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Using this eBook
I love eBooks! Loaded onto my Kindle Paperwhite I can take my favourite books
with me, in my pocket, wherever I go and have immediate access to them when
and where I want. An eBook copy of any Ken Follett book is much easier to
manage than the oft 800-odd page hard-back equivalent.

As far as technical books go, it may sometimes not be as straightforward as when
reading a novel. Because eBooks are a one size fits all entity, it makes formatting
them for all possible instances difficult. In fact, it is a lot easier to format a print
book than an eBook.

Long program listings, especially which contain copious comments can be
unwieldly in an eBook. Thus, I would strongly advise downloading the source
code for the programs and scrutinising these at the relevant point. There are
several tables and figures, and in many cases, you can click on the highlighted
corner to display the table full screen.



Figure. eBook open on Raspberry Pi Desktop, along with appropriate program.
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1. Introduction

It didn’t surprise me when, early in 2013, it was announced that the Raspberry Pi
had sold one million units. And counting… It took me back more years – decades
even – than I care to remember when it was announced that the BBC Micro had
done the same. Both came out of businesses based in Cambridge in the UK and
there were even more links between the two than you might imagine.

Both systems fascinated me and literally millions of other people. The first
system took every penny of my savings at the time, but the Raspberry Pi didn’t
even drain the cash in my wallet. But whist the ticket price for each was vastly
different, pretty much everything else about them was so familiar. Not least their
ability to run a wide range of software and educational tools and how easy it was
to connect external devices and control the outside world. I would suspect that
most people who own one Raspberry Pi, own several.



Figure 1a. An Original Raspberry Pi Model B.



For the first time since the BBC Micro there is an affordable and infinitely
accessible system that just about anyone can use. Meanwhile, the PC and Mac
have dominated the market and other more games-orientated boxes have been
available. But none of these have impacted the technical home hobbyist user. The
techsperts have had a variety of development boards to experiment and fiddle
with, again mostly beyond the scope of the home hobbyist computer market. For
the cost of a couple of CDs or new release DVD, the Raspberry Pi has changed
all that.

The launch of the Raspberry Pi Zero in November 2015 took cheapness to a
new level. A fully-fledged ARM-driven computer for just $5. Insane! And if that
wasn’t enough the December 2015 issue of MagPi (the official Raspberry Pi
magazine) had it bound on the cover as a free give away. Could the Raspberry Pi
be classed as the world’s first disposable computer?

At the time of updating this introduction for the fourth edition (December
2020) sales had surpassed 30 million across the various models available. Indeed,
that figure was reported to have been passed by the start of 2020 with a variety of
organisations using at the very heart of their infrastructure and development.
Oracle hailed its cluster of 1,060 Raspberry Pi boards the ‘world’s largest’ Pi
supercomputer, sporting 4,240 cores. The Jet Propulsion Laboratory (JPL) also
uses the boards for its Mars mission.



Imagination Unlimited
One reason for the birth of the Raspberry Pi was to make it easy for people to
take up programming, with the aid of a competitively priced computer system
whose use was limited only by the user’s imagination. I hope this book will help
many of you reading it realise that dream. In fact, it isn’t a dream. It is a
probability if you continue your way through the pages that follow — a first step
on a rewarding and educational pastime. And, who knows, you may become part
of a new generation of computer programmers working at the sharp end of what
is possible.

The purpose of this book is to give the reader a better understanding of how
computers really work at a lower level than in programming languages like C or
Python. By gaining a deeper understanding of how computers work, you can
often be much more productive developing software in higher level languages
such C and Python. Learning to program in assembly language is an excellent
way to achieve this goal.

This book provides an introductory tutorial in writing assembly language on
the Raspberry Pi and specifically using the Raspberry Pi OS (Raspbian Operating
System). Assembly language generates machine code that can be run directly on
your computer.

I first learnt to program assembly language on early Acorn designed
machines and ultimately watched the ARM chip develop on their Archimedes and
BBC Micro Second-Processor systems. Ultimately that assembly language was
the forerunner of what the Raspberry Pi uses today. If anything, that proves that
what you learn here should stand you in good step for many years to come. So,
it’s been a significant investment.



Start Experimenting
While this is not a book for the complete novice, you certainly do not require any
experience with assembly language or machine code to be able to pick it up and
start reading and experimenting. Programming experience would be beneficial,
and any structured language will have provided the groundwork for many of the
fundamental concepts required.

This is a Hands-on-Guide, so there are plenty of programs for you to try for
yourself. Learning to program is about experimenting, making mistakes, and then
learning from them. Experimenting by changing values and information is
without doubt the best way to understand what is happening and is to be
encouraged. All programs are available to download from the companion website.
The book is equally applicable to all versions of the Raspberry Pi. More on this
shortly.



GNU C Compiler
There are several operating systems (programming environments) available to
download for using with the Raspberry Pi. As the title suggests, the one we’re
using here is called the Raspberry Pi OS (formerly Raspbian), and this comes
with everything you’ll need to write and run your programs.

The software we will utilise is GCC, the GNU Compiler Collection. The
original author of the GNU C Compiler (GCC) was Richard Stallman, the
founder of the GNU Project. The GNU project was started in 1984 to create a
complete operating system as free software, to promote freedom and cooperation
among computer users and programmers. Every operating system needs a C
compiler, and as there were no free compilers in existence at that time, the GNU
Project had to develop one from scratch.

You may be aware that C is an extremely popular programming language; it
is also one that is very closely tied to the Advanced RISC Machine (ARM)
microprocessor which the Raspberry Pi uses at its very core. You do not need to
know C to write assembly language programs, so don’t be too concerned about
that.

GCC is a very clever piece of software and can be used in many ways. One
of its key components is as an assembler, and this is the part of GCC we shall be
primarily interested in.

The work was funded by donations from individuals and companies to the
Free Software Foundation, a non-profit organisation set up to support the work of
the GNU Project. The first release of GCC came in 1987. Since that time GCC
has become one of the most important tools in the development of free software
and is available on almost every operating system platform in existence.
GCC is free software, distributed under the GNU General Public License (GNU
GPL). This means you have the freedom to use and to modify GCC, as with all
GNU software. If you need support for a new type of CPU, a new language, or a
new feature you can add it yourself, or get someone to do it for you.



Learn by Example
The programs presented in this book are provided to illustrate concepts being
explained with a simple and — where possible — practical application. I will not
try to baffle you with long and complex listings; there is no need to. I will leave it
to you to take the examples and information and combine them two, three, four
and more at a time to create a useful outcome, learning a great deal along the way.

Some degree of ‘chicken and egg’ syndrome has been unavoidable, but I
have tried to keep it to a minimum. Concepts are introduced in an order that goes
with knowledge so far acquired. However, sometimes this is not always possible;
in such cases I will highlight the fact. In such cases, you need to accept that it
works, and you will understand the how and why later in the day!

Programming really is fun. I have written a tonne of books on the subject
and a good percentage of them have been about home computers — how to
program and use them. I have never had a computer lesson in my life. If I can do
it, so can anyone. It is also frustrating! There is not a programmer who ever lived,
novice or expert, who has not spent an inordinate amount of time trying to solve a
programming problem, just to realise later that the issue was right there in front of
them all along. I would go so far as to say the real satisfaction comes when you
solve problems for yourself.

One word of advice: If you can’t solve something, walk away, and do
something else for a while. It’s amazing how often the solution comes to you
when you are doing something else. A good rule for life in general!



What Will You Learn?
In a nutshell, you will learn to become a proficient assembly language
programmer. By the end of this book, provided you have worked through and
applied the example programs and small snippets of programs that are dotted
through the text, you will be able to design, write and produce machine code
programs to undertake any number of tasks. You will also have the grounding to
allow you to delve into the more generic texts relating to the ARM chip and
system programming.

You will also become familiar with using GCC in a whole variety of ways
including writing for the Raspberry Pi Operating System and by combining your
assembled programs with libraries of standalone functions.

You will learn how to interpret and manipulate what your Raspberry Pi is
doing at its most fundamental level. You will be right in there programming, deep
inside the ARM chip.

Problem solving is something you will also need to learn. When a machine
code program will not work as you intended it is often a simple logical flaw that
is the root cause. GCC comes with its own debugging tools and we’ll see how to
use these to good effect. I’ll also provide some useful tips on the best way you
can narrow down your search area to the source of the problem.



Fourth Edition and Compatibility
By and large this book is compatible with the full range of Raspberry Pi
computers. One of the mantras of those developing the hardware and software for
the system is to ensure that it remains backwards compatible (as far as possible).
That essentially means that what works on one Raspberry Pi will work on
another, provided it is written correctly (in terms of software). Hardware should
work also, aside from some of the physical changes that have taken place. For
example, the HDMI port works, but the type of lead required to connect to the
outside world may change (standard to micro, for instance).



Figure 1b. Raspberry Pi 4 Model B.

Physically, the difference between models and versions is generally obvious. And
for the purposes of this book I would assume you have a model that has a GPIO
port fitted as standard, and this is largely where some of the changes come in
from this books point of view, of you are intending to use some of the examples



there that show how use your coding to connect to attached devices. Where
required changes are noted in the text of the book.
Several different versions of the ARM chip have been used in the evolution of the
Raspberry Pi to date, and that may continue in the future as well. For now, just be
aware that differences may exist, but these will become apparent as your
knowledge grows. As this is essentially a beginner’s book, it does not change the
fundamentals of the programming experience herein. As such, the contents of this
book can be considered applicable as an introduction to ARM assembly language
regardless of the model Raspberry Pi you are using.



Raspberry Pi OS
When the 8GB Raspberry Pi 4 was announced (May 2020), the Raspberry Pi
Foundation revealed that it was changing the name of its official operating system
from Raspbian to Raspberry Pi OS. This is with a view to providing a similar, and
stable operating system and windows-style desktop environment across all
platforms and to ensure on-going backwards compatibility with software and
applications as far as possible.

The two main categories of processors are 32-bit and 64-bit. By supporting
both 32-bit and 64-bit operating systems, and taking charge of the operating
system build, the look and feel of OS’s can be maintained. Simply put, a 64-bit
processor is more capable than a 32-bit processor because it can handle more data
at once. A 64-bit processor can store more computational values, including
memory addresses, which means it can access over four billion times the physical
memory of a 32-bit processor. That’s just as big as it sounds!

From a user point of view, utilising the standard 32-bit operating system,
there is no functional difference in what this book covers. For ‘Raspbian’ read
‘Raspberry Pi OS’ and vice versa. More importantly, the OS remains backwards
compatible so that Raspberry Pi OS will run on all versions of the Raspberry Pi.
You can update and upgrade your current operating system to the latest Raspberry
Pi OS at any point.

The Raspbian project will continue and will undoubtedly continue to be used
to build the 32-bit version of Raspberry Pi OS. Considering that several models of
Raspberry Pi, including the very-popular Raspberry Pi Zero, will never work with
a 64-bit OS, the 32-bit platform will continue to be important if not dominant for
years to come. It’s the common denominator. If you wish to stay upto-date about
the Raspberry Pi OS then DistroWatch maintains relevant information at:
https://distrowatch.com/table.php?distribution=raspios.

https://distrowatch.com/table.php?distribution=raspios


What About 64-bit?
The Raspberry Pi 2B (v1.2) was the first to use an ARM 64-bit processor, yet
there wasn’t an official 64-bit OS available for it. That’s because the Raspberry Pi
Foundation has focused instead on making its 32-bit Raspbian OS run on all
generations of the RPi. Since the Raspberry Pi 2B (v1.2), all RPi releases have
been based on 64-bit processors, which can also run in 32-bit mode.The 32-bit
state of the ARM chip is called AArch32 (or A32) and the 64-bit is AArch64 or
A64. This means that 32-bit software can be run on a 64-bit ARM chip in
AArch32 state–the reverse is not true.

At the time of writing there is a beta-version of the 64-bit Raspberry Pi OS
available for download and use. Once this is out of beta it will be released and run
on all 64-bit capable versions (see Chapter 30). Note that the 32-bit version (A32)
of ARM assembly language is different to the 64-bit version (A64), therefore
code written in A32 will not run without modification in A64 state.



Keyboard Computing
The inevitable happened in November 2020 when desktop computing finally
arrived for the Raspberry Pi the board being re-engineered and packaged inside a
red and white keyboard for the launch of the Raspberry Pi 400.

Figure 1c. The Raspberry Pi 400, the ultimate in keyboard computing.



The Significance of ARM
All microprocessors are based on a specific instruction set architecture (ISA), and
the most significant of these down the years has been x86-based which has
dominated the desktop and laptop marketplace (PC and Apple). Most recently this
includes the 64-bit version called x86-64 or AMD64.
However, most Apple and Android tablets and smart phones have ARM
processors within, which is incompatible with x86. These devices use the ARM
chip because of its low energy consumption, as in longer battery life. However,
the incompatibility means that software compiled for desktops and laptops cannot
be directly run-on ARM-controlled mobile devices.
Reduced Instruction Set Computing or RISC processors, used in ARM devices,
execute a lot of simple instructions to complete task. The x86 processors use
CISC or a Complex Instruction Set and execute a series of more complex
instructions to complete an identical task.

ARM chips therefore achieve their lower power consumption as they have
fewer transistors in their core structure than CISC based ones. It also means from
a programmers’ point of view you have less instructions to learn as an ARM
programmer!

The other significant difference is that ARM Holdings is not a chip
manufacture. It designs the chips and then licenses these core designs for others
to include in their own purpose build chips.

In mid-2020 Apple Computers announced it will be going full tilt with self-
manufactured ARM chips included in its full range of new computers, therefore
ensuring applications can run across its range of devices. Microsoft 365, Adobe
Creative Cloud and like software are likely to be available for a new range of
ARM Macs. It doesn’t take a great stretch of the imagination to see they could
also be available for other ARM-based computers too.

While the x86 based laptops and desktops will continue in the short term at
least dominate the marketplace in terms of installed numbers ARM-based Apple
Macs should bring ARM-based laptops/desktops computers into the mainstream
market place, and may tempt other players as well.

All this adds to another reason to learn ARM assembly language
programming.



Raspberry Pi Through the Ages
The Raspberry Pi has been evolving ever since it was first released in 2012. With
each generation there is often significant improvement, in the type of the central
processing unit, memory capacity, networking support, and peripheral-device
support.

The table shown in Figure 1d lists some of the basic specifications for each
of the Raspberry Pi formats (some versions may appear similar in specification,
but but have changed slightly in configuration which is not noted in the table). As
a rule, Raspberry Pi comes in three different formats:

Model B: these are the ‘full size’ boards which include Ethernet and USB
ports. The B+ versions often add enhancements or specific differences.

