chapter 10).

It is important to remember that there is a set range restriction in the offset that can be used

in pre-indexed addressing. This is -4096 to 4096, and the offset in PC relative addressing must

be within this range.



16. Block Transfer

Efficiency is one of the key design concepts behind the ARM chip. With the large number of

registers and the consistent need to manipulate and move data, it would be very inefficient to

have to sequence a whole series of instructions to transfer the contents block transfer of a set of

registers from one place to another. The LDM and STM instructions simplify multiple load and

store between registers and memory.

The format of the instruction is:

LDM <Options>(<Suffix>) <Operand1>(!), {<Registers>} 

STM <Options>(<Suffix>) <Operand1>(!), {<Registers>} 

Registers is a list of the registers, inside curly brackets and separated by commas, to be

included in the transfer. They can be listed in any order, and a range of registers can be

specified with the use of a hyphen, R5-R9.

Operand1 is a register which contains the address marking the start of memory to be used

for the operation. This address is not changed:

STM R0, {R1, R5-R8} 

Here, the contents of the registers R1, R5, R6, R7 and R8 (five words or 20 bytes in total) are

read and stored sequentially, starting at the address held in R0. If R0 held 0x9300 then R1

would be stored here; R5 at 0x9304, R6 at 0x9308. This is illustrated in Figure 16a.

 

 

Figure 16a. Storing register contents in memory. 

 



This example in assumes that we want data to be stored in successively increasing memory

address locations, but this need not be the case. The ARM provides options that allow memory

to be accessed in an ascending or descending order, and in which way the increment step is

handled. In fact, there are four options as listed in Figure 16b.

 

 

Suffix Meaning

IA Increment After

IB Increment Before

DA Decrement After

DB Decrement Before

 

 Figure 16b. Suffixes for memory direction setting.

 

The I or D in the suffix defines whether the location point is being moved forwards (increasing)

or backwards (decrementing) through memory. The base address is being increased four-bytes

at a time or decremented four-bytes at a time.

After each instruction, the ARM will have performed one of the following:

Increment: Address = Address + 4 * n 

Decrement: Address = Address - 4 * n 

where 'n' is the number of registers in the register list.

The A or B options determine where the base address has the defined adjustment before or

after the memory has been accessed. There is a subtle difference, and if you are not careful it

can lead to your information being a word askew to what you might have expected. This is

illustrated in Figure 16c and Figure 16d.



 

 Figure 16c. The effect of IA and IB suffixes on STM.

 

In Figure 16c the left-hand model shows the storage pointer in Incrementing After mode. After

the first register has been stored (R0), the storage pointer has four added to it and is

incremented to Base+4 where the contents of R1 are placed. On the right-hand side of the

model Incrementing Before is in operation. When the command is executed 4 is added to Base

and the contents of R0 is stored at that address.

In Figure 16d the actions are the same except that in each case 4 is subtracted from Base

either After or Before as illustrated.



 

 Figure 16d. The effect of DA and DB suffixes on STM.



Write Back

Unless the instruction asks for write-back to occur, then the address held in the specifying

register remains unaltered. Its contents remain the same as they were when the command was

first fetched. If we want a write-back to take place, the '!' operator must be included:

LDMIA R0!,{R2-R4} 

STMDA R0!,{R5-R8, R10} 

The value written into the address register (R0) is the address calculated after the last register

in the list has been processed.

The STM and LDM instructions have a variety of applications. One of the most obvious is

that used in combination they can be used to preserve and restore the contents of all the

registers. If R0 holds the address of a free memory block, then save all the registers with:

STMIA R0, {R1-R14} 

And restore them later with:

LDM R0, {R1-R14} 

if R0 again has the address of the memory block.

A word of caution about including R15 in a list like this. If you block restore with LDM

and include R15 you will most likely set your program into a continuous loop.

This write-back feature in this block data transfer instruction is provided to simplify the

creation of stacks, the subject of the next chapter.



Block Copy Routine
Program 16a shows just how simple it is to copy a block of data from one place in memory to

another. In fact, just four lines of assembler is all it takes, and this routine is robust enough to

copy a block of memory that can be any length provided it is divisible by eight.

It uses registers R3 and R4 to first load and then store the data, so any information in them

will be destroyed unless preserved first. R0, R1 and R2 hold addresses that point to the start

and end of the data and the start address of its ultimate destination, respectively.

To see this work, you can use GDB. Make sure you assemble with the -g option. Enter

GDB and load the file:

gdb prog16a 

Set a breakpoint at the _exit routine (this is right after the block copy loop):

break _exit 

Now run the program:

run 

The program will run to the breakpoint, at which point type:

x/2x &dest

The '&' is used here to mean the 'location of' dest. If you do not use the ampersand, then the

data labels will not be recognised. When the two-words of memory are displayed you will see

that all the bits are now set (all fs) proving the block copy worked, as they were zeroes

originally.

The routine can be extended to handle bigger blocks of memory. For example, by changing

the two load and store instructions to read:

LDMIA R0!, {R3-R12} 

STMIA R2!, {R3-R12} 

you can work in blocks of 40 bytes (10 registers by 4 bytes each). Your data areas will need to

be adjusted accordingly, or rather than using labels you may need to invoke absolute memory

addresses.

 

Program 16a. Moving Blocks of Memory

/* Memory block copy routine */ 

 

.global _start 

_start:

LDR R0, =begin @ load locations 

LDR R1, =end @ of both strings 

LDR R2, =dest @ addr of destination 

 

_blockcopy: 



LDMIA R0!, {R3-R4} 

STMIA R2!, {R3-R4} 

CMP R0, R1 

BNE _blockcopy  

 

_exit: 

MOV R7, #1 

SWI 0 

 

.section .data 

 

begin: 

.word 0xFFFFFFFF 

.word 0xFFFFFFFF 

 

end: 

.word 0 

.word 0 

 

dest: 

.word 0 

.word 0 

End Program 16a.



17. Stacks

Stacks have been a fundamental feature of computer systems since just after the day dot. In

many respects they are exactly what you might think them to be, stacks of data, but they are

stacks of data that you as the programmer own and control. Their management is a

fundamental component of designing programs. Do it well and the program flows well. Do it

badly and you'll be reaching for the power switch.

The general analogy is a stack of plates. In theory, you can continue putting a plate on top

of a plate. Unless you are attempting a trick, if you want to take a plate off the stack it will be

the last one you placed on it, the top plate. In this respect the last one on is the first one off. We

refer to this as a LIFO structure, last in, first out. Try to take a plate out from the middle (or the

bottom!) and, unless you are careful, the lot comes crashing down. It's a good analogy.



Push and Pull
In the early days of home computers on systems such as the 6502 microprocessor, stacks were

built in a simple fashion. You pushed data onto the stack and pulled (popped) data off the stack.

For the most part you didn't even know where the stack was --- that was managed by the CPU.

However, as a programmer you did need to keep track of what order things went on to the stack.

Generally, the concept is still true today in that a sequence of data pulled from the stack is

always pulled from it in the reverse order it was pushed.

The instructions STM and LDM and their derivatives are what we use for pushing (STM)

and pulling (LDM) data onto and off ARM stacks. These stacks are areas of memory that we as

the programmer define. There is no limit to the number of stacks that can be used. The only

restriction is the amount of memory available to implement them.

R13, also known as the Stack Pointer or SP, is designated to be used to hold an address

relating to the location of the stack, but you can use any of the available registers for the

purpose. If you are running several stacks you will need to allocate more registers or manage

where you store the addresses in memory. Figure 17a illustrates a simple stack.

 Figure 17a. A simple stack where each stack item is four-bytes.

 

To implement a simple stack can use the following instructions. The important thing to note is

that the options for the STM instructions are always reversed for the LDM instruction.



STMIA SP!,{R0-R12, LR} @ push registers onto stack 

LDMDB SP!,{R0-R12, PC} @ pull registers from stack 

The IA and DB suffix options (introduced in the last chapter) are used in tandem to move up

through memory to push them on, and then down through memory to pull them off. The LR

and PC registers are used to save the Program Counter's address---therefore this two-line

combination is an effective way to save register contents before calling a subroutine and

restoring everything on return. The use of the write-back function is vital. Without write-back

the Stack Pointer will not be updated, and the stack will effectively be corrupted as we will not

know our relative positive within it.

You may implement a stack with two pointers. The first is the base point, and this locates to

the memory location where the stack begins. The second is the stack pointer which is used to

point to the top of the stack. The base pointer remains a static address; the stack pointer might

be a moving address or an offset from the base pointer. Hopefully, you can now understand how

different addressing modes could be used to organise different types of stacks. Whichever way

you fall, you will always need to keep a record of where the stack starts and the point where it

must end. Without defining these two end limits, you could get into all sorts of trouble. Also,

does the Stack Pointer provide the address of the next free space in the stack or the last space

used? To make this situation easier to manage and to manage the balancing of pushes and pulls

the pseudo instructions PUSH, and POP can also be used to place and retrieve information to

and from the Stack:

PUSH {R0, R3, R5} @ Push R0, R3, R5 onto Stack 

POP {R0, R5-R8} @ Pull R0, R5, R6, R7, R8 off stack 



Stack Growth
In ARM architecture stacks are grouped by the way they grow through memory. Stacks can

ascend through memory as items are pushed onto them, and they can descend through memory

as data is pushed onto them. It's like being in space --- there is no up or down, and the term is

relative. Stand on the 10th floor of an empty 20 storey building. The 10th floor is the only entry

and each floor, above and below, has four apartments. Eight families arrive; you can

accommodate them on two floors up or two floors down. How do you want to do it?

In computer memory terms a stack that grows up --- or ascends through memory --- is one

where the address grows larger. So as an item is pushed into it, the Stack Pointer increases its

address by four-bytes. A stack that grows in memory by going down the memory address

decreases; this is called a descending stack. In all, there are four types of stacks as listed in

Figure 17b:

Postfix Meaning

FA Full Ascending Stack

FD Full Descending Stack

EA Empty Ascending Stack

ED Empty Descending Stack

 

 Figure 17b. The four types of ARM stack.

 

When the stack pointer points to the last occupied address on the stack it is known as a full

stack. When the stack pointer indicates the next available free space on the stack, it is called an

empty stack. Note that in this empty stack scenario the stack can have data on it; it is used to

signify the condition of the next free word on the stack.

The option of full, empty, ascending or descending will often force itself on you and may

just be decided by the way you are looping through your data. It may be easier to implement a

descending stack as your code lends itself to a decremented count and it's easier to test for the

Zero flag.

There are instructions in the instruction set that cater for these types of stacks and these are

shown in Figure 17c.

Here are some examples:

STMED R13!, {R1-R5, R6} 

LDMFD!, {R1-R4, R6} 

There is nothing to stop you using different types of stacks within the same program. Just don't

mix them up! Equally, you will understand now why write-back is compulsory in the

construction of these instructions.

 



Mnemonic Pair Meaning

STMFE/LDMFD Full Descending Stack

STMFA/LDMFA Full Ascending Stack

STMED/LDMED Empty Descending Stack

STMEA/LDMEA Empty Ascending Stack

 

 Figure 17c. Instruction set to access stacks.

 

Examples of these stacks are illustrated in Figure 17d and Figure 17e. By default, a full

descending stack if a format is not specified.

 Figure 17d. Full and empty ascending stacks.



 Figure 17e. Full and empty descending stacks.

 

The best way to understand stacks and their manipulation is to experiment with them. Try

seeding an area of memory with known values, and then see if you can move this section of

memory to another location via a stack, with the information and its order remaining intact.



Stack Application
Stacks have a multitude of applications, and we have already mentioned a few of them:

Saving register contents

Saving and processing data

 

 

A third use is to save link addresses when subroutines are called. By pushing the link addresses

from the Link Register onto the stack, it is possible to create nested (one inside another)

routines without fear of losing control in the program. As you link to a routine you push the

link register onto the stack. You can then return from each subroutine by pulling the link

addresses off the stack and popping them back into the Program Counter.

The stack also makes it relatively simple to swap register contents around without ever

having to go through another register. You simply push the required registers in the stack and

then pull them in the order you need them. Imagine this situation where register contents need

to be swapped: 

At first sight, this looks complex. However, the following four lines will manage it:

STMFD SP!, {R0-R6} 

LDMFD SP!, {R3, R4, R6} 

LDMFD SP!, {R5} 

LDMFD SP!, {R0, R1, R2} 

The first line pushes R0 to R6 onto the stack. The top three items on the stack are (in

descending order) R0, R1 and R2. From the chart above these must go into R3, R4, and R6

respectively, and this is what line two does.

The Stack Pointer is now positioned at R3, which is transferred into R5. This leaves R4, R5

and R6 on the stack which, in the final line, is pulled into R0, R1 and R2,. What looks to be a

complex task at the onset is in fact a simple one.



Framed Work
There is only one 'official' stack implement on which the instruction described in this chapter

will work. If you implement you own stack, you will need to manage the memory block

containing it yourself. This is helped by the use of labels within your assembly listing.

One other method that used the 'real' stack is to create a Stack Frame. This is an area on the

stack which we can 'reserve' for our own use. In this scenario we reset the stack pointer to

create a gap within the stack for our own use.

If we wanted to store the contents of three registers, we would require 12 bytes (3 registers

x 4 bytes =12). The segment below shows how we can achieve this:

SUB SP, #12 @ Take 12 bytes off the stack pointer 

STR R1, [SP] 

STR R2, [SP, #4] 

STR R3, [SP, #8] 

The three registers R1, R2, and R3 are stored within the gap we have created as illustrated in

Figure 17f. You will need to remember to close this gap in the stack when you have finished the

operation you needed the space for:

ADD SP, #12 

It is quite common to use this method to preserve register contents before calling a function

(see Chapter 21).

 Figure 17f. Forming a stack frame 'gap'.



Frame Pointer

When a lot of use of the stack is being made it can be difficult to remember where things are,

and what offset is what. Rather than use the SP and offsets we can invoke a Frame Pointer---

this is a pointer to the stack frame. It is common convention to use R11 as the FP, but this is not

a hard and fast rule. Just remember to push the registers contents onto the stack, so it can be

restored later. After creating the stack frame, we can set the FP to next free spot on the stack

(remembering it grows in descending addresses).

SUB FP, SP, #4 

SUB SP, #12 

Now we can use the FP to access our variables:

STR R1, [SP] 

STR R2, [FP, #-4] 

STR R3, [FP, #-8] 



18. Directives and Macros

GCC provides many additional tools to help in the writing of machine code programs. This

includes instructions that allow you to store data within your programs and the ability to pass

information to them when they are called from the prompt. All assembler directives begin with

a period or full-stop and there are a lot of them with GCC. We have already seen several of

these in action in earlier programs. In this chapter we'll look at some of them in more detail.



Data Storage Directives
To store character string information within our programs, there are two options:

.ascii "This is the string to print." 

.asciz "This string has a zero added to the end" 

A string is written between double quotes. The 'z' in the second option stands for zero and a

zero byte (0x00) is appended at the end of the string. This is a useful way to end mark a string

in memory as it allows for a simple Zero flag test when you are looking for the end of it. Both

directives allow for control or escape code characters to be embedded within them by use of a

backslash character, '\'. Figure 18a gives some of the more popular and useful ones:

Option Effect

\b Backspace

\f Formfeed

\n Newline

\r Return

\t Tab

\\ Include '\' in string

\" Include quotes in string

 

 Figure 18a. Popular backslash controls for use in strings.

 

The following:

.ascii "1\t2\t3\r\n4\t5\t6\r\n7\t8\t9\r\n" 

would print out a simple but neatly formatted table using any of the write routines shown in

this book. (Remember to change the string length count accordingly.) As your programs

become more sophisticated and have real application you will need to store information in

them. This might be in the form of constants, addresses or messages to be printed. For the

latter, we have used the string operator. By placing the data within the body of the machine

code, we can be safe in the knowledge that it is 'protected'.

In the block move example from Chapter 15 we saw a clear indication how this could be

done by using the '.word' directive to write four-byte words of information to memory. As well

as '.word' there are other directives that can create space in a similar way. Program 18a shows

two of these, '.byte' and '.equ'.

 



 Program 18a. Use of .byte and .equ directives.

/* Use of byte and equ to sum a set of numbers */ 

.global _start 

_start:

LDR R1, =values 

LDR R2, =endvalues 

MOV R0, #0 

 

_loop: 

LDRB R3, [R1], #increment 

ADD R0, R0, R3 

CMP R1, R2 

BNE _loop 

 

_exit: 

MOV R7, #1 

SWI 0 

 

.data 

.equ increment, 1  

 

values: 

.byte 1,2,3,4,5,6,7,8,9 

endvalues: 

 

End Program 18a.

 

The '.byte' directive allows for a sequence of values separated by commas to be stored

sequentially in memory. As the directive suggests these values must be in the range 0-255.

The '.equ' directive allows an immediate value to be assigned to a name. The name can then

be used in your source files. This is handy in that if you need to change the value at any point

you just have to change the '.equ' definition and not any and every reference to it in the source.

If you look at the '.data' section of Program 18a you can see that the constant 'increment'

has been assigned the value 1. You can see how this is used as the post-indexing counter at the

start of the _loop routine.

The label 'values:' is used to mark the start of the '.byte' definition. A second label called

'endvalues:' is used to mark the end of the '.byte' sequence. This is a handy technique to use

when dealing with tables or arrays of data as a simple CMP test sees if the end of the sequence

has been reached. The program illustrates this.

If you assemble, link, and run Program 18a and then enter:



echo $? 

the value 45 should be returned, which is the sum of the bytes.

Figure 18b below summarises a few important data directives.

 

Directive Function

.equ
Assign immediate value to named label. 

Example: .equ one, 1

.byte
Store byte sized values, separated by commas, into memory.  

Example: .byte 1,2,3,55,255

.word
Store four-byte values, seperated by commas, into memory.  

Example: .word 0xFFFFFFFF, 0xFFFF

 

 Figure 18b. The common data storage directives.



Aligning Data
If you intend to store data within your executable segments, within the '.text' sections of your

program, then this can create problems. All assembled opcodes must start on a word boundary.

If you insert text or data that does not completely fill the space to a four-byte boundary then the

assembler will freak and issue you with an:

Unaligned opcodes detected in executable segment 

error.

Consider Program 18a. If you add these extra lines at the end of the _start: section:

BAL _loop 

string: 

.ascii "12345" 

and try to assemble the code you will get the above error. This can be corrected by adding the

following after the '.ascii' definition:

.align 2 

This pads out the space with 0s to the next word boundary. You can check this out using GDB.

There is generally no reason to use the '.align' directive outside of the executable sections of

your code. Any definitions made in data sections are normally stored at the end of the file by

the assembler to avoid such problems.



Macros
A macro is a fragment of code -- which can be of any length -- and is defined by a name. The

macro definition can be called from within the program by using the macros name. During

assembly, the assembler block that constitutes the macro definition is inserted whenever the

macro name is encountered in the listing.

Many programmers set about writing their library of macros that they can use in a variety

of circumstances. They simply load the macros they need and then call the macro from their

program when need. This differs from the pseudo-code given in Figure 2b at the start of the

book which uses subroutine calls to jump to different parts of the program. Macros create

linear code -- one long program! Both permit a group of instructions defined as a single entity.

Macros are not a substitute for subroutines since the macro is replaced with the code and

therefore makes the program execution linear in nature. Long macros that are used many times

in a program will result in an enormous expansion of the final code size. In this case, a

subroutine would be a better choice, since the code in the body of the subroutine is not inserted

into source code when called.

Macros are useful when you have some difficult or complex calculations to do and where it

may be easy to make a typo mistake. You can use the constant data inside the macro and pass

the variable information to the macro each time you can do it. Macros are also useful to avoid

the overhead of a subroutine call and return when the subroutine itself is but a few instructions.

Program 18b defines a simple macro, call 'addtwo' that takes two parameters, 'val1' and

'val2', which are passed into R1 and R2 respectively, and are summed together with their

addition returned in R0.

 

 Program 18b. Implementing a simple macro.

/* Implement a simple macro #1 */ 

.global _start 

_start:

 

.macro addtwo val1, val2 

MOV R1, #\val1 

MOV R2, #\val2 

ADD R0, R1, R2 

.endm 

 

addtwo 3, 4 

 

MOV R7, #1 @ exit through syscall 

SWI 0 



End Program 18b.

 

The '.macro' directive is used to define the macro which we give a name, 'addtwo' and I have

chosen to call the two parameters 'val1' and 'val2'. As you can see the macro definition is

terminated by the directive '.endm'.

Note that inside the macro definition the two named parameters are preceded with a

backslash '\' character. This is to signify to the compiler that they are parameters and not

absolute values. The most common mistake when writing macros is to omit the backslash

before parameters.

Calling, or 'invoking' the macro is simple, just insert the name in the assembler and include

the parameters. If you run Program 18b and then type:

echo $? 

x/20i _start 

You'll get the result 7.

It is worth looking at the code produced by Program18b. If you have assembled and linked

using the -g option, you can look at the code in GDB with:

Which will return something similar to what is shown below in Figure 18c.

Note that the disassembly shows that the immediate values have been passed into the

assembled code in the first two lines at <_start> and <_start+4>. This is not a subroutine call.

The required code is assembled inline at the point required.

 Figure 18c. Disassembled output from Program 18b.

 

Program 18c shows a modified version of this which uses the MLA instruction to add the

products of each multiplication together. This time we define the 'multtwo' macro three times to

pass three successive sets of values to the macro to calculate:

(2*2)+(3*4)+(5*6) 



The caveat here though is that, at this point, there is no error checking.

 

 Program 18c. Multi-calling a macro.

/* Implement a simple macro #2 */ 

.global _start 

_start:

 

.macro multtwo val1, val2 

MOV R1, #\val1 

MOV R2, #\val2 

MLA R0, R1, R2, R0 

.endm 

 

MOV R0, #0 

multtwo 2, 2 

multtwo 3, 4 

multtwo 5, 6 

 

MOV R7, #1 @ exit through syscall 

SWI 0 

End Program 18c.

 

Assemble, link, and execute the program. All being well then when the prompt returns you can

obtain the result using:

echo ?$ 

Which should return 46.

A disassembly of this same code will provide something like that shown in Figure 18d is

you are using GDB and:

x/20i _start 

Note again how the macro has been assembled in absolute terms into the body of the text, and

this is a good illustration to allow us to highlight a few of the implications of this, in no

particular order:

The final code size of the assembled file will be larger than might be otherwise expected.

(In theory this could create a speed issue but in a RISC environment this is not normally



a problem.)

Debugging can be harder as it is easy to lose yourself in long code repeats.

 

You require greater diligence to ensure that your registers contents are saved in the

appropriate places if required.

 Figure 18d. Disassembled output from Program 18c.



Including Macros
Programs 18b and 18c show the usefulness of macros, however that assume that the macro

source at this point has the macro definition with the body source. A major benefit of macros is

that that you can create a macro library that allows you to simply include the macro or macro

library you require as an when assuming that have been written accordingly of course! With

this in mind let's re-address this issue by creating a simple math macro file that will supply the

two functions offered by Program 18b and Program18c. This Program 18d below which is in

fact just a source file that includes the macro definitions of both. Program 18e is the testing

program for this.

 

 Program 18d. AddMult macro file.

/* Macros: Addtwo and MultTwo * 

.macro addtwo val1, val2 

 

@ On Exit R1,R2 contain val1, val2 

@ R0 contains result 

MOV R1, #\val1 

MOV R2, #\val2 

ADD R0, R1, R2 

.endm 

 

.macro multtwo val1, val2 

@ On Exit R1,R2 contain val1, val2 

@ R0 contains accumulated result 

MOV R1, #\val1 

MOV R2, #\val2 

MLA R0, R1, R2, R0 

.endm 

End Program 18d.

 

Program 18d can be saved as a normal text source file with the '.s' option. There is no need to

assemble and link it as that will be undertaken when it gets included in the main program when

called. Just ensure that the filename used in the include (line two of Program 18e) is the one

used to save the macro definition file above. (They should also be in the same directory at this

point.)

 Program 18e. Macro Include Test



/* Test External Macros */ 

.include "Prog18d.s" 

.global _start 

 

_start:

MOV R0, #0 

 

_add: 

addtwo 3, 4 

 

_mult: 

multtwo 2, 2 

_exit: 

MOV R7, #1 @ exit through syscall 

SWI 0 

End Program 18d.

 

You can save, assemble and link Prog18e.s in the normal fashion. If you execute and echo the

result then the answer, 11, should be forthcoming.

If you disassemble the executable via GDB the output will be along these lines:

 Figure 18e. Disassembled output from Program 18e.

 

Additional labels were included in the source file when it was assembled. Using GDB in this

way, especially in multi-macro assembly, makes referencing and identifying sections of code

easier to distinguish.



The ARM instructions to load 0 into R0 was provided at the start of the code - even though

it wasn't needed as the result of 'addtwo' would overwrite the contents of R0 regardless. The

result from the 'addtwo' routine was carried in the 'multtwo' routine and accumulated

accordingly.

Again, here static values are provided to illustrate how a macro is treated at assemble and

link time. However, we can utilise memory to pass values into such macro routines should we

not know what their values are at the time of writing the macro, and this can be facilitated

using the Stack using the methods illustrated in the previous chapter. Be careful though when

using these stack frames within macros as the accumulative effect of adjusting the stack can

have catastrophic effects on your data and program management if you are not careful.

Note: When you have code that may contain multiple labels and you are not sure when the

start an end may be exactly then a good trick is to make disassembling your code easier is to

use something like:

disassemble _start, _exit+8 

This normally works for me as I try to be consistent in the way I enter and exit my assembler

code.

Many of the larger programs within this book can be constructed and implemented as

macros. There are one or two I have provided.

Mostly though, I have given the assembler as a single linear source file to make it easier to

read and understand. However, once you have grasped the concepts you are good to go.



 
 
  
  



19. File Handling

Files play a big part in the operation of your Raspberry Pi. Almost all the activities you

undertake involve the use of a file. Mostly, the Raspberry Pi OS, takes care of the file

management. The system provides the infrastructure to allow programs to interface with it and

to perform most file operations. This ranges from creating files, to opening and closing files and

many other file operations we take for granted.

In Chapter 8 we saw how we can take a line of text and overwrite it or convert it from

uppercase to lowercase. That ASCII text was located as a string as part of the program itself. In

that instance we knew where the string was located as there was a named label identifying it.

What if the information we need was in a file stored on an SD Card or on a USB?

Files are a fundamental element to all computer operations, especially so Raspberry Pi OS

(Raspbian). In this chapter we'll look at how to create, open, close, read from and write to files.

Figure 19a lists the system calls we will utilise to do this.

 

Operation Description Call Syscall

Read Read from a file sys_read 3

Write Write to a file sys_write 4

Open Open/Create a file sys_open 5

Close Close a file sys_close 6

Create Create a file sys_creat 8

Sync Sync-flush a file sys_fsync 118

 

 Figure 19a. File Associated System Calls used in Program 19a.

 

We've used some of these before, and most require additional information passed to them

before being called. Remember that the Syscall number (listed in Figure 19a) must be loaded

into R7, and any additional details provided via R0-R6. Not all registers are needed for every

call, but assume they are unless you know otherwise. R0 is often used to return information by

the Syscall, such as an error number or result.

The listing for Program 19a shows how you can use these calls. In this example, taking the

contents of a file, reading the first 26 characters from it into a memory buffer, before writing

them out to a new file. This example assumes that the files are in the current directory, or the

same directory as the program itself. Nothing special in the 26 characters, other than our input

file will comprise an uppercase, alphabet (A-Z), which we'll convert to lowercase, before

writing it to the new file. The program will also illustrate some file error checking along the

way.

 



 Program 19a. File Creation and Access.

/* File Creation and Access Using Syscall */ 

/* Create and Open File, Read from File, Write to File */ 

 

.global _start 

 

_start:

@ Open file to read in from. 

@ Assumes file exits in current directory 

@ Or generates an error message (error1) 

 

LDR R0, =inputFile @ Addr of filename 

MOV R1, #o_rdonly @ flag read only file 

MOV R2, #s_rdwr  

MOV R7, #sys_open @ Call open file 

SWI 0 

 

MOVS R8, R0 @ Save/Test file flag in R8 

BPL moveon @ If positive, moveon 

MOV R0, #1 @ Set screen as output 

LDR R1, =error1 @ addr of error1 message 

MOV R2, #18 @ string length 

MOV R7, #4 @ Write code  

SWI 0 

B finish @ terminate program 

 

moveon:  

@ Create/and-or Open File to write too 

LDR R0, =outputFile 

MOV R1, #(o_create+o_wronly) 

MOV R2, #s_rdwr @ access rights 

MOV R7, #sys_open @ load syscall 5 

SWI 0 @ Make the call 

MOVS R9, R0 @ Save file flag 

BPL readlinein @ If positive file there

MOV R0, #1 @ Non-existent so error2 

LDR R1, =error2 

MOV R2, #18 

MOV R7, #4 

SWI 0 

B finish @ terminal program 

 

readlinein: @ read line from InFile.txt 



MOV R0, R8 @ File descriptor R8>R0 

LDR R1, =inbuffer @ location of inbuffer 

MOV R2, #alphabet @ length of alphabetbuffer 

MOV R7, #sys_read 

SWI 0 @ InFile >> InBuffer 

MOV R10, R0 @ Save bytes written in R10 

MOV R1, #0 

LDR R0,=inbuffer 

STRB R1, [R0, R10] @ Write null terminator to buffer 

 

convertUpperCase: 

PUSH {R8} 

PUSH {R9} 

MOV R8, #0 @ counter 

 

loop: 

LDR R0, =inbuffer @ Move file from in to out 

LDRB R1, [R0, R8] @ doing ORR conversion 

ORR R1, R1, #0x20 

LDR r0, =outbuffer 

STRB R1, [R0, R8] 

ADD R8, #1 @ increment loop counter 

CMP R8, #26 @ is it alphabet length? 

BNE loop @ no so loop again 

POP {R9} @ restore file files 

POP {R8} 

 

writebuffer: 

MOV R0, R9 

LDR R1,=outbuffer @ addr of outbuffer 

MOV R2, #alphabet @ length of alphabet 

MOV R7, #sys_write @ write converted buffer 

SWI 0 

MOV R1, #0 

 

@ flush and close 'infile' 

MOV R0, R8 

MOV R7, #sys_fsync 

SWI 0  

MOV R0, R8 

MOV R7, #sys_close 

SWI 0 

 

@ flush and close 'outfile' 



MOV R0, R9 

MOV R7, #sys_fsync 

SWI 0 

MOV R0, R9 

MOV R7, #sys_close 

SWI 0  

 

finish: 

MOV R0, #0 @ Use 0 return code 

MOV R7, #1 

SWI 0 

 

.equ sys_open, 5 

.equ sys_read, 3 

.equ sys_write, 4 

.equ sys_close, 6 

.equ sys_fsync, 118 

.equ o_rdonly, 0 

.equ s_rdwr, 0666  

.equ o_wronly, 1 

.equ o_create, 0100 

.equ alphabet, 26 @ file length in bytes 

 

.data 

inputFile: .asciz "infile.txt" 

outputFile: .asciz "outfile.txt" 

error1: .asciz "Input file error \n" 

error2: .asciz "Output file error\n"  

inbuffer: .fill (alphabet+1), 1, 65 

outbuffer: .fill (alphabet+1), 1, 66 

 

 

End Program 19a.

