3§ . S Ar
1 £ 1 2

1]

— D D)

-

Fourth Edition

BRUCE SMITH

Raspberry Pi Operating System Assembly Language
Hands-on-Guide
Fourth Edition

© Bruce Smith

eBook editions 1,2 3, Previously published as Raspberry P1 Assembly Language
Raspbian ISBN 978-0-9923916-0-7

Fourth edition Revised and updated: March 2021 [0004]
ISBN: 978-0-6480987-4-4

Editor: Alan Ford Edits, Melanie Smith
Cover: Sumit Shringi, Graphic Designer (Book Cover-Design)

All Trademarks and Registered Trademarks are hereby acknowledged. Within this
Hands On Guide the term BBC refers to the British Broadcasting Corporation.
Raspberry Pi and the Raspberry Pi logos are registered trademarks of the
Raspberry Pi Foundation.

Raspberry Pi OS Assembly Language: Hands On Guide is not endorsed by the
Raspberry Pi Foundation.

All rights reserved. No part of this book (except brief passages quoted for critical
purposes) or any of the computer programs to which it relates may be reproduced
or translated in any form, by any means mechanical electronic or otherwise
without the prior written consent of the copyright holder.

Disclaimer: Whilst every effort has been made to ensure that the information in
this publication (and any programs and software) is correct and accurate, the
author and publisher can accept no liability for any consequential loss or damage,
however caused, arising as a result of the information printed in this book and on
any associated websites. Because neither BSB nor the author have any control
over the way in which the contents of this book is used, no warranty is given or
should be implied as to the suitability of the advice or programs for any given
application. No liability can be accepted for any consequential loss or damage,
however caused, arising as a result of using the programs or advice printed in this
book.

Source code and supplementary material referenced in this book is available to
readers on the author’s website at: www.brucesmith.info.

Published by BSB. www.brucesmith.info.

http://www.brucesmith.info/

Using this eBook

I love eBooks! Loaded onto my Kindle Paperwhite I can take my favourite books
with me, in my pocket, wherever I go and have immediate access to them when
and where I want. An eBook copy of any Ken Follett book is much easier to
manage than the oft 800-odd page hard-back equivalent.

As far as technical books go, it may sometimes not be as straightforward as when
reading a novel. Because eBooks are a one size fits all entity, it makes formatting
them for all possible instances difficult. In fact, it is a lot easier to format a print
book than an eBook.

Long program listings, especially which contain copious comments can be
unwieldly in an eBook. Thus, I would strongly advise downloading the source
code for the programs and scrutinising these at the relevant point. There are
several tables and figures, and in many cases, you can click on the highlighted
corner to display the table full screen.

Wi

-

I~ e.mm ®@EIeM 2D v

Hasphieny P| 05 Assembly Language [EPUB] - E-bosk viewsr v

10 & reference number S

19, File Handling

Files play big part in the aperation of your Raspherry Pi. Almost all the activities you
undertake involve the use of a file. Mostly, the Raspberry i O, takes care of the file
management. The system provides the infrastructure to allow programs to interface with
itand to perform most file aperations. This ranges from creating files, to opening and
closing files and many other file operations we take for granted.

In Chapter 8 we saw how we can (ake a ine of text and overwrite it or convert it
from uppercase o lowercase. That ASCI text was located as a siring s part of the
program itself. In that instance we knew where the siring was located as there was a
mame label idemifying it. What if the information we need was ina file stored on an
8D Card or on a USB?

Files are a fundamental element to all computer operations, especially so Raspberry
P 0S (Raspbian), In this chapter we'lllook at how to create, apen, close, read from and
write 1o files. Figure 19 fists the system calls we will tlise (o do this.

Operation | Description Cll | Sysaall
Read Read fomafile | sysread | 3
Write Willetoafile | sys write | 4
Open Open/Createafile | sis.open | 5
Close Close a file sys close | 6
Creale Create file sys creat | §
Syne Sync-flushafile | sy fsync | 118

Figure 19a. File Associated System Calls used in Program 1%.

We've used some of these before, and most require additonl informaion passe to
them before being called. Remember that the Syscall number (listed in Figure 1%) must
e loaded into R7, and any additional details provided via RO-RG, Not al registers are
negded for every call, but assume they are unless you know otherwise. RO s often used
(o return information by the Syscall, stch as an error number or result.

The listing for Pragram 19a shows how you can use these call, I this example,
taking the contents of file, reading the frst 26 characters from it into a memory buffer,
efore writing them out 10 & nevw file, This example asstmes that the files are in the

val

19 voaX
File Edit View Sort Go Tools
|52 = | [0 & < 1 hamelpileskiop PROGRAVISICH »
Home Folder — -
{3 Filesystem Root - =
. inflett makefle
£34168 Volume 4
‘ i 7
8 |
CHIO

Flle Edt Seach View Document Project Buld Tools Help

= = =
L'n' :;'LHX si‘!‘i‘_"v
‘pmqﬂas X

Il {* File Creatian and Access Using Syscall L

{* Create and Open File, Read from File, Write to File '/
.global _start

start:

i Open f1le to read from

i Assumes file already exits in current directory
i Or will generate an error nessage (errorl)

LDR RO, =inputFile @ Addr of filename
MOV 1, #o_rdonly @ flag read only file
MOV R2, ds rder @

MOV R7, #sys_open @ Load syscall 5

L o o T e

SHI 0

HOVS R8, RO f Save returned file Flag in RE

BPL moveon i If positive, moveon

MOV RE, #1 i Set screen as autput

LDR RY, =arrorl @ addr of errorl message

MOY 72, #18 i string length

MOV R7, #4 fi Write code

Sl 0 i Do it

B finish @ terminate progran L
|)

& [Tyme fere VRAE you ank, Use 1T 25 2 Aotice/serateh baard

‘ Meﬁages

Serbble

b

Failed to load one or more session files

Figure. eBook open on Raspberry Pi Desktop, along with appropriate program.

Acknowledgements

Thanks go to Richard Khoury for his help with the C segments within this book
and the finer art of using GCC and GDB. Thanks to Mike Ginns for the concepts
of several programs listed here. Some listings originate from his book
Archimedes Assembly Language which was first published by Dabs Press in
1988. (A key to how old the ARM is!) Also, I am grateful to Brian Scallan, Steve
Cirelli and Tony Palmer for their feedback and updates. I am also indebted to the
many readers who have written with suggestions to improve this book.

Dedication

Dedicated to all the health care workers, nurses, doctors and carers around the
world. To the ones that gave their all in a time of need during the pandemic. Their
memory will be embedded into our hearts for years to come. Thank you.

About the Author

Bruce Smith purchased his first computer—an Acorn Atom — in 1980. He was
immediately hooked, becoming a regular contributor to the mainstream computer
press including ‘Computing Today’ and ‘Personal Computer World’. With the
arrival of the BBC Micro his magazine work expanded into books and his 1982
title ‘Interfacing Projects for the BBC Micro’ has become regarded as a classic of
the time as the first book showing home users how to connect the computer to the
outside world. He was one of the first to write about the ARM chip when it was
released on the Acorn Archimedes in 1987. Bruce has written about all aspects of
computer use. His friendly, lucid style of writing caused one reviewer to write,
“This is the first computer book I have read in bed for pleasure rather than to cure
insomnia!’ Bruce’s books have been translated into many languages and sold
across the world. His publishers have included BBC Books, Collins, Virgin
Books and Rough Guides. Originally from London’s East End, he now lives in
Sydney, NSW.

Table of Contents

e Using This eBook
o Acknowledgements
o Dedication
e 1. Introduction
o Imagination Unlimited
Start Experimenting
GNU C Compiler
Learn by Example
What Will You Learn?
Fourth Edition and Compatibility
Raspberry Pi OS
What About 64-bit?
Keyboard Computing
The Significance of ARM
Raspberry Pi Through the Ages
Compute Modules
Notation in Use
Table Terminology,
Centre for Computing History
Companion Website and Free Books
e 2. Starting Out
Numbers with Meaning
ARM Instructions
The Transformation Process
Why Machine Code?
Language Levels
Into Orbit
RISC and Instruction Sets
Assembler Structure
Error Of Your Ways
Cross Compilers
o The Raspberry Pt ARM Chips(s)
e 3. First Time Out
o The Command Line
o Creating A Source File
o Come to the Execution

O 0 0 O 0O 0O O 0O 0O oo 0o o o o

0O 0O O o 0 0o O O o o

Assembler Errors
The Components
Lack of _start
Linking Files
Tidying Up
A Comment on Comments
Geany Programmer’s Editor
its of a RISC Machine
Binary to Decimal
Binary to Hex
Hex to Decimal and Back
Binary Addition
Subtraction
Twos Complement Numbers
When Twos Don’t Add Up
Desktop Calculator
. ARM Arrangements
Word Lengths
Byte and Word Accessed Memory,
Registers
R15 - Program Counter
Current Program Status Register
Bits and Flags
Setting Flags
S Suffix
R14: The Link Register
R13: The Stack Pointer
e 6. Data Processing
Addition Instructions
Subtraction
Multiplication
Divide Arrives
Move Instructions
Compare Instructions
Ordering Numbers
e 7Z.ROS Ins and Outs
SWI and SVC Commands
Writing to the Screen
Reading from the Keyboard
eax and Others

o0 © 6 0 0 0 O O

[]
~

[]
(N
OOOOOOOOOO>OOOOOOOO

O 0O 0O O O o ©°o

O O O o

e 8. Logical Operations
Logical AND
Logical OR
Logical EOR
Logical Instructions
ORR to Convert Character Case
Bit Clear with BIC
Flag Tests
System Call Registers
¢ 9. Conditional Execution
o Single Flag Condition Codes

O 0 0O o o o o o

EQ: Equal
NE: Not Equal

VS: Overflow Set
VC: Overflow Clear
MI: Minus Set

PL: Plus Clear

CC: Carry Clear (LO: Lower)
AL: Always
NV: Never

o Multiple Flag Condition Code

HI: Higher (Unsigned)

LS: Lower Than or Same (Unsigned)
GE: Greater or Equal (Signed)

LT: Less Than (Signed)

GT: Greater Than (Signed)

LE: Less Than or Equal To (Signed)

o Mixing the S Suffix

O O O O o

O O O o

10. Branch and Compare

Branch Instructions

The Link Register

Using Compare Instructions
Compare Forward Thinking
Branch Exchange

11. Shifts and Rotates

Logical Shifts
Logical Shift Right
Arithmetic Shift Right
Rotations

Extended Rotate
Uses of Shifts and Rotates
Immediate Constant Range
Top Move
e 12. Smarter Numbers
Long Multiplication
Long Accumulation
Division and Remainder
Smarter Multiplication
Much More Inside
e 13. Program Counter R15

o Pipelining

o Calculating Branches
e 14. Debugging with GDB
Frozen Cases
Assembling for GDB
The Disassembler
Breakpoints
Breakpoint Labels
Memory Dump
Shortcuts
GDB Make Options
e 15. Data Transfer
ADR Directive
Indirect Addressing
ADR and LDR
Pre-Indexed Addressing
Accessing Memory Bytes
Address Write Back
Post-Indexed Addressing
Byte Conditions
PC Relative Addressing
e 16. Block Transfer

o Write Back

o Block Copy Routine
e 17. Stacks
Push and Pull
Stack Growth
Stack Application
Framed Work

O O O O

O O O O o

O 0O 0O O o O O o

0O 0O O 0O 0 0O O O o

O O O o

o Frame Pointer
18. Directives and Macros
o Data Storage Directives
o Aligning Data
o Macros
o Including Macros
19. File Handling
o File Permissions
20. Using libc
Using C Functions in Assembler
Source File Structure
Investigating the Executable
Number Input with Scanf
Getting This Information
21. Writing Functions
o Function Standards
o More Than Three
o Preserving Links and Flags
o Robust Print Routines
23. GPIO Functions
Memory Mapping
The GPIO Controller
GPIO In and Outs
Building the Code
Other GPIO Functions
GPIO Pins Explained
24. Floating-Point
VFEP Architecture
The Register File
Managing and Printing
Assembling and Debugging VFP with GDB
Load, Store and Move
Precision Conversion
Vector Arithmetic
25. VFP Control Register
o Conditional Execution
o Scalar and Vector Operations
o Which Type of Operator?
o Len and Stride
26. Neon

O O O O ©o

0O O O O O ©o

O 0 0O O O O o

0O 0 O 0 0 O o 0 O o o

Neon Assembler

Neon Instructions and Data Types
Addressing Modes

VLD and VST in their Stride
Load of Others

Neon Intrinsic

Neon Arrays

Order Correctly,

Matrix Math

Multi Matrix

Macro Matrix Example

e 27. Thumb Code

o
o
o
o
O
o
o

Differences

Assembling Thumb
Accessing High Registers
Stack Operators

Single and Multi-Register
Functions in Thumb
ARMv7 Thumb Instructions

e 28. Unified Language

o

o

o

(@)

Thumb Changes
New A32 Instructions

Compare by Zero
Assembling UAL

e 29. Exception Handing

O 0 0O O o 0o O O ©o

Modes of Operation
Vectors

Register Arrangements
Exception Handling

MRS and MSR

Interrupts When?

Your Interrupt Decisions
Returning from Interrupts
Writing Interrupt Routines

e 30. System on a Chip

O O O O ©o

The ARM Chip & Instruction Sets
Co-processors

Pipeline

Memory & Caches

The GPU

ARMvS Overview
Raspberry Pi OS 64-Bit
In Summary
Archimedes Principle

e A. ASCII Character Set

e B. ARM Instruction Set

e C.ROS Syscalls

O O O O

1. Introduction

It didn’t surprise me when, early in 2013, it was announced that the Raspberry Pi
had sold one million units. And counting... It took me back more years — decades
even — than I care to remember when it was announced that the BBC Micro had
done the same. Both came out of businesses based in Cambridge in the UK and
there were even more links between the two than you might imagine.

Both systems fascinated me and literally millions of other people. The first
system took every penny of my savings at the time, but the Raspberry Pi didn’t
even drain the cash in my wallet. But whist the ticket price for each was vastly
different, pretty much everything else about them was so familiar. Not least their
ability to run a wide range of software and educational tools and how easy it was
to connect external devices and control the outside world. I would suspect that
most people who own one Raspberry Pi, own several.

Figure 1a. An Original Raspberry Pi Model B.

For the first time since the BBC Micro there is an affordable and infinitely
accessible system that just about anyone can use. Meanwhile, the PC and Mac
have dominated the market and other more games-orientated boxes have been
available. But none of these have impacted the technical home hobbyist user. The
techsperts have had a variety of development boards to experiment and fiddle
with, again mostly beyond the scope of the home hobbyist computer market. For
the cost of a couple of CDs or new release DVD, the Raspberry Pi has changed
all that.

The launch of the Raspberry Pi Zero in November 2015 took cheapness to a
new level. A fully-fledged ARM-driven computer for just $5. Insane! And if that
wasn’t enough the December 2015 issue of MagPi (the official Raspberry Pi
magazine) had it bound on the cover as a free give away. Could the Raspberry Pi
be classed as the world’s first disposable computer?

At the time of updating this introduction for the fourth edition (December
2020) sales had surpassed 30 million across the various models available. Indeed,
that figure was reported to have been passed by the start of 2020 with a variety of
organisations using at the very heart of their infrastructure and development.
Oracle hailed its cluster of 1,060 Raspberry Pi boards the ‘world’s largest’ Pi
supercomputer, sporting 4,240 cores. The Jet Propulsion Laboratory (JPL) also
uses the boards for its Mars mission.

Imagination Unlimited

One reason for the birth of the Raspberry Pi was to make it easy for people to
take up programming, with the aid of a competitively priced computer system
whose use was limited only by the user’s imagination. I hope this book will help
many of you reading it realise that dream. In fact, it isn’t a dream. It 1s a
probability if you continue your way through the pages that follow — a first step
on a rewarding and educational pastime. And, who knows, you may become part
of a new generation of computer programmers working at the sharp end of what
1s possible.

The purpose of this book is to give the reader a better understanding of how
computers really work at a lower level than in programming languages like C or
Python. By gaining a deeper understanding of how computers work, you can
often be much more productive developing software in higher level languages
such C and Python. Learning to program in assembly language is an excellent
way to achieve this goal.

This book provides an introductory tutorial in writing assembly language on
the Raspberry Pi and specifically using the Raspberry Pi OS (Raspbian Operating
System). Assembly language generates machine code that can be run directly on
your computer.

I first learnt to program assembly language on early Acorn designed
machines and ultimately watched the ARM chip develop on their Archimedes and
BBC Micro Second-Processor systems. Ultimately that assembly language was
the forerunner of what the Raspberry Pi uses today. If anything, that proves that
what you learn here should stand you in good step for many years to come. So,
it’s been a significant investment.

Start Experimenting

While this is not a book for the complete novice, you certainly do not require any
experience with assembly language or machine code to be able to pick it up and
start reading and experimenting. Programming experience would be beneficial,
and any structured language will have provided the groundwork for many of the
fundamental concepts required.

This is a Hands-on-Guide, so there are plenty of programs for you to try for
yourself. Learning to program is about experimenting, making mistakes, and then
learning from them. Experimenting by changing values and information is
without doubt the best way to understand what is happening and is to be
encouraged. All programs are available to download from the companion website.
The book is equally applicable to all versions of the Raspberry Pi. More on this
shortly.

GNU C Compiler

There are several operating systems (programming environments) available to
download for using with the Raspberry Pi. As the title suggests, the one we’re
using here is called the Raspberry Pi OS (formerly Raspbian), and this comes
with everything you’ll need to write and run your programs.

The software we will utilise is GCC, the GNU Compiler Collection. The
original author of the GNU C Compiler (GCC) was Richard Stallman, the
founder of the GNU Project. The GNU project was started in 1984 to create a
complete operating system as free software, to promote freedom and cooperation
among computer users and programmers. Every operating system needs a C
compiler, and as there were no free compilers in existence at that time, the GNU
Project had to develop one from scratch.

You may be aware that C is an extremely popular programming language; it
is also one that is very closely tied to the Advanced RISC Machine (ARM)
microprocessor which the Raspberry Pi uses at its very core. You do not need to
know C to write assembly language programs, so don’t be too concerned about
that.

GCC i1s a very clever piece of software and can be used in many ways. One
of its key components is as an assembler, and this is the part of GCC we shall be
primarily interested in.

The work was funded by donations from individuals and companies to the

Free Software Foundation, a non-profit organisation set up to support the work of
the GNU Project. The first release of GCC came in 1987. Since that time GCC
has become one of the most important tools in the development of free software
and is available on almost every operating system platform in existence.
GCC is free software, distributed under the GNU General Public License (GNU
GPL). This means you have the freedom to use and to modify GCC, as with all
GNU software. If you need support for a new type of CPU, a new language, or a
new feature you can add it yourself, or get someone to do it for you.

Learn by Example

The programs presented in this book are provided to illustrate concepts being
explained with a simple and — where possible — practical application. I will not
try to baffle you with long and complex listings; there is no need to. I will leave it
to you to take the examples and information and combine them two, three, four
and more at a time to create a useful outcome, learning a great deal along the way.

Some degree of ‘chicken and egg’ syndrome has been unavoidable, but |
have tried to keep it to a minimum. Concepts are introduced in an order that goes
with knowledge so far acquired. However, sometimes this is not always possible;
in such cases I will highlight the fact. In such cases, you need to accept that it
works, and you will understand the how and why later in the day!

Programming really is fun. I have written a tonne of books on the subject
and a good percentage of them have been about home computers — how to
program and use them. I have never had a computer lesson in my life. If I can do
it, so can anyone. It is also frustrating! There is not a programmer who ever lived,
novice or expert, who has not spent an inordinate amount of time trying to solve a
programming problem, just to realise later that the issue was right there in front of
them all along. I would go so far as to say the real satisfaction comes when you
solve problems for yourself.

One word of advice: If you can’t solve something, walk away, and do
something else for a while. It’s amazing how often the solution comes to you
when you are doing something else. A good rule for life in general!

What Will You Learn?

In a nutshell, you will learn to become a proficient assembly language
programmer. By the end of this book, provided you have worked through and
applied the example programs and small snippets of programs that are dotted
through the text, you will be able to design, write and produce machine code
programs to undertake any number of tasks. You will also have the grounding to
allow you to delve into the more generic texts relating to the ARM chip and
system programming.

You will also become familiar with using GCC in a whole variety of ways
including writing for the Raspberry Pi Operating System and by combining your
assembled programs with libraries of standalone functions.

You will learn how to interpret and manipulate what your Raspberry Pi is
doing at its most fundamental level. You will be right in there programming, deep
inside the ARM chip.

Problem solving is something you will also need to learn. When a machine
code program will not work as you intended it is often a simple logical flaw that
1s the root cause. GCC comes with its own debugging tools and we’ll see how to
use these to good effect. I’ll also provide some useful tips on the best way you
can narrow down your search area to the source of the problem.

Fourth Edition and Compatibility

By and large this book is compatible with the full range of Raspberry Pi
computers. One of the mantras of those developing the hardware and software for
the system is to ensure that it remains backwards compatible (as far as possible).
That essentially means that what works on one Raspberry Pi will work on
another, provided it is written correctly (in terms of software). Hardware should
work also, aside from some of the physical changes that have taken place. For
example, the HDMI port works, but the type of lead required to connect to the
outside world may change (standard to micro, for instance).

Figure 1b. Raspberry Pi 4 Model B.

Physically, the difference between models and versions is generally obvious. And
for the purposes of this book I would assume you have a model that has a GPIO
port fitted as standard, and this is largely where some of the changes come in
from this books point of view, of you are intending to use some of the examples

there that show how use your coding to connect to attached devices. Where
required changes are noted in the text of the book.

Several different versions of the ARM chip have been used in the evolution of the
Raspberry Pi to date, and that may continue in the future as well. For now, just be
aware that differences may exist, but these will become apparent as your
knowledge grows. As this is essentially a beginner’s book, it does not change the
fundamentals of the programming experience herein. As such, the contents of this
book can be considered applicable as an introduction to ARM assembly language
regardless of the model Raspberry Pi you are using.

Raspberry Pi OS

When the 8GB Raspberry Pi 4 was announced (May 2020), the Raspberry Pi
Foundation revealed that it was changing the name of its official operating system
from Raspbian to Raspberry P1 OS. This is with a view to providing a similar, and
stable operating system and windows-style desktop environment across all
platforms and to ensure on-going backwards compatibility with software and
applications as far as possible.

The two main categories of processors are 32-bit and 64-bit. By supporting
both 32-bit and 64-bit operating systems, and taking charge of the operating
system build, the look and feel of OS’s can be maintained. Simply put, a 64-bit
processor i1s more capable than a 32-bit processor because it can handle more data
at once. A 64-bit processor can store more computational values, including
memory addresses, which means it can access over four billion times the physical
memory of a 32-bit processor. That’s just as big as it sounds!

From a user point of view, utilising the standard 32-bit operating system,
there is no functional difference in what this book covers. For ‘Raspbian’ read
‘Raspberry P1 OS’ and vice versa. More importantly, the OS remains backwards
compatible so that Raspberry Pi OS will run on all versions of the Raspberry Pi.
You can update and upgrade your current operating system to the latest Raspberry
Pi OS at any point.

The Raspbian project will continue and will undoubtedly continue to be used
to build the 32-bit version of Raspberry Pi OS. Considering that several models of
Raspberry P1i, including the very-popular Raspberry Pi Zero, will never work with
a 64-bit OS, the 32-bit platform will continue to be important if not dominant for
years to come. It’s the common denominator. If you wish to stay upto-date about
the Raspberry Pi OS then DistroWatch maintains relevant information at:
https://distrowatch.com/table.php?distribution=raspios.

https://distrowatch.com/table.php?distribution=raspios

What About 64-bit?

The Raspberry Pi 2B (v1.2) was the first to use an ARM 64-bit processor, yet
there wasn’t an official 64-bit OS available for it. That’s because the Raspberry Pi
Foundation has focused instead on making its 32-bit Raspbian OS run on all
generations of the RPi. Since the Raspberry Pi 2B (v1.2), all RP1 releases have
been based on 64-bit processors, which can also run in 32-bit mode.The 32-bit
state of the ARM chip is called AArch32 (or A32) and the 64-bit is AArch64 or
A64. This means that 32-bit software can be run on a 64-bit ARM chip in
AArch32 state—the reverse is not true.

At the time of writing there is a beta-version of the 64-bit Raspberry Pi OS
available for download and use. Once this is out of beta it will be released and run
on all 64-bit capable versions (see Chapter 30). Note that the 32-bit version (A32)
of ARM assembly language is different to the 64-bit version (A64), therefore
code written in A32 will not run without modification in A64 state.

Keyboard Computing

The inevitable happened in November 2020 when desktop computing finally
arrived for the Raspberry Pi the board being re-engineered and packaged inside a
red and white keyboard for the launch of the Raspberry Pi 400.

Figure 1c. The Raspberry Pi 400, the ultimate in keyboard computing.

The Significance of ARM

All microprocessors are based on a specific instruction set architecture (ISA), and
the most significant of these down the years has been x86-based which has
dominated the desktop and laptop marketplace (PC and Apple). Most recently this
includes the 64-bit version called x86-64 or AMD64.

However, most Apple and Android tablets and smart phones have ARM
processors within, which is incompatible with x86. These devices use the ARM
chip because of its low energy consumption, as in longer battery life. However,
the incompatibility means that software compiled for desktops and laptops cannot
be directly run-on ARM-controlled mobile devices.

Reduced Instruction Set Computing or RISC processors, used in ARM devices,
execute a lot of simple instructions to complete task. The x86 processors use
CISC or a Complex Instruction Set and execute a series of more complex
instructions to complete an identical task.

ARM chips therefore achieve their lower power consumption as they have
fewer transistors in their core structure than CISC based ones. It also means from
a programmers’ point of view you have less instructions to learn as an ARM
programmer!

The other significant difference is that ARM Holdings is not a chip
manufacture. It designs the chips and then licenses these core designs for others
to include in their own purpose build chips.

In mid-2020 Apple Computers announced it will be going full tilt with self-
manufactured ARM chips included in its full range of new computers, therefore
ensuring applications can run across its range of devices. Microsoft 365, Adobe
Creative Cloud and like software are likely to be available for a new range of
ARM Macs. It doesn’t take a great stretch of the imagination to see they could
also be available for other ARM-based computers too.

While the x86 based laptops and desktops will continue in the short term at
least dominate the marketplace in terms of installed numbers ARM-based Apple
Macs should bring ARM-based laptops/desktops computers into the mainstream
market place, and may tempt other players as well.

All this adds to another reason to learn ARM assembly language
programming.

Raspberry Pi Through the Ages

The Raspberry Pi has been evolving ever since it was first released in 2012. With
each generation there is often significant improvement, in the type of the central
processing unit, memory capacity, networking support, and peripheral-device
support.

The table shown in Figure 1d lists some of the basic specifications for each
of the Raspberry Pi formats (some versions may appear similar in specification,
but but have changed slightly in configuration which is not noted in the table). As
a rule, Raspberry Pi comes in three different formats:

Model B: these are the ‘full size’ boards which include Ethernet and USB
ports. The B+ versions often add enhancements or specific differences.

Model A: these are the square shape boards. Consider these a ‘lighter’
version of the Raspberry Pi, usually with lower specifications than the headline
Model B, with less USB ports and often no Ethernet. As such they retail at a
lower price point.

Zero: Smallest Raspberry Pi available. Zeros have less computing
processing power than the Model B but use less power as well. No USB, no
Ethernet, just a nice simple package!

The amount of memory available on each Raspberry Pi should have no real
significance for the requirements of this book, just be aware that the memory
addresses you see when you run or list a particular program may differ from what
1s shown herein. That should not hinder the program operation though.

Model Release Specification FPU
RP1 400 Nov 2020 Broadcom BCM2711C0, quad-core Cortex-A72 VFPv4
(ARM v8) 64-bit SoC at 1.8 GHz, VideoCore VI + Neon

RPi14B June 2019; Broadcom BCM2711B0, quad-core Cortex-A72 VFPv4
May 2020 (ARM v8) 64-bit SoC at 1.5 GHz, VideoCore V + Neon
(8Mb)

RPi May 2018 Broadcom BCM2837B0, quad-core Cortex-A53 VFPv4

3B+ (ARMvVS-A) 64-bit SoC @ 1.4GHz. VideCore IV + Neon

RPi 3B Feb 2016 Broadcom BCM2837 quad-core Cortex-AS53 VFPv4
(ARMv8-A) 64-bit SoC @ 1.2GHz. VideCore IV + Neon

RP1 Nov 2018 Broadcom BCM2837B0, quad-core Cortex-A53 VFPv4
3A+ (ARMvVS8-A) 64-bit SoC @ 1.4 GHz. VideCore + Neon
1A%

RP1 Nov 2020 Broadcom BCM2837, quad-core Cortex- VFPv4

2Bvl1.2 A53(ARMvV8-A) 64-bit SoC @900Mhz. + Neon
VideoCore IV

RPi2B Feb 2015 Broadcom BCM2836, quad-core Cortex-A7 VFPv3
(ARM v7-A) 32-bit SoC at 900 MHz, VideoCore + Neon

v
RPi May 2012 Broadcom BCM2835, 1176JZF-S (ARM v6Z) VFPv3
1B+ 32-bit SoC at 700 MHz, VideoCore IV

RPi 1B May 2012 Broadcom BCM2835, 1176JZF-S (ARM v6Z) VFPv2
32-bit SoC at 700 MHz, VideoCore IV

RP1i Nov 2014 Broadcom BCM2835, 1176JZF-S (ARM v6Z) VFPv2
1A+ 32-bit SoC at 700 MHz, VideoCore IV

RPi 1A Feb 2013 Broadcom BCM2835, 1176JZF-S (ARM v6Z) VFPv2
32-bit SoC at 700 MHz, VideoCore IV

RP1 Feb 2017 Broadcom BCM2835, single-core 1176JF- VFPv2
Zero S(ARM v6Z) 32-bit SoC at 1 GHz, VideoCore

W/WH v

RPi May 2016 Broadcom BCM2835, single-core 1176JF- VFPv2
Zero S(ARM v6Z) 32-bit SoC at 1 GHz, VideoCore

vl.3 v

RP1 Nov 2015 Broadcom BCM2835, single-core 1176JF- VFPv2
Zero S(ARM v6Z) 32-bit SoC at 1 GHz, VideoCore

vl.2 v

Figure 1d. Raspberry Pi formats, some base specifications.

Compute Modules

The Compute Module is a stripped-down Raspberry Pi which is intended for
industrial or commercial applications. The idea being that they can be used in
development projects by anyone who wants them. (Ultimately you purchase the
boards and finalise them yourself for whatever need you might have.) As such the
Compute Modules don’t have the connection bells and whistles that you may find
on the equivalent Raspberry Pi, equally they are not as robust. As such, and
although they do contain ARM processors as they are based on the Raspberry Pi,
they are not covered herein.

But then came the Computer Module 4. Unlike previous Compute Modules
this by purchasing the updated 10 Board you get easy access to all the interfaces
standard connectors, providing a ready-made development platform and a starting
point for your own designs.

Notation in Use

A standard notation has been adopted throughout this book. Number types and
certain operations on numbers are commonplace in programming books such as
this, and it is important to distinguish among them. The short list here is for
reference. Their exact meaning will be described as we encounter them within the
text of the book.

% or Ob Denotes that the number that follows it is in binary or base 2. For
example: %11110000 or Ob11110000

0Ox Denotes that the number that follows it is hexadecimal or basel6. For
example: OxCAFE

<> Angle brackets or chevrons are used extensively to enclose a word that
should not be taken literally but read as the object to use with the command. For
example, <Register> means a register name, RO for example, should be used in
the angled brackets and not the word ‘Register’ itself.

Dest Short for destination.

Operandl The commentary in the text often talks about Operandl and its
use. The relevant values for Operandl as defined at that point should be used. For
Operandl, this is normally a register.

Operand2 The commentary in the text often talks about Operand2 and its
use. The relevant values for Operand2 as defined at that point should be used. For
Operand2, this is normally either a register or an immediate value.

Op1 Shorthand format for <Operand1> when space is tight.

Op2 Shorthand format for <Operand2> when space is tight.

() Brackets show that the item within is optional and may be omitted if not
needed. For example, ADD (S) means that S may or may not be included.

Table Terminology

The table in Figure 1d utilises many acronyms that may or may not be new to
you. We’ll examine each of these briefly now and re-address them at the
appropriate points in the book, as required.

SOC: System-on-Chip. One of the key elements of the Raspberry Pi design
and generally the largest chip on the board, it contains all the significant
components in one package. This includes the ARM processor or processors and
graphics processing units. Note that each SoC is defined by a number - viz
BCM2771 for the Raspberry Pi 4 B.

CPU: This is the ARM processor or processors used, integrated into the
SoC. The table lists the specific ARM chip along with the number of included
cores and the speed of operation. Thus, on the original Raspberry Pi B, the table
tells us that a single ARM 1176JZF-S running at 700MHz was supplied. More
recently the Raspberry Pi 4 B utilises four Cortex-A72 ARM cores running at
1.5GHz.

FPU: Floating-Point Unit or maths co-processor which provides complex
math functions. This is also part of the SoC and later editions of the SoC include
a Neon co-processor allowing the FPU to undertake multiple operations in
parallel. VFP is short for vector floating-point.

GPU: Graphics Processing Unit. Included as part of the Broadcom SoC, this
1s also manufactured by Broadcom and is typically a VideoCore IV, changing to
VideoCore VI with the Raspberry Pi 4 B. Effectively it is a multimedia processor
that can decode the various graphics and sound formats (codecs) to ensure great
output on your monitor, maintaining low power consumption.

The final column of the table lists the Instruction Set Architecture
implemented and whether it is 32-bit or 64-bit. As you can see, and referring the
item on 64-bits earlier, a 64-bit instruction set has been available on the
Raspberry Pi since the RPi 2 B v1.2, effectively October 2016.