Model A: these are the square shape boards. Consider these a ‘lighter’
version of the Raspberry Pi, usually with lower specifications than the headline
Model B, with less USB ports and often no Ethernet. As such they retail at a
lower price point.

Zero: Smallest Raspberry Pi available. Zeros have less computing
processing power than the Model B but use less power as well. No USB, no
Ethernet, just a nice simple package!

The amount of memory available on each Raspberry Pi should have no real
significance for the requirements of this book, just be aware that the memory
addresses you see when you run or list a particular program may differ from what
is shown herein. That should not hinder the program operation though.

Model Release Specification FPU
RPi 400 Nov 2020 Broadcom BCM2711C0, quad-core Cortex-A72

(ARM v8) 64-bit SoC at 1.8 GHz, VideoCore VI
VFPv4
+ Neon

RPi 4B June 2019;
May 2020
(8Mb)

Broadcom BCM2711B0, quad-core Cortex-A72
(ARM v8) 64-bit SoC at 1.5 GHz, VideoCore V

VFPv4
+ Neon

RPi
3B+

May 2018 Broadcom BCM2837B0, quad-core Cortex-A53
(ARMv8-A) 64-bit SoC @ 1.4GHz. VideCore IV

VFPv4
+ Neon

RPi 3B Feb 2016 Broadcom BCM2837 quad-core Cortex-A53
(ARMv8-A) 64-bit SoC @ 1.2GHz. VideCore IV

VFPv4
+ Neon

RPi
3A+

Nov 2018 Broadcom BCM2837B0, quad-core Cortex-A53
(ARMv8-A) 64-bit SoC @ 1.4 GHz. VideCore
IV

VFPv4
+ Neon

RPi Nov 2020 Broadcom BCM2837, quad-core Cortex- VFPv4



2Bv1.2 A53(ARMv8-A) 64-bit SoC @900Mhz.
VideoCore IV

+ Neon

RPi 2B Feb 2015 Broadcom BCM2836, quad-core Cortex-A7
(ARM v7-A) 32-bit SoC at 900 MHz, VideoCore
IV

VFPv3
+ Neon

RPi
1B+

May 2012 Broadcom BCM2835, 1176JZF-S (ARM v6Z)
32-bit SoC at 700 MHz, VideoCore IV

VFPv3

RPi 1B May 2012 Broadcom BCM2835, 1176JZF-S (ARM v6Z)
32-bit SoC at 700 MHz, VideoCore IV

VFPv2

RPi
1A+

Nov 2014 Broadcom BCM2835, 1176JZF-S (ARM v6Z)
32-bit SoC at 700 MHz, VideoCore IV

VFPv2

RPi 1A Feb 2013 Broadcom BCM2835, 1176JZF-S (ARM v6Z)
32-bit SoC at 700 MHz, VideoCore IV

VFPv2

RPi
Zero
W/WH

Feb 2017 Broadcom BCM2835, single-core 1176JF-
S(ARM v6Z) 32-bit SoC at 1 GHz, VideoCore
IV

VFPv2

RPi
Zero
v1.3

May 2016 Broadcom BCM2835, single-core 1176JF-
S(ARM v6Z) 32-bit SoC at 1 GHz, VideoCore
IV

VFPv2

RPi
Zero
v1.2

Nov 2015 Broadcom BCM2835, single-core 1176JF-
S(ARM v6Z) 32-bit SoC at 1 GHz, VideoCore
IV

VFPv2

Figure 1d. Raspberry Pi formats, some base specifications.



Compute Modules
The Compute Module is a stripped-down Raspberry Pi which is intended for
industrial or commercial applications. The idea being that they can be used in
development projects by anyone who wants them. (Ultimately you purchase the
boards and finalise them yourself for whatever need you might have.) As such the
Compute Modules don’t have the connection bells and whistles that you may find
on the equivalent Raspberry Pi, equally they are not as robust. As such, and
although they do contain ARM processors as they are based on the Raspberry Pi,
they are not covered herein.

But then came the Computer Module 4. Unlike previous Compute Modules
this by purchasing the updated IO Board you get easy access to all the interfaces
standard connectors, providing a ready-made development platform and a starting
point for your own designs.



Notation in Use
A standard notation has been adopted throughout this book. Number types and
certain operations on numbers are commonplace in programming books such as
this, and it is important to distinguish among them. The short list here is for
reference. Their exact meaning will be described as we encounter them within the
text of the book.

% or 0b Denotes that the number that follows it is in binary or base 2. For
example: %11110000 or 0b11110000

0x Denotes that the number that follows it is hexadecimal or base16. For
example: 0xCAFE

< > Angle brackets or chevrons are used extensively to enclose a word that
should not be taken literally but read as the object to use with the command. For
example, <Register> means a register name, R0 for example, should be used in
the angled brackets and not the word ‘Register’ itself.

Dest Short for destination.
Operand1 The commentary in the text often talks about Operand1 and its

use. The relevant values for Operand1 as defined at that point should be used. For
Operand1, this is normally a register.

Operand2 The commentary in the text often talks about Operand2 and its
use. The relevant values for Operand2 as defined at that point should be used. For
Operand2, this is normally either a register or an immediate value.

Op1 Shorthand format for <Operand1> when space is tight.
Op2 Shorthand format for <Operand2> when space is tight.
( ) Brackets show that the item within is optional and may be omitted if not

needed. For example, ADD (S) means that S may or may not be included.



Table Terminology
The table in Figure 1d utilises many acronyms that may or may not be new to
you. We’ll examine each of these briefly now and re-address them at the
appropriate points in the book, as required.

SOC: System-on-Chip. One of the key elements of the Raspberry Pi design
and generally the largest chip on the board, it contains all the significant
components in one package. This includes the ARM processor or processors and
graphics processing units. Note that each SoC is defined by a number - viz
BCM2771 for the Raspberry Pi 4 B.

CPU: This is the ARM processor or processors used, integrated into the
SoC. The table lists the specific ARM chip along with the number of included
cores and the speed of operation. Thus, on the original Raspberry Pi B, the table
tells us that a single ARM 1176JZF-S running at 700MHz was supplied. More
recently the Raspberry Pi 4 B utilises four Cortex-A72 ARM cores running at
1.5GHz.

FPU: Floating-Point Unit or maths co-processor which provides complex
math functions. This is also part of the SoC and later editions of the SoC include
a Neon co-processor allowing the FPU to undertake multiple operations in
parallel. VFP is short for vector floating-point.

GPU: Graphics Processing Unit. Included as part of the Broadcom SoC, this
is also manufactured by Broadcom and is typically a VideoCore IV, changing to
VideoCore VI with the Raspberry Pi 4 B. Effectively it is a multimedia processor
that can decode the various graphics and sound formats (codecs) to ensure great
output on your monitor, maintaining low power consumption.

The final column of the table lists the Instruction Set Architecture
implemented and whether it is 32-bit or 64-bit. As you can see, and referring the
item on 64-bits earlier, a 64-bit instruction set has been available on the
Raspberry Pi since the RPi 2 B v1.2, effectively October 2016.



Centre for Computing History
The Centre for Computing History (CCH) is a pioneering educational charity that
opened at its current site in Cambridge in August 2013. CCH was established as
an educational charity to tell the story of the Information Age through exploring
the historical, social, and cultural impact of developments in personal computing.
It maintains a long-term collection of objects to tell this story and exploits them
through education and events programmes.

CCH aims to deliver inspirational learning opportunities to a wide range of
audiences – from pre-schoolers to the over-70s – so people become confident and
creative users of information and digital technology. It offers a range of education
services on site including programming and electronics workshops and other
interactive learning using 1980s BBC Micros and Raspberry Pi.

Check it out at: https://www.computinghistory.org.uk

https://www.computinghistory.org.uk/


Companion Website and Free Books
Go to https://www.brucesmith.info and follow the directions to the book
companion pages. From the site, you can download all the programs and access
updates to the book and additional information and features. In addition, links to
other support websites and useful downloads can be found, along with details of
forthcoming Bruce Smith Books publications covering the Raspberry Pi.

PDFs for several of my original books can be found to download free-of-
charge via my website. These are books that were published prior to 2004 before
the whole eBook and self-publishing era got full on. Whilst I did author many of
them (all but two in fact) using a wordprocessor the original text has long since
washed away (the first two were written longhand – blue ink on A4 ruled pages!).

https://www.brucesmith.info/


2. Starting Out

Assembly language gives you access to the native language of the Raspberry Pi –
machine code. This is the tongue of the ARM chip which is the heart and brain of
your computer system. ARM stands for stands for Advanced RISC Machine, and
it ultimately controls everything that takes place on your Raspberry Pi.

Microprocessors such as the ARM, control the use and flow of data. The
processor is also often called the CPU – Central Processing Unit – and data the
CPU processes are digested as a continuous, almost never-ending stream of 1s
and 0s. The order of these 1s and 0s has meaning to the ARM, and a particular
sequence of them will be translated into a series of actions. Just like Morse Code
where a series of dots and dashes in the correct order has meaning if you know
how each letter is represented. For Example:

-.-. .-.. . ...- . .-.



Numbers with Meaning
As a machine code program code program is a sequence of endless strings of 1s
and 0s. For example:

11010111011011100101010100001011
01010001011100100110100011111010
01010100011001111111001010010100
10011000011101010100011001010001

It would be almost impossible — or at the very least extremely time-consuming
— to interpret what these numbers mean. Assembly language helps to overcome
these issues.

Assembly language is a form of shorthand that allows machine code
programs to be written using an English style lexicon. An assembler is a program
which translates the assembly language program into the machine code, thereby
taking away what would otherwise be a laborious process. The assembly
language program is often just a text file, and this is read by the assembler before
being converted into its binary (1s and 0s) equivalent. The assembly language
program is called the input or source file, and the machine code program the
object file. The assembler translates (or compiles) the source file into an object
file.

Assembly language is written using mnemonics. A mnemonic is a device
that aids learning or acts as a reminder. This relies upon associations among easy-
to-remember letter sequences that can be related back to the information to be
remembered. You’ve probably encountered these at some point as acronyms. For
example, to remember the colours of the rainbow you could take the phrase:

'Richard Of York Gave Battle In Vain'
And use the first letter of each word. Or use the fictitious name:
'Roy G. Biv'
A mnemonic language has developed around SMS messages sent on mobile

phones. These enable text messages to be shorter and more compact. For
example, ‘L8R’ for later’, ‘GR8’ for Great and ‘2mrw’ for ‘tomorrow’.



ARM Instructions
The ARM chip has a specific set of machine code instructions that it understands.
These operation codes or ‘opcodes’ and their use are really what this book is
about. The ARM is just one type of microprocessor; there are many different
types, and each has its own unique set of instructions.

You cannot take a machine code program written for ARM and run it
successfully on a different microprocessor. It simply would not work as expected,
if at all. That said, the concepts introduced here can be applied with a broad brush
to most other microprocessors available and are consistent in application. If you
learn to program in one, you are well on your way to programming others.
Essentially you just need to learn a new set of mnemonics, and most likely many
will be like the ones you are about to learn.

Microprocessors move and manipulate data, so not surprisingly many of the
machine code commands deal with this control, and most instruction sets (the
collective term for these mnemonics), include commands to add and subtract
numbers. The assembly language mnemonics used to represent these tasks are
typically in the form:

ADD
SUB

These examples are straightforward as are many other ARM mnemonics,
However, they can also appear complex when combined in a single line sequence.
By breaking them down into their component parts their action can be determined
without any real difficulty.

An assembly language mnemonic is normally three characters in length, but
there are occasions when it may be longer. Like anything new, this may take a bit
of ‘getting used to’, but if you work through the examples given in this book and
apply them in your own examples you should not have too much trouble.

MOV is the mnemonic for the MOVe command. It takes information from
one place and moves it to another place. How hard was that?



The Transformation Process
Once you have developed your assembly language program you have to convert it
into machine code using the assembler. For example, when the assembler
encounters the MOV mnemonic it will generate the correct number that
represents the instruction. It stores the assembled machine code as a sequential
file in memory and then allows you to run or execute it. In the process of
assembling the program, the assembler also checks its syntax to ensure it is
correct. If it spots an error, it will identify it to you and allow you to correct it.
You can then try and assemble the program again. Note that this syntax check will
only ensure that you have used the assembler instructions correctly. It cannot
check their logic so if you have written something that has used instructions
correctly, but not in the way that achieves what you wanted, it will assemble
without error but will produce an unwanted result. For example, you may need to
do an addition but programmed a subtraction instead!

There are various ways to write an assembly language program. The first
ARM chips were designed by Acorn and so not surprisingly appeared on a range
of Acorn-based computers running RISC OS. This included the Archimedes and
RISC PC. These machines ran BBC BASIC, which was innovative in that it
allowed you to write assembly language programs as an extension of BBC
BASIC. This method is still available to you today should you install RISC OS on
your Raspberry Pi.

As we have already identified, this book assumes you are using the
Raspberry Pi Operating System and the GNU GCC software. Other assembler
software does exist — much of it free — and a quick search on the internet will
reveal what the offerings are. A major advantage of GCC Programming is that it
can also assemble programs written in the C programming language.

Although this book is not about programming C, there are reasons why some
familiarity with the infrastructure it employs is advantageous, and with just a bit
of knowledge this can help make programming easier. We’ll discuss this with
examples later in the book. The bottom line is that there is nothing to stop you
trying any or all these other assemblers, and certainly what you learn here will be
beneficial in that process.



Why Machine Code?
This is an easy question to answer. Essentially everything your Raspberry Pi

does is done using machine code. By programming in machine code, you are
working at the most fundamental level of the Raspberry Pi operation.

If you are using a language such as BBC BASIC or Python, then ultimately
all its operations have to be converted into machine code every time you run the
program. This takes a finite amount of time – in human terms lightning fast – but
still time. This conversion or interpretation process does therefore slow the
operation of the software down. In fact, even the most efficient languages can be
over 30 times slower than their machine code equivalent, and that’s on a good
day!

If you program in machine code, your programs will run much faster as there
is no conversion being undertaken. There is a conversion process when you run
the assembler, but once you have created the machine code you can execute this
directly — it is a one-off process. You do not have to run the assembler every
time. Once you are happy with your program you can save the machine code and
use it directly. You can also keep the assembly language source program and use
it again, or perhaps make changes at some later point.



Language Levels
Languages such as C or Python are called high-level languages. High-level
languages are often easier to write as they have a more English-like syntax and
also include commands that do a complex sequence of actions using one
command that would otherwise take a long list of machine code instructions to
perform. Machine code is a low-level language level language as it is working
amongst the ‘nuts and bolts’ of the computer: it spells out every technical step
and detail and as a result is harder to understand.