 

If you look at the end of the listing for Program 19a you will notice, there are several 'equ'

definitions setting up constants (a few lines after the label finish:). The '.data' section contains

areas where string information is stored. These areas are vital to the program as they contain

system calls values, flag values and file names. These label names and definitions are

commonplace within the industry, and thus enhance program readability. Many programmers

create specific macro file definitions that you can then '.include' to help ensure consistency if

you so desire.



There is a minimum of three parameters required by the system for opening a file, and these

are provided in the first three registers thus:

 

R0:   Pointer to the filename to open, stored as a null terminated ASCII string.

 

R1:  Flag to specify a mode of action for file open, read, write, read/write.

 

R2:  Access mode permission values.

 

The first five code lines of the program open the file we want to read from. The system number

for this is 5. if the file does not exist, an error is generated. Therefore, the filename is essential,

and we load the address of this into R0. R1 requires for a code specifying the file operation; we

use in this case 0 as it is being open as a read-only file. R2 defines the permission values and

0666 (octal 666) is required here.

On return, R0 will contain details of any errors. If a positive number, then the file was

located and opened. If it returns a negative value, the file could not be found or opened. An

error occurred, and it's not possible to proceed, therefore the next section of lines prints out the

'error1' message string.

Assuming all is good the value passed into R8 for preservation (contains the descriptor for

the file), a small jump is made, and program operation continues at 'moveon'.

Having successfully opened the 'inputFile' we do the same for the 'outputFile'. Although, in

this instance, if the file does not exist the syscall will create it for us. Information is passed

again through the sys_open call. If all is good, the branch to 'readlinein' takes place, otherwise

an 'error2' message is printed to the screen, and the program ends.

At 'readlinein' we first move the file descriptor previously saved in R8 back into R0. R1 is

pointed to an address of where we can store the contents of the file we are reading-in, and then

takes a number that defines the number of bytes we need to read in, before calling sys-read. The

bytes are read and stored in the RPi memory at the defined location. On return from the call the

number of bytes written is returned in R0. This is moved to R10, so we have a pointer as to

where we have ended. A zero is then written at the end of the buffer.

The 'convertupcase' and 'loop' sections that follow are all about doing something with the

information read in from our open file. This can be whatever you want at this stage. For

example, here, we are going to read each byte from the 'inbuffer', ORR it with 0x20 to convert

to lowercase and the store it back to the 'outbuffer' location. As we need a register or two to

work with the contents of R8 and R9 are pushed on the stack for the interim. On completion R8

and R9 are restored, and the 'outbuffer' contents are written to the open output file (using the

restored R9 as the file descriptor handle).

Finally, the two files are flushed and closed using sys_fsync and sys_close, again using the

relevant file descriptors in R8 and R9.



A few points. Before running the program create the input file 'infile.txt' using a suitable

text editor and place:

ABCDEFGHIJKLMNOPQRSTUVWXYZ 

on the first line. Save the file to the same directory as Program 19a. Make sure the filename is

the same as used in the .data section of the listing.

In the listing the 'inbuffer' and 'outbuffer labels are used as buffers for the reading,

converting and writing the information. In both cases, I fill the buffers with a string of As (65)

and Bs (66) to distinguish them from one another. If the program performs correctly, these will

end up with the uppercase and lowercase alphabets in them, respectively. This is handy if you

wish to debug the program at any point you can also dump these sections of memory to see

what is there, thus helping you to identify where you are up to or otherwise at any point.

Assemble and link Program 19a. Ensure that 'infile.txt' is in the same directory and then

execute the program. All being well you should see 'outfile.txt' appear in the directory. Open

'outfile.txt' and examine the result.

If there are any logical errors within your source, they should show up in the contents of

'outfile.txt'. One advantage of using the character strings, including the As and Bs used in the

memory buffers, is that if anything other than what you expected turns up in 'outfile.txt' you can

pinpoint where the error is.

Once you have the program and any versions you derive from it running correctly, you can

always change the As and Bs to 0s should you wish.



File Permissions
When opening and reading files earlier we needed to specify several values which we described

as flags and modes. We placed these in R1 and R2 as part of the syscall process. We defined

these as numeric values.

Figure19b is the output from a directory containing the files needed and/or created by

executing Program 19a. You can get such a listing by entering the following in a terminal

window:

ls -l 

Anything in the current directory will be shown in the listing, including directories and files.

 Figure 19b. File Attributes.

 

The first column is the one with the file attributes. A string of ten characters makes up this

column: an example would be:

rwxr-xr-x  

In the first column. In the case of a file then after the first character (-) the following nine

characters come as sets of three which define if the file can be read (r), written (w), or

executed(x), or not (-). The three groups of three relate to permission of the 'owner', the 'group'

and 'other users' have.

So, in the case of the first file in the listing, it can be read, it can be written, and it can be

executed. When a 'd' exists as the first letter of the string, then this indicates a directory and not

a file.

The attributes for infile.txt are:

-rw-r--r-- 1 pi pi 28 Sep 25 09:39 infile.txt 

In the example above, we can see the first letter is not d but a hyphen (-). So, we know

(infile.txt) is a file, not a directory. Next the owner's permissions are 'rw-' so the owner can read



and write but not execute. This may seem odd that the owner does not have all three

permissions, but the x permission is not needed as it is a text file, to be read by a text editor,

and not executable. The group's permissions are set to r--, so the group can read the file but not

write/edit it in any way --- it is essentially like setting something to read-only. We can see that

the same permissions apply to everyone else as well.

Compare this to 'prog19a' where the attributes are:

-rwxr-xr-x 1 pi pi 2384 Sep 25 09:54 prog19a 

Here the first letter is a hyphen (-). So, we know it is a file, not a directory. Next the owner's

permissions are 'rwx' so the owner has the ability to read, write and execute. The 'Group' and

'Other' permissions are set to r-x, so they can read and execute the file but not write nor edit it

in any way.

How does this relate to the numeric values we used in the program? The mode was a three-

digit number, in fact it was an octal number.

To come up with this three-digit number you need to consider what permissions you want

owner, group, and all others to have. Each operation is represented by a number: r=4 w=2 x=1

Consider the 'prog19a' attributes. Breaking it down into the three groups of three we have:

Owner: rwx = 4+2+1 = 7 

Group: r-x = 4+0+1 = 5 

Other: r-x = 4+0+1 = 5 

The value then is 0755. (Remember the 0 at the front signifies an octal value - base 8).

The two text files are:

Owner: rw-=4+2+0=6 

Group: r--=4+0+0=4 

Other: r--=4+0+0=4 

Which becomes = 0644.

 



 
 
  
  



20. Using libc

The assembler and linker we have been using to write and create machine programs so far is

just a small part of the GCC Compiler. As I said at the onset the GNU GCC compiler is a C

Compiler. It will take programs written in the C programming language and convert them into

machine code. Broadly speaking, it takes the C source file and translates it into an assembly

language source file, which in turn gets translated into an executable machine code program

which is linked together. We have been dealing with the last couple of processes here. But that

is only just the tip of the iceberg.

This is not a book about C programming, but that is not to say we cannot use many of the

features that C and the GCC Compiler provides. This includes libc, which is the standard

function library of C. As we saw in an earlier chapter, we can use the operating system Syscall

to perform common operations such as input/output, memory management, and string

manipulation.



Using C Functions in Assembler
Likewise, the C language has no in-built facilities for performing these functions but provides

the interface to allow access to them, without necessarily needing to know a lot about the

underlying Syscall itself. In addition, many of the things you may be looking to program for

yourself may already be found in libc or available in other C libraries, and they can be included

and linked into your own assembly source. So, there are libraries to be found that are pre-

packed and ready to be included by the compile process. Figure 20a illustrates

diagrammatically how libc sits within the overall interface.

 

Syscalls User Space

Kernal libc Procedures

 

 Figure 20a. libc and user space.

 

The kernel in our case is the Raspberry Pi OS. The area above it is the user space. This is

where our files sit. Recall the addresses that were being displayed when we used GDB to

disassemble our programs. The libc code sits directly on top of the kernel and any of our

application code sits on top of this. Although it makes no real difference operationally,

diagrammatically we can see how easy it is for the libc functions to tap into the kernel. For the

most parts when an application is written, because it is often written in C, it uses the libc

interface to access the Syscalls. Rarely in this situation would a programmer go directly to the

Syscall.

The main reason for using the Syscalls directly and not using libc would be one of space

and speed. Some might also consider it a purer method of programming and not the rather

disjointed code that integrating libc creates. The libc library is of a certain size and much of its

basic configuration might be redundant. This is not normally an issue, but for a tight, small

routine where speed and memory overhead might be critical then it may be a critical

consideration. Technically your own program becomes a procedure which uses the resource

libc provides.

From a user point of view a copy of 'The GNU C Library Reference Manual' is essential.

Not to learn C (but that isn't a bad thing to do --- you will become increasingly aware of how

fundamental it is to system and application programming) but for the detail of the various

functions you can access. This contains information required and returned. In this chapter we'll

be looking at some worked examples on these and using the above document as our source. The

GNU C Library Reference Manual can be found on the GNU website for download. Another

source of instant help is the online manual. At the command line prompt type:

man printf 

and you will get a lot of text output relating to the use and directives available within this C

function. Here 'man' stands for 'manual' and it will provide information relating to the function



name after it.



Source File Structure
The format of the source file used with the full GCC compiler is a little different from what we

have been using to date. It is no more difficult to create and is in fact a lot simpler to compile as

we do not need to do the assembly and link stages separately --- they can be done with a single

command. Have a look at Program 20a. This is a revised version of the 'write string' code that

formed Program 7a.

 

 Program 20a. GCC source file structure.

/* Printing a string with libc - requirements change */ 

/* string must end with zero using printf function */ 

 

.global main 

.func main 

main: 

STMFD SP!, {LR} @ save LR 

LDR R0, =string @ R0 points to string 

BL printf @ Call libc 

LDMFD SP!, {PC} @ restore PC

 

_exit: 

MOV PC, LR @ simple exit 

.data 

string: 

.asciz "Hello World String\n"

End Program 20a.

 

The first thing to notice is that the 'global _start' definition has been replaced with 'global main'

thus:

.global main 

.func main 

main: 

The structure used is important as this is used by the compiler to tell libc where the main

program is located. Because all C and lib C routines are written as named functions then we

must declare this main part of our code as a function and then use a label to impart exactly



where the function starts. These three lines do that. (As you can see, they effectively undertake

the same task that '_start' label does when using the assembler-linker only, notwithstanding the

addition of the function definition.)

The two instructions at the start and end of the main function save and then restore the link

register on the stack. These commands and their use were discussed in Chapter 17. Strictly

speaking they are not necessary here, but it is often an accepted convention just to preserve the

link register when a function is entered. So, we'll stick with it for now.

The libc function printf is used to print the asciz string defined at the end of the listing.

printf is not a C command but is a function defined in the library that we can use. It is a very

versatile function and all that is required before we call it is for R0 to be given the address of

the string. In all cases printf requires that the string be terminated with a zero and therefore the

asciz directive is --- and should always---be used.

Finally, we have abandoned our normal exit function for the much simpler MOV

instruction. The SWI version would have worked equally as well, but the full GCC compiler

will accept this exit method which is more common in the wider programming world. You can

continue to use the SWI method if you like the option of using the echo command to display

return contents.

If you have tried to assemble and link this command in the way we have described so far it

will have failed because there is no '_start' entry point. Compiling with GCC can be done in a

single-step thus:

gcc <options> <destination_name> <input_name.s> 

So, for Program 20a you might use:

gcc --o prog20a prog20a.s 

and execute the program with:

./prog20a 



Investigating the Executable
At this stage it is worth looking at the code that is compiled using GDB. Recompile including

the --g option to create the debugging data:

gcc --g --o prog20a prog20a.s 

and then enter the disassembler: 

gdb prog20a 

If you now disassemble some code using:

disassemble main  

or:

x/44i main 

you should see by the labels used that the library component of the file is tagged on after

'_exit:'. However, if you look through the listing you should also see branches to addresses

before your main entry point. Inspect these areas. You will see that the labels associated in the

listing indicate that this is libc initialisation code. Your program has almost been wrapped

within libc! As you look at the listing you will probably notice some instructions that we

haven't discussed so far (but will with the next program example).

Investigating listings in this way is a great way to learn about machine code programming.

Remember, you can step-through this code and print register values out at any time using GDB,

so you can get a good insight into what is happening and how.

The printf function is amazingly versatile. Program 20b shows how values can be passed

into printf and used in printing results.

 

 Program 20b. Passing parameters to printf..

/* Printing a string using libc and passing */ 

/* parameters to function for use in printf */ 

 

.global main 

.func main 

main: 

PUSH {LR} @ use pseudo directive 

LDR R0, =string @ R0 points to string 

MOV R1, #10 @ first value in R1 

MOV R2, #15 @ second value in R2 

MOV R3, #25 @ result in R3 

BL printf @ Call libc 



POP {PC} @ restore PC with pseudo 

 

_exit: 

MOV PC, LR @ simple exit 

 

.data 

string: 

.asciz "If you add %d and %d you get %d.\n"

The first thing to notice here is that the entry and exit instructions for main: have changed. We

are using PUSH and POP. These are compiler directives and not ARM instructions, but they

have the same effect as the ones used in Program 20a. They are a lot easier to use as you don't

have to think too much about what type of stack you are going to use and what order the stack

adjusters are used in. (However, it is worth remembering that should you decide to use another

assembler, directives may change and not be compatible with your existing code. That said, you

will almost certainly have to adjust your code format with a new assembly program.) The string

definition here includes three parameters within it. These are signified by the preceding '%'. If

you compile and run this program you will see that its output is: If you add 10 and 15 you get

25.

Looking at the listing for Program20b we can see that these three values were passed in R1,

R2 and R3. When using libc functions such as printf there is a standard way to pass and return

information into them and we'll look at this in the next chapter which deals with writing

functions.

The table in Figure 20b below lists some of the output options available to use within

printf. This list is by no means extensive, but it does provide some options for you to

experiment with, using and editing the above program.

 

Code Function

%d Print an Integer as a signed decimal number.

%o Print an Integer as an unsigned octal number.

%u Print an Integer as an unsigned decimal number.

%x Print an integer as an unsigned hexadecimal 

%X
Print an integer as an unsigned hexadecimal 

 number using upper case letters.

%c Print a single character.

%% Print a literal % character.

 

 Figure 20b. Output parameters recognised by printf.



 



Number Input with Scanf
You could be forgiven for thinking that scanf performs the reverse task of printf, but it does not.

scanf takes a string of characters entered at the keyboard and converts it into its numerical

value and stores it in memory. For example, if when using scanf you typed:

255 

when requested scanf would store the binary equivalent in memory. In hex this would be:

0xFF 

The reason for discussing this routine at this point, rather than the string-input routine

equivalent of printf is that it illustrates another way a libc function expects and uses data. Not

all functions expect data in the same way. This is a concept that you will need to bear in mind

as you come to learn how to access libc functions and write your own.

However, as with printf, scanf recognises many, many different formats and you could

spend a great deal of time learning and experimenting with them both. For this example, we'll

stick with the use of integer values. This is the %d format introduced in the previous program

example.

The format for use of scanf is as follows (this is stylised --- it is not how it would be coded

in C):

scanf <input_format>, <variable> 

or:

scanf "%d", integernumber 

The steps for using scanf are these:

Declare a memory variable holding the address of the formatting string. This will be a

string "%d" for this example.

 

Declare a memory variable holding the address of where the value is to be placed.

 

Make space on the stack for the converted ASCII string to be stored.

Notice how in this case we are pointing to the information indirectly; we are passing the

addresses of the relevant information. This is important to know because it means that to use

the indirect addresses we have to declare the variables, and here we are talking about the '.word'



directive, within the text area. The string definitions themselves should remain outside the text

section and be defined in the data segment of the code. The other thing you need to know is

that scanf stores its result on the stack, so to prevent it being corrupted we need to adjust the

stack point by a word to make a safe place for it. Program 20c should help disperse the mist.

The line numbers are there to help in the description of the program and should be omitted

when you are entering the listing.

 

 Program 20c. Reading and converting a number with scanf.

1 / Reading a number using scanf / 

2 /* via registers and the stack */ 

3  

4 .global main 

5 .func main 

6 main: 

7 PUSH {LR} 

8 SUB SP, SP, #4 @ Make room on stack 

9 LDR R0, addr_format @ get addr of format 

10 MOV R1, SP @ place SP in R1 and 

11 BL scanf @ store entry on stack 

12 LDR R2, [SP] 

13 LDR R3, addr_number 

14 STR R2, [R3] 

15 ADD SP, SP, #4 

16 POP {PC} @ restore PC 

17 

18 _exit: 

19 MOV PC, LR @ simple exit 

20 

21 /* as scanf needs addresses of strings we */  

22 /* assemble them in the text area */ 

23 

24 addr_format: .word scanformat 

25 addr_number: .word number 

26 

27 .data 

28 number: .word 0

29 scanformat: .asciz "%d"

End Program 20c.

 



Let's look at the listing. Lines 6 and 18 should be familiar and should be considered part of

standard procedure. Line 8 is where we adjust the stack pointer by four-bytes to make some

space for scanf. Before we call scanf we need to place the SP address into R1 (line 10) and the

address of the format string in R0 (line 9). The format string should indicate the details of the

value that will be entered at the keyboard and read by scanf. This ensures that the value is

converted correctly.

After calling scanf (line 11) the converted binary value is now held on the stack, so this is

retrieved (line 12) and the address of where it is to be saved is placed in line 13. Then using

indirect addressing the value is stored (line 14). To tidy up, we should reset the stack point by

adding the four additional bytes we originally subtracted from it (line 15).

Lines 25 to 29 show how we create addresses to point to the actual data to be utilised. The

actual data is in the .data subsection (lines 27-29) and the addresses of these two places are

held in word length addresses within the text area defined by lines 24 and 25. Thus on assembly

the four-bytes of space created by line 24 will hold the address of the string "%d". This is the

formatting string we encountered earlier. Line 25 creates a place for the address of where the

result returned by scanf will be placed.

When you run this program there will be no prompt. Just enter a number such as 255 and

press the return key. The prompt will be returned. If you have compiled the program with

debugging information enabled (the --g option) then you can use GDB to single step-through

the code and interrogate the registers at each stage. This is a very worthwhile exercise and what

seems a convoluted way to do something is in fact remarkably simple once you have your head

around it!

Program 20d extends the above routine to provide some interaction using printf to request

the value and then print the result.

Note that in this program the information is expected to be entered in decimal format, but

the result is displayed in hex --- see the very last line of the program.



Getting This Information
If you have no experience with C, you may be wondering how best to get all this information

and then understand how to use it. Good question. The bald answer is that there is no central

resource and that it comes down to investigation and interrogation. Websites and user forums

are a good source of detail for one. The other way is to look at what the function itself does and

by generating the source code for it, then using GDB to interrogate it. As your knowledge of

ARM machine code increases then this will become a more common option and we'll have a

look at just how to go about it in a later chapter.

 

 Program 20d. Combining scanf and printf.

/* Reading a number using scanf */ 

/* and printing it with prinf */ 

 

.global main 

.func main 

main: 

PUSH {LR} @ use pseudo directive 

SUB SP, SP, #4 @ make a word on stack 

 

LDR R0, addr_messin @ get addr of messagein

BL printf @ and print it 

 

LDR R0, addr_format @ get addr of format 

MOV R1, SP @ place SP in R1 

BL scanf @ and store entry on stack 

 

LDR R1, [SP] @ get addr of scanf input 

LDR R0, addr_messout @ get addr of messageout

BL printf @ print it all 

 

ADD SP, SP, #4 @ adjust stack 

POP {PC} @ restore PC 

 

_exit: 

MOV PC, LR @ simple exit 

 

addr_messin: .word messagein 

addr_format: .word scanformat 

addr_messout: .word messageout 



 

.data 

messagein: .asciz "Enter your number: " 

scanformat: .asciz "%d" 

messageout: .asciz "Your number was 0x%X\n" 

End Program 20d.

 



 
 
  
  



21. Writing Functions

Functions are the basic building blocks you can use to construct your programs. A function has

a name and a purpose, and it is written in such a way that it provides a result each time it is

called. The function will accept information and produce a result based on the information it is

given. It may also pass information back to the calling program. All functions have a predefined

structure, and if we want to write a function ourselves then we should also follow that structure.

Ideally, before sitting down to write a program you should give its structure some thought

and as we saw in Chapter 2, try and plan your program as a set of routines called from within a

main controlling program. Each of these routines may themselves call smaller routines. When

breaking these down any section of code that is used more than a few times could be worth

writing as a function, especially if you may look at using it in other programs. Effectively

creating reusable code.

However, there is an overhead in doing this because a function must conform to certain

standards which relate to entry and exit conditions. Clearly the length of the function must be

more than a few lines to make it worthwhile coding.

Often when programming we don't always plan as well as we should. One thing I like doing

is returning to code after completion and trying to re-structure it. This can be rewarding and a

way to do this is to look at what can be broken down into functions.



Function Standards
A couple of the libc functions we looked at in the last chapter, namely printf and scanf, both

expected to receive and return information. We also saw that we can pass information into these

functions using the registers R0, R1, R2, and R3. This is determined by a standard called the

Application Binary Interface (ABI standard) which was carefully devised and defines how

functions should run. The point being that if everyone follows the standard and writes their

functions in the same way, then everyone will be able to use each other's functions. (C

programmers use the AAPCS standard which goes into things in a little more detail). As far as

we are concerned, they achieve the same result at code level, but it is worth getting online and

investigating both in a little more detail at some point.

 

Register Role Preserved

R0 Argument/Result No

R1 Argument No

R2 Argument No

R3 Argument No

R4 General Yes

R5 General Yes

R6 General Yes

R7 General Yes

R8 General Yes

R9 General Yes

R10 General Yes

R11 General Yes

R12 General Yes

R13 (LR) Return Address No

R14 (SP) Stack Pointer Yes

 

 Figure 21a. Register designations in a function call.

 

Figure 21a details the purpose of each register when a function is called. In summary a

function should adhere to the following:

It may freely modify registers R0, R1, R2 and R3 and expect to find the information in

them that it requires to carry out its task.



It can modify registers R4-12, providing it restores their values before returning to the

calling routine.

It can modify the Stack Pointer providing it restores the value held on entry.

It must preserve the address in the Link Register so that it may return correctly to the

calling program.

It should make no assumption as to the contents of the CPSR. As far as the function is

concerned the status of the N, Z, C and V flags are unknown.

So, let's break this down in a bit more detail.

It is this standard that says R0, R1, R2 and R3 (in that order) will be used as inputs to a

function. But this is only if the function requires four inputs. If it only needs one then this goes

in the first register R0, if it needs a second that must be placed in R1 and similarly for R2 and

R3. If it only needs one input, then it does not matter what is in the other registers as they will

not be used. If the function returns a value it will always go in R0 - the first byte at least, so we

can use 'echo $?' to return a value.

The second point made is that the other registers R4-R12 inclusive must be preserved so

that when the calling program gets control back from the function the contents of R4 through to

R12 inclusive must be the same as when the function was called. This is not to say we can't use

them. If your function needs them, then one of the first things it should do (but not necessarily

the very first as we shall see) is to push their contents onto the stack and then restore them from

the stack before finishing. These two complementary instructions would do the job:

STMFD SP!, {R4-R12} @ save registers R4 thro R12 

LDMFD SP!, {R4-R12} @ restore R4 through R12 



More Than Three
You may be asking at this point what happens if we need to pass more than four items to the

function we are calling? The answer lies in the next 'rule' in that we can modify the Stack

Pointer (SP) again provided we ensure that it is set correctly on completion of the routine.

However, this is not always strictly true, because if we need to pass more information into the

function the control of the SP has to be managed by the calling routine, especially if the

amount of data is unknown. If a function must have an additional four items of data every time,

then the function can manage the SP, but you need to be wary of this.

You will recall in Program 20b we called printf to display three items of information by

passing the data through R1-R3. Program 21a extends this to pass six values to the calling

routine. The listing has lines numbered for ease of discussion.

The program is pretty much identical until we get to line 13 where we start taking the word

values stored in lines 31-33 inclusive and pushing them onto the stack. By the time we reach

line 21 we have the address of the string in R0 whilst R1, R2 and R3 hold the values 1, 2 and 3,

respectively. Then the stack holds (at the top) 6, and below that 5 and below that 4. Despite

being single digits, these are all words with values and occupy four-bytes each. If you run the

program the result you will see on screen is:

Values are: 1, 2, 3 and 6 

 Program 21a. Passing function values via the stack.

1 /** Printing a string using printf **/ 

2/** and passing parameters to it **/ 

3/** via registers and the stack **/ 

4  

5  .global main 

6  .func main 

7 main: 

8  PUSH {LR} @ use pseudo directive 

9  LDR R0, =string @ R0 points to string 

10  MOV R1, #1 @ first value in R1 

11  MOV R2, #2 @ second value in R2 

12  MOV R3, #3 @ result in R3 

13  LDR R7,=value1 @ get address of param 

14  LDR R8, [R7] @ load value1 into R8 

15  PUSH {R8} @ put on stack 

16  LDR R7,=value2 @ repeat for value2 

17  LDR R8, [R7] 

18  PUSH {R8} 

19  LDR R7,=value3 @ repeat for value3 

20  LDR R8, [R7] 



21  PUSH {R8} 

22  BL printf @ Call libc 

23  ADD SP, SP, #12 @ balance stack 

24  POP {PC} @ restore PC 

25 

26 _exit: 

27  MOV PC, LR @ simple exit 

28  

29 .data 

30 string: .asciz "Values are: %d, %d, %d and %d\n"

31 value1: .word 4 

32 value2: .word 5 

33 value3: .word 6 

  End Program 21a.

 

This is because we only instructed printf to print an extra value, and it looked for it on top of

the stack. Adding in a couple more d% into the printf string will provide the means to print the

two additional values. You would also need to swap the push order onto the stack if you wanted

to ensure that the numbers were displayed in the correct order.

Line 23 is the interesting one. We adjusted the SP by 12 bytes because of the three PUSH

instructions. This line moves the SP back those 12 places and ensures that the system is hunky

dory. This could have been achieved with three POP instructions equally as well; however, this

is a neat way to restore the status quo if you are dumping a lot of data on the stack.

If a function requires the use of registers, then we should save the register contents (and

restore them after the function has completed). The simplest way to do this would be to push

the values straight onto the stack, but this could force any required data down the stack and out

of sync with the function. In situations such as these the best answer is to save the register

contents to an area of memory that you have set aside for work space. Alternatively, you can

look to push the data on the stack first, adjusting the SP if required, and prior to pushing the

function parameters there.

If you are writing a function that needs additional information passed to it on the stack and

the registers saved, then you can use the stack for all of it as you are managing the stack. If your

function expected three items on the stack and you needed to save R4 then you can access the

stack directly at the three locations using a simple immediate offset, something like this:

LDR R4, SP+4 @ Get first data word on stack 

The second item would be at SP+8 and the third at SP+12.

Remember that these instructions do not adjust the SP so you must reset it on completion as

already described. (NB: If you find this difficult to visualise then you can always physically

draw the stack and identify where each item of data is being placed.)



Preserving Links and Flags
One thing you must always remember when writing functions is that on completion the

function is going to need to return program control back to whence it came. This means that it

is imperative to preserve the integrity of the Link Register. If you intend to call another

function or routine at some point, then you may well use a BL or BLX instruction to do so. If

you do this then the contents of the LR will be overwritten and lost. Therefore, they must be

stashed away safely in your memory workspace somewhere or pushed onto the stack for later

restoration.

There is no requirement for preserving the Status Flags. As far as the function is concerned

these are generally unknown. That said, your function may have a requirement for the flags as a

signal back to the calling line and this is a valid way to signal information back, especially as

R0 is the one standard way of returning a value. For example, the N flag might be set on return

to signal that an error occurred, and an error code placed in R0.



Robust Print Routines
Sort routines are ideal mechanisms for function uses and also illustrate how you can build

libraries of routines that can perform consistently across your own portfolio. Data manipulation

and sorting is a particularly good use of computer time. We'll look at a flexible sort routine

before the end of this chapter.

Robust print routines are also useful. We have looked at a few in earlier chapters so, this

one utilises the printf function and is flexible to your needs. This example will print a vector of

word width values. Program 21b is the subroutine itself, and Program 21c will allow you to text

it is working. There is nothing special it requires the libc library as it utilises the printf

function, so will need to be assembled using GCC. To work the routine needs the address of the

vector containing the word elements, the number of elements and a couple of pointers to allow

the routine to keep track of its position in the vector.

 

 Program 21b. Print vector of words.

 

/* printw - This routine prints a vector of words */ 

/* R0 = address of vector */ 

/* R1 = number of vector elements */ 

/* R2 = pointer string to print first element */ 

/* R3 = pointer string to print next elements */ 

 

.global _printw 

.equ _wsize,4 

.align 2 

_printw: 

STMFD SP!, {R4, R5, R6, R7, LR}  

CMP R1, #0 @ exit if no elements 

BLE _last 

MOV R4, R0 @ save parameters to locals 

MOV R5, R1 

MOV R6, R2 

MOV R7, R3 

LDR R1, [R4], #_wsize @ load first element 

MOV R0, R6 @ address of first string 

BL printf @ print it 

SUBS R5, R5, #1 @ decrement counter 

BEQ _last @ exit if zero 

printwloop: 



LDR R1, [R4], #_wsize @ load next item 

MOV R0, R7 @ address next string 

BL printf @ print it 

SUBS R5, R5, #1 @ decrement counter 

BNE printwloop @ loop if more 

_last: 

LDMFD SP!, {R4, R5, R6, R7, PC} @ restore, return 

 

  End Program 21b.

 

The test harness below has a list of items after the label 'values' - there are 11 in total. These

can be changed and edit as you require.

 

 Program 21c. Test printw.

/* Test subroutine printw */ 

.equ _size,4 

.equ _items, 11 

.global main 

.align 2 

.section .rodata 

first: .asciz "Vector of words - values : %d" 

rest: .asciz ", %d" 

final: .asciz "\n" 

values: .word 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60 

 

.align 2 

.text 

 

main: 

LDR R0, =values 

MOV R1, =_items 

LDR R2, =first 

LDR R3, =rest 

BL _printw 

LDR R0, =final 

BL printf 

 

MOV R7, #1 

SWI 0  



  End Program 21c.

 

Assuming both source files in your current directory you can assemble them as follows:

gcc -o testprint prog21b.s prog21c.s 

You can then execute the code with:

./testprint 

As we have used both files in the same command line assembly, we do not need to use the

'include' directive.

We will use Program 21b when for printing out the results of the next routine.