Centre for Computing History

The Centre for Computing History (CCH) is a pioneering educational charity that
opened at its current site in Cambridge in August 2013. CCH was established as
an educational charity to tell the story of the Information Age through exploring
the historical, social, and cultural impact of developments in personal computing.
It maintains a long-term collection of objects to tell this story and exploits them
through education and events programmes.

CCH aims to deliver inspirational learning opportunities to a wide range of
audiences — from pre-schoolers to the over-70s — so people become confident and
creative users of information and digital technology. It offers a range of education
services on site including programming and electronics workshops and other
interactive learning using 1980s BBC Micros and Raspberry Pi.

Check it out at: https://www.computinghistory.org.uk

https://www.computinghistory.org.uk/

Companion Website and Free Books

Go to https://www.brucesmith.info and follow the directions to the book
companion pages. From the site, you can download all the programs and access
updates to the book and additional information and features. In addition, links to
other support websites and useful downloads can be found, along with details of
forthcoming Bruce Smith Books publications covering the Raspberry Pi.

PDFs for several of my original books can be found to download free-of-
charge via my website. These are books that were published prior to 2004 before
the whole eBook and self-publishing era got full on. Whilst I did author many of
them (all but two in fact) using a wordprocessor the original text has long since
washed away (the first two were written longhand — blue ink on A4 ruled pages!).

https://www.brucesmith.info/

2. Starting Out

Assembly language gives you access to the native language of the Raspberry Pi —
machine code. This is the tongue of the ARM chip which is the heart and brain of
your computer system. ARM stands for stands for Advanced RISC Machine, and
it ultimately controls everything that takes place on your Raspberry Pi.

Microprocessors such as the ARM, control the use and flow of data. The
processor is also often called the CPU — Central Processing Unit — and data the
CPU processes are digested as a continuous, almost never-ending stream of 1s
and Os. The order of these 1s and Os has meaning to the ARM, and a particular
sequence of them will be translated into a series of actions. Just like Morse Code
where a series of dots and dashes in the correct order has meaning if you know
how each letter is represented. For Example:

Numbers with Meaning

As a machine code program code program is a sequence of endless strings of 1s
and Os. For example:
11010111011011100101010100001011
01010001011100100110100011111010
01010100011001111111001010010100
10011000011101010100011001010001

It would be almost impossible — or at the very least extremely time-consuming
— to interpret what these numbers mean. Assembly language helps to overcome
these issues.

Assembly language is a form of shorthand that allows machine code
programs to be written using an English style lexicon. An assembler is a program
which translates the assembly language program into the machine code, thereby
taking away what would otherwise be a laborious process. The assembly
language program is often just a text file, and this is read by the assembler before
being converted into its binary (1s and 0s) equivalent. The assembly language
program is called the input or source file, and the machine code program the
object file. The assembler translates (or compiles) the source file into an object
file.

Assembly language is written using mnemonics. A mnemonic is a device
that aids learning or acts as a reminder. This relies upon associations among easy-
to-remember letter sequences that can be related back to the information to be
remembered. You’ve probably encountered these at some point as acronyms. For
example, to remember the colours of the rainbow you could take the phrase:

'Richard Of York Gave Battle In Vain'

And use the first letter of each word. Or use the fictitious name:

‘Roy G. Biv'

A mnemonic language has developed around SMS messages sent on mobile
phones. These enable text messages to be shorter and more compact. For
example, ‘L8R’ for later’, ‘GR8’ for Great and ‘2mrw’ for ‘tomorrow’.

ARM Instructions

The ARM chip has a specific set of machine code instructions that it understands.
These operation codes or ‘opcodes’ and their use are really what this book is
about. The ARM is just one type of microprocessor; there are many different
types, and each has its own unique set of instructions.

You cannot take a machine code program written for ARM and run it
successfully on a different microprocessor. It simply would not work as expected,
if at all. That said, the concepts introduced here can be applied with a broad brush
to most other microprocessors available and are consistent in application. If you
learn to program in one, you are well on your way to programming others.
Essentially you just need to learn a new set of mnemonics, and most likely many
will be like the ones you are about to learn.

Microprocessors move and manipulate data, so not surprisingly many of the
machine code commands deal with this control, and most instruction sets (the
collective term for these mnemonics), include commands to add and subtract
numbers. The assembly language mnemonics used to represent these tasks are
typically in the form:

ADD
SUB

These examples are straightforward as are many other ARM mnemonics,
However, they can also appear complex when combined in a single line sequence.
By breaking them down into their component parts their action can be determined
without any real difficulty.

An assembly language mnemonic is normally three characters in length, but
there are occasions when it may be longer. Like anything new, this may take a bit
of ‘getting used to’, but if you work through the examples given in this book and
apply them in your own examples you should not have too much trouble.

MOV is the mnemonic for the MOVe command. It takes information from
one place and moves it to another place. How hard was that?

The Transformation Process

Once you have developed your assembly language program you have to convert it
into machine code using the assembler. For example, when the assembler
encounters the MOV mnemonic it will generate the correct number that
represents the instruction. It stores the assembled machine code as a sequential
file in memory and then allows you to run or execute it. In the process of
assembling the program, the assembler also checks its syntax to ensure it is
correct. If it spots an error, it will identify it to you and allow you to correct it.
You can then try and assemble the program again. Note that this syntax check will
only ensure that you have used the assembler instructions correctly. It cannot
check their logic so if you have written something that has used instructions
correctly, but not in the way that achieves what you wanted, it will assemble
without error but will produce an unwanted result. For example, you may need to
do an addition but programmed a subtraction instead!

There are various ways to write an assembly language program. The first
ARM chips were designed by Acorn and so not surprisingly appeared on a range
of Acorn-based computers running RISC OS. This included the Archimedes and
RISC PC. These machines ran BBC BASIC, which was innovative in that it
allowed you to write assembly language programs as an extension of BBC
BASIC. This method is still available to you today should you install RISC OS on
your Raspberry Pi.

As we have already identified, this book assumes you are using the
Raspberry P1 Operating System and the GNU GCC software. Other assembler
software does exist — much of it free — and a quick search on the internet will
reveal what the offerings are. A major advantage of GCC Programming is that it
can also assemble programs written in the C programming language.

Although this book is not about programming C, there are reasons why some
familiarity with the infrastructure it employs is advantageous, and with just a bit
of knowledge this can help make programming easier. We’ll discuss this with
examples later in the book. The bottom line is that there is nothing to stop you
trying any or all these other assemblers, and certainly what you learn here will be
beneficial in that process.

Why Machine Code?

This is an easy question to answer. Essentially everything your Raspberry Pi
does is done using machine code. By programming in machine code, you are
working at the most fundamental level of the Raspberry Pi operation.

If you are using a language such as BBC BASIC or Python, then ultimately
all its operations have to be converted into machine code every time you run the
program. This takes a finite amount of time — in human terms lightning fast — but
still time. This conversion or interpretation process does therefore slow the
operation of the software down. In fact, even the most efficient languages can be
over 30 times slower than their machine code equivalent, and that’s on a good
day!

If you program in machine code, your programs will run much faster as there
is no conversion being undertaken. There is a conversion process when you run
the assembler, but once you have created the machine code you can execute this
directly — it is a one-off process. You do not have to run the assembler every
time. Once you are happy with your program you can save the machine code and
use it directly. You can also keep the assembly language source program and use
it again, or perhaps make changes at some later point.

Language Levels

Languages such as C or Python are called high-level languages. High-level
languages are often easier to write as they have a more English-like syntax and
also include commands that do a complex sequence of actions using one
command that would otherwise take a long list of machine code instructions to
perform. Machine code is a low-level language level language as it is working
amongst the ‘nuts and bolts’ of the computer: it spells out every technical step
and detail and as a result is harder to understand.

This is the advantage of a high-level language as opposed to a low-level one.
That said, as you become more proficient in assembly language, there is nothing
stopping you from building libraries of routines to do a specific task and just
adding them to your programs as you write them. As you dig deeper into the
world of the ARM, you will find that such libraries already exist out there in
cyberspace. By writing in assembler, you can also transport your assembly
language programs onto other computers or systems that use the ARM chip. You
simply load the assembly language file into an assembler at the new destination,
assemble it and run the machine code program.

The GNU GCC compiler is available for just about all flavours of
microprocessor, so being familiar with the use of GCC will allow you to transport
your new-found skill onto other systems should you so desire.

Provided you take full advantage of the ARM chip’s facilities you can even
transfer and run the machine code directly. This has exciting possibilities when
you consider that just about every Smart Phone and Tablet device available these
days utilises ARM chips!

Into Orbit

Just to underline the power of the ARM chip and indeed smart phones in general,
a whole new generation of satellites called CubeSats, have been placed into orbit
around the Earth. They are small (about 10cms square) and have specific tasks.
The Surrey Space Centre in the south of England has designed several CubeSats
that are powered by Android phones. At around $100,000 each, these satellites
are a fraction of the cost of previous machines. At the same time, the computing
power of a single smart phone is perhaps tens of thousands of times more than
could be found in the computers on all the Apollo moon missions put together!
This 1s all at your disposal on your Raspberry Pi.

X !

Figure 2a. A CubeSat under construction.

Surprise, surprise, the world is not all rosy! There are differences in the CPU
releases. As with software, the ARM chip has gone through continual
development and has had new version issues. But the base instruction set remains
the same so ‘porting’ is not as hard as it might seem. It only becomes an issue if
you are using more advanced features of the microprocessor. For this introductory
guide, these changes are not relevant. Everything in these pages is applicable to
your Raspberry Pi.

RISC and Instruction Sets

The R in ARM stands for RISC. This is an acronym for Reduced Instruction Set
Computing. All CPUs operate using machine code and each of these machine
code instructions or opcodes has a specific task. Together these instructions form
the instruction set.

The philosophy behind RISC has been to create a small, highly optimised set
of instructions. This has several advantages — fewer instructions to learn for one
— but obviously greater variation in their use.

Assembler Structure

Programming in any language, just like speaking in any language, requires us to
follow a set of rules. These rules are defined by the structure and syntax of the
language we are using. To program effectively, we need to know the syntax of the
language, and the rules that structure the language.

The simplest way to design a program is simply to create a simple list of
things you want it to do. It starts at the beginning and executes linearly until it
gets to the end. In other words, each command is executed in turn until there are
no more commands left. This works but is very inefficient.

Program languages today are structured and allow you to build them as a set
of independently executable procedures or subroutines. These subroutines are
then called from a main program as and when they are required. The main
program, therefore, controls the flow of control and executes anything that may
not be available as a subroutine.

Programs are smaller and more manageable when they are created using
subroutines. In a linear program concept, we would have probably had to repeat
large sections of code several times to have achieved its goal.

Figure 2b illustrates some pseudo-program language to show how such a
structured program might look. In the example, program commands are listed in
capitals — uppercase letters. Sections of subroutine code are given names — in
lowercase — and paradoxically are identified with a full-stop at their start. The
entire flow of the program is contained in the six lines starting with ‘.main’ and
finishing with ‘END’. Admittedly it is short, but it is clear to read, and you can
understand just with a glance, what is happening. Each subroutine name is
meaningful.

.main
DO getkeyboardinput
DO displayresult
DO getkeyboardinput
DO displayresult
END

.getkeyboardinput
; Instructions to read input from keyboard

RETURN

.displayresult

; print the result on the screen
RETURN

Figure 2b. Pseudo code illustrating a structured approach to programming.

In this example, the main program just calls subroutines. In a perfect world, this
would always be our aim because it also makes it easier to test individual
subroutines separately before they are included in the main program. This helps
to ensure our program works as we put it together.

Error Of Your Ways

One big challenge you face when learning any new program is locating errors.
This process is known as debugging. I guarantee (and I have proven this many
times) you will first write a program that does not work as expected. You will
look at it until the cows come home and not see the error of your ways. You will
insist you are right, and the computer is the issue. Then like a bolt out of the blue,
you will see the error right there staring at you.

By building a subroutine and then testing it separately, ensuring that it
works, you will know when you come to use it as part of your larger program that
your hair is safe for another day.

Cross Compilers

This is a term you are likely to come across a lot. The GCC compiler can be
found on a lot of other computers, even ones that do not use the ARM chip. You
can write and compile ARM assembler on a totally different computer! However,
you cannot run the assembled machine code. You must first transfer it from the
host machine to the target machine (such as Raspberry Pi). GCC is not the only
compiler for the Raspberry Pi or that you can use as a cross-compiler; there are
many more available. The forums on the Raspberry Pi website are a good source
of such information, and I would suggest that you look around on the web for
yourself if this is of interest.

The Raspberry Pi ARM Chips(s)

The ARM chip used in the Raspberry Pi Zero, A, B, A+, B+ is (to give it its full
title) a Broadcom BCM2835 System-on-Chip multimedia processor. The System-
on-Chip (SoC) means that it contains just about everything needed to run your
Raspberry Pi in the one structure (and is a reason why the Raspberry Pi can be so
small). The BCM2835 uses an ARM11 design, which is built around the ARMv6
instruction set.

On the Raspberry Pi 2 the chip used is a SoC, BCM2836. This retains all the
features of BCM2835 but replaces the single 700MHz ARM11 with a 900MHz
quad-core ARM Cortex-A7: everything else remains the same. Being faster and
containing more memory, it can run more mainstream software such as Windows
10 and the full range of ARM GNU/Linux distributions.

The Raspberry Pi 3 has an ARM v8 at its core, again using a SoC structure
and operating even faster still at 1.2GHz. This is based on four high performance
ARM CortexAS53 processing units working in tandem. This is also a 64-bit
processor that can operate in both AArch32 and AArch64 states.

The Raspberry P1 4 uses the Broadcom 2711 and is faster again at 1.5GHz.
The ARMVS is a quad-core A72. This is also a 64-bit processor that can operate
in both AArch32 and AArch64 states. The 8GB version allows the memory for
the full 64-bit version to run efficiently and handle applications that make it a
fully-fledged PC!

There is a lot of jargon in those few paragraphs. Right now, from a
beginner’s point of view I wouldn’t worry about it too much. As you learn more
about the Raspberry Pi these things will start to become second nature. We’ll
come back to the SoC towards the end of this book and explain it in a bit more
detail.

By the way, one MegaHertZ (1MHz) represents a million cycles per second.
The speed of microprocessors, called the clock speed, often is measured in MHz.
For example, a microprocessor that runs at 700MHz executes 700 million cycles
per second. 1.2 GHz (GigaHertZ) is 1.2 billion cycles per second. We will see
later how this speed affects the execution of instructions.

The term ‘quad-core’ is used above. A quad-core has four independent units
called cores that read and execute instructions simultaneously. Overall, a quad-
core processor is going to perform faster than a dual-core or single-core
processor. Each program you open will work ‘in’ its own core, so if the tasks are
shared, the speeds are better. This so-called ‘parallel-processing’ is a major
feature of ARM.

3. First Time Out

In this chapter we’ll go step-by-step through creating and running a machine code
program, starting from the moment you turn your Raspberry Pi on right through
to making changes to the working program. This program will not do anything
spectacular. In fact, you won’t see anything other than the prompt symbol return,
but the process contains every single step you need to know and implement when
entering and running the other programs in this book. Right now I am assuming
you have a copy of the Raspberry Pi OS (Raspbian) image on the SD Card
inserted in your Raspberry Pi and that you have used it at least once, to run
through the initial setup of important things like keyboard and internet. If you
haven't done that yet, then do so now before carrying on here.

The Command Line

When you first boot you will automatically be logged in and deposited at the
Desktop screen. Go to top right and, using your mouse, double click on the small
image (icon of a monitor). This will open a ‘Terminal’ window and you will be
deposited at the command line, and the prompt facing you will look a little like
this:

pi@raspberrypi $

The ‘command line’ is a line onto which you enter commands to be executed by
the OS. The command line starts where you see the cursor flashing. Anything you
type in now, which is executed when you press the 'Return' key (also referred to
as the 'Enter' key), is expected to be a command, so the OS will seek to action that
command. Try tying this:

dir

Type it exactly as it is above. When you press the 'Return' key you will get a list
of any directories or files that are stored in the current directory. (I will omit the
'Return’' key detail from now on but please take it as read that when I suggest
entering something at the keyboard-especially the command line, you should
finish by pressing the 'Return’ key.)

Now type:

Dir
You will get a response like to this:
bash: Dir: command not found
This is an error message. The command line is case sensitive, thus:
dir
and:
Dir

are not identical in OS eyes which are case sensitive.
This is also the case with program file names so:

programl
and:
Program1

are regarded as different.

Command line convention is always to work in lowercase characters.
Commands are case sensitive. File names may have a mixed bag of character
cases as long as you are aware of the difference. It’s best always to use lowercase
characters so as a matter of course you should ensure that the Caps Lock light is
always off.

Creating A Source File

To create a machine code program, we need to go through a ‘write -assemble-
link” process before we can end up with a file that can be executed. The first step
1s to write the assembly language program. Because this is the source from which
everything flows, this file is called the sources file. It is also signified by having
an ‘.s” appended to its name. For example:

programl.s

The source files can be created in any suitable text editor. There are plenty of
excellent ones around to be had at no cost, so it is worth spending time reading
reviews and checking the options out for yourself. You may already have one that
you like regardless, so the choice may already be made.

Equally Raspberry P1 OS comes with a selection of editors already installed
as part of ‘Recommended Software’ and you can locate these on the main
Application menu (the Raspberry on the menu bar of the desktop). They will most
likely be in the ‘Accessories’ drop-down option. This includes (at the time of
writing), both VIM and gVIM, and the Geany Programmer’s Editor. (I suggest
you try each and settle on one that it to your liking.)

If neither VIM or gVIM is installed you can either look to do so via the
Recommended Software option, or from a command line by typing:

sudo apt-get install vim

And then reply to any prompts — one might ask you about adding extra
functionality. It should be safe to respond ‘Y’. Installation takes a few minutes,
and the Vim website has a lot of useful hints and tips.

If you wish to work ‘application-style’ then you use the GUI version of Vim
and install if needed using:

sudo apt-get install vim-gtk

As you will spend a lot of your programming time developing assembler it makes
sense to spend time getting to learn the ins and outs of Vim. Many of the actions
and operations used in VIM are performed utilising keypress combinations
(especially the Terminal based version). Figure 3a lists some commands you need
to know. The table is not exhaustive by any means and you will find a complete
set on the Vim website. But this is more than enough to get you started.

When you start Vim, you can also specify the file name you want to create.
If the file already exists it will load the file into the editor window, and you can
use it as you please. If the file does not exist, then Vim creates a new blank file of
that name for you. Open a new Terminal window and at the command line

prompt, type:
vim prog3a.s

Note that there is a space between ‘vim’ and ‘prog3.s’ and also note that there is
an ‘.s’ at the end of the name ‘prog3’ to denote a source file. Convention dictates
that ‘s’ represents an assembly language source file.

The screen/window will now be largely blank apart from a column of tildes
(‘~’) running down the left-hand edge and the file’s name at the bottom — plus
words to denote that it is a new file.

Press the ‘i’ key. Note how the text:

-INSERT--

has appeared at the bottom left of the screen. This signifies we are in insert mode.
Press the <Esc> key. The ‘INSERT--’ has disappeared. We are now in Vim
command mode.

Pressing ‘1’ and ‘Esc’ will become second nature to you. When insert mode
1s enabled 1t’s a simple matter to key in the assembly language program and edit
until your heart’s content. In command mode, key presses are interpreted as direct
commands to Vim, giving it commands to perform.

Cursor Movement Commands
Letter Action
move left

1

! move down

t move up

5 move right

Y Jump by to start of words

W Jump by words (spaces separate words)
e Jump to end of words

E Jump to end of words (no punctuation)
b Jjump backward by words

B Jjump backward by words (no punctuation)
0 (zero) start of line

~ first non-blank character of line

S end of line

G Go To command (ie, 5G goes to line 5)

Note: Prefix a cursor movement command with a number
to repeat it. For example, 4j moves down 4 lines.

Insert Mode - Inserting/Appending text
Letter Action

i start insert mode at cursor

I insert at the beginning of the line

A append after the cursor

a append at the end of the line

o} open (append) blank line below current line

(no need to press return)
@) open blank line above current line
Esc exit insert mode

Command mode

Letter Action
Y write (save) file but do no exit
:wqg write file (save) and gquit Vim
20 quit (fails if anything has changed)
20! qgquit and lose any changes made
:set number - use line numbering

Figure 3a. Important Vim commands.

The filename for this program, here ‘prog3a.s’, is not particularly special. I name
all the programs in this book by chapter name. So prog3a.s signifies that the
program source file is from Chapter 3 in the book. The ‘a’ would suggest it is also
the first in the chapter. A file called ‘prog4b.s’ would signify the program is from
Chapter 4 and listed as Program 4b and it is the second one in the chapter. This is
just for your ease of reference. You can use whatever name you want.

Move back into insert mode (i) and note the flashing cursor at the top left of
the screen. Anything you type now will appear where the cursor is. Enter the
listing given below in Program 3a. You only have to enter the text below that is
between the two lines. (A complete list of programs presented in this book can be
found at the end of the Contents list.)

.global _start
_ start:

MOV RO, #65

MOV R7, #1

SWIO0

Program 3a. 4 simple source file.

Note that of the five lines of the program, the first and third, fourth and fifth lines
are indented. Only the second begins at the start of the line. The amount of indent
you add, or even where you place indents doesn’t really matter; they are simply to
make it easier to read the program and see where the different layers of the
program are.

You can create the indent by pressing the ‘Tab’ key. Other keys behave as
you would expect them to, such as arrow keys to move around and the ‘Delete’
and ‘Backspace’ keys to move and edit text. However, there is a space between
the words ‘global’ and ° start’ and this space is important. We’ll look at what the
listing all means shortly.

Press 'Esc' and then type:

‘Wq

This will save your file and in turn also quit Vim. You will now be back at the
command prompt. The source file is now complete!

Come to the Execution

The next step is to convert the source file into an executable file of machine code.
We do this with two commands entered at the command line. Enter the following
two lines, one after the other, at the command line prompt:

as —o prog3a.o prog3a.s
1d —o prog3a prog3a.o

These two lines first assemble and then link the assembly language program
(linking is discussed shortly). On completion the machine code can be executed
and the syntax for this is:

J<filename>

The ./ means ‘run’ and the file to be run is named immediately after the
command — no spaces. Thus:

/prog3a

When the prompt reappears, the machine code program has completed. Easy as
that!

So, we have just written, compiled (assembled and linked) and executed a
machine code program — all the basic steps needed were involved in the process
above. Of course, as the programs get more complex and we seek to make more
use of the tools available then the process will itself become more involved, as we
shall see.

Assembler Errors

If at any time during the above process you receive an error message — or any
message at all, then look carefully at what you have typed. First look carefully at
the assembly language program and then the individual lines of code to assembly,
link and finally run the program. If there was an error and you found it,
congratulations, you have just debugged your first assembly language program.

If you get an error message from the assembler (this will be after you have
pressed <Return> at the end of the first line) it will normally provide you with a
line number as a guide. Even if you do not know what the message means note
the line number and then reload the source file back into Vim. For example:

prog3a.s:5: Error bad expression

would indicate there is an error in line 5 of the source file.

With a small file such as this you can count down the lines and locate the
one containing the error. Vim also has a line numbering ability. When in Vim
command mode type:

:set number

And notice how line numbers appear down the left of the window. These line
numbers do not get saved as part of your source file — they are here as a guide
only. Figure 3b shows all this in action using gVim. This shows the line numbers,
and that Vim is operating in Insert mode. If you use gVim you will also notice
how the various items of syntax are highlighted by different colours. This makes
it easy to identify the different components of the listing which are described
shortly.

&

1 .lobal start
2 start:

| 3 HOU RA, #65

4 H0U R7, #1

5 SHI

=
—

-= INSERT --

!!_lf_'!lf_!!ii—-iliil_

Figure 3b. How line numbers appear in Vim.

You can run gVim from the command line using:
gvim <filename>
So, to create or edit Prog3a you might use:

gvim prog3a.s

The Components

Let’s now look at the above process and understand a bit more the anatomy of the
source file and what we did to make it all come together. Look at prog3a.s again.
It consists of just five lines. Each assembler source files point file must have a
starting point, and by default in the GCC assembler this is the label:

_ start:

The first line of this program defines _start’ as a global name and available to the
whole program. We’ll see later why making it a global name is important. The
second line defines where “ start:’ is in the program. Note the use of the °:” at the
end to define it as a ‘label’. We’ve defined start as global and now marked
where start is.

The next three lines are assembly language mnemonics, and two of the lines
are similar, and use the MOV instruction. When the hash symbol is used in
assembly language it is used to denote an immediate value. In other words, the
value after the hash is the value to be used. In the first case, the value 65 is to be
moved in Register 0. Here ‘R’ stands for register, which is a special location in
the ARM chip, more on which shortly. In the second line, the value 1 is moved
into R7 or Register 7.

The final instruction is SWI 0. This is a special instruction that is used to call
the Raspberry Pi Operating System itself. In this instance it is being used to exit
the machine code program and return control back to the command line prompt
(when the program is run of course).

Just a note on the character case used for the assembly language commands
in these source files. I am using uppercase letters for mnemonics and registers, I
could have just as easily used lower case — inside the source files the character
case does not matter, thus:

MOV RO, #65
and:
mov r0, #65

are seen as being one and the same thing-this is different from the Terminal
command line which is case-sensitive. I will be using uppercase characters during
this book. This makes the commands easier to identify in the text of the book, and

makes the commands stand out from labels — which I will continue to place in
lower case.
Run the program again:

/prog3a

At the prompt type:
echo $?

The following will be printed on the screen:
65

This was the immediate value loaded into RO. Try editing the 65 to another
number, say 49. Now save, reassemble and re-link and run. If you now type:

echo $?

49 should be printed. The operating system has a limited way of returning
information from machine code programs and we’ll look at this later.

If you look at prog3a.s again you can see that it consists of two clear
sections. At the top (start), are some definitions, and in the lower half, the actual
assembly language instructions. Assembly language source files always consist of
a sequence of statements, one per line. Each statement has the following format,
each part of which is optional:

<label:> <instruction> (@ comment

All three of these components can be entered on the same line, or they can be
split across lines. It’s up to you. However, they must be in the order shown. For
example, an instruction cannot come before a label (on the same line).

The ‘comment’ component is new. When the assembler encounters the ‘@’
it ignores everything after it until the end of the line. This means you can use it to
annotate your program. For example, go back and edit prog3a.s by typing:

mov 10, #65

The editor window will display your original source file. The cursor will be at the
top of the file. Enter insert mode, create a new line, and enter the following:

@ prog3a.s — a simple assembler file

The comment line, marked by the ‘@’ at the start, is totally ignored by the
compiler. Of course, it does make the source file bigger, but this does not affect
the executable's performance in any way.

You can also add comments using ‘/*’ and ‘*/° to enclose the comment at the
start and end respectively. For example:

/* This comment will be ignored by the assembler */

Both methods are acceptable, and it is simply a matter of taste — whichever you
prefer.

To convert the source file into an executable file we needed two steps. The
first was:

as —o prog3a.o prog3a.s

The ‘as’ at the start invokes the assembler program itself which expects several
arguments after the command to define the files it will be working with and what
it will be doing with them. The first of these is ‘0’ and this tells the assembler that
we want to produce an object file, here called ‘prog3a.o’ from the source file
‘prog3a.s’ You can choose another name if you wish; the body of the name does
not have to be the same, although keeping it the same makes it easier to keep
track of your files. Of course, the suffix is not the same!

The second and final step is to ‘link’ the file object file and convert it into an
executable file using the ‘ld’ command as follows:

ld —o prog3a prog3a.o

You can think of linking as the final bit of binding that makes the machine code
work. What it produces is an executable file (called an elf file) from the .o
(object) file created in the assembly process. It is this Id command that uses the
_start: label to define where the program is to be run from. (This may sound
crazy, but sometimes the start point of a file may not be at the very front of it, as
we shall see!)

Lack of _start

You can learn a lot about the workings of the GCC assembler and linker simply
by experimenting. What do you think would happen if we omitted the start: label
from the source file?

Open the prog3a.s file in Vim and delete the line ¢_start:” thereby erasing the
label. Exit Vim and then assemble the program:

as —o prog3a.o prog3a.s
and now link the program:
ld —o prog3a prog3a.o
The following error message (or similar) will be produced:
1d: warning: cannot find entry symbol _start; defaulting to 00008054

The error message is clear enough. Because it can't find a pointer to where the
program starts, the linker is assuming that the program start point is right at the
beginning, and the location of this in memory is at the address 00008054. (This
address can and probably will vary depending on the individual Raspberry Pi.)
This is a safety net, but not a fail-safe. Always use ¢ start:’ in your files to define
the start of execution. This program will run perfectly well — others might not
and probably won’t!

Linking Files
The letters ‘1d” stand for ‘link dynamic’ and the linking command can combine or
daisy-chaining several files together into one long executable program. In such
cases only one ° start:’ label should be defined across all these files, as there
should be only the one start point, and this defines it. This is easy to demonstrate
using our sample program.

Create a new file in Vim and call it:

partl.s
In this file enter the listing shown below as Program 3b:

/* partl.s file */
.global start

_start:
MOV RO, #65
BAL part2

Figure 3b. Part 1 of the source file.

Save the file. Now create a new file called:
part2.s
and it should contain these lines in the listing below as Program 3c:

/* part2.s file */
..global part2
_part2:
MOV R7, #7
SWI 0

Figure 3c. Part 2 of the source file.

Save and exit this. We have written two source files that we will now compile and
link to create a single executable file. At the end of the partl.s we added a new
instruction:

BAL part2

BAL means Branch ALways, and here branch always to the point in the program
marked with the label ‘part2:’ In the second file we have defined a global variable
called ‘part2’ and marked the point where part2 begins. Because we have used the
global labels definition, the location of the address made known by the global
definition will be available to all the program parts.

The next step is to compile both new source files:

as —o partl.o partl.s
as —o part2.o part2.s

Now the labels must be identified and linked using the linker thus:
1d —o allparts partl.o part2.o

Here the linker will create an executable file called ‘allparts’ from the files
‘partl.o’ and ‘part2.0’. (You can use a different name for the executable file.) Try
running the file with:

Jallparts

The order of ‘partl.o’ and ‘part2.0’ could have been swapped — it would not
have mattered as the linker resolves such issues. The key here is that each source
file is independently written, created but then joined (we might say tethered)
together by linking. If you tried to link just one file on its own, you would get an
error message because when linking each part references the other. So, in this
case the linker is also a safety check.

What this small demonstration shows is that if you start to think carefully
about your source files, you can start to develop a library of files that you can dip
into each time you need a particular function. If you think back to the last chapter
and the concept of a pseudo-program, this could be created using such functions.
We’ll look at function creation later.

Tidying Up

If you catalogue the root (raspberrypi) directory by typing:
dir
you will see that amongst other things there are three prog3 files as follows:

prog3a.s --- the source file
prog3a.o --- the object file
prog3a --- the executable file

(I have added in the description for each file on the right.)

Ultimately you only need the source file as you can create your executable
file from this at any time. At the very least you can get rid of the object file using
the rm command (rm = remove files):

rm prog3a.o

To keep things tidy it is worth creating a separate directory for all your assembler
files, and you can do this using the ‘mkdir’ command. To create a directory called
aal (arm assembly language) use:

mkdir aal

Now you can make that directory listing your current directory by typing:
cd aal

Notice that the command line prompt has been extended to include:
/aal $

Anything you now create or do will be done so in the aal directory. To move back
up to the Raspberry Pi root directory type:

cd

Note how the prompt on the command line always reflects where you currently
‘are’ within the hierarchy of the Raspberry Pi filing system.

If when you are looking to load or assemble a file and you get an error
message. Check that you are ‘in’ the correct directory, and the file name is spelt
correctly (including use of capital letters). Often that’s the issue!

A Comment on Comments

Not everyone will agree, but I think it is imperative you comment your assembly
language programs. What you write today will be fresh in your mind, but if you
need to upgrade or adapt it later you will almost certainly be struggling to
remember exactly what each segment does, and another programmer looking at or
trying to improve your work will be completely at sea. To my mind commenting
— that is good commenting — is an essential part of writing assembly language
programs. All assemblers allow you to place comments in your source file.
Comments do not make the final machine code file any longer or any slower in
execution. The only overhead is that they affect the size of your source program.

So, comments are a good thing but don’t comment for comment's sake. If
every line of your assembly language program had a comment it would become
ungainly and would detract from the important comments. For example, look at
this simple line and comment relative to the ADD instruction:

ADD RO, R1, R2 @ RO=RI1+R2

The comment here is pointless from a program documentation perspective, as we
already know — or we should know — from the program line itself what the
operation does. What would be relevant here is detailing the significance of the
values stored at locations R1 and R2. This might be a better comment then:

ADD RO, R1, R2 (@ Balance of actl + act2

If you break your assembly program into segments using the format shown in the
previous chapter, then for a lot of the time a pertinent comment or two at the start
of the section is often also enough. Some things to keep in mind as guidelines: ?
Comment all key points in your program. ? Use plain English; don’t invent
shorthand that someone, (including you) may not understand later.

e Comment all key points in your program

e Use plain English; don’t invent shorthand that someone (including you),
may not understand later.

e [fit is worth commenting, then comment properly

e Make comments neat, readable, and consistent

e Comment all definitions

If you keep these key points in mind you shouldn’t go wrong, and I mention them
at the start so you’ll hopefully take the point and get into good habits that will last
a programming lifetime.

If you are planning to write a lot of machine code, you might want to
consider documenting your files externally, creating a database or perhaps a
workbook where you keep their details.

Also, beware the multi-file syndrome. As you develop your files you may
several versions of them during development., And at the end not be sure which
one is which. You can end up with a menagerie of similarly named files. Add a
comment at the very start noting why you have moved on from that file. Move the
ones you think you don’t need into a holding folder. When you have the one you
want then add a comment it as such and name it as such.