This is the advantage of a high-level language as opposed to a low-level one.
That said, as you become more proficient in assembly language, there is nothing
stopping you from building libraries of routines to do a specific task and just
adding them to your programs as you write them. As you dig deeper into the
world of the ARM, you will find that such libraries already exist out there in
cyberspace. By writing in assembler, you can also transport your assembly
language programs onto other computers or systems that use the ARM chip. You
simply load the assembly language file into an assembler at the new destination,
assemble it and run the machine code program.

The GNU GCC compiler is available for just about all flavours of
microprocessor, so being familiar with the use of GCC will allow you to transport
your new-found skill onto other systems should you so desire.

Provided you take full advantage of the ARM chip’s facilities you can even
transfer and run the machine code directly. This has exciting possibilities when
you consider that just about every Smart Phone and Tablet device available these
days utilises ARM chips!



Into Orbit
Just to underline the power of the ARM chip and indeed smart phones in general,
a whole new generation of satellites called CubeSats, have been placed into orbit
around the Earth. They are small (about 10cms square) and have specific tasks.
The Surrey Space Centre in the south of England has designed several CubeSats
that are powered by Android phones. At around $100,000 each, these satellites
are a fraction of the cost of previous machines. At the same time, the computing
power of a single smart phone is perhaps tens of thousands of times more than
could be found in the computers on all the Apollo moon missions put together!
This is all at your disposal on your Raspberry Pi.



Figure 2a. A CubeSat under construction.



Surprise, surprise, the world is not all rosy! There are differences in the CPU
releases. As with software, the ARM chip has gone through continual
development and has had new version issues. But the base instruction set remains
the same so ‘porting’ is not as hard as it might seem. It only becomes an issue if
you are using more advanced features of the microprocessor. For this introductory
guide, these changes are not relevant. Everything in these pages is applicable to
your Raspberry Pi.



RISC and Instruction Sets
The R in ARM stands for RISC. This is an acronym for Reduced Instruction Set
Computing. All CPUs operate using machine code and each of these machine
code instructions or opcodes has a specific task. Together these instructions form
the instruction set.

The philosophy behind RISC has been to create a small, highly optimised set
of instructions. This has several advantages — fewer instructions to learn for one
— but obviously greater variation in their use.



Assembler Structure
Programming in any language, just like speaking in any language, requires us to
follow a set of rules. These rules are defined by the structure and syntax of the
language we are using. To program effectively, we need to know the syntax of the
language, and the rules that structure the language.

The simplest way to design a program is simply to create a simple list of
things you want it to do. It starts at the beginning and executes linearly until it
gets to the end. In other words, each command is executed in turn until there are
no more commands left. This works but is very inefficient.

Program languages today are structured and allow you to build them as a set
of independently executable procedures or subroutines. These subroutines are
then called from a main program as and when they are required. The main
program, therefore, controls the flow of control and executes anything that may
not be available as a subroutine.

Programs are smaller and more manageable when they are created using
subroutines. In a linear program concept, we would have probably had to repeat
large sections of code several times to have achieved its goal.

Figure 2b illustrates some pseudo-program language to show how such a
structured program might look. In the example, program commands are listed in
capitals – uppercase letters. Sections of subroutine code are given names – in
lowercase – and paradoxically are identified with a full-stop at their start. The
entire flow of the program is contained in the six lines starting with ‘.main’ and
finishing with ‘END’. Admittedly it is short, but it is clear to read, and you can
understand just with a glance, what is happening. Each subroutine name is
meaningful.

.main
DO getkeyboardinput
DO displayresult
DO getkeyboardinput
DO displayresult

END

.getkeyboardinput
; Instructions to read input from keyboard

RETURN

.displayresult



; print the result on the screen
RETURN

Figure 2b. Pseudo code illustrating a structured approach to programming.

In this example, the main program just calls subroutines. In a perfect world, this
would always be our aim because it also makes it easier to test individual
subroutines separately before they are included in the main program. This helps
to ensure our program works as we put it together.



Error Of Your Ways
One big challenge you face when learning any new program is locating errors.
This process is known as debugging. I guarantee (and I have proven this many
times) you will first write a program that does not work as expected. You will
look at it until the cows come home and not see the error of your ways. You will
insist you are right, and the computer is the issue. Then like a bolt out of the blue,
you will see the error right there staring at you.

By building a subroutine and then testing it separately, ensuring that it
works, you will know when you come to use it as part of your larger program that
your hair is safe for another day.



Cross Compilers
This is a term you are likely to come across a lot. The GCC compiler can be
found on a lot of other computers, even ones that do not use the ARM chip. You
can write and compile ARM assembler on a totally different computer! However,
you cannot run the assembled machine code. You must first transfer it from the
host machine to the target machine (such as Raspberry Pi). GCC is not the only
compiler for the Raspberry Pi or that you can use as a cross-compiler; there are
many more available. The forums on the Raspberry Pi website are a good source
of such information, and I would suggest that you look around on the web for
yourself if this is of interest.



The Raspberry Pi ARM Chips(s)
The ARM chip used in the Raspberry Pi Zero, A, B, A+, B+ is (to give it its full
title) a Broadcom BCM2835 System-on-Chip multimedia processor. The System-
on-Chip (SoC) means that it contains just about everything needed to run your
Raspberry Pi in the one structure (and is a reason why the Raspberry Pi can be so
small). The BCM2835 uses an ARM11 design, which is built around the ARMv6
instruction set.

On the Raspberry Pi 2 the chip used is a SoC, BCM2836. This retains all the
features of BCM2835 but replaces the single 700MHz ARM11 with a 900MHz
quad-core ARM Cortex-A7: everything else remains the same. Being faster and
containing more memory, it can run more mainstream software such as Windows
10 and the full range of ARM GNU/Linux distributions.

The Raspberry Pi 3 has an ARM v8 at its core, again using a SoC structure
and operating even faster still at 1.2GHz. This is based on four high performance
ARM CortexA53 processing units working in tandem. This is also a 64-bit
processor that can operate in both AArch32 and AArch64 states.

The Raspberry Pi 4 uses the Broadcom 2711 and is faster again at 1.5GHz.
The ARMv8 is a quad-core A72. This is also a 64-bit processor that can operate
in both AArch32 and AArch64 states. The 8GB version allows the memory for
the full 64-bit version to run efficiently and handle applications that make it a
fully-fledged PC!

There is a lot of jargon in those few paragraphs. Right now, from a
beginner’s point of view I wouldn’t worry about it too much. As you learn more
about the Raspberry Pi these things will start to become second nature. We’ll
come back to the SoC towards the end of this book and explain it in a bit more
detail.

By the way, one MegaHertZ (1MHz) represents a million cycles per second.
The speed of microprocessors, called the clock speed, often is measured in MHz.
For example, a microprocessor that runs at 700MHz executes 700 million cycles
per second. 1.2 GHz (GigaHertZ) is 1.2 billion cycles per second. We will see
later how this speed affects the execution of instructions.

The term ‘quad-core’ is used above. A quad-core has four independent units
called cores that read and execute instructions simultaneously. Overall, a quad-
core processor is going to perform faster than a dual-core or single-core
processor. Each program you open will work ‘in’ its own core, so if the tasks are
shared, the speeds are better. This so-called ‘parallel-processing’ is a major
feature of ARM.



3. First Time Out

In this chapter we’ll go step-by-step through creating and running a machine code
program, starting from the moment you turn your Raspberry Pi on right through
to making changes to the working program. This program will not do anything
spectacular. In fact, you won’t see anything other than the prompt symbol return,
but the process contains every single step you need to know and implement when
entering and running the other programs in this book. Right now I am assuming
you have a copy of the Raspberry Pi OS (Raspbian) image on the SD Card
inserted in your Raspberry Pi and that you have used it at least once, to run
through the initial setup of important things like keyboard and internet. If you
haven't done that yet, then do so now before carrying on here.



The Command Line
When you first boot you will automatically be logged in and deposited at the
Desktop screen. Go to top right and, using your mouse, double click on the small
image (icon of a monitor). This will open a ‘Terminal’ window and you will be
deposited at the command line, and the prompt facing you will look a little like
this:

pi@raspberrypi $

The ‘command line’ is a line onto which you enter commands to be executed by
the OS. The command line starts where you see the cursor flashing. Anything you
type in now, which is executed when you press the 'Return' key (also referred to
as the 'Enter' key), is expected to be a command, so the OS will seek to action that
command. Try tying this:

dir

Type it exactly as it is above. When you press the 'Return' key you will get a list
of any directories or files that are stored in the current directory. (I will omit the
'Return' key detail from now on but please take it as read that when I suggest
entering something at the keyboard-especially the command line, you should
finish by pressing the 'Return' key.)

Now type:

Dir

You will get a response like to this:

bash: Dir: command not found

This is an error message. The command line is case sensitive, thus:

dir

and:

Dir

are not identical in OS eyes which are case sensitive.
This is also the case with program file names so:



program1

and:

Program1

are regarded as different.
Command line convention is always to work in lowercase characters.

Commands are case sensitive. File names may have a mixed bag of character
cases as long as you are aware of the difference. It’s best always to use lowercase
characters so as a matter of course you should ensure that the Caps Lock light is
always off.



Creating A Source File
To create a machine code program, we need to go through a ‘write -assemble-
link’ process before we can end up with a file that can be executed. The first step
is to write the assembly language program. Because this is the source from which
everything flows, this file is called the sources file. It is also signified by having
an ‘.s’ appended to its name. For example:

program1.s

The source files can be created in any suitable text editor. There are plenty of
excellent ones around to be had at no cost, so it is worth spending time reading
reviews and checking the options out for yourself. You may already have one that
you like regardless, so the choice may already be made.

Equally Raspberry Pi OS comes with a selection of editors already installed
as part of ‘Recommended Software’ and you can locate these on the main
Application menu (the Raspberry on the menu bar of the desktop). They will most
likely be in the ‘Accessories’ drop-down option. This includes (at the time of
writing), both VIM and gVIM, and the Geany Programmer’s Editor. (I suggest
you try each and settle on one that it to your liking.)

If neither VIM or gVIM is installed you can either look to do so via the
Recommended Software option, or from a command line by typing:

sudo apt-get install vim

And then reply to any prompts – one might ask you about adding extra
functionality. It should be safe to respond ‘Y’. Installation takes a few minutes,
and the Vim website has a lot of useful hints and tips.

If you wish to work ‘application-style’ then you use the GUI version of Vim
and install if needed using:

sudo apt-get install vim-gtk

As you will spend a lot of your programming time developing assembler it makes
sense to spend time getting to learn the ins and outs of Vim. Many of the actions
and operations used in VIM are performed utilising keypress combinations
(especially the Terminal based version). Figure 3a lists some commands you need
to know. The table is not exhaustive by any means and you will find a complete
set on the Vim website. But this is more than enough to get you started.



When you start Vim, you can also specify the file name you want to create.
If the file already exists it will load the file into the editor window, and you can
use it as you please. If the file does not exist, then Vim creates a new blank file of
that name for you. Open a new Terminal window and at the command line
prompt, type:

vim prog3a.s

Note that there is a space between ‘vim’ and ‘prog3.s’ and also note that there is
an ‘.s’ at the end of the name ‘prog3’ to denote a source file. Convention dictates
that ‘s’ represents an assembly language source file.

The screen/window will now be largely blank apart from a column of tildes
(‘~’) running down the left-hand edge and the file’s name at the bottom – plus
words to denote that it is a new file.

Press the ‘i’ key. Note how the text:

-INSERT--

has appeared at the bottom left of the screen. This signifies we are in insert mode.
Press the <Esc> key. The ‘INSERT--’ has disappeared. We are now in Vim
command mode.

Pressing ‘i’ and ‘Esc’ will become second nature to you. When insert mode
is enabled it’s a simple matter to key in the assembly language program and edit
until your heart’s content. In command mode, key presses are interpreted as direct
commands to Vim, giving it commands to perform.



Figure 3a. Important Vim commands.



The filename for this program, here ‘prog3a.s’, is not particularly special. I name
all the programs in this book by chapter name. So prog3a.s signifies that the
program source file is from Chapter 3 in the book. The ‘a’ would suggest it is also
the first in the chapter. A file called ‘prog4b.s’ would signify the program is from
Chapter 4 and listed as Program 4b and it is the second one in the chapter. This is
just for your ease of reference. You can use whatever name you want.

Move back into insert mode (i) and note the flashing cursor at the top left of
the screen. Anything you type now will appear where the cursor is. Enter the
listing given below in Program 3a. You only have to enter the text below that is
between the two lines. (A complete list of programs presented in this book can be
found at the end of the Contents list.)

.global _start
_start:

MOV R0, #65
MOV R7, #1
SWI 0

Program 3a. A simple source file.

Note that of the five lines of the program, the first and third, fourth and fifth lines
are indented. Only the second begins at the start of the line. The amount of indent
you add, or even where you place indents doesn’t really matter; they are simply to
make it easier to read the program and see where the different layers of the
program are.

You can create the indent by pressing the ‘Tab’ key. Other keys behave as
you would expect them to, such as arrow keys to move around and the ‘Delete’
and ‘Backspace’ keys to move and edit text. However, there is a space between
the words ‘global’ and ‘_start’ and this space is important. We’ll look at what the
listing all means shortly.

Press 'Esc' and then type:

:wq

This will save your file and in turn also quit Vim. You will now be back at the
command prompt. The source file is now complete!



Come to the Execution
The next step is to convert the source file into an executable file of machine code.
We do this with two commands entered at the command line. Enter the following
two lines, one after the other, at the command line prompt:

as –o prog3a.o prog3a.s
ld –o prog3a prog3a.o

These two lines first assemble and then link the assembly language program
(linking is discussed shortly). On completion the machine code can be executed
and the syntax for this is:

./<filename>

The ‘./’ means ‘run’ and the file to be run is named immediately after the
command – no spaces. Thus:

./prog3a

When the prompt reappears, the machine code program has completed. Easy as
that!

So, we have just written, compiled (assembled and linked) and executed a
machine code program – all the basic steps needed were involved in the process
above. Of course, as the programs get more complex and we seek to make more
use of the tools available then the process will itself become more involved, as we
shall see.



Assembler Errors
If at any time during the above process you receive an error message – or any
message at all, then look carefully at what you have typed. First look carefully at
the assembly language program and then the individual lines of code to assembly,
link and finally run the program. If there was an error and you found it,
congratulations, you have just debugged your first assembly language program.