The bubble sort, sometimes referred to as sinking sort, is the simplest sorting algorithm that

works by repeatedly swapping the adjacent elements if they are in wrong order. The pass

continues through the list is repeated until the list is sorted. The algorithm, which is a

comparison sort, is named for the way smaller or larger elements "bubble" to the top of the list.

The comments should help you understand what is going on.

This simple algorithm performs poorly in real world use and is used primarily as an

educational tool. More efficient algorithms such as quicksort, timsort, or merge sort are used by

the sorting libraries built into popular programming languages such as Python.

 

 Program 21d. Bubble Sort Routine.

/* Bubble Sort - bubble sorts vectors of words */ 

/* R0= start of vector of elements */ 

/* R1= Number of elements to sort */ 

/* R4 = current pointer */ 

/* R5 = inner counter */

/* R6 = keep_going flag */ 

/* R7 = first element */ 

/* R8 = second element */ 

/* R9 = swap register */ 

 

.global _bubble 

.text 

_bubble: 

STMFD SP!, {R4, R5, R6, R7, R8, R9, LR} 

CMP R1, #1 @ must be > 1 

BLE _exit @ exit if nothing to do 

 

SUB R5, R1, #1 @ Set inner counter 



MOV R4, R0 @ Set current pointer 

MOV R6, #0 @ Register set on swap 

 

_loop: 

LDR R7, [R4], #size @ load element 

LDR R8, [R4] @ and next element 

CMP R7, R8 @ compare them 

BLE no_swap @ branch if second greater 

 

MOV R6, #1 @ set keep_going flag 

SUB R4, #size @ reset to first element 

LDR R9, [R4] @ Load word at address 

STR R8, [R4] @ Save lower value back in memory 

STR R9, [R4, #size]! @ Complete swap process

 

no_swap:

 

SUBS R5, #1 @ decrement counter 

BNE _loop @ loop again if not finished 

 

end_inner: 

CMP R6, #0 @ check if done 

BEQ _exit @ and leave if not set 

MOV R6, #0 @ clear flag  

MOV R4, R0 @ reset pointer 

SUB R5, R1, #1 @ reset counter 

B _loop @ And go again 

 

_exit: 

LDMFD SP!, {R4, R5, R6, R7, R8, R9, PC} 

.data 

.equ size,4 

  End Program 21d.

 

The listing provided as Program 21d will test the bubble sort. This test has 16 items in total and

includes signed, negative numbers. The routine prints then before the sort and then after the

sort. The number of items can be changed and adjusted to suit.

 

 Program 21e. Bubble Sort Test.

 



/* Bubble Sort Test */  

 

.global main  

main: 

LDR R0, =values 

MOV R1, #items 

LDR R2, =before 

LDR R3, =comma 

BL _printw 

LDR R0, =new_line 

BL printf 

LDR R0, =values 

MOV R1, #items 

BL _bubble 

 

LDR R0, =values 

MOV R1, #items 

LDR R2, =after 

LDR R3, =comma 

BL _printw 

LDR R0, =new_line 

BL printf 

 

MOV R7, #1 

SWI #0 

 

.equ items,16 

 

.data 

before: .asciz "Order before sorting, values are : %d"  

after: .asciz "Order after sorting, values are : %d" 

comma: .asciz ", %d" 

new_line:.asciz "\n" 

values: .word 12, 2, 235, -64, 28, 315, 456, 63, 134, 97, 221, -453, 190333, 145, 117, 5 

  End Program 21d.

 

Ensure that the source for Program 21b is in the same directory as Program 21d and Program

21e and assemble the files with:

gcc -o testbubble prog21b.s prog21d.s prog21e.s 

and execute with:



./testbubble 



 
 
  
  



22. Disassembling C

 

As I have already stated this isn't a book about learning to program in C, but the fact is as

you delve deeper into ARM assembler on your Raspberry Pi you will probably be drawn

towards C. At the very least you will probably want to learn more about the libc functions so

that you can take advantage of them in your own programs. You might want to look at the

machine code that constitutes the libc functions to see how they work, and learn from them.

This is called reverse engineering and it plays a major part in all software development, as

programmers look at how other programmers have achieved certain results and seek to improve

on those themselves.

While the libc functions are well documented from a C programmer's perspective, there is

not a lot of detail about using them at the lower machine code level. I guess this is

understandable. Given that C is relatively straightforward and there are literally thousands of

program examples available to you (in manuals, online and in forums) it is extremely easy to

write a C program containing a particular function that you can compile into an assembly

language source file and then examine it, investigate it and refine it for your own purposes.

With GCC and GDB you have the tools to do so at your disposal. This chapter provides an

introductory primer towards that goal. You may well encounter some frustrating times, but as

you become more familiar with the way GCC converts C into machine code then you will

become more familiar with the code it is generating.



GCC - The Swiss Army Knife
GCC is a bit like a Swiss Army Knife, it must be able to deal with all situations and it goes

about it in a methodical manner. The use of the assembler and linker as standalone tools in the

earlier part of this book shows that GCC isn't a single beast; it is more a controller for several

GNU programs, running them one-by-one in order to produce a result. But the good thing is

that we can stop the process at any point in that chain and this is to our benefit.

GCC can compile a C program to an executable file with just a single command line thus:

gcc --o tornado tornado.c 

This will take a C program called tornado.c and convert it to an executable file called 'tornado'.

It does this using several separate steps:

Pre-processor (CPP): 

This takes the C source and gathers information about the #defines and #includes so that

it has a list of all the variables and additional bits of information and files it will need.

 

GCC:  

Creates the assembly language source listing. It does this by using some basic rules and

building the sections of code needed as a series of building blocks which calls functions

in libc. It effectively organises your data and information using the functions rules we

discussed in the previous chapter and then inserts the function call. It then assembles the

code required to handle any information returned before starting the process again. Once

this is complete the source file, with a '.s' extension, is complete.

 

AS:  

The assembler takes the source file and converts it into an object file (.o) as described

much earlier in this book.

 

LD:  

The linker takes the object code file and adds to it all the additional files and libraries

required. Again, this process was described in an earlier chapter.

In Chapter 14 we saw that by using GDB the final executable code produced by GCC is not a

straightforward start-to-finish linear flow but an integrated suite of code that can provide a

solution to every legal C program given to it!

What GCC does not give you is tight, highly refined machine code. If space and speed are

critical then you need to code at the lowest level. The Raspberry Pi OS (Raspbian) itself is

written mostly in C and compiled. But critical areas of it are coded directly in assembler.

Compiled code can be optimised at the source stage and GCC provides some automated

options for doing this. However, this is outside the scope of this book. But in a way, when

looking at the assembler source file created to execute a particular function, what we will be



doing is to optimise the source, cutting away everything that is not needed, until we have the

bare bones assembler to do what we need.



A Simple C Framework
The framework for a C program is simple enough. Program 22a illustrates the use of the C

function 'putchar' to print a single ASCII character to the screen. It has six lines.

 

 

 Program 22a A simple C program to print an asterisk.

 

#include <stdio.h> 

 

int main() 

{ 

putchar('*'); 

return 0; 

} 

 

  End Program 22a.

 

The first line tells the compiler that the file stdio.h should be included in the compilation. This

is the file that includes the standard input-output interfaces including functions such as printf

and the one we are interested in now --- putchar. This is the part of the file that would be

handled by the pre-processor described earlier, and this is the case for any line that begins with

a hash.

The actual program starts with the function named main(). All functions begin with an

opening brace '{' and end with a closing brace '}'. Everything between the opening and closing

braces is considered a part of the function. main(), like all C functions, must state what kind of

value it returns. The return value type for main() is int, which means that this function returns

an integer to the operating system when it completes. Here, it returns the integer value 0. A

value may be returned to the operating system to indicate success or failure or using a failure

code to describe the cause of failure.

Hopefully you will have already cottoned onto how the main() in the C program above ties

in with the main function in our assembler source files to date (and to a lesser extent the start

function in the assembler listings that we looked at the start of this book).

In amongst all this we have the crux of the program -- putchar -- being instructed to print an

asterisk to the screen.

Program 22a can be entered using a text editor (Vim or Geany), but the file should be

created with the .c extension:



prog22a.c 

To compile this C program into an executable and run it we use:

gcc --o prog22a prog22a.c 

>

You should see an asterisk printed on the screen before the prompt. Look carefully it is easy to

miss!



Sourcing the Assembler
Given what we have learnt in the past few chapters you might be able to take a good guess at

what you would expect to see in the assembly language source code generated for this C

program. The function prints a single character. We would expect therefore that, as specified by

the AAPCS standard, the ASCII code for the character to be printed would be loaded into R0.

No other information is passed. The routine will complete with a return value of 0, so we

should also expect to find this passed back in R0 as per standard. Let's C!

To create an assembler listing from a .c file we use the --S directive (note must be capital

'S'), thus: gcc --S --o prog22a.s prog22a.c

GCC will create a file called prog22a.s and this will hold the assembler listing. Open this in

a text editor and you should see something similar (it may not be identical) to what is shown in

Figure 22a.

You should be able to quickly identify the body of the program in here. In fact, of the 30

plus lines of assembler only a handful of them are of significance relative to what we are after.

All the additional information can ultimately be discarded but was an important transformation

step for GCC when it did the initial conversion. This conversion is very methodical and is a

case of one size fits all using a brute force method of working. GCC must create workspace for

each function it is dealing with in the conversion process and has to protect this workspace for

its needs. In broad terms it does this by partitioning an area on the stack for the function's use.

This is called to the stack frame (introduced in Chapter 17 which is tracked using a Frame

Pointer (FP), also introduced in Chapter 17.

This marks the start of the stack frame and each function creates its own stack frame to

manage local variables. The stack frame is therefore an important aspect of a C program, but

they are less important in creating assembler. However, understanding what it does is important

in allowing us to deconstruct C derived assembler, more on which in due course.

Back to the listing. It is good at this point to create a backup of this initial assembly file.

You will want to start deleting lines and adjusting code to create a smaller compact source file

that you can assemble and test. Thus:

cp prog22a.s prog22a.so 

would create a copy with the .so indicating to you that it is source original.



 Figure 22a. The assembler generated by GCC from the C program.

 

Our purpose here is to cut this source down so that we can assemble and link it directly and

produce the same result as the original C program. GCC has constructed the assembler source

using some basic building blocks. The first 15 lines provide various items of information.

There is a directive identifying the instruction set for which this code is to be compile (armv6)

and the specific floating-point unit to be used (VFP). The eabi attributes (embedded-application

binary interface) are specifies standard conventions for file formats, data types, register usage,

and options that are present or absent on the CPU. The attribute settings listed above are not

important, for our purposes and so can be deleted.



There follows the file name and definition of the '.text' section. Again, for our small

assembler construct these can both be deleted.

 Figure 22b. The C assembler source with directives removed.

 

Having done all that we are left with the listing shown in Figure 22b, with line numbers for

ease of reference. The first three lines define the main() function, and we will need to edit these

slightly for use in our assembly listing. This is followed by a couple of comments (lines 4 and

5) provided by the compiler in relation to management of the stack frame for this routine.

Again, we will not need these, and they can be deleted.

Lines 6 and 12 act in tandem to preserve the addresses held in the Frame Pointer and Link

Register The FP is of no importance to us here but we do need to preserve the LR before

calling the putchar routine so a suitable PUSH and POP instruction can be substituted here.

Line 7 can also be removed as we do not need to process anything relating to the FP.

The crux of our code comes down to lines 8 and 9. The ASCII code for the asterisk (42) is

moved into R0 and putchar is called. Lines 10 and 11 are then used to place a zero in R0. You

will recall that the original C function is to return zero. For our purposes, we do not strictly

need these two lines and they can be removed. What we are left with is the listing presented as

Program 22b.

 

 Program 22b. The final putchar listing.

 

.global main 

.func main 

main: 



PUSH {LR} 

MOV R0, #42 

BL putchar 

POP {PC} 

  End Program 22b.

 

This listing will assemble and run correctly. Although the original C program was relatively

trivial the methodology used to create and reduce the assembler source that it creates is sound

and can be applied in virtually all cases.



A printf Example
We have already examined the use of printf in assembly language programs, but we'll look at it

again, this time from the C perspective as it provides a good insight into how C programs are

constructed that will be useful when looking at the assembler. Program 22c is the C file for the

famous "hello world" program. On the face of it, this is not much different from our previous

putchar example. But in fact, it is.

 

 Program 22c. C listing for the 'hello world' program.

#include <stdio.h> 

int main() 

{ 

printf("hello world"); 

return 0; 

} 

  End Program 22c.

 

You can convert this to assembler using:

gcc --S --o prog22c.s prog22c.c 

Figure 22c lists the derived assembler minus the initial header and footer directives, again this

may differ from your output but will fundamentally be the same.

Given our knowledge of printf and applying what we learnt above, the main: section of the

program should be straightforward --- nothing new to learn here. It is the other areas that are of

interest ---notably the areas marked by the labels LC0, L4 and L3. The L4 label is not required

nor is the '.align 2' directive --- the label will clearly be on a word boundary as it comes directly

behind code. L3 marks a reserved word to hold the address of the 'hello world' text marked by

LC0. This was a technique that we used when playing with the scanf function in Program 20c

but is different to the method we used in our original printf program, Program 20a. It is worth

comparing the two side by side.



 Figure 22c. The compiled assembler for the C printf program.

 

As a final exercise you might want to try compiling a scanf example, as this combines a few of

these techniques and accesses the stack for information. Program 22d is what you will need. If

you compile and run this the keyboard will wait for you to enter a number. There will be no

additional responses as it is the bare function we are concerned with.

A reminder here that scanf uses the stack to store and pass its converted numeric value, so

you will need to manage the stack and Frame Pointer in the assembler.

 

 Program 22d. A C listing for using the scanf function.

#include <stdio.h> 

int main() 

{ 

int myvariable; 



scanf("%d", &myvariable); 

return 0; 

} 

  End Program 22d.

 



Frame Pointer Variables

Just a word to the good about the Frame Pointer relative to dissecting your listings in this way.

If the original C programs contains variables then the Frame Pointer will be used to point to

these values, so it becomes important in your deconstruction. Consider these two lines of

assembler:

LDR R2, {FP, #-8} 

MOV R0, R2 

The first line shows that a variable is located at the position given by FP-8 and this result is

accessed and moved into R0. If the original C listing has several variables you will need to

identify where each one is located on the stack, by seeking out similar code lines. Of course

your assembler will not have a Frame Pointer, or it would be assigned a value it is often set

equal to the SP by the code, so you will need to translate these into labelled locations.

(In ARM, R11 is normally used as the Frame Pointer register, although this may vary

between Operating Systems.)



Disassembling System Calls
In Chapter 7 we had a look at Syscalls and how to interface with the actual operating system

calls directly with them. Of course, we have since learnt of libc and how we can make use of its

own functions such as printf. Using libc comes with a memory overhead which you might not

be prepared to live with when space is tight, and at these times Syscalls can come into their

own. This is fine in principle, but the trouble is that hard detail about Raspberry Pi OS

(Raspbian) Syscalls is rather scarce on the ground. For popular Syscalls such as printing a

string to the screen you will find many examples if you search the net. The same cannot be said

if you wanted to create a directory or produce a directory listing. But the information is there if

you use a bit of common sense and are prepared to do a little reverse engineering. Doing this

with a few examples will test your knowledge of the ARM and the way it works on the

Raspberry Pi, and you will learn heaps from doing it.

Appendix B provides a list of the first 195 Syscalls. These are generally the ones you will

use most. The book support website also contains links to an unofficial site where you can find

out more information on Syscalls. One other option is to have a go at working it out for

yourself!

The examples above are ones we have encountered and already explained, and this is done

deliberately to make it easier to explain what GCC is doing in its compile process. You may not

be forewarned with such knowledge when looking at new functions. But GCC goes about its

business in a predefined way and the processes will not vary. Information is passed in registers

and on the stack (and via the Frame Pointer), so it is often just a matter of identifying what is

where and then working back from there.

You may also find it easier to open a second text editor window and set about creating a

new assembly listing alongside the one created with GCC, rather than editing the original one.

This is especially sound advice if the listing contains a lot of data access as the tables tend to

flop all over the place.



 
 
  
  



23. GPIO Functions

Pi Eye: This chapter contains programs that may need to be modified depending on the version

of the Raspberry Pi you are using. The text and body of the assembler script will contain

change details at the relevant points in the chapter.

The GPIO port has been one of the fundamental features of the Raspberry Pi since launch.

It has been accessible on all models and on most has a ready installed connector to allow you to

plug in and play.

We'll look at how the GPIO interface is connected to the Raspberry Pi and how you can use

machine code to access that connection, thereby enabling you to read and write the individual

pins. While this isn't a primer on the GPIO interface, understanding how it sits with the

Raspberry Pi is fundamental to understanding how to program it.

Many of the kits you can purchase and use with the GPIO, come with special libraries of

code you can download and use. This is typically written in Python or Scratch and is certainly

an ideal way to check that any hardware connections are sound should you run into debugging

difficulties at any time. The code listed this in chapter originated on a Raspberry Pi and has

been tested on multiple versions of Raspberry Pi.

GPIO extension and interface boards have evolved since the original Raspberry Pi was

released, however I have seen people be quite inventive in connecting them. For my purposes

here I have utilised the CamJam/EduKit. However, any suitable interface should work. Other

kits such as the RasP.io Breadboard Pi Bridge exist (see Figure 23a) and are worth checking

out, (www.rasp.io/bbpi).



Memory Mapping
The Raspberry Pi uses memory mapped I/O. The addresses used for I/O are widely known and

specifically retrievable from the associated Broadcom data sheet. For early Raspberry Pi

models, addresses 0x20000000 to 0x20FFFFFF, are for I/O devices. In later versions

0x3F000000 to 0x3EFFFFFF are reserved for I/O devices. Be aware that this is not all reserved

for the GPIO memory but for all peripheral interfaces in total.

The location of these blocks of memory, and specifically in future releases, may well

change and the memory allocated to the GPIO port. Obviously, that would make programs that

access the GPIO port directly potentially incompatible. Given also that Raspbian has been

renamed and effectively re-launched as Raspberry Pi Operating System, it may be possible,

however unlikely, that some of the standard underling Linux routines are further modified.

If reading the Broadcom data sheets you should be aware that the ARM cores and the

VideoCore GPU share the same memory space but at different addresses on that device. Be

clear to distinguish between BUS address, VC address and ARM address. The same thing

appears differently to each system which is often the source of much confusion. The GPIO is

offset from a 'peripheral base address' by 0x200000 and needs to be added to it to access it. For

our purposes the information required for this exercise is provided here.

The kernel includes a driver to a special character file, 'devmem', which is a mirror of main

memory. Similar to any file, we can open it, read bytes from or write bytes to it, and close it.

The "position" of each byte in 'devmem' is the byte address in physical memory. In principle,

we could program the GPIO device by opening 'devmem', moving a pointer to the desired

location of a GPIO port, and writing the appropriate value in that byte location.

Writing directly to areas of this I/O memory can be a risky thing, and as such ROS won't

allow us to do that. It has a built-in self-protect mechanism meaning only 'root' users can access

it. This ensures we don't do anything that might otherwise cause the operating system to lock or

crash.

A secure method of accessing this GPIO memory does exist using a scheme that uses a

similar memory mapping technique and a driver at 'devgpiomem/' which writes changes

directly to the GPIO control area via a designated block of memory which is effectively a

mirror of the real memory (this is often referred to a virtual memory). Thus, if we make any

changes that have an adverse effect (hanging the system for example), we should be able to

cycle the power to reset everything. This driver ensures that nothing can go drastically wrong,

but obviously only works with the GPIO area.

Because the Broadcom data sheet provides us with the basic start address of each I/O

peripheral area we can let the operating system calculate the virtual memory address for us and

everything remains pretty transparent from that point.

In Chapter 19 we examined some of the file system calls need to open and close files using

Syscalls. Reading and wring to the GPIO is not unlike running a filing system, but this time

around we'll make things a little simpler by using the main Linux system calls.



 Figure 23a. The Breadboard Pi Bridge from RasP.io.



The GPIO Controller
The GPIO has its own controller and this contains no less than 41 registers. The first five of

these registers deal with reading and writing to the 54 GPIO pins. These pins are numbered

GPIO 0 through to GPIO 53 although only a handful or so of these are available to us to

connect to on the GPIO expansion port itself. And then it depends on the size of the GPIO

header, 26-pins on early Raspberry Pi and 40-pin on the more recent ones. (Figure 23f at the

end of this chapter defines the GPIO header layout diagrammatically.) It should be noted also

that the GPIO Controller pin numbers do not run concurrently on the main GPIO header

connector and may differ again on any expansion board you have attached. Please ensure you

familiarise yourself with the system you are using as the pin numbers here relate specifically to

the numbers assigned by BCM. Equally, there are several different numbering systems used in

the setup, and it can get confusing. I'll try and guide you through these. Note: the header pin

number does not correspond to the GPIO pin number.

If you have a Terminal window open on the Desktop you can type 'pinout' at the prompt to

get information regarding your GPIO header and various other settings.

The first five of the GPIO Controller registers, their names, and the pins they are associated

with are listed in Figure 23b.

 

No Name Code Offset Pins

0 GPIO Function Select 0 GPSEL0 #0 0-9

1 GPIO Function Select 1 GPSEL1 #4 10-19

2 GPIO Function Select 2 GPSEL2 #8 20-29

3 GPIO Function Select 3 GPSEL3 #12 30-39

4 GPIO Function Select 4 GPSEL4 #16 40-49

5 GPIO Function Select 5 GPSEL5 #20 50-53

 

 Figure 23b. GPIO registers and pin control.

 

Each of these registers is 32-bits wide and each pin has three bits assigned to it within each

register. The 'Offset' column above I related to the number of bytes that must be added to the

address of the GPIO. More on which shortly. Note here that 'pin' refers to GPIO pin. Not the

connection header pin number. The example we will look at here is GPIO Pin 22 which

Program 23a, will utilise.

Looking at Figure 23b, we can see that Pin 22 has an offset of 8 bytes and is therefore

located in GPSEL2. Figure 23c below shows that Pin 22 has bits 6,7, and 8 linked with it in the

32-bits of the address where GPSEL2 is located.



 Figure 23c. Bit association with GPSEL2.

 

You may have noticed in Figure 23b that not all the bits in Register 5 are used. This is correct.

Only the first 12 bits are used, and the others are classed as 'reserved'. Likewise, bits 30 and 31

in each of the other registers are unused.

The base address for the GPIO controller in Raspberry Pi Operating System changes

depending on the Raspberry Pi you are using as listed in Figure 23d.

 

RPi SoC Base Address GPIO Offset

A+ BCM2835 0x20000000 0x200000

B BCM2835 0x20000000 0x200000

Zero BCM2835 0x20000000 0x200000

2 BCM2836 0x3F000000 0x200000

3 BCM2837 0x3F000000 0x200000

3+ BCM2837B0 0x3F000000 0x200000

4 BCM2711 0x3F000000 0x200000

400 BCM2711C0 0x3F000000 0x200000

 

 Figure 23d. GPIO Base Addresses

 

To obtain the address of any GPSEL register we need to add the 'offset' value (Figure 23b) to

the sum of the 'peripheral base' and 'GPIO offset' addresses (Figure 23d). GPSEL0 is located at

this starting point (as offset is zero). To access the second register, GPFEL1, then we need to

add four to the controller's base address. GPSEL2 has an offset of 8, so its address would be

either:

(0x3F000000+0x200000)+8 = 0x3F200008 

or:

(0x20000000+0x200000)+8 = 0x20200008 

depending on the model Raspberry Pi you are writing for.



Therefore, to access pin number 22 on the GPIO header, we need to use bits 6-8 at 0x08

relative to virtual address in our program that we get from a call to the mmap function.



GPIO In and Outs
It is important to understand how these bits are assigned as we will need to address them
individually at various times to make things happen in their associated registers. And to be sure
that we don't corrupt or alter the value of other bits in the register. Using one of the pins is a
two-step process:

1. Select the function of the specific GPIO pin, either as an input or as an output. This only
has to be done once, unless the function of the pin changes.

2. Turn the pin on (Set) or off (Clear). There are two separate sets of GPIO registers for
doing this, GPSET and GPCLR. You do this as required.

(Note: Do not confuse GPSEL and GPSET, they have totally different functions within the
GPIO controller!)

As indicated above the first item on the list is to select the function of the GPIO pin we'll be
using. In this example it is 22 (GPIO 22).

To assign a pin as an input we must store a 0 in the three associated bits (000). To make the
same pin an output we must write a 1 to those same three bits (111). For example, to make
GPIO 22 an output we must place 111 in bits 6, 7 and 8. To achieve this we could write the
binary value:

0b111 

to the identified bits in GPSEL2. Of course, we must preserve and not overwrite any other bits
that may be set or clear so we would do this using a bitwise operator. (Other bit combinations
assign other functions to the pins, so it is important to get this right.

So far, we have looked at configuring the function of a pin as an input or an output. To turn
the pin on (set) or off (clear) we must write some values into another register.

There are four registers associated with setting and clearing pins and these are detailed in
Figure 23e.

 

No Name Code Offset Pins

7 GPIO Pin Set 0 GPSET0 #28 0-31

8 GPIO Pin Set 1 GPSET1 #32 32-53

10 GPIO Pin Clear 0 GPCLR0 #40 0-31

11 GPIO Pin Clear 1 GPCLR1 #44 32-63

 

 Figure 23e. GPIO registers for setting and clearing.

 



There is a single bit associated with each pin for the purpose of setting and clearing. To set
GPIO 22 we would write a '1' into bit 22 of GPSET0. To clear the same bit, we would need to
write a '1' into bit 22 of GPCLR0.

If you were to write a 1 to bit 22 in GPSET0 but GPIO 22 was defined as an input nothing
would happen. If you then set GPIO 22 to an output, an attached LED would light. The last
value written to either GPSET0 or GPCLR0 in this case is remembered and used when the
status of the pin is changed.

As we can see from Figure 23e the offset for GPSET0 is 28 and for GPCLR0 is 40 and this
value added to the base address to the GPIO controller to calculate the required address.

Program 23a is the listing needed and this is broken down into several segments marked
with comments. Remember the process is as follows:

1.  Open file
2.  Memory Map the GPIO
3.  GPIO Pin Turn On
4.  GPIO Pin Turn Off
5.  Unmap Memory and Close file

The listing is annotated so it should be easy to follow though, even if some of the offset and
register details are still a bit hazy.

Read the note at the after the end of the listing on how to 'run' the program and the flags
that must be used.

 

 Program 23a. File access to GPIO memory.

 

/* Accessing GPIO using virtual memory mapping */ 
/* Using preferred methodology uses GPIO Pin 22*/ 
 
@ Constants for assembler - memory map associated 
.equ gpiobase,0x3F000000 @ RPi 2,3,4,400 peripherals 
.equ offset, 0x200000 @ start of GPIO device 
.equ prot_read, 0x1 @ can be read 
.equ prot_write,0x2 @ can be written 
.equ readwrite,prot_read|prot_write 
.equ mapshare, 0x01 @ share changes 
.equ nopref, 0 
.equ pagesize, 4096 @ memory size 
 
.equ o_rdwr, 00000002 @ open for read/write 
.equ o_dsync, 00010000 @ values are octal not hex 
.equ o_sync,04000000 
.equ o_allsync,o_sync|o_dsync 



.equ openflags,o_rdwr|o_sync @ open file flags 
 
@ Constants for Function Select 
.equ pinnumber,22 @ pin number-change for others 
.equ output, 1 @ use pin for output 
.equ pinfield, 0b111 @ 3 bits 
.equ input, 0 @ use pint for input 
.equ seconds,2 @ sleep value 
 
@ Constants for assembler pinclear and pinset 
.equ pinbit, 1 @ 1 bit for pin 
.equ registerpins, 32 
.equ GPCLR0, 0x28 @ clear register offset 
.equ GPSET0, 0x1C @ set register offset 
 
@ addresses of messages and values 
devicefile: .word device 
openMode: .word openflags 
gpio: .word gpiobase+offset 
openerror: .word openstring1
memerror: .word memstring2 
 
@ Constant program data 

.section .rodata 

.align 2 
 

device: .asciz "devgpiomem" 
openstring1: .asciz "Didnt open devgpiomem\n" 
memstring2: .asciz "Didnt Map devgpiomem \n" 
 
@ The program starts and runs from here 
.text 
.align 2 
.global main 
 
main: 
@ Open devgpiomem for read/write and syncing 

LDR R0, devicefile @ address of devgpiomem string 
LDR R1, openMode @ flags for accessing device 
BL open @ call open
MOVS R4, R0 @ error check 
BPL moveon1 @ If positive, moveon 
LDR R0, openerror @ error, tell user
BL printf 



B _exit @ and end program 
 

moveon1: 
@ Map GPIO to main memory location so we can access them 
@ Keep a copy of the mapped memory address returned in R0 

MOV R4, R0 @ use r4 for file descriptor 
MOV R8, R0 @ Save a copy of file descriptor 
LDR R9, gpio @ address of GPIO 
PUSH {R9} @ Copy on stack for mmmap 
PUSH {R8} @ file descriptor on stack for mmap 
MOV R0, #nopref @ let kernel pick memory 
MOV R1, #pagesize @ get 1 page of memory 
MOV R2, #readwrite @ read/write this memory 
MOV R3, #mapshare @ share with other processes 
BL mmap @ R0-R3+top of stack has info 
MOV R9,R0 @ save mapped address 
CMP R0, #-1 @ check for error 
BNE moveon2 @ no error, continue 
LDR R0, memerror @ error, tell user 
BL printf 
B _exit  
 

moveon2: 
@ Select pin number and function. 