Geany Programmer’s Editor

I mentioned earlier in the chapter that there was a third option when it came to
software for creating your source files on the Raspberry Pi Desktop. In the later
versions of the Desktop the Raspberry Menu includes a ‘Programming’ sub menu
and 1n here you are likely to find the ‘Geany Programmer’s Editor’.

Geany is an IDE or ‘integrated development environment’ and provides a
variety of formatting options for various projects and languages. It also uses tabs
which allows you to have multiple source files open. It also provides line
numbers automatically.

If you remember to save your file as a text files with a *.s> extension this is a
great alternative option. That said it i1s good to understand how some of the
traditional text editors work in the first instance.

progda.s « fhome/pi/4ED - Geany Ua

Fle Edt Search View Document Project Buld Tools Help

IR 80 BN "8 (8 -

1‘ Decuments DI0g3a s n‘parn.s Klpaﬂ}_s X lpmgaa_s ;{‘
= =1 1! :
¥ | |=/4ED 1 5 A
‘ 2 .global _start
n 3 start:
SRS g WOV RO, 65
Bootas JE MOV R7, #1
= progha.s : L0
B
© I P

ine8/8 col0 sel0 NS TAB modelF encodng UTF8 fletype ASM scopew.

| ———— oy

Figure 3c. Geany IDE look and feel.

Figure 3¢ also shows that line numbering is automatic, and a plethora of
additional information is provided around the perimeter of the Geany window.

4. Bits of a RISC Machine

There are 10 types of people in the world — those that understand binary notation
and those that don’t.

If that statement leaves you confused, don’t worry. After reading this section
of the book you’ll ‘get’ the joke. If you have already had a smile at it then you’re
well on your way to racing through this section. What I will say at the onset
though is that a thorough understanding of the way binary notation is presented
and how it can be manipulated is fundamental to effective, efficient machine code
programming.

When you create machine code programs you are working at the most basic
level of the computer. There is nothing below it. In the opening chapters we
touched on binary and hexadecimal numbers. Hex numbers are a compact way of
writing numbers which in binary would be long strings of 1s and 0s. Because of
its design as a reduced instruction set computer, the Raspberry Pi can do many
different things using a base set of instructions and does so by getting the absolute
maximum meaning out of every single one of these 1s and 0s. To understand fully
how a RISC machine works we need to understand how binary and hex are
constructed and how they are utilised by the ARM chip.

To recap from the opening chapters: The instructions the ARM CPU
operates with consist of sequences of numbers. Each number represents either an
instruction (opcode) or data (operand) for the machine code to execute or
manipulate. Internally these numbers are represented as binary numbers. A binary
number is simply a number constructed of 1s or Os. Binary is important as
internally these 1s and Os are represented as ‘on’ or ‘off” conditions
(electronically usually +5V or 0V) within the microprocessor, and as an assembly
language programmer we will often want to know the condition of individual
binary digits or bits.

Opcodes and operands are built by combining sets of eight bits, which are
collectively termed a byte. Convention dictates the bits in these bytes are
numbered as illustrated in Figure 4a.

7 6 5 4 3 2 1 0

Figure 4a. Numbering of the bits in a byte.

The number of the bit increases from right to left, (not left to right) but this is not
as odd as it may first seem.

Consider the decimal number 2934, we read this as two thousand, nine
hundred and thirty-four. The highest numerical value, two thousand is on the left,
while the lowest, four, is on the right. We can see from this that the position of the
digit in the number is especially important as it will affect its ‘weight’.

The second row of Figure 4b introduces a new numerical representation.
Each base value is suffixed with a small number or power, which corresponds to
its overall position in the number. Thus, 103 1s 10 x 10 x 10 = 1000. The number
in our example consists of two thousands plus nine hundreds plus three tens and
four units.

Value 1000s 100s 10s 1s
Representation 10° 10° 10! 10°
Digit 2 9 3 4

Figure 4b. Decimal weights of ordinary numbers.

In binary representation, the weight of each bit is calculated by raising the base
value, two, to the bit position (see table below). For example, bit number 7 (b7)
has a notional representation of 27 which expands to: 2 x2x2x2x 2 x 2 x 2=
128. The weight or value of each bit is shown in Figure 4c.

Bit
Number b7 b6 b5 b4 b3 b2 b1 b0
Representation 2 2¢ 2 2! 2 2? 2! 2°
Weight 64 32 16 8 4 2 1
128

Figure 4c. The binary weights of numbers.

Binary to Decimal

As it is possible to calculate the weight of individual bits, it is a simple
matter to convert binary to decimal numbers into decimal. The two rules for
conversion are:

1. If the bit is set (‘1) , add its weight

2. If the bit is clear (‘0), ignore its weight

Let’s try an example and convert the binary number 10101010 into its
equivalent decimal value.

Bit Weight Value

1 128 128
0 64 0

1 32 32
0 16 0

1 8 8

0 4 0

1 2 2

0 1 0

Figure 4d. Converting binary numbers to decimal numbers.
In Figure 4d, we add the value column to get 170. Therefore, 10101010 binary is

170 decimal (128+0+32+0+8+0+2+0). Similarly, the binary value 11101110
represents 238 in decimal as shown in Figure 4e.

Bit Weight Value

128 128
64 64
32 32
16

O;_ap_ay_ao;_‘p_ay_‘

Figure 4e. Converting binary numbers to decimal numbers.

To convert a decimal number into a binary number, the procedure is reversed —
each binary weight is, in turn, subtracted. If the subtraction is possible, a 1 is
placed into the binary column, and the remainder carried down to the next row. If
the subtraction is not possible, a 0 is placed in the binary column, and the number
moved down to the next row. For example, the decimal number 141 is converted
into binary as shown in Figure 4f.

Decimal Weight Remainder Binary

141 128 13 1
13 64 13 0
13 32 13 0
13 16 13 0
13 8 7 1
5 4 1 1
1 2 1 0
1 1 0 1

Figure 4f. Converting a decimal number to its binary equivalent.

Therefore, 141 decimal is 10001101 binary.

Binary to Hex

Although binary notation is probably as close as we can come to representing the
way numbers are stored within the Raspberry Pi, they are rather unwieldy to deal
with. And row after row of 1s and Os simply get lost as your eyes start to rebel
and make funny patterns. When dealing with binary numbers we more commonly
use an alternative form to represent them — hexadecimal or ‘hex’ for short.
Hexadecimal numbers are numbers to the base of 16. This is not as awkward as
first seems and presents many advantages.

Decimal Hex Binary
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

O 00 3 O i h W D — O

—
— O

—_—
IOV
MO AOmE >0 000 R WD~ O

p—
(9]

Figure 4g. Decimal, hexadecimal and binary numbers.

Base 16 requires sixteen different characters to represent all possible digits in a
hex number. To produce them, the numbers 0 to 9 are retained and then we use
the letters A, B, C, D, E, F to represent values from ten to 15. The binary and
decimal values for each hex number are shown in Figure 4g. If you have followed
the previous section on binary numbers something interesting may stand out
when you look at Figure 4g.

Notice how four bits of a binary number can be represented in one hex
number. Thus, a full byte (8 binary bits) can be depicted with just two hex
characters. Using decimal notation, a byte would require three characters. Hex is
a very compact and easy way of representing binary.

To convert a binary number into hex, the byte must be separated into two
sets of four bits, termed nibbles, and the corresponding hex value of each nibble
extracted from the table above:

Convert 01101001 to hex:

0110=6
1001 =9

The answer is 69. Because it is not always apparent whether a number is hex or
decimal (69 could be decimal), hex numbers are usually preceded by a unique
symbol such as 0x (which is the notation used in this book):

0x69

By reversing the process hex numbers can be converted into binary.

Hex to Decimal and Back

To transform a hex number into decimal, the decimal weight of each digit
should be summed. Convert 0x31A to decimal:

3hasavalueof 3x 16°=3x (16 x 16) =768
l hasavalueof 1 x16'=1x16=16
A hasavalueof 1 x16°=10x1=10

Add these together to give 794 decimal.

Converting decimal to hex is a bit more involved and requires the number to
be repeatedly divided by 16 until a value less than 16 is obtained. This hex value
is noted, and the remainder carried forward for further division. This process is
continued until the remainder itself is less than 16.

Example: convert 4072 to hex:

4072/16/16 =15 = F Remainder: 4072-(15*16*16)=232
232/16 =14=E Remainder: 232-(14*16)=8
Remainder =8 = 8

Therefore, 4072 decimal is OXFES.

Both conversions are a little long winded, and you can probably see why it is
so much easier to work in hex and forget about decimal equivalents. In truth, this
1s what you will get used to doing. Although it may seem alien at present, it will
become second nature as you develop your assembly language expertise.
(Besides, if you want to convert hex to decimal, you can use the Pi!)

Binary Addition

It is easy to add and subtract binary numbers. In fact if you can count to two you
will have no problems whatsoever. Although it is not vital to be able to add and
subtract 1s and Os 'by hand’, this chapter introduces several concepts which are
important, and will help you in your understanding of the next chapters and
ultimately in programming the ARM.

There are just four simple straightforward rules when it comes to adding
binary numbers. They are:

0+0=0 [nought plus nought equals nought]
1+0=1 [one plus nought equals one]

0+1=1 [nought plus one equals one]

1+1=0(1) [one plus one equals nought, carry one]

Note in the last rule, one plus one equals nought, carry one. The ‘1’ in brackets is
called a carry bit, and its function is to denote an overflow from one column to
another, remember, 10 binary is 2 decimal (and thus the opening line of the
Chapter!). The binary carry bit is like the carry that may occur when adding two
decimal numbers together whose result is greater than 9. For example, adding
together 9+1 we obtain a result of 10 (ten), this was obtained by placing a zero in
the unit column and carrying the ‘overflow’ across to the next column to give:
9+1=10. Similarly, in binary addition when the result is greater than 1, we take
the carry bit across to add to the next column (the twos column). Let's try to apply
these principles to add the two 4-bit binary numbers, 0101 and 0100.

0101 0x5
+0100 0x4
=1001 0x9

Going from right to left we have:

1+0=1
0+0=0
1+1=0(1)
0+0+(1)=1

In the example, a carry bit was generated in the third column, and this is carried
to the fourth column where it is added to two noughts. Adding 8-bit numbers is
accomplished in a similar manner:

01010101 0x55
+ 01110010 0x72
= 11000111 0xC7

If the eighth bit, also called the most significant bit, creates a carry then this can
be carried over into a second byte. However, within the CPU of most chips there
is another way to handle this using something called a Carry flag.

Subtraction

So far, we have dealt exclusively with positive numbers, however, in the
subtraction of binary numbers we need to be able to represent negative numbers
as well. In binary subtraction though, a slightly different technique from everyday
subtraction is used, in fact we don’t really perform a subtraction at all — we add
the negative value of the number to be subtracted. For example, instead of
executing 4-3 (four minus three) we execute 4 + (-3) (four, plus minus three).

Negative Pos1t1ve

-3 =2 -1 0 1 2 3 & 5

K

Figure 4h. Subtracting numbers.

We can use the scale in Figure 4h to perform the example 4+(-3). The starting
point is zero. First move to point 4 (four points in a positive direction) signified
by the > and add to this -3 (move three points in a negative direction). We are
now positioned at point 1 which is indicated by ‘<<’. Try using this method to
subtract 8 from 12, to get the principle clear in your mind.

To do this in binary we must first have a way of representing a negative
number. We use a system known as signed binary. In signed binary, bit 7 is used
to denote the sign of the number. Traditionally a '0' in bit 7 denotes a positive
number and a 'l' a negative number.

S1gn Bit

Bits 0-6 give value

Figure 4i. Signed binary representation of -1.

Figure 41 shows how a signed binary number is constructed. Here, bits 0-6 give
the value, in this case ‘1°. The sign bit is set so denoting a negative value, so the
value represented in signed binary is -1.

S1gn Bit

Bits 0-0 give value

Figure 4j. Signed binary representation of 127.

The value 01111111 would represent 127 in signed binary. Bits 0-6 give 127, and
the sign bit is clear. This is illustrated in Figure 4;j.

Twos Complement Numbers

Just adjusting the value of bit 7 in this way is not an accurate way of representing
negative numbers. Adding -1+1 should equal 0, but ordinary addition gives the
result of 2 or -2 unless the operation takes special notice of the sign bit and
performs a subtraction instead. Twos complement representation provides a
means to encode negative numbers in ordinary binary, such that addition still
works, without having to take the additional sign adjusting step.

To convert a number into its negative counterpart, we must obtain its twos
complement value. This is done by inverting each bit and then adding one. To
represent -3 in binary, first write the binary for 3:

00000011

Now invert each bit by flipping its value so that Os become 1s and 1s become Os.
This is known as its ones complement value:

11111100
Now add 1:

11111100
+ 00000001
= 11111101

Thus, the twos complement value of 3 = 1111101. Now apply this to the original
sum 4-+(-3):

00000100 4
+11111101 -3
=(1)00000001 1

We can see that the result is '1' as we would expect, but we have also generated a
carry due to an overflow from bit 7 (this is the value in brackets above). This
carry bit can be ignored for our purposes at present, though it does have a certain
importance as we shall see later when performing subtraction in assembly
language.

Here’s another example that performs 32-16, or: 32+(-16).

32 in binary is: 00100000
16 in binary is: 00010000
Twos complement of 16: 11110000

Now add 32 and -16 together:

00100000 32
+ 11110000 -16
=(1) 00010000 16

Ignoring the carry, we have the result, 16.

We can see from these examples that, using the rules of binary addition, it is
possible to add or subtract signed numbers. If the carry is ignored, the result
including the sign is correct. Thus, it is also possible to add two negative values
together and still obtain a correct (negative) result. Using twos complement
signed binary let's perform -2+-2

2 in binary is: 00000010
Twos complement of 2: 11111110

We can add this value twice to perform the addition:

11111110 -2
+11111110 -2
=(1) 11111100 -4

Ignoring the carry, the result is -4. You might like to confirm this by obtaining the
twos complement value of -4 in the usual manner.

Understanding twos complement isn't strictly necessary for most
applications, but it can come in handy as you can discover the value of every bit
in a number whether it is positive or negative.

When Twos Don’t Add Up

There are a couple of occasions when twos complement doesn’t add up and
interestingly, they are based around representing 0 and -0.

The first is when dealing with 0 (zero). Working with 8-bits for simplicity,
the twos complement of 00000000 is 10000000. When you drop the most
significant bit, you get 00000000, which is what you started with. This works as it
means that you can’t really have -0 and that you can only have one value of 0 in
twos complement.

The second situation arises with 10000000 because it can have no negative
value. The inverse of 10000000 is 01111111, and now add one to obtain its twos
complement and you get 10000000, which is what you started with.

Because the most significant bit in 10000000 is 1, the value is negative.
When you invert it and add 1, you get 10000000 which is the binary
representation of 128 so the original value must, therefore represent -128.

This anomaly is the reason why integer and long value variables in many
forms of BASIC are asymmetrical. In 8-bits, the values range from -128 to +127
and in 32-bits (four-bytes) values range from -2,147,483,648 to +2,147,483,647.

Desktop Calculator

Depending on the Desktop settings you have when you installed your Raspberry
Pi Operating System on your Pi, you should find that the Accessories menu has a
‘Calculator’ included. This will run on the desktop and can be used to do many of
the number exercises that we have discussed, and other operations that we will
cover during the course of the book, when used in Scientific mode. I’ll leave you
to explore those possibilities. Converting numbers between bases such as binary,
hex and decimal is certainly possible along with other number bases such as Octal

(8).

5. ARM Arrangements

The ARM has a specific and special design. This is known as its architecture
because it refers to how it is constructed and how it looks from the user’s point of
view. Understanding this architecture is an important aspect of learning to
program the chip. You need to appreciate how it all fits together and how the
various elements interact. In fact, the purpose of much of the machine code we
will be creating is to gain access and manipulate the various parts in the ARM
itself. Because of its design as a reduced instruction set computer it can do many
different things using a small set of instructions. The way it operates is
determined by the mode. This means that once you have understood the basic
layout of the ARM chip you only then have to understand what its different
operational modes are. That said, for almost all situations that you encounter
when learning to program the ARM you will be operating in User Mode.

Word Lengths

In the binary examples we looked at in the previous chapters we have used single
byte values. Indeed, all the early popular computers worked at this level with
machine code. The design of these circuit boards reflected this in that they had
the eight data lines. In broad terms, these lines were directly related to the bits in
the CPU byte. Thus, the CPU could move data around the board by toggling the
logical condition on each line by making it a 1 or 0. It did this by changing the
voltage on the line between 5V and OV.

An ARM chip is more sophisticated and can operate much faster by
manipulating larger amounts of information. It does this by being designed as a
32-bit or 64-bit CPU. In the case of 32-bit this equates to four-bytes of
information. So instead of manipulating eight lines of information there are 32
lines. Collectively these four-bytes are called a word. The ARM word length is
said to be four-bytes. However, it is more than capable of working with single
byte lengths, and it does this just as effectively. Keep in mind that other computer
systems may define their word length as something different, but on the
Raspberry Pi a word is four-bytes or 32-bits in length.

The most significant bit (msb) in an ARM word is located at bit 31 (b31),
and the carry bit in an operation is generated if there is an overflow out of bit 31.
If a carry occurred from bit 7 it would be carried into bit 8, or from the first byte
in the second byte.

Byte and Word Accessed Memory

As a computer or smart phone user you will be familiar the role that memory
plays in operation. The more you have the more you can store. Each memory
address has a unique location. Generally, as the number of bits increases then so
does the amount of memory that can be directly addressed. The early ARM chips
only used 26-bits of the 32-bits for addressing memory. This placed certain
restrictions on the processor — and of course, the amount of memory it could
directly address — so later ARM chips had full 32-bit addressing. The lowest
address in this range is accessed by placing Os on all the lines, and the highest by
placing 1s on all the lines. The first is addressed as 0x0000 and the highest as
OxFFFFFFFF (or Ox3FFFFFFF on old pre-Raspberry Pi 26-bit address bus
ARMs).

Memory control devices for the ARM allowed for 32-bit addressing. Figure
Sa illustrates schematically how this memory is arranged as word length blocks
composed of four-bytes a piece, so the minimum and maximum memory
addresses are extended to 0x00000000 and OxFFFFFFFF — this is the case on the
Pi.

bit31 bit00
(Word 0) 103 b07 bOB bOF
(Word 1) b07 b06 b05 b04
(Word2) bOB b0A b09 b0
(Word3) bOF bOE bOD bOC

Figure 5a. Memory word blocks on the ARM.

The ARM ‘sees’ memory in these word blocks but can also address the individual
bytes within each word. From an operation point of view, all memory is arranged
as word-aligned blocks. As illustrated in Figure 5a above the word-aligned blocks
corresponded with Word 00, Word 01, Word 02, and Word 03. Note how Word 00
has the byte numbers b00, b01, b02 and b03 within it. Word 01 has bytes b04,
b05, b06 and b07 in it, and so on. Word blocks are aligned in this fashion and
cannot be changed. You cannot have a word-aligned block that consists of the
bytes, b02, b03, b04 and b05. (Note that ‘b’ here relates to byte and not bit, as
used in some previous examples.)

ARM saw the need 64-bit processors and started working new designs long
before announcing its new ARMvS8 architecture, the first ARM architecture to

include a 64-bit instruction set. ARM also learnt from the mistakes and successes
of other chip designers who moved to 64-bits. ARM’s new 64-bit architecture is
fully compatible with its 32-bit architecture. This means that if the processor is
running on a 64-bit enabled operating system, the processor can run unmodified
ARMv7 32-bit code (or binaries).

The Raspberry Pi1 2B v1.2 was the first of the series to have ARMvS
architecture and this was carried into the Raspberry Pi 3 and 4. Both operate in
32-bit mode but can be run in 64-bit mode. But this is getting ahead of ourselves
and we will return to it later in the book, and for the most part now you will
notice no difference.

Locations in memory are addressed by a unique hexadecimal number. A
memory address that corresponds to the start of a word is called a word boundary
and is said to be ‘word-aligned’. A memory address is word-aligned if it is
directly divisible by four. The following addresses are all word-aligned:

0x00009030
0x00009034
0x00009038
0x0000903C

Word-aligned addresses are especially significant to the ARM as they are
fundamental to the way the ARM chip fetches and executes machine code. For
example, the address 0x00009032 is not word-aligned. You cannot store an ARM
machine code instruction on a non-word-aligned address.

The GCC assembler provides a few tools to help ensure word boundaries are
correctly managed. At the very least trying to assemble something that is not
correctly addressed will generate an error message to that effect. For the most
part, this is transparent and, as a ‘Beginner’ it will not raise its head anytime
soon.

Registers

The ARM has several internal areas where it stores, tracks and processes
information. This speeds things up and makes operations quicker as there is no
external memory access required. These internal areas are called registers. In
User Mode (the standard operating configuration) there are 16 registers available
and each can hold a word (four-bytes) of information. You can think of these
registers as single word locations within the ARM. Figure 5b shows how this
comes together and includes an extra register — the Status Register.

As you can see from this programmer’s model, registers R0O-R12 are
available for use at any time. R13-R15 have defined uses, however R13 and R14
are only used occasionally and are manipulated by just a few instructions. You as
the programmer will be controlling these operations, so can also use them if
required. Only R15 should not be used. I don’t say cannot because it can be used,
but you should be very clear what you are doing with it, and the complications it
can bring if you do. ARM instructions can access RO to R14 directly while most
instructions can access R15.

As each register is one word wide, this means that each register can hold an
address location in a single register. In other words, a register can hold a number
which points to a location anywhere in the memory map of the Raspberry Pi. A
key function of registers is to hold such addresses.

The GCC Assembler allows us to use the labels listed above to refer to these
registers, for example, RO and R10.

Register Function
RO Available
R1 Available
R2 Available
R3 Available
R4 Available
R5 Available
R6 Available
R7 Available
R8 Available
R9 Available
R10 Available

R11 (Frame Pointer)

R12 Available

R13 Stack Pointer
R14 Link Register
RI15 Program Counter

Figure 5b. The ARM User Mode register bank.

The LDR and STR instructions are used to LoaD a Register and STore a Register
from and to memory in a variety of ways. Here are a couple of examples:

LDR R1,[R5] @ Load R1 with contents of loc in R5
STR R1,[R6] @ Store R1 contents at addr in R6

In both examples, one register is expected to have a memory address in it. The
registers are enclosed in square brackets in these examples, and this tells the
assembler that they contain addresses. This type of specification is called an
addressing mode and the ARM have several addressing modes. We’ll examine
these in later chapters.

R1S5 - Program Counter

The Program Counter R15 is important. If you don’t treat it with respect, your
whole program can crash. Its function is simple — to keep track of where your
program is in its execution of machine code. In fact, the PC holds the address of
next instruction to be fetched. We will look at this register in more detail later in
the book, Chapter 13 is dedicated to it.

The GCC Assembler allows you to use PC as well as R15 when referring to
the Program Counter. For example:

MOV PC, RO @ Move RO into R15, Program Counter5

The PC in the instruction will resolve correctly as if you had used R15.

Current Program Status Register

The CPSR— or just plain Status Register — is used to store significant
information about the current program and the results of operations it is carrying
out and has carried out. Specific bits within the register are used to denote pre-
assigned conditions and whether they have occurred or not. So how does the
information get flagged inside the one register? It does this by manipulating the
values of individual bits within the register. Figure 5c illustrates how this is
configured.

SNSOP 8 27,8 [T{6]5[4f32]1]0

VLE Oy [F|T MODE

Figure 5c. The Status Register configuration.

The four most significant bits hold what are known as flags, called as such as they
are designed to flag a certain condition when it happens. These flags are:

N = Negative flag
Z = Zero flag

C = Carry flag

V = Overflow flag

When an instruction executes, if it has been requested to, the ARM updates the
Status Register. If the condition under test occurred, then a 1 is placed in the
relative flag bit: it is set. If the condition has not occurred, then the flag bit is
cleared: a 0 is placed in it.

Bits and Flags

If you followed the previous sections on binary arithmetic, then some of the
concepts here will be familiar to you. We have discussed negative numbers, and
the Negative flag is used to signify a potential negative number. The Carry flag
represents the Carry bit — we discussed this in 8-bit operations, but the addition
of 32-bit numbers works the same. The Zero flag is straightforward; it’s set if the
result is zero. Finally, the Overflow flag is new, but simply sets if the operation
caused a carry from bit 30 into the top bit at bit 31. If this occurred using signed
numbers, it could indicate a negative result, even if a negative number was not
generated. (Remember, bits start numbering at zero so, the 32nd bit is, in fact,
numbered bit 31, or b31.)

For example, if the result of an operation gave 0, the Zero flag would be set.
This is the Z bit in Figure Sc. If an addition instruction generated a carry bit, then
the Carry flag would be set to 1. If a carry were not generated, then the Carry flag
would be clear (C=0).

Assembly language has mnemonics that allow us to test these Status
Register flags and act based on their condition. Here are a couple of examples:

BEQ zeroset @ jump to zeroset if Z=1
BNE zeroclear (@ jump to zeroclear if Z=0

BEQ is Branch if EQual and this instruction will cause a ‘jump’ to a named label
if the Zero flag is set. BNE is Branch if Not Equal and this instruction will cause
a jump to the named label if the Zero flag is clear.

There are instructions to test the other flags in a like manner. The BNE
instruction is often used to make sections of program repeat or loop a
predetermined number of times until a counter decrements to 0 at which point the
Zero flag will be set.

In Figure 5c, the I and F bits are called interrupt disable bits and discussed in
Chapter 26. The T bit is to do with processor states. At this point we’ll assume
that it is always set to 0 to signify ARM State (we will come back to this in
Chapter 24). The final five bits are used to signify the processor mode — we will
be largely using User Mode (but this will be touched on again in Chapter 26 as
well).

Interestingly there is no one single instruction that you can use to gain access
to the Status Register. You can only manipulate its contents at bit level by
carrying out an associated action.

Setting Flags
There are two instructions that have a direct effect on the Status Register flags,

they are CMP (CoMPare) and CMN (CoMpare Negative). Of these the first is the
more common in use and it takes the form:

CMP <Operand1> <Operand2>

CMP performs a notational subtraction, taking Operand2 away from Operandl.
The physical result of the subtraction is ignored, but it updates the Status Register
flags according to the outcome of the subtraction, which will be positive, zero or
negative (there can never be a carry). If the result of the subtraction were 0 the
Zero flag would be set.

Operandl is always a register, but Operand2 can be a register or a specific or
immediate value. For example:

CMP RO, R1 @ Compare RO with R1. RO minus R1
CMP RO, #1 @ Compare RO with 1. RO minus 1

The CMP instruction is often used in combination with the BEQ instruction, to
create a branch or jump to a new part of the program:

CMP RO, R1
BEQ zeroflagset

Here control will be transferred to the part of the program marked by the label
‘zeroflagset’ if the comparison between RO and R1 is zero. If the branch does not
take place then it would show that the result of the CMP was not zero — there
would be no need to perform a BNE function. The code following could handle
that situation.

CMP and CMN are the only instructions that directly affect the condition of
the Status Register. By default, the rest of the ARM instruction set does not
update the Status Register. For example, if RO and R1 both contained 1 and we
performed:

SUB RO, RO, R1

The result would be 0. But none of the flags in the Status Register would be
altered in any way. They would retain the status they had before the instruction
was performed.

S Suffix

However, the ARM does provide a method of allowing an operation such as SUB
to update the Status Register. This is done by using the Set suffix. All we do is
append an ‘S’ to the end of the mnemonic we want to use to modify the flags:

SUBS RO, RO, R1

This subtracts the contents of R1 from RO, leaving the result in RO and at the
same time updating the flags in the Status Register.

This S suffix effectively allows you as the programmer to use one less set of
instructions. Without it we might use:

SUB RO, RO, R1
CMP RO, #0
BEQ iszero

But with it we can remove the CMP line thus:

SUBS RO, RO, R1
BEQ iszero

The GCC Assembler recognises the use of the S suffix. It is also tolerant of
spaces between the instruction and the S, so these two examples will assemble
perfectly:

SUBS RO, RO, R1
SUB S RO, RO, R1

The Set suffix is one of many that exist, and we’ll have a look at more of these in
Chapter 9. This example shows one of the many ways the reduced instruction set
was developed.

R14: The Link Register

The BEQ and BNE instructions illustrated above are examples of conditional
branch instructions. These are absolute in that they offer a definitive change of
direction — branch if equal or branch if negative. There is a second style of
branch instructions known as Branch and Branch with Link (BL). The BL
implements a subroutine operation; effectively it jumps to somewhere else in the
program and allows you to come back to the point right after the BL instruction in
the program.

When the BL instruction has executed, this return address (the address of the
next instruction) is loaded into R14, the Link Register (LR). When the subroutine
has completed, the Link Register is copied into the Program Counter, R15, and
the program continues operating where it left off before the call was made.

One way of copying the Link Register into the Program Counter would be
thus:

MOV R15, R14
The following is also accepted by the assembler:
MOV PC, LR

If you are familiar with any form of BASIC, you can think of BEQ and BNE as
being the equivalent of GOTO commands and BL as being a GOSUB command.

R13: The Stack Pointer

The Stack Pointer contains an address that points to an area of memory which we
can use to save information. This area of memory is called a ‘stack’ and it has
some special properties that we will look at in Chapter 17. It is worth noting at
this point that there is only one ARM implemented stack, but you can create as
many stacks as you like, which must also be manged by you.

6. Data Processing

In this chapter we’ll look at some of the data processing instructions. This is the
largest group of instructions, 18 in all, which manipulate information. They can
be divided further into sub-groups as follows:

ADD, ADC, SUB, SBC, RSB, RSC
MOV, MVN, CMP, CMN

AND, ORR, EOR

BIC, TST, TEQ

MUL, MLA

The AND, ORR, EOR, BIC, TST and TEQ instructions are examined in Chapter
8.

Each of the remaining instructions expect information to be supplied to them
in the following configuration:

<Instruction> <Dest>, <Operand1>, <Operand2>

Let’s look at each field in more detail:

<Instruction>
This is the assembly language mnemonic to be assembled. It can be used in its
raw form as listed above, or with the additions of suffixes, such as S.

<Dest>
This 1s the destination where the result is to be stored, and the destination is
always an ARM Register, in the range RO-R15.

<Operand1>

This is the first item of information to be manipulated and, again, will
always be an ARM Register in the range R0-R15. Operand]l may be the same as
the Destination register.

<Operand2>

Operand2 has more flexibility than Operandl in that it can be specified in
three different ways. As with Operandl, it may be an ARM Register in the range
RO-R15. It may also be a specified value or constant — a number for example.

For a constant, the exact number to be used is quoted in the assembler listing. The
hash, ‘#"”, is used to signify an immediate constant. Operand2 may also be what is
called a shifted operand and we will look at this instance in Chapter 11 when we
have looked at the arithmetic shifting of numbers.

Here are some examples of data processing instructions in use:

ADD RO, R1, R2 @ RO=R1+R2
ADDS R2, R3, #1 @ R2=R3+1 and set flags
MOV R7, #128 @ R7=128

Some instructions do not require both operands. For instance, the MOV
instruction does not use Operandl; it only requires Operand2. The reason for
Operand2 rather than Operandl is that it can use a Register definition or a
constant value (or shifted, as we shall see).

Addition Instructions

In this section we’ll look at the ADD and SUB commands in a little more detail,
and we’ll also start looking at what is happening in the registers themselves,
including the Status Register and its flags.

There are two instructions that handle addition. They are ADD and ADC.
The latter is ADd with Carry. They both take a similar form:

ADD (<suffix>) <dest>, <Operand1>, <Operand2>
ADC (<suffix>) <dest>, <Operand1>, <Operand2>

Here’s some code that uses the ADDS instruction. This program clears RO, places
1 in R1 and sets all 32-bits of R2. This is the largest number we can store in a
four-byte register. What will happen if we were to run this program?

MOV RO, #0

MOV R1, #1

MOV R2, #0xFFFFFFFF
ADDS RO, R1, R2

On completion the registers will show:

R1: 0x00000001
R2: OxFFFFFFFF
R0O: 0x00000000

Nothing seems to have happened! The values have all been loaded, but no
addition seems to have taken place as RO still has 0 in it. In fact, it has, but by
adding the 1, we created a carry bit (remember the binary additions we did in the
earlier chapters?). So, if we were to look at the Status Register, we would see:

NZCV
0110

If we had run this program using only ADD and not ADDS then the Carry flag
would not have been updated and would merely reflect the condition they were in
when they were last updated via an appropriate instruction. Of course, the Carry
flag may have been set by a previous instruction, so we might have received a
correct answer, but only by good fortune. The good fortune method is not an
efficient way to program in any language. It pays to double check.

Program 6a shows how simply two numbers can be added together in
machine code. Enter this in Vim or Geany using the filename:

progba.s

Program 6a. Simple 32-bit addition.

/* Perform RO=R1+R2 */
.global start
_ start:
MOV RI1, #50 @ Get 50 into R
MOV R2, #60 @ Get 60 into R2
ADDS RO, R1, R2 @ Add the two, result in RO

MOV R7, #1 @ exit through syscall
SWI 0

You can assemble, link, and run this using the following:

as -0 progba.o progba.s
1d -0 prog6a progba.o
./progba

Now print the result with:
echo $?

The result will be 110.

(Remember, to be able to print a result from the machine code using bash,
we need to ensure that the result is held in RO and that the operating system exit is
used.)

Whenever we add two values, unless we are 100% sure that there will have
been no carry, or the significance of that fact is not important to us, a check for
the carry should always be made.

Program 6b below adds two 64-bit numbers. This relates to two-words, so
two registers are needed to hold the number, with one holding the low four-bytes
and the other the high four-bytes. Because we have a potential carry situation
from low-word to high-word when we add the two it is imperative, we take the
Carry flag into consideration. For this we need to use the ADC instruction.