If you get an error message from the assembler (this will be after you have
pressed <Return> at the end of the first line) it will normally provide you with a
line number as a guide. Even if you do not know what the message means note
the line number and then reload the source file back into Vim. For example:

prog3a.s:5: Error bad expression

would indicate there is an error in line 5 of the source file.
With a small file such as this you can count down the lines and locate the

one containing the error. Vim also has a line numbering ability. When in Vim
command mode type:

:set number

And notice how line numbers appear down the left of the window. These line
numbers do not get saved as part of your source file – they are here as a guide
only. Figure 3b shows all this in action using gVim. This shows the line numbers,
and that Vim is operating in Insert mode. If you use gVim you will also notice
how the various items of syntax are highlighted by different colours. This makes
it easy to identify the different components of the listing which are described
shortly.



Figure 3b. How line numbers appear in Vim.



You can run gVim from the command line using:

gvim <filename>

So, to create or edit Prog3a you might use:

gvim prog3a.s



The Components
Let’s now look at the above process and understand a bit more the anatomy of the
source file and what we did to make it all come together. Look at prog3a.s again.
It consists of just five lines. Each assembler source files point file must have a
starting point, and by default in the GCC assembler this is the label:

_start:

The first line of this program defines ‘_start’ as a global name and available to the
whole program. We’ll see later why making it a global name is important. The
second line defines where ‘_start:’ is in the program. Note the use of the ‘:’ at the
end to define it as a ‘label’. We’ve defined _start as global and now marked
where _start is.

The next three lines are assembly language mnemonics, and two of the lines
are similar, and use the MOV instruction. When the hash symbol is used in
assembly language it is used to denote an immediate value. In other words, the
value after the hash is the value to be used. In the first case, the value 65 is to be
moved in Register 0. Here ‘R’ stands for register, which is a special location in
the ARM chip, more on which shortly. In the second line, the value 1 is moved
into R7 or Register 7.

The final instruction is SWI 0. This is a special instruction that is used to call
the Raspberry Pi Operating System itself. In this instance it is being used to exit
the machine code program and return control back to the command line prompt
(when the program is run of course).

Just a note on the character case used for the assembly language commands
in these source files. I am using uppercase letters for mnemonics and registers, I
could have just as easily used lower case – inside the source files the character
case does not matter, thus:

MOV R0, #65

and:

mov r0, #65

are seen as being one and the same thing-this is different from the Terminal
command line which is case-sensitive. I will be using uppercase characters during
this book. This makes the commands easier to identify in the text of the book, and



makes the commands stand out from labels – which I will continue to place in
lower case.
Run the program again:

./prog3a

At the prompt type:

echo $?

The following will be printed on the screen:

65

This was the immediate value loaded into R0. Try editing the 65 to another
number, say 49. Now save, reassemble and re-link and run. If you now type:

echo $?

49 should be printed. The operating system has a limited way of returning
information from machine code programs and we’ll look at this later.

If you look at prog3a.s again you can see that it consists of two clear
sections. At the top (start), are some definitions, and in the lower half, the actual
assembly language instructions. Assembly language source files always consist of
a sequence of statements, one per line. Each statement has the following format,
each part of which is optional:

<label:> <instruction> @ comment

All three of these components can be entered on the same line, or they can be
split across lines. It’s up to you. However, they must be in the order shown. For
example, an instruction cannot come before a label (on the same line).

The ‘comment’ component is new. When the assembler encounters the ‘@’
it ignores everything after it until the end of the line. This means you can use it to
annotate your program. For example, go back and edit prog3a.s by typing:

mov r0, #65

The editor window will display your original source file. The cursor will be at the
top of the file. Enter insert mode, create a new line, and enter the following:

@ prog3a.s – a simple assembler file



The comment line, marked by the ‘@’ at the start, is totally ignored by the
compiler. Of course, it does make the source file bigger, but this does not affect
the executable's performance in any way.

You can also add comments using ‘/*’ and ‘*/’ to enclose the comment at the
start and end respectively. For example:

/* This comment will be ignored by the assembler */

Both methods are acceptable, and it is simply a matter of taste — whichever you
prefer.

To convert the source file into an executable file we needed two steps. The
first was:

as –o prog3a.o prog3a.s

The ‘as’ at the start invokes the assembler program itself which expects several
arguments after the command to define the files it will be working with and what
it will be doing with them. The first of these is ‘o’ and this tells the assembler that
we want to produce an object file, here called ‘prog3a.o’ from the source file
‘prog3a.s’ You can choose another name if you wish; the body of the name does
not have to be the same, although keeping it the same makes it easier to keep
track of your files. Of course, the suffix is not the same!

The second and final step is to ‘link’ the file object file and convert it into an
executable file using the ‘ld’ command as follows:

ld –o prog3a prog3a.o

You can think of linking as the final bit of binding that makes the machine code
work. What it produces is an executable file (called an elf file) from the .o
(object) file created in the assembly process. It is this ld command that uses the
_start: label to define where the program is to be run from. (This may sound
crazy, but sometimes the start point of a file may not be at the very front of it, as
we shall see!)



Lack of _start
You can learn a lot about the workings of the GCC assembler and linker simply
by experimenting. What do you think would happen if we omitted the _start: label
from the source file?

Open the prog3a.s file in Vim and delete the line ‘_start:’ thereby erasing the
label. Exit Vim and then assemble the program:

as –o prog3a.o prog3a.s

and now link the program:

ld –o prog3a prog3a.o

The following error message (or similar) will be produced:

ld: warning: cannot find entry symbol _start; defaulting to 00008054

The error message is clear enough. Because it can't find a pointer to where the
program starts, the linker is assuming that the program start point is right at the
beginning, and the location of this in memory is at the address 00008054. (This
address can and probably will vary depending on the individual Raspberry Pi.)
This is a safety net, but not a fail-safe. Always use ‘_start:’ in your files to define
the start of execution. This program will run perfectly well — others might not
and probably won’t!



Linking Files
The letters ‘ld’ stand for ‘link dynamic’ and the linking command can combine or
daisy-chaining several files together into one long executable program. In such
cases only one ‘_start:’ label should be defined across all these files, as there
should be only the one start point, and this defines it. This is easy to demonstrate
using our sample program.

Create a new file in Vim and call it:

part1.s

In this file enter the listing shown below as Program 3b:

/* part1.s file */
.global _start

_start:
MOV R0, #65
BAL _part2

Figure 3b. Part 1 of the source file.

Save the file. Now create a new file called:

part2.s

and it should contain these lines in the listing below as Program 3c:

/* part2.s file */
. .global _part2

_part2:
MOV R7, #7
SWI 0

Figure 3c. Part 2 of the source file.

Save and exit this. We have written two source files that we will now compile and
link to create a single executable file. At the end of the part1.s we added a new
instruction:

BAL _part2



BAL means Branch ALways, and here branch always to the point in the program
marked with the label ‘part2:’ In the second file we have defined a global variable
called ‘part2’ and marked the point where part2 begins. Because we have used the
global labels definition, the location of the address made known by the global
definition will be available to all the program parts.

The next step is to compile both new source files:

as –o part1.o part1.s
as –o part2.o part2.s

Now the labels must be identified and linked using the linker thus:

ld –o allparts part1.o part2.o

Here the linker will create an executable file called ‘allparts’ from the files
‘part1.o’ and ‘part2.o’. (You can use a different name for the executable file.) Try
running the file with:

./allparts

The order of ‘part1.o’ and ‘part2.o’ could have been swapped — it would not
have mattered as the linker resolves such issues. The key here is that each source
file is independently written, created but then joined (we might say tethered)
together by linking. If you tried to link just one file on its own, you would get an
error message because when linking each part references the other. So, in this
case the linker is also a safety check.

What this small demonstration shows is that if you start to think carefully
about your source files, you can start to develop a library of files that you can dip
into each time you need a particular function. If you think back to the last chapter
and the concept of a pseudo-program, this could be created using such functions.
We’ll look at function creation later.



Tidying Up
If you catalogue the root (raspberrypi) directory by typing:

dir

you will see that amongst other things there are three prog3 files as follows:

prog3a.s --- the source file
prog3a.o --- the object file
prog3a --- the executable file

(I have added in the description for each file on the right.)
Ultimately you only need the source file as you can create your executable

file from this at any time. At the very least you can get rid of the object file using
the rm command (rm = remove files):

rm prog3a.o

To keep things tidy it is worth creating a separate directory for all your assembler
files, and you can do this using the ‘mkdir’ command. To create a directory called
aal (arm assembly language) use:

mkdir aal

Now you can make that directory listing your current directory by typing:

cd aal

Notice that the command line prompt has been extended to include:

/aal $

Anything you now create or do will be done so in the aal directory. To move back
up to the Raspberry Pi root directory type:

cd 

Note how the prompt on the command line always reflects where you currently
‘are’ within the hierarchy of the Raspberry Pi filing system.



If when you are looking to load or assemble a file and you get an error
message. Check that you are ‘in’ the correct directory, and the file name is spelt
correctly (including use of capital letters). Often that’s the issue!



A Comment on Comments
Not everyone will agree, but I think it is imperative you comment your assembly
language programs. What you write today will be fresh in your mind, but if you
need to upgrade or adapt it later you will almost certainly be struggling to
remember exactly what each segment does, and another programmer looking at or
trying to improve your work will be completely at sea. To my mind commenting
— that is good commenting — is an essential part of writing assembly language
programs. All assemblers allow you to place comments in your source file.
Comments do not make the final machine code file any longer or any slower in
execution. The only overhead is that they affect the size of your source program.

So, comments are a good thing but don’t comment for comment's sake. If
every line of your assembly language program had a comment it would become
ungainly and would detract from the important comments. For example, look at
this simple line and comment relative to the ADD instruction:

ADD R0, R1, R2 @ R0=R1+R2 

The comment here is pointless from a program documentation perspective, as we
already know — or we should know — from the program line itself what the
operation does. What would be relevant here is detailing the significance of the
values stored at locations R1 and R2. This might be a better comment then:

ADD R0, R1, R2 @ Balance of act1 + act2

If you break your assembly program into segments using the format shown in the
previous chapter, then for a lot of the time a pertinent comment or two at the start
of the section is often also enough. Some things to keep in mind as guidelines: ?
Comment all key points in your program. ? Use plain English; don’t invent
shorthand that someone, (including you) may not understand later.
 

Comment all key points in your program
Use plain English; don’t invent shorthand that someone (including you),
may not understand later.
If it is worth commenting, then comment properly
Make comments neat, readable, and consistent
Comment all definitions



If you keep these key points in mind you shouldn’t go wrong, and I mention them
at the start so you’ll hopefully take the point and get into good habits that will last
a programming lifetime.

If you are planning to write a lot of machine code, you might want to
consider documenting your files externally, creating a database or perhaps a
workbook where you keep their details.

Also, beware the multi-file syndrome. As you develop your files you may
several versions of them during development., And at the end not be sure which
one is which. You can end up with a menagerie of similarly named files. Add a
comment at the very start noting why you have moved on from that file. Move the
ones you think you don’t need into a holding folder. When you have the one you
want then add a comment it as such and name it as such.



Geany Programmer’s Editor
I mentioned earlier in the chapter that there was a third option when it came to
software for creating your source files on the Raspberry Pi Desktop. In the later
versions of the Desktop the Raspberry Menu includes a ‘Programming’ sub menu
and in here you are likely to find the ‘Geany Programmer’s Editor’.

Geany is an IDE or ‘integrated development environment’ and provides a
variety of formatting options for various projects and languages. It also uses tabs
which allows you to have multiple source files open. It also provides line
numbers automatically.

If you remember to save your file as a text files with a ‘.s’ extension this is a
great alternative option. That said it is good to understand how some of the
traditional text editors work in the first instance.



Figure 3c. Geany IDE look and feel.

Figure 3c also shows that line numbering is automatic, and a plethora of
additional information is provided around the perimeter of the Geany window.



4. Bits of a RISC Machine

There are 10 types of people in the world — those that understand binary notation
and those that don’t.

If that statement leaves you confused, don’t worry. After reading this section
of the book you’ll ‘get’ the joke. If you have already had a smile at it then you’re
well on your way to racing through this section. What I will say at the onset
though is that a thorough understanding of the way binary notation is presented
and how it can be manipulated is fundamental to effective, efficient machine code
programming.

When you create machine code programs you are working at the most basic
level of the computer. There is nothing below it. In the opening chapters we
touched on binary and hexadecimal numbers. Hex numbers are a compact way of
writing numbers which in binary would be long strings of 1s and 0s. Because of
its design as a reduced instruction set computer, the Raspberry Pi can do many
different things using a base set of instructions and does so by getting the absolute
maximum meaning out of every single one of these 1s and 0s. To understand fully
how a RISC machine works we need to understand how binary and hex are
constructed and how they are utilised by the ARM chip.

To recap from the opening chapters: The instructions the ARM CPU
operates with consist of sequences of numbers. Each number represents either an
instruction (opcode) or data (operand) for the machine code to execute or
manipulate. Internally these numbers are represented as binary numbers. A binary
number is simply a number constructed of 1s or 0s. Binary is important as
internally these 1s and 0s are represented as ‘on’ or ‘off’ conditions
(electronically usually +5V or 0V) within the microprocessor, and as an assembly
language programmer we will often want to know the condition of individual
binary digits or bits.

Opcodes and operands are built by combining sets of eight bits, which are
collectively termed a byte. Convention dictates the bits in these bytes are
numbered as illustrated in Figure 4a.

 7   6   5   4   3   2   1   0 

Figure 4a. Numbering of the bits in a byte.



The number of the bit increases from right to left, (not left to right) but this is not
as odd as it may first seem.

Consider the decimal number 2934, we read this as two thousand, nine
hundred and thirty-four. The highest numerical value, two thousand is on the left,
while the lowest, four, is on the right. We can see from this that the position of the
digit in the number is especially important as it will affect its ‘weight’.

The second row of Figure 4b introduces a new numerical representation.
Each base value is suffixed with a small number or power, which corresponds to
its overall position in the number. Thus, 103 is 10 x 10 x 10 = 1000. The number
in our example consists of two thousands plus nine hundreds plus three tens and
four units.

 Value   1000s   100s   10s   1s 
Representation   103  102  101  100

Digit  2  9  3  4

Figure 4b. Decimal weights of ordinary numbers.

In binary representation, the weight of each bit is calculated by raising the base
value, two, to the bit position (see table below). For example, bit number 7 (b7)
has a notional representation of 27 which expands to: 2 x 2 x 2 x 2 x 2 x 2 x 2=
128. The weight or value of each bit is shown in Figure 4c.

 Bit
Number   b7  

b6 
 
b5 

 
b4 

 
b3   b2   b1   b0 

Representation   27  26  25  24  23  22  21  20

Weight  
128

 64  32  16  8  4  2  1

Figure 4c. The binary weights of numbers.