MOV R0, R9 @ programming memory 
MOV R1, #pinnumber @ pin number (22) 
MOV R2, #output @ pin function (1) 
MOV R4, R0 @ save pointer to GPIO 
MOV R5, R1 @ save pin number 
MOV R6, R2 @ save function code 
 

@ Compute address of GPFSEL register and pin field 
MOV R3, #10 @ divisor 
UDIV R0, R5, R3 @ GPFSEL number 
MUL R1, R0, R3 @ compute remainder 
SUB R1, R5, R1 @ for GPFSEL pin 
 

@ Set up the GPIO pin function register in programming memory 
LSL R0, R0, #2 @ 4 bytes in a register 
ADD R0, R4, R0 @ GPFSELn address 
LDR R2, [R0] @ get entire register 
MOV R3, R1 @ need to multiply pin 
ADD R1, R1, R3, lsl #1 @ position by 3 
MOV R3, #pinfield @ gpio pin field (0b111) 
LSL R3, R3, R1 @ shift to pin position 



BIC R2, R2, R3 @ clear pin field 
LSL R6, R6, R1 @ shift func code to pin position 
ORR R2, R2, R6 @ enter function code 
STR R2, [R0] @ update register 
 

@ setGPIOpin 
@ All OK, now turn on the LED 
@ Requires mmap address and pin number 

MOV R0, R9 @ Get memory address 
MOV R1, #pinnumber @ Get pin number (22) 
ADD R4, R0, #GPSET0 @ point to GPSET regs in R4 
MOV R5, R1 @ save pin number 
 

@ Compute address of GPSET register and pin field 
MOV R3, #registerpins @ divisor 
UDIV R0, R5, R3 @ GPSET number 
MUL R1, R0, R3 @ compute remainder 
SUB R1, R5, R1 @ for relative pin position 
LSL R0, R0, #2 @ 4 bytes in a register 
ADD R0, R0, R4 @ address of GPSETn 
 

@ Set up the GPIO pin function register in programming memory 
LDR R2, [R0] @ get entire register 
MOV R3, #pinbit @ one pin (1) 
LSL R3, R3, R1 @ shift to pin position 
ORR R2, R2, R3 @ set bit 
STR R2, [R0] @ update register 
 

@ Wait for seconds 
MOV R0, #seconds @ wait seconds 
BL sleep 
 

@ clearGPIOpin 
@ Clears a GPIO pin. Requires mmap addr & pin number 

MOV R0, R9 @ Get GPIO mapped address 
MOV R1, #pinnumber 
ADD R4, R0, #GPCLR0 @ pointer to GPSET regs. 
MOV R5, R1 @ save pin number 
 

@ Compute address of GPSET register and pin field 
MOV R3, #registerpins @ divisor (32) 
UDIV R0, R5, R3 @ GPSET number 
MUL R1, R0, R3 @ compute remainder 
SUB R1, R5, R1 @ for relative pin position 
LSL R0, R0, #2 @ 4 bytes in a register 



ADD R0, R0, R4 @ address of GPSETn 
 

@ Set up the GPIO pin funtion register in programming memory 
LDR R2, [R0] @ get entire register 
MOV R3, #pinbit @ one pin 
LSL R3, R3, R1 @ shift to pin position 
ORR R2, R2, R3 @ clear bit 
STR R2, [R0] @ update register 
 

@ unmapGPIOmemory 
@ On completion need to remocve memory mapping 
@ and close file 

MOV R0, R5 @ memory to unmap 
MOV R1, #pagesize @ amount we mapped 
BL munmap @ unmap it 
 

closeDev: 
MOV R0, R8 @ file descriptor 
BL close @ close file 
 

@ end program here 
_exit: 

POP {R8} @ restore SP to entry level. 
POP {R9} 
MOV R7, #1 
SWI #0 

  End Program 23a.

 

Note that to assemble and generate the executable you will need to use the following, otherwise
you will likely generate an error:

 

gcc -march="armv8-a" -g -o gpio22 prog23a.s 

This will generate an executable called gpio22 if you saved the above source file as 'prog23a.s'.
The program assumes that an LED or similar is attached to GPIO22 and will turn it on
(illuminate), wait for two seconds and then turn it off. Either side of this it will create and open
a virtual memory map and then do the reverse on completion. (GPIO22 as it seems to be
available on all models of the Raspberry Pi released to date.)



Building the Code
That's quite a lot to take in, so let's work through the program section by section. The first

blocks of code define the constants, and label definitions. These occupy the first page or so of

the file. This section ends with three asciz string definitions. From the comments and the

previous text the function of each of these should become apparent if not already. The program

itself starts at 'main:'. Opening the file we want to map, requires two pieces of information. This

is the address of device name we want to open and the properties to be assigned for the file

when opened. These need to be loaded into R0 and R1 respectively. The address of the:

'devgpiomem'  

string is provided by the address pointer specified in 'devicefile'. A quick trip to 'open' in the

Linux kernel is all that is needed. On return to our program, R0 will contain the file descriptor

or a negative number indicating an error occurred and the file couldn't be opened. In the case of

the latter the appropriate error message is displayed, and the program terminates. This should

be familiar following on from the knowledge gained in earlier chapters. All being well the

program flow resumes at 'moveon1' where we save a copy of the file descriptor in R4 for

program use and a backup for use later (R8). We also need to save a copy of the peripheral

address provided to access the GPIO (0x3F200000) and preserve a copy of this in R9. These

two items are then pushed on the top of the stack. The 'mmap' function will undertake the

process of mapping the virtual memory for us to use. It takes six arguments as follows:

 

1. R0=The address where the device should be mapped. Best in this instance to allow the

system to choose it, indicated by using a null value or zero.

2. R1=The amount of memory required for the mapping. One 'page' is sufficient, specified

as 4096 bytes.

3. R2=A number specifying the protection given to the mapped memory. This must tie in

with the protection that was specified in the original open operation. Namely the ability

to read and write and allow the mapped memory to be synchronised with information

written to it.

4. R3=A value specifying whether the mapped memory can be shared with other devices or

not. Normally it is best to allow such sharing as you may want to have other programs

accessing the GPIO concurrently.

5. {R9}= The physical memory location of the I/O device. 6

6. {R8}= Value of the file descriptor to the device being mapped. This came from our call

to open.

The last two items in our list have been pushed onto the top of the stack. The mmap function

call expects a total of six items of information and therefore looks to the stack to provide them

as only four are passed through registers R0-R3.



On return from the mmap call the memory address that the GPIO has been mirrored into is

R0. This is saved by the program into R9. If -1 is returned then an error has occurred, and an

error message is provided, and the program exited. Otherwise, program flow continues at

'moveon2', and everything is primed and ready for selecting the GPIO pin number and function

required of it!

The next block of code (the next six lines straight after 'moveon2') primes the registers

ready for the programming of the relative GPFSEL register and pin field. These values are

initially R0, R1 and R2 and then copied into R4, R5 and R6 respectively so the originals can be

utilised.

The next section is fundamental to computing the address of the GPFSEL register and field.

This includes an instruction we haven't looked at before, UDIV, and is one of the reasons why

special flags are needed to assemble the listing. UDIV divides an unsigned 32-bit value into

another unsigned 32-bit value, producing a 32-bit unsigned result. This provides a quotient, but

any remainder is thrown away and the result rounded down to the next whole number. However,

we want the remainder to provide us with the GPFSEL pin, so we need to compute this as well.

Three lines of code do this.

In our segment of assembler, the quotient is calculated by divining R5 by R3 thus:

UDIV R0, R5, R3 @ Unsigned divide R0=R5/R3 

 R0=0x16/0x0A 

 R0=0x02 

The use of 10 as the divisor (0x0A) in R3 is the constant in converting the decimal value (base

10). The result, 2, is provided as 0x16/0x0A or 22/10=2.2, thus 0x02 rounded down, this is our

GPSEL number. Next, we need to compute the remainder from the quotient to obtain the

GPSEL pin number. Multiply the quotient by the divisor (now in R0):

MUL R1, R0, R3 @ R1=R0*R3

 R0=0x02*0x0A 

 R1=0x14 

Next, subtract the result in R1 from the value in R5: 

SUB R1, R5, R1 @ R1=R5-R1 

 R1=0x16-0x14 

 R1=0x02

This gives us the GPSEL number and the GFSEL pinfield, so we can set-up the GPIO pin

function register. We need to account for there being four bytes (one word) in a register, do this

by shifting the value left by two positions: 

LSL R0, R0, #2 

 R0=0X02,<<2 

 R0=0X08 



This provides the offset of 0x08, which is added to the base address returned by mmap. (Note

this address was returned for a RPi 3B with 1GB of memory. It is likely different on other

configurations of RPi; however you can remain oblivious to this address as it is calculated for

you.) Look back at Figure 23a and you will see that the offset for GPFSEL2 is #8. This is

calculated below.

ADD R0, R4, R0 

 R0=0x76FFF8000+0x08 

 R0=0x76FFF8008 

We can then read the contents of this memory address in R0, into R2, 0x40 in this instance.

LDR R2, [R0] 

 R0=[0x76FFF8008] 

 R2=0x40 

Now the pin number previously stored in R1 is moved into R3:

MOV R3, R1 @ need to mov R1 into R3 pin 

 R3=0x02 

And then shifted by three shift its position by three:

ADD R1, R1, R3, LSL #1 

 R1=0x02+0x2,<<1 

 R1=0x06 

Consult Figure 23b and see that Pin 22 is 6.

MOV R3, #pinfield @ gpio pin field

 R3=0x07 

LSL R3, R3, R1 @ shift to pin position 

 R3=0x07<<0x06 

 R3=0x1C0 

The GPIO pinfield value is moved into R3, seven in this case. The pin field value is then shifted

left by six to give 0x1C0 in R3.

The BIC instruction performs a bitwise AND between the NOT of a bit pattern and the

register value. The net effect is to clear the bits in the register as specified by the bit pattern.

Before shifting the function code to the pin position:

BIC R2, R2, R3 

 R2=0x040 BIC 0x1C0 

 R2=0 

 

LSL R6, R6, R1 



 R6=0x01 << 0x06 

 R6=0x40 

 

ORR R2, R2, R6 @ enter function code 

 R2=0x0 ORR 0x40 

 R2=0x40 

Store the contents of R2 at the location specified by the address in R0 = 0x76FFF8008.

STR R2, [R0] 

 0x76FF8008 = 0x040 

Now we can turn the pin 'on' using the mmap address and the pin number. These are copied in

R0 and R1 having previously been saved.

MOV R0, R9 

 R0=0x76FF8000 

MOV R1, #pinnumber @ 0x16= GPIO 22 

 R1=0x16 

Add the pin number to the original mmap address. To point to the GPSET registers:

ADD R4, R0, #GPSET0 

 R4=0x76FF8000+0x1C 

 R4=0x76FF801C 

Save the pin number for later use:

MOV R5, R1 @ save pin number 

 R5=0x16 

Move the register pins number (32) into R3:

MOV R3, #registerpins 

 R3=0x20 

Utilise UDIV as previously to calculate the GPSET number and then work out the remained,

for relative position:

UDIV R0, R5, R3 @ GPSET number 

 R0=0x16/0x20 

 R0=0 

UDIV R0, R5, R3 @ GPSET number 

 R0=0x16/0x20 

 R0=0 

 



MUL R1, R0, R3 @ compute remainder 

 R1=0x0 x 0x20 

 R1=0 

 

ADD R1, R1, R3, LSL #1 

 R1=0x02+0x2,<<1 

 R1=0x06 

 

SUB R1, R5, R1 @ for relative pin position 

 R1=0x16-0x0 

 R1=0x16 

 

LSL R0, R0, #2 @ 4 bytes in a register 

 R0=0 << 2 

 R0=0 

 

Perform additions to get the address of GPSET in virtual memory:

ADD R0, R0, R4 @ address of GPSETn 

 R0 = 0 + 0x76FF801c 

 R0=0x76FF801c 

Access contents of the entire register at address given in R0:

LDR R2, [R0] @ get entire register 

 R2=[0x76ff801c] 

 R2=0x6770696f 

Load R3 with pin bit constant (1):

MOV R3, #pinbit @ one pin 

 R3=1 

Logically shift left the value by contents held in R1 (relative pin position):

LSL R3, R3, R1 

 R3 = 1 << 0x16 

 R3= 0x400000 

Logically OR this with the contents in R2 to provide new value:

ORR R2, R2, R3 @ set bit 

 R2= 0x6770696f ORR 0x400000 

 R2= 0x6770696f  



And update the register by storing it in virtual memory:

STR R2, [R0] @ update register 

 R2=0x6770696f 

 R0=0x76ff801c 

 0x76ff801c=0x6770696f 

This will now turn the pin (and LED if attached) 'on'.

The same methodology is used to turn the pin off and therefore any attached LED. I'll leave

you to work through the code utilising the above technique.

You only require minimal changes to adapt the program to work on other pins. simply

change the value assigned to 'pinnumber' in the section marked 'Constants for Function Select'

to '17' and re-assemble. The program will work out the rest of the details for you.

The program listing is provided as a single contiguous file. More to make it easier to read.

Once you understand its operation it is a good candidate to section it into a series of macros--

see Chapter 18 for a refresher on macros.



Other GPIO Functions

Just as a reminder: There are several other registers that form part of the GPIO Controller that

can be used and programmed using these methods. As already mentioned you will need to get a

copy of the appropriate BCM peripherals data sheet to get the specific detail that you need

relating to the other registers, their functions and what you need to do to use them. It is all

there. You can check out the official Raspberry Pi website for more information and links to

download these.

One final thing in relation to the data sheet. If you look at the memory maps at the start of

the document you will see that the ARM peripherals are mapped as starting at 0x7E000000,

whereas in Raspbian or Raspberry Pi OS, on Raspberry Pi Zero and 1, they start at 0x2000000

and 0x3F000000 for Raspberry Pi 2, 3, 4, and 400. All operating systems implement their own

memory addressing systems which overlay the ones provided by default by the CPU. This

allows the OS in question to implement virtual memory mapping --- a technique that allows

program and applications to use more memory than is actually available to them by swapping

data in and out of memory from the SD Card in use or the hard drive attached. From a practical

point of view, when you access the Broadcom data sheet you should remember that all the

peripheral addresses specified in the text are bus addresses and must be translated into physical

addresses. Thus, the GPIO Controller start address is given as 0x7E200000 but we implement

as 0x3F200000 or 0x20200000 in our programs depending on the model.

Finally, a word of warning. The GPIO pins control a whole host of functions on your

Raspberry Pi and if you are not careful you can crash the operating system. Always save your

work before you try to execute any machine code file for the first time.



GPIO Pins Explained
Figure 23f depicts the 40-pin header that is fitted to the more recent Raspberry Pi modules. The

first thing to notice is that there are effectively three columns of information, which are

repeated on the left and right side of the 'Header' column) in the centre.

For a Revision 2.0, 26-pin header then Header Pins 1-26 are still relevant and have the same

assignments. Revision 1.0 is different. If you have a Raspberry Pi with a 26-pin header, you

should check the Raspberry Pi website to determine which Revision you have. Generally, the

original Pi 1 Model B was fitted with Revision 1.0.

 Figure 23f. Raspberry Pi GPIO Header Connections

 

Header Pins: The 'Header' is the physical aspect on your Raspberry Pi, and the numbers 1-40

down the centre represent the 40 pins on the header connector. These numbers are often

referred to as the 'Header Pin Numbers' and each one is wired into the Raspberry Pi to provide



a specific function. These functions are defined by the columns that appear to the left and right

as already mentioned.

Pin: The Pin column, in most instances provides the number of the GPIO pin itself (FSEL).

Thus GPIO 22 is wired into Header Pin 15. In some instances, the Pin is also wired to provide

poser or act as a ground. Thus, Header Pin 1 is 3.3 volts, and Header Pin 6 is Ground. The two

'Do Not Connect 'options are in fact GPIO 0 and GPIO 1 but are reserved for other functions.

A GPIO pin designated as an output pin can be set to high (3V3) or low (0V). If designated

as an input, the pin can be read as high (3V3) or low (0V). This is made easier with the use of

internal pull-up or pull-down resistors. Pins GPIO2 and GPIO3 have fixed pull-up resistors, but

for other pins this can be configured in software.

Register: The Function Select Register is listed in this column. Figure 23a has more details

on these. GPSEL 0, 1 and 2 are the ones commonly used here.

Bits: These are the three bits in the related GPSEL register that control the GPIO pin. Look

at Header Pins 11 and 13. These both have bits 21-23 associated with them however they are in

different registers GPSEL1 and GPSEL2.

Other Functions: In addition to being input and output devices, GPIO pins can be used for

a variety of alternative more advanced functions. For example, software pulse width

modulation (PWM) is available on all pins, whilst hardware PWM is available through GPIO

12, GPIO 13, GPIO 18 and GPIO 19. Serial TX via GPIO14; and RX via GPIO15. Other

options exists and these can be found on the Raspberry Pi website.



 
 
  
  



24. Floating-Point

In our everyday use of computers, we take the use of floating-point numbers point numbers for

granted. After all what use would a bank have of a computer that couldn't work out decimal

points? When we use spreadsheets, calculators and even some word-processing packages, the

ability to perform simple calculations down to several decimal points is accepted without a

second thought. But what about assembly language? All the number action we have looked at to

date, and there's not been that much in reality, has been dealing with integer numbers, values

without any fractional part.

The management and manipulation of floating-point numbers takes a great deal of

processing grunt and this is not provided in the first instance by the ARM chip---it is supplied

by something called a co-processor. As we will see in Chapter 30, the ARM chip used in the

Raspberry Pi forms part of a 'bigger' infrastructure known as a SOC or System-on-Chip. It is

more than just the ARM chip itself, and one of these additional items is some additional

hardware circuitry that handles floating-point math. This co-processor as it is known is the VFP

or Vector Floating-Point co-processor and this supplies additional architecture, including

registers and instructions to allow floating-point to be included in assembly language programs.

Better still GCC and GDB support these too and do so as the IEEE 754 definition they conform

to standardises the format of floating-point numbers to provide a common format across

computer platforms.

In these next couple of chapters, we'll look at how the floating-point architecture is

implemented and the instructions which we can use to include real numbers in our own

programs. This should provide you with more than enough information to use them in a

practical way and display your results for the world to see.



VFP Architecture
Modern software, mainly media codecs and graphics accelerators, operate on large amounts of

data that is less than word sized. 16-bit data is common in audio applications, and 8-bit data is

standard in graphics and video, and there is lots of it. When performing these operations on a

32-bit microprocessor, parts of the microprocessor are unused but continue to consume power.

To make better use of this excess, wasted processor capacity, Single Instruction Multiple Data

(SIMD) technology introduced the use of a single instruction to perform the same operation in

parallel on multiple data elements of the same type and size. This way, the hardware that

frequently adds two 32-bit values instead performs four parallel additions of 8-bit values in the

same amount of time.

The creators of the Raspberry Pi have been keen to utilise the full benefits of the ARM

microprocessor, but if you follow the technology world closely you will have noticed that there

is a never-ending stream of ARM microprocessors available. This makes compatibility difficult

as they all offer something different. For that reason, only three versions of ARM have been

used with the various Raspberry Pi at the time of writing. Namely ARMv6, ARMv7 and

ARMv8. (There are other reasons but hardware and software compatibility is fundamental to

the concept of the Raspberry Pi.)

VFP2 architecture is implemented on the ARM v6 chip fitted to Raspberry Pi 1 models A,

B, A+ and B+. On the Raspberry Pi 2 and Raspberry Pi 3 the ARMv7/8 chip supports VFP4

which encompasses VFP2 but includes an expanded instruction set. We'll deal with the basics

that are common to both here.

The VFP provides support for single-precision and double-precision numbers. As the name

implies the latter can represent numbers in more detail than the former. To this end a single-

precision number occupies a word of memory (32-bits or binary32), whilst a double occupies

two-words of memory (64-bits or binary64). You will recall that the ARM can use 32-bit

numbers for its standard values, and this begs the question: are the single-precision floating-

point numbers that are available as big as the integer ones? The answer is yes, they are, and

they can be much bigger as it boils down to the way in which they are represented. The

following are examples of floating-point or real numbers:

0.2345 

546.6735268 

1.001011010 

4E7 

In the latter case the number is 4*10 to the power of 7 or 4x107. The 7 is the exponent and

means 'raised to the power of'. In single and double-precision numbers the values can be

encoded into the bits so that they have a sign bit, an exponent portion and a fractional or

mantissa portion. In this way large or small numbers can be depicted.

Figure 24a below shows how a single-precision and double-precision number are laid out.

In the circumstance of double-precision numbers, the two-words must occupy consecutive

memory locations and be word-aligned.



 Figure 24a. Construction of single and double-precision numbers.

Sign (S)

This can be 0 or 1 to represent positive or negative values, respectively. It is held in the

most significant bit of the number.

Exponent

The exponent is the value we need to shift the mantissa along to the left to restore it to its

original value. It is held between the sign bit and fraction.

Fractional

Also called the mantissa, this is the number following the point and it can obviously be a

binary value to represent the real number. The mantissa will have been normalised, that

is shifted along to the right until we are left with a single digit on the left of the dot. In

double-precision numbers it occupies the whole of the least significant word and part of

the most significant word.

In a single-precision floating-point the mantissa is 23-bits (+1 for the integer one for

normalised numbers) and the exponent is 8-bits, meaning the exponent can range from -126 to

127. In a double-precision the mantissa is 53-bits (+1 as for single) and the exponent is 11-bits,

so the exponent ranges from -1022 to 1023).

For completeness there is also a third type of number representation. This is called NaN, an

acronym for 'Not a Number'. This is used in special circumstances where a value cannot be

represented in single or double-precision manner. It is a fascinating topic---not least as there are

also two different types of NaN and is worth investigating further if you are interested in this

type of thing.



The Register File
The load and store architecture of the ARM chip persists in VFP and to deal with floating-point

values it provides a set of registers specifically for the purpose. There are 32 in all with the

prefix S and numbered S0-S31. These registers are used to hold single-precision values as they

are all one word wide. For the manipulation of double-precision numbers these registers can be

paired up to form up to 16 two-word width registers. D is used to denote this, and they are

numbered D0 to D15. Figure 24b illustrates this in principle.

 Figure 24b. The VFP Register File. The Sx registers may be used individually or paired to

create a double-precision register, Dx.

 

You should be clear that these registers are one and the same and although the values in

registers may be either single or double, they can only contain one value at a time. Thus, S0

and S1 can be used individually for two single-precision values or combined as D0 for a

double-precision value. If D0 is loaded with a value, then the contents of S0 and S1 are wiped.

It is perfectly possible to have single-precision value in S0 and S1 and a double-precision value

in D1 as D1 is composed of S2 and S3.



Please note that there are no warning devices or alarm systems to tell you what is in what

register. That is up to you to look after --- this is machine code after all. You are the manager.

These registers are grouped into scalar registers (S0-S7/D0-D3) and vectorial register banks

(S8-S31/D4-D15) for usage purposes---and the group determines how they are accessed, which

we'll look at with some examples later.

As you might expect there are instructions to deal specifically with moving both single and

double-precision values to and from memory and registers and a variety of instructions for

arithmetic functions. Let's look at a simple example first that will also show how to use printf

to display a floating-point number. We'll also use it to highlight a few points.



Managing and Printing
Program 24a illustrates a few basic operations involving floating-point numbers and illustrates a

technique to to use printf to display a floating-point value on the screen.

This is important as it will allow you to display the results of any operations you do. The

first thing to note is that you cannot load a floating-point value directly into a register; you must

do it indirectly via a register. This concept should be familiar and the way the code is

structured, as shown below.

 

 Program 24a. Printing a floating-point value with printf.

/* Printing a floating-point number */  

.global main 

.func main 

 

main: 

LDR R1, addr_value1 @ Get addr of value1 

VLDR S14, [R1] @ Move value1 into S14 

VCVT.F64.F32 D5, S14 @ Convert to B64 

 

LDR R0, =string @ point R0 to string 

VMOV R2, R3, D5 @ Load value 

bp: 

BL printf @ call function  

MOV R7, #1 @ Exit Syscall 

SWI 0 

 

addr_value1: 

.word value1 

 

.data 

value1: .float 108.65625 

string: .asciz "Floating point value is: %f\n"

  End Program 24a

 

The first line of code loads the address of value1 into R1. In the next line this is used as the

indirect address of the value to be loaded into S14. The VLDR stands for Vector LoaD

Register. The third line then converts the value into a double-precision one. This is because



printf can print double-precision values but not single-precision ones, which is the format of

the value in S14. The instruction is complex but is surprisingly easy to read and construct when

you know how:

VCVT Vector Convert instruction 

.F64 Convert to Binary64 -- viz double-precision 

.F32 From Binary32 -- viz single-precision 

D5 Destination double-precision register 

S14 The source single-precision registers 

The order is the important thing to remember here: the target comes before the source.

The next three lines are all about getting printf ready to use. As before R0 must point to the

string to print. Normally R1, R2, and R3 are used to pass additional values to printf. However,

we can only get one double-precision value in those three registers, so the definition is that R2

and R3 are used (R1 is ignored). VMOV moves D5 into R2 and R3. The %f directive is used in

the print string and printf is smart enough to know that this directive indicates a double-

precision value and so just looks in R2 and R3 for it. (If you call other libc functions then you

may be able to pass two double-precision values through to it as R0-R3 are allocated for the

purpose in normal ARM use.)

You can also see in the data section that the '.float' directive is used to store the floating-

point value.

Printing more than one double-precision value with printf follows the same route as

previously. The additional items are pushed onto the stack. However, PUSH and POP or their

equivalents become a little redundant here as we are dealing with two-word values for each

double-precision number. Program 22b will build on the previous listing to do this.

The load and conversion process remains the same, but obviously using different registers,

and the VPUSH instruction is used to place the value on the stack. Additional values can be

added in the same way.

Note that most floating-point numbers that a computer can represent are just

approximations. One challenge in programming with floating-point values is ensuring that the

approximations lead to reasonable results. If the programmer is not careful, small discrepancies

in the approximations can snowball to the point where the results become meaningless.



Assembling and Debugging VFP with GDB
The GCC methodology is ideal for testing and debugging code at this level. One of the

advantages using the full gcc compile method is that GCC will invariably handle all the behind-

the-scenes leg work for you. So, when it parses the assembler it understands you are using

floating-point opcodes and therefore attaches and assembles the additional information

required. It will also handle the requirements of utilising functions such as printf. For instance,

you can assemble Program24a thus:

gcc -g -o prog24a prog24a.s 

Then utilise the GDB debugging tools to examine and step-through the code. GDB provides

debugging tools for operation with the VFP (and Neon which we will cover in in Chapter 26).

All the options outlined in Chapter 14 are valid, and GDB will disassemble machine code files

correctly. You can also access the VFP registers by adding the extension 'all' to the info

command line thus:

info r all 

or:

i r a 

This will list the D and S registers, (plus the Q registers used by Neon which we will discuss in

a later chapter). You will notice that this also lists D registers up to D31, whereas we only

identified registers to D15 earlier. The D register set is extended to correlate with the Neon Q

registers as we shall see.

The 'all' function provides a lot of data. You can limit the amount of data displayed by

specifying individual registers. First though insert a breakpoint using the 'bp:' label that was

part of the listing assembled by typing:

b bp 

at the GDB prompt. You will get a message confirming this. Remaining within GDB type:

run 

The code will execute up to the breakpoint which is immediately before the call to the printf

function. Everything else prior to this break has been executed. We can now look at the

contents of the relevant registers by typing:

info r s14 d5 r0 r1 r2 r3 



The output is shown below. For the sake of clarity, I have reformatted slightly this for the D5

register output to make it much easier to read here.

s14 108.65625 (raw 0x42d95000) 

d5 {u8 = {0x0, 0x0, 0x0, 0x0, 0x0, 0x2a, 0x5b, 0x40}, 

u16 = {0x0, 0x0, 0x2a00, 0x405b},  

u32 = {0x0, 0x405b2a00},  

u64 = 0x405b2a0000000000,  

f32 = {0x0, 0x3}, f64 = 0x6c 

r0 0x2102c 135212 

r1 0x21028 135208 

r2 0x0 0 

r3 0x405b2a00 1079716352 

To recap the six registers in the output above are shown immediately prior to the printf call, and

therefore have all the information passed into them. S4 This clearly shows the single-precision

value as 108.65625 -- also seen its raw binary value of 0x42D95000. D5 The representation we

are normally interested in here is the U32 number. This is shown as: 0x405b2a00 in 32bits and

(with 0) in the other 32 bits. You can also see this as 0x405b2a0000000000 in u64 (64-bits).

R0 holds the address of the value the address of the string to be used by printf R1 Has the

address of the single-precision number to be printed. R2, R3 Hold the value to be printed by

printf. This is there same as shown in D5 above.

Therefore, R2 and R3 are holding a double-precision value, stored in two registers. This is

because printf only prints double-precision numbers.

The value in D5 is the value 108.656250 represented as a single-precision binary number.

Edit Program24a and change the number to be converted to:

108.6000 

Reassemble the file and execute the program again (no need to go into GDB). The result

returned is:

Floating point value is: 108.599998

The value converted back is not 108.60000. This is a rounding error. A small discrepancy, in

fact just -0.00000152587890625. However, if compounded, especially by multiplication it

might ultimately become quite significant.

The reason for the variation is in the way the way the decimal value is converted into a

binary representation. In some cases, these errors can and regularly do occur. It didn't occur in

the original example as the initial value converts correctly.

Using GDB is a good way to learn what instructions do, and how the various combinations

of actions affect the flags and results.

You can still assemble and link your floating-point code as a two-stage process using 'as'

and 'ld' providing you follow the rules laid down in the early chapters of this book. However,

you will also need to link the run-time libraries you require for any external functions called,



such as printf or scanf etc when you link them. In these instances, we'll stick with the GCC

compiler to do the process for us.

The debugger can be used is the -g option is included in the assemble sequence as normal.



Load, Store and Move
As with the standard ARM instruction set the VFP instruction set provides a versatile set of

instructions to shift information around. VLDR and VSTR load and store single register

quantities using indirect addressing. Here are a few examples:

VLDR S1, [R5] @Load S1 with F32 value at addr in R5 

VLDR D2, [R5, #4] @Load S2 with F64 value addr+4 in R5 

VSTR S3, [R6] @Store F32 value in S3 at addr in R6 

Pre-indexed addressing is used in the second example to add 4 to the address held in R5 before

the operation completes.

We can also use pre-indexed addressing with write-back as well, to update the address in

the indexing register. This is useful when dealing with operations working on sets of registers,

as shown here:

VLDMIAS R5!,{S1-S4} @ Copy S1, S2, S3, S4 & update R5 

In this example the values in the four registers S1, S2, S3 and S4 are copied sequentially to the

word location starting at the address held in R5. When the operation is completed the length of

space used for the storage is added to R5. This means that R5 will now point to the next

address---the one after S4. If the instruction had read:

VLDMIAS R5!, {D1-D4} @ Copy D1, D2, D3, D4 & update R5 

then the same operation would have taken place, but the instruction would have allowed two-

words (8 bytes) per register and added 32 bytes to the value in R5. If you do not wish to update

R5 then exclude '!' from the instruction.

The addressing modes in operation here are similar in fashion to those described in Chapter

15 but notice how the registers and information are arranged differently. There is no post-

indexed addressing operation.

 

 Program 24b. Manipulating and printing two or more fp values.

/* Printing two floating-point numbers */ 

 

.global main 

.func main 

main: 

SUB SP, SP, #16 @ Make space on stack 

LDR R1, addr_value1 @ Get addr of value1 

VLDR S14, [R1] 



VCVT.F64.F32 D0, S14 

LDR R1, addr_value2 @ Get addr of value2 

VLDR S15, [R1] 

VCVT.F64.F32 D1, S15 

 

LDR R0, =string @ point R0 to string 

VMOV R2, R3, D0 @ first value 

VSTR D1, [SP] @ second on stack 

BL printf 

ADD SP, SP, #16 @ restore stack 

 

MOV R7, #1 @ Exit Syscall 

SWI 0  

 

addr_value1: .word value1 

addr_

value2: .word value2 

 

.data 

value1: .float 1.54321 

value2: .float 5.1 

string: .asciz "The FP values are %f and %f\n" 

  End Program 24b

 

VPUSH and VPOP can be used with curly brackets to transfer several items to and from the

stack:

VPUSH {S1-S4} @ put S1, S2, S3, S4 onto stack 

VPOP {S5-S8} @ pull them into S5, S6, S7 and S8 

The VMOV instruction allows values to be freely transferred between different register sets.