The code assumes that the first number is in R2 and R3 and the second is in
R4 and RS5. The result is placed in RO and R1. By convention, the lower register
always holds the lower half of the number:

/* Add two 64-bit numbers together */
.global _start

_start:
MOV R2, #0xFFFFFFFF @ low half number 1
MOV R3, #0x1 @ hi half number 1
MOV R4, #0xFFFFFFFF (@ low half number 2
MOV RS, #0xFF @ hi half number 2
ADDS RO, R2, R4 @ add low and set flags
ADCS R1, R3, R5 @ add hi with carry

MOV R7, #1 @ exit through syscall SWI 0
You can assemble, link, and run this using the following:

as -0 progbb.o progbb.s
1d -0 prog6b prog6b.o
./progbb

Now print the result with:
echo $?

The result will be 254. Why?
On completion, registers RO and R1 will contain OXFFFFFFFE and 0x101,
respectively. The result was therefore:

Ox101FFFFFFFE

In the first ADDS instruction, the addition caused the Carry flag to be set, and
this was picked up in the ADCS operation. If we substitute the ADCS with
another ADDS the result is:

Ox100FFFFFFFE

In decimal terms the result is starker, out by 4,294,967,296!
You may be wondering why the ADCS instruction was not used in both parts
of the addition. Generally, if you set out doing any addition you would want to

ensure the Carry flag is clear before starting. If not and you used ADCS and it
was set from a previous operation you would get an erroneous result. Use of
ADDS ensures that the carry i1s ignored but gets updated at the end of the
addition.

In answer to the question earlier about why the echo command returned 254,
this is OXFE in hex, which is the least significant byte of the value stored in RO.
The echo command does not return what is stored in RO but what is in the least
significant byte of R0.

How would you modify this segment to add two three-word values? The
temptation might be to repeat the ADDS and ADCS sequence. This would be
wrong. You should continue using the ADCS instruction until all the words have
been added. You only use ADDS on the first word to define the Carry condition
in the first instance. From then on it is ADCS.

If you are writing a program that does not produce the correct result and the
values it is returning are wildly out, it is always worth checking that you have
used the correct sequence of addition instructions. Chances are that is where the
‘bug’ sits.

If the three-word numbers were held in R4, R5, R6 and R7, R8, R9 we could
sum the result in R1, R2, R3 as follows:

ADDS R1, R4, R7 @ Add low-words & check for carry
ADCS R2, RS, R8 @ Add middle words with carry
ADCS R3, R6, R9 @ Add high-words with carry

It should go without saying that you need to check to see if the Carry flag is set as
it is the most significant bit in your result.

Subtraction

While there are two instructions that deal with addition, there are four for
subtraction.

SUB (<suffix>) <dest>, <Operand1>, <Operand2>
SBC (<suffix>) <dest>, <Operand1>, <Operand2>
RSB (<suffix>) <dest>, <Operand1>, <Operand2>
RSC (<suffix>) <dest>, <Operand1>, <Operand2>

You can see that there are complementary instructions to addition: a
straightforward subtraction that ignores the flags and then one that considers the
Carry flag (SBC). The second set of subtraction instructions works in an identical
fashion but uses the operands in the reverse order. For example:

SUB RO, R1, R2
subtracts the contents of R2 from R1 and puts the result in RO. However,
RSB RO, R1, R2

subtracts the contents of R1 from R2 and puts the result in RO. As with the
previous examples the S suffix can be used with the instructions:

SUBS RO, R1, R2

If RO=0, R1=0xFF and R2=0xFE, the SUBS instruction is performing:
OxFF-OxFE

which is:
255-254

The result should be 1, and this is indeed so. However, on investigation the Status
Register would show that the Carry flag has been set. Why?
If we change SUBS to RSB so that:

RSBS RO, R1, R2

Then by loading the same values into the registers the result in RO is
OxFFFFFFFF and the Carry flag is clear! In subtraction, the Carry flag is used the
‘wrong’ way round so that if a borrow is required the flag is unset or clear. It acts
like a NOT Carry flag! This is useful when dealing with numbers over 32-bits and
ensures the correct result. The result in this last instance also sets the Negative
flag as OxFFFFFFFF represents a negative value in signed numbers. The above
example illustrates this perfectly and is because of the use of twos complement
numbers.

When a section of code is not giving you the result you expect it always
makes good sense to check the condition of the Status Register flags. They may
not behave as you expect.

The two rules here to remember then are:

e [faborrow is generated, then the Carry flag is clear, C=0
e If a borrow is not generated, then the Carry flag is set, C=1

When we perform a multi-word subtraction, borrowing from one word means we
need to subtract an extra one from the next word. However, as we have seen, a
borrow results in the Carry flag being zero, not one as we would have liked. To
compensate for this, the ARM inverts the Carry flag before using it in the SBC
operation. This system can be extended to subtract operands which require any
number of words to represent them — simply repeat the SBC instruction as many
times as required.

You may be wondering why the ARM instruction set has reverse subtract
instructions. Again, this ties in with the overall philosophy of speed. By being
able to specify which operand is subtracted from which, we effectively remove
the necessity of having to go through a data swapping process to get the operands
in the right order.

Multiplication

The ARM has a couple of instructions that will perform 32-bit multiplication. The
first of these, MUL provides a direct multiplication and takes the form:

MUL (<suffix>) <dest>, <Operand1>, <Operand2>

MUL is a bit different to instructions such as ADD and SUB in that it has certain
restrictions on how its operands can be specified. The rules are:

Dest: Must be a register and cannot be the same as Operandl. R15 may not
be used as the destination of a result.

Operand1: Must be a register and cannot be the destination register.

Operand2: Must be a register and cannot be an immediate constant or
shifted operation.

In summary, you can only use registers with MUL, cannot use R15 as the
destination, and the destination register cannot be used as an operand. Here’s an
example:

MUL S RO,R4,R5 ; RO=R4*RS5 and set status

Program 6¢ demonstrates MUL in action. Two numbers are placed in R1 and
R2 and the multiplied result into RO.

Program 6c¢. 32-bit multiplication

/* multiply two numbers RO=R1*R2 */
.global _start
_start:
MOV R1, #20 @ R1=20
MOV R2, #5 @ R2=5
MUL RO, R1, R2 @ R0=R1*R2
MOV R7, #1 @ exit through syscall
SWI 0

You can assemble, link, and run this using the following:
as -0 prog6c.o prog6ec.s

1d -o prog6c progbc.o
./progbc

Now print the result with:
echo $?

MLA is MuLtiply with Accumulate. It differs from MUL in that it allows you to
add the results of a multiplication to a total. In other words, you can accumulate
values. The format of the command is:

MLA (<suffix>) <dest>, <Op1>, <Op2>, <sum>

The rules stipulated at the start of this section still apply here. There is an extra
operand, <sum>, which must be specified as a register. For example:

MLA RO, R1, R2, R3 @R0O=(R1 * R2) + R3

The register specified by <sum> may be the same as the <dest> register, in which
case the result of the multiplication will be accumulated in the destination
register, thus:

MLA RO, R1, R2, RO @ RO=(R1 * R2) + RO
is possible. Let’s adapt Program 6c¢ to use it, creating Program 6d, as listed below:

Program 6d. Using MLA - Multiply with Accumulate.

/* Multiply two numbers with accumulate RO=(R1*R2)+R3 */
.global _start
_ start:
MOV R1, #20 @ R1=20
MOV R2, #5 @ R2=5
MOV R3, #10 @ R3=10
MLA RO, R1, R2, R3 @ RO=(R1*R2)+R3

MOV R7, #1 @ exit through syscall
SWI 0

You can assemble, link, and run this using the following:
as -0 progbd.o progbd.s

1d -0 prog6d prog6d.o
/progbd

Now print the result with:
echo $?

The result returned will always be 10 more than the product of the two values in
R1 and R2. This is because the value 10 was seeded into R3.
Note that the <dest> register cannot be used as <op1> nor <op2>. So:

MLA RO, RO, R2, R3 @ RO=(R0 * R2) + R3

Would fail to assemble and generate an error message.

Divide Arrives

The ARM processor used on the Raspberry Pi 1 and Raspberry Pi Zero did not
provide a division instruction, so dividing two numbers either required some
ingenuity or performed using a count-subtraction methodology.

With the Raspberry Pi 2, and subsequent releases, the SDIV and UDIV
instructions were available for use, signed and unsigned division, respectively.
The instructions, which have no effect on the status register flags, operate directly
on registers, and take the form:

SDIV <dest>, <numerator>, <denominator>
UDIV <dest>, <numerator>, <denominator>

Here <dest> is the destination register which contains the quotient on completion.
The remainder must be calculated separately. If <dest> is omitted, then the result
1s in <numerator>. Program 6e below shows an example of use.

Program 6e. Signed Division with SDIV.

/* Signed Division Example RPi 2 and Greater */
.global start
_start:
MOV R3, #20 (@ Numerator
MOV R4, #5 (@ Denominator
SDIV RO, R3, R4 @ R0=R3/R4

@ Do not use SP or PC,
@ SR flags not altered
@ div by O returns 0

MOV R7, #1 @ exit through syscall
SWI 0

The result can be printed out by typing:
echo $?

Which will return ‘4" based on the listing.
Chapter 12 shows how division can be performed without these instructions.
It also shows how the remainder can be calculated, as this is invariably required

also.

The Raspberry Pi 2 included a new SoC and this utilised the BCM2836 and
associated FPU with saw the division infrastructure implemented. This has
continued since with subsequent releases of the SoC (System on Chip).

Move Instructions

There are two data move related instructions. MOV and MVN are used to load
data into a register from another register or to load register with a specific value.
The instructions do not have an Operandl and take the form:

MOV (<suffix>) <dest>, <Operand2>
MVN (<suffix>) <dest>, <Operand2>

Here are a couple of examples:

MOV RO, R1 @ Copy contents of R1 to RO
MOV RS, #0xFF @ Place 255 in RS

If you look at the comment in the first example above, although the instruction is
MOVe it is important to realise that the contents of the source register are
unchanged. A copy is being made. Also, unless the S Flag is used the Status
Register is not changed either. This instruction:

MOVS RO, #0

would place zero into RO and set the Zero flag at the same time.

MVN is MoVe Negative (or MoVe Not). The value being moved is negated
in the process. This means that 1s become 0s and Os become 1s or the one’s
complement form of the number is taken.:

MVN RO, #9 @ Move -9 into RO

9: 0x00000009 00000000 00000000 00000000 00001001
MNV OxFFFFFFF6 11111111 11111111 11111111 11110110

Here are some examples of the instruction:

MVN RO, #0 @ set RO to -1
MVN RI1, #1 @ set R1 to -2

We will learn in Chapter 11 that there are restrictions on the value of contents
being loaded into registers as immediate values. Put simply, there are some
numbers you just can’t use directly, and it is not because they are too big, for
instance. This can also be an issue when dealing with addresses in memory. We’ll
examine why, and how to circumvent the problem in due course.

Compare Instructions

We encountered these instructions when we looked at the Status Register and
flags in the previous chapter. They are two comparison instructions, and they
have the format:

CMP <Operand1>, <Operand2> @ Set flags of <Op1>-<Op2>
CMN <Operand1>, <Operand2> @ Set flags of <Op1>+<Op2>

These instructions do not move information or change the contents of any of the
registers. What they do is update the Status Register flags. Since the purpose of
CMP and CMN is to directly affect the Status Register flags there is no reason to
use the S suffix. CMP works by subtracting Operand2 from Operandl and
discarding the result.

CMP R3, #0

The example above would only set the Zero flag if R3 itself contained O,
otherwise the Zero flag would be clear.

CMP R3, #128

Here, the Zero flag would be set if R3 contained 128. If R3 held anything less
than 128 the Negative flag would be set. What would cause the Overflow flag to
be set? If you are ever in any doubt what the result would be, then simply check it
out longhand by doing the binary arithmetic!

CMN is the negative version of compare. This is good if you want to control
a loop decrements past zero. In such case you could use:

CMN RO, #1 @ Compare RO with -1

The idea is the same behind the reason of the MVN instruction. It allows
comparisons to be made with small negative immediate constants which could
not be represented otherwise.

An important point to be wary of is that, in MVN, the logical NOT of
Operand? is taken. In CMN it is the negative of the operand that is used. Thus, to
compare RO with minus 3 we would write:

CMN RO, #3

The ARM will automatically form the negative of Operand2 and then make the
comparison.

As with CMP, the purpose of CMN is to affect the Status Register flags and
the S suffix is not applicable.

Ordering Numbers

The order that information is stored in memory is of some considerable
significance. Consider the hexadecimal number below:

0xFFOOAA99

If this is stored in four consecutive bytes of memory how are they ordered? Thus:
OxFF, 0x00, 0xAA, 0x99

or:
0x99, 0xAA, 0x00, OxFF

These two methods are called big-endian and little-endian, respectively. As you
can see the bytes are stored in the reverse order to each other depending on the
method used.

ARM chips are bi-endian, but can use either method, which is defined by a
specific bit in the CPSR which defines which ‘endianness’ to use. By default,
Raspberry Pi OS uses the little-endian methodology. For the most part the order
of the bytes will be transparent in use as the assembler takes care of this for us.

7. ROS Ins and Outs

When we use computers and operating systems such as Raspberry Pi OS, we take
an awful lot for granted. We type commands at the keyboard, these get ‘actioned’
and more often than not, provide output in the form of information or results by
way of what is displayed on the screen. There’s a lot going on. Consider a couple
of what would seem relatively simple tasks, typing a command at the keyboard
and then getting a response on the screen. These are things we do every time we
interact with the Raspberry Pi OS command line. The question is then, how do we
get input from the keyboard and write information to the screen in our machine
code programs?

In the strictest sense you do it yourself. But this involves a good deal of
knowledge about the various hardware components of the Raspberry Pi, because
to write a message to the screen for instance, we have to know exactly where the
hardware that drives the screen is located within the computer’s memory and, in
turn how to write the information to it. Equally, to read input from the keyboard
we need to understand how the keyboard is mapped and how to read that matrix
to identify which keys are being pressed.

Reading and writing to the hardware to do this is often termed bare metal
programming, because you are ‘talking’ to the computer hardware directly.
Whilst this is potentially exciting, it is rather an advanced topic and not
necessarily the domain of a beginner’s book such as this. Equally though unless
you are specifically bare metal programming as an exercise there is absolutely no
need for you to do it. Instead, we can access the operating systems own routines
to do this.

SWI and SVC Commands

The SWI instruction allows you as the programmer to gain access to predefined
routines or libraries of operating systems functions. SWI stands for SoftWare
Interrupt because when it is encountered it causes the flow of your program to be
paused and handed over to the appropriate routine. Once the SWI instruction has
been completed, control is handed back to the calling program which can
continue on its way. The SWI command is also often referred to as SVC or
SuperVisor Call as this is a mode of operation that is invoked in the ARM chip
when called.

You will probably recall that we have used a SWI command in all our
assembler programs so far. We used it to exit the code back to the command line
prompt. This use took the form:

MOV R7, #1
SWI 0

All SWI calls are executed with SWI 0 (or SVC 0 can be used instead). The
actual function to be performed is determined by the number held in register R7.
This is called the Operating System Call or ‘Syscall’ for short, number. In
addition, other registers may also have to be seeded with information, so a call to
SWI 0 often requires some setting up before being executed. For example, to
write a string of characters to the screen three other items of information must be
placed in specific registers.

To use these SWI calls effectively then, we need to know what they do, what
information must be passed and into what registers. Information may be passed
back by the SWI call and in such cases, we need to know what information and in
what registers.

Appendix B contains a list of the Syscalls available in the Raspberry Pi OS.
A detailed description of all the SWI calls is not provided, but the more common
and useful ones are described at various points in this book. No official list of
Syscalls exist but there are various sources on independent websites.

Let’s look at what are arguably the two most important Syscalls at this stage
in our learning —printing to the screen and reading from the keyboard. These are
important as we will use them a lot in the program examples in the rest of this
book. In using them we will need to look at a few more features of the GCC
assembler and use a few assembly language techniques that we won’t learn about
in detail until later.

Writing to the Screen

To write a sequence or string of ASCII characters to the screen we need to use the
‘write’ function. This is Syscall 4. The parameters required by Syscall 4 are as
follows:

RO= the output stream, 1 for the monitor
R1= the address of the string of characters
R2= the number of characters to be written
R7= the number of the Syscall, so R7=4

(Incidentally, ASCII stands for American Standard Code for Information
Interchange, and an ASCII code is a simple number used to represent the
character. Appendix A contains the ASCII character table, and this is universal in
acceptance as a standard.)

The GCC assembler provides us with a facility to store an ASCII string of
characters within the body of our machine code file. Program 7a illustrates the
setup for this. The key here is to note the GCC assembler directive ‘.ascii’ on the
last line. This directive informs the assembler that an ASCII string of characters
follows the string that is enclosed by quotes. You will also notice ‘\n’ at the end
of the character string, but within the quotes. The backslash character signifies
that the next character is a ‘control-character’ and as such has an action. Here “\n’
means generate a new line. A label is used to mark the start of the location of the
string — in this case I have been original and called it ‘string’.

Program 7a. Syscall 4 to write a string to the screen.

/* How to use Syscall 4 to write a string */
.global _start

_start:
MOV R7, #4 @ Syscall number
MOV RO, #1 @ Stdout is monitor
MOV R2, #19 @ string is 19 chars long
LDR R1,=string @ string located at string:
SWI 0

_exit: @ exit syscall
MOV R7, #1
SWI 0

.data
string:
.ascii "Hello World String\n"

End Program 7a.
Create, assemble, and link the program and try it out for yourself. The instruction:

LDR R1,=string
Can be read as: LoaD Register R1 with the address of the label string.

When Syscall 4 is made it identifies the output stream, the 1 passed in RO defines
the standard output device, the monitor. It then extracts the length of the string
from R2 and prints that number of characters out starting at the address held in
R1. The number of characters held in R2 includes spaces and any punctuation.
The final “\n’ character is regarded as one character. Try altering the value loaded
into R2 and see if you can predict the result. For example, try:

MOV R2, #11
You will also note that there is an extra directive in the program:
.data

This informs the assembler that what follows should be treated as a subsection
containing data, as opposed to assembly language code.

The data subsection could have been placed at the start of the source file had
we desired. We would then have needed to signify the start of the assembly
language subsection by using a directive thus:

text

How you structure your files is entirely a matter of which way you wish to
work. I tend to prefer placing data and data areas at the end of programs to avoid
any alignment problems. You may recall from Chapter 5 that ARM machine code
must be assembled on four-byte word boundaries, in other words start at an
address that is directly divisible by four. This may not be the case if a string of 10
characters was used, for example. This can be corrected by using an align
directive, something discussed later.

Reading from the Keyboard

To read a sequence (or string) of ASCII letters from the keyboard we need to use
the ‘read’ function. This is Syscall 3. The parameters required by Syscall 3 are
similar to Syscall 4 and are as follows:

RO= input stream, this is O for the

R1= buffer address for string of characters read to be placed
R2= the number of characters to be read

R7= the number of the Syscall, so R7=3

You can use Program 7a as a basis for the new program. You can make a copy of
it at the command line by using the cp command as follows:

cp prog7a.s prog7b.s

Now edit the source file to contain the new _read routine. The entire program is
given below.
Program 7b. Syscall 3 to read from the keyboard.

/* How to use Syscall 3 to read from keyboard */
.global _start

_ start:

_read: @ read syscall
MOV R7, #3 @ Syscall number
MOV RO, #0 @ Stdin is keyboard
MOV R2, #5 @ read first 5 characters
LDR R1,=string @ string placed at string:
SWI 0

_write: @ write syscall
MOV R7, #4 @ Syscall number
MOV RO, #1 @ Stdout is monitor
MOV R2, #19 @ string is 19 chars long
LDR R1,=string @ string located at string:
SWI 0

_exit: @ exit syscall

MOV R7, #1
SWI 0
.data
string:
.ascii "Hello World String\n"

End Program 7b.

Here we still need to define the ASCII string. I have purposely left the original
text in place so that you can see what results from using the function. The label
string: points to what is effectively a buffer or place for the input read from the
keyboard to be placed. We could have just defined an empty string, for example:

(13

.ascii

(There are other ways to reserve empty spaces in memory in programs and these
will be discussed later.)

R2 is now used to hold the number of characters we want from the read
process. It is important to remember that this is not the number of characters that
can be typed. When read: is executed it accepts all input at the keyboard until
the Return key is pressed. Only at that stage does it extract the first x characters
as defined by the value in R2. Thus typing:

123456789

At the keyboard would see 12345 (the first five characters) placed into the
string buffer. The rest would then be dealt with as though a Bash command had
been entered and therefore generates an error message. (Bash being the name
given to the Raspberry Pi OS command line shell you have been working within.)
The ° write:” routine would print out the newly created string which in this
instance would be:

12345 World String
12345 having overwritten ‘Hello’.

12
lo World String

Run the program again and just type in:12
Now the string printed is:

Note here that a newline has been generated. This is because the <Return>
was inserted into the string buffer as well. We will come back to Syscalls in
Chapter 18.

eax and Others

Much of the Syscall documentation you come across with have been written with
non-ARM machines in mind and specifically 1386 processor systems. As such
you will find yourself dealing with an alien set of register references. Figure 7a
lists these registers and their ARM equivalents which should assist you in
breaking down what needs to go where.

1386 ARM Function

eax R7 Syscall Number

ebx RO Argument 1

ecx R1 Argument 2

edx R2 Argument 3

esi R3 Argument 4

edi R4 Argument 5

eax on return RO Value or error number

Figure 7a. 386 v ARM registers for Syscalls.

So far as we have developed new source files and we have assembled and linked
the files by typing the commands at the command line. This is repetitive but made
easier by the Terminal history feature. By using the up and down arrow keys
while in Terminal you can scroll through previously entered commands, which in
turn can be edited.

GNU also provide a very clever piece of software called ‘Make’. This is a
tool that allows programmers to control the generation of executable files from a
single controlling file. When you see a piece of software installing on your
computer then chances are that the whole process is bring controlled by a Make
file. Make is a very sophisticated tool and you can find out more about it in detail
from the GNU website.

Program 7c is a source file (although you save it without the ‘.s’ suffix) that
will automate the whole assemble and link process for you. It is extremely
flexible and can deal with most possibilities. (Note the ‘#° characters are
equivalent of the ‘@’ in assembler files. They allow comments to follow.)

Program 7c. Automate assembly and linking with Make.

PROGRAMS = prog7a prog7b

If we've supplied a goal on the command line
then set it as the list of programs we already know about.

ifneq (S(IMAKECMDGOALS),)
ifneq (S(MAKECMDGOALS),clean)
PROGRAMS = $(MAKECMDGOALS)
endif
endif

The default rule if none specified on the command line

all: $(PROGRAMS)
Make knows how to compile s files, so all
we need to do is link them.

$(PROGRAMS): % : %.0 1d -0 $@ $<
clean:
rm -f *.0 $(PROGRAMYS)

End Program 7c.

Create the above file and call it ‘makefile’ - there is no need to append an “.s’ to
the filename, just plain ‘makefile’. Ensure your file is saved in the same directory
as your source file.

Also, note that the two lines:

1d -0 $@ $<
rm -f *.0 $(PROGRAMS)

must be indented by a single tab character for Make to work. Run the makefile
script by typing (at the command prompt):

make

The variable PROGRAMS (first line in makefile) is being used to hold the
names of the source files to be assembled and linked. You can enter one or as
many names as you like here, with each being separated by a space. And
effectively that is all you need to do. The rest of the program will assemble each
of the files, create the object files and then link them.

In the listing above this would mean the source files called prog7a and
prog7b. Note the “.s’ suffix is implied, and you do not need to include it.

PROGRAMS = prog7a prog7b

This also implies the makefile exists in the same directory as your source code
files. If the source files have previously been assembled and linked, they will be
overwritten provided the target files are older than their associated source files. If
the files do not exist, then make will complain with an error message. You can
‘force’ the re-make by using:

make -B

If you want to assemble and link a specific file or files, you can enter the file
name after the commands thus:

make prog7a

This would assemble and link the source file called ‘progba’ provided it existed.
This would be in preference to any filenames listed on that first makefile line.
At the command line, typing:

make clean

Will delete the ‘.0’ files from the directory based on initial definition for
PROGRAMS.

It makes good sense to include a makefile in each and any directory where
you create and save your source files that need to be assembled and linked.

The ‘make’ utility is very versatile is and can be utilised in several ways. If
you wish to study ‘make’ in more detail the GNU website has plenty of manuals
and examples at:

www.gnu.org/software/make/

Some further ‘makefile’ examples are provided at further points in the book, and
the source files that can be downloaded as previously mentioned include relevant
makefile examples in the respective directory, where appropriate.

If you downloaded the program files from my website, you would find that a
makefile (or similar) is included for each of the programs if appropriate.

8. Logical Operations

In computer terms, logic can be defined as the non-arithmetic operations
performed that involve yes/no decisions. The ARM has three different logical
operators: AND, OR and EOR. In each case, the logical operation is performed
between the corresponding bits of two separate numbers. As such there can only
ever be two possibilities: yes or no. In binary these are represented as 1 and O.
These instructions are useful when it comes to identifying or forcing the state of
individual bits in sets of data.

Logical AND
The four rules for AND are:
0 AND 0 = 0 [Nought and nought is nought]
1 AND 0 = 0 [One and nought is nought]
0 AND 1 =0 [Nought and one is nought]
1 AND 1 =1 [One and one are one]br/>

The AND operation will only generate a 1 if both corresponding bits being tested
are 1. If a 0 exists in either of the corresponding bits being ANDed, the resulting
bit will always be 0. Example:

1010
0011
0010 AND

In the result only bit 1 is set; the other bits are all clear because in each case one
of the corresponding bits being tested contains a 0. It is important to remember in
these logical operations that there is no carry bit. The tests are done on the
individual bits, and we are not adding or subtracting numbers here.

The main use of the AND operation is to ‘mask’ bits or ‘preserve’ bits. For
example, to preserve the low nibble (bits 0 to 3) of a byte and completely clear
the high nibble (bits 4 to 7) so that the byte is set to all zeros we use the AND
operator, masking the original with the value 00001111. If the byte we wished to
preserve was the low nibble of say, 10101100, we would logically AND it thus:

10101100
00001111

00001100 AND

Here, the top four bits are cleared, and the lower four bits have had their
condition preserved.

Logical OR

The four rules for OR are:

OOR0=0
1OR0O=1
OOR1=1
1OR1=1

Nought or nought is nought]
One or nought is one]
Nought or one is one]

One or one are one]

| B e B e B |

Here the OR operation will result in a 1 if either or both the bits containa 1. A 0
will only occur if neither of the bits contains a 1. Example:

1010
0011
1011 OR

Here, only bit 2 of the result is clear, the other bits are all set as each pair of tested
bits contains at least one 1.

One common use of the OR operation is to ensure that a certain bit (or bits)
is set — this is sometimes called ‘forcing bits’. For example, if you wish to force
bit 0 and bit 7 you would need to OR the byte with 10000001.

00110110
10000001
10110111 OR

The initial bits are preserved, but bit 0 and bit 7 are ‘forced’ to 1. These two bits
were originally clear. The other bits remain unaffected.

Logical EOR

The Exclusive OR operation has the four rules:

0 EOR 0 = 0 [Nought exclusive or nought is nought]
1 EOR 0 =1 [One exclusive or is one]

0 EOR 1 =1 [Nought exclusive or one is one]

1 EOR 1 =0 [One exclusive or one is nought]

This operation sets the bit if it is Exclusive to the OR operation. If both bits being
tested are identical, 0 and 0 or 1 and 1 then the result is 0. A 1 will only result if
both bits being tested are not alike.

0101
1110
1011 EOR

This instruction is often used to complement, or invert, a number. This is done by
performing an exclusive or with 11111111.

00110110
11111111
11001001 EOR

Compare the result with the first byte — they are completely opposite: 1s where
0s were and Os where 1s were.

The MVN instruction introduced in the last chapter effectively performs an
EOR on Operand?2 to obtain its result.

Logical Instructions

The process remains the same no matter how wide the data is. The examples
above are one byte wide. The operation is the same in four-bytes (or as many
bytes as you need). The operation takes place on the directly associated bits, and
no Status Register flags are involved or considered, and there is no Carry
involved at any point.

AND, ORR and EOR are the instructions used to perform the three main
logical operations. The form is the same as previous commands:

AND (<suffix>) <dest>, <Operand 1>, <Operand2>
ORR (<suffix>) <dest>, <Operand1>, <Operand2>
EOR (<suffix>) <dest>, <Operand1>, <Operand2>

In these cases, Operandl is a register, while Operand2 can be a register or
immediate value. The operations themselves do not set the Status Register flags
but can be forced to do so with the suffix.

Here are a few examples of these instructions in use:

AND RO, RO, #1 @ preserve state of b0 in R0
ORR R1, R1, #2 @ ensure bit 1 in R1 is set
EOR R2, R2, #255 (@ invert bits in low byte R2

Here’s a short segment of code to look at:

MOV RO, #129
AND RO, RO, #1
ORR RO, RO, #2
EOR RO, RO, #255

The result is 0xFC and here’s how we arrived at it (dealing with just the low byte
of the word):

Load 129 10000001
AND with 1 00000001
Result 00000001
OR with 2 00000010
Result 00000011

EOR with 255 1111111

Result 11111100

Here are some practical examples of the ORR and EOR commands in use, with a
typical application of each of them.

ORR to Convert Character Case

Program 8a illustrates how the ORR instruction converts a character from upper
case to lower case. For example, it will take ‘A' and convert it to ‘a’. The ASCII
value of the letter ‘A’ is 0x41 (65) and the ASCII character for ‘a’ is 0x61 (97).
By comparing the hex numbers, we can see that the difference between ‘A’ and
‘a’ is 0x20.

ASCII Value Binary
A 0x41 0100 0001
a 0x61 0110 0001

Difference 0x20 0010 0000

Figure 8a. Binary difference between ASCII ‘A’ and ‘a’.

As both these characters mark the start of their section of the alphabet, it follows
that the difference between an uppercase and lowercase value would always be
the same. Figure 8a shows how this pans out in 8 bits of binary.

I hope you can see that we can achieve this difference by using the ORR
instruction with the binary value 0010 0000 or 0x20 (32).

Program 8a. Converting character case.

/* Using ORR to toggle a character case */
.global start

_start:
_read: @ read syscall
MOV R7, #3 @ Syscall number
MOV RO, #0 @ Stdin is keyboard
MOV R2, #1 @ read one character only
LDR R1,=string @ string at string:
SWI 0

_togglecase:
LDR R1, =string @ address of char
LDR RO, [R1] @ load it into RO
ORR RO, RO, #0x20 @ change case

STR RO, [R1] @ write char back

_write: (@ write syscall
MOV R7, #4 @ Syscall number
MOV RO, #1 @ Stdout is monitor
MOV R2, #1 @ string is 1 char long
LDR R1,=string @ string at start:
SWI 0

_exit: (@ exit syscall
MOV R7, #1
SWIO0

.data
string: .ascii

nmn

End Program 8a.

Program 8a above does this in the section called ‘togglecase’. The routine starts
by reading a character at the keyboard (press a capital letter and press Return)
which it then stores at ‘string’. The togglecase routine then places the address of
the stored character into R1 and uses a technique called indirect addressing to
load the character into RO. (This form of addressing is discussed in Chapter 15.)
The value in RO is then masked with 0x20 and the indirect addressing technique
used to store the modified contents of RO back at the address held in R1.

Note that no check is made here to ensure that the character entered is in the
range A-Z. How would you adjust the program to convert a lowercase character
into an uppercase one?

Bit Clear with BIC

The BIC instruction sets or clears individual bits in registers or memory locations.
Its format is:

BIC (<suffix>) <dest>, <Operand1>, <Operand2>
The Bit Clear instruction forces individual bits in a value to zero.
BIC RO, RO, #%1111 @ clear low 4 bits of RO.

If RO held OxFFFFFFFF then the example above would clear the lowest four bits
to leave OxFFFFFFFO.

RO: IT111111 11111111 11111111 11111111
BIC #0xF: 00000000 00000000 00000000 00001111
Result: 11111111 11111111 11111111 11110000

The BIC command performs an AND NOT operation on Operand]l with
Operand2.

Flag Tests

There are two instructions whose sole purpose is to test the status of bits within a
word. Like CMP there is no destination for the result, which is reflected directly
in the Status Register (therefore the S suffix is not required). The two instructions
are TeSt BiTs (TST) and Test EQuivalence (TEQ). The formats are:

TST <Operand1>, <Operand2>
TEQ <Operand1>, <Operand2>

TST is a test bits instruction, and Operand2 contains a mask to test on Operand]l.
It performs the equivalent of a logical AND with the outcome updating the Zero
flag:

TST RO, #128 @ Test if b7 of RO is set

TEQ is test equivalence and uses an EOR process. It is a handy way of
seeing if particular bits in registers are the same.

TEQ RO, R1 @ Test if RO & R1 are same

You can use suffixes with both the TST and TEQ instructions so that you can test
for other conditions as well as that of the Zero flag (detailed in the next chapter).

Program 8b uses the TST instruction to convert a number held in R6 into a
binary number, which is then displayed on the screen. The number to be printed is
placed in R6. There are a few things of interest in this program which we have
not encountered yet and they will be explained in detail in the following chapters.
Note how the program is broken into clearly named sections.

Program 8b. Printing a number as a binary string.

/* Convert number to binary for printing */
.global start

start:
MOV R6, #251 (@ Number to print in R6
MOV R10, #1 @ set up mask
MOV R9, R10, LSL #31
LDR R1, = string @ Point R1 to string

_bits:
TST R6, R9 @ TST no, mask
BEQ print0
MOV RS, R6 @ MOV preserve, no
MOV RO, #49 @ ASCII 'l
STR RO, [R1] @ store 1 in string
BL write @ write to screen
MOV R6, R8 @ MOV no, preserve
BAL noprintl

_print0:
MOV RS, R6 @ MOV preserve, no
MOV RO, #48 @ ASCIT'0'
STR RO, [R1] @ store O in string
BL write
MOV R6, R8 @ MOV no, preserve

_noprintl:
MOVS R9, R9, LSR #1 @ shuffle mask bits
BNE bits

_exit:
MOV R7, #1
SWI 0

_write:
MOV RO, #1
MOV R2, #1
MOV R7, #4
SWI 0
MOV PC, LR

.data
string: .ascii

nn

End Program 8b.