Binary to Decimal
As it is possible to calculate the weight of individual bits, it is a simple

matter to convert binary to decimal numbers into decimal. The two rules for
conversion are:

1. If the bit is set (‘1’) , add its weight
2. If the bit is clear (‘0’), ignore its weight
Let’s try an example and convert the binary number 10101010 into its

equivalent decimal value.

 Bit   Weight   Value 
 1   128   128 
 0   64   0 
 1   32   32 
 0   16   0 
 1   8   8 
 0   4   0 
 1   2   2 
 0   1   0 

Figure 4d. Converting binary numbers to decimal numbers.

In Figure 4d, we add the value column to get 170. Therefore, 10101010 binary is
170 decimal (128+0+32+0+8+0+2+0). Similarly, the binary value 11101110
represents 238 in decimal as shown in Figure 4e.

 Bit   Weight   Value 
 1   128   128 
 1   64   64 
 1   32   32 
 0   16   0 
 1   8   8 
 1   4   4 
 1   2   2 
 0   1   0 



Figure 4e. Converting binary numbers to decimal numbers.

To convert a decimal number into a binary number, the procedure is reversed —
each binary weight is, in turn, subtracted. If the subtraction is possible, a 1 is
placed into the binary column, and the remainder carried down to the next row. If
the subtraction is not possible, a 0 is placed in the binary column, and the number
moved down to the next row. For example, the decimal number 141 is converted
into binary as shown in Figure 4f.

 Decimal   Weight   Remainder   Binary 
 141   128   13   1 
 13  64  13  0
 13  32  13  0
 13  16  13  0
 13  8  7  1
 5  4  1  1
 1  2  1  0
 1  1  0  1

Figure 4f. Converting a decimal number to its binary equivalent.

Therefore, 141 decimal is 10001101 binary.



Binary to Hex
Although binary notation is probably as close as we can come to representing the
way numbers are stored within the Raspberry Pi, they are rather unwieldy to deal
with. And row after row of 1s and 0s simply get lost as your eyes start to rebel
and make funny patterns. When dealing with binary numbers we more commonly
use an alternative form to represent them – hexadecimal or ‘hex’ for short.
Hexadecimal numbers are numbers to the base of 16. This is not as awkward as
first seems and presents many advantages.

 Decimal   Hex   Binary 
 0   0  0000
 1  1  0001
 2  2  0010
 3  3  0011
 4  4  0100
 5  5  0101
 6  6  0110
 7  7  0111
 8  8  1000
 9  9  1001
 10  A  1010
 11  B  1011
 12  C  1100
 13  F  1101
 14  E  1110
 15  F  1111

Figure 4g. Decimal, hexadecimal and binary numbers.

Base 16 requires sixteen different characters to represent all possible digits in a
hex number. To produce them, the numbers 0 to 9 are retained and then we use
the letters A, B, C, D, E, F to represent values from ten to 15. The binary and
decimal values for each hex number are shown in Figure 4g. If you have followed
the previous section on binary numbers something interesting may stand out
when you look at Figure 4g.



Notice how four bits of a binary number can be represented in one hex
number. Thus, a full byte (8 binary bits) can be depicted with just two hex
characters. Using decimal notation, a byte would require three characters. Hex is
a very compact and easy way of representing binary.

To convert a binary number into hex, the byte must be separated into two
sets of four bits, termed nibbles, and the corresponding hex value of each nibble
extracted from the table above:

Convert 01101001 to hex:

0110 = 6
1001 = 9

The answer is 69. Because it is not always apparent whether a number is hex or
decimal (69 could be decimal), hex numbers are usually preceded by a unique
symbol such as 0x (which is the notation used in this book):

0x69

By reversing the process hex numbers can be converted into binary.



Hex to Decimal and Back
To transform a hex number into decimal, the decimal weight of each digit

should be summed. Convert 0x31A to decimal:

3 has a value of 3 x 162 = 3 x (16 x 16) = 768
1 has a value of 1 x 161 = 1 x 16 = 16
A has a value of 1 x 160 = 10 x 1 = 10

Add these together to give 794 decimal.
Converting decimal to hex is a bit more involved and requires the number to

be repeatedly divided by 16 until a value less than 16 is obtained. This hex value
is noted, and the remainder carried forward for further division. This process is
continued until the remainder itself is less than 16.

Example: convert 4072 to hex:

4072/16/16 =15 = F Remainder: 4072-(15*16*16)=232
232/16   =14 = E  Remainder: 232-(14*16)=8
Remainder =8 = 8

Therefore, 4072 decimal is 0xFE8.
Both conversions are a little long winded, and you can probably see why it is

so much easier to work in hex and forget about decimal equivalents. In truth, this
is what you will get used to doing. Although it may seem alien at present, it will
become second nature as you develop your assembly language expertise.
(Besides, if you want to convert hex to decimal, you can use the Pi!)



Binary Addition
It is easy to add and subtract binary numbers. In fact if you can count to two you
will have no problems whatsoever. Although it is not vital to be able to add and
subtract 1s and 0s 'by hand’, this chapter introduces several concepts which are
important, and will help you in your understanding of the next chapters and
ultimately in programming the ARM.

There are just four simple straightforward rules when it comes to adding
binary numbers. They are:

0+0=0   [nought plus nought equals nought]
1+0=1   [one plus nought equals one]
0+1=1   [nought plus one equals one]
1+1=0(1) [one plus one equals nought, carry one]

Note in the last rule, one plus one equals nought, carry one. The ‘1’ in brackets is
called a carry bit, and its function is to denote an overflow from one column to
another, remember, 10 binary is 2 decimal (and thus the opening line of the
Chapter!). The binary carry bit is like the carry that may occur when adding two
decimal numbers together whose result is greater than 9. For example, adding
together 9+1 we obtain a result of 10 (ten), this was obtained by placing a zero in
the unit column and carrying the ‘overflow’ across to the next column to give:
9+1=10. Similarly, in binary addition when the result is greater than 1, we take
the carry bit across to add to the next column (the twos column). Let's try to apply
these principles to add the two 4-bit binary numbers, 0101 and 0100.

 0101 0x5
+0100 0x4
=1001 0x9

Going from right to left we have:

1+0=1
0+0=0
1+1=0(1)
0+0+(1)=1

In the example, a carry bit was generated in the third column, and this is carried
to the fourth column where it is added to two noughts. Adding 8-bit numbers is
accomplished in a similar manner:



  01010101 0x55
+ 01110010 0x72
= 11000111 0xC7

If the eighth bit, also called the most significant bit, creates a carry then this can
be carried over into a second byte. However, within the CPU of most chips there
is another way to handle this using something called a Carry flag.



Subtraction
So far, we have dealt exclusively with positive numbers, however, in the
subtraction of binary numbers we need to be able to represent negative numbers
as well. In binary subtraction though, a slightly different technique from everyday
subtraction is used, in fact we don’t really perform a subtraction at all – we add
the negative value of the number to be subtracted. For example, instead of
executing 4-3 (four minus three) we execute 4 + (-3) (four, plus minus three).

Figure 4h. Subtracting numbers.

We can use the scale in Figure 4h to perform the example 4+(-3). The starting
point is zero. First move to point 4 (four points in a positive direction) signified
by the ‘>’ and add to this -3 (move three points in a negative direction). We are
now positioned at point 1 which is indicated by ‘<<’. Try using this method to
subtract 8 from 12, to get the principle clear in your mind.

To do this in binary we must first have a way of representing a negative
number. We use a system known as signed binary. In signed binary, bit 7 is used
to denote the sign of the number. Traditionally a '0' in bit 7 denotes a positive
number and a '1' a negative number.



Figure 4i. Signed binary representation of -1.

Figure 4i shows how a signed binary number is constructed. Here, bits 0-6 give
the value, in this case ‘1’. The sign bit is set so denoting a negative value, so the
value represented in signed binary is -1.

Figure 4j. Signed binary representation of 127.

The value 01111111 would represent 127 in signed binary. Bits 0-6 give 127, and
the sign bit is clear. This is illustrated in Figure 4j.



Twos Complement Numbers
Just adjusting the value of bit 7 in this way is not an accurate way of representing
negative numbers. Adding -1+1 should equal 0, but ordinary addition gives the
result of 2 or -2 unless the operation takes special notice of the sign bit and
performs a subtraction instead. Twos complement representation provides a
means to encode negative numbers in ordinary binary, such that addition still
works, without having to take the additional sign adjusting step.

To convert a number into its negative counterpart, we must obtain its twos
complement value. This is done by inverting each bit and then adding one. To
represent -3 in binary, first write the binary for 3:

00000011

Now invert each bit by flipping its value so that 0s become 1s and 1s become 0s.
This is known as its ones complement value:

11111100 

Now add 1:

  11111100
+ 00000001
= 11111101

Thus, the twos complement value of 3 = 1111101. Now apply this to the original
sum 4+(-3):

    00000100  4
  + 11111101 -3
=(1)00000001  1

We can see that the result is '1' as we would expect, but we have also generated a
carry due to an overflow from bit 7 (this is the value in brackets above). This
carry bit can be ignored for our purposes at present, though it does have a certain
importance as we shall see later when performing subtraction in assembly
language.

Here’s another example that performs 32-16, or: 32+(-16).



32 in binary is:  00100000
16 in binary is:  00010000
Twos complement of 16: 11110000

Now add 32 and -16 together:

     00100000  32
   + 11110000  -16
=(1) 00010000  16

Ignoring the carry, we have the result, 16.
We can see from these examples that, using the rules of binary addition, it is

possible to add or subtract signed numbers. If the carry is ignored, the result
including the sign is correct. Thus, it is also possible to add two negative values
together and still obtain a correct (negative) result. Using twos complement
signed binary let's perform -2+-2

2 in binary is:  00000010
Twos complement of 2: 11111110 

We can add this value twice to perform the addition:

    11111110   -2
  + 11111110  -2
=(1) 11111100  -4

Ignoring the carry, the result is -4. You might like to confirm this by obtaining the
twos complement value of -4 in the usual manner.

Understanding twos complement isn't strictly necessary for most
applications, but it can come in handy as you can discover the value of every bit
in a number whether it is positive or negative.



When Twos Don’t Add Up
There are a couple of occasions when twos complement doesn’t add up and
interestingly, they are based around representing 0 and -0.

The first is when dealing with 0 (zero). Working with 8-bits for simplicity,
the twos complement of 00000000 is 10000000. When you drop the most
significant bit, you get 00000000, which is what you started with. This works as it
means that you can’t really have -0 and that you can only have one value of 0 in
twos complement.

The second situation arises with 10000000 because it can have no negative
value. The inverse of 10000000 is 01111111, and now add one to obtain its twos
complement and you get 10000000, which is what you started with.

Because the most significant bit in 10000000 is 1, the value is negative.
When you invert it and add 1, you get 10000000 which is the binary
representation of 128 so the original value must, therefore represent -128.

This anomaly is the reason why integer and long value variables in many
forms of BASIC are asymmetrical. In 8-bits, the values range from -128 to +127
and in 32-bits (four-bytes) values range from -2,147,483,648 to +2,147,483,647.



Desktop Calculator
Depending on the Desktop settings you have when you installed your Raspberry
Pi Operating System on your Pi, you should find that the Accessories menu has a
‘Calculator’ included. This will run on the desktop and can be used to do many of
the number exercises that we have discussed, and other operations that we will
cover during the course of the book, when used in Scientific mode. I’ll leave you
to explore those possibilities. Converting numbers between bases such as binary,
hex and decimal is certainly possible along with other number bases such as Octal
(8).



5. ARM Arrangements

The ARM has a specific and special design. This is known as its architecture
because it refers to how it is constructed and how it looks from the user’s point of
view. Understanding this architecture is an important aspect of learning to
program the chip. You need to appreciate how it all fits together and how the
various elements interact. In fact, the purpose of much of the machine code we
will be creating is to gain access and manipulate the various parts in the ARM
itself. Because of its design as a reduced instruction set computer it can do many
different things using a small set of instructions. The way it operates is
determined by the mode. This means that once you have understood the basic
layout of the ARM chip you only then have to understand what its different
operational modes are. That said, for almost all situations that you encounter
when learning to program the ARM you will be operating in User Mode.



Word Lengths
In the binary examples we looked at in the previous chapters we have used single
byte values. Indeed, all the early popular computers worked at this level with
machine code. The design of these circuit boards reflected this in that they had
the eight data lines. In broad terms, these lines were directly related to the bits in
the CPU byte. Thus, the CPU could move data around the board by toggling the
logical condition on each line by making it a 1 or 0. It did this by changing the
voltage on the line between 5V and 0V.

An ARM chip is more sophisticated and can operate much faster by
manipulating larger amounts of information. It does this by being designed as a
32-bit or 64-bit CPU. In the case of 32-bit this equates to four-bytes of
information. So instead of manipulating eight lines of information there are 32
lines. Collectively these four-bytes are called a word. The ARM word length is
said to be four-bytes. However, it is more than capable of working with single
byte lengths, and it does this just as effectively. Keep in mind that other computer
systems may define their word length as something different, but on the
Raspberry Pi a word is four-bytes or 32-bits in length.

The most significant bit (msb) in an ARM word is located at bit 31 (b31),
and the carry bit in an operation is generated if there is an overflow out of bit 31.
If a carry occurred from bit 7 it would be carried into bit 8, or from the first byte
in the second byte.



Byte and Word Accessed Memory
As a computer or smart phone user you will be familiar the role that memory
plays in operation. The more you have the more you can store. Each memory
address has a unique location. Generally, as the number of bits increases then so
does the amount of memory that can be directly addressed. The early ARM chips
only used 26-bits of the 32-bits for addressing memory. This placed certain
restrictions on the processor – and of course, the amount of memory it could
directly address – so later ARM chips had full 32-bit addressing. The lowest
address in this range is accessed by placing 0s on all the lines, and the highest by
placing 1s on all the lines. The first is addressed as 0x0000 and the highest as
0xFFFFFFFF (or 0x3FFFFFFF on old pre-Raspberry Pi 26-bit address bus
ARMs).

Memory control devices for the ARM allowed for 32-bit addressing. Figure
5a illustrates schematically how this memory is arranged as word length blocks
composed of four-bytes a piece, so the minimum and maximum memory
addresses are extended to 0x00000000 and 0xFFFFFFFF – this is the case on the
Pi.

    bit31        bit00 
(Word 0)   b03   b07   b0B   b0F 
(Word 1)  b07  b06  b05  b04
(Word 2)  b0B  b0A  b09  b08
(Word 3)  b0F  b0E  b0D  b0C

Figure 5a. Memory word blocks on the ARM.