When there is a transfer between a VFP register and an ARM register then the transfer is done

bit-by-bit and no conversion takes place.

VMOV S1, S2 @ Copy S2 into S1 

VMOV S1, S2, R3, R5 @ Copy R3 to S1 and R5 to S2 

VMOV R2, R4, D1 @ Copy loD1 to R2 & hiD1 to R4 

In the last example a double-precision value (8 bytes) is being transferred into two registers. In

such instances it is important to be aware of the order of the hi and lo bytes of the floating-point

value as failure to do so can radically alter the value saved. Once again, no conversion is



performed, and it is a bit-for-bit transfer. The value is preserved if the transfer is reversed as

nothing has changed.

You can use the VMOV instruction to copy information from ARM to VFP registers and

thus you can use the command to allow you to store ARM register contents in the Register File

if you are looking for extra space:

VMOV S1, R1 @ Store R1 in S1 



Precision Conversion
Both programs at the start of this chapter included conversion from single to double-precision

values. This was done as the printf function directive '%f' requires a double-precision value as

its source to work correctly. The VFP architecture allows for conversion to work in several

directions. It can also perform double-precision to single-precision transformation, but it can

also simplify signed and unsigned integer values conversions. You should bear in mind that

conversion can lead to a loss of precision and some rounding of values, particularly where a

floating-point number is transformed into an integer.

There are four operators that can be used with VCVT to define the conversion source and

targets, two of which must always be used, one as the source and one as the target. These are

detailed in Figure 24c.

 

Suffix Meaning

.F32 Single Precision. 32-bit one-word width values.

.F64 Double Precision. 64-bit two-word width values.

.S32 Signed Integer. 32-bit one-word width values.

.U32 Unsigned Integer. 32-bit one-word width values.

 

 Figure 24c. Suffixes which can be used in number conversion.

 

The basic syntax of VFP instructions is thus:

VCVT <Target><Source> <Reg-Target>, <Reg-Source> 

The suffixes '.F32' and '.F64' can be appended to arithmetic or conversion instructions to

determine whether the quantities being manipulated are single or double-precision. We have

already seen an example of this in the conversion process in both programs above.

The example used in Program 22a was:

VCVT.F64.F32 D5, S14 

This took the single-precision (F32) value in S14 and converted it into a double-provision

(F64) value to be stored in D5. A few more examples with short explanations are listed below:

VCVT.F32.F64 S10, D2 @ Double in D2 to single in S10 

VCVT.F32.U32 S10, R2 @ Unsigned int in R2 to single in S10 

VCVT.S32.D64 D4, R2 @ signed int in R2 to double in D4 



Vector Arithmetic

The VFP instruction set provides a comprehensive range of instructions to perform all the

arithmetic operations you might expect. The format follows the standard form illustrated so far

with F32 and F64 being used to specify single and double-precision values. Operations are

performed on one precision format value in each instruction line as single and double-precision

values cannot be mixed. An example for each instruction available is given below, remembering

that there are '.F32' and '.F64' flavours of each:

VADD.F32 S0, S1, S2 @ Addition S0=S1+S2 

VSUB.F64 D0, D2, D4 @ Subtraction D0=D2-D4 

VDIV.F64 D4, D5, D1 @ Divide D4=D5/D1 

VMUL.F32 S2, S4, S1 @ Multiply S2=S4*S1 

VNMUL.F64 D4, D3, D2 @ Mult and negate. D4=-(D3*D2) 

VMAL.F64 D4, D3, D2 @ Mult and accumulate D4=D4+(D3*D2) 

VSUB.F64 D0, D1, D2 @ Mult and Subtract D0=D0-(D1xD2) 

VABS.F32 S0, S1 @ Absolute S0=ABS(S1) 

VNEG.F32 S2, S3 @ Negate S2=-S3 

VSQRT.F64 D0,D1 @ Square Root D0=SQR(D1) 



 
 
  
  



25. VFP Control Register

The VFP co-processor provides three system registers. The most important of these from our

perspective is the Floating-Point Status and Control Register or FPSCR. You can think of this

as the CPSR for the normal ARM instruction set, in that it provides flag status information.

Indeed, the N, Z, C and V flags are all present and have the same application. Figure 25a shows

how the register is set out for the programmer whilst Figure 25b details the function of the

register bits that we'll be discussing here.

 Figure 25a. Floating-Point Status and Control Register layout.

 

The operation and function of several of these flag sets will be covered in these pages.

However, the operation of exceptions, although introduced in a forthcoming chapter for the

ARM chip itself is not detailed to any degree.

 

Bits Flag Set Detail

31-28 Condition Flags Negative, Zero, Carry, Overflow

23-22 Rounding Mode Controls rounding of values

21-20 Stride Controls step size taken in vector banks

18-16 Len Controls vector length

12-8 Exception Status Enables trapping of exception types

4-0 Cumulative Exception Trap cumulative exceptions

 

 Figure 25b. Register function summary.

 



Conditional Execution
We first looked at these condition codes in Chapter 10. The precise meanings of the condition

code flags differ depending on whether the flags were set by a floating-point operation or by an

ARM data processing instruction. This is because floating-point values are never unsigned, so

the unsigned conditions have no meaning. (There is also another reason involving NaN values

but as we have not delved into these in this overview, they are not significant at this point.)

Without exception the only VFP instruction that can update the status flags is VCMP and this

sets the relative bits in the FPSCR. However, condition flags and instructions are controlled by

the APSR (Application Program Status Register---CPSR) and so the FPSCR flags should be

copied across into the APSR. There is a specific instruction to do this:

VMRS APSR_nzcv, FPSCR 

The VCMP instruction comes in .F32 and .F64 flavours and can be used thus:

VCMP.F32 S0, S1 @ S0-S1 and set condition flags 

VCMP.F64 D2, D3 @ D2-D3 and set condition flags 

The entire contents of the FPSCR can be transferred to an ARM register thus:

VMRS R4, FPSCR @ Copy FSPCR into R4 

And likewise, the FPSCR can be loaded with the contents of an ARM register allowing the bits

to be predetermined and set:

VMSR FSPCR, R4 @ Copy R4 into FPSCR 

Using the bitwise operators (AND, ORR, EOR) this instruction allows you to mask individual

bits and provides a mechanism to test specific condition flags. This is used specifically in

dealing with the bits associated with 'len' and 'stride' which we'll discuss shortly. Figure 25c

details the meanings of the condition code mnemonics for both ARM and VFP side by side for

comparison.

Remember that one of the huge befits of using conditional execution is to reduce the

number of branch instructions required and thereby reduce the overall size of your code.

Branch instructions also carry a bigger overhead in execution timings --- typically three cycles

to refill the processor pipeline. For example:

VADDEQ.F32 S0, S1, S2 @ Execute only if C=1  

VSUBNE.F64 D0, D2, D4 @ Execute only if negative 

Suffix After ARM Instruction After VCMP Instruction

EQ Equal Equal

NE Not Equal No Equal or unordered

CS Carry Set Equal, Greater Than or unordered

HS Insigned Higher or same Equal, Greater Than or unordered

CC Carry Clear Less Than

LO Unsigned Lower Less Than

MI Negative Less Than

PL Postive or Zero Equal, Greater Than or unordered



Suffix After ARM Instruction After VCMP Instruction

VS Overflow Unordered

VC No Overflow Not unordered

HI Unsigned Higher Greater Than or unordered

LS Unsigned Lower or same Less Than or unordered

GE Signed Greater Than or Equal Greater Than or Equal

LT Signed Less Than Less Than or unordered

GT Signed Greater Than Greater Than

LE Signed Less Than or Equal Less Than or Equal or unordered

AL Always Always

 

 Figure 25c. Condition code comparison ARM v VFP

 

Program 25a shows how easy it is to use these commands. This simply loads values into S14

and S15 and then compares them using the VCMP instruction. This sets the flags in the

FPSCR. The VMRS instruction is then used to copy the NZCV flags across into the ARM

Status Register. Then depending on the status of the C flag, register R0 is loaded with 0 or 255.

After running the program, you can use:

echo $? 

to display the result.

You can play with the values of the constants being loaded into the two single-precision

registers and use GDB to check the register values to watch the process for yourself. You might

like to try extending the program to create a loop that counts down in 0.1 increments, printing

them on the screen as you do so and exiting when zero is reached.

 

 Program 25a. Conditional VFP-based execution.

/* Conditional execution in VFP code */ 

 

.global main 

.func main 

main: 

LDR R1, addr_value1 @ Get addr value1 

VLDR S14, [R1] 

VCVT.F64.F32 D1, S14 

 

LDR R1, addr_value2 @ Get addr value2 

VLDR S15, [R1] 



VCVT.F64.F32 D2, S15 

 

VCMP.F32 S14, S15 @ Compare S14 and S15 

VMRS APSR_nzcv, FPSCR @ Copy flag set across 

 

MOVEQ R0, #0 @ If C=1, R0=0 

MOVNE R0, #255 @ If C=0, R0=255 

 

MOV PC, LR 

 

addr_value1: .word value1 

addr_value2: .word value2 

 

.data 

value1: .float 1.54321 

value2: .float 5.1 

  End Program 25a.

 



Scalar and Vector Operations
In the previous chapter when looking at the Register File I mentioned that the registers can be

divided into scalar and vectorial banks for access purposes. Figure 25d illustrates how this

architecture is arranged.

In the earlier examples we have implied that all operations are working on individual

registers. However, the VFP can group registers into vectors or sets of registers. For vector

operations, the VFP register file can be viewed as a collection of smaller banks. Each of these

smaller banks is treated either as a bank of eight single-precision registers or as a bank of four

double-precision registers. The number of registers used by a vector is controlled by the LEN

bits in the FPSCR. Practically the register banks can be configured as one of the following:

Four banks of single-precision registers, S0 to S7, S8 to S15, S16 to S23, and S24 to S31

Four banks of double-precision registers, D0 to D3, D4 to D7, D8 to D11, and D12 to

D15

Any combination of single-precision and double-precision banks.

 

 Figure 25d. The four VFP banks and associated registers.  

 

Normally the value of LEN in VFP is set to 1 so that an instruction will only operate on the

registers defined in the instruction. However, by increasing the value of LEN we can make the

instruction operate on the rest of the registers in the associated bank of registers. So, a vector

can start from any register and wrap-around to the beginning of the bank. In other words, if a

vector terminates beyond the end of its bank, it wraps around to the start of the same bank.

Figure 25e shows how this works in tabular form.

It is important to note that a vector cannot contain registers from more than one bank, so if

the length wraps back to the start the operation stops at that point, once the bank is full.

Referring to Figure 25e, the first entry is LEN 2. This means that the number of registers to

be operated on is two. The start register is D11. Looking at Figure 25d we can see that D11 is

at the last register in Bank 2. Wrap around means that the next register in the bank is in fact D8

(D12 is in Bank 3).



The first register used by an operand vector is the register that is specified as the operand in

the individual VFP instructions. The first register used by the destination vector is the register

that is specified as the destination in the individual VFP instructions.

 

LEN Start Registers Used

2 D11 D11, D8

3 D7 D7, D4, D5

4 S5 S5, S6, S7, S0

5 S22 S22, S23, S16, S17, S18

 

 Figure 25e. LEN and its effect on bank wrapping.

 

 

In the table above the registers accessed have been consecutive ones, in other words they

followed the numeric order allowing for wrap-around. However, they can also occupy

alternative registers, and this is defined by the setting of the STRIDE bits in the FPSCR. In the

examples given in Figure 25e the STRIDE setting would have been 1 as the registers used are

consecutive. But a STRIDE setting of 2 would have forced alternative registers to be used.

Figure 25f illustrates this in tabular form also.

 

 

LEN STRIDE Start Registers Used

2 1 2 D1 D1, D3

3 2 S1 S1, S3, S5

4 2 S6 S6, S0, S2, S4

5 1 S22 S22, S23, S16, S17, S18

 

 Figure 25f. How LEN and STRIDE affects vector wrap-around.

 

As we have said, a vector cannot use the same register twice, so the combinations of LEN and

STRIDE settings are limited.

Consider the following instruction:

VADD.F32 S8, S16, S24 @ S8=S16+S24 

By default, LEN=1, and STRIDE=1 and so the contents of S16 and S24 are added together

with the result placed in S8. However, if we set LEN=2 and STRIDE=2 and execute the same

instruction, it will be the same as executing the following two instructions with 1+1 settings:

VADD.F32 S8, S16, S24 @ S8=S16+S24

VADD.F32 S10, S18, S26 @ S10=S18+S26



In turn setting LEN=4 and STRIDE=2 and performing the same instruction would execute as

though the following four instructions had taken place:

VADD.F32 S8, S16, S24 @ S8=S16+S24

VADD.F32 S10, S18, S26 @ S10=S18+S26

VADD.F32 S12, S20, S28 @ S12=S20+S28

VADD.F32 S14, S22, S30 @ S14=S22+S30

As you can see this is a potent programming method and is especially useful when it comes to

matrix operations on blocks of numbers.



Which Type of Operator?
Essentially VFP arithmetic can be performed on scalars, vectors or both together. When

LEN=1 (default) then all VFP operations are scalar in nature. When LEN is set to anything else

then they can be any scalar, vector or mixed. How this works is in your control only by your

selection of the register banks used or source and destination registers.

For most purposes Bank 0 (S0-S7/D0-D3) is a scalar bank and the remaining three banks

are vector banks. A mixed operation (scalar and vector) occurs when the destination register is

in one of the vector banks. Figure 25g provides some examples followed by brief descriptions

of the type of action being performed. Although VADD is used through these examples, the

action is applicable to all VFP arithmetic instructions.

 

STRIDE LEN Instruction Result

1 1
VADD.F64

D0, D1, D2
D0=D1+D2. Scalar as destination (D0) is in Band 0.

1 1
VADD.F32

S4, S8, S20
S4=S8+S20. Scalar as destination (S4) is in Bank 0.

2 4
VADD.F32

D10, S16, S24

S10=S16+S24; S12=S18+S26; S14=S20+S28; S8=S22+S30.

Vectoral, notice wrap around on final iteration.

2 2
VADD.F64

D4, D8, D0

D4=D8+D0; D6=D10+D12. Mixed as second source in Bank

0.

 

 Figure 25g. Examples of Scalar, Vector and Mixed operations.



Len and Stride
The bits associated with LEN and STRIDE in the FPSCR can be set up using VMRS and

VMSR instructions to transfer the required bit pattern into the FPSCR. This has to be done

through an ARM register and is a two-part process, as the FPSCR must be copied across first

so that the flag settings may be maintained, and a mask applied just to affect the settings of

LEN and STRIDE. Any ARM register can be used, and the two-way process would look like

this:

VMRS R4, FPSCR @ Copy FSPCR into R4 carry out bit setting here 

VMSR FPSCR, R4 @ Copy R4 into FPSCR 

The LEN field occupies three bits (b16-b18) whilst the STRIDE field occupies two bits (b20-

b21). Figure 25h shows the various bit combinations for LEN and STRIDE and the outcomes

for each as well as their reliability with single and double-precision numbers.

Not all combinations return predictable results and should be avoided. Use the table to

select what combination works for the type of values you are dealing with. You will see from

this that STRIDE bits are only ever 00 or 11 to represent 1 and 2, respectively. LEN operates so

a value of 1 is represented by 000 (ie, the actual binary stored is one less than value).

 Figure 25h. STRIDE & Vector LEN combinations effect on single and double-precision

numbers.

 



Program 25b demonstrates how vector addressing delivers the third option listed in Figure 25g.

The bulk of the listing is given over to first seeding values and then printing them out using

printf. The theory behind the latter should be familiar to you now, and as we will ultimately be

printing four double-precision values, three of these have to be pushed onto the stack so the

main: function begins by reserving 24-bytes for just this purpose, 24-bytes being three words.

The actual instruction being executed is:

VADD.F32 S10, S16, S24 

This involves three vector banks in Bank 1, Bank 2, and Bank 3. As we will be using

STRIDE=2, LEN=4 as our vector control settings. Bank 1 is used to hold results (S10, S12,

S14, S8), Bank 2 will hold the first set of values (S16, S18, S20, S22) and Bank 3 the second

set of values (S24, S26, S28, S30).

Five values have been defined for use. To make things easier to check, a single value is

assigned into the Bank 2 registers and then four separate values assigned to each of the registers

in Bank 3.

The lenstride: entry point marks where the FPSCR is seeded with the settings for STRIDE

and LEN. We require settings of 2 and 4, respectively. Looking at Figure 23h we can see in line

8 the binary settings to achieve this for single-precision are 11 and 011 (a 'normal' operation for

single-precision).

As STRIDE and LEN are separated by a single bit the bit pattern, we need to seed is

110011. This in turn needs to be shifted so the leftmost bit starts at b21 in the FPSCR, an LSL

#16 achieves this.

Looking at the program listing, the 'convert:' routine transforms the Sx registers in Bank 1

into double-precision values in Bank 0. In this program Bank 0 is not touched so these registers

are free, but beware, you must ensure that you have at least one double-precision register that

you can use if you plan to utilise printf, otherwise you will be doing a lot of register moving

and restoring.

 

 Program 25b. Using LEN and STRIDE to sum vectors.

/*** Using LEN and STRIDE to sum vectors ***/ 

.global main 

.func main 

 

main: 

SUB SP, SP, #24 @ room for printf 

LDR R1, addr_value1 @ Get addr of values 

LDR R2, addr_value2 

LDR R3, addr_value3 

LDR R4, addr_value4 

LDR R5, addr_value5 

 

VLDR S16, [R1] @ load values into 

VLDR S18, [R1] @ registers 



VLDR S20, [R1] 

VLDR S22, [R1] 

VLDR S24, [R2] 

VLDR S26, [R3] 

VLDR S28, [R4] 

VLDR S30, [R5] 

 

lenstride: 

/* Set LEN=4 0b101 and STRIDE=2 0b11 */ 

VMRS R3, FPSCR @ get current FPSCR 

MOV R4, #0b110011 @ bit pattern

MOV R4, R4, LSL #16 @ move across to b21 

ORR R3, R3, R4 @ keep all 1's 

VMSR FPSCR, R3 @ transfer to FPSCR 

 

VADD.F32 S10, S16, S24 @ Vector addition 

VADD.F32 S12, S18, S26 

VADD.F32 S14, S20, S28 

VADD.F32 S8, S22, S30 

 

convert: 

/* Do conversion for printing, making sure not */ 

/* to corrupt Sx registers by overwriting */ 

VCVT.F64.F32 D0, S10  

VCVT.F64.F32 D1, S12  

VCVT.F64.F32 D2, S14  

VCVT.F64.F32 D3, S8 

LDR R0, =string @ set up for printf 

VMOV R2, R3, D0 

VSTR D1, [SP] @ push data on stack 

VSTR D2, [SP, #8] 

VSTR D3, [SP, #16] 

BL printf 

ADD SP, SP, #24 @ restore stack 

 

_exit:  

MOV R0, #0 

MOV R7, #1 

SWI 0 

 

addr_value1: .word value1 

addr_value2: .word value2 

addr_value3: .word value3 

addr_value4: .word value4 

addr_value5: .word value5 



 

.data 

value1: .float 1.0 

value2: .float 1.25 

value3: .float 1.50 

value4: .float 1.75 

value5: .float 2.0 

 

string:  

.asciz " S10 is %f\n S12 is %f\n S14 is %f\n S8 is %f\n" 

  End Program 25b.

 

 

I make no apologies for the simplicity of this program, but it does provide a good way to get to

grips with the FPSCR and the STRIDE and LEN bits.



 
 
  
  



26. Neon

At the time of writing, this chapter is not relevant to the original Raspberry Pi 1 series nor the

Raspberry Pi Zero board. This is because Neon was introduced with the Raspberry Pi 2

release, or more specifically the version of the ARM chip that was used in its design. Neon is

closely tied in with the VFP architecture introduced in the 'Floating-Point' chapter. However, it

is not the floating-point unit (FPU) of the ARM processor. (Refer back to Figure 1c, in Chapter

1 to see the evolution of the chips used on the Raspberry Pi.)

Neon is an advanced SIMD (Single Instruction, Multiple Data) processing unit that can

apply a single action too many pieces of data at one time, without the data ever leaving the

registers! So much so it appears you are just loading and then storing data. In this way, you can

get more 'speed' (or completed operations) out of Neon than you can a standard SISD (Single

Instruction, Single Data) processor running at the same clock rate. Neon's importance comes in

the fact that it can sort repetitive complex information quickly using a process called

interleaving.

Figure 26a depicts the philosophy behind how Neon operations work. While a normal

processor would do A0+ B0=C0, A1+B1=C1 (on left), the Neon system does this in one

instruction producing the same output (on right).

 Figure 26a. Neon operations can be carried out in parallel.

 

Neon supports several data types:

32-bit single-precision floating-point

8, 16, 32 and 64-bit signed and unsigned integers

8 and 16-bit polynomials

The convention used to distinguish types is to put the first letter of the type before the size. For

example, an unsigned 32-bit integer would be U32, 32-bit floating-point would be F32 and so

on.

You should consider a few differences between the Neon and VFP systems:



Neon does not support double-precision floating-point numbers.

Neon only works on vectors and does not support advanced operations such as square

root and divide.

VFP offers some specialised instructions not supported by the Neon unit (SQRT for

example).

Neon is used to crunch lots of numbers quickly. If you need floating-point precision, then use

the VFP. However, bear in mind that the Neon hardware shares the same floating-point registers

supplied by the VFP, so if you are using both formats together ensure your register management

is up to-scratch.

As illustrated in Figure 26b the Neon system uses a bank of 32 by 64-bit registers which

can also be configured as 16 by 128-bit registers:

32 x 64-bit ('double-word') registers: D0-D31

16 x 128-bit ('quad-word') registers: Q0-Q15

Here the D registers of the VFP are doubled up to make the Q or Quad registers. These

registers are aliased so that the data in a Q register is the same as that in its two

corresponding D registers. For example, Q0 is aliased to d0 and d1, and the same data is

accessible through either register type.

To enhance Neon performance and reduce code density the Neon instruction set includes

structured load and store instructions that can load or store single or multiple values from or to

single or multiple 'lanes' in a vector register. These load and store operations are incredibly

versatile and can manipulate data during the load and store operation, pulling data from

memory and simultaneously separate values into different register.



 Figure 26b. The Neon register configuration. Compare this to Figure 22b to see how the

register structure is built.



Neon Assembler
Program 26a is a simple example for you to try and ensure that Neon is operating on your

Raspberry Pi. It will also confirm that you have the assemble and link operations correct.

Assuming a source file name of:

prog26a.s 

To assemble and link the code:

as -mfpu=neon-vfpv4 -g -o prog26a.o prog26a.s 

ld -o prog26a prog26a.o 

The option:

-mfpu=neon-vfpv4  

on the assembler command line, specifies that Neon instructions are permitted. If you leave out

the option, then you will almost certainly get multiple error message. Include the 'g' option if

you wish to look at the operation in GDB.

 

 Program 26a. A Simple Neon Test.

/* Simple Neon test */ 

.global _start 

_start:

LDR R0, =number1 

LDR R1, =number2 

 

VLD1.32 {Q1}, [R0] 

VLD1.32 {Q2}, [R1] 

VADD.I32 Q0, Q1, Q2 

 

MOV R7, #1 

SWI 0 

 

.data 

number1: .word 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 

number2: .word 2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 

End Program 26a.



 

The source only has three lines that you will be seeing for the first time, and you could

probably hazard a good guess at least one of these does! The program puts the values 1 and 2

into Q1 and Q2 respectively and then adds them, storing the result in Q0. VLD moves the

numbers into registers, and the VADD sums them to provide a result.

GDB can be used to interrogate Neon, provided the -g option is used during assembly. The

Neon registers are accessed by number. For example, a break point after the VADD operation

in Program 26a would allow you to see the result of the operation with:

 

info r q0 q1 q2 

Because the Q registers can be used to contain so many formats, and much of the detail you

provide in the Neon commands specify just this, all possible outputs can be seen when you use

this method in GDB. The result should be clear though, as shown here (which I have formatted

to make it easier to see):

 

q0

{u8 = {0x3, 0x0 <repeats 15times>},  

u16 = {0x3, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0},  

u32 = {0x3, 0x0, 0x0, 0x0},  

u64 = {0x3, 0x0},  

f32 = {0x0, 0x0, 0x0, 0x0},  

f64 = {0x0, 0x0}} 

q1  

{u8 = {0x1, 0x0 <repeats 15 times>},  

u16 = {0x1, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0},  

u32 = {0x1, 0x0, 0x0, 0x0},  

u64 = {0x1, 0x0},  

f32 = {0x0, 0x0, 0x0, 0x0},  

f64 = {0x0, 0x0}} 

 

q2  

{u8 = {0x2, 0x0 <repeats 15 times>},  

u16 = {0x2, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0},  

u32 = {0x2, 0x0, 0x0, 0x0},  

u64 = {0x2, 0x0},  

f32 = {0x0, 0x0, 0x0, 0x0},  

f64 = {0x0, 0x0}} 



Neon Instructions and Data Types
Figure 26c lists the data type specifiers available in Neon instructions. Data types are

represented using a bit-size and format letter although. As the chart shows not all data types

available in all sizes.

In Program 26a the VADD instruction specifies I32. From the table we can see this is a 32-

bit integer (or unspecified type) addition. It is important to understand that registers can hold

one or more elements of the same data type. Thus, we may not be looking at an overall value in

the register but the individual values of the elements in the vector.

 

Type 8-Bit 16-Bit 32-Bit 64-Bit

Unsigned Integer U8 U16> U32 U64

Signed Integer S8 S16 S32 S64

Integer of Unspecified type I8 I16 I32 I64

Floating-Point number n/a F16 F32 (or F) n/a

Polynomial over {0,1} P8 P16 n/a n/a

 

 Figure 26c. Neon data type specifiers.

 

The number of elements to be operated on is indicated by the specified register size:

VADD.I16 Q0, Q1, Q2 

indicates an operation on 16-bit integer elements stored in 128-bit Q registers. These operations

are carried out by dividing the vector into a series of lanes -- such that the operation is

performed on eight 16-bit lanes in parallel. This is illustrated below in Figure 26d which also

shows pictorially how 'lanes' are organised. The instruction performs a parallel addition of eight

lanes of 16-bit elements from vectors Q1 and Q2, storing the result in Q0.



 Figure 26d. Manipulating data lanes in Neon.

 

With larger register sizes register split into equal size any of type elements and the operation is

performed on the same element of each register.

Here's an example where the unsigned 16-bit contents of D0 and D1 are summed in four

16-bit parallel lanes. The elements of D0 and D1 being added to create four result elements in

D2:

VADD.U16 D2, D1, D0 

Assuming that the contents in D0 and D1 are as shown below, then the result is as per D2.

 Figure 26e. Adding lane data in Neon.

 

Of course, D0 and D1 combined are also Q0, whilst D2 is the lower 'half' of Q1. There is

nothing to stop you using this to your advantage is you wish to manipulate individual lanes of



data. There are some examples of this later in this chapter.

Some instructions take different size input and output registers. For example:

VMULL.S16 Q0, D2, D3 

multiplies four 16-bit lanes in parallel, producing four 32-bit products in a 128-bit destination

vector! Instructions specify what's in the vectors.

For Neon there are no status flags organised on a per lane basis. If an overall result is

required and there is a chance that a carry would be significant then it must be handled using

the wider result. As per the example above for instance. Otherwise, the Neon registers use the

summary flags in the VFP FPSCR, and there are instructions to act on the results therein.

The datatype always corresponds to the source -- you cannot promote past 64-bit or demote

to less than 8-bit. Some instructions can promote and demote as part of its operation:

VADDL.S32 Q0, D0, D1 @ 2x signed 32-bit promotion to 64-bit and add 

VADDW.S32 Q0, Q0, D2 @ Promotes D2 to S64 and does 2x64-bit adds with Q0 



Addressing Modes
Neon has limited ability when used as an addressing mode source. For example, this loads D0

with the contents of the address held in R0: This addressing mode was used in combination

with the Q register to load a vector in Program 26a.

This next example does the same but adds the size of transfer to R0 after the transfer has

taken place, which is handy when you are storing data in sequential blocks of memory.

VLD1.64 {D0}, [R0]! 

Finally, this next instruction adds the contents of R1 to R0 after D0 is loaded with the contents

of the address held in R0:

VLD1.64 {D0}, [R0], R1 



VLD and VST in their Stride
The Neon load and store instructions are number-crunchingly good. The syntax of the

instruction is made up of five parts.

The instruction itself, either VLD for load or VST for store.

A number specifying the gap between corresponding elements in each structure

(interleave pattern).

An element type specifying the number of bits in the accessed elements.

A set of 64-bit Neon registers to be read or written. (Up to four registers can be listed,

depending on the interleave pattern.)

An ARM register containing the location to be accessed in memory. The address can be

updated after the access, dependent on the addressing mode used.

Program 26a used the VLD instruction to load Q1 and Q2 with the contents of some numbers

stored in memory and pointed to by R0 thus:

VLD1.32 {Q1}, [R0] 

This is the load instruction at its very simplest. The interleave pattern here is 1. In this case the

data is accessed as is and it's a straight transfer -- one item after the other sequentially and in

order. It is common to use 1, 2, 3 or 4 for the interleave pattern for one to four equally sized

elements, where the elements are the usual Neon supported widths of 8, 16 or 32-bits:

VLD1 loads one to four registers of data from memory, with no de-interleaving. Use this

when processing an array of non-interleaved data.

VLD2 loads two or four registers of data, de-interleaving even and odd elements into

those registers. Use this to separate stereo audio data into left and right channels.

VLD3 loads three registers and de-interleaves. Useful for splitting RGB pixels into their

own channels.

VLD4 loads four registers and de-interleaves. Use it to process ARGB image data, for

instance.

These instructions have great uses in the audio-visual processing environment. You can use '2'

for separating stereo audio data into left and right channels; '3' for splitting RGB pixels into

separate streams, and '4' to process ARGB image data. These are just some applications. In all

these examples the VST instruction can also do the same before it stores data to memory.

VLD 2.8 {D14, D15}, [R0] 

Breaking down as:

2: This is the interleave pattern (stride). It may be 1, 2, 3 or 4.

8: This is the data type: 8, 16 or 32.



D14, D15: This is the list of Neon registers to be used. Up to four registers can be

included.

[R0]: The ARM register containing the address of the data.

 

Figure 24f below illustrates part of the operation of:

VLD2.16 {D0, D1},[R0] 

Would load the D0 and D1 (Q0) registers with four 16-bit elements in the first register (D0),

and four 16-bit elements in the second (D1), with adjacent pairs (the Xs and Ys) separated to

each register.

 Figure 26f. Selectively loading data into registers with VLD2.16 {D0, D1},[R0].