The mnemonic LSL is used in a couple of places. This stands for logical shift left
and 1is used to shuffle the bits in a word along — left in this case. In the program

it 1s used as follows:

MOV RI10, #1
MOV RO, R10, LSL #31

Here #1 is being placed into R10, via R9, and shifted 31 times to the left, so that
only the most significant bit in the register is set. This is because we cannot load
the value, we require directly into the register due to constraints that are imposed
on use of immediate values (more on this shortly).

So, the line does this:

MOV R10, #1: 00000000 00000000 00000000 00000001
LSL #31: 10000000 00000000 00000000 00000000
<< shift left by 31 places <<

We now enter the ‘bits’ loop:

_bits:
TST R6, R9 @ TST no, mask
BEQ print0
MOV RS, R6 @ MOV preserve, no
MOV RO, #49 @ ASCII 'l
STR RO, [R1] @ store 1 in string
BL write @ write to screen
MOV R6, R8 @ MOV no, preserve
BAL noprintl

_print0:
MOV RS, R6 @ MOV preserve, no
MOV RO, #48 @ ASCI1'0'
STR RO, [R1] @ store O in string
BL write
MOV R6, R8 @ MOV no, preserve

R6 holds the number (‘no’). We know that the most significant bit of the mask is
set (b31) and TST tests to see if it is in ‘number’ too. If it is, then the following
BEQ will occur and a 1 will be printed. If not a 0 will be printed. Note that in
each case we preserve the value in R6 as this is our number to be tested, and we
need to use RO to print the 1 or 0 in the _write routine. The ASCII value for ‘1’
(49) or ‘0’ (48) is placed in RO and stored in string: in either case. (This should be

familiar to you now as we have used this technique a few times in previous
programs.)

In either case we now use the write routine as a subroutine, this means that
we only need to assemble it once in the program. The program uses:

BL write

to jump to the routine. BL stands for Branch with Link. When this occurs the
address of the next instruction is saved, and the program jumps to the named
label. If you look at the end of the write routine, it ends with:

MOV PC, LR

This effectively puts the saved address (in the Link Register) back into the
Program Counter (PC) thereby causing program flow to restart after the original
BL instruction. These concepts are dealt with in some detail in Chapter 10, so all
will become clearer.

In the noprintl section we use a logical shift right to shift the mask bit
along one place to the right, making sure that we update the Status Register flags
using the S suffix. The program continues to loop, and print 1s and Os as required,
until all 32-bits have been tested.

_noprintl:
MOVS R9, R9, LSR #1 @shuffle mask bits
BNE bits

This program is a great visual aid to see how bit patterns develop. When you run
it, work your way up through the numbers from ‘1’ to see the output. You should
recognise the binary very clearly now.

You could have a go at improving this program by requesting a number to be
entered at the keyboard and then displaying its value in binary. To do that though
you would need to be able to convert an ASCII value into hex so you can store it
in a register. A technique to do this is given later in the book.

In Program 9a there are a few instances where the ASCII value of 1 or 0 has
been required. In these cases we have used the ASCII number as an immediate
value, thus:

MOV RO, #49

It is also possible to do this using the character itself:

MOV RO, #1°

Here the ASCII character is enclosed in single quotes. This is certainly more
readable and also means that you don’t have to go looking for the number
representation.

System Call Registers

One of the downsides of using operating system calls is that you need to think
carefully about register usage. Most Syscalls need information passed to them via
registers for them to complete their function. So, if you plan to use Syscalls, plan
your register usage from the start. It could save a lot of editing later.

9. Conditional Execution

The concept of the suffix was introduced in an earlier chapter to illustrate how S
can be appended onto instructions to force the Status Register flags to be updated.
For example:

ADDS RO, R1, R2 @ RO=R1+R2 & set flags

Without the S, using the instruction in its basic form, ADD has no effect on the
Status flags. S is just one of many suffixes that exist and can be used in a similar
way to expand the functionality of just about every operation in the ARM’s
instruction set.

Almost all ARM instructions can have a suffix applied to them that will only
allow the command to be executed if the condition under test is true. If the
condition is not met, then the instruction will be ignored. The suffix CS denotes
Carry Set, so the instruction it is appended to will only be executed if the Carry
flag is set at the time the ARM reaches the instruction. In programming terms, it
gives you the ability to make every instruction a conditional operation.

The list of condition codes is extensive and is given in Figure 9a. The GCC
Assembler understands these conditional codes, and you can append them for use
in your programs by adding the letters onto the end of the mnemonic. You can
leave spaces between the mnemonic and the condition code as well if this aids
readability. These two examples are both acceptable:

MOVCS RO, R1
MOV CS RO, R1

In these examples:
MOV CS RO, R1

the contents of R1 will only be moved into RO if the Carry flag is set. Likewise:
MOV CC RO,R1

will only move the contents of R1 into RO if the Carry flag is clear.
Some suffixes alter more than one flag and in such instances these
operations might require certain combinations of flags to be at a combination of

set or clear. Thus, we can conveniently group the condition codes into two sets:
those that are performed on the result of a single Status Register flag and those
that are executed based on the result in two or more flags.

Suffix Meaning

EQ Equal

NE Not Equal

VS Overflow Set

VC Overflow Clear

AL Always

NV Never

HI Higher

LS Lower Than or Same
PL Plus clear

MI Minus Set

CS/HS Carry Set
CC/LO Carry Clear

GE Greater Than or Equal
LT Less Than

GT Greater Than

LE Less Than or Equal

Figure 9a. ARM assembly language condition codes.

Condition codes act on the status of the flags; they do not set the Status Register
flags in the first instance. You will need to use a compare instruction or an
associated S suffix instruction to do that. A good understanding of binary and
arithmetic operations will aid your understanding of how instructions are affected
by these condition flags.

There are examples of the use of conditional execution throughout the
programs in this book. Indeed, Chapter 10 also includes a perfect illustration of
how the use of conditional codes can greatly reduce the size of your program.

This chapter contains an awful lot of information. Even for the experienced
programmer it can be quiet daunting, so don’t be too concerned it if you don’t
fully understand it at this staged. Note its contents and refer to it when you need
to. Use Figure 9a as your reference point.

Single Flag Condition Codes

Falling into this group are the suffixes:

EQ, NE, VS, VC, M1, PL, CC, AL, NV
These conditional flags are provided in complementary pairs. In the first set
below, EQ and NE, they both act on the condition of the Zero flag — one when it
is set, and the other when it is clear. If you are testing one condition and it is false
then you do not have to test for the alternative condition as, by definition, it must
be true as it can only be one of two states.

EQ: Equal

7Z=1: Instructions that use the EQ suffix will only be executed if the Zero flag is
set. This will be the case if the previous operation resulted in zero. Subtracting
two numbers of the same value will result in zero and accordingly set the Zero
flag. A compare operation would set the Zero flag if the two values being
compared were the same. If the result of any operation is not zero, then the Zero
flag is clear (Z=0).

Example:

MOVS RO, R1 @ Move R1 into RO and set flags
MOVEQ RO, #1 @ If 0, load RO with 1

Here, the Zero flag will be set if 0 is moved into RO from R1. If this is the case
then the next instruction will be executed, and 1 will be written into R0O. The
instruction will not be executed if the Zero flag is clear, thereby proving that the
value in RO was non-zero.

NE: Not Equal

7=0: Instructions that use the NE suffix will only be executed if the Zero flag is
clear. This will be the case if the previous operation did not result in zero.
Subtracting two unlike numbers will clear the Zero flag. A compare operation
would set the Zero flag if the two values being compared were the same. If the
result of any operation is not zero, then the Zero flag is clear (Z=0).

Example:

CMP RS, R6 @ Compare R6 with R5 & set flags
ADDNE R5, R5, R6 @ If not zero R5+R6 and put in R5

Here, the CMP instruction is used to compare contents of RS and R6. If they are
not the same (so that the Zero flag will be clear, Z=0) then RS and R6 are

summed and the result placed in RS.

VS: Overflow Set

V=1: Instructions that use the VS suffix will only be executed if the Overflow
flag is set. This flag is set because of an arithmetic operation producing a result
which cannot be represented in the 32-bit destination register, creating a potential
overflow situation. In cases like this, data placed in the destination register may
not have value and thus require corrective action by the programmer. Examples of
this can be found in Chapter 5.

VC: Overflow Clear

V=0: Instructions that use the VC suffix will only be executed if the Overflow
flag is clear. This flag is set because of an arithmetic operation producing a result
which cannot be represented in the 32-bit destination register. That is, an
overflow situation. If the flag is clear, then no such overflow has occurred. This
condition tests for the no overflow condition.

MI: Minus Set

N=1: Instructions that use the MI suffix will only be executed if the Negative flag
is set. This flag is set because of an arithmetic operation producing a result which
is less than zero. This would occur if a large number is subtracted from a smaller
one. Logical operations may also set the Negative flag if they cause bit-31 of the
destination register to be set.

Example:

SUBS R1, R1, #1 @ Subtract 1 from R1 & set flags
ADDMI RO,RO, #15 @ If negative add O0xOF to RO

Here, the SUB instruction takes 1 from the contents of R1, and the S suffix is
used to update the flags as the result is stored into R1. The ADD in the next line
only takes place if the N flag is set and if so 15 is added to RO.

PL: Plus Clear

N=0: Instructions that use the PL suffix will only be executed if the Negative flag
is clear. This flag is cleared if the result of an arithmetic operation is positive, one
that is greater than or equal to zero. Note that the EQ suffix will test for zero only,
the PL instruction tests for a plus or non-negative result. It is important to note the
subtle difference here.

Example:

SUBS R1, R1, #1 @ Sub 1 from R1 & set flags
ADDMI RO, RO, #15 @ If neg add 0xOF to RO
ADDPL RO, RO, #255 @ If pos add 0xFF to RO

This example illustrates how compilations of conditional instructions act on
alternative results. This builds on the MI example above: if the result was a
positive number then 255 is added to the contents of RO and stored there. As you
can see, only one of these instructions can take place and both act on the result of
the SUBS instruction. Because neither of the following ADD instructions has
used the S suffix, the status flags will not have changed since the CMP
instruction.

CS: Carry Set (HS: Higher or Same)

C=1: Instructions that use the CS or HS suffix will only be executed if the Carry

flag is set. This flag is set if an arithmetic operation creates a result bigger than

32-bits. The Carry flag can be thought of as the 33rd bit. The Carry flag can also

be set by using an ARM shift operation which is examined in Chapter 11.
Example:

ADDS RO,R0,#255 @ Add 0xFF to RO and save in R0
ADDCS R1,R1,#15 @ Carry set add 0xOF to R1 save in R1

CC: Carry Clear (LO: Lower)

C=0: Instructions that use the CC or LO suffix will only be executed if the Carry
flag is clear. This flag is clear if an arithmetic operation creates a result that fits
inside 32-bits. The Carry flag is also affected by using any ARM shift operation
which are examined in Chapter 11.

Example:

ADDS RO,R0,#255 @ Add 0xFF to RO and save in R0
ADDCS R1,R1,#15 @ If Carry=1 add 0xOF to R1 save in R1
ADDCC R1,R1,#128 @ If Carry=0 add 0xFO0 to R1 save in R1

As with the PL example, this has a definitive action that is controlled by the status
of the Carry flag.

AL: Always

Instructions that use the AL suffix are always executed and do not rely on the
setting of any of the Status Register flags. Given that instructions will always

execute if there are no conditional suffixes, the AL suffix is the default setting for
all appropriate instructions.
Example:

ADDAL, RO,R1,R2 @ Add R1 and R2 and save in R0
ADD RO,R1,R2 @ Add R1 and R2 and save in R0

These two instructions have the same result.
A common use of the AL suffix is with the Branch instruction to provide a
three-letter mnemonic and greater clarity:

B start (@ Branch to start
BAL start (@ Branch to start

NV: Never

Instructions that use the NV suffix are never executed and do not rely on the
setting of any of the status flags. This suffix is included for completeness. It can
be used as a way of making space within a program as the instruction will be
assembled. This space might be used to store data or modify the program itself at
some point, and in more advanced cases, allow for pipelining effects (Chapter
12).

Example:

ADDNYV RO, R1, R2 @ Never perform the addition.

Multiple Flag Condition Code

Falling into this group are six suffixes:

HIL, LS, GE, LT, GT, LE
These condition codes are executed based on the condition of two or more Status
Register flags. They are most often used after a CMP or CMN instruction. This
set of condition codes is further divided into two groups: those that operate on
unsigned numbers (HI and LS) and those that operate on signed numbers (GE,
LT, GT and LE).

HI: Higher (Unsigned)
C=1 AND Z=0: Instructions that use the HI suffix will only be executed if the
Carry flag is set and the Zero flag is clear. This happens in a comparison if
Operand] is greater than Operand?2.

Example:

CMP R10, RS @ Compare Registers R10 and R5
MOVHI R10,#0 @ If R10 > RS then set R10 to zero

It is important to remember that this condition assumes the two values being
compared are unsigned and that negative values are not being used in a twos
complement format.

LS: Lower Than or Same (Unsigned)
C=0 OR Z=1: Instructions that use the LS suffix will only be executed if the
Carry flag 1s clear and the Zero flag is set. This happens in a comparison if
Operandl is less than Operand2. Again, it is important to remember that the
condition assumes that the two numbers being compared are unsigned.

Example:

CMP R10, R5 @ Compare Registers R10 and R5
ADDLS R10,R10,#1 @ If R10<=R5 add 1 & save in R10

GE: Greater or Equal (Signed)
(N=1,V=1) OR (N=0,V=0): This instruction will execute if both the Negative
flag and Overflow flag are the same. This happens when two values are being
compared: Operand1 was greater than or equal to, Operand?.

Example:

CMP RS5, R6 @ Compare contents of RS and R6
ADDGE R5,R5,#255 @ If R5 >= R6 then add OxFF to RS

It is important to remember that this condition assumes the two values being
compared are signed quantities.

LT: Less Than (Signed)
(N=1, V=0) OR (N=0, V=1): This instruction will execute if the Negative and
Overflow flags are different. This happens if Operandl is less than Operand2.
Again, the condition assumes that the two values being compared are signed
quantities.

Example:

CMP RS, #255 (@ Compare contents of R5 with OxFF
SUBLT R5,R5,R6 @ If R5<OxFF subtract R6 from RS,
@save result in RS

GT: Greater Than (Signed)
(N=1, V=1) OR (N=0, V=0) AND Z-0: This instruction will execute if the result
1s a positive number and not zero. Here, Operand] is greater than Operand2 and
the assumption is that signed numbers are used. So, both the Negative flag and
Overflow flag must be the same, and the Zero flag clear.

Example:

CMP RS, R6 @ Compare RS with R6
ADDGT RO,R1,R2 @ If R5>R6 add R1+R2 & put in RO

LE: Less Than or Equal To (Signed)
(N=1, V=0) OR (N=0,V=1) OR Z~=1: This instruction will execute if the result
between two values, Operand]1 is less than or equal to Operand2. The assumption
is that signed numbers are used. To achieve this both Negative flag and Overflow
flag must be different, or the Zero flag must be set.

Example:

CMP RS5, #10 @ Does RS contain 0x0A?
SUBLE RO,R1,R2 @ If R5<=0x0A subtract R2 from R1
and put result in RO

Mixing the S Suffix

The S suffix can be mixed with conditional suffixes. This ensures that the result
of whatever action taking place will also update the Status Register flags. We saw
in a couple of earlier examples how preserving the status of flags after an action
means that it is possible to act on the outcome of a conditional execution for both
results. This assumes that the Status Register flags are not updated. If you want
the Status Register flags to be updated by the conditional operation, then the S
suffix should be added after the conditions suffix thus:

ADDCSS RO, R1, R2 @ R2+R1 if C=1, Update flags as well

It is important to place the S suffix after the condition code otherwise the
assembler will miss it if it is placed before.
Trying to assemble:

ADDSCS RO, R1, R2

gives an error.

10. Branch and Compare

This chapter has a more detailed look at the use of the compare instructions and
the most economical ways of using them.

Branch Instructions

A machine code program will run linearly executing each action, one after the
other. A branch instruction allows the program flow to be transferred to a
different point in the program, where the linear execution recommences until
another branch is encountered. The two common variants of the branch
instruction have the format:

B (<suffix>) <label>
BL (<suffix>) <label>

In effect, combined with conditional flags, there is a branch for every occasion.
Although 1it' is perfectly possible to use the B instruction on its own, it is
preferable to use the AL suffix so as not to lose the ‘B’ in a bigger program:

BAL start
But this is also perfectly acceptable:
B start

The <label> is a marked position in the assembly language program. There is a
physical limit to the distance a branch can occur. This is plus or minus 32 Mb, as
this is the largest address that can be represented in the space allocated for the
label position. The named label is not stored in the machine code, nor is the
absolute address of the label.; what is stored is the offset from the current
position. When the ARM encounters the branch instruction it treats the value
following as a positive (forward) or negative (backward) adjustment to the PC
from the current position.

Chapter 13 looks at Register 15 in more detail and discusses how branches
are calculated.

The Link Register

The Branch with Link instruction, BL, allows you to pass control to another part
of your program — a subroutine — and then return on completion. BL works like
the normal branch instruction in that it takes its destination as an address,
normally specified by a label in an assembly language program. However, before
it branches it copies the contents of the Program Counter (R15) into the Link
Register (R14).

BLEQ subroutine @ Branch & save PC if Z flag set

Once the subroutine has completed the contents of the Link Register, can be
transferred into the Program Counter to return control to the calling segment of
code:

MOV R15,R14

This 1s arguably the least elegant instruction implementation on the ARM chip. It
is effective and does the job; however, other CPUs have specific subroutine call
and return instructions. For example, on the 6502 chip the mnemonics JSR
<label> and RTS are used to jump and return to and from subroutines.

A MOV instruction is used to move the return address from R14 back into
the Program Counter. This will have no effect on the Status Register flags, and
therefore, flags are preserved from whatever was going on before the return.

It is important to remember that each time a BL instruction is executed the
contents of R15 are copied into R14. This means that if the program is already in
a subroutine and another is called, the original link address will be overwritten
with the new link address.

If your program is going to nest BL calls inside one another, the Link
Register must be preserved on each occasion. The Link Register can then be re-
seeded with the return address each time the subroutine is completed. In such
cases, housekeeping is important. Re-seeding the wrong address back into the
Program Counter will most likely crash your program.

A common way to store these nested addresses is to utilise the stack as a
store. This is described in Chapter 17.

Using Compare Instructions

Your machine code will regularly need to check the result of an operation and
then, depending on that result, take a course of action. There are a range of
instructions that allow you to do this and a couple also that jump, or ‘branch’ to
another part of the program. These comparisons instructions directly affect the
Status Register flags at which point you can act on what you find. The following
segment will count from 1 to 50 and uses compare and branch instructions to
control the loop to do so:

MOV RO0,#1 @Initialise count

loop:
ADD RO,R0,#1 @ Increment count
CMP RO,#50 @ Compare with limit
BLE loop

This program continues to add 1 to the value in RO, which was initially set at 1.
RO is compared to 50, and a BLE occurs if Less than or Equal to is the result. So,
the loop control continues until RO=50. Then the loop continues until RO=51,
because RO would have been incremented to 51 in the instruction before the CMP,
which is the point when the BLE instruction fails to loop back to ‘loop’.

This segment of code is perfectly acceptable, but we can reduce its length,
by making the loop count down thus:

MOV R0,#50 @ Initialise count
loop:

SUBS RO,R0,#1 @ Decrement count

BNE loop @ Loop if not Zero

Here, we use SUBS to decrement and set the flags and can therefore, get away
with excluding the CMP instruction. If you are counting a sequence of iterations
and do not need the count value for anything, it is better and more efficient to
count down. This means fewer instructions and a faster execution.

Compare Forward Thinking

Because the only effect of the comparison instructions is to test the condition of
Status Register flags, by thinking about what you require, you can get away
without using them. Let’s look at an example. The segment below is a loop that
will cycle until RO and R1 are the same. If RO is greater than R1 it will subtract
R1 from RO and place the result in RO. If on the other hand RO is less than R1, it
will subtract RO from R1 and place the result in R1. When they are the same, the
program will finish.

MOV RO, #100 @ arbitrary values in RO & R1 MOV R1, #20
loop:

CMP RO, R1 @ Are they the same: Z=1?

BEQ stop @ if so stop

BLT less @ if RO <than R1 go to less

SUB RO,R0,R1 @ otherwise sub R1 from RO

BAL loop @ branch always back to start
less:

SUB R1,R1,R0 @ subtract RO from R1

BAL loop @ branch always to the start

While this code is perfectly acceptable and does the job, we can reduce it by
taking full advantage of conditional execution of instructions:

MOV RO, #100 @ arbitrary values in RO & R1
MOV R1, #20

loop:
CMP RO, R1 @ Are they the same: Z=1?
SUBGT RO,RO,R1 @ sub R1 from RO if Great Than
SUBLT R1,R1,R0 @ else sub RO from R1 as Less
BNE loop @ branch is not equal

As we are testing for greater than and less than conditions, we can make direct
use of the GT and LT suffixes respectively and tag them onto the end of the SUB
subtraction instruction. Using Conditionals Effectively

In Chapter 8, we saw how to use the TST instruction to print out a binary
number. There, Program 8b used the section of code below to select whether a ‘1’
or ‘0’ will be used for printing:

_bits:

TST R6, R9 @ TST no, mask
BEQ print0
MOV RS, R6 @ MOV preserve, no
MOV RO, #49 @ ASCII 'T'
STR RO, [R1] @ store 1 in string
BL write (@ write to screen
MOV R6, R8 @ MOV no, preserve
BAL noprintl

_print0:
MOV RS, R6 @ MOV preserve, no
MOV RO, #48 @ ASCIL'0'
STR RO, [R1] @ store O in string
BL write
MOV R6, R8 @ MOV no, preserve

On the face of things, this is a perfectly acceptable way to archive the result of
printing either a 1 or O to the screen dependent on the result of a test. Indeed, it is,
but that is without a full understanding of the ARM instruction set. Now consider
the listing for Program 10a and the new section of code from bits down which,
using conditional instructions, is half the size of the original segment. Now,
dependent on the result of the TST instruction one of the MOV commands — and
only one — will get executed, dependent on the condition of the Zero flag. This is
much more elegant and easier to follow.

Figure 10a. Conditional execution to improve program size.

/* Convert to binary for printing */
.global start
_ start:
MOV R6, #251 (@ Number to print in R6
MOV R10, #1 @ set up mask
MOV R9, R10, LSL #31
LDR R1, = string @ Point R1 to string
_bits:
TST R6, R9 @ TST no, mask
MOVEQ RO, #48 @ ASCII'0'
MOVNE RO, #49 @ ASCIT 'l
STR RO, [R1] @ store 1 in string
MOV R8&, R6 @ MOV preserve, no
BL write (@ write to screen

MOV R6, R8 @ MOV no, preserve
MOVS R9, R9, LSR #1 @ shuffle mask bits
BNE bits
_exit:
MOV R7, #1
SWI 0
_write:
MOV RO, #1
MOV R2, #1
MOV R7, #4
SWIO0
BX LR @ Branch eXchange
.data
string: .ascii

nn

End Program 10a.

Branch Exchange

The Branch Exchange (BX) and Branch with Link (BLX) offer a third way of
branching within a program. However, it should be said they are most commonly
used to effect an entry into Thumb code — a subset of ARM — a subject addressed
in Chapter 27, and as such should be avoided until that point and when you are
familiar with their added implications. How would you rewrite the routine so that
there is no need to use the BX instruction?

11. Shifts and Rotates

The ARM has an internal mechanism called the ‘barrel shifter’ which can shuffle
the bits in a word left or right. Most microprocessors have standalone instructions
that allow you to perform this directly. However, the ARM only allows these
movements as part of other instructions. It is a significant process because
moving bits left or right can be a simple way of multiplying or dividing numbers
quickly.

Three types of shifts that can be performed. They are logical, arithmetic and
rotate. Rotate is the only one that does not have an arithmetic function—it is
included purely to move bits. Figure 11a lists the six types of bit moves available
for use.

Mnemonic Meaning

LSL Logical Shift Left
LSR Logical Shift Right
ASL Arithmetic Shift Left
ASR Arithmetic Shift Right
ROR Rotate Right

RRX Rotate Right eXtend

Figure 11a. Shift instructions available for use.

Although the barrel shifter is in operation during shifts and rotates, practically, its
operation is transparent to the user.

Logical Shifts

Logically shifting a number left or right by one position has the effect of doubling
it or halving it. By increasing the number of logical shifts, you can multiply and
divide numbers accordingly.

Figure 11b shows how a single Logical Shift Left (LSL) moves the bits on a
full word of data. In an LSL, the most significant bit (b31) drops out and into the
Carry flag and the hole made by b0 shifting along into b1 is filled with a 0.

LSL | C Word
Before | x [Db31(b30(b29]028]|027| .. |b3{b2{bl|bl
After |D311030(029(028(027(026] << [D2{b1 (00| (

Figure 11b. Logically shifting bits left.

Consider the single byte binary value 00010001. In decimal this is 17. If we
perform a logical shift on this number by one place to the left (LSL #1) we get:
00100010 which is 34. We have effectively doubled, or multiplied the number, by
two. This assumes that we drop off the top digit and insert a 0 at the least
significant bit. This is illustrated in Figure 11c.

b7 | bo | b5 |bd|b3|b2]|bl]|hbl
Before| 0| 0[O (10010711 $17
AMter| 010|200 0]11]01<0 #334

Figure 11c. Doubling a number with a single LSL.

This is a single byte example. The ARM uses four-bytes, so the whole word is
shifted to the left in this fashion. The bit that was in b7 gets moved across into the
next byte and into what is effectively b8, and so on. The bit that gets shifted out at
the very top, bit 31, gets moved into the Carry flag. The Carry flag can be tested
to see if there is an overflow in the number multiplication.

As mentioned, the ARM does not have any standalone shift instructions, but
it does implement them as an add-on to Operand2 to use within instructions and
they affect the whole 32-bits of the register specified. Using the example
illustrated above, we might code it thus:

MOV R1, #17
MOVS RO, R1, LSL#1

Note the structure of the syntax for this. Operand]1 is the destination for the result
(RO), and the LSL is performed on Operand2 (R1). Here, the logical shift is given
as an immediate value, but it could also have been specified in a register, which
makes it available for alteration. A value from 0 to 31 can be used in a shift
command. Using:

LSL #5

would multiply a value by two, five times =32 (2 x 2 x 2 x 2 x 2). It would
perform LSL five times. Here, the new spaces would be filled with Os and the
Carry flag would reflect the value of the last bit ‘falling out’ from b31. All the
other bits moved out are ‘lost’. This means that the multiplication only remains
true provided we do not lose any significant bits through the Carry flag.
Therefore, for large numbers care must be taken that significance is retained. In
other words, the result must fit inside 32-bits. This multiplication rule breaks
down if we were using twos complement numbers.

Logical Shift Right

Figure 11d shows how a Logical Shift Right (LSR) affects the bits in a word of
data. The most significant bit (b31) goes right with a 0 taking its place. The least
significant bit, b0 drops into the Carry flag.

IR | C Word
Before| x |b31(b30(0291028(027] .. [b3[b2{bl bl
After | DO | 0 [b31(D30{b29(028] >> [bd{b3|b2|bl

Figure 11d. Logically shifting bits right.

The effect of LSR 1is to divide the number by two. Figure 11e shows this using
our previous example. We start with 34 and perform an LSR #1 to arrive back at
our original value of 17. Here a 0 is drawn in at the top end (b31) and any value
falling out on the right (b0) is taken into the Carry flag. As with LSL the Carry
flag is used to capture what is falling out so it can be tested if required. Figure
I1e.

b7 {bo | b5 |4 | b3 |b2]|bl]|b0
Before | 0[O0 110100110 134
AMter { O[O0 1[010[0]1|> 217

Figure 11e. Dividing a number by two with a single LSR.

Arithmetic Shift Right

In an arithmetical shift the sign bit is preserved. Here b31 is saved; everything
else is shifted one place to the right with b0 dropping into the Carry flag. These
examples are shifted by one place only, but the principle is the same for multiple
shifts with b31, the sign bit being preserved, and the last bit moved out of b0 is
dropped into the Carry flag. This is illustrated in Figure 11f:

ASR | C Word
Before| x [b31(b30(029(b281027| .. [b3[b2{bl bl
After | b0 (b31|b31(b301029(028] >> |bd|b3|b2|bl

Figure 11f. Arithmetic shift right preserving sign bit.

The advantage of ASR is that the shift considers the sign of the data and so a twos
complement number may be represented. It extends the original sign of the
number from b31 to b30 and ensures the division is performed correctly for both
positive and negative numbers.

MOV R1, #255
MOV R2, #1
MOVS RO, R1, ASR R2

When we execute the segment above it would leave a value of 0x7F (128) in RO
with R1 and R2 unchanged, but the Carry flag set.

The conditional tests can also be used as with a normal MOV instruction.
This following line would only be executed if the Carry flag is set:

MOV CS S RO, R1, ASR R2

An arithmetic shift left (ASL) is identical in operation to LSL, and there is no
difference between them in the result. As a matter of course, you should always
use LSL instead of ASL as some assemblers may not compile it and issue an error
message. Others may just give a warning.

Rotations

There are two instructions that allow you to rotate bits to the right and in
conjunction with the Carry flag. Rotate Right (ROR) moves the bits out from the
low end and feeds them straight back in the high end. The last bit rotated out is
also copied into the Carry flag as well as being rotated around. Figure 11g
illustrates how the bits move. The Rotate instructions have no arithmetic action of
significance and are included to shift bit patterns.

ROR> | C Word
Before | x [Db31(b30(b29]028]|027| .. |b3{b2{bl|bl
After | b0 | b0 (031(D30{029(028] >> [b4{b3|b2|bl

Figure 11g. The Rotate Right instruction.

The following segment:

MOV R1, #0xF000000F
MOVS RO, R1, ROR #4

would give a result of 0xFF000000 with the Negative and Carry flags set. The
ROR #4 shuffles the bits four places to the right.

The top bytes, 0xFO00 move to the right by four giving 0xOF00; The low
bytes 0x000F move to the right by four to give 0x0000; The OxF, which has
dropped out of the lower byte, is rotated to the top four bits of the high byte to
give 0xFF00. Of course, the bits in the middle would all be shuftled along as
well, but as they are Os this is not noticeable. Finally, a copy is made of the last
bit out, which was originally in the position bit 4, and placed in the Carry flag.

Extended Rotate

There is also an extended version or Rotate Right called RRX:

MOV RO, R1, RRX

This RRX operation is unique in that you cannot specify the number of
movements it makes as you are only allowed one. RRX always and only rotates
data right by one position. The Carry flag value is dropped into b3 1, and the value

in b0 is moved into the Carry flag. Figure 11h shows how the bits are moved.

All bits are preserved albeit in a different order. RRX uses the Carry flag as a

33rd bit and so everything is preserved.

RRX>

C

Word

Before

X

b3l

b3(

b29

b28

b2]

b3

b?

bl

bl

After

b

X

b3l

b3(

b29

b28

))

bl

b3

b?

bl

Figure 11h.

Rotate Right with Extend.

Uses of Shifts and Rotates

The shifts and rotate commands can be used with any of the following data
processing instructions:

ADC, ADD, AND
BIC

CMN, CMP

EOR

MOV, MVN

ORR

RSB

SBC, SUB

TEQ, TST

They can also be used to manipulate the index value of LDR and STR operations
as described in Chapter 13/15. This also illustrates some handy uses for this group
of modifiers. Chapter 12 also illustrates use of some of the logical instructions.

Immediate Constant Range

We have seen the use of immediate constants in instructions:
SUB RO, R1, #3

Here the immediate constant is specified as Operand2, ‘3’ in this case. However,
there is a limit to the size of the number that can be specified in this constant, and
more particularly, some numbers just can’t be used — 257, for example.

The reason for this is in the way ARM instructions are encoded. There are
only 12-bits available for storing an immediate value as the operand. The
encoding of ARM instructions is beyond the scope of this book. However,
accepting that 12-bits are available, this is how the ARM uses these bits: The 12-
bit-field is split into two, one part of 8-bits and one of 4-bits. The 8-bit-field is
used to represent a numeric constant and the 4-bit-field one of 16 different
positions (each themselves then shifted by two) which the 8-bit value may be
rotated to through an even number of positions.

Figure 111 summarises this scheme showing the position of the 8-bit value
afforded within the 32-bits as defined by the position bits, 0-15. The ‘+’ is used in
the diagram to represent Os, in the hope it makes it easier to read. The ROR
column shows the value to be used in the shift.

A couple of examples should make this clearer. Suppose we wanted to use
173 as immediate constant. In binary this is:

00000000 00000000 00000000 10101101

This value can be presented in 8-bits, so no shift is required, and the position bits
will be set to 0.
Let’s now examine the number 19,968. In binary across 32-bits this is:

00000000 00000000 01001110 00000000

If we compare this to the patterns in Figure 111, we can see this has the value
placed at position 12. To create this number as an immediate operand we would
use 78 (01001110) and rotate it right by 24.

This provides us with the second way that an immediate operand can be
specified as a shifted operand, and this takes the format shown in the following
line:

Instruction (<Suffix>) <Op1>, <Op2>, <Op3> <Shift>

Here’s an example:

MOV R1, #78
MOV RO, R1, ROR #24

Here, R1 is loaded with 78, then rotated right 24 places and the result placed
in RO. The result generated would be 19,968. Of course, we can use all these
values directly as immediate constants as the assembler will resolve them directly
for us, so we can use: MOV RO, #19968 and the assembler works it out. It is the
values that cannot be calculated in this way through Figure 111 that are the issue.