The ARM ‘sees’ memory in these word blocks but can also address the individual
bytes within each word. From an operation point of view, all memory is arranged
as word-aligned blocks. As illustrated in Figure 5a above the word-aligned blocks
corresponded with Word 00, Word 01, Word 02, and Word 03. Note how Word 00
has the byte numbers b00, b01, b02 and b03 within it. Word 01 has bytes b04,
b05, b06 and b07 in it, and so on. Word blocks are aligned in this fashion and
cannot be changed. You cannot have a word-aligned block that consists of the
bytes, b02, b03, b04 and b05. (Note that ‘b’ here relates to byte and not bit, as
used in some previous examples.)

ARM saw the need 64-bit processors and started working new designs long
before announcing its new ARMv8 architecture, the first ARM architecture to



include a 64-bit instruction set. ARM also learnt from the mistakes and successes
of other chip designers who moved to 64-bits. ARM’s new 64-bit architecture is
fully compatible with its 32-bit architecture. This means that if the processor is
running on a 64-bit enabled operating system, the processor can run unmodified
ARMv7 32-bit code (or binaries).

The Raspberry Pi 2B v1.2 was the first of the series to have ARMv8
architecture and this was carried into the Raspberry Pi 3 and 4. Both operate in
32-bit mode but can be run in 64-bit mode. But this is getting ahead of ourselves
and we will return to it later in the book, and for the most part now you will
notice no difference.

Locations in memory are addressed by a unique hexadecimal number. A
memory address that corresponds to the start of a word is called a word boundary
and is said to be ‘word-aligned’. A memory address is word-aligned if it is
directly divisible by four. The following addresses are all word-aligned:

0x00009030
0x00009034
0x00009038
0x0000903C

Word-aligned addresses are especially significant to the ARM as they are
fundamental to the way the ARM chip fetches and executes machine code. For
example, the address 0x00009032 is not word-aligned. You cannot store an ARM
machine code instruction on a non-word-aligned address.

The GCC assembler provides a few tools to help ensure word boundaries are
correctly managed. At the very least trying to assemble something that is not
correctly addressed will generate an error message to that effect. For the most
part, this is transparent and, as a ‘Beginner’ it will not raise its head anytime
soon.



Registers
The ARM has several internal areas where it stores, tracks and processes
information. This speeds things up and makes operations quicker as there is no
external memory access required. These internal areas are called registers. In
User Mode (the standard operating configuration) there are 16 registers available
and each can hold a word (four-bytes) of information. You can think of these
registers as single word locations within the ARM. Figure 5b shows how this
comes together and includes an extra register – the Status Register.

As you can see from this programmer’s model, registers R0-R12 are
available for use at any time. R13-R15 have defined uses, however R13 and R14
are only used occasionally and are manipulated by just a few instructions. You as
the programmer will be controlling these operations, so can also use them if
required. Only R15 should not be used. I don’t say cannot because it can be used,
but you should be very clear what you are doing with it, and the complications it
can bring if you do. ARM instructions can access R0 to R14 directly while most
instructions can access R15.

As each register is one word wide, this means that each register can hold an
address location in a single register. In other words, a register can hold a number
which points to a location anywhere in the memory map of the Raspberry Pi. A
key function of registers is to hold such addresses.

The GCC Assembler allows us to use the labels listed above to refer to these
registers, for example, R0 and R10.

 Register   Function 
 R0   Available
 R1  Available
 R2  Available
 R3  Available
 R4  Available
 R5  Available
 R6  Available
 R7  Available
 R8  Available
 R9  Available
 R10  Available
 R11  (Frame Pointer)



 R12  Available
 R13  Stack Pointer
 R14  Link Register
 R15  Program Counter

Figure 5b. The ARM User Mode register bank.

The LDR and STR instructions are used to LoaD a Register and STore a Register
from and to memory in a variety of ways. Here are a couple of examples:

LDR R1,[R5] @ Load R1 with contents of loc in R5
STR R1,[R6] @ Store R1 contents at addr in R6

In both examples, one register is expected to have a memory address in it. The
registers are enclosed in square brackets in these examples, and this tells the
assembler that they contain addresses. This type of specification is called an
addressing mode and the ARM have several addressing modes. We’ll examine
these in later chapters.



R15 - Program Counter
The Program Counter R15 is important. If you don’t treat it with respect, your
whole program can crash. Its function is simple — to keep track of where your
program is in its execution of machine code. In fact, the PC holds the address of
next instruction to be fetched. We will look at this register in more detail later in
the book, Chapter 13 is dedicated to it.

The GCC Assembler allows you to use PC as well as R15 when referring to
the Program Counter. For example:

MOV PC, R0 @ Move R0 into R15, Program Counter5

The PC in the instruction will resolve correctly as if you had used R15.



Current Program Status Register
The CPSR— or just plain Status Register — is used to store significant
information about the current program and the results of operations it is carrying
out and has carried out. Specific bits within the register are used to denote pre-
assigned conditions and whether they have occurred or not. So how does the
information get flagged inside the one register? It does this by manipulating the
values of individual bits within the register. Figure 5c illustrates how this is
configured.

Figure 5c. The Status Register configuration.

The four most significant bits hold what are known as flags, called as such as they
are designed to flag a certain condition when it happens. These flags are:

N = Negative flag
Z = Zero flag
C = Carry flag
V = Overflow flag

When an instruction executes, if it has been requested to, the ARM updates the
Status Register. If the condition under test occurred, then a 1 is placed in the
relative flag bit: it is set. If the condition has not occurred, then the flag bit is
cleared: a 0 is placed in it.



Bits and Flags
If you followed the previous sections on binary arithmetic, then some of the
concepts here will be familiar to you. We have discussed negative numbers, and
the Negative flag is used to signify a potential negative number. The Carry flag
represents the Carry bit — we discussed this in 8-bit operations, but the addition
of 32-bit numbers works the same. The Zero flag is straightforward; it’s set if the
result is zero. Finally, the Overflow flag is new, but simply sets if the operation
caused a carry from bit 30 into the top bit at bit 31. If this occurred using signed
numbers, it could indicate a negative result, even if a negative number was not
generated. (Remember, bits start numbering at zero so, the 32nd bit is, in fact,
numbered bit 31, or b31.)

For example, if the result of an operation gave 0, the Zero flag would be set.
This is the Z bit in Figure 5c. If an addition instruction generated a carry bit, then
the Carry flag would be set to 1. If a carry were not generated, then the Carry flag
would be clear (C=0).

Assembly language has mnemonics that allow us to test these Status
Register flags and act based on their condition. Here are a couple of examples:

BEQ zeroset @ jump to zeroset if Z=1
BNE zeroclear @ jump to zeroclear if Z=0

BEQ is Branch if EQual and this instruction will cause a ‘jump’ to a named label
if the Zero flag is set. BNE is Branch if Not Equal and this instruction will cause
a jump to the named label if the Zero flag is clear.

There are instructions to test the other flags in a like manner. The BNE
instruction is often used to make sections of program repeat or loop a
predetermined number of times until a counter decrements to 0 at which point the
Zero flag will be set.

In Figure 5c, the I and F bits are called interrupt disable bits and discussed in
Chapter 26. The T bit is to do with processor states. At this point we’ll assume
that it is always set to 0 to signify ARM State (we will come back to this in
Chapter 24). The final five bits are used to signify the processor mode — we will
be largely using User Mode (but this will be touched on again in Chapter 26 as
well).

Interestingly there is no one single instruction that you can use to gain access
to the Status Register. You can only manipulate its contents at bit level by
carrying out an associated action.



Setting Flags
There are two instructions that have a direct effect on the Status Register flags,
they are CMP (CoMPare) and CMN (CoMpare Negative). Of these the first is the
more common in use and it takes the form:

CMP <Operand1> <Operand2>

CMP performs a notational subtraction, taking Operand2 away from Operand1.
The physical result of the subtraction is ignored, but it updates the Status Register
flags according to the outcome of the subtraction, which will be positive, zero or
negative (there can never be a carry). If the result of the subtraction were 0 the
Zero flag would be set.

Operand1 is always a register, but Operand2 can be a register or a specific or
immediate value. For example:

CMP R0, R1 @ Compare R0 with R1. R0 minus R1
CMP R0, #1 @ Compare R0 with 1. R0 minus 1

The CMP instruction is often used in combination with the BEQ instruction, to
create a branch or jump to a new part of the program:

CMP R0, R1
BEQ zeroflagset

Here control will be transferred to the part of the program marked by the label
‘zeroflagset’ if the comparison between R0 and R1 is zero. If the branch does not
take place then it would show that the result of the CMP was not zero – there
would be no need to perform a BNE function. The code following could handle
that situation.

CMP and CMN are the only instructions that directly affect the condition of
the Status Register. By default, the rest of the ARM instruction set does not
update the Status Register. For example, if R0 and R1 both contained 1 and we
performed:

SUB R0, R0, R1

The result would be 0. But none of the flags in the Status Register would be
altered in any way. They would retain the status they had before the instruction
was performed.



S Suffix
However, the ARM does provide a method of allowing an operation such as SUB
to update the Status Register. This is done by using the Set suffix. All we do is
append an ‘S’ to the end of the mnemonic we want to use to modify the flags:

SUBS R0, R0, R1

This subtracts the contents of R1 from R0, leaving the result in R0 and at the
same time updating the flags in the Status Register.

This S suffix effectively allows you as the programmer to use one less set of
instructions. Without it we might use:

SUB R0, R0, R1
CMP R0, #0
BEQ iszero

But with it we can remove the CMP line thus:

SUBS R0, R0, R1
BEQ iszero

The GCC Assembler recognises the use of the S suffix. It is also tolerant of
spaces between the instruction and the S, so these two examples will assemble
perfectly:

SUBS R0, R0, R1
SUB S R0, R0, R1

The Set suffix is one of many that exist, and we’ll have a look at more of these in
Chapter 9. This example shows one of the many ways the reduced instruction set
was developed.



R14: The Link Register
The BEQ and BNE instructions illustrated above are examples of conditional
branch instructions. These are absolute in that they offer a definitive change of
direction — branch if equal or branch if negative. There is a second style of
branch instructions known as Branch and Branch with Link (BL). The BL
implements a subroutine operation; effectively it jumps to somewhere else in the
program and allows you to come back to the point right after the BL instruction in
the program.

When the BL instruction has executed, this return address (the address of the
next instruction) is loaded into R14, the Link Register (LR). When the subroutine
has completed, the Link Register is copied into the Program Counter, R15, and
the program continues operating where it left off before the call was made.

One way of copying the Link Register into the Program Counter would be
thus:

MOV R15, R14

The following is also accepted by the assembler:

MOV PC, LR

If you are familiar with any form of BASIC, you can think of BEQ and BNE as
being the equivalent of GOTO commands and BL as being a GOSUB command.



R13: The Stack Pointer
The Stack Pointer contains an address that points to an area of memory which we
can use to save information. This area of memory is called a ‘stack’ and it has
some special properties that we will look at in Chapter 17. It is worth noting at
this point that there is only one ARM implemented stack, but you can create as
many stacks as you like, which must also be manged by you.



6. Data Processing

In this chapter we’ll look at some of the data processing instructions. This is the
largest group of instructions, 18 in all, which manipulate information. They can
be divided further into sub-groups as follows:

ADD, ADC, SUB, SBC, RSB, RSC
MOV, MVN, CMP, CMN
AND, ORR, EOR
BIC, TST, TEQ
MUL, MLA

The AND, ORR, EOR, BIC, TST and TEQ instructions are examined in Chapter
8.

Each of the remaining instructions expect information to be supplied to them
in the following configuration:

<Instruction> <Dest>, <Operand1>, <Operand2>

Let’s look at each field in more detail:

<Instruction>
This is the assembly language mnemonic to be assembled. It can be used in its
raw form as listed above, or with the additions of suffixes, such as S.

<Dest>
This is the destination where the result is to be stored, and the destination is

always an ARM Register, in the range R0-R15.

<Operand1>
This is the first item of information to be manipulated and, again, will

always be an ARM Register in the range R0-R15. Operand1 may be the same as
the Destination register.

<Operand2>
Operand2 has more flexibility than Operand1 in that it can be specified in

three different ways. As with Operand1, it may be an ARM Register in the range
R0-R15. It may also be a specified value or constant — a number for example.



For a constant, the exact number to be used is quoted in the assembler listing. The
hash, ‘#'’, is used to signify an immediate constant. Operand2 may also be what is
called a shifted operand and we will look at this instance in Chapter 11 when we
have looked at the arithmetic shifting of numbers.

Here are some examples of data processing instructions in use:

ADD R0, R1, R2 @ R0=R1+R2
ADDS R2, R3, #1 @ R2=R3+1 and set flags
MOV R7, #128 @ R7=128

Some instructions do not require both operands. For instance, the MOV
instruction does not use Operand1; it only requires Operand2. The reason for
Operand2 rather than Operand1 is that it can use a Register definition or a
constant value (or shifted, as we shall see).



Addition Instructions
In this section we’ll look at the ADD and SUB commands in a little more detail,
and we’ll also start looking at what is happening in the registers themselves,
including the Status Register and its flags.

There are two instructions that handle addition. They are ADD and ADC.
The latter is ADd with Carry. They both take a similar form:

ADD (<suffix>) <dest>, <Operand1>, <Operand2>
ADC (<suffix>) <dest>, <Operand1>, <Operand2>

Here’s some code that uses the ADDS instruction. This program clears R0, places
1 in R1 and sets all 32-bits of R2. This is the largest number we can store in a
four-byte register. What will happen if we were to run this program?

MOV R0, #0
MOV R1, #1
MOV R2, #0xFFFFFFFF
ADDS R0, R1, R2

On completion the registers will show:

R1: 0x00000001
R2: 0xFFFFFFFF
R0: 0x00000000

Nothing seems to have happened! The values have all been loaded, but no
addition seems to have taken place as R0 still has 0 in it. In fact, it has, but by
adding the 1, we created a carry bit (remember the binary additions we did in the
earlier chapters?). So, if we were to look at the Status Register, we would see:

NZCV
0110

If we had run this program using only ADD and not ADDS then the Carry flag
would not have been updated and would merely reflect the condition they were in
when they were last updated via an appropriate instruction. Of course, the Carry
flag may have been set by a previous instruction, so we might have received a
correct answer, but only by good fortune. The good fortune method is not an
efficient way to program in any language. It pays to double check.



Program 6a shows how simply two numbers can be added together in
machine code. Enter this in Vim or Geany using the filename:

prog6a.s

Program 6a. Simple 32-bit addition.

/* Perform R0=R1+R2 */
.global _start

_start:
MOV R1, #50 @ Get 50 into R
MOV R2, #60 @ Get 60 into R2
ADDS R0, R1, R2 @ Add the two, result in R0

MOV R7, #1 @ exit through syscall
SWI 0

You can assemble, link, and run this using the following:

as -o prog6a.o prog6a.s
ld -o prog6a prog6a.o
./prog6a

Now print the result with:

echo $?