 

Changing the size to 32-bits loads the same amount of data, but now only two elements make

up each vector, again separated into X and Y elements. The operation of:

VLD2.32 {D0, D1},[R0] 

is illustrated in Figure 26g:

 



 Figure 26g. Selectively loading data from memory into registers with VLD2.32 {D0, D1},

[R0]

 

Element size potentially affects the data entity and, as a rule, if you specify the correct element

size to the load and store instructions, bytes will be read from memory in the appropriate order.

If not, then you may need to undertake some manual adjustment at some point. Getting your

data sitting right in memory in the first instance is always a good bit of housekeeping. For

example, when loading 32-bit elements, align the address of the first element to at least 32-bits.

Program 26a can be used as the basis of some investigation. This takes some simple visual

data and performs a VLD on it. If you compile this with the -g option, you can jump into GDB

and inspect the registers to see what has happened to your data. You can add to the program

simply using different values using additional registers so you can get a good visual idea of

what is happening.

One of the most common uses for this sort of Neon instruction is to read and sort RGB

video data. If you imagine that the information was stored as a sequence of R,G,B, R,G,B,

R,G,B as 24-bit data then you could sort the three channels into R, G and B using:

VLD3.8 {D0, D1, D2}, [R0] 

Here the red information will be in D0, the green in D1 and the blue in D2.



Some instructions can reference individual scalar elements, which are referenced using the

array notation Vn[x]. (Array ordering is always from the least significant bit.)

Consider this command:

VLD4.8 {D0[2], D1[2], D2[D2], D3[2]}, [R0] 

This would take the element in the third lane from the four vectors and store them at the

address in R0, leaving the other lanes intact.



Load of Others

In addition to structural loads and stores Neon also provides two other formats for the

instruction: VLDR and VSTR to load or store a single register as a 64-bit value.

VLDM and VSTM to load multiple registers as 64-bit values.

The latter can be useful for pushing and pulling registers from the stack.



Neon Intrinsic

Because of the complexity of Neon applications (decoding video or sound for your Raspberry

Pi for example), the C language, or derivatives of it (C++ for instance) is invariably used to

write code for compiling into ARM machine code. However, the most direct way to utilise

Neon is writing assembler code, not least because, as we have seen in earlier chapters, the code

produced by the compiler out of the C file is not always 'tight' and can be wasteful of resources.

Equally, C doesn't always make the best register decisions when compiling.

The term 'Neon Intrinsic' is often used to refer to C compilation of Neon. An intrinsic

function is a function available for use in a programming language whose implementation is

handled specifically by the compiler. Typically, it substitutes a sequence of automatically

generated instructions for the original function call, like an inline function. Unlike an inline

function, though, the compiler should have an intimate knowledge of the intrinsic function and

can, therefore, better integrate it and optimise it for the situation.

Intrinsic functions are often used to explicitly implement vectorization and parallelisation

in languages which do not address such constructs as part of their syntax. The compiler parses

the intrinsic functions and converts them into vector math or multiprocessing code appropriate

for the target platform.

Neon Intrinsics are a set of definitions that induces use of Neon when compiling the C

program. Some programmers love them; some hate them. For performance-critical programs

then I am not a fan. It's too easy for the compiler to inject extra register unload/load steps

between your intrinsic operations. The effort to get it to stop doing that is more complicated

than just writing the stuff in raw Neon assembler. At this level, it's good to know what's

happening and control it yourself. Especially if speed is critical.



Neon Arrays
Because Neon can manipulate large amounts of data with one instruction, it is often used to

code graphics software. For example, if you rotate a picture on your smartphone or tablet the

process is probably done by manipulating blocks of data using Neon instructions.

The following code will rotate the contents of a block of four Q registers through 90

degrees. Figure 26h shows the matrix before and after rotation. The numbers on the left refer to

the Q registers, and the grid numbers are placeholders for each lane so you can see the before

and after state. The data is loaded into the Q registers and as array ordering is always from the

least significant bit, the D registers aliased against them will have the appropriate values in

them also.

 

 Figure 26h. Rotating data through 90 degrees.

 

Program 26b lists the assembly code that will produce this. The data used is simple numbers

just so that you can visually inspect the start and end results via a GDB register dump. Let's

work through each block and look at the a few of the instructions operation as we encounter

them.

 

 Program 26b. Rotate a 2D matrix by 90 degrees (clockwise).



/* Rotate 4x4 Matrix Through 90 Degrees */ 

 

.global _start 

_start:

 

@ Get data pointers 

LDR R0,=matrix0 

LDR R1,=matrix1 

LDR R2,=matrix2 

LDR R3,=matrix3 

 

@ Load Q0-Q3 with the data 

VLD1.32 {Q0}, [R0] 

VLD1.32 {Q1}, [R1] 

VLD1.32 {Q2}, [R2] 

VLD1.32 {Q3}, [R3] 

 

@ Transpose Matrix and then interleave inner pairs 

bp1: 

VTRN.32 Q0, Q1 

VTRN.32 Q2, Q3 

VSWP D1, D4 

VSWP D3, D6 

 

@ Mirror flip matrix 

VREV64.32 Q0, Q0 

VREV64.32 Q1, Q1 

VREV64.32 Q2, Q2 

VREV64.32 Q3, Q3 

 

@ Swap high and low halves 

VSWP D0, D1 

VSWP D2, D3 

VSWP D4, D5 

VSWP D6, D7 

 

@Store result 

bp2: 

VST1.32 {Q0}, [R0] 

VST1.32 {Q1}, [R1] 

VST1.32 {Q2}, [R2] 

VST1.32 {Q3}, [R3] 

 

MOV R7, #1 



SWI 0 

 

.data 

matrix0: .word 0,1,2,3 

matrix1: .word 4,5,6,7 

matrix2: .word 8,9,10,11 

matrix3: .word 12,13,14,15 

  End Program 26b.

 

There are some instructions we have used for the first time here, and if you are interested in

digging deeper, you might want to work through these diagrammatically substituting the

numbers for colour in a 4 x 4 grid.

The data for our array is stored at the end of the listing as mart of the '.data' block. The

numbers 0 through to 15 are used as per the matrix. After starting R0, R1, R2 and R3 are

pointed their respective lines and these are loaded as 32-bit values into Q0, Q1, Q2 and Q3,

respectively. If you look at the registers prior to the two transpose commands executing you

should see these quite clearly. Especially if you look at the u32 register output. The registers at

this point will show:

 

The first operation is to deal with transposing the matrix itself. VTRN (Vector Transpose) treats

the elements of its operand vectors as elements of 2 x 2 matrices and transposes them.

@ Transpose Matrix

VTRN.32 Q0, Q1 

VTRN.32 Q2, Q3 

The first line transposes Q0 and Q1, therefore '1' and '4' are transposed, as are '3' and '6'. The

second line deals with Q2 and Q3 where '9' and 'B' and 'E' are transposed, respectively.



The first line transposes Q0 and Q1, therefore '1' and '4' are transposed, as are '3' and '6'. The

second line deals with Q2 and Q3 where '9' and 'B' and 'E' are transposed, respectively.

VSWP (Vector Swap) is then utilised to exchange the contents of two vectors. The vectors

can be either double-word or quadword. There is no distinction between data types. In fact, it is

used to interleave:

VSWP D1, D4 

VSWP D3, D6 

D1 is the 'high' two elements of Q0 and D4 is the 'low' two elements of Q2. You can see on the

left-hand matrix below that '8 and C' have swapped places with '2 and 6'. On the right-hand

matrix '9 and D' have been swapped with '3 and 7' as the elements of D3 and D6 are swapped.

 

 

VREV64 instruction is used to reverse the order of the 32-bit elements within each double-

word of the vector. This is done on each of the four Q registers using:

@ Mirror flip matrix 

VREV64.32 Q0, Q0 

VREV64.32 Q1, Q1 

VREV64.32 Q2, Q2 

VREV64.32 Q3, Q3 

The matrix now looks thus:



 

Now all that is required is to realign some of the elements by swapping the low and high halves

of each full register thus:

@ Swap high and low halves 

VSWP D0, D1 

VSWP D2, D3 

VSWP D4, D5 

VSWP D6, D7 

Which completes the rotation, prior to being stored back in memory.

 

 

If you compile Program 26b you can use the two labels 'bp1' and 'bp2' as breakpoint specifiers.

Then display the Q0, Q1, Q2 and Q3 registers at both points. I have only shown the U32 data in

the output below.:

Breakpoint 1, bp1 () at Prog26b.s:21 

21 VTRN.32 Q0, Q1 

(gdb) info r q0 q1 q2 q3 



q0 u32 = {0x0, 0x1, 0x2, 0x3} 

q1 u32 = {0x4, 0x5, 0x6, 0x7}  

q2 u32 = {0x8, 0x9, 0xa, 0xb}  

q3 u32 = {0xc, 0xd, 0xe, 0xf} 

 

Breakpoint 2, bp2 () at Prog26b.s:42 

42 VST1.32 {Q0}, [R0] 

(gdb) info r q0 q1 q2 q3 

q0 u32 = {0xc, 0x8, 0x4, 0x0}  

q1 u32 = {0xd, 0x9, 0x5, 0x1} 

q2 u32 = {0xe, 0xa, 0x6, 0x2}  

q3 u32 = {0xf, 0xb, 0x7, 0x3}  



Order Correctly
It is important that your order you data correctly, and consistently when you do any matrix

calculations. This is to ensure that you are calculating on the same elements as required in the

matrix being processed. At some point you will need to move information from a source to

place where the information can be manipulated. Think of a vector as a one-dimensional array.

Memory occupies a linear space, so it is also a one-dimensional area. A matrix is a two-

dimensional object. A 4x4 matrix provides 16 'cells' arranged in an array consisting of four

rows and four columns. How is this moved into a vector that is both sensible and convenient to

be processed?

In computing, row-major order and column-major order are the most popular methods for

storing multidimensional arrays in linear storage These are illustrated in Figure 26i.

 

 Figure 26i. Illustrating column-major order and row-major order storage options.

 

In column-major order the data is stored placing the columns one after the other. So, in Figure

24i Column 0 data 1, 4, 7 and placed in the first three spaces in the vector. These are followed

immediately by Column 1 (2, 5 and 8) and finished with Column 3 (3, 6 and 9).

In row-major order each row is done sequentially. Therefore, the first row (1, 2, 3) and then

the second (4, 5, 6) and finally the third (7, 8, 9). The process is the same for whatever sized

matrix in use. If you know the size of the array and the method of storage, then it can safely be

deconstructed and reconstructed with no errors. It is also another method which allows you to

sort and move data quickly and efficiently. Look at Fig 26i again. If you took the column-major

data and then deconstructed it using row-major, you have a method or rotating the matrix.

Generally, you will decide the data storage you want to use. It may also be stipulated by the

routine you want to use or the language environment you ultimately working in (C or Python

for example). But with knowledge of Neon it is possible to manipulate the data between the two

regardless, although it is better to stick to one for simplicity.



Matrix Math
Matrix math is a relatively straight forward operation utilising the with the VFP and/or Neon

Co-processor. The next two examples show how to add and multiply them together. There are

many other operations that can be performed and, applying some principles here along with a

good understanding of matrix manipulation, should allow you to develop what you need.

To add two matrices, you sum the corresponding elements in each column to create a third

matrix containing the result. As shown in Figure 26j.

 Figure 26j. Adding two matrices together.

 

This example forms the basis of Program 26c.

 

 Program 26c. Adding two 4x4 Matrices together.

/* Add two 4x4 matrices together */ 

/* column-major Order */ 

 

@ Pointers: 

@ R10 = pointer to where 4x4 matrix result will be stored 

@ R11 = pointer to 4x4 matrix 1, single-precision floats 

@ R12 = pointer to 4x4 matrix 2, single-precision floats 

@ d16-d19 and d20-d23 (Q8, Q9, Q10, Q11) for Matrix 1 

@ d8-d11 and d12-d15 (Q4, Q5, Q6, Q7) for Matrix 2 



@ d24-d27 and d28-d31 (Q12-Q15) contains result on exit 

 

.global main 

.func main 

main: 

 

LDR R10, =result 

LDR R11, =matrix1 

LDR R12, =matrix2 

 

VLD1.32 {D16-D19},[r11]! @ Q8-Q9 load M1, 2 lines 

VLD1.32 {D20-D23}, [r11]! @ Q10-Q11 load M1, 2 lines 

VLD1.32 {D8-D11},[r12]! @ Q4-Q5 load M2, 2 lines 

VLD1.32 {D12-D15}, [r12]! @ Q6-Q7 load M2, 2 lines 

 

VADD.F32 Q12, Q8, Q4 @ Q12=Q8+Q4 

VADD.F32 Q13, Q9, Q5 @ Q13=Q9+Q5 

VADD.F32 Q14, Q10, Q6 @ Q14=Q10+Q6 

VADD.F32 Q15, Q11, Q7 @ Q15=Q11+Q7 

 

VST1.32 {D24-D27}, [r10]! @ D24-D27 store 1st eight 

VST1.32 {D28-D31}, [r10]! @ D28-D31 store 2nd eight 

 

@ Following code will print out results 

matrixprint: 

.equ Num, 4 @ number of bytes 

.equ Cells, 16 @ umber of matrix cells 

LDR R10, =result @ R10 hold address of result matrix 

MOV R7, #Cells @ R7 holds matrix cell counter 

loop: 

LDR R0, [R10] @ Get data item into R0 

VMOV S2, R0 @ Get into FPU register 

VCVT.F64.F32 D0, S2 @ Convert to single-precision 

VMOV r2, r3, D0 @ Into R2 and R3 for fprint 

LDR R0, =string @ Point R0 to string 

BL printf @ call fprint function 

ADD R10, #Num @ increment address of next result 

SUBS R7, #1 @ decrement cell counter 

BNE loop @ do next cell if not complete 

 

MOV R7, #1 @ otherwise exit 

SWI 0 

 

string: .asciz "Result is: %f\n" 

.data 



matrix1: .single 106.6,2.4,4.5,6.2 

.single 105,4,6,8 

.single 104,6,8,10 

.single 103,8,10,12 

 

matrix2: .single 2,3,4,5 

.single 3,4,5,6 

.single 4,5,6,7 

.single 5,6,7,8 

 

result: .word 0,0,0,0 

.word 0,0,0,0 

.word 0,0,0,0 

.word 0,0,0,0 

End Program 26c.

 

Assemble, link and run the program with:

gcc -mfpu=neon-vfpv4 -g -o prog26c prog26c.s 

./prog26c 

The output you see should be:

Result is: 108.599998 

Result is: 5.400000 

Result is: 8.500000 

Result is: 11.200000 

Result is: 108.000000 

Result is: 8.000000 

Result is: 11.000000 

Result is: 14.000000 

Result is: 108.000000 

Result is: 11.000000 

Result is: 14.000000 

Result is: 17.000000 

Result is: 108.000000  

Result is: 14.000000 

Result is: 17.000000 

Result is: 20.000000 

Again, if you interrogate the program using GDB, you will see the results. Notice in the results

printed via the program that the rounding error we discussed previously is also present.



Program 26c contains a routine called 'matrixprint' that can be used to print the 4x4 matrix.

This is also used in Program 26d and can be adapted to provide an easy visual output of results

or values during points of a programs execution. It's always nice, simply displaying memory

and register contents have we have done, show that it's just as easy to check on progress as we

have done in the samples beforehand.



Multi Matrix
There are two types of multiplication for matrices: scalar multiplication and matrix

multiplication. Scalar multiplication is easy. You just take a regular number (called a "scalar")

and multiply it on every entry in the matrix, thus:

 Figure 26k. Multiply a matrix by a scalar.

 

On matrix multiplication (non-scalar) you multiply each of the elements of a row in the left-

hand matrix by the corresponding elements of a column in the right-hand matrix, and then sum

the resulting 'n' products to obtain one element in the result matrix. Program 26d given below

keeps things simple by using two matrices of equal size and assumes that the matrices are

stored in memory in column-major order. The process for multiplication is the same, as

illustrated below (Figure 26j), where the math for first column result is shown. The same will

be done for the next three columns to calculate the result:

 Figure 26l. Calculating the first column of a 4 x 4 matrix multiplication.

 



In the program, each column from the matrix is loaded into a Neon register; we can use the

vector-by-scalar multiplication (VMLA) instruction to calculate the result for each column. We

must also add the results together for each element of the column, which we do use the

accumulating version of the same instruction.

Remember that the D registers are aliased with the Q registers so that we can access the

contents of these register, either way, remembering that Q0 is the combination of D0 and D1

and so forth.

The program beings by loading the first eight elements matrix (Matrix 1) into D16-D19,

and the second eight elements in D20-D23 which correspond to Q12 and Q13. It then loads the

contents of Matrix 2 into D0-D7 (Q0-Q1).

The crux of the program then operates through these instructions which can calculate a

single column using just four Neon instructions:

VMUL.f32 Q12, Q8, D8[0] 

VMLA.f32 Q12, Q9, D8[1] 

VMLA.f32 Q12, Q10, D9[0] 

VMLA.f32 Q12, Q11, D9[1] 

Here, the first instruction (VMUL.F32) takes x0, x1, x2 and x3 (in register Q8) and each is

multiplied by y0 (element 0 in D0), and the result is stored in Q12. The three subsequent

VMLA.F32 instructions operate on the other three columns of the first matrix, multiplying by

corresponding elements of the first column of the second matrix. Results are accumulated into

Q12 to give the first column of values for the result matrix.

This set of instructions must be executed three more times to calculate the second, third and

fourth columns. Here we use values Y4 to Y15 from the second matrix in registers Q1 to Q3.

This makes this calculation part ideal for implementation as a macro, however although this

is ideal for ease of coding it can create a timing issue due to an effect known as 'Scheduling'.

Often when adjacent multiply instructions that write to the same register are placed next to one

another, the Neon processor must wait for each operation to complete before it can move the

next one into the pipeline.

By separating the instructions out so that the accumulate operations do not overlap Neon

register access they can continue to be feed into the Neon pipeline to ensure speed is

maintained to achieve real parallel operations.

 

 Program 26d. Single-Precision Matrix Multiplication

/* Neon 4 x 4 Single-Precision Matrix Multiplication */ 

/* Column-major order */ 

 

@ Pointers: 

@ R10 = pointer to where 4x4 matrix result will be stored 

@ R11 = pointer to 4x4 M1, single-precision floats 

@ R12 = pointer to 4x4 M1, single-precision floats 



@ d16-d19 and d20-d23 (Q8, Q9, Q10, Q11) for M1 

@ d8-d11 and d12-d15 (Q4, Q5, Q6, Q7) for M2 

@ d24-d27 and d28-d31 (Q12-Q15) contains result 

 

.global main 

.func main 

main: 

 

LDR R10, =result 

LDR R11, =matrix1 

LDR R12, =matrix2 

 

VLD1.32 {D16-D19},[R11]! @ Q8-Q9 load M1, 2 lines 

VLD1.32 {D20-D23}, [R11]! @ Q10-Q11 load M1, 2 lines 

VLD1.32 {D8-D11},[R12]! @ Q4-Q5 load M2, 2 lines 

VLD1.32 {D12-D15}, [R12]! @ Q6-Q7 load M2, 2 lines 

 

VMUL.f32 Q12, Q8, D8[0] @ RC0 = (M1 C0) * (M2 C0 E0) 

VMUL.f32 Q13, Q8, D10[0] @ RC1 = (M1 C0) * (M2 C1 E0) 

VMUL.f32 Q14, Q8, D12[0] @ RC2 = (M1 C0) * (M2 C2 E0) 

VMUL.f32 Q15, Q8, D14[0] @ RC3 = (M1 C0) * (M2 C3 E0) 

VMLA.f32 Q12, Q9, D8[1] @ RC0 += (M1 C1) * (M2 C0 E1) 

VMLA.f32 Q13, Q9, D10[1] @ RC1 += (M1 C1) * (M2 C1 E1) 

VMLA.f32 Q14, Q9, D12[1] @ RC2 += (M1 C1) * (M2 C2 E1) 

VMLA.f32 Q15, Q9, D14[1] @ RC3 += (M1 C1) * (M2 C3 E1) 

 

VMLA.f32 Q12, Q10, D9[0] @ RC0 += (M1 C2) * (M2 C0 E2) 

VMLA.f32 Q13, Q10, D11[0] @ RC1 += (M1 C2) * (M2 C1 E2) 

VMLA.f32 Q14, Q10, D13[0] @ RC2 += (M1 C2) * (M2 C2 E2) 

VMLA.f32 Q15, Q10, D15[0] @ RC3 += (M1 C2) * (M2 C3 E2) 

 

VMLA.f32 Q12, Q11, D9[1] @ RC0 += (M1 C3) * (M2 C0 E3) 

VMLA.f32 Q13, Q11, D11[1] @ RC1 += (M1 C3) * (M2 C1 E3) 

VMLA.f32 Q14, Q11, D13[1] @ RC2 += (M1 C3) * (M2 C2 E3) 

VMLA.f32 Q15, Q11, D15[1] @ RC3 += (M1 C3) * (M2 C3 E3) 

 

VST1.32 {D24-D27}, [R10]! @ d24-d27 store 1st eight 

VST1.32 {D28-D31}, [R10]! @ d28-d31 store 2nd eight 

 

@ Following code will print out results if required 

 

matrixprint: 

.equ Num, 4 @ Number of bytes 

.equ Cells, 16 @ Number of matrix cells 

 



LDR R10, =result @ R10 address of result matrix 

MOV R7, #Cells @ R7 matrix cell counter 

 

loop: 

LDR R0, [R10] @ Get data item into R0 

VMOV S2, R0 @ Get into FPU register 

VCVT.F64.F32 D0, S2 @ Convert to single-precision 

VMOV R2, R3, D0 @ Into R2 and R3 for fprint 

LDR R0, =string @ Point R0 to string 

BL printf @ Call fprint function 

ADD R10, #Num @ Inc address of next result 

SUBS R7, #1 @ Decrement cell counter 

BNE loop @ Next cell if not complete 

@ Otherwise finish 

MOV R7, #1 @ exit 

SWI 0 

 

 

string: .asciz "Result is: %f\n" 

 

.data 

Matrix1: .single 106.6,2.4,4.5,6.2 

.single 105,4,6,8 

.single 104,6,8,10 

.single 103,8,10,12 

 

Matrix2: .single 2,3,4,5 

.single 3,4,5,6 

.single 4,5,6,7 

.single 5,6,7,8 

 

result: .word 0,0,0,0 

.word 0,0,0,0 

.word 0,0,0,0 

.word 0,0,0,0 

  End Program 26d.

 

As with previous program the 'matrixprint' routine is used to display the matrix results. Thus:

gcc -mfpu=neon-vfpv4 -g -o prog26d prog26d.s 

./prog26d 

 



Result is: 1459.199951 

Result is: 80.800003 

Result is: 109.000000 

Result is: 136.399994 

Result is: 1877.800049 

Result is: 101.199997 

Result is: 137.500000 

Result is: 172.600006 

Result is: 2296.399902 

Result is: 121.599998 

Result is: 166.000000 

Result is: 208.800003 

Result is: 2715.000000 

Result is: 142.000000 

Result is: 194.500000 

Result is: 245.000000 

Figure 26m below shows Matrix1 and Matrix2 as used in Program26d. The third Result matrix

(M1*M2) is also shown. Referring to Figure 26l we can see that the top left cell is calculated

as: =(X3*Y0)+(X7*Y1)+(X11*Y2)+(X15*Y3) =(106.6*2)+(105*3)+(104*4)+(103*5)

=1459.2

 Figure 26m. Matrix Multiplication



Macro Matrix Example
If you remove the 'matrixprint' routine from the code listed in Program26d then there is a lot of

repetition within the body of the matrix calculations. This makes it a prime candidate for the

use of a macro. The example above was important to illustrate how to use Neon to undertake

the multiplication process. Now that is done, let's look at the macro version of the same

assembly code, which is listed below as Program26e, in this instance minus most of the

comments for clarity. The macro itself uses just six lines of code including the enclosing

directives.

 

 Program 26e. Single-Precision Matrix Multi - Using Macro Version

 

/* Floating-Point 4x4 Matrix Multiplication */ 

/* Using a macro to reduce coding */ 

.global main 

.func main 

 

main: 

LDR R10, =result 

LDR R11, =matrix1 

LDR R12, =matrix2 

 

.macro matrixf32 resultQ, col0_d, col1_d 

VMUL.f32 \resultQ, Q8, \col0_d[0] @ ele0 by Matrix C0 

VMLA.f32 \resultQ, Q9, \col0_d[1] @ ele1 by Matrix C1 

VMLA.f32 \resultQ, Q10, \col1_d[0] @ ele2 by Matrix C2 

VMLA.f32 \resultQ, Q11, \col1_d[1] @ ele3 by Matrix C3 

.endm 

 

VLD1.32 {D16-D19}, [R11]! @ first eight elements of M1 

VLD1.32 {D20-D23}, [R11]! @ second eight elements of M1 

VLD1.32 {D0-D3}, [R12]! @ first eight elements of M2 

VLD1.32 {D4-D7}, [R12]! @ second eight elements of M2 

 

@ Call macro 

matrixf32 Q12, D0, D1 @ matrix 1 * matrix 2 col 0 

matrixf32 Q13, D2, D3 @ matrix 1 * matrix 2 col 1 

matrixf32 Q14, D4, D5 @ matrix 1 * matrix 2 col 2 



matrixf32 Q15, D6, D7 @ matrix 1 * matrix 2 col 3 

 

VST1.32 {D24-D27}, [R10]! @ save first 8 elements of result. 

VST1.32 {D28-D31}, [R10]! @ save second 8 elements of result. 

 

@ Insert printmatrix code below if you wish to print results 

@ Or download full program from www.brucesmith.info 

 

MOV R7, # 

SWI 0 

 

string: .asciz "Result is: %f\n" 

 

.data 

matrix1: .single 106.6,2.4,4.5,6.2 

.single 105,4,6,8 

.single 104,6,8,10 

.single 103,8,10,12 

 

matrix2: .single 2,3,4,5 

.single 3,4,5,6 

.single 4,5,6,7 

.single 5,6,7,8 

 

result: .word 0,0,0,0 

.word 0,0,0,0 

.word 0,0,0,0 

.word 0,0,0,0 

  End Program 26e.

 



 
 
  
  



27. Thumb Code

Thumb is the name given to a subset of the ARM instruction set. More significantly it is a 16-

bit (two-byte) implementation, so instructions can in theory be coded in half the space of an

equivalent ARM program but in reality, achieving the same result in a third less space. This

higher code density makes Thumb code popular where memory constraints are tight. You will

probably not see a lot of Thumb programs around on the forums. This is mainly because most

Thumb code seems to be written and compiled from C. But that isn't to say we can't hand

assemble it.

In terms of hardware there is no real difference between the way in which ARM and

Thumb instruction sets function --- they are one and the same. Although Thumb is a 16-bit

implementation register sizes do not change. R0 is still a word wide, as are the other registers.

What is different is how they are fetched and interpreted before execution. Thumb instructions

are expanded into their 32-bit equivalents internally by the hardware, so it doesn't slow down

their execution in any way--- ARM speed is maintained. This makes it perfectly acceptable to

mix normal sections of ARM and Thumb code and jump from one to the other; in fact,

jumping from ARM to Thumb is the preferred way to enter Thumb code.

If you flick back to Chapter 5 and look at Figure 5c the diagram shows the Status Register

configuration. Bit 5 is the 'T' bit, and this is normally clear to indicated ARM State. When the

T bit is set (T=1) then the chip is in Thumb State. We'll look how to move between states and

write a simple program that can be the shell for any Thumb code you may wish to write. But

first....



Differences
The Thumb instruction set will be very familiar to you, but there are differences that need to be

borne in mind. If you understand these, you should have no difficulties implementing and

writing a Thumb program from your existing ARM knowledge (which should be quite

extensive at this point). And of course, GCC supports Thumb as does GDB, so the tools to do

so are readily available.

The major architectural difference is that your code does not have direct access to all the

ARM registers; only R0 to R7 inclusive are available. Registers R8 to R12 inclusive can only be

used in conjunction with MOV, ADD, SUB and CMP. There is limited access to R13 (SP), R14

(LR) and R15 (PC) and only indirect access to the CPSR. There is no access to SPSR and the

VFP instructions cannot be accessed from Thumb State.



 Figure 27a. Thumb registers accessibility.

 

The registers and code that are not available can be accessed from the program, but only after

ARM State is switched back in. In other words, you must first come out of Thumb State to

execute what you want to do and then switch back into Thumb State to continue. Figure 27a

summarises these register restrictions. However, the advantage of all this is that when you move

between ARM and Thumb State the contents of registers are preserved!

The other significant difference is that mnemonic representations of Thumb instructions are

shorter, often with one less operand. Compare these ARM and Thumb versions of ADD:

ADDS R2, R2, #16 @ ARM State immediate addition 

ADD R0, #3 @ Thumb equivalent, dest implied 



The conditional code modifiers for instructions are not available, with only branch relative

instructions conditionally executable. Therefore, you cannot execute instructions like:

ADD CC R0, #3 

in Thumb State.

The shift and rotate operator's ASR, LSL, LSR and ROR are implemented as standalone

instructions and are no longer available as a modifying operand. The following code segment

illustrates the format for use:

LSL R2, R3 @ Shift R2 left number positions in R3 

In the example above, if R2=4 and R3=1 then R2 would become 8.

Thumb branch instructions are limited in scope. The B variant, as used in Program 27a, is

the only one that is conditional, but the range here is limited to a label that must be within a

signed single byte value, effectively -256 to 254. A non-conditional branch instruction can be

extended to a range within an 11-bit signed immediate value, -2048 to +2046 bytes.

The BL instruction is not conditional but because it can be used in an indirect manner the

address range can be up to 4Mb in either direction. An example of this is provided at the end of

the next section.

There are also significant changes to multiple load-store and stack access instructions, and

these are covered below separately.



Assembling Thumb
To switch between ARM and Thumb states, you should use the GCC directives:

.arm  

.thumb  

respectively.

These directives replace the oft seen older versions '.code32' and '.code16', which will work

on the current version of GCC on the Raspberry Pi, but these should be considered as old hat

now. If necessary, these directives will also automatically insert up to three bytes of padding to

align to the next word boundary for ARM, or up to one byte of padding to align to the next

half-word boundary for Thumb. Thus, use of '.align' is unnecessary.

Both '.arm' and .'thumb' must be used to direct the assembler what to compile. They do not

assemble any instructions themselves; they just direct the assembler as to what follows. Rather

than having to play with bit-5 directly in the CPSR the state change will be handled directly for

you if you follow the correct protocol for doing so which involves using the BX instruction.

 

 Program 27a. How to invoke Thumb State and run Thumb code.

@ Use of Thumb code on Raspberry Pi  

@ This divide routine is R0/R1 

@ with R2=MOD and R3=DIV 

 

.global main 

.func main 

.arm 

main: 

ADR R0, thumbcode+1 

MOV LR, PC 

BX R0 

 

exit:  

MOV R0, #0 

MOV R7, #1 

SWI 0 

 

@ All Thumb code to be placed here 

.thumb 

 

thumbcode: 



MOV R3, #0  

 

loop: 

ADD R3, #1 

SUB R0, R1 

BGE loop 

SUB R3, #1 

ADD R2, R0, R1 

BX LR @ Return to ARM 

  End Program 27a.