Bit31 bitd Psn ROR
FrHH 176543210
LOHH+HHHHHHHH 4765432
32104+ 47654
5430104+ ++HHHHHH 4476
765432104+ +HHH++HHHHHH 14
HT654321 04+ +HHHHHHHHHH 44

O O = o O

O o —d1 oy U1 B o Y /e O
|_\
(e

765432104+ 44+t H+H 1 12
FHH+44765432 L0444+ +++ 444 14
FHEE++++T654321 044+ +HH 444 16
FHEt+ 414447654321 0444+ ++++ 4444 18
FHEEE 7654321044+ 444444441 100 20
PR T654321 04+ H+H+++++ 11 22
PR HH4T654321 044444 12 24
FHHHH 76543210+ 13 26
HHEEE R E£76543210++4 14 28
PR Rt 1765432104+ 15 30

Figure 11i. Immediate operands calculation.

Although 257 cannot be used as an immediate constant, it can be seeded by
storing it in a register and then using the register to specify the value.

ADD RO, R1, #257
would cause an error, along the lines of:
Invalid constant
but the following would achieve the same result:

MOV R2, #256 (@ Load R2 with 256
ADD R2, R2, #1 @ Add one to make 257
ADD RO, R1, R2 @ Add 257 to R1 and save in RO.

If we are using MOV instructions, then the assembler allows us the omit this and
use the logical instruction directly to the same effect:

LSL RO, R1, #1
LSR RO, R1, #2
LSR RO, R1, #3
ROR RO, R1, #4
RRX RO, R1

Top Move

The MOVT instruction assists in loading values into registers, that might now be
possible using other methods. More particularly it can load a two-word value into
the top bytes of a specified register without disturbing the lower two words. For
example, we can use it to assist in the loading of an address into a register:

MOV R1, #0x0008
MOVT R1, #0x3F20

R1 would now contain, 0x3F200008.

Generally, the MOVT instruction it is used to load a value that could not
otherwise be done using an immediate value. So, if the assembler throws out an
error message along the lines:

Error: invalid constant (xxxxxxxx) after fixup.

Here ‘xxxxxxxx’ is the value you specified. The ‘fixup’ refers to the assembler
trying to resolve the issue but couldn’t and thus the error message! Thus, you will
need to use the MOV/MOVT combination.

12. Smarter Numbers

In Chapter 6 we introduced the two basic multiplication instructions MUL and
MLA. These were the original multiplication instructions wired into the ARM.
Since v3 of the ARM additional instructions have been added to deal with signed
and unsigned numbers up to 64-bits long. We’ll look at some of the more useful
ones here. Several have specific uses and are aimed at more complex tasks such
as digital processing.

Long Multiplication

The SMULL and UMULL instructions offer signed and unsigned multiplication
using two registers containing 32-bit operands to produce a 64-bit result, which is
split across two destination registers. The format of the instruction is:

SMULL (<suffix>) <destlLo>, <destHi>, <Op1>, <Op2>
UMULL (<suffix>) <destlLo>, <destHi>, <Op1>, <Op2>

For signed multiplication, the values passed through Operandl and Operand2 are
assumed to be in twos complement form. You cannot use the PC in these
instructions and the SP should be avoided as it is not supported in some later
ARM chips, although it can be used on the Raspberry Pi. It should go without
saying that the two destination registers should be different.

The following example will produce the full 64-bits from the product of two
unsigned 32-bit numbers, assuming the two unsigned numbers are in R1 and R2.
On exit R3 and R4 hold the result with the low-word of the product in R3 and R4
the high-word.

UMULL R3, R4, R1, R2

To give you an idea of how code-saving these newer instructions are, the listing
presented as Program 12a will perform the same operation using the original
MUL instruction. As with the above example the routine assumes that the two
unsigned numbers are in R1 and R2 and on exit R3 and R4 hold the result, with
the low-word of the product in R3 and R4 the high-word. On exit, both R1 and
R2 are non-defined. RS, an extra register, is also used.

Program 12a. Long multiplication ‘the hard way’

/* Multiply without use of UMULL */
/* mult: routine can be replaced with one instruction! */

@ R1=Unsigned 32-bit number 1 (low)
@ R2=Unisgned 32-bit number 2 (high)

@ On Exit:
@ R3=Result (low-word product)
@ R4=Result (high-word product)

@ R1= Undefined, R2= Undefined, R5= Undefined

.global _start

_start:
MOV R1, #0xF0000002 @ Going to do...
MOV R2, #0x2 @ [R3,R4]=R1*R2

mult:
MOVS R4, R1, LSR #16 @ R4 is ms 16-bits of R1
BIC R1, R1, R4, LSL #16 @ R1 is Is 16-bits of R1
MOV R5, R2, LSR #16 @ R5 is ms 16-bits of R2
BIC R2, R2, R5, LSL #16 @ R2 is Is 16-bits of R2

MUL R3, R1, R2 @ Low partial product

MUL R2, R4, R2 (@ First mid-partial product
MUL R1, R5, R1 @ Second mid-partial product
MULNE R4, R5, R4 @ High partial product

ADDS R1, R1, R2 @ Add mid-partial

ADDCS R4, R4, #0x10000 @ Add Carry to high partial
ADDS R3, R3, R1, LSL #16 @ Add middle partial product
ADC R4, R4, R1, LSR #16 @ Sum into low & high-words

MOV R7, #1 @ Exit Syscall
SWI 0

End Program 12a.

The ADDS following the MULNE test is used in preference to MLA here as we
need to preserve the Carry flag for the ADDCS that follows.

If you do not follow this example, try writing it out longhand, or work through it
using GDB, after you have read Chapter 14, so that you can view register
contents during a step-through process.

Long Accumulation

SMLAL and UMALA are the signed and unsigned equivalents of MLA. As with
the previous instructions the signed or unsigned values acting at Operand] and
Operand2 are multiplied together, but in this instance the result is added to any
value already in destLo and destHi.

SMLALS R1, R2, RS, R6

There are also a couple of interesting variants of the command which are only
applicable with signed multiplication.

SMLAXxy permits multiplication with accumulate using 16-bit operands with
a 32-bit accumulator. This is interesting and the full syntax is:

SMLA<x><y> (<suffix>)><dest>, <Op1>, <Op2>, <Op3>

Here <x> and <y> can be either B or T which stand for Bottom and Top, referring
to the bottom or top two bytes of Operandl and Operand2, respectively.
Operand3 contains the value to be added to the result of the multiplication of the
bytes identified in Operandl and Operand2.

For example:

SMLABTCC RO, R1, R2, R3

Here if the Carry is clear (CC) then the low half-word of R1 will be multiplied
with the top half-word of R2. The result will be added to the value in R3 and the
result stored in RO.

The SMLAWY instruction (Signed Multiply Wide) is similar but in this
circumstance either the top two or bottom two bytes of Operand2 are utilised to
multiply with Operandl. The upper 32-bits of the result (which may be 48-bits
long) are placed in the destination register. This is therefore a 16-bit by 32-bit
multiplication with accumulation. The full syntax is:

SMLAW<y> <dest>, <Operand1>, <Operand2>, <Operand3>
For example:
SMLAWB RO, R5, R6, R7

Here the bottom half-word of R6 1s multiplied with the full word in R5 and the
value in R7 is added to the result, which is dropped into RO.

SMUAD and SMUSD work on 16-bit values and offer Signed Multiply with
Addition and Signed Multiply with Subtraction, with the twist of allowing
optional exchange of operand halves. The syntax for the commands is:

SMUAD<X> (<suffix>) <dest>, <Operand1>, <Operand2>
SMUSD<X> (<suffix>) <dest>, <Operand1>, <Operand2>

If ‘X is included in the instruction, then the most and least significant half-words
of Operand?2 are exchanged. If ‘X’ is omitted, then no exchange takes place. The
instruction then multiplies the contents of the two lower half-words of Operandl
and Operand2 and saves the result, and then multiplies the contents of the two
upper half-words of the operands and saves the result.

For SMUAD (Dual Signed 16-Bit Multiply with Addition) the two partial
products are then added, and the result placed in the destination register. For
SMUSD (Dual Signed 16-Bit Multiply with Subtraction) the second partial
product (the upper half-word) is subtracted from the first partial product.
Example:

SMUSD R5, R7, R9

Division and Remainder

In Chapter 6 we saw that the early versions of the Raspberry Pi, namely the
original A and B along with the Zero, did not support an instruction to undertake
division. The ARM chips used in the subsequent versions, had SDIV and UDIV
introduced. Program 12b shows how you can carry out a division using two 32-bit

values without division specific instructions.

It assumes that the dividend is in R1, and the divisor is in R2. On exit R3
holds the quotient, R1 the remainder and R2 the original divisor. No check is
made to see if the divisor is zero, which will fail — but this is a simple check to
add. You will recall that the SDIV and UDIV instructions do not calculate the
remainder, so this routine might be useful if you require that value as well.

On completion RO contains the quotient so, typing:

echo $?

Will print ‘5°. The remainder of the division (‘11°) is in R1.

Program12b. Division the long way.

/* Long Divide using no specific Divide instruction */
/* Provides Quotient and Remainder as result */
@ On Entry: R1=Dividend, R2=Divisor
@ On Exit: R3=Quotient, RI=Remainder, R2 Original Divisor
.global _start
_ start:
MOV R1, #111 @ Going to do 111/20
MOV R2, #20
MOV R4, R2 @ Preserve Divisor
CMP R4, R1, LSR #1

Divl:
MOVLS R4, R4, LSL #1 @ Double Divisor until
CMP R4, R1, LSR #1 @ 2xR4>divisor
BLS Divl
MOV R3, #0 @ Initialise quotient

Div2:
CMP R1, R4 (@ Can we subtract R4?
SUBCS R1, R1, R4 @ Do so if possible

ADC R3, R3, R3 @ Double quotient, add new bit
MOV R4, R4, LSR #1 (@ Halve R4

CMP R4, R2 @ Loop until gone past...

BHS Div2 @ ..original divisor

MOV RO, R3 @ Move quotient into RO

MOV R7, #1 @ Exit Syscall
SWI 0

End Program 12b.

Smarter Multiplication

We had a look at simple multiplication in an earlier chapter. Now armed with the
knowledge of shifts and bit operators, we can look at easier ways to achieve
multiplication results. In the examples that follow RO is used as the main register,
However, any register may be used.

If you want to multiply by a factor of two then you should use LSL directly:

MOV RO, RO, LSL #n
Where ‘n’ is the constant. Replacing n above by, say 4, would produce:
RO=ROx2x2x2x2

This is, in effect, 2".
To multiply by (2")+1, examples being 3, 5, 9, 17 etc., use:

ADD RO, RO, RO, LSL #n

again, where n is the value.
Conversely to multiply by (27)-1, examples being 3, 7, 15 etc., use:

RSB RO, RO, RO, LSL #n

where n is the value.
To multiply a number by 6 first multiply by three and then by two:

ADD RO, RO, RO, LSL #1
MOV RO, RO, LSL #1

Much More Inside

I have only touched on some of the more advanced arithmetical instructions
available on the ARM chip inside the Raspberry Pi. There are many, many more
along with several variations on the ones I have covered here. The best way to
examine these is simply to set up seed programs, that is programs which load
numbers into registers before executing a particular command, and then step-
through the executing program using GDB, examining the registers along the way
as you do so.

13. Program Counter R15

Register 15 is the Program Counter, and it is important. If you don’t treat it with
respect your program can crash. If this happens your Raspberry Pi will most
likely ‘freeze’ and will not recognise anything you do until you turn the power
switch off and re-boot. Time-consuming, annoying, and frustrating. It will happen
occasionally, but it’s good for the soul to keep those occasions to a minimum!

R15 performs a simple function. It keeps track of where your program is in
an executing machine code program. It holds the 32-bit addresses of a physical
memory location. In fact, the PC holds the address of the next instruction to be
fetched. So, if you happen to load it with a number which relates to your step
count for the day, you will understand why the program might crash.

The PC can be used within instructions in a variety of ways. R15 can be used
in data processing instructions, which means that it can be used as either
Operandl or Operand2. Example:

ADD RO, R15, #8

This is an example of R15 acting as Operandl. This line would add 8 to the value
(address) in R15 and save the result in RO.

SUB RO, R9, R15

Here, as Operand2, the value in R15 is subtracted from R9 and the result stored in
RO.

R15 can also be used as the destination register in an instruction. In such
instances, it should expect to be loaded with an appropriate value for the Program
Counter as it will seek to fetch the next instruction from it.

MOV R15, R14

places the value held in R14 into R15. As R14 is the Link Register, this is an
effective way of returning from a previously called routine. Generally, it (or a
variation of it) will be used to hand control back to the point from where the
machine code was called.

Pipelining

It 1s important to understand how the ARM goes about fetching, decoding, and
executing instructions. The instruction pipeline is a design feature of the ARM
that is fundamental to its execution speed. This is because when it comes to
executing machine code the ARM 1is doing three things almost simultaneously:
fetching, decoding, and executing. As these operations cannot be performed on
the same instruction at the same time, the ARM has three instructions on the go at
once. It is executing one, decoding a second and fetching a third. When an
instruction is executed everything gets shuffled along one place as a new
instruction is fetched. The instruction that was previously fetched is then being
decoded, and the one that was being decoded is now being executed. There is a
continuous stream running through the pipeline as illustrated in Figure 13a.

Cycle Fetched Decoded Executed
Cycle 1 Opl empty empty
Cycle 2 Op2 Opl empty
Cycle 3 Op3 Op2 Opl
Cycle 4 Op4 Op3 Op2

Figure 13a. The Fetch, Decode and Execute cycle of the ARM.

It takes three cycles for the ARM to fill the pipeline when it starts operating.
Once an instruction has been executed it is discarded as the next instruction
overwrites it. It is because of this multi-tasking process that the ARM can achieve
great processing speeds. During the process of decoding, the ARM is identifying
what registers are to be used in the instruction when it is executed.

In Figure 13a, on Cycle 4, the PC holds the address of Op4 — the next one
to be fetched. Figure 13b shows where each cycle of the pipeline is relative to the
PC.

Contents Action

PC Next instruction to Fetch
PC-4 Being Decoded

PC-8 Currently Executing

PC-12 Previously Executed

Figure 13b. The PC relative to instruction processing.

This three-stage pipeline was the original design of the ARM chip. In fact,
today’s ARM processors are even more sophisticated and the ARM chip in your
Raspberry Pi has a pipeline that is no less than eight operations long. But for this
book and the concepts we are evaluating the original model remains sound for
evaluating the pipeline effect (although we’ll come back to the subject in Chapter
27). The effect of pipelining must always be considered. Otherwise in certain
circumstances your program may not function as you might expect. Consider this
instruction:

MOV R15,R15

If you place this in your program it will cause the next instruction to be skipped.
This is because the address accessed from the PC is two-words (eight bytes) more
than the address of the MOV instruction. When written back into the PC by the
operation, execution resumes a couple of words (instructions) further on, thereby
skipping the instruction in between.

Remember that the address held in the PC is always eight bytes more than
the address of the instruction being executed.

Calculating Branches

We looked at branches in Chapter 10. Let’s examine how they are handled by the
Program Counter.
A branch typically takes this format:

BAL label

Here ‘label’ is taken to be a label or a marked position in the assembly language
program. Remember there is a physical limit to the distance a branch can occur; it
is plus or minus 32 Mb as this is the largest address that can be represented in the
space allocated for the label position. An absolute address is not stored. What is
stored is the offset from the current position. When the ARM encounters the
Branch instruction it treats the value following as a positive (forward) or negative
(backward) adjustment to the PC from the current position.

Because of the way instructions are encoded, the branch value is a 24-bit
signed offset in twos complement form. The word offset is shifted left by two
places (bits) to form a byte offset. This offset is added to the PC. Look at the
following example shown in Figure 13c¢:

Address Label Instruction
0x1000 BEQ zero
0x0120 BL notzero
0x1C30 Z€ero: <instructions>
0x2C30 notzero: <instructions>

Figure 13c. Calculating branches.

The first column 1s the address of the instruction. Here we have two labels whose
addresses are 0x1C30 and 0x2C30. The first instruction:

BEQ zero

1s located at 0x0100, and the second instruction:
BL notzero

1s located at 0x0120.

Because of pipelining when the BEQ zero instruction is executing, the
instruction that is being fetched will be two instructions later, which is eight bytes
later. So, the byte offset for the BEQ instruction will be:

0x1C30 - 0x0100 - 8 = 0x1B28
So, the word offset for the BEQ zero instruction is:
0x1B28 /4 = 0x6CA

For the ‘BL notzero’ instruction the calculation is:

0x23CO0 - 0x0120 - 8 = 0x2B08
0x2B08 / 4 = 0xAC2

Backward branches work in a similar way but must have the pipeline affected
added to the calculation.

By using relative or offset values as branch destinations, it becomes possible
to write machine code programs that are totally relocatable. In other words, they
can be loaded and run into any part of memory. As soon as you hard code the
actual definitive address into place it ties the machine code into one location.

14. Debugging with GDB

The Raspberry Pi1 OS comes with a complete debugging tool, GDB, which you
will find useful when the time comes to unravel your programs and are trying to
understand why something doesn’t work the way you expected. It is also a great
way to learn about the operation of your programs.

One of two things generally happens when your machine code program
doesn’t work correctly. The first is that the result returned is not the one expected.
The second is that no result is returned, and the system freezes requiring a hard
reset. Of course, both situations can occur together as well!

For a wrong result, the likelihood is that a constant or address are out-of-
kilter. The positive side is that your routine seems to be functioning, and there are
no logical or branch errors. Here, it is a matter of trying to track down where the
‘error’ is occurring. The type of result being returned might give you a clue, and
you will need to examine this and make some deductions of your own. For
example, if you are getting a result that is one more than you were expecting (and
‘one’ in this case might not be a number) then perhaps a loop is being executed
more times than it should. The loop counter might need adjusting, or your
conditional branch instruction might need changing. Being able to see what a
loop counter value is at this point would be useful. It may also be that values in
registers have been mixed or not referenced correctly in your assembler — for
instance, you might have used R1 when you should have used R3, or you may
have wished to code an immediate value but didn’t specify it as such.

Frozen Cases

For a frozen Pi, things can be a bit more involved. Perhaps a routine is trapped in
a continuous loop. The loop counter may not be decremented and so will continue
to process while power is applied. It might also be that you have mismanaged a
stack or corrupted the Program Counter.

Trapping all these types of errors will become an everyday programming
task for you. It is part and parcel of programming. That is why it is useful to
develop your programs in small sections or functions. Each has a purpose, and
each can be tested independently.

If you find that a program crashes or hangs, one key issue is to locate at what
point this happens. The best way to do this 1s to get some visual feedback on how
far the machine code gets before being upset. This allows you to at least narrow
down your search. For example, if you are getting screen output from your code
then you will have some idea that most likely you ignore everything that went
before the last item displayed.

If you are having issues with your code and cannot narrow down the
segment creating the issue then you can populate your code with an instruction to
print out a marker on the screen, to show you where you are, and therefore have a
good idea exactly where the issue lies.

Let’s say a machine code program has five areas of operation. We could
place an appropriate call to a ¢ write’ style routine at the start of each one as
illustrated in Figure 14a.

.areal
BL write @ PRINT A
.area2
BL write @ PRINT B
.area3
BL write @ PRINT C
.area4
BL write @ PRINT D
.areas
BL write @ PRINT E

Figure 14a. Locating issues by use of a _write style function.

Now when the program is run, as each area is reached, a letter will be printed to
the screen. Let’s say we had the following result:

ABC

before the program froze. This would show that the program had seized
somewhere in area3, because ‘D’ was never printed. Now you can concentrate
your efforts in this area. You might add in additional calls to print out more letters
or numbers inside area3. This will then narrow your search and allow you to
concentrate your debugging efforts in the right area. Once you have narrowed the
area down you can look more closely at the segment.

Assembling for GDB

GDB is the GNU project debugger. It is supplied with Raspberry Pi OS and is run
from the command line. It provides a wide range of tools that will allow you to
interrogate your machine code programs in many ways from within an enclosed
environment. GDB can operate on many, many levels and it would be fair to say
that it has a command for almost every occasion. It is customisable as well. As
with most GNU software it has extensive documentation available online. In this
chapter we’ll look at some practical examples, and we’ll use Program 10a as the
centrepiece of the demonstration.

Before you can use GDB the core program has to be assembled using an
additional directive so that it generates additional information that can be used by
GDB:

as -g -o proglOa.o proglOa.s
1d -0 progl0a progl0a.o

The -g option generates the additional data for the debugger. From your point of
view nothing different has happened. You can start GDB as follows:

gdb <filename>
where <filename> is the name of the assembled file to be interrogated. So:
gdb progl0a

will launch the debugger and load the information relating to proglOa. If you
forget to specify a filename then you can use the ‘file’ command at the gdb
prompt:

file progl0a
Now typing:
list

will produce the output shown in Figure 14b. (You may need to press the
<Return> key to continue the listing. This is where you see the ‘(gdb’) lines.) The
numbers at the start are simply line numbers. They relate to what you would see if
you had line numbers enabled when editing your source code. However, within

GDB you can utilise these numbers with many of the commands that are at your
disposal.

Important: The line numbers you have may differ from those shown here,
equally the memory addresses given here may also be different on your system.
This doesn’t make the listing wrong; you just need to relate to the changes in your
listing.

$ gdb progl0a

GNU gdb (Raspbian 8.2.1-2) 8.2.1

Copyright (C) 2018 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later &
<http://gnu.org/licenses/gpl.htmI>

This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.
Type "show copying" and "show warranty" for details.

This GDB was configured as "arm-linux-gnueabihf".

Type "show configuration" for configuration details.

For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>.

Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".

Type "apropos word" to search for commands related to "word"...
Reading symbols from progl0a...done.

(gdb) list

1 /**** Convert number to binary for printing */

2 /% %/

3 /* Registers: R6=number, R8=preserve, R9=mask */

4 /* R7 needed for syscall, R1 points to string */

5

6 .global _start

7

8 start:

9 MOV R6, #251 (@ Number to print in R6

10 MOV R10, #1 @ set up mask

(gdb)

11 MOV R9, R10, LSL #31

12 LDR R1, = string @ Point R1 to string

13

14 bits:

15 TST R6, R9 @ TST no, mask

16 MOVEQ RO, #48 (@ ASCII'0'

17 MOVNE RO, #49 @ ASCII 'l

18 STR RO, [R1] @ store 1 in string

19 MOV RS, R6 @ MOV preserve, no

20 BL write @ write to screen

(gdb)

21 MOV R6, R8 @ MOV no, preserve

22 MOVS R9, R9, LSR #1 @ shuffle mask bits
23 BNE bits
24

25 exit:

26 MOV R7, #1
27SWI0

28

29 write:

30 MOV RO, #1
(gdb)

31 MOV R2, #1
32 MOV R7, #4
33 SWI 0

34 BX LR

35

36 .data

37 string: .ascii

(gdb)
Line number 38 out of range; progl0a.s has 37 lines. (gdb)

nn

Figure 14b. Listing a loaded file in GDB.

The Disassembler

A disassembler does the opposite to an assembler. It takes the values stored in
memory and converts them back into an assembly language listing. For example,
at the GDB prompt enter:

disassemble _start

You should get output that looks something like that shown in Figure 14c.

One thing the -g option did when it assembled the source code was to create
a list of the labels or functions defined in the original source code, which allows
us to refer to these directly when using GDB. The first column in the listing
generated is the address in memory where the code is assembled. (This address
may differ on your output.) The second column inside the chevrons shows the
number of bytes from the start of the function.

Dump of assembler code for function start:

0%00010074 <+0>: mov 16, #251 '0x£h

000010078 <+4>: mov rl10, #1

0%0001007c <+8>: lsl 19, rl0, #31

0x00010080 <+12>: 1dr r1, [pe, #60] ;0x100c4 < write+20
End of assembler dump,

(gdb)

Figure 14c. Disassembling a function in GDB.

Notice the last line in this listing has disassembled to something a little different
than was in our original source. It has converted the original:

LDR R1, = string

into an absolute address. In this case:
Idr r1, [pc, #60]

This means load R1 with the address which i1s 60 ahead of the current PC address
(R1=PC+60). So here pipelining is taken into account. The actual address is
0x100c4 and is given after the semi colon at the end of the line, as is the label it is
referring to!

You can also disassemble an area of memory by specifying a start and end
address. By using the ‘/r’ switch at the start it is also possible to include the
hexadecimal opcodes and operands.. For example:

disassemble /r _bits

will give the output shown in Figure 14d:

0x00010084 <+0>:
0%00010088 <+4>:
0x0001008¢ <+8>:
0x00010090 <+12>:
0%00010094 <+16>:
0x00010098 <+20>:
0%0001009¢ <+24>:
0%000100a0 <+28>:
0x000100a4 <+32>:

(gdb)

09 00 16 el
30 00 a0 03
31 00 a0 13
00 00 81 €5
06 80 a0 el
04 00 00 eb
08 60 a0 el
a9 90 b0 el
f6 ff ff 1a

End of assembler dump.

tst
noveq
novne
str
MoV
bl
nov
Isrs
bne

Dump of assembler code for function bits:

£6; 29

r0, #48

r0, #49

r0, [rl]

r8, ré

0x100b0 < write>
ré, 18

19, 19, #1
0x10084 < bits>

Figure 14d. Using the /r switch when disassembling.

The third set of figures listed are the opcodes and operands for each of the
instructions. If you look at the address line starting 0x00010098 you can see that
the offset for the BL instruction has been calculated (0xb0). If the program is
‘running’ (discussed below) the current position of the PC is shown by a \=>" on

the left of one of the addresses.

Figure 14e provides a summary of some of the more common disassembly

options in GDB.

Command

Description

disas <function:

Disassemble the named function. Example: disas _start

disas <addrlz, <addr2

Disassemble from address <addr1= to address <addr2z.
Example: disas 0xB084, 0x08A4

disas <ling: Disassemble around the line number, Example: disas 19

i Include hex opcodes in output. Example: disas /r_start

/m Include information in output. Example: disas /m _write

b dines Set breakpoint at line number, Line number can also be a
<label»

[Run

5 Step to next command

C continue running program

{ quit and exit gcb

ir Print contents of all registers

b Print fis of all breakpaints

delete <number: Delete breakpoint <numbers
Print contents of memary as per expression. N=Number;

i /Nfu <expression: f=display format {x for hex, d for decimal, { for binary; u-zunit
size (b for byes, h for haffwords, w for words)

CTRLC Interrupt running program

Figure 14e. Common disassembly commands.

Breakpoints

The major debugging facility at your disposal is without a doubt the use of
breakpoints, and the ability to step-through commands one-by-one, single-
stepping, and allow you to watch your program in action.

Breakpoints are temporary halt signs in a machine code program, which
GDB allows you to place where and when you want, so when you run your
program from within GDB the program will be halted each time a breakpoint is
reached, at the same point, preserving all registers. By inserting one or more
breakpoints in a machine code program, it is possible to ‘stop and look at register
and flag contents at any chosen point. This can come in very handy when a
program 1s not working as it should. By examining the contents of registers and
the setting of flags you should be able to narrow down and kill the culprit causing
the problem. As you might imagine it is also a great way to learn the operation of
each instruction.

Breakpoints can be set using labels or line numbers using the ‘b’ command
at the GDB prompt thus:

b _bits

In the first case the breakpoint is set at the address where ‘ bits’ is assembled.
This will be confirmed visually thus:

Breakpoint 1 at 0x10084: file progl0a.s, line 15

Let’s set a second breakpoint immediately after the two conditional MOV
statements. From the file listing we can see this is at line 18:

b 18
Which returns:

Breakpoint 2 at 0x10090: file progl0a.s, line 18
Typing:

info b

will print a listing of any breakpoints set so far, as shown in Figure 14f:

| breakpoint keep y 0x00010084 proglla.s:lo
) breakpoint keep y 0x00010090 proglla.s:18

Figure 14f. Breakpoint listings.
This shows the two breakpoints set. Deleting breakpoints is just as easy:

would delete breakpoint 2.
We can execute programs and get them to stop at defined breakpoints. If the
above two breakpoints are in place, typing:

run
at the GDB prompt would produce:

Breakpoint 1, bits () at progl0a.s:15
15 TST R6, R9 @ TST no, mask

The program has run but has stopped before executing the command on line 15.
We can now get a dump of all the register contents by typing:

infor

This would give a listing like that shown in Figure 14g:

(qdb) 1nfo r

il 0x0 0

rl 0%200c8 131272

I 0x0 0

r3 00 0

ré 0x0 0

I5 0x0 0

r6 0x£h 251

£ 00 0

r8 00 0

r9 0%800000000 2147483648
110 0x1 0

rll 0x0 0

112 00 0

5P 0x7efff3a0 0x7efff3a0
1r 0x0 0

B¢ 0%10084 0x10084 < hits>
Cpst 0x10 0

fpscr 00 16

(gdb)

Figure 14g. Register dump after breakpoint 1 has halted the program.
At this point in the program the code listed through to line 14 will have been
executed and this is reflected in the contents of the registers. To continue to the
next breakpoint type:

continue

and then list the register contents again. These are shown in Figure 14h.

Breakpoint 2,
18

(gdb) 1nfo r
L0
rl
L
L3
rd

g =
| s

Ir
pe
Cpst
fpscr

(gdb)

SIR RO, [R1]

0x30
0x200c8
0x0

0x0

0x0

0x0

0xfh

0x0

0x0
0x800000000
0x1

0x0

0x0
0x7efff3al
0x0
0x10090
0x40000010
0x0

_bits () at progl0a.s:18

@ Store 1 1n string

48
131272

2147483648

1

0

0

0x7efff3al

0

0x10090 {_bits+12>
1073741840

0

Figure 14h. Register dump after breakpoint 2 has halted the program.

Here we can see that the ASCII code for ‘0’ has been placed into RO so the
MOVEQ command was the one that was executed. This is reflected in the CPSR
where the Zero flag is set. Note how the PC reflects where we are in the
execution cycle.

Try setting a third breakpoint at line 25 (this can be done while the program
i1s ‘running’) and continue to the breakpoint. Listing the register contents will
show output as depicted in Figure 141.

R9 has been updated with the new mask value and note now how the link
register has an address in it. Compare the source listing so you can see where
these new values have come from.

You can execute your program in GDB a line at a time by simply pressing
the ‘s’ key. This is called ‘single stepping’. You should try this and watch the
program cycle through the write function as well. You can also print the register
contents at any point. GDB is totally interactive and Figure 14j lists some of the
more popular commands to experiment with.

Breakpoint 3,
k

(gdb) info t
r(
rl
rl
r3
ré

BNE bits

0x1
0x200c8
0x0

0x0

0x0

0x0

0xfb

0x4

0xfh
0x400000000
0x1

0x0

0x0
0x7efff3al
0x1009¢
0x100a4
0x10

0x0

“bits () at progl0a.s:23

1

131272

0

0

0

0

251

4

251
1073741824
|

0

0
0x7efff3al
65692
0x100a4 < bits+32>
16

0

Figure 14i. Register dump after breakpoint 3 has halted the program.

Breakpoint Labels

Rather than worrying about program line numbers for setting breakpoints, you
can always devise a system of predefined labels to use within your source files.
Typically, this might be after data has been loaded from memory or a register, so
you can examine to see if it is loaded correctly; after a round of processing; and
equally on completion.

Command Artion

Set & breakpoint at the named function.

hreak <function»
Example: b start

Set & breakpoint at the line number given.

hreak <lineno>
Example: b 23

Set & breakpoint at specified lines
break <offset> forward/backwards from current position,

Example: b +5

Set & breakpoint at specified address.

Example b *0x8074

break *<addr>

List and provide information about all set

info break
breakpoints

Delete the specified breakpoint(s). If no

delete (<no?)
number delete all, Example: delete 2

Figure 14j. Common breakpoint commands.

Memory Dump

You can look at sections of memory, including your code and data areas. The
latter is useful to see how data is changed in response to your program's
operation. If you know that you have cleared memory or filled a section with Os
before running your program, you can be sure that what is there after you have.

The ‘x’ (for examine) command produces output in a variety of formats. To
get a hex dump of memory of the program itself type the following at the GDB
prompt:

X/22xw _start

This will produce a listing like that shown in Figure 14k.

(gdb) x/22xw _start

0x10074 < start>: (xe3a060fb Oxe3a0a00l Oxela09f8a (xe59£103¢
0x10084 < bits>: (0xell60009 0x03a00030 0x13a00031 (0xe5810000
0x10094 < bits+16>: (0xelaB006 0xeh000004 0xela06008 0Oxelbo9oad
0x100a4 < bitst32>: (Oxlafffff6 (0xe3a07001 0xef000000 0Oxe3a00001
0x100b4 < writet4>: (xe3a02001 0xe3a07004 0xef000000 Oxel2fffle
0x100c4 < write+20>: 0x000200c8 0x00154120

Figure 14k. 4 hex dump of memory in GDB.
The command format is as follows:

x/nfu <addr>

Here the /> is used to signify a change in the defaults; f being format which is
hexadecimal by default; and u the unit size. <addr> is the start address from
which this is to happen. In the example above ‘w’ specifies word or four-byte

wide units and to show 22 of them, starting at 0x08. Other unit sizes that are
available are: b=bytes, h=halfwords (bytes), g=giant words (eighth bytes).

When you specify a unit for x then that becomes the default value until it is
changed again. When GDB is started the default value is 1. The ‘i’ command in
combination with ‘x’ can be used as an alternate way to produce a disassembly
listing. Here:

x /131 0x10084

will disassemble the _bits function, as shown in Figure 141.

The combinations are almost endless, and it is a good investment of time to
print a copy of the GDB Manual out and keep it bound and close to hand. GDB is
really one of those tools that you will always be looking to get more from, and a
printed copy is a good place to make notes and keep track of your favourite
formats.