The result will be 110.
(Remember, to be able to print a result from the machine code using bash,

we need to ensure that the result is held in R0 and that the operating system exit is
used.)

Whenever we add two values, unless we are 100% sure that there will have
been no carry, or the significance of that fact is not important to us, a check for
the carry should always be made.

Program 6b below adds two 64-bit numbers. This relates to two-words, so
two registers are needed to hold the number, with one holding the low four-bytes
and the other the high four-bytes. Because we have a potential carry situation
from low-word to high-word when we add the two it is imperative, we take the
Carry flag into consideration. For this we need to use the ADC instruction.



The code assumes that the first number is in R2 and R3 and the second is in
R4 and R5. The result is placed in R0 and R1. By convention, the lower register
always holds the lower half of the number:

/* Add two 64-bit numbers together */
.global _start

_start:
MOV R2, #0xFFFFFFFF @ low half number 1
MOV R3, #0x1 @ hi half number 1
MOV R4, #0xFFFFFFFF @ low half number 2
MOV R5, #0xFF @ hi half number 2
ADDS R0, R2, R4 @ add low and set flags
ADCS R1, R3, R5 @ add hi with carry

MOV R7, #1 @ exit through syscall SWI 0

You can assemble, link, and run this using the following:

as -o prog6b.o prog6b.s
ld -o prog6b prog6b.o
./prog6b

Now print the result with:

echo $?

The result will be 254. Why?
On completion, registers R0 and R1 will contain 0xFFFFFFFE and 0x101,

respectively. The result was therefore:

0x101FFFFFFFE

In the first ADDS instruction, the addition caused the Carry flag to be set, and
this was picked up in the ADCS operation. If we substitute the ADCS with
another ADDS the result is:

0x100FFFFFFFE

In decimal terms the result is starker, out by 4,294,967,296!
You may be wondering why the ADCS instruction was not used in both parts

of the addition. Generally, if you set out doing any addition you would want to



ensure the Carry flag is clear before starting. If not and you used ADCS and it
was set from a previous operation you would get an erroneous result. Use of
ADDS ensures that the carry is ignored but gets updated at the end of the
addition.

In answer to the question earlier about why the echo command returned 254,
this is 0xFE in hex, which is the least significant byte of the value stored in R0.
The echo command does not return what is stored in R0 but what is in the least
significant byte of R0.

How would you modify this segment to add two three-word values? The
temptation might be to repeat the ADDS and ADCS sequence. This would be
wrong. You should continue using the ADCS instruction until all the words have
been added. You only use ADDS on the first word to define the Carry condition
in the first instance. From then on it is ADCS.

If you are writing a program that does not produce the correct result and the
values it is returning are wildly out, it is always worth checking that you have
used the correct sequence of addition instructions. Chances are that is where the
‘bug’ sits.

If the three-word numbers were held in R4, R5, R6 and R7, R8, R9 we could
sum the result in R1, R2, R3 as follows:

ADDS R1, R4, R7 @ Add low-words & check for carry
ADCS R2, R5, R8 @ Add middle words with carry
ADCS R3, R6, R9 @ Add high-words with carry

It should go without saying that you need to check to see if the Carry flag is set as
it is the most significant bit in your result.



Subtraction
While there are two instructions that deal with addition, there are four for
subtraction.

SUB (<suffix>) <dest>, <Operand1>, <Operand2>
SBC (<suffix>) <dest>, <Operand1>, <Operand2>
RSB (<suffix>) <dest>, <Operand1>, <Operand2>
RSC (<suffix>) <dest>, <Operand1>, <Operand2>

You can see that there are complementary instructions to addition: a
straightforward subtraction that ignores the flags and then one that considers the
Carry flag (SBC). The second set of subtraction instructions works in an identical
fashion but uses the operands in the reverse order. For example:

SUB R0, R1, R2

subtracts the contents of R2 from R1 and puts the result in R0. However,

RSB R0, R1, R2

subtracts the contents of R1 from R2 and puts the result in R0. As with the
previous examples the S suffix can be used with the instructions:

SUBS R0, R1, R2

If R0=0, R1=0xFF and R2=0xFE, the SUBS instruction is performing:

0xFF-0xFE

which is:

255-254

The result should be 1, and this is indeed so. However, on investigation the Status
Register would show that the Carry flag has been set. Why?

If we change SUBS to RSB so that:

RSBS R0, R1, R2



Then by loading the same values into the registers the result in R0 is
0xFFFFFFFF and the Carry flag is clear! In subtraction, the Carry flag is used the
‘wrong’ way round so that if a borrow is required the flag is unset or clear. It acts
like a NOT Carry flag! This is useful when dealing with numbers over 32-bits and
ensures the correct result. The result in this last instance also sets the Negative
flag as 0xFFFFFFFF represents a negative value in signed numbers. The above
example illustrates this perfectly and is because of the use of twos complement
numbers.

When a section of code is not giving you the result you expect it always
makes good sense to check the condition of the Status Register flags. They may
not behave as you expect.

The two rules here to remember then are:
 

If a borrow is generated, then the Carry flag is clear, C=0
If a borrow is not generated, then the Carry flag is set, C=1

When we perform a multi-word subtraction, borrowing from one word means we
need to subtract an extra one from the next word. However, as we have seen, a
borrow results in the Carry flag being zero, not one as we would have liked. To
compensate for this, the ARM inverts the Carry flag before using it in the SBC
operation. This system can be extended to subtract operands which require any
number of words to represent them — simply repeat the SBC instruction as many
times as required.

You may be wondering why the ARM instruction set has reverse subtract
instructions. Again, this ties in with the overall philosophy of speed. By being
able to specify which operand is subtracted from which, we effectively remove
the necessity of having to go through a data swapping process to get the operands
in the right order.



Multiplication
The ARM has a couple of instructions that will perform 32-bit multiplication. The
first of these, MUL provides a direct multiplication and takes the form:

MUL (<suffix>) <dest>, <Operand1>, <Operand2> 

MUL is a bit different to instructions such as ADD and SUB in that it has certain
restrictions on how its operands can be specified. The rules are:

Dest: Must be a register and cannot be the same as Operand1. R15 may not
be used as the destination of a result.

Operand1: Must be a register and cannot be the destination register.
Operand2: Must be a register and cannot be an immediate constant or

shifted operation.
In summary, you can only use registers with MUL, cannot use R15 as the

destination, and the destination register cannot be used as an operand. Here’s an
example:

MUL S R0,R4,R5 ; R0=R4*R5 and set status

Program 6c demonstrates MUL in action. Two numbers are placed in R1 and
R2 and the multiplied result into R0. 

Program 6c. 32-bit multiplication

/* multiply two numbers R0=R1*R2 */
.global _start

_start:
MOV R1, #20 @ R1=20
MOV R2, #5 @ R2=5
MUL R0, R1, R2 @ R0=R1*R2
MOV R7, #1 @ exit through syscall
SWI 0

You can assemble, link, and run this using the following:

as -o prog6c.o prog6c.s
ld -o prog6c prog6c.o
./prog6c



Now print the result with:

echo $?

MLA is MuLtiply with Accumulate. It differs from MUL in that it allows you to
add the results of a multiplication to a total. In other words, you can accumulate
values. The format of the command is:

MLA (<suffix>) <dest>, <Op1>, <Op2>, <sum>

The rules stipulated at the start of this section still apply here. There is an extra
operand, <sum>, which must be specified as a register. For example:

MLA R0, R1, R2, R3 @R0=(R1 * R2) + R3

The register specified by <sum> may be the same as the <dest> register, in which
case the result of the multiplication will be accumulated in the destination
register, thus:

MLA R0, R1, R2, R0 @ R0=(R1 * R2) + R0

is possible. Let’s adapt Program 6c to use it, creating Program 6d, as listed below:

Program 6d. Using MLA - Multiply with Accumulate.

/* Multiply two numbers with accumulate R0=(R1*R2)+R3 */
.global _start

_start:
MOV R1, #20 @ R1=20
MOV R2, #5 @ R2=5
MOV R3, #10 @ R3=10
MLA R0, R1, R2, R3 @ R0=(R1*R2)+R3

MOV R7, #1 @ exit through syscall
SWI 0 

You can assemble, link, and run this using the following:

as -o prog6d.o prog6d.s
ld -o prog6d prog6d.o
./prog6d



Now print the result with:

echo $?

The result returned will always be 10 more than the product of the two values in
R1 and R2. This is because the value 10 was seeded into R3.

Note that the <dest> register cannot be used as <op1> nor <op2>. So:

MLA R0, R0, R2, R3 @ R0=(R0 * R2) + R3

Would fail to assemble and generate an error message.



Divide Arrives
The ARM processor used on the Raspberry Pi 1 and Raspberry Pi Zero did not
provide a division instruction, so dividing two numbers either required some
ingenuity or performed using a count-subtraction methodology.

With the Raspberry Pi 2, and subsequent releases, the SDIV and UDIV
instructions were available for use, signed and unsigned division, respectively.
The instructions, which have no effect on the status register flags, operate directly
on registers, and take the form:

SDIV <dest>, <numerator>, <denominator>
UDIV <dest>, <numerator>, <denominator>

Here <dest> is the destination register which contains the quotient on completion.
The remainder must be calculated separately. If <dest> is omitted, then the result
is in <numerator>. Program 6e below shows an example of use.

Program 6e. Signed Division with SDIV.

/* Signed Division Example RPi 2 and Greater */
.global _start

_start:
MOV R3, #20 @ Numerator
MOV R4, #5 @ Denominator
SDIV R0, R3, R4 @ R0=R3/R4

@ Do not use SP or PC, 
@ SR flags not altered
@ div by 0 returns 0

MOV R7, #1 @ exit through syscall
SWI 0

The result can be printed out by typing:

echo $?

Which will return ‘4’’ based on the listing.
Chapter 12 shows how division can be performed without these instructions.

It also shows how the remainder can be calculated, as this is invariably required



also.
The Raspberry Pi 2 included a new SoC and this utilised the BCM2836 and

associated FPU with saw the division infrastructure implemented. This has
continued since with subsequent releases of the SoC (System on Chip).



Move Instructions
There are two data move related instructions. MOV and MVN are used to load
data into a register from another register or to load register with a specific value.
The instructions do not have an Operand1 and take the form:

MOV (<suffix>) <dest>, <Operand2>
MVN (<suffix>) <dest>, <Operand2>

Here are a couple of examples:

MOV R0, R1 @ Copy contents of R1 to R0
MOV R5, #0xFF @ Place 255 in R5

If you look at the comment in the first example above, although the instruction is
MOVe it is important to realise that the contents of the source register are
unchanged. A copy is being made. Also, unless the S Flag is used the Status
Register is not changed either. This instruction:

MOVS R0, #0

would place zero into R0 and set the Zero flag at the same time.
MVN is MoVe Negative (or MoVe Not). The value being moved is negated

in the process. This means that 1s become 0s and 0s become 1s or the one’s
complement form of the number is taken.:

MVN R0, #9 @ Move -9 into R0

9:   0x00000009 00000000 00000000 00000000 00001001
MNV  0xFFFFFFF6 11111111 11111111 11111111 11110110

Here are some examples of the instruction:

MVN R0, #0 @ set R0 to -1
MVN R1, #1 @ set R1 to -2

We will learn in Chapter 11 that there are restrictions on the value of contents
being loaded into registers as immediate values. Put simply, there are some
numbers you just can’t use directly, and it is not because they are too big, for
instance. This can also be an issue when dealing with addresses in memory. We’ll
examine why, and how to circumvent the problem in due course.



Compare Instructions
We encountered these instructions when we looked at the Status Register and
flags in the previous chapter. They are two comparison instructions, and they
have the format:

CMP <Operand1>, <Operand2> @ Set flags of <Op1>-<Op2>
CMN <Operand1>, <Operand2> @ Set flags of <Op1>+<Op2>

These instructions do not move information or change the contents of any of the
registers. What they do is update the Status Register flags. Since the purpose of
CMP and CMN is to directly affect the Status Register flags there is no reason to
use the S suffix. CMP works by subtracting Operand2 from Operand1 and
discarding the result.

CMP R3, #0

The example above would only set the Zero flag if R3 itself contained 0,
otherwise the Zero flag would be clear.

CMP R3, #128

Here, the Zero flag would be set if R3 contained 128. If R3 held anything less
than 128 the Negative flag would be set. What would cause the Overflow flag to
be set? If you are ever in any doubt what the result would be, then simply check it
out longhand by doing the binary arithmetic!

CMN is the negative version of compare. This is good if you want to control
a loop decrements past zero. In such case you could use:

CMN R0, #1 @ Compare R0 with -1

The idea is the same behind the reason of the MVN instruction. It allows
comparisons to be made with small negative immediate constants which could
not be represented otherwise.

An important point to be wary of is that, in MVN, the logical NOT of
Operand2 is taken. In CMN it is the negative of the operand that is used. Thus, to
compare R0 with minus 3 we would write:

CMN R0, #3



The ARM will automatically form the negative of Operand2 and then make the
comparison.

As with CMP, the purpose of CMN is to affect the Status Register flags and
the S suffix is not applicable.



Ordering Numbers
The order that information is stored in memory is of some considerable
significance. Consider the hexadecimal number below:

0xFF00AA99

If this is stored in four consecutive bytes of memory how are they ordered? Thus:

0xFF, 0x00, 0xAA, 0x99

or:

0x99, 0xAA, 0x00, 0xFF

These two methods are called big-endian and little-endian, respectively. As you
can see the bytes are stored in the reverse order to each other depending on the
method used.

ARM chips are bi-endian, but can use either method, which is defined by a
specific bit in the CPSR which defines which ‘endianness’ to use. By default,
Raspberry Pi OS uses the little-endian methodology. For the most part the order
of the bytes will be transparent in use as the assembler takes care of this for us.



7. ROS Ins and Outs

When we use computers and operating systems such as Raspberry Pi OS, we take
an awful lot for granted. We type commands at the keyboard, these get ‘actioned’
and more often than not, provide output in the form of information or results by
way of what is displayed on the screen. There’s a lot going on. Consider a couple
of what would seem relatively simple tasks, typing a command at the keyboard
and then getting a response on the screen. These are things we do every time we
interact with the Raspberry Pi OS command line. The question is then, how do we
get input from the keyboard and write information to the screen in our machine
code programs?

In the strictest sense you do it yourself. But this involves a good deal of
knowledge about the various hardware components of the Raspberry Pi, because
to write a message to the screen for instance, we have to know exactly where the
hardware that drives the screen is located within the computer’s memory and, in
turn how to write the information to it. Equally, to read input from the keyboard
we need to understand how the keyboard is mapped and how to read that matrix
to identify which keys are being pressed.