 

Essentially, if you load the link address of the start of the Thumb code into R0 and set the least

significant bit of R0 (that is b0=1) then Thumb State will be invoked automatically when the

Thumb code is reached with BX. This implies that you must always start from ARM State, but

that must be the case anyway as that is the state the chip fires up in. Program 27a above shows

how this works in practice. (Note the use of '@' for comments. GCC Thumb code does not like

the inclusion of '/* */' style comments and these can sometimes cause an error.)

The thumb instructions are located from the 'thumbcode:' label. This address is loaded into

R0 at the start of main: and 1 is added to the address to set the least significant bit of R0. The

BX (Branch with eXchnage) is executed and the address in R0 is swapped into the PC. Because

ARM and Thumb instructions are word or half-word-aligned respectively, bits 0 and 1 of the

address are ignored because these bits refer to the half-word and byte part of the address.

The instructions at thumbcode perform a division routine (although we have not loaded any

data into them to work with!) before the BX LR returns code back to the calling ARM code.

ARM State is switched back in due to the requirement to execute an ARM instruction. Note

that you must switch back to ARM State to call a SWI call or a function such as printf.

You must use a BX LR instruction at the end of the ARM subroutine to return to the caller.

You cannot use the MOV PC, LR instruction to return in this situation as it will not update the

T bit for you thereby delivering the State change.

It is worth having a look at how GDB sees the assembled program as it confirms some of

the differences outlined earlier. Figure 27b shows output from GDB using:

x /13i main 

As usual the addresses listed in the first column may be different on your Raspberry Pi. (You

can use the gcc route to compile in the normal fashion, nothing special needed.)

(gdb) x /13i main 

0x103d0 <main>: add r0, pc, #17 

0x103d4 <main+4>: mov lr, pc 

0x103d8 <main+8>: bx r0  

0x103dc <exit>: mov r0, #0 



0x103e0 <exit+4>: mov r7, #1 

0x103e4 <exit+8>: svc 0x00000000 

0x103e8 <thumbcode>: movs r3, #0 

0x103ea <loop>: adds r3, #1 

0x103ec <loop+2>: subs r0, r0, r1 

0x103ee <loop+4>: bge.n 0x103ea <loop> 

0x103f0 <loop+6>: subs r3, #1 

0x103f2 <loop+8>: adds r2, r0, r1 

0x103f4 <loop+10>: bx lr 

 Figure 27b. Disassembling Program 27a.

 

Notice how the 'S' suffix in Thumb is applied to the data instructions in the 'thumbcode:'

portion of the listing. When dealing with registers R0-R7 all data processing instructions

update the Status Flags and so the S suffix is enforced automatically by the assembler.

Also note that the BGE instruction has a '.N' appended to it. In Thumb the '.N' specifier

forces the assembler to generate a 16-bit encoding. In this case, if the instruction cannot be

encoded in 16 bits, the assembler generates an error.

The process of mingling segments of ARM and Thumb code together is called interworking

and you are free to write code that moves between the two instructions sets if you so desire.

The same ADR-BX process can be used throughout. If for example an ARM routine was

located at the label 'armroutine' then it could be called with:

ADR R0, armroutine 

BX R0 @ Branch exchange to armroutine 

Before making any calls that utilise the Link Register you should preserve its contents on the

stack so that you can return to the original point of entry, and then recall the program originally

entered at main, so that the program can complete its flow correctly.

Although BX is used in the examples above, the BLX instruction can also be used to jump

into Thumb code. This instruction automatically saves the PC into the LR, so the MOV LR, PC

instruction included in the listing is not needed. The +1 is still required for the entry address to

switch state. The BX instruction should still be used to return from any called routine.

main: ADR R0, thumbcode+1 

BLX R0 

Program 27b shows how these come together in practice using the printf function to print the

result of a division performed in an extended program. Note that the additional ARM code

follows the Thumb code. This is necessary otherwise the compiler will create an error when

trying to create the relative branch address to the ARM code. Note also that the '.arm' and

'.thumb' directives should be before the label marking the section of appropriate code.

 



 Program 27b. Using external functions by interworking code.

@ Interworking ARM and Thumb code to call printf 

.global main 

.func main 

.arm 

main: 

ADR R5, thumbstart+1 

BX R5 

 

.thumb 

thumbstart: 

MOV R0, #9 @ Do 9/3 

MOV R1, #3 

MOV R3, #0 

loop: 

ADD R3, #1 

SUB R0, R1 

BGE loop 

SUB R3, #1 @ R2=MOD 

ADD R2, R0, R1 @ R3=DIV 

ADR R5, divprint 

BX R5 

 

thumbreturn: 

@ Continue adding code as required 

@ Call ARM functions as and when needed  

ADR R5, exit 

BX R5 @ Return to exit 

 

.arm 

divprint:  

LDR R0, =string 

MOV R1, R3 @ DIV in R3,MOD in R2 already 

BL printf 

ADR R5, thumbreturn+1 

BX R5 

 

exit: 

MOV R7, #1 

SWI 0 

 

.data 

string: .asciz "Result of 9/3 is: %d MOD %d\n" 



  End Program 27b.

 



Accessing High Registers
Only a handful of instructions can access the full set of ARM registers. As already stated most
Thumb instructions are limited to R0-R7 and automatically update the CPSR in doing so.
Figure 27c lists the instructions and format use for accessing the higher registers R8-R14 and
the PC. Apart from CMP these instructions do not update the CPSR.

 

Mnemonic Destination Modifiers

MOV <dest>, <operand 1>

ADD <dest> <operand 1

CMP <operand 1>, <operand 2>

ADD <dest> <operand1>|<#immediate

ADD <dest> <operand1>, < operand2>|<#immediate

SUB <dest> <operand1>,|<#immediate

SUB <dest> <operand1>, < operand2>|<#immediate

 

 Figure 27c. Thumb instructions that can access all ARM registers..



Stack Operators
The Thumb stack instructions are the most significant departure from the ARM instruction set,

in fact opting to use the more traditional PUSH and POP terms. We have seen these before as

they are provided as pseudo-instructions by the GCC Compiler. In Thumb their action is

similar so you should have little difficulties in getting to grips with them. However, there is a

significant difference in that no stack pointer (SP) is available to the instruction. This is because

R13 is fixed as the Stack Pointer in Thumb operations and is automatically updated by the

instructions.

PUSH {R1-R4} @ Push R1, R2, R3 & R4 onto stack 

POP (R2-R3} @ Pop top 2 items into R2 and R3 

PUSH can include the LR in its list and POP can include the PC, otherwise registers are limited

to R0-R7 inclusive. In the first instance the SP address is adjusted by four-words: in the second

by two-words. In ARM terms PUSH performs:

STMDB SP!, <REGLIST> 

and POP performs:

LDMIA SP!, <REGLIST> 



Single and Multi-Register
The LDR and STR instructions are supported by Thumb but not all addressing modes are. In

fact, only three are available for use with these and associated commands. Figure 27d lists

these, which are based on the pre-indexed addressing concept, and supply offset by register or

by an immediate operand.

Multi-register access is limited to the use of increment after addressing modes using

LDMIA and STMIA instructions. Note also that the '!' update operator is not an option as it is

in ARM State, it is mandatory:

STMIA R1!, {R2, R3, R4} 

Addressing Mode Example

Load/Store Register LDR R0, R1

Base+Offset
LDR R0, [R1, #5] 

LDR R0, [R1, R2]

Relative LDR R0, [PC, #8]

 

 Figure 27d. Addressing mode samples in Thumb State.



Functions in Thumb

The example given in Program 27b illustrates how an ARM, or more exactly libc, function can

be called from Thumb code. As mentioned previously, you switch back to ARM State. There is

nothing stopping you creating your own functions in Thumb code---a function consisting

entirely of Thumb code that runs exclusively in Thumb State. But when calling the function, it

must have the least significant bit of the pointer to it set. As the linker in the compiler cannot do

this, you yourself must do it within your calling code, especially if you use an absolute address.

Thus, when you call any standalone Thumb code from another section of Thumb code, the

entry condition is identical as if you were entering Thumb code from ARM State. You add one

to the link address.

Interestingly, you can have two functions with the same name---one for ARM and one for

Thumb. The linker allows this provided they operate within different instruction sets. However,

this shouldn't be considered good practice and should generally be avoided.



ARMv7 Thumb Instructions

As part of the release of ARMv7 architecture (Raspberry Pi 2B and later), seven new

instructions were added to the Thumb instruction set, the most significant of which is Compare

and Branch on Zero, or Non-Zero. This instruction compares the value in the register with zero

and conditionally branches forward a constant value. It does not affect the condition flags.

CBNZ R0, newdest @ R0<>0 then branch to 'newdest' 

CBZ R0, next @ R0=0 then branch to 'next' 

Both instructions can take a 'N' or '.W' modified as follows: '.N' is 'narrow' and informs the

assembler to generate a 16-bit encoding. '.W' is 'wide' and signifies a 32-bit encoding. A 'N'

(16-bit) is selected by default, whereas assembling in the A32 state will result in a 32-bit or

wide encoding.

NOP 

Is 'No Operation' and does nothing other than providing padding which may be needed to

ensure the following instruction sits on a 64-bit boundary. It also delays the program by a cycle.

Other new instructions include YIELD, SEV, WFE and WFI which are concerned with

events and interrupts as they happen.

An 'IT'(if-then) instruction was added which permits up to four successive instructions to

execute based on a tested condition, or on its inverse. IT is ignored when compiling into ARM

code, but when compiling into Thumb, it generates an actual instruction. For example:

CMP R0, R1 @ if (R0 == R1) 

ITE EQ @ R0 = R2; 

MOVEQ R0, R2 @ Thumb: condition via ITE 'T' (then) 

@ else R0 = R3; 

MOVNE R0, R3 @ Thumb: condition via ITE 'E' (else) 

 



 
 
  
  



28. Unified Language

It was a long way back, but in Chapter 1, under the sub-heading 'Raspberry Pi OS', we

examined the differentiation between 32-bits and 64-bits and the use of terms A32 and A64 to

distinguish between 32 and 64-bit ARM.

A Thumb-2 instruction set was introduced with ARMv6T2 (and included in subsequent

releases) and added more instructions to the base set but also allows most of the new Thumb

instructions to be conditionally executed. If you like, Thumb-2 offers a 'best of both worlds'

compromise in that it has access to both 16-bit and 32-bit instructions allowing programmers

who are tight for space to extract the maximum bang-per-byte by combing the two. Thumb-2

was therefore a significant step towards the development of a Unified Assembler Language

(UAL).

UAL is a standard syntax model for ARM implemented from ARMv7 onward for A32 and

T32 instructions. It supersedes earlier versions of both the A32 and T32 assembler languages.

Code that is written using UAL can be assembled for A32 or T32 for any ARM processor.

However, not every assembler provides full coverage. GCC generally does and can assemble

code written in pre-and post-UAL format.

From ARMv4T to ARMv7-A there are two instruction sets: ARM and Thumb. They are

both '32-bit' in the sense that they operate on up to 32-bit-wide data in 32-bit-wide registers

with 32-bit addresses. In fact, where they overlap, they represent the exact same instructions--it

is only the instruction encoding which differs, and the CPU effectively just has two different

decode front-ends to its pipeline which it can switch between.

Based on the combined A32 and T32 instruction sets, UAL forms a consistent

programming model. This way you should produce the most economical and productive code

possible. UAL implements some changes to both ARM and Thumb code to help in this

standardisation, as well as the addition of new instructions. Use of this new syntax will affect

backwards compatibility of code, unless your assembler is smart enough to figure out how to

deal with it, whilst assembling it.

The GCC compiler (and I would assume other compatible compilers) will be able to

assemble code written in pre-UAL and UAL syntax. If it is your intention to use UAL, ensure

that your source code contains the directive:

.syntax unified 

With any other definitions at the start of your code. You may also need to specify the

architecture you are utilising -- discussed later.

T32 extends the Thumb instruction set with bit-field manipulation, table branches and

conditional execution operations. At the same time, the ARM instruction set is extended in

areas to maintain equivalent functionality in both instruction sets.

This combination produced a Unified Assembler Language (UAL), which supports

assembly of either Thumb or ARM instructions from the same source code; versions of Thumb



first seen on ARMV7 processors are essentially as capable as ARM code (including the ability

to write interrupt handlers).

With this knowledge, we should re-address the concept of Thumb-2 for clarity. From

ARMv6 there are two instruction sets: ARM (A32) and Thumb-2 (T32). They are both '32-bit'

in the sense that they operate on up to-32-bit-wide data in 32-bit-wide registers with 32-bit

addresses. Where they overlap they represent the same instructions, it is only the instruction

encoding which differs, and the CPU effectively just has two different front ends to its pipeline

which it can switch between to decode the instruction.

T32 encompassed not just additional instructions (mostly with 4-byte encoding, although

there are a few two-byte encoding) to bring it almost to parity with ARM, but also allows

conditional execution of most Thumb instructions. A mixed 16/32-bit instruction stream

provides the economy of space of Thumb combined with most of the speed of pure ARM code.

A stated aim for T32 was to achieve code density similar to Thumb with performance like the

ARM instruction set on 32-bit memory.

If performance is critical, then it is important to have at least half the instructions encoded

as 16-bit to get maximum speed.

The general rules for generating the 16-bit form of the instructions are:

Use registers in the range R0-R7

Set the condition flags unless the instruction is conditional wherever possible

Use immediate constants in the range 0-7 or 0-255



Thumb Changes
Changes have been made to the original Thumb syntax to bring T32 in line with A32. In

original Thumb code where the first operand and destination operand were the same, you need

only specify it once. Now they must both be specified so:

ADD R0, R1 @ Old Thumb format 

ADD R0, R0, R1 @ UAL format 

In a similar fashion, where the instruction sets the condition flags you must enforce this with

the standard 'S' suffix:

ADD R0, R1, R2 @ Old Thumb format 

ADDS R0, R1, R2 @ UAL format 

Now, the MOV instruction is used as an addition operation with zero as an immediate value:

MOV R0, R1 @ Old Thumb format 

ADD R0, R1, #0 @ UAL format 

And to confuse matters, the CPY instruction becomes a MOV instruction:

CPY R0, R1 @ Old Thumb format 

MOV R0, R1 @ UAL format 

Increment after becomes the default addressing mode for the LDM instruction:

LDMIA R0!, {R0, R1} @ Old Thumb format 

LDM R0!, {R1, R2} @ UAL format 

And write-back is not specified in LDM now if the base register is in the register list:

LDMIA R0!, {R0, R1} @ Old Thumb format 

LDM R0, {R0, R1} @ UAL format 



New A32 Instructions
Figure 28a lists the 'new' instructions added to the A32 instruction set as part of UAL. For T32

the BL and BLX instructions are confirmed 32-bit operations. Below are a few examples, and

all can be used with an optional condition if required. Use of narrow and wide directives are

also permitted.

 

Mnemonic Action

BFC Bit Field Clear

BFI Bit Field Insert

MLS Multiply and Subtract

MOV New wide variant. Loads a 16-bit immediate value into bits 0-15 of register.

MOVT Move Top. Loads a 16-bit immediate value into bits 16-31 of a register.

RBIT Reverse bits in a word

SBFX Signed Bitfield Extract

UBFX Unsigned Bitfield Extract

 

 Figure 28a. New A32 instructions.

 

BFC clears any number of adjacent bits at any position in a register and does so without

affecting any of the other bits:

BFC R0, #5, #3 

Clears bits 5, 6, and 7 of the value held in R0.

BFI copies any number of low order bits from a register into the same bits of the specified

destination register:

BFI R0, R1, #5, #3 

Copy bits 5, 6 and 7 from R1 into bits 5, 6, and 7 of R0.

MLS multiplies two register values and then subtracts the least significant 32-bits of the

result from a third register and writes the result to a destination register:

MLS R0, R1, R2, R3 

Multiply the contents of R1 and R2, subtract the least significant 32-bits from R3 and place

into R0.



Compare by Zero
One of the most common cases is a comparison by zero. Figure 28b illustrates the differences

between ARM, T32 and T16 for this operation:

State Mnemonics Length

ARM CMP R0, #0; BEQ <label> 8 bytes

T32 CMP R0, #0; BEQ <label> 4 bytes

T16 CBZ R0, <label> 2 bytes

 

 Figure 28b. Compare by Zero -- code options.

 

As we can see, in T16, CBZ has replaced CMP+BEQ from the ARM and Thumb states and

condensed it into one instruction which is two bytes long.



Assembling UAL
The ARM processor can only work in either ARM State or Thumb State. It's the case even in

pre-UAL supporting processors. You cannot intermix A32 and T32 code. To use A32 and T32

code in the same program, you must do so in blocks and switch between states at the

appropriate point. Called 'interworking' the technique was introduced in Chapter 27 -- nothing

has changed. However, you should use the directive:

.syntax unified 

At the top of your source along with your other directives to invoke UAL. When you compile

the source, you should also specify the architecture you are compiling for, for example:

march=armv8-a 

Code written using UAL can be assembled for A32 or T32 for any ARM processor using this

technique.

As we have seen some T32 instructions can have either a 16-bit encoding or a 32-bit

encoding. If you do not specify the instruction size, by default:

For forward reference LDR, ADR, and B instructions, the compiler should generate a 16-

bit instruction, even if that results in failure for a target that could be reached using a 32-

bit instruction.

For external reference LDR and B instructions, the compiler should generate a 32-bit

instruction.

In all other cases, the compiler should generate the smallest size encoding that can be

output.

In all other cases, the compiler should generate the smallest size encoding that can be

output.

If you want to override these defaults, then you should use the '.W' or '.N' to specify instruction

width (wide or narrow) to ensure a particular instruction size. The '.W' post-fix is ignored when

assembling A32 code, so you can safely use this specifier in programs that might assemble as

A32 or T32 code.

Because instruction may be a mix of 16-bit and 32-bit wide, it is important to monitor

address alignment. From ARMv7 architecture on, the A bit in the System Control Register

(SCTLR) controls whether alignment checking is enabled or disabled. The exception is in

ARMv7-M, the UNALIGN_TRP bit, bit 3, in the Configuration and Control Register (CCR)

controls this. (See Chapter 29 regarding these registers.)

If set alignment checking is enabled, all unaligned word and halfword transfers cause an

alignment exception. If disabled, unaligned accesses are permitted for the LDR, LDRH, STR,

STRH, LDRSH, LDRT, STRT, LDRSHT, LDRHT, STRHT, and TBH instructions. Other data-



accessing instructions always cause an alignment exception for unaligned data. For STRD and

LDRD, the specified address must be word-aligned.

 

 Program 28a. Unified Assembly Language

@ Use of UAL code on Raspberry Pi  

@ Add two values using short subroutine call 

@ gcc option can be used also 

 

.syntax unified 

.global _start 

_start: 

MOV r0, #10 @ set up parameter 

MOV r1, #5 @ set up parameter 

MOV r2, #5 

MOV r3, #20 

BL doadd @ Call subroutine 

 

MOV R4, #0xFF00 

MOVT R4, #0xFFFF 

MLA R0, R1, R2, R3 

stop: 

MOV R7, #1 

SWI 0 

doadd: 

ADD r0, r0, r1 @ Subroutine code, UAL format 

BX lr @ Return from subroutine> 

  End Program 28a.

 

Assemble and run the above with:

as -g -o prog28a.o prog28a.s 

ld -o prog28a prog28a.o 

./prog28a 

echo $? 

The result 45 will be printed with the echo$? command.

UAL is a common syntax for A32 and T32 instructions. However, it supersedes earlier

versions of both the A32 and T32 assembler languages. Code that is written using UAL can be

assembled for A32 or T32 for any ARM processor. Investigate some of the source files on the



ARM website and you will notice that the '.syntax unified' directive is largely common to them

all.



 
 
  
  



29. Exception Handing

This chapter provides an overview of exception handling, the various modes of ARM

operation, vectors, and interrupts. This is a fundamental design aspect of the ARM chip and

provides a clever and versatile way to customise the way your chosen operating system works. It

should be considered an advanced topic and as such its detail is beyond the scope of this book.

However, it is fascinating as is the whole concept of interrupts which are fundamental to

everyday Raspberry Pi operation. As such an overview here is provided which will certainly

help you should you delve into areas such as bare metal programming or look at writing your

own OS to run on your Raspberry Pi. And these are all tasks you should consider a next step on

the learning curve.

As an Operating System Raspberry Pi OS is defensive in the way it is configured, and its

core, the kernel memory management prevents you from accessing something that is not

mapped into the process memory map., it will not let you just read and write to arbitrary

memory locations. It is for this reason that the GPIO pins and other hardware components of

the Raspberry Pi cannot be accessed from a standard machine code program running under

ROS. This is different from an OS such as RISC OS where the whole system is deployed in a

way to make it easy to configure and reconfigure for the programmer's needs. Indeed, a whole

wave of SYS calls are provided in RISC OS just for this purpose. I say this just to indicate that

it is an OS worth trying if you wish to play with interrupts and events in a controlled manner.

(RISC OS is free as a downloadable OS from the Raspberry Pi website, and you can find out

about RISC OS Assembly Language programming by going to www.brucesmith.info.)

Direct memory access can only be performed by operating as a root user or by writing a

standalone OS that replaces Raspberry Pi OS --- bare metal programming in effect.



Modes of Operation
In Chapter 5, we examined the Current Program Status Register and saw how the individual

bits within it were used as flags to denote certain conditions. The figure presented then is

shown again as Figure 29a.

 Figure 29a. The Status Register configuration.

 

The N, Z, C and V flags should be familiar. The ones we are concerned with now are held in

the low byte of the register in bits 0 to 7.

The Mode bits are located from 0 to 4 (five in total), and their setting determines which of

the six operating modes the ARM operates in. Figure 29b summarises these modes. Any of

them can be entered by changing the CPSR. Except for User Mode and Supervisor Mode all

modes can be entered when an exception occurs.

 Figure 29b. The ARM's six modes of operation.

 

User Mode is the one used by default by programs and applications. This is the environment we

work in, and in truth, we as programmers never have to leave it, unless we are looking to be

more adventurous and take over total control of the ARM chip itself. This is not for the novice

and care needs to be taken when that line is breached.



Referring again to Figure 29a, bits 7 and 6 are used for enabling and disabling IRQ and FIQ

interrupts, respectively. If a bit is set the associated interrupt is disabled. If the bit is clear, then

the interrupt is enabled. Bit 5 is the Thumb mode bit and is discussed in Chapter 27. For all

interrupts, this bit is clear, and the processor is operating in ARM State.



Vectors
Vectors play an important role in the operation of the ARM chip. A vector is a known location

in memory that is exactly one word, or 32-bits wide. (Not to be confused with vectors in VFP.)

There are two types of vectors: hardware and software vectors. Hardware vectors are

hardwired to the ARM chip itself and they never change, and as Figure 29c shows, they are

located at the very beginning of the memory map. However, in the ROS, the vector table can be

located at a higher address in memory, here starting at 0xFFFF0000.

Hardware vectors control the ultimate flow of information and are a set of memory

addresses that are 'known' to the ARM chip. The term 'known' here means that they are

physically 'hardwired' and are thus termed hardware vectors. Hardware vectors typically control

the flow of abnormal events which the chip itself cannot deal with. They are often referred to as

exception vectors and they reside smack bang at the start of the memory map from 0x00000000

to 0x0000001C. Figure 29c lists the hardware vectors.

 Figure 29c. The ARM Hardware vectors.

 

One common reason for manipulating the hardware vectors is to change the machine's response

to memory access faults. If some non-existent memory is accessed then one of the memory

faults vectors, 0x0000000C to 0x00000014, is called. The normal effect of this is for the

Operating System to report a fatal error and stop executing the current task. Sometimes, for

example when writing a memory editor, this is not a very desirable occurrence. It would be

better simply to warn the user that a particular location is invalid and allow editing to continue

for the rest of memory.

Vectors are useful to the programmer as they allow programs to access standard routines

without directly calling the physical address where the machine code for the routine is stored.

In the early days of computers Operating Systems were small and everything was 'hard-

coded', meaning address where used in absolute terms. The problem with using absolute



addresses and by this, I mean a real physical address rather than a branch offset for example, is

that you are always tied to that address. If the OS is updated then, a pound to a pinch of salt,

that address will change. Now any external or third-party code that uses that absolute address

might be snookered. If the code is updated and its execution point is changed, all that needs to

happen is for the address in the vector to be changed.

The second advantage to using vectors is that we, as the programmer, can also change the

address in the vector---we can intercept it. By doing this we can modify and change the way the

Raspberry Pi operates. This is not easy under ROS but if you plan to write bare metal code then

you will be required to take control of the vector table yourself and manage its requirements.

When an exception interrupt occurs, the processor stops what it is doing and jumps to the

appropriate location in the vector table. Each location contains an instruction pointing to the

start of a specific handling routine. These instructions normally take one of three forms as

shown in Figure 29d.

 Figure 29d. Instructions that may be used in a vector.

 

For example, when an IRQ interrupt occurs it ultimately goes via the IRQ vector. This location

is 32-bits wide and is just big enough to contain an instruction that facilitates an instruction to

branch elsewhere.



Register Arrangements
Each of the modes has an associated set of registers available to it. The registers available to the

programmer vary according to the current CPU operating mode.

 Figure 29e. The ARM programmer's model.

 

When executing in User Mode the full set of registers, R0 to R15, are available for use.

However, when the CPU switches into another operation mode, this all changes. Figure 29e

shows the register arrangement depending on the mode of operation. All modes have dedicated

stack pointers and link registers associated with them. Whilst all modes except for User Mode

have a new register, the Saved Program Status Register, available to them, only FIQ mode has

several dedicated registers from R8-R12. Otherwise registers remain unchanged.

The SPSR is used to hold a copy of the User Mode Status Register when one of the other

modes is entered. The User Mode does not have, and it does not need an SPSR. An important



point to note here is that the CPSR is only copied into the SPSR when an exception or interrupt

is raised; it is not changed if you physically write to the CPSR to change mode.

The idea behind this banked register system is that each processor mode has some private

registers which it can make use of without affecting the values of the normal registers, thus

ensuring that the programmer does not have to worry about saving the contents of their own

User Mode registers when an alternative mode is entered.

Figure 29f shows how the low byte of the CSPR looks when one of the modes is invoked.

Except for User Mode, all modes are privileged. When power is first applied to the ARM chip

it starts off in Supervisor Mode.

 Figure 29f. Bit settings for Mode changes in CPSR.

 

Interrupts can be enabled and disabled very easily in ARM --- using masking. Bits 7 and 6

enable or disable IRQ and FIQ interrupts, respectively. If either bit is set, then the associated

interrupt is disabled and will not be processed. When an exception or interrupt occurs, the

interrupt mask bit will normally be set by the chip. For a number of modes, the FIQ bit remains

unchanged (uc).



Exception Handling
An exception handling is a condition that requires the halting, temporary or otherwise, of

whatever code is executing. A segment of code called an exception handler is called at this

point. It identifies the condition and passes control to the appropriate route to handle the

exception. When an exception causes a mode change the following sequence of events needs to

happen:

The address of next instruction is copied into the appropriate LR

The CPSR is copied into the SPSR of the new mode

The appropriate mode is set by modifying bits in the CPSR

The next instruction is fetched from the vector table

When the exception has been dealt with, control can be returned to the code that was

executing when the exception occurred.

Control can be returned as follows:

The LR (minus an offset) is moved into the PC

The SPSR is copied back into CPSR and by default this automatically changes the mode

back to the previous one

If set, the interrupt disable flags are cleared. Clear the interrupt disable flags to re-enable

interrupts.

 Figure 29g. Swapping registers on at a privileged exception.

 

The illustration above in Figure 29g illustrates what happens at a register level when a SWI call

is made. The concept is the same for any of the privileged mode exceptions. The SP and LR of



the accessing Mode are switched in over the User Mode ones to allow the exception to be

serviced, whilst preserving the status of the interrupted program. The return address is copied

from the User Mode PC and stored in the LR of the privileged mode being invoked. R14_svc in

the example above.

By preserving the status of the three User Mode registers shown, the status quo of program

execution can be maintained when the SVC Mode call has been serviced simply by swapping

them back. As stated earlier the CPSR is only saved into the requesting mode's SPSR when an

exception occurs. It does not happen when the mode is changed by flipping the Mode bits.



MRS and MSR
There are two instructions which can be used directly to control the contents of the CPSR and
SPSR and they can be used on the whole contents or at bit level.

The MRS instruction transfers the contents of either the CPSR or SPSR into a register. The
MSR instruction works the opposite way and transfer the contents of a register into either the
CSPR or SPSR. The instruction syntax is as follows:

MRS (<suffix>) <Operand1>, <CSPR|SPSR> 
MSR (<suffix>) <CSPR|SPSR|Flags>, <Operand1> 
MSR (<suffix>) <CSPR|SPSR|Flags>, #immediate 

Some examples will make their operation clearer. The following three lines of code could be
used to enable IRQ Mode:

MRS R1, CPSR 
BIC R1, R1, #0x80 
MSR CPSR_C, R1 

First the CPSR is copied into R1 where it is then masked with 10000000 to clear the bit at b7 --
the position of the I flag. (see Figure 26a). R1 is then written back to CPSR. Note the use of the
'_C' as an addition to the CPSR operand. For programming, the CPSR and SPSR are divided
into four different sectors. These are illustrated below in Figure 29h.

 Figure 29h. The CPSR/SPSR segments to control updating.

 

By using the correct adjunct(s) on the appropriate instruction we can ensure that only the
correct bits of the associated register are updated. The F, S, X and C suffixes may be used in
like fashion.

To disable the IRQ, the following segment of code would suffice:

MRS R1, CPSR 
ORR R1, R1, #x080 
MSR CPSR_C, R1 

The same commands can be used to effect a mode change thus:



MRS R0,CPSR @ copy the CPSR 
BIC R0,R0,#0x1F @ clear mode bits 
ORR R0,R0,#new_mode @ select new mode 
MSR CPSR,R0 @ write CPSR back 

In User Mode you can read all the bits of the CPSR, but you can only update the condition of
the field flag, ie, CPSR_F.



Interrupts When?
Interrupt Request Mode (IRQ) and Fast Interrupt Mode (FIQ) are called when an external

device pages the ARM chip and demands its attention. For example, the keyboard generates an

interrupt whenever a key is pressed. This is a signal to the CPU that the keyboard matrix should

be read, and the ASCII value of the key entered into the keyboard buffer. If the ASCII value is

0x0D (RETURN), the keyboard buffer must be interpreted.

The analogy here can be you, sitting at your own keyboard learning Raspberry Pi Assembly

Language. At some point your phone starts to ring. You have been interrupted. So, you stop

what you are doing (you may make a quick note to remind you or you may save your work) and

answer the phone (you deal with or process the interruption). When you have completed the

phone call, you hang up and return to what you were doing before the interruption.