(gdb) x/131 0x10084

0x10084 < bits>:
0x10088 < bits+d>:
0x1008¢ < bitst8>:
0x10090 < hits+12>:
0x10094 < bitst16>:
0x10098 < bits+20>:
0x1009¢ < hits+24>:
0x100a0 < bits+28>:
=>0%100a4 < hits+3d>:
0x100a8 <-exit>:
0x100ac < exit+d>:
0x100b0 < write>:
0x100b4 < write+4>:

tst
moveq
movne
str
mov
bl
mov
lsrs
bne
mov
SvC
mov

Moy

ré, 19

r(, #48

r0, #49

r(, [rl]

r8, 19

0x100b0 < write>
18, 19

r9, 19, #1
0x10084 < bits>
rl, #l
0x00000000
10,#1

rl, #l

1 0x30
1 0x31

Figure 141. Disassembling combinations.

Finally, if you are wondering, typing ‘quit’ will exit GDB and return you to the

Raspberry Pi OS command line.

Shortcuts

Most of the GDB commands can be limited to their starting letters:

info registers >>1ir
continue >>c
step >> 5
quit >>q

GDB Make Options

You should consider working through the long multiplication example provided
as ‘progl2a’ using GDB. Stepping through the code line-by-line and printing the
register contents out is highly informative. It should also get you used to the ways
of workings with the debugging tool.

Of course, your use of makefile will arguably change as well. Now there is
the debug assembled code it is a good option therefore to use Make to assemble
in this manner utilising the ‘g’ option. The program listed as Program 14a
provides an updated makefile that allows this to happen. The format here is a bit
different.

Program 14a. Flexible makefile for debugging code.

OBJX = progl0a
OBIJS = progl0a.o

ifdef GFLAG
STATUS =-g
else
STATUS =
endif

%.0 : %.S
as $(STATUS) $< -0 $@

debugfile: $(OBIS)
1d -0 $(OBJX) $(OBIJS)

gdbdebug: $(OBJX)
gdb $(OBJX)

clean:
rm -f *.0 $(OBJS)
rm -f *.0 $(OBJX)

End Program 14a.

You will need to save this as ‘makefile’ as well—be careful not to overwrite any
previous makefile you may have modified. Ultimately you will arrive at a way of
working that suits you.

As previously adjust the names of the source make file accordingly in the
first two lines. You can now assemble and link this with or without the -g option.
The key to doing this is remembering the ‘force option’ using the -B flag. Use
either:

make GFLAG=1 -B
To include the debug details, or:
make GFLAG= -B

In either case you can see from the resultant output in each case how the file is
being assembled and linked. You can also jump straight into gdb if you wish after
with:

make gdbdebug
You can delete all files other than the source files with:

make clean

15. Data Transfer

In most of the examples we have used so far, all data instructions have come from
either the contents of a register or an immediate constant, a specified value:

ADD RO, R1, R2
SUB RO, R1, #7

There is only so much information that can be held in a set of registers, and
registers generally must be kept clear to perform operations on data. In general,
data is created and then held at known memory locations. In such cases, we need
to manage these memory blocks. To load and store data in memory we must
know two things. First, the actual address of the data, and second, its ultimate
destination — where it’s coming from or going to. Registers are used in both
circumstances, and the method of doing so depends on the addressing mode used.
There are three addressing modes offered by the ARM:

e Indirect Addressing
e Pre-Indexed Addressing
e Post-Indexed Addressing

These methods load or store the contents of a specified register, but in each case
the data source or destination is different.

ADR Directive

In Chapter 6 we examined the use of immediate constants and saw that although
the MOV and MVN instructions can be used to load constants into a register, not
all constant values are accessible in this way. The knock-on of this is that they
cannot be used to generate every available memory address for the same reason.
Therefore, the GCC Assembler provides a method that will load any 32-bit
address. In its simplest form it looks like this:

ADR <Register>, <Label>
An example would be:
ADR RO, datastart

Despite its appearance, the ADR is a directive and not an ARM instruction. It is
part of the assembler. What it does is take the hard work out of calculating the
right number for you. When the assembler encounters this directive, it does the
following:

e Notes the address of where the instruction is being assembled.
e Notes the address of the specified label.
e Calculates the offset between the two memory positions.

It will then use this information as part of an appropriate instruction, normally
ADD or SUB, to reconstruct the location of the address or label containing the
information.

It’s worth looking at what we write in an example program and what gets
assembled to illustrate the point. Look at the listing given in Program 15a:

Program 15a. Use of the ADR directive.

/F**% Using the ADR directive ****/
.global start

_ start:
ADR RO, value
MOV R1, #15

_exit:

MOV R7, #1
SWIO0

value:
.word 255

End Program 15a.

Program 15a does nothing really, other than point ADR at the data label and show
RO as the destination register. When this is assembled using the -g option, it will
produce something like what is shown in Figure 15a, if you use GDB and enter:

x/51 _start

the ADR directive has not assembled an address. It has assembled a relative
address that will be used as an offset for the Program Counter. Here the ADD
instruction is used to add 8 to the PC, the address of value which comes right
after the last instruction.

0x8004 < start>: add 10, pe, #8
0x8098 < start+d>: mov 1, #1
0x805¢ < exith: nov 17, #l
0x0860 < exit+d>: svc 0x00000000

Figure 15a. Disassembly of Program 15a.
Note also that the instruction:

SWI 0
Has been disassembled to:
SVC 0x00000000

Showing the mnemonics are interchangeable. The preferred method is probably
SVC these days, but I am still old hat and use SWI. The final line in the listing is

where the value 255 is stored. GDB tried to interpret this but didn’t recognise it
thus the message.
In GDB type:

x/5w _start

The output will be similar to that shown in Figure 15b:

0x8004 < start>: (xe20£0008 0xe3a0100£ 0x3a8001 0x£0000000
0x0004 <value>: 0x000000£f

Figure 15b. Hex dump of Program 15a.

Here the 255 (OxFF or 0x000000ff) stored at the label marked by ‘value:’ can
clearly be seen. This illustrates another new feature of the assembler. In an earlier
chapter we used the directive called ‘.string’ to load an ASCII character string
into memory. Here the ‘.word’ directive allows us to store a word — or four-bytes
— into memory. The format of this is shown clearly in Program 15a and it can be
referred to by using a named label. (We’ll look at ‘.word’ and other directives in
Chapter 18.)

This also illustrates another particularly important aspect of the ADR
pseudo-instruction. The values it references must always be within the ‘.text’ or
executable section of the code. You will recall that use of the .string directive,
which was being accessed by the LDR instruction, was placed in the .data section
of the code. If you try and use ADR to access information in a data area you will
get an error message.

Indirect Addressing

The ARM is constructed with a ‘load and store’ architecture, but you cannot
access memory locations directly. You can only access them indirectly via a
register. The beauty of indirect addressing is that it enables the whole of the
ARMSs memory map to be reached through a single register.

There are two instructions that read and write memory data:

LDR LoaD Register from memory
STR STore Register to memory

Indirect addressing provides an easy method to read or write to a memory
location. The address of the location is held in a register. So, the address location
1s accessed indirectly. The advantage of this method is that you can change the
source or destination location simply by changing the contents of the register.
This makes it a handy way to dip into tables of data. Rather than writing a
separate routine for each, a general purpose one can be developed, with the
address operand being ‘seeded’ on each occasion the routine is called.
In its simplest form indirect addressing takes the format:

LDR (<suffix>) <Operand1> [<Operand2>]
STR (<suffix>) <Operand1> [<Operand2>]

For example:

LDR RO,[R1] @ Load RO with contents of location in R1
STR RO,[R2] @ Store RO at memory location in R2

Executing the above two instructions would effectively transfer a word of data
from one point in memory to another. Figure 15c illustrates this and is based on
the instruction:

LDR RO, [R1]

At the onset R1 holds the memory address, here 0x9308, and that memory
address contains the value OxF80A. This value is loaded into RO. So, on
completion of the instruction RO will contain 0xF80A. The value in RI1 is
unaltered.

All the addressing modes allow use of suffixes to effect conditional
execution. So, for example:

LDREQ RO, [R1]

Here, the load operation into RO from the address in R1 will only take place if the
Zero flag is set.

Register Register
R0 undefined RO (xFBOA
RL 0x9308 RL - 09308
Location Contents
0%9300
0%9304

0x9308 | >> | 0xF80A >
0x930C

Figure 15c. Indirect addressing of memory using LDR R0, [R1].

ADR and LDR

In previous examples we have seen that LDR can be used in a pseudo-instruction
manner to load the address of a label directly into a register. For example:

LDR RO, =string

would load RO directly with the address of the label called string. The advantage
of LDR used in this way is that it can access memory across the board and is the
preferred method if you are using data sections specifically to hold information.
Labels accessed by ADR must be within .text sections of code and within the
executable code area.

Pre-Indexed Addressing

Pre-indexed addressing provides the ability to add an offset to the base address to
give the final address. The offset can be an immediate constant or a value in a
register, or indeed, the shifted contents of a register. The format of the instruction
1S:

LDR (<suffix>) <destination>, [(<base>,(<offset>)]
STR (<suffix>) <destination>, [(<base>,(<offset>)]

The modifying constant or register is simply placed as part of Operand2,
separated by a comma, within the square brackets. For example:

LDR RO, [R1, #8]

Here, 0x08 is added to the address in R1 and the four-byte value at that address
(R1+8) is placed in RO. The value of R1 is not changed or adjusted by the
constant. This is depicted in Figure 15d. R1 contains the memory address 0x9300.
This 1s added to the specified constant value 8, to give a final source address of
0x9308. The contents of this location, 0OxXFBOA are loaded into RO.

Register

RO | undefined

RL | 0x9300 1 0x08

Location Contents

09300

09304

09308 >> | 0xFB0A

0x930C

Figure 15d. Pre-Indexed Addressing.

You can use two registers inside the square brackets too:
STR RO, [R1, R2]

This instruction, when executed, would store the value in RO at the address given
by adding the contents of registers R1 and R2 together. R1 and R2 are not
adjusted in any way. You can also subtract the offset as well, simply by using a
minus sign:

LDR RO, [R1, #-8]
STR RO, [R1, -R2

Finally, the offset operand may be rotated using one of the shift operations thus:

LDR RO, [R1, R2, LSR#4]

The value in R2 is shifted right by two bits and added to R1. This gives the
address of the data to be loaded into RO. This final construction is useful when it
comes to moving through data held in memory, given that it is located in four-
byte blocks (viz, 32-bits and the size of a register) and that an LSL #2 operation
(which is 2 x 2 = 4) moves you elegantly to the next word boundary.

The following segment replaces the third item in a four-byte wide list with
the second item in the list, with the address of the start of the list held in R1, in
this example held as 0x9300:

MOV R2, #4 @ four-byte offset
LDR R4, [R1, R2] @ load R4 from (0x9300+4)
STR R4, [R1, R2, LSL #1] @ store R4 at(0x9300+8)

Here, 4 is given as the offset, tfor the first LSR. Then the LSL #1 shifts the bits
along by four places. The #4 in R2 becomes #8 which is added to the address in
R1. The value in R2 does not change itself. If you wanted to locate the next item
in this list, you would need to increment either R1 or R2 by four. But there is a far
more elegant way as we shall see.

Accessing Memory Bytes

Program 15b illustrates the use of pre-indexed indirect addressing, using an offset
to extract characters from a string located at a base address. It also uses the
instruction, LDRB to load a register with a single byte, and STRB to store a
single byte.

ASCII characters are represented in single bytes, so LDRB will allow us to
load single bytes of memory, rather than a word, at the specified location. To start
with, R1 is loaded with the address of the string, and 26 as an offset into R2. The
STRB instruction is complementary to LDRB in that it writes a single byte of
information into memory. Program 15b uses both commands to overwrite one
string with another:

Program 15b. Use of pre-indexed indirect addressing.

/* Use of pre-indexed addr to move characters */
.global start

_ start:
LDR R1, =string @ Get Ist string location
LDR R3, =numbers @ Get 2nd string location
MOV R2, #26 @ chars in alphabet

_loop:
LDRB RO, [R1, R2] @ get byte at R1+R2
STRB RO, [R3, R2] @ save byte to R3+R2
SUBS R2, R2, #1 (@ decrement and flag set
BPL loop @ and loop while positive

_write:
MOV RO, #1
LDR R1, =numbers
MOV R2, #26
MOV R7, #4
SWI 0

_exit:
MOV R7, #1
SWI 0

.data

string:

.ascii "ABCDEFGHIJKLMNOPQRSTUVWXYZ"

numbers:
.ascii "01234567891011121314151617"

End Program 15b.

At entry, start sets up R1 and R3 with the address of the two strings. R2 is used
to hold the counter which is initialised at 26 — the number of letters in the
alphabet.

The LDRB instruction loads the byte at RI+R2 into RO and this is then
stored at R3+R2. So, first time around the last character in string: is stored over
the last character in numbers: R2 is decremented by one and while the number is
not zero or below the loop cycles again. When R2 reaches zero, the read/write is
completed and the _write routine prints the new string out.

Although we haven’t used immediate constants in these examples, they are
certainly available to you and may also be specified as negative values. Here are a
couple of examples:

STR RO, [R1, #0xF0]
LDR RO, [R1,#-4]

In the latter example, RO would be loaded with data taken from an address which
is one word lower than the address contained in R1.

Address Write Back

In calculating the location in memory of the word or byte, the ARM adds the
contents of the items held inside the square brackets, the first being a register with
an address, and the second being a register or immediate constant. Once the result
of the addition of these values has been used it is discarded.

It is sometimes useful to retain the calculated address, and this can be done
in pre-indexed addressing, using a method called ‘write-back’. This is done by
including a ‘!’ at the end of the instruction, after the closing square bracket:

LDR RO, [R1, R2]!
LDRB RO, [R2, #10]!

In the first example, if we refer to our earlier programs, let’s assume that R1 holds
the address 0x9300 and R2 contains the index initially set at 26. Now, on the first
iteration R1 and R2 point to the address given by 0x9300+26 which is 0x931A.
This address is used to source the information and then 0x931A is written back
into R1.

To step-through an array of data held in memory we might use the
instruction:

LDR RO, [R1, #4]!

The value 4 will be added to R1 and thus create a single word step. The value in
R1 is updated to reflect R1+4. By including this in a loop we can quickly step-
through memory with little hindrance.

Post-Indexed Addressing

Post-indexed addressing uses the write-back feature by default. However, the
offset field isn’t optional and must be supplied. The offset is also handled
differently. Post-indexed addressing takes this format:

LDR (<suffix>) <Destination>, [<Operand1>],<Operand2>

The first thing to note is that the compulsory Operand2 is based outside the
square brackets to signify the difference in addressing mode. Here are a few
examples of how the instruction is formatted:

LDR RO, [R1], R2
STR R3, [R4], #4
LDRB R6,[R1], RS, LSL#1

When post-indexed addressing is used, the contents of the base register alone are
taken as the source or destination address (word or byte depending on the format
of instruction). Only after the memory has been extracted or deposited are the
contents of the offset field (Operand2) added to the base register and the value
written there. Thus, the offset is added post and not pre memory access. Figure
15¢ illustrates this diagrammatically for the command:

LDR RO, [R1], #8

The left-hand side of the diagram shows the situation before the command
executes. The contents of RO are undefined at this stage. R1 contains the address
0x9300. The contents of 0x9300 contain OxFFO1, and this is taken and placed in
RO. The intermediate value 8 is then added to the contents of R1 (0x9300+08)
and the result written back into R1, which now contains 0x9308 as now reflected
on the right-hand side of the diagram.

Register Register
R0 undefined 0xFFOT | RO
RI £9300 | 0 | 0x08 > 0x9308 RI

Location Contents
£0%9300 | >> | 0xFFO1
0%9304

0x9308
0x930C

Figure 15e. Post-indexed addressing process.

If the LDR line was executed again then the contents of 0x9308 would be
extracted and deposited in RO, and after 8 is added to it R1 would contain
0x9310.

Program 15c will create a machine code routine that uses post-indexed
addressing to join two strings to create one single string.

Note that in the data definitions for the string we use a slight twist on the
‘.ascii’ directive. Here we use ‘.asciz’ — which will place a zero byte (0x0) at the

end of the string, and we use this to see if we have reached the end of the strings
during the load and compare portions of the program.

Program 15c. Using post-indexed addressing.

/* Post-indexed addr to concatenate strings */
.global start
_ start:
LDR R2, =stringl @ load locations
LDR R3, =string? @ of both strings
_loop:
LDRB RO, [R3], #1 @ Get string2 byte & +1
CMP RO, #0 @ is it end of string?
BNE loop @ no, then get next byte
SUB R3, R3, #1 @ Yes, decrement back 1

_copyloop:
LDRB RO, [R2], #1 @ get byte from string 1
STRB RO, [R3], #1 @ add to end of string 2
CMP RO, #0 @ is it 0?
BNE copyloop @ if not get next char
_write:
MOV RO, #1 @ 1s 0 so print new
LDR R1, =string2
MOV R2, #24
MOV R7, #4
SWIO0

_exit:
MOV R7, #1
SWI 0

.data

string1:

.asciz "ABCDEFGHIJKL"
string?2:

.asciz "012345678910"
padding:

.ascii " "

End Program 15c.

Byte Conditions

Conditional suffixes may be used with the load and store instructions in a similar
fashion to others. However, when you are using the byte modifier with
conditionals, you should express the conditional instruction first, thus:

LDREQB RO, [R1]

Note the condition test EQ comes before B, the byte modifier. If they are not in
this order, an error message will result when you try to assemble the program.

PC Relative Addressing

Besides pre- and post-index addressing, the GCC Assembler implements an
additional pseudo-addressing mode itself — PC relative addressing. We have
already used this in previous examples, but it is worth highlighting its usefulness
under a separate sub-heading here.

The general format of instructions that use PC relative addressing is as
follows:

LDR <dest>, <address>

As before, the destination is always a register, into which — or from which — the
data is transferred. The address is either an absolute number or an assembler
label. In the latter case, the label marks the address from where the data will be
placed or gathered. Let’s look at a couple of examples:

LDR RO, 0x9300
STR RO, data

In the first case, the word located at 0x9300 would be loaded into RO. In the
second, the location which the label ‘data’ was assembled at would be used as the
destination of the word to be held in RO.

When the assembler encounters an instruction in such a format it looks at the
address or location of the address and calculates the distance from where it is to
the specified location. This distance is called the offset, and when added to the
Program Counter would provide the absolute address of the data location.
Knowing this, the assembler can compile an instruction that uses pre-indexed
addressing. The base register in this instruction will be the Program Counter, R15.
If we ignore effects of pipelining, the PC will contain the instructions address
when executed. The offset field contains the absolute offset number as previously
calculated by the assembler, with a correction for pipelining. (This is a similar
method to the one described for branches in Chapter 10).

It is important to remember that there is a set range restriction in the offset
that can be used in pre-indexed addressing. This is -4096 to 4096, and the offset
in PC relative addressing must be within this range.

16. Block Transfer

Efficiency is one of the key design concepts behind the ARM chip. With the large
number of registers and the consistent need to manipulate and move data, it
would be very inefficient to have to sequence a whole series of instructions to
transfer the contents block transfer of a set of registers from one place to another.
The LDM and STM instructions simplify multiple load and store between
registers and memory.

The format of the instruction is:

LDM <Options>(<Suffix>) <Operand1>(!), {<Registers>}
STM <Options>(<Suffix>) <Operand1>(!), {<Registers>}

Registers is a list of the registers, inside curly brackets and separated by commas,
to be included in the transfer. They can be listed in any order, and a range of
registers can be specified with the use of a hyphen, R5-R9.

Operandl is a register which contains the address marking the start of
memory to be used for the operation. This address is not changed:

STM RO, {R1, R5-R8}

Here, the contents of the registers R1, R5, R6, R7 and R8 (five words or 20 bytes
in total) are read and stored sequentially, starting at the address held in RO. If RO
held 0x9300 then R1 would be stored here; R5 at 0x9304, R6 at 0x9308. This is
illustrated in Figure 16a.

Req Memory | Contents
R0 0x9300 | >> | 0x9300 | OxFFOOFFOC
R1 | OXFFOOFFO0 0x9304 | 0x2R0D4AA
R2 0XFF 029308 0x953A
R3 0xASFB 0x930C 0xF36BCA
R 0XAF? 0x9310 0x101
RO | (x2AOD4AA
R6 0x953A
RT | 0xF36BCA
RS 0x101

Figure 16a. Storing register contents in memory.

This example in assumes that we want data to be stored in successively increasing
memory address locations, but this need not be the case. The ARM provides
options that allow memory to be accessed in an ascending or descending order,
and in which way the increment step is handled. In fact, there are four options as
listed in Figure 16b.

Suffix Meaning

IA Increment After
IB Increment Before
DA Decrement After
DB Decrement Before

Figure 16b. Suffixes for memory direction setting.
The I or D in the suffix defines whether the location point is being moved
forwards (increasing) or backwards (decrementing) through memory. The base
address is being increased four-bytes at a time or decremented four-bytes at a
time.
After each instruction, the ARM will have performed one of the following:

Increment: Address = Address +4 * n
Decrement: Address = Address -4 * n

where ‘n’ is the number of registers in the register list.

The A or B options determine where the base address has the defined
adjustment before or after the memory has been accessed. There is a subtle
difference, and if you are not careful it can lead to your information being a word
askew to what you might have expected. This is illustrated in Figure 16¢ and
Figure 16d.

STMIA Base, {R0-R6} STMIB Base, {R0-R6)

R6 Baset28
RO Baset24 RO Baset24
RS Baset2(R4 Baset2(
R4 Basetlt R3 Basetlt
R3 Basetl’ R2 BasetlZ
R2 Base+§ Rl Baset§
R1 Basetd R0 Basetd
R0 <<Base <<Base

Figure 16c¢. The effect of IA and IB suffixes on STM.

In Figure 16c¢ the left-hand model shows the storage pointer in Incrementing After
mode. After the first register has been stored (RO0), the storage pointer has four
added to it and is incremented to Base+4 where the contents of R1 are placed. On
the right-hand side of the model Incrementing Before is in operation. When the
command is executed 4 is added to Base and the contents of RO is stored at that
address.

In Figure 16d the actions are the same except that in each case 4 is
subtracted from Base either After or Before as illustrated.

STMDA Base, {R0-R6} STMDB Base, {R0-R6)

<<Base
R0 <<Base R0 Base-4
R1 Base-4 Rl Base-8
R2 Base-8 R? Base-12
R3 Base-12 R3 Basetlt
R4 Base-16 R4 Base-2(
RO Base-2(RO Base-24
RO Base-24 R6 Base-28

Figure 16d. The effect of DA and DB suffixes on STM.

Write Back

Unless the instruction asks for write-back to occur, then the address held in the
specifying register remains unaltered. Its contents remain the same as they were
when the command was first fetched. If we want a write-back to take place, the
‘I” operator must be included:

LDMIA RO!,{R2-R4}
STMDA RO!,{R5-R8, R10}

The value written into the address register (RO) is the address calculated after the
last register in the list has been processed.

The STM and LDM instructions have a variety of applications. One of the
most obvious is that used in combination they can be used to preserve and restore
the contents of all the registers. If RO holds the address of a free memory block,
then save all the registers with:

STMIA RO, {R1-R14}
And restore them later with:
LDM RO, {R1-R14}

if RO again has the address of the memory block.

A word of caution about including R15 in a list like this. If you block restore
with LDM and include R15 you will most likely set your program into a
continuous loop.

This write-back feature in this block data transfer instruction is provided to
simplify the creation of stacks, the subject of the next chapter.

Block Copy Routine

Program 16a shows just how simple it is to copy a block of data from one place in
memory to another. In fact, just four lines of assembler is all it takes, and this
routine 1s robust enough to copy a block of memory that can be any length
provided it is divisible by eight.

It uses registers R3 and R4 to first load and then store the data, so any
information in them will be destroyed unless preserved first. RO, R1 and R2 hold
addresses that point to the start and end of the data and the start address of its
ultimate destination, respectively.

To see this work, you can use GDB. Make sure you assemble with the -g
option. Enter GDB and load the file:

gdb progl6a
Set a breakpoint at the _exit routine (this is right after the block copy loop):
break exit
Now run the program:
run
The program will run to the breakpoint, at which point type:
x/2x &dest

The ‘&’ is used here to mean the ‘location of” dest. If you do not use the
ampersand, then the data labels will not be recognised. When the two-words of
memory are displayed you will see that all the bits are now set (all fs) proving the
block copy worked, as they were zeroes originally.

The routine can be extended to handle bigger blocks of memory. For
example, by changing the two load and store instructions to read:

LDMIA RO!, {R3-R12}
STMIA R2!, {R3-R12}

you can work in blocks of 40 bytes (10 registers by 4 bytes each). Your data areas
will need to be adjusted accordingly, or rather than using labels you may need to
invoke absolute memory addresses.

Program 16a. Moving Blocks of Memory

/* Memory block copy routine */

.global _start

_start:
LDR RO, =begin @ load locations
LDR R1, =end @ of both strings
LDR R2, =dest @ addr of destination

_blockcopy:
LDMIA RO!, {R3-R4}
STMIA R2!, {R3-R4}
CMP RO, R1
BNE blockcopy

_exit:
MOV R7, #1
SWI 0

.section .data

begin:
.word OxFFFFFFFF
.word OxFFFFFFFF

end:
.word 0
.word 0

dest:
.word 0
.word 0

End Program 16a.

17. Stacks

Stacks have been a fundamental feature of computer systems since just after the
day dot. In many respects they are exactly what you might think them to be,
stacks of data, but they are stacks of data that you as the programmer own and
control. Their management is a fundamental component of designing programs.
Do it well and the program flows well. Do it badly and you’ll be reaching for the
power switch.

The general analogy is a stack of plates. In theory, you can continue putting
a plate on top of a plate. Unless you are attempting a trick, if you want to take a
plate off the stack it will be the last one you placed on it, the top plate. In this
respect the last one on is the first one off. We refer to this as a LIFO structure, last
in, first out. Try to take a plate out from the middle (or the bottom!) and, unless
you are careful, the lot comes crashing down. It’s a good analogy.

Push and Pull

In the early days of home computers on systems such as the 6502 microprocessor,
stacks were built in a simple fashion. You pushed data onto the stack and pulled
(popped) data off the stack. For the most part you didn’t even know where the
stack was — that was managed by the CPU. However, as a programmer you did
need to keep track of what order things went on to the stack. Generally, the
concept is still true today in that a sequence of data pulled from the stack is
always pulled from it in the reverse order it was pushed.

The instructions STM and LDM and their derivatives are what we use for
pushing (STM) and pulling (LDM) data onto and off ARM stacks. These stacks
are areas of memory that we as the programmer define. There is no limit to the
number of stacks that can be used. The only restriction is the amount of memory
available to implement them.

R13, also known as the Stack Pointer or SP, is designated to be used to hold
an address relating to the location of the stack, but you can use any of the
available registers for the purpose. If you are running several stacks you will need
to allocate more registers or manage where you store the addresses in memory.
Figure 17a illustrates a simple stack.

PUSH{1, 2,3} PULL

SPOO0)

NI

SPOO))
BASED? BASED? BASED?

Figure 17a. A simple stack where each stack item is four-bytes.

To implement a simple stack can use the following instructions. The important
thing to note is that the options for the STM instructions are always reversed for

the LDM instruction.

STMIA SP!,{R0-R12, LR} @ push registers onto stack
LDMDB SP!,{R0-R12, PC} @ pull registers from stack

The IA and DB suffix options (introduced in the last chapter) are used in tandem
to move up through memory to push them on, and then down through memory to
pull them off. The LR and PC registers are used to save the Program Counter’s
address—therefore this two-line combination is an effective way to save register
contents before calling a subroutine and restoring everything on return. The use
of the write-back function is vital. Without write-back the Stack Pointer will not
be updated, and the stack will effectively be corrupted as we will not know our
relative positive within it.

You may implement a stack with two pointers. The first is the base point,
and this locates to the memory location where the stack begins. The second is the
stack pointer which is used to point to the top of the stack. The base pointer
remains a static address; the stack pointer might be a moving address or an offset
from the base pointer. Hopefully, you can now understand how different
addressing modes could be used to organise different types of stacks. Whichever
way you fall, you will always need to keep a record of where the stack starts and
the point where it must end. Without defining these two end limits, you could get
into all sorts of trouble. Also, does the Stack Pointer provide the address of the
next free space in the stack or the last space used? To make this situation easier to
manage and to manage the balancing of pushes and pulls the pseudo instructions
PUSH, and POP can also be used to place and retrieve information to and from
the Stack:

PUSH {RO0, R3, R5} @ Push RO, R3, R5 onto Stack
POP {RO, R5-R8} @ Pull RO, R5, R6, R7, R8 off stack

Stack Growth

In ARM architecture stacks are grouped by the way they grow through memory.
Stacks can ascend through memory as items are pushed onto them, and they can
descend through memory as data is pushed onto them. It’s like being in space —
there is no up or down, and the term is relative. Stand on the 10th floor of an
empty 20 storey building. The 10th floor is the only entry and each floor, above
and below, has four apartments. Eight families arrive; you can accommodate
them on two floors up or two floors down. How do you want to do it?

In computer memory terms a stack that grows up — or ascends through
memory — 1s one where the address grows larger. So as an item is pushed into it,
the Stack Pointer increases its address by four-bytes. A stack that grows in
memory by going down the memory address decreases; this is called a
descending stack. In all, there are four types of stacks as listed in Figure 17b:

Postfix Meaning

FA Full Ascending Stack
FD Full Descending Stack
EA Empty Ascending Stack
ED Empty Descending Stack

Figure 17b. The four types of ARM stack.
When the stack pointer points to the last occupied address on the stack it is
known as a full stack. When the stack pointer indicates the next available free
space on the stack, it is called an empty stack. Note that in this empty stack
scenario the stack can have data on it; it is used to signify the condition of the
next free word on the stack.

The option of full, empty, ascending or descending will often force itself on
you and may just be decided by the way you are looping through your data. It
may be easier to implement a descending stack as your code lends itself to a
decremented count and it’s easier to test for the Zero flag.

There are instructions in the instruction set that cater for these types of
stacks and these are shown in Figure 17c.

Here are some examples:

STMED R13!, {R1-R5, R6}
LDMFD!, {R1-R4, R6}

There is nothing to stop you using different types of stacks within the same
program. Just don’t mix them up! Equally, you will understand now why write-
back is compulsory in the construction of these instructions.

Mnemonic Pair Meaning
STMFE/LDMFD Full Descending Stack
STMFA/LDMFA Full Ascending Stack
STMED/LDMED Empty Descending Stack
STMEA/LDMEA Empty Ascending Stack

Figure 17c. Instruction set to access stacks.
Examples of these stacks are illustrated in Figure 17d and Figure 17¢. By default,
a full descending stack if a format is not specified.

STMFA SP!, {R0-R4) STMFA SP!, (RO-R4}

RA e <(<SP
R3 R
R2 R3
RL R?
R0 RL
<<(OLD SP) RO | <<(OLD SP)

Figure 17d. Full and empty ascending stacks.

STMFD SP!, {R0-R4) STMED SP!, {R0-R4)

<<(OLD SP) RI | <<(OLD SP)
R R3
R3 R2
R2 RL
RL RO
RO << SP g

Figure 17e. Full and empty descending stacks.

The best way to understand stacks and their manipulation is to experiment with
them. Try seeding an area of memory with known values, and then see if you can
move this section of memory to another location via a stack, with the information
and its order remaining intact.

Stack Application

Stacks have a multitude of applications, and we have already mentioned a few of
them:

e Saving register contents
e Saving and processing data

A third use 1s to save link addresses when subroutines are called. By pushing the
link addresses from the Link Register onto the stack, it is possible to create nested
(one inside another) routines without fear of losing control in the program. As
you link to a routine you push the link register onto the stack. You can then return
from each subroutine by pulling the link addresses off the stack and popping them
back into the Program Counter.

The stack also makes it relatively simple to swap register contents around
without ever having to go through another register. You simply push the required
registers in the stack and then pull them in the order you need them. Imagine this
situation where register contents need to be swapped:

At first sight, this looks complex. However, the following four lines will
manage it:

STMFD SP!, {R0-R6}
LDMFD SP!, {R3, R4, R6}
LDMFD SP!, {R5}
LDMFD SP!, {RO, R1, R2}

The first line pushes RO to R6 onto the stack. The top three items on the stack are
(in descending order) RO, R1 and R2. From the chart above these must go into
R3, R4, and R6 respectively, and this is what line two does.

The Stack Pointer is now positioned at R3, which is transferred into RS. This
leaves R4, R5 and R6 on the stack which, in the final line, is pulled into RO, R1
and R2,. What looks to be a complex task at the onset is in fact a simple one.

Framed Work

There is only one ‘official’ stack implement on which the instruction described in
this chapter will work. If you implement you own stack, you will need to manage
the memory block containing it yourself. This is helped by the use of labels
within your assembly listing.

One other method that used the ‘real’ stack is to create a Stack Frame. This
is an area on the stack which we can ‘reserve’ for our own use. In this scenario
we reset the stack pointer to create a gap within the stack for our own use.

If we wanted to store the contents of three registers, we would require 12
bytes (3 registers x 4 bytes =12). The segment below shows how we can achieve
this:

SUB SP, #12 (@ Take 12 bytes off the stack pointer
STR R1, [SP]

STR R2, [SP, #4]

STR R3, [SP, #8]

The three registers R1, R2, and R3 are stored within the gap we have created as
illustrated in Figure 17f. You will need to remember to close this gap in the stack
when you have finished the operation you needed the space for:

ADD SP, #12

It is quite common to use this method to preserve register contents before calling
a function (see Chapter 21).

< Original Stack Pointer

5P+8 3
5P+ 2
5P Al |<«<Adjusted Stack Pointer

Figure 17f. Forming a stack frame ‘gap’.

Frame Pointer

When a lot of use of the stack is being made it can be difficult to remember where
things are, and what offset is what. Rather than use the SP and offsets we can
invoke a Frame Pointer—this is a pointer to the stack frame. It is common
convention to use R11 as the FP, but this is not a hard and fast rule. Just
remember to push the registers contents onto the stack, so it can be restored later.
After creating the stack frame, we can set the FP to next free spot on the stack
(remembering it grows in descending addresses).

SUB FP, SP, #4
SUB SP, #12

Now we can use the FP to access our variables:

STR R1, [SP]
STR R2, [FP, #-4]
STR R3, [FP, #-8]

18. Directives and Macros

GCC provides many additional tools to help in the writing of machine code
programs. This includes instructions that allow you to store data within your
programs and the ability to pass information to them when they are called from
the prompt. All assembler directives begin with a period or full-stop and there are
a lot of them with GCC. We have already seen several of these in action in earlier
programs. In this chapter we’ll look at some of them in more detail.

Data Storage Directives

To store character string information within our programs, there are two options:

.ascil “This 1s the string to print.”
.asciz “This string has a zero added to the end”

A string is written between double quotes. The ‘z’ in the second option stands for
zero and a zero byte (0x00) is appended at the end of the string. This is a useful
way to end mark a string in memory as it allows for a simple Zero flag test when
you are looking for the end of it. Both directives allow for control or escape code
characters to be embedded within them by use of a backslash character, ‘\’. Figure
18a gives some of the more popular and useful ones:

Option Effect

\b Backspace

\f Formfeed

\n Newline

\r Return

\t Tab

\\ Include '\' in string

\" Include quotes in string

Figure 18a. Popular backslash controls for use in strings.

The following:
.ascii “IM2\3\r\n4\t5\t6\r\n7\t8\t9\r\n”

would print out a simple but neatly formatted table using any of the write routines
shown in this book. (Remember to change the string length count accordingly.)

As your programs become more sophisticated and have real application you
will need to store information in them. This might be in the form of constants,
addresses or messages to be printed. For the latter, we have used the string
operator. By placing the data within the body of the machine code, we can be safe
in the knowledge that it is ‘protected’.

In the block move example from Chapter 15 we saw a clear indication how
this could be done by using the ‘.word’ directive to write four-byte words of

information to memory. As well as ‘.word’ there are other directives that can
create space in a similar way. Program 18a shows two of these, ‘.byte’ and ‘.equ’.

Program 18a. Use of .byte and .equ directives.

/* Use of byte and equ to sum a set of numbers */
.global start
_ start:
LDR R1, =values
LDR R2, =endvalues
MOV RO, #0

_loop:
LDRB R3, [R1], #increment
ADD RO, RO, R3
CMP R1, R2
BNE loop

_exit:
MOV R7, #1
SWI 0

.data
.equ increment, 1

values:
Jbyte 1,2,3,4,5,6,7,8,9
endvalues:

End Program 18a.

The ‘.byte’ directive allows for a sequence of values separated by commas to be
stored sequentially in memory. As the directive suggests these values must be in
the range 0-255.

The ‘.equ’ directive allows an immediate value to be assigned to a name.
The name can then be used in your source files. This is handy in that if you need
to change the value at any point you just have to change the ‘.equ’ definition and
not any and every reference to it in the source.

If you look at the ‘.data’ section of Program 18a you can see that the
constant ‘increment’ has been assigned the value 1. You can see how this is used

as the post-indexing counter at the start of the _loop routine.

The label ‘values:” is used to mark the start of the ‘.byte’ definition. A
second label called ‘endvalues:’ is used to mark the end of the ‘.byte’ sequence.
This is a handy technique to use when dealing with tables or arrays of data as a
simple CMP test sees if the end of the sequence has been reached. The program
illustrates this.

If you assemble, link, and run Program 18a and then enter:
echo $?

the value 45 should be returned, which is the sum of the bytes.
Figure 18b below summarises a few important data directives.

Directive Function

.equ Assign immediate value to named label.
Example: .equ one, 1

.byte Store byte sized values, separated by commas, into memory.
Example: .byte 1,2,3,55,255

.word Store four-byte values, seperated by commas, into memory.

Example: .word OxFFFFFFFF, OxFFFF

Figure 18b. The common data storage directives.

Aligning Data

If you intend to store data within your executable segments, within the ‘.text’
sections of your program, then this can create problems. All assembled opcodes
must start on a word boundary. If you insert text or data that does not completely
fill the space to a four-byte boundary then the assembler will freak and issue you
with an:

Unaligned opcodes detected in executable segment

error.
Consider Program 18a. If you add these extra lines at the end of the _start:
section:

BAL loop
string:
.ascii “12345”

and try to assemble the code you will get the above error. This can be corrected
by adding the following after the ‘.ascii’ definition:

.align 2

This pads out the space with Os to the next word boundary. You can check this out
using GDB.

There is generally no reason to use the ‘.align’ directive outside of the
executable sections of your code. Any definitions made in data sections are
normally stored at the end of the file by the assembler to avoid such problems.

Macros

A macro is a fragment of code — which can be of any length — and is defined by a
name. The macro definition can be called from within the program by using the
macros name. During assembly, the assembler block that constitutes the macro
definition is inserted whenever the macro name is encountered in the listing.

Many programmers set about writing their library of macros that they can
use in a variety of circumstances. They simply load the macros they need and
then call the macro from their program when need. This differs from the pseudo-
code given in Figure 2b at the start of the book which uses subroutine calls to
jump to different parts of the program. Macros create linear code — one long
program! Both permit a group of instructions defined as a single entity.

Macros are not a substitute for subroutines since the macro is replaced with
the code and therefore makes the program execution linear in nature. Long
macros that are used many times in a program will result in an enormous
expansion of the final code size. In this case, a subroutine would be a better
choice, since the code in the body of the subroutine is not inserted into source
code when called.

Macros are useful when you have some difficult or complex calculations to
do and where it may be easy to make a typo mistake. You can use the constant
data inside the macro and pass the variable information to the macro each time
you can do it. Macros are also useful to avoid the overhead of a subroutine call
and return when the subroutine itself is but a few instructions.

Program 18b defines a simple macro, call ‘addtwo’ that takes two
parameters, ‘vall’ and ‘val2’, which are passed into R1 and R2 respectively, and
are summed together with their addition returned in RO.

Program 18b. Implementing a simple macro.

/* Implement a simple macro #1 */
.global start
_start:

.macro addtwo vall, val2
MOV R1, #\vall
MOV R2, #\val2
ADD RO, R1, R2

.endm

addtwo 3, 4

MOV R7, #1 @ exit through syscall
SWI 0

End Program 18b.

The ‘.macro’ directive is used to define the macro which we give a name,
‘addtwo’ and I have chosen to call the two parameters ‘vall’ and ‘val2’. As you
can see the macro definition is terminated by the directive ‘.endm’.

Note that inside the macro definition the two named parameters are preceded
with a backslash ‘\’ character. This is to signify to the compiler that they are
parameters and not absolute values. The most common mistake when writing
macros 1s to omit the backslash before parameters.

Calling, or ‘invoking’ the macro is simple, just insert the name in the
assembler and include the parameters. If you run Program 18b and then type:

echo $?
x/201 _start

You'll get the result 7.
It is worth looking at the code produced by Programl18b. If you have
assembled and linked using the -g option, you can look at the code in GDB with:
Which will return something similar to what is shown below in Figure 18c.
Note that the disassembly shows that the immediate values have been passed
into the assembled code in the first two lines at < start> and < start+4>. This is
not a subroutine call. The required code is assembled inline at the point required.

0x10054 < start>: mov rl, #3

0x10058 < start+dd: mov 12, #4

0x1005c < startt8>: add 10, 11, 12
0x10560 < starttl>: mov 1], 1
0x10004 < starttle>: gy 0x00000000
0x10068 Cannot access memory at address (x10068

Figure 18c. Disassembled output from Program 18b.
Program 18c shows a modified version of this which uses the MLA instruction to
add the products of each multiplication together. This time we define the
‘multtwo’ macro three times to pass three successive sets of values to the macro
to calculate:

(2*¥2)+(3*4)+(5*6)
The caveat here though is that, at this point, there is no error checking.

Program 18c. Multi-calling a macro.

/* Implement a simple macro #2 */
.global start
_ start:

.macro multtwo vall, val2
MOV R1, #\vall
MOV R2, #\val2

MLA RO, R1, R2, RO
.endm

MOV RO, #0
multtwo 2, 2
multtwo 3, 4
multtwo 5, 6

MOV R7, #1 @ exit through syscall
SWI 0

End Program 18c.

Assemble, link, and execute the program. All being well then when the prompt
returns you can obtain the result using:

echo 7$

Which should return 46.
A disassembly of this same code will provide something like that shown in
Figure 18d is you are using GDB and:

x/201 _start

Note again how the macro has been assembled in absolute terms into the body of
the text, and this is a good illustration to allow us to highlight a few of the
implications of this, in no particular order:

e The final code size of the assembled file will be larger than might be
otherwise expected. (In theory this could create a speed issue but in a RISC
environment this is not normally a problem.)

e Debugging can be harder as it is easy to lose yourself in long code repeats.

e You require greater diligence to ensure that your registers contents are saved
in the appropriate places if required.

0x10054 < start>: mov r(, #0

0x10058 < start+d>. mov rl, #2

0x1005c < start+f>. mov r2, #2

0x10560 < start+l2>: nla g, rl, r2, x0
0x10064 < start+le>: nov rl, #3

0x10068 < start+20>: nov r2, #4

0x1006c < start+dd>: nla 0, rl; 12, xl
0x10070 < start+28>: nov rl, #5

0x10074 < start+32>: nov rl, #6

0x10078 < start+3e>: nla e, Il td, o
0x1007¢ < start+40>: nov 17, #1

0x10080 < start+dd>: sy 0x00000000
0x10084: Cannot access memory at address 0x10084

Figure 18d. Disassembled output from Program 18c.

Including Macros

Programs 18b and 18c show the usefulness of macros, however that assume that
the macro source at this point has the macro definition with the body source. A
major benefit of macros is that that you can create a macro library that allows you
to simply include the macro or macro library you require as an when assuming
that have been written accordingly of course! With this in mind let’s re-address
this issue by creating a simple math macro file that will supply the two functions
offered by Program 18b and Program18c. This Program 18d below which is in
fact just a source file that includes the macro definitions of both. Program 18e is
the testing program for this.

Program 18d. AddMult macro file.

/* Macros: Addtwo and MultTwo *
.macro addtwo vall, val2

@ On Exit R1,R2 contain vall, val2
@ RO contains result
MOV R1, #\vall
MOV R2, #\val2
ADD RO, R1, R2
.endm

.macro multtwo vall, val2
@ On Exit R1,R2 contain vall, val2
@ RO contains accumulated result
MOV RI1, #\vall
MOV R2, #\val2
MLA RO, R1, R2, RO

.endm

End Program 18d.

Program 18d can be saved as a normal text source file with the ‘.s’ option. There
is no need to assemble and link it as that will be undertaken when it gets included
in the main program when called. Just ensure that the filename used in the include
(line two of Program 18e) is the one used to save the macro definition file above.
(They should also be in the same directory at this point.)

Program 18e. Macro Include Test

/* Test External Macros */
.anclude “Prog18d.s”
.global _start

_ start:
MOV RO, #0
_add:
addtwo 3, 4
_mult:
multtwo 2, 2
_exit:
MOV R7, #1 @ exit through syscall
SWI 0

End Program 18d.

You can save, assemble and link Progl8e.s in the normal fashion. If you execute
and echo the result then the answer, 11, should be forthcoming.

If you disassemble the executable via GDB the output will be along these
lines:

0x10054 < start>: oV r(, #0
0x10058 < add>: nov rl, #3
0x1005c < add+4>: nov 12, #4
0x10560 < add+8>: add r0, rl, rl
0x10064 < mult>: nov rl, #2
0x10068 < mult+d>: oV rd, #2

0x1006c < mult+8>: mov i 1l 1y 10
010070 < exit>: mv R7, #1
0x10074 < exit+8>: sy 0x00000000
0x10078: Cannot access memory at address 0x10078

Figure 18e. Disassembled output from Program I8e.
Additional labels were included in the source file when it was assembled. Using
GDB in this way, especially in multi-macro assembly, makes referencing and
identifying sections of code easier to distinguish.

The ARM instructions to load 0 into RO was provided at the start of the code
- even though it wasn’t needed as the result of ‘addtwo’ would overwrite the
contents of RO regardless. The result from the ‘addtwo’ routine was carried in the
‘multtwo’ routine and accumulated accordingly.

Again, here static values are provided to illustrate how a macro is treated at
assemble and link time. However, we can utilise memory to pass values into such
macro routines should we not know what their values are at the time of writing
the macro, and this can be facilitated using the Stack using the methods illustrated
in the previous chapter. Be careful though when using these stack frames within

macros as the accumulative effect of adjusting the stack can have catastrophic
effects on your data and program management if you are not careful.

Note: When you have code that may contain multiple labels and you are not
sure when the start an end may be exactly then a good trick is to make
disassembling your code easier is to use something like:

disassemble start, exit+8

This normally works for me as I try to be consistent in the way I enter and exit
my assembler code.

Many of the larger programs within this book can be constructed and
implemented as macros. There are one or two I have provided.

Mostly though, I have given the assembler as a single linear source file to
make it easier to read and understand. However, once you have grasped the
concepts you are good to go.

19. File Handling

Files play a big part in the operation of your Raspberry Pi. Almost all the
activities you undertake involve the use of a file. Mostly, the Raspberry Pi OS,
takes care of the file management. The system provides the infrastructure to allow
programs to interface with it and to perform most file operations. This ranges
from creating files, to opening and closing files and many other file operations we
take for granted.

In Chapter 8 we saw how we can take a line of text and overwrite it or
convert it from uppercase to lowercase. That ASCII text was located as a string as
part of the program itself. In that instance we knew where the string was located
as there was a named label identifying it. What if the information we need was in
a file stored on an SD Card or on a USB?

Files are a fundamental element to all computer operations, especially so
Raspberry Pi OS (Raspbian). In this chapter we’ll look at how to create, open,
close, read from and write to files. Figure 19a lists the system calls we will utilise
to do this.

Operation Description Call Syscall
Read Read from a file sys read 3
Write Write to a file Sys_write 4

Open Open/Create a file sys_open 5
Close Close a file sys_close 6
Create Create a file sys_creat 8

Sync Sync-flush a file sys_fsync 118

Figure 19a. File Associated System Calls used in Program 19a.

We’ve used some of these before, and most require additional information passed
to them before being called. Remember that the Syscall number (listed in Figure
19a) must be loaded into R7, and any additional details provided via RO-R6. Not
all registers are needed for every call, but assume they are unless you know
otherwise. RO is often used to return information by the Syscall, such as an error
number or result.

The listing for Program 19a shows how you can use these calls. In this
example, taking the contents of a file, reading the first 26 characters from it into a

memory buffer, before writing them out to a new file. This example assumes that
the files are in the current directory, or the same directory as the program itself.
Nothing special in the 26 characters, other than our input file will comprise an
uppercase, alphabet (A-Z), which we’ll convert to lowercase, before writing it to
the new file. The program will also illustrate some file error checking along the
way.

Program 19a. File Creation and Access.

/* File Creation and Access Using Syscall */
/* Create and Open File, Read from File, Write to File */

.global start

_ start:

@ Open file to read in from.

@ Assumes file exits in current directory
@ Or generates an error message (errorl)

LDR RO, =inputFile @ Addr of filename
MOV RI1, #o rdonly @ flag read only file
MOV R2, #s_rdwr

MOV R7, #sys_open @ Call open file
SWI 0

MOVS R8, RO @ Save/Test file flag in R8
BPL moveon @ If positive, moveon

MOV RO, #1 @ Set screen as output

LDR R1, =errorl @ addr of errorl message
MOV R2, #18 @ string length

MOV R7, #4 (@ Write code

SWI 0

B finish @ terminate program

moveon:

@ Create/and-or Open File to write too
LDR RO, =outputFile
MOV R1, #(o_createto_wronly)
MOV R2, #s_rdwr @ access rights
MOV R7, #sys_open @ load syscall 5

SWI 0 @ Make the call

MOVS R9, RO @ Save file flag

BPL readlinein @ If positive file there
MOV RO, #1 @ Non-existent so error2
LDR R1, =error2

MOV R2, #18

MOV R7, #4

SWIO0

B finish @ terminal program

readlinein: @ read line from InFile.txt
MOV RO, R8 @ File descriptor R§>R0
LDR R1, =inbuffer @ location of inbuffer
MOV R2, #alphabet @ length of alphabetbuffer
MOV R7, #sys_read
SWI 0 @ InFile >> InBuffer
MOV R10, RO @ Save bytes written in R10
MOV R1, #0
LDR RO,=inbuffer
STRB R1, [RO, R10] @ Write null terminator to buffer

convertUpperCase:
PUSH {R8}
PUSH {R9}
MOV RS, #0 @ counter

loop:
LDR RO, =inbuffer (@ Move file from in to out
LDRB R1, [RO, R8] @ doing ORR conversion
ORR R1, R1, #0x20
LDR r0, =outbuffer
STRB R1, [RO, RS]
ADD RS, #1 @ increment loop counter
CMP RS, #26 @ is it alphabet length?
BNE loop @ no so loop again
POP {R9} @ restore file files
POP {R8}

writebuffer:

MOV RO, R9

LDR R1,=outbuffer @ addr of outbuffer

MOV R2, #alphabet @ length of alphabet
MOV R7, #sys_write (@ write converted buffer
SWI0

MOV R1, #0

@ flush and close 'infile’
MOV RO, R8
MOV R7, #sys_fsync
SWIO0
MOV RO, R8
MOV R7, #sys_close
SWI 0

@, flush and close 'outfile’'
MOV RO, R9
MOV R7, #sys_fsync
SWIO0
MOV RO, R9
MOV R7, #sys_close
SWI0

finish:
MOV RO, #0 @ Use 0 return code
MOV R7, #1
SWI 0

.equ sys_open, 5

.equ sys_read, 3

.equ sys_write, 4

.equ sys_close, 6

.equ sys_fsync, 118

.equ o_rdonly, 0

.equs_rdwr, 0666

.equ o_wronly, 1

.equ o_create, 0100

.equ alphabet, 26 @ file length in bytes

.data

inputFile: .asciz "infile.txt"
outputFile: .asciz "outfile.txt"
errorl: .asciz "Input file error \n"
error2: .asciz "Output file error\n"
inbuffer: .fill (alphabet+1), 1, 65
outbuffer: .fill (alphabet+1), 1, 66

End Program 19a.

If you look at the end of the listing for Program 19a you will notice, there are
several ‘equ’ definitions setting up constants (a few lines after the label finish:).
The ‘.data’ section contains areas where string information is stored. These areas
are vital to the program as they contain system calls values, flag values and file
names. These label names and definitions are commonplace within the industry,
and thus enhance program readability. Many programmers create specific macro
file definitions that you can then ‘.include’ to help ensure consistency if you so
desire.

There is a minimum of three parameters required by the system for opening
a file, and these are provided in the first three registers thus:

RO: Pointer to the filename to open, stored as a null terminated ASCII string.
R1: Flag to specify a mode of action for file open, read, write, read/write.
R2: Access mode permission values.

The first five code lines of the program open the file we want to read from. The
system number for this is 5. if the file does not exist, an error is generated.
Therefore, the filename 1s essential, and we load the address of this into RO. R1
requires for a code specifying the file operation; we use in this case 0 as it is
being open as a read-only file. R2 defines the permission values and 0666 (octal
666) is required here.

On return, RO will contain details of any errors. If a positive number, then
the file was located and opened. If it returns a negative value, the file could not be
found or opened. An error occurred, and it’s not possible to proceed, therefore the
next section of lines prints out the ‘errorl’ message string.

Assuming all is good the value passed into R8 for preservation (contains the
descriptor for the file), a small jump is made, and program operation continues at
‘moveon’.

Having successfully opened the ‘inputFile’ we do the same for the
‘outputFile’. Although, in this instance, if the file does not exist the syscall will
create it for us. Information is passed again through the sys open call. If all is
good, the branch to ‘readlinein’ takes place, otherwise an ‘error2’ message is
printed to the screen, and the program ends.

At ‘readlinein’ we first move the file descriptor previously saved in R8 back
into RO. R1 is pointed to an address of where we can store the contents of the file
we are reading-in, and then takes a number that defines the number of bytes we
need to read in, before calling sys-read. The bytes are read and stored in the RP1
memory at the defined location. On return from the call the number of bytes
written is returned in R0O. This is moved to R10, so we have a pointer as to where
we have ended. A zero is then written at the end of the buffer.

The ‘convertupcase’ and ‘loop’ sections that follow are all about doing
something with the information read in from our open file. This can be whatever
you want at this stage. For example, here, we are going to read each byte from the
‘inbuffer’, ORR it with 0x20 to convert to lowercase and the store it back to the
‘outbuffer’ location. As we need a register or two to work with the contents of R8
and R9 are pushed on the stack for the interim. On completion R8 and R9 are
restored, and the ‘outbuffer’ contents are written to the open output file (using the
restored R9 as the file descriptor handle).

Finally, the two files are flushed and closed using sys fsync and sys close,
again using the relevant file descriptors in R8 and R9.

A few points. Before running the program create the input file ‘infile.txt’
using a suitable text editor and place:

ABCDEFGHIJKLMNOPQRSTUVWXYZ

on the first line. Save the file to the same directory as Program 19a. Make sure the
filename is the same as used in the .data section of the listing.

In the listing the ‘inbuffer’ and ‘outbuffer labels are used as buffers for the
reading, converting and writing the information. In both cases, I fill the buffers
with a string of As (65) and Bs (66) to distinguish them from one another. If the
program performs correctly, these will end up with the uppercase and lowercase
alphabets in them, respectively. This is handy if you wish to debug the program at
any point you can also dump these sections of memory to see what is there, thus
helping you to identify where you are up to or otherwise at any point.

Assemble and link Program 19a. Ensure that ‘infile.txt’ is in the same
directory and then execute the program. All being well you should see
‘outfile.txt’ appear in the directory. Open ‘outfile.txt’ and examine the result.

If there are any logical errors within your source, they should show up in the
contents of ‘outfile.txt’. One advantage of using the character strings, including
the As and Bs used in the memory buffers, is that if anything other than what you
expected turns up in ‘outfile.txt’ you can pinpoint where the error is.

Once you have the program and any versions you derive from it running
correctly, you can always change the As and Bs to Os should you wish.

File Permissions

When opening and reading files earlier we needed to specify several values which
we described as flags and modes. We placed these in R1 and R2 as part of the
syscall process. We defined these as numeric values.

Figurel9b is the output from a directory containing the files needed and/or
created by executing Program 19a. You can get such a listing by entering the
following in a terminal window:

Is -1

Anything in the current directory will be shown in the listing, including
directories and files.

mrgek L oplopl 2384 Sep 25 09:%4 proglla

-ry=r==r-- 1 pi pi 2496 Sep 25 09:54 proglY.o
fy-r==r-- 1 pi pi 2813 Sep2d 09:54 proglha.s
-y-r--r-- 1 pi pi 28 Sep 25 (09:34 infile.txt
-g-t==t-- 1 pl pi 20 Sep 25 09:54 outfile.txt

Figure 19b. File Attributes.
The first column is the one with the file attributes. A string of ten characters
makes up this column: an example would be:

IWXTr-Xr-xX

In the first column. In the case of a file then after the first character (-) the
following nine characters come as sets of three which define if the file can be
read (r), written (w), or executed(x), or not (-). The three groups of three relate to
permission of the ‘owner’, the ‘group’ and ‘other users’ have.

So, in the case of the first file in the listing, it can be read, it can be written,
and it can be executed. When a ‘d’ exists as the first letter of the string, then this
indicates a directory and not a file.

The attributes for infile.txt are:

-rw-r--1-- 1 pi pi 28 Sep 25 09:39 infile.txt

In the example above, we can see the first letter is not d but a hyphen (-). So, we
know (infile.txt) is a file, not a directory. Next the owner’s permissions are ‘rw-’
so the owner can read and write but not execute. This may seem odd that the
owner does not have all three permissions, but the x permission is not needed as it
1s a text file, to be read by a text editor, and not executable. The group’s
permissions are set to r--, so the group can read the file but not write/edit it in any
way — it is essentially like setting something to read-only. We can see that the
same permissions apply to everyone else as well.
Compare this to ‘prog19a’ where the attributes are:

-rwxr-xr-X 1 pi pi 2384 Sep 25 09:54 prog19a

Here the first letter is a hyphen (-). So, we know it is a file, not a directory. Next
the owner’s permissions are ‘rwx’ so the owner has the ability to read, write and
execute. The ‘Group’ and ‘Other’ permissions are set to r-x, so they can read and
execute the file but not write nor edit it in any way.

How does this relate to the numeric values we used in the program? The
mode was a three-digit number, in fact it was an octal number.

To come up with this three-digit number you need to consider what
permissions you want owner, group, and all others to have. Each operation is
represented by a number: =4 w=2 x=1

Consider the ‘progl9a’ attributes. Breaking it down into the three groups of
three we have:

Owner: rwx =4+2+1 =7
Group: r-x =4+0+1 =5
Other: r-x =4+0+1 =15

The value then is 0755. (Remember the 0 at the front signifies an octal value -
base 8).
The two text files are:

Owner: rw-=4+2+0=6
Group: r--=4+0+0=4

Other: r--=4+0+0=4

Which becomes = 0644.

20. Using libc

The assembler and linker we have been using to write and create machine
programs so far is just a small part of the GCC Compiler. As I said at the onset
the GNU GCC compiler is a C Compiler. It will take programs written in the C
programming language and convert them into machine code. Broadly speaking, it
takes the C source file and translates it into an assembly language source file,
which in turn gets translated into an executable machine code program which is
linked together. We have been dealing with the last couple of processes here. But
that is only just the tip of the iceberg.

This is not a book about C programming, but that is not to say we cannot use
many of the features that C and the GCC Compiler provides. This includes libe,
which is the standard function library of C. As we saw in an earlier chapter, we
can use the operating system Syscall to perform common operations such as
input/output, memory management, and string manipulation.

Using C Functions in Assembler

Likewise, the C language has no in-built facilities for performing these functions
but provides the interface to allow access to them, without necessarily needing to
know a lot about the underlying Syscall itself. In addition, many of the things you
may be looking to program for yourself may already be found in libc or available
in other C libraries, and they can be included and linked into your own assembly
source. So, there are libraries to be found that are pre-packed and ready to be
included by the compile process. Figure 20a illustrates diagrammatically how libc
sits within the overall interface.

Syscalls User Space
Kernal libc Procedures

Figure 20a. [ibc and user space.

The kernel in our case is the Raspberry P1 OS. The area above it is the user space.
This is where our files sit. Recall the addresses that were being displayed when
we used GDB to disassemble our programs. The libc code sits directly on top of
the kernel and any of our application code sits on top of this. Although it makes
no real difference operationally, diagrammatically we can see how easy it is for
the libc functions to tap into the kernel. For the most parts when an application is
written, because it is often written in C, it uses the libc interface to access the
Syscalls. Rarely in this situation would a programmer go directly to the Syscall.

The main reason for using the Syscalls directly and not using libc would be
one of space and speed. Some might also consider it a purer method of
programming and not the rather disjointed code that integrating libc creates. The
libc library is of a certain size and much of its basic configuration might be
redundant. This is not normally an issue, but for a tight, small routine where
speed and memory overhead might be critical then it may be a critical
consideration. Technically your own program becomes a procedure which uses
the resource libc provides.

From a user point of view a copy of ‘The GNU C Library Reference
Manual’ is essential. Not to learn C (but that isn’t a bad thing to do — you will
become increasingly aware of how fundamental it is to system and application
programming) but for the detail of the various functions you can access. This
contains information required and returned. In this chapter we’ll be looking at
some worked examples on these and using the above document as our source.
The GNU C Library Reference Manual can be found on the GNU website for

download. Another source of instant help is the online manual. At the command
line prompt type:

man printf

and you will get a lot of text output relating to the use and directives available
within this C function. Here ‘man’ stands for ‘manual’ and it will provide
information relating to the function name after it.

Source File Structure

The format of the source file used with the full GCC compiler is a little different
from what we have been using to date. It is no more difficult to create and is in
fact a lot simpler to compile as we do not need to do the assembly and link stages
separately — they can be done with a single command. Have a look at Program
20a. This is a revised version of the ‘write string’ code that formed Program 7a.

Program 20a. GCC source file structure.

/* Printing a string with libc - requirements change */
/* string must end with zero using printf function */

.global main
.func main
main:
STMFD SP!, {LR} @ save LR
LDR RO, =string @ RO points to string
BL printf (@ Call libc
LDMFD SP!, {PC} @ restore PC

_exit:
MOV PC, LR @ simple exit
.data
string:
.asciz "Hello World String\n"

End Program 20a.

The first thing to notice is that the ‘global start’ definition has been replaced
with ‘global main’ thus:

.global main
.func main
main:

The structure used is important as this is used by the compiler to tell libc where
the main program is located. Because all C and lib C routines are written as
named functions then we must declare this main part of our code as a function
and then use a label to impart exactly where the function starts. These three lines

do that. (As you can see, they effectively undertake the same task that © start’
label does when using the assembler-linker only, notwithstanding the addition of
the function definition.)

The two instructions at the start and end of the main function save and then
restore the link register on the stack. These commands and their use were
discussed in Chapter 17. Strictly speaking they are not necessary here, but it is
often an accepted convention just to preserve the link register when a function is
entered. So, we’ll stick with it for now.

The libc function printf is used to print the asciz string defined at the end of
the listing. printf is not a C command but is a function defined in the library that
we can use. It is a very versatile function and all that is required before we call it
is for RO to be given the address of the string. In all cases printf requires that the
string be terminated with a zero and therefore the asciz directive is — and should
always—>be used.

Finally, we have abandoned our normal exit function for the much simpler
MOV instruction. The SWI version would have worked equally as well, but the
full GCC compiler will accept this exit method which is more common in the
wider programming world. You can continue to use the SWI method if you like
the option of using the echo command to display return contents.

If you have tried to assemble and link this command in the way we have
described so far it will have failed because there is no ° start’ entry point.
Compiling with GCC can be done in a single-step thus:

gcc <options> <destination name> <input name.s>
So, for Program 20a you might use:

gcc —o prog20a prog20a.s
and execute the program with:

/prog20a

Investigating the Executable

At this stage it is worth looking at the code that is compiled using GDB.
Recompile including the —g option to create the debugging data:

gce —g —o prog20a prog20a.s
and then enter the disassembler:
gdb prog20a
If you now disassemble some code using:
disassemble main
or:
x/441 main

you should see by the labels used that the library component of the file is tagged
on after ¢ exit:”. However, if you look through the listing you should also see
branches to addresses before your main entry point. Inspect these areas. You will
see that the labels associated in the listing indicate that this is libc initialisation
code. Your program has almost been wrapped within libc! As you look at the
listing you will probably notice some instructions that we haven’t discussed so far
(but will with the next program example).

Investigating listings in this way is a great way to learn about machine code
programming. Remember, you can step-through this code and print register
values out at any time using GDB, so you can get a good insight into what is
happening and how.

The printf function is amazingly versatile. Program 20b shows how values
can be passed into printf and used in printing results.

Program 20b. Passing parameters to printf..

/* Printing a string using libc and passing */
/* parameters to function for use in printf */

.global main
.func main

main:
PUSH {LR} @ use pseudo directive
LDR RO, =string @ RO points to string
MOV R1, #10 @ first value in R1
MOV R2, #15 @ second value in R2
MOV R3, #25 @ result in R3
BL printf (@ Call libc
POP {PC} @ restore PC with pseudo

_exit:
MOV PC, LR @ simple exit

.data
string:
.asciz "If you add %d and %d you get %d.\n"

The first thing to notice here is that the entry and exit instructions for main: have
changed. We are using PUSH and POP. These are compiler directives and not
ARM instructions, but they have the same effect as the ones used in Program 20a.
They are a lot easier to use as you don’t have to think too much about what type
of stack you are going to use and what order the stack adjusters are used in.
(However, it is worth remembering that should you decide to use another
assembler, directives may change and not be compatible with your existing code.
That said, you will almost certainly have to adjust your code format with a new
assembly program.)

The string definition here includes three parameters within it. These are
signified by the preceding ‘%’. If you compile and run this program you will see
that its output is: If you add 10 and 15 you get 25.

Looking at the listing for Program20b we can see that these three values
were passed in R1, R2 and R3. When using libc functions such as printf there is a
standard way to pass and return information into them and we’ll look at this in the
next chapter which deals with writing functions.

The table in Figure 20b below lists some of the output options available to
use within printf. This list is by no means extensive, but it does provide some
options for you to experiment with, using and editing the above program.

Code Function
%d Print an Integer as a signed decimal number.
%0 Print an Integer as an unsigned octal number.

%u Print an Integer as an unsigned decimal number.

%x Print an integer as an unsigned hexadecimal
%X Print an integer as an unsigned hexadecimal
number using upper case letters.

%c Print a single character.
%% Print a literal % character.

Figure 20b. Output parameters recognised by printf.

Number Input with Scanf

You could be forgiven for thinking that scanf performs the reverse task of printf,
but it does not. scanf takes a string of characters entered at the keyboard and
converts it into its numerical value and stores it in memory. For example, if when
using scanf you typed:

255

when requested scanf would store the binary equivalent in memory. In hex this
would be:

OxFF

The reason for discussing this routine at this point, rather than the string-input
routine equivalent of printf is that it illustrates another way a libc function expects
and uses data. Not all functions expect data in the same way. This is a concept
that you will need to bear in mind as you come to learn how to access libc
functions and write your own.

However, as with printf, scanf recognises many, many different formats and
you could spend a great deal of time learning and experiment