The process with the ARM chip is much the same. It receives an interrupt signal at which

point it saves what it is doing in line with what we have already discussed and then hands

control to the calling interrupt routine by invoking the appropriate mode of operation. When

the interrupt has finished its work (in the keyboard example this would be reading the key press

and placing the ASCII code in the keyboard buffer) it hands control back to the ARM which

restores all its previously saved information and returns to User Mode, picking up where it left

off.

So here the interrupt is a function of the ARM chip itself, but how it is dealt with and what

happens thereafter is a feature of the software handling it --- Raspberry Pi OS in this case.

Without an effective interrupt system, the Raspberry Pi at software level would have to

spend a lot of its time checking all attached components just to see if anything has happened,

taking up time and resources. Think of all the connections to your Raspberry Pi --- keyboard,

mouse, USB ports, disk drives... They all require servicing, and often.

Fast Interrupts (FIQs) are deemed to have the highest priority and are the ones that must be

serviced first. For example, connected disk drives, otherwise data might be lost. The only time

a FIQ is not serviced first is when another FIQ is in the process of being serviced. The

Interrupt Request (IRQ) line is deemed to be of lower priority where a slight delay will not

create any problems.

The need for speed in processing an FIQ interrupt is signified by its position in the

hardware vector table. It is the last in the list. This is because it actually begins executing right

at that point---the other vectors all perform other branch instructions further into the system

software. The FIQ code resides in the space after the vector at 0x1C. It is then the job of the

appropriate interrupt coding to identify which device caused the interrupt and process it

accordingly and as quickly as possible.



Your Interrupt Decisions
When dealing with interrupts you need to make the decision about other interrupts. What

happens if a new interrupt occurs whilst you are handling an existing interrupt? The easiest

method is to invoke what is called a non-nested interrupt handling scheme. In this all interrupts

are disabled until control is handled back to the interrupted task. The downside of this is that

only one interrupt can be serviced at a time, and if a succession of interrupts are occurring you

may lose some of the requests. This could have consequences.

A nested interrupt scheme allows more than one interrupt to be handled at a time and in

this case, you would look to re-enable interrupts before fully servicing the current interrupt.

This is more complex, but it solves the problems that can occur with interrupt latency, which is

the interval of time from an external interrupt signal being raised to the first fetch of an

instruction of the raised interrupt signal.

For an FIQ, the IRQs are disabled as the FIQ is deemed critical in relation.

In all cases the implementation of a stack for interrupt handling (interrupt stack) is

considered essential for context switching between the modes and preserving information. If

several interrupts occur at the same time the details need to be stored somewhere for processing

as the sequence is dealt with.



Returning from Interrupts
When the interrupt service routine has been performed, the Operating System must return to

the original program which was interrupted by the FIQ or IRQ. This is done by using the

following instruction:

SUBS R15, R14, #4  

This restores the Program Counter so that the interrupted program can be resumed from exactly

the point at which it was suspended. The 'subtract 4' calculation is required to correct for the

effects of pipelining. Providing that the interrupt handling routine has not corrupted any shared

registers or workspace, the program will continue executing as if the interrupt had never

happened.



Writing Interrupt Routines
Usually, you will not need to create interrupt routines service routines of your own because the

OS provides a well-defined system for doing so. If you intend to write direct interrupt handling

routines, you should observe the following rule to avoid potential disasters:

Do not re-enable interrupts in the handling routine. If this is done, a second IRQ/FIQ

could interrupt the processor before it has finished handling the first. Sometimes this may

be permissible, but you could be walking on thin ice if you do it. Be very aware!

The interrupt routine must be written as economically as possible. Processing the

interrupt at maximum speed should be a major goal. If it keeps interrupts disabled for too

long, then the normal Raspberry Pi background activities will grind to a halt. The

keyboard will lock, various software clocks will lose time etc.

All shared processor registers should be preserved. They should contain the same values

on exit from the interrupt routine as they did on entry to the interrupt. This is vital if the

interrupted task is to be resumed correctly.

The interrupt handling routine should avoid calling OS routines. It is possible that one of

these routines would be only half executed when it is interrupted by IRQ/FIQ. If re-

entered in the interrupt routine, work space could be disturbed, potentially causing the

routine to corrupt when resumed.



 
 
  
  



30. System on a Chip

The square chip in the centre of the Raspberry Pi board is the one that this book has been all

about. Everything we have been doing in the preceding pages has been taking place inside that

square. Figure 30a shows it in all its glory. In fact, that bit of silicon is much more than just an

ARM chip. It is a System-On-Chip device.

Broadly speaking, a SoC is a microchip that has all the components required to drive a

computer. The composition of the SoC has changed for each version of Raspberry Pi that has

been released., However the basic components are an ARM compatible CPU and an on-chip

graphics processing unit GPU (a VideoCore IV). The CPU speeds range from 700 MHz

(Raspberry Pi 1) to 1.2 GHz for the Raspberry Pi 3. Similarly, the on-board memory range

from 256 MB to 1 GB RAM.

 Figure 30a. A Raspberry Pi with the SoC at its heart.

 



Built specifically for the Raspberry Pi 4, the BCM2711B0 --the silverish item in Figure 30a --

is a 64-bit quad core Cortex-A72 (ARMv8-A) System-On-Chip running at 1.5GHzs .It includes

the Broadcom VideoCore VI -- the first upgrade to the graphics processor, for the Raspberry

Pi, as well as the various co-processors discussed in this book.

The large black chip is the memory that comes in 1GB, 2GB, 4GB or 8GB flavours.

The SoC technology is increasingly popular, and the packaging of numerous components

onto a single integrated circuit (IC) means that the devices they are embedded into become ever

smaller. If you have a close look at the Raspberry Pi board then you will see that much of the

space is taken up by components that allow us to connect to it! The actual computer part

probably occupies only about 10% of the printed circuit board! Indeed, more and more has

been placed onto the Raspberry Pi board with each version release.

Make no mistake, the SoC technology used on the Raspberry Pi is on the cutting edge, and

you can expect to see it become prevalent in major advances in technology as the physical size

of the SoC device continues to implode. Because of its great digital capabilities, you might

expect to see similar silicon devices restoring sight to the blind and providing sound for the

deaf in the not-too-distant future.

Another major advantage of the SoC design is the fact that it doesn't require a lot of power

and it becomes very efficient because of the small distances that signals travel. Remember how

much heat standard PCs throw out and where much of the space is given over to cooling?

There is a downside to SoC technology from the consumer point of view and a reason why

those devices do not easily dominate the consumer and general market, and that is their lack of

ability to be upgraded. Essentially you can't do this because everything is metaphorically glued

into one place, so you can't readily add new memory or upgrade the core processor. When you

are finished with the device, you effectively throw it away. So, your Raspberry Pi will no doubt

become out-dated but then you would have to simply replace it with the newer model. Doers

this make the Raspberry Pi a disposable computer?



The ARM Chip & Instruction Sets
At the heart of the SoC on the Raspberry Pi is the ARM core. SoCs are not limited to ARM

chips but they are the processor of choice due to the use of RISC which offers power saving

advantages. The ARM chip itself has been around for over 30 years now and it has gone

through continual development. The ARM11 used in the original Raspberry Pi was launched in

2003 and is built around the ARMv6 architecture. The ARMv7 chip used in the Raspberry Pi 2

is a few years older and is one of the fastest, most energy efficient chips available. The ARM v8

in the Raspberry Pi 3 is yet another step and its speed now make it possible to run popular

Operating Systems such as Windows 10 and Ubuntu. The chip has a quad-core which means

that it can multi-task, ie do several things at once, that was not previously possible on the

original single-core chip.

We have seen two of the instruction sets that ARM provides on the Raspberry Pi, namely

ARM and Thumb. Historically, there was a third instruction set called Jazelle. It was primarily

intended to assist in mobile phone software development, and since release of the ARMv7

architecture has been de-emphasised.



Co-processors
The ARM design allows for additional processing hardware to be connected to it. (Interestingly

this was a unique design structure introduced by Acorn as early as 1983 with the launch of its

Second Processor Tube interface which allowed additional CPUs to be bolted onto the side of

the BBC Micro. This would allow other processor dependent Operating Systems such as CP/M

to be run. An ARM Second Processor unit was one of the last released for the BBC Micro!)

As these are designed to support the ARM, they are called co-processors. Up to 16 can be

connected and are numbered from 0-15. Instructions such as MCR and MRC can be used to

communicate with them, and many co-processors add their own instruction sets which are

worth investigating.

We have already examined one co-processor in detail: The Vector Floating-Point co-

processor which provides real number management to the otherwise integer-orientated ARM

chip. In fact, the VFP occupies two slots, being CP10 and CP11 in the system. CP14 and CP15

are also reserved for system use, but the others are all free for use.



Pipeline
We examined the pipeline in Chapter 13. At that point we looked at the original generic three-

stage process and hinted then that ARMv6 has an 8-stage operation. The eight stages are

described in Figure 27b. During operation, dependent on the instruction being performed the

pipeline will route one of three different ways to process stages 5, 6 and 7 and so will further

maximise the instruction process prowess of the chip.

There are three blocks of operation that can be switched in at stages 5, 6 and 7 depending

on the operation taking place. For example, if a multiply instruction is being processed then

these stages are induced in place of the other parallel stages. This allows the ARM to deliver

just about one instruction for each cycle.

The Fetch stages can hold up to four instructions, whist the Execute, Memory, and Write

stages can contain a predicted branch, an ALU or multiply instruction, a load/store multiple

instruction and a co-processor instruction in parallel execution.

It would be possible to increase the length of the pipeline, but it is impractical to do so as it

would increase power consumption and create heat. This would have a devastating effect on

small systems such as the Raspberry Pi meaning bigger power supplies and more space

between components and perhaps even aided cooling! This is much less of a problem with the

energy efficient Raspberry Pi 2 which has four cores it can utilise.



 Figure 30b. The eight-stage pipeline of the ARMv11 includes sub-pipelines which can be

banked in for maximum efficiency.



Memory & Caches
Depending on what model Raspberry Pi you have it will come with a certain amount of

memory. This memory is part of the SoC, and this sits on top of the ARM chip in an

arrangement called 'package on package'.

The ARM also has an area of amazingly fast memory called a memory cache that it can use

for its own purposes. These are for instruction and data storage and are respectively known as

Icache and Dcache. Incidentally, these caches are controlled by the System control co-processor

(CP15), as is all memory, thus enabling the ARM to get on with processing instructions. A

second cache called L2 is also on-board. However, this is used exclusively by the VideoCore.



The GPU

The Graphics Processing Unit is the other major component of the SoC configuration. It is a

Broadcom VideoCore IV unit that provides 1080 high resolution graphics using a combination

of Open software and hardware accelerated computing. Although information on this

proprietary system has been thin on the ground, several groups have been working at supplying

information through GitHub sites. Example files in C can now be downloaded and bindings for

other languages such as Python and Java exist.



ARMv8 Overview

The ARMv8 architecture was introduced to Raspberry Pi users with the release of Raspberry

PI 2B v1.2 utilising the Broadcom chip BCM2837. The underlying architecture of the

BCM2837 is identical to the BCM2836. The only significant difference is the replacement of

the ARMv7 quad-core cluster with a quad-core ARM Cortex A53 (ARMv8) cluster. This was

then carried on into the various iterations of the Raspberry Pi 4 utilising a different quad-core

based on the Cortex-A72. These iterations also included VFPv4 and Neon. Also, significantly

with the Raspberry Pi 4, the redesign of the boards allowed for an 8Mb memory version, which

should better enable Linux usage and the porting and application of the Raspberry Pi OS in a

64-bit environment.

The original concept behind ARMv8 was to provide ARM with a clean slate with which to

design and encode an entirely new instruction set. The brief was for it to be 64-bit instruction

set whist adhering as much as possible to keeping mnemonics and processes familiar. A64

provides a new start. Hopefully, the new instruction set will remain consistent across

architectures to allow stability for the development and continuity in implementation. And as

already mentioned, Custom Instructions are a real possibility going forward with future core

releases.

Because of the sheer weight of numbers, (units in the market, not processing power!) 32-bit

ARM will remain accessible and a processor of choice for existing designers and developers.

Not least because the programmers have vast experience in 32-bit code and there is a sea of

AArch32 legacy applications in use. While there are some 64-bit only ARM processors (Cortex

A34 for instance), dual compatibility remains a high priority. For this reason, part of the brief

was, as much as possible, to maintain compatibility with older architectures whist streamlining

both ARM and Thumb instruction sets. Thus, the Unified Assembler Language concept was

developed for backward compatibility, plus improved operation in the FPU.

As we saw at the start of this book in Figure 1c, the latest Raspberry Pi ARM chips can run

in both 32-bit (AArch32) and 64-bit (AArch64) state. Going forward it should be possible to

run AArch32 and Arch64 apps within a AArch64 OS. However, an AArch32 OS could only

run AArch32 apps. This means is that you could host a mix of 32-bit and 64-bit applications

under the same 64-bit kernel. How this pans out though remains to be seen.



Raspberry Pi OS 64-Bit
In May 2020, a beta version of Raspberry Pi OS was released, and this largely featured an

updated version of the standard 32-bit version. This can be installed on the Raspberry Pi 3 and

Raspberry Pi 4. At the time of writing, it is available in Beta version so may contain bugs as

much as the original development of Raspbian did on the 32-bit version. It worked fine when I

installed it on a dedicated SD Card and there is an active community moving forward with it.



In Summary
This has been a quick look at the technology that drives your Raspberry Pi, at the core of which

is the ARM chip that this book has shown you how to program. It is by no means definitive, but

it does show that there are exciting new technologies still emerging on your Raspberry Pi that

you can investigate and be at the cutting edge of exploring. The Raspberry Pi with quad-core

chips opens-up even more possibilities for those willing to investigate.



Archimedes Principle

 Figure 30c. The Acorn Archimedes boasting an ARM2 cpu.

 

The Acorn Archimedes was designed by Acorn Computers Ltd in Cambridge, England. The

system was based on Acorn's own ARM architecture processors and proprietary Operating

System -- RISC OS. The first model was introduced in 1987, and systems in the Archimedes

family were sold until the mid-1990s.

Powered by an ARM2 it provided better performance than Intel's 286 despite having

245,000 less transistors than Intel's big chip. (In fact, ARM2 had only 25,000 transistors!) This

'lack' of transistors told a lot about the relative simplicity of the ARM. The design, utilised a

32-bit CPU (with 26-bit addressing), running at 8Mhz, a significant upgrade from 8-bit home

computers. If you would like to learn more about RISC OS head to www.brucesmith.info.



 
 
  
  





A. ASCII Character Set

Binary  Dec  Hex  ASC 
0010 0000  32  20  ? 
0010 0001  33  21  ! 
0010 0010  34  22  " 
0010 0011  35  23  # 
0010 0100  36  24  $ 
0010 0101  37  25  % 
0010 0110  38  26  & 
0010 0111  39  27  ' 
0010 1000  40  28  ( 
0010 1001  41  29  ) 
0010 1010  42  2A  * 
0010 1011  43  2B  + 
0010 1100  44  2C  , 
0010 1101  45  2D   
0010 1110  46  2E  . 
0010 1111  47  2F  /
0011 0000  48  30  0 
0011 0001  49  31  1 
0011 0010  50  32  2 
0011 0011  51  33  3 
0011 0100  52  34  4 
0011 0101  53  35  5 
0011 0110  54  36  6 
0011 0111  55  37  7 
0011 1000  56  38  8 
0011 1001  57  39  9 
0011 1010  58  3A  : 
0011 1011  59  3B  ; 
0011 1100  60  3C  < 
0011 1101  61  3D  = 
0011 1110  62  3E  > 
0011 1111  63  3F  ? 
0100 0000  64  40  @ 
0100 0001  65  41  A 
0100 0010  66  42  B 
0100 0011  67  43  C 
0100 0100  68  44  D 
0100 0101  69  45  E 
0100 0110  70  46  F 
0100 0111  71  47  G 
0100 1000  72  48  H 



0100 1001  73  49  I 
0100 1010  74  4A  J 
0100 1011  75  4B  K 
0100 1100  76  4C  L 
0100 1101  77  4D  M 
0100 1110  78  4E  N 
0100 1111  79  4F  O 
0101 0000  80  50  P 
0101 0001  81  51  Q 
0101 0010  82  52  R 
0101 0011  83  53  S 
0101 0100  84  54  T 
0101 0101  85  55  U 
0101 0110  86  56  V 
0101 0111  87  57  W 
0101 1000  88  58  X 
0101 1001  89  59  Y 
0101 1010  90  5A  Z 
0101 1011  91  5B  [ 
0101 1100  92  5C  \ 
0101 1101  93  5D  ] 
0101 1110  94  5E   
0101 1111  95  5F  _ 
0110 0000  96  60  ` 
0110 0001  97  61  a 
0110 0010  98  62  b 
0110 0011  99  63  c 
0110 0100  100  64  d 
0110 0101  101  65  e 
0110 0110  102  66  f 
0110 0111  103  67  g 
0110 1000  104  68  h 
0110 1001  105  69  i 
0110 1010  106  6A  j 
0110 1011  107  6B  k 
0110 1100  108  6C  l 
0110 1101  109  6D  m 
0110 1110  110  6E  n 
0110 1111  111  6F  o 
0111 0000  112  70  p 
0111 0001  113  71  q 
0111 0010  114  72  r 
0111 0011  115  73  s 
0111 0100  116  74  t 
0111 0101  117  75  u 



0111 0110  118  76  v 
0111 0111  119  77  w 
0111 1000  120  78  x 
0111 1001  121  79  y 
0111 1010  122  7A  z 
0111 1011  123  7B  {
0111 1100  124  7C  | 
0111 1101  125  7D  } 
0111 1110  126  7E  ~ 



 
 
  
  





B. ARM Instruction Set

The following pages contain a summary of the ARM instruction set arranged by operation type.
It is not definitive nor complete in anyway and it is intended simply as an aid-memoir and
includes many of the instructions covered herein. Remember that instructions may vary with
architecture, with some being depreciated or adapted.  
The guides at www.arm.com are an excellent way of learning about new ARM processors and
the architecture detail of the instructions for each of them. 
The following abbreviations and their meanings are used:
 
Rn  Destination Register, where 'n' is register number. 
Rm  Operator Register, where 'n' is register number. 
Rdn   Destination register is Rd or Rn, depending on if optional {Rd,}is specified.  
N   Negative condition code. Set to 1 if result is negative. 
Z   Zero condition code. Set to 1 if the result of the instruction is 0. 
C   Carry condition code. Set to 1 if the instruction results in a carry.  
V   Overflow condition code. Set to 1 if the instruction results in an overflow. 
#  Immediate constant 
{ }  Optional parameters  
{ | }   Alternative optional parameters  
( | )   Alternative required parameters  
 

Load/Store Suffixes
Format    Description 
B  Zero extended byte. 
H  Zero extended half-word: 16-bits  
SB   Sign extended byte. 
SH  Sign extended half-word: 16-bits.
S  Optional S indicates the Status Register is updated.   
No suffix for Load/Store indicates four-byte transfer. 

Compare and Test Instructions
Format    Description 
CMP  Rn,Rm  Compare registers, update status 
CMP  Rn,#K  Compare 8-bit K, update status 
TST  Rn,Rm  Test registers, update status 
TST  Rn,#K  Test with 8-bit K, update status 
TEQ  Rn,Rm  Test Equivalent, update status 
TEQ  Rn,#K  Test Equivalent 8-bit K, update status 

Branch Instructions



Format   Description      
B  label   Unconditional branch to label       
BEQ   label   Branch if EQual      
BNE   label   Branch if Not Equal      
BLT   label   Branch if Less Than (Signed)       
BLE   label   Branch if Less than Equal (Signed)      
BGT   label   Branch if Greater Than (Signed)      
BGE   label   Branch if Greater than Equal (Signed)      
BLO   label   Branch if LOwer (Unsigned)      
BLS   label   Branch if LOwer or Same (Unsigned)      
BHI   label   Branch if HIgher (Unsigned)      
BHS   label   Branch if Higher or Same (Unsigned)    
BL   label   Update Link Register and Branch        
BX   Rn   Branch to address in register Rn  

Arithmetic Instructions

Format   Description        
ADD{S}  {Rd,} Rn,Rm   Add two registers 
ADD{S}  {Rd,} Rn,#K   Add register with 8-bit constant K      
ADC{S}  {Rd,} Rn,Rm   Add two registers with Carry (C) C    
ADC{S}  {Rd,} Rn,#K   Add register with 8-bit K & Carry(C)       
SUB{S}  {Rd,} Rn,Rm   Subtract two registers  
SDIV    Signed Divide     
SUB{S}  {Rd,} Rn,#K   Subtract 8-bit constant K    
SBC{S}  {Rd,} Rn,Rm   Subtract two registers with Carry     
SBC{S}  {Rd,} Rn,#K   Subtract 8-bit K from reg with Carry      
MUL  {Rd,} Rn,Rm   Multiple regs (Signed or Unsigned) 
MLA    Multiple and Accumulate 
MLS    Multiply and Subtract  
NOP    No Operation     
UMULL   RdL,RdH,Rn,Rm   Unsigned multiple (64-bit result)    
SMULL   RdL,RdH,Rn,Rm   Signed multiple (64-bit result)      
 

Logical Instructions

 

Format     Description 
AND{S} {Rd,} Rn,(Rm|#K)  AND registers or 8-bit constant K 
BIC{S}  {Rd,} Rn AND NOT Rm  Bit Clear     
ORR{S} {Rd,} Rn,(Rm|#K)  OR registers or 8-bit constant K   
EOR{S} {Rd,} Rn,(Rm|#K)  Exclusive OR register or 8-bit constant K    
NEG{S} {Rd,} Rn   Negate a register    



LSL{S} {Rd,} Rn,(Rm|#K)   Logical Shift Left 
LSR{S} {Rd,} Rn,(Rm|#K)   Logical Shift Right  
ASR{S} {Rd,} Rn,(Rm|#K)   Arithmetic Shift Right 
ROR{S} {Rd,} Rn,(Rm|#K)   ROtate Right 

Data Movement Instructions

Format   Description        
MOV{S}  Rd,Rm   Copy value from Rm to Rd   
MOVW   Rd,#K   Copy 16-bit constant K to Rd (Zero Ext)  
MOVT   Rd,#K   Copy 16-bit constant K to Rd [31:16]P 
PUSH   Rn   Place Rn on top of the Stack 
POP   Rn   Place the top of Stack into Rn  
SVC   n  Supervisor Call (Software Interrupt SWI) 
   
STR{B|H}  Rt,[Rn,#+/-K]   Store: Regular Immediate Offset Addr (8-bit K) 
STR{B|H}  Rt,[Rn,#+/-K]!    Store: Pre-index Immediate Offset Addr (8-bit K) 
STR{B|H}   Rt,[Rn],#+/-K    Store: Post-index Immediate Offset[Rn] 
STR{B|H}  Rt,[Rn,Rm {,LSL #s}]   Store: Register Offset Addressing 
 
LDR{B|H|SB|SH}  Rt,[Rn,#+/-K]    Load: Regular Immediate Offset Addr (8-bit K)
   
LDR{B|H|SB|SH} Rt,[Rn,#+/-K]!    Load: Pre-index Immediate Offset Addr (8-bit K)  
LDR{B|H|SB|SH} Rt,[Rn],#+/-K    Load:Post-index Immediate Offset Addr (8-bit K)  
LDR{B|H| SB|SH} Rt,[Rn,Rm {,LSL #s}]   Load: Register Offset Addressing    



 
 
  
  





C. RPi OS Syscalls

The first 192 System calls are listed below including a brief description of the call function.

There is no official source or documentation of Linux System Calls therefore documentation is

limited to voluntary sources.

 

Sys  Action  Function 

0  restart-syscall  Restart a System call. 

1  exit  Terminate the current process 

2  fork   Create child process 

3  read   Read from file descriptor 

4  write   Write to file descriptor 

5  open   Open / create file or device 

6  close   Close a file descriptor 

7  waitpid   Wait for process termination 

8  creat   Create child process 

9  link   Assign new name to a file 

10  unlink   Delete name & file it refers to 

11  execuve   Execute program 

12  chdir   Change working directory 

13  time   Get time in seconds 

14  mknod   Create directory or special/ordinary file 

15  chmod   Change permissions of a file 

16  lchown   Change ownership of a file 

18  oldstat  (Abandoned) 

19  lseek   Reposition read/write file offset 

20  getpid   Get process identification 

21  mount   Mount filesystems 

22  umount   Unmount filesystems 

23  setuid   Set user identity 

24  getuid   Get user identity 

25  stime   Set time 

26  ptrace  Process trace 

27  alarm   Set alarm clock for delivery of signal 

28  oldfstat   

29  pause   Wait for signal 

30  utime  Change access and/or modification times 

33  access   Check user's permissions for a file 

34  nice   Change process priority 

35  ftime  Return date and time 

36  sync   Commit buffer cache to disk 

37  kill   Send signal to a process 

38  rename   Change the name or location of a file 



39  mkdir   Create directory 

40  rmdir   Delete (an empty) directory 

41  dup   Duplicate a file descriptor 

42  pipe   Create pipe 

43  times   Get process times 

45  brk   Change data segment size 

46  setgid   Set group identity 

47  getgid   Get group identity 

48  signal   ANSI C signal handling 

49  geteuid   Get user identity 

50  getegid   Get group identity 

51  acct *   Switch process accounting on or off 

52  umount2   Mount and unmount filesystems 

54  ioctl  Control device 

55  fcntl  Manipulate file descriptor 

57  setpgid  Set/get process group 

58  ulimit :  Getrlimit(2) 

60  umask   Set file creation mask 

61  chroot   Change root directory 

62  ustat   Get file system statistics 

63  dup2   Replace second w/ duplicate of first file descriptor 

64  getppid   Get process identification 

65  getpgrp   Set/get process group 

66  setsid   Create session, set process group ID 

67  sigaction   Examine and change signal status 

70  setreuid   Set real and / or effective user ID 

71  setregid   Set real and / or effective group ID 

72  sigsuspend   POSIX signal handling functions 

73  sigpending   POSIX signal handling functions 

74  sethostname   Set host name 

75  setrlimit   Get/set resource limits and usage 

76  getrlimit   get/set resource limits and usage 

77  getrusage   Get/set resource limits and usage 

78  gettimeofday   Get time 

79  settimeofday   Get time 

80  getgroups   Get list of supplementary group IDs 

81  setgroups   Set list of supplementary group IDs 

82  select+K4:  Synchronous I/O multiplexing 

83  symlink   Make new name for a file 

84  oldlstat   

85  readlink   Read value of a symbolic link 

86  uselib   Select shared library 

87  swapon   Start swapping to file/device 

88  reboot  Reboot or enable/disable Ctrl-Alt-Del 

89  readdir   Read directory entry 



90  mmap   Map files or devices to memory (defunct) 

Sys  Action  Function 

91  munmap   unmap files or devices to memory 

92  truncate   Truncate file to specified length 

93  ftruncate   Truncate file to specified length 

94  fchmod   Change permissions of a file 

95  fchown   Change ownership of a file 

96  getpriority   Get program scheduling priority 

97  setpriority   Set program scheduling priority 

98  profil   Execution time profile 

99  statfs   Get file system statistics 

100  fstatfs   Get file system statistics 

101  ioperm   Set port input/output permissions 

102  socketcall   Socket system calls 

103  syslog   Read/clr kernel msg buffer; loglevel 

104  setitimer   Set an erval timer 

105  getitimer   Get value of an erval timer 

106  stat   Get file status 

107  lstat   Get file status 

108  fstat   Get file status 

110  iopl   Change I/O privilege level 

111  vhangup   Virtually hang-up the current process 

112  idle   Make process 0 idle 

113  vm86old   Enter virtual 8086 mode 

114  wait4   Wait for process termination, BSD 

115  swapoff   Stop swapping to file/device 

116  sysinfo   Info on overall system statistics 

117  ipc  System V IPC system calls 

118  fsync   Sync complete in-core state with disk 

119  sigreturn   Ret from sig so cleanup stack 

120  clone   Create child process 

121  setdomainname   Get/set domain name 

122  uname   Get name & info about current kernel 

123  modify_ldt   Get or set ldt 

124  adjtimex   Tune kernel clock 

125  mprotect   Control allowable accesses to memory 

126  sigprocmask   POSIX signal handling functions 

127  create_module   Create module entry 

128  init_module   Initiate loadable module entry 

129  delete_module   Delete module entry 

130  get_kernel_syms   Retrieve kernel & module syms 

131  quotactl  Manipulate disk quotas 

132  getpgid   Set/get process group 

133  fchdir   Change working directory 

134  bdflush   Start/flush/tune buffer 



135  sysfs   Get file system type information 

136  personality   Set process execution domain 

138  setfsuid   set user id for file system checks 

139  setfsgid   set group id for file system checks 

140  llseek  R/W file offset 

141  getdents   Get directory entries 

142  newselect+K4:  Sync I/O multiplexing 

143  flock   Apply/remove advisory file lock 

144  msync   Synchronize file with a memory map 

145  readv   Read a vector 

146  writev   Write a vector 

147  getsid   Det session ID 

148  fdatasync   Synchronize in-core data with disk 

150  mlock   Disable paging for parts of memory 

151  munlock   Re-enable paging for parts of memory 

152  mlockall   Disable paging for calling process 

153  munlockall   Re-eenable paging for calling process 

154  sched_setparam   Set scheduling parameters 

155  sched_getparam   Get scheduling parameters 

156  sched_setscheduler   Set scheduling algo/param 

157  sched_getscheduler   Get scheduling algo/param 

158  sched_yield   Yield processor 

159  sched_get_priority_max   Get static priority rng 

160  sched_get_priority_min   Get static priority rng 

161  sched_rr_get_erval  Fetch SCHED_RR erval 

162  nanosleep   Pause execution for specified time 

163  mremap  Re-map a virtual memory address 

164  setresuid   Set real, eff. and saved user ID 

165  getresuid   Get real/effective/saved user ID 

166  vm86 s   Enter virtual 8086 mode 

167  query_module  For bits pertaining to modules 

168  poll   Wait for event on file descriptor 

169  nfsservctl   Kernel nfs daemon 

170  setresgid   Set real,effective,saved group ID 

171  getresgid   Get real/effective/saved group ID

172  prctl  Operations on a process 

173  rt_sigreturn  Cleanup stack after return from signal 

174  rt_sigaction  Examine/change a signal action 

175  rt_sigprocmask  Examine/change block signals 

176  rt_sigpending :  Examine pending signals 

177  rt_sigtimedwait  Wait for queued signals 

178  rt_sigqueueinfo  Queue a signal and data 

179  rt_sigsuspend  Wait for signal 

180  pread  Read from file descriptor at given offset

181  pwrite  Write to file descriptor at given offset 



182  chown   Change ownership of a file 

183  getcwd   Get current working directory 

184  capget   Get process capabilities 

185  capset   Set process capabilities 

186  sigaltstack  Set/Get signal stack context 

187  sendfile  Transfer data between file descriptors 

190  vfork   Create child process & block parent 

191  getrlimit   Get resources limit 

192  mmap2  Map file or devices to memory   
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