Reading and writing to the hardware to do this is often termed bare metal
programming, because you are ‘talking’ to the computer hardware directly.
Whilst this is potentially exciting, it is rather an advanced topic and not
necessarily the domain of a beginner’s book such as this. Equally though unless
you are specifically bare metal programming as an exercise there is absolutely no
need for you to do it. Instead, we can access the operating systems own routines
to do this.



SWI and SVC Commands
The SWI instruction allows you as the programmer to gain access to predefined
routines or libraries of operating systems functions. SWI stands for SoftWare
Interrupt because when it is encountered it causes the flow of your program to be
paused and handed over to the appropriate routine. Once the SWI instruction has
been completed, control is handed back to the calling program which can
continue on its way. The SWI command is also often referred to as SVC or
SuperVisor Call as this is a mode of operation that is invoked in the ARM chip
when called.

You will probably recall that we have used a SWI command in all our
assembler programs so far. We used it to exit the code back to the command line
prompt. This use took the form:

MOV R7, #1
SWI 0

All SWI calls are executed with SWI 0 (or SVC 0 can be used instead). The
actual function to be performed is determined by the number held in register R7.
This is called the Operating System Call or ‘Syscall’ for short, number. In
addition, other registers may also have to be seeded with information, so a call to
SWI 0 often requires some setting up before being executed. For example, to
write a string of characters to the screen three other items of information must be
placed in specific registers.

To use these SWI calls effectively then, we need to know what they do, what
information must be passed and into what registers. Information may be passed
back by the SWI call and in such cases, we need to know what information and in
what registers.

Appendix B contains a list of the Syscalls available in the Raspberry Pi OS.
A detailed description of all the SWI calls is not provided, but the more common
and useful ones are described at various points in this book. No official list of
Syscalls exist but there are various sources on independent websites.

Let’s look at what are arguably the two most important Syscalls at this stage
in our learning —printing to the screen and reading from the keyboard. These are
important as we will use them a lot in the program examples in the rest of this
book. In using them we will need to look at a few more features of the GCC
assembler and use a few assembly language techniques that we won’t learn about
in detail until later.



Writing to the Screen
To write a sequence or string of ASCII characters to the screen we need to use the
‘write’ function. This is Syscall 4. The parameters required by Syscall 4 are as
follows:

R0= the output stream, 1 for the monitor
R1= the address of the string of characters
R2= the number of characters to be written
R7= the number of the Syscall, so R7=4

(Incidentally, ASCII stands for American Standard Code for Information
Interchange, and an ASCII code is a simple number used to represent the
character. Appendix A contains the ASCII character table, and this is universal in
acceptance as a standard.)

The GCC assembler provides us with a facility to store an ASCII string of
characters within the body of our machine code file. Program 7a illustrates the
setup for this. The key here is to note the GCC assembler directive ‘.ascii’ on the
last line. This directive informs the assembler that an ASCII string of characters
follows the string that is enclosed by quotes. You will also notice ‘\n’ at the end
of the character string, but within the quotes. The backslash character signifies
that the next character is a ‘control-character’ and as such has an action. Here ‘\n’
means generate a new line. A label is used to mark the start of the location of the
string — in this case I have been original and called it ‘string’.

Program 7a. Syscall 4 to write a string to the screen.

/* How to use Syscall 4 to write a string */
.global _start

_start:
MOV R7, #4 @ Syscall number
MOV R0, #1 @ Stdout is monitor
MOV R2, #19 @ string is 19 chars long
LDR R1,=string @ string located at string:
SWI 0 

_exit: @ exit syscall
MOV R7, #1
SWI 0



.data
string:
.ascii "Hello World String\n"

End Program 7a.
Create, assemble, and link the program and try it out for yourself. The instruction:

LDR R1,=string

Can be read as: LoaD Register R1 with the address of the label string.

When Syscall 4 is made it identifies the output stream, the 1 passed in R0 defines
the standard output device, the monitor. It then extracts the length of the string
from R2 and prints that number of characters out starting at the address held in
R1. The number of characters held in R2 includes spaces and any punctuation.
The final ‘\n’ character is regarded as one character. Try altering the value loaded
into R2 and see if you can predict the result. For example, try:

MOV R2, #11

You will also note that there is an extra directive in the program:

.data

This informs the assembler that what follows should be treated as a subsection
containing data, as opposed to assembly language code.

The data subsection could have been placed at the start of the source file had
we desired. We would then have needed to signify the start of the assembly
language subsection by using a directive thus:

.text

How you structure your files is entirely a matter of which way you wish to
work. I tend to prefer placing data and data areas at the end of programs to avoid
any alignment problems. You may recall from Chapter 5 that ARM machine code
must be assembled on four-byte word boundaries, in other words start at an
address that is directly divisible by four. This may not be the case if a string of 10
characters was used, for example. This can be corrected by using an align
directive, something discussed later.



Reading from the Keyboard
To read a sequence (or string) of ASCII letters from the keyboard we need to use
the ‘read’ function. This is Syscall 3. The parameters required by Syscall 3 are
similar to Syscall 4 and are as follows:

R0= input stream, this is 0 for the 
R1= buffer address for string of characters read to be placed
R2= the number of characters to be read
R7= the number of the Syscall, so R7=3

You can use Program 7a as a basis for the new program. You can make a copy of
it at the command line by using the cp command as follows:

cp prog7a.s prog7b.s

Now edit the source file to contain the new _read routine. The entire program is
given below.
Program 7b. Syscall 3 to read from the keyboard.

/* How to use Syscall 3 to read from keyboard */
.global _start

_start:
_read:     @ read syscall

MOV R7, #3 @ Syscall number
MOV R0, #0 @ Stdin is keyboard
MOV R2, #5 @ read first 5 characters 
LDR R1,=string @ string placed at string:
SWI 0

_write:     @ write syscall
MOV R7, #4 @ Syscall number
MOV R0, #1 @ Stdout is monitor
MOV R2, #19 @ string is 19 chars long
LDR R1,=string @ string located at string:
SWI 0 

_exit:     @ exit syscall



MOV R7, #1
SWI 0

.data
string:
.ascii "Hello World String\n"

End Program 7b.

Here we still need to define the ASCII string. I have purposely left the original
text in place so that you can see what results from using the function. The label
string: points to what is effectively a buffer or place for the input read from the
keyboard to be placed. We could have just defined an empty string, for example:

.ascii “       “

(There are other ways to reserve empty spaces in memory in programs and these
will be discussed later.)

R2 is now used to hold the number of characters we want from the read
process. It is important to remember that this is not the number of characters that
can be typed. When _read: is executed it accepts all input at the keyboard until
the Return key is pressed. Only at that stage does it extract the first x characters
as defined by the value in R2. Thus typing:

123456789

At the keyboard would see 12345 (the first five characters) placed into the
string buffer. The rest would then be dealt with as though a Bash command had
been entered and therefore generates an error message. (Bash being the name
given to the Raspberry Pi OS command line shell you have been working within.)
The ‘_write:’ routine would print out the newly created string which in this
instance would be:

12345 World String

12345 having overwritten ‘Hello’.

12
lo World String

Run the program again and just type in:12
Now the string printed is:



Note here that a newline has been generated. This is because the <Return>
was inserted into the string buffer as well. We will come back to Syscalls in
Chapter 18.



eax and Others
Much of the Syscall documentation you come across with have been written with
non-ARM machines in mind and specifically i386 processor systems. As such
you will find yourself dealing with an alien set of register references. Figure 7a
lists these registers and their ARM equivalents which should assist you in
breaking down what needs to go where.

 i386   ARM   Function 
 eax   R7  Syscall Number
 ebx  R0  Argument 1
 ecx  R1  Argument 2
 edx  R2  Argument 3
 esi  R3  Argument 4
 edi  R4  Argument 5
 eax on return   R0  Value or error number 

Figure 7a. 386 v ARM registers for Syscalls.

So far as we have developed new source files and we have assembled and linked
the files by typing the commands at the command line. This is repetitive but made
easier by the Terminal history feature. By using the up and down arrow keys
while in Terminal you can scroll through previously entered commands, which in
turn can be edited.

GNU also provide a very clever piece of software called ‘Make’. This is a
tool that allows programmers to control the generation of executable files from a
single controlling file. When you see a piece of software installing on your
computer then chances are that the whole process is bring controlled by a Make
file. Make is a very sophisticated tool and you can find out more about it in detail
from the GNU website.

Program 7c is a source file (although you save it without the ‘.s’ suffix) that
will automate the whole assemble and link process for you. It is extremely
flexible and can deal with most possibilities. (Note the ‘#’ characters are
equivalent of the ‘@’ in assembler files. They allow comments to follow.)

Program 7c. Automate assembly and linking with Make.

PROGRAMS = prog7a prog7b



# If we've supplied a goal on the command line
# then set it as the list of programs we already know about.

ifneq ($(MAKECMDGOALS),)
ifneq ($(MAKECMDGOALS),clean)
  PROGRAMS = $(MAKECMDGOALS)
endif

endif

# The default rule if none specified on the command line

all: $(PROGRAMS)
# Make knows how to compile .s files, so all
# we need to do is link them.

$(PROGRAMS): % : %.o ld -o $@ $<
clean:

rm -f *.o $(PROGRAMS)

End Program 7c.

Create the above file and call it ‘makefile’ - there is no need to append an ‘.s’ to
the filename, just plain ‘makefile’. Ensure your file is saved in the same directory
as your source file.
Also, note that the two lines: 

ld -o $@ $<
rm -f *.o $(PROGRAMS)

must be indented by a single tab character for Make to work. Run the makefile
script by typing (at the command prompt):

make

The variable PROGRAMS (first line in makefile) is being used to hold the
names of the source files to be assembled and linked. You can enter one or as
many names as you like here, with each being separated by a space. And
effectively that is all you need to do. The rest of the program will assemble each
of the files, create the object files and then link them.



In the listing above this would mean the source files called prog7a and
prog7b. Note the ‘.s’ suffix is implied, and you do not need to include it.

PROGRAMS = prog7a prog7b

This also implies the makefile exists in the same directory as your source code
files. If the source files have previously been assembled and linked, they will be
overwritten provided the target files are older than their associated source files. If
the files do not exist, then make will complain with an error message. You can
‘force’ the re-make by using:

make -B

If you want to assemble and link a specific file or files, you can enter the file
name after the commands thus:

make prog7a

This would assemble and link the source file called ‘prog6a’ provided it existed.
This would be in preference to any filenames listed on that first makefile line.

At the command line, typing:

make clean

Will delete the ‘.o’ files from the directory based on initial definition for
PROGRAMS.

It makes good sense to include a makefile in each and any directory where
you create and save your source files that need to be assembled and linked.

The ‘make’ utility is very versatile is and can be utilised in several ways. If
you wish to study ‘make’ in more detail the GNU website has plenty of manuals
and examples at:

www.gnu.org/software/make/ 

Some further ‘makefile’ examples are provided at further points in the book, and
the source files that can be downloaded as previously mentioned include relevant
makefile examples in the respective directory, where appropriate.

If you downloaded the program files from my website, you would find that a
makefile (or similar) is included for each of the programs if appropriate.



8. Logical Operations

In computer terms, logic can be defined as the non-arithmetic operations
performed that involve yes/no decisions. The ARM has three different logical
operators: AND, OR and EOR. In each case, the logical operation is performed
between the corresponding bits of two separate numbers. As such there can only
ever be two possibilities: yes or no. In binary these are represented as 1 and 0.
These instructions are useful when it comes to identifying or forcing the state of
individual bits in sets of data.

Logical AND
The four rules for AND are:

0 AND 0 = 0 [Nought and nought is nought]
1 AND 0 = 0 [One and nought is nought]
0 AND 1 = 0 [Nought and one is nought]
1 AND 1 = 1 [One and one are one]br/>

The AND operation will only generate a 1 if both corresponding bits being tested
are 1. If a 0 exists in either of the corresponding bits being ANDed, the resulting
bit will always be 0. Example:

1010
0011
0010 AND

In the result only bit 1 is set; the other bits are all clear because in each case one
of the corresponding bits being tested contains a 0. It is important to remember in
these logical operations that there is no carry bit. The tests are done on the
individual bits, and we are not adding or subtracting numbers here.

The main use of the AND operation is to ‘mask’ bits or ‘preserve’ bits. For
example, to preserve the low nibble (bits 0 to 3) of a byte and completely clear
the high nibble (bits 4 to 7) so that the byte is set to all zeros we use the AND
operator, masking the original with the value 00001111. If the byte we wished to
preserve was the low nibble of say, 10101100, we would logically AND it thus:

10101100 
00001111 



00001100 AND 

Here, the top four bits are cleared, and the lower four bits have had their
condition preserved.

Logical OR
The four rules for OR are:

0 OR 0 = 0 [Nought or nought is nought]
1 OR 0 = 1 [One or nought is one]
0 OR 1 = 1 [Nought or one is one]
1 OR 1 = 1 [One or one are one]

Here the OR operation will result in a 1 if either or both the bits contain a 1. A 0
will only occur if neither of the bits contains a 1. Example:

1010
0011
1011 OR 

Here, only bit 2 of the result is clear, the other bits are all set as each pair of tested
bits contains at least one 1.

One common use of the OR operation is to ensure that a certain bit (or bits)
is set — this is sometimes called ‘forcing bits’. For example, if you wish to force
bit 0 and bit 7 you would need to OR the byte with 10000001.

00110110
10000001
10110111 OR 

The initial bits are preserved, but bit 0 and bit 7 are ‘forced’ to 1. These two bits
were originally clear. The other bits remain unaffected.

Logical EOR
The Exclusive OR operation has the four rules:

0 EOR 0 = 0 [Nought exclusive or nought is nought]
1 EOR 0 = 1 [One exclusive or is one]
0 EOR 1 = 1 [Nought exclusive or one is one]
1 EOR 1 = 0 [One exclusive or one is nought]



This operation sets the bit if it is Exclusive to the OR operation. If both bits being
tested are identical, 0 and 0 or 1 and 1 then the result is 0. A 1 will only result if
both bits being tested are not alike.

0101
1110
1011 EOR 

This instruction is often used to complement, or invert, a number. This is done by
performing an exclusive or with 11111111.

00110110
11111111
11001001 EOR 

Compare the result with the first byte — they are completely opposite: 1s where
0s were and 0s where 1s were.

The MVN instruction introduced in the last chapter effectively performs an
EOR on Operand2 to obtain its result.



Logical Instructions
The process remains the same no matter how wide the data is. The examples
above are one byte wide. The operation is the same in four-bytes (or as many
bytes as you need). The operation takes place on the directly associated bits, and
no Status Register flags are involved or considered, and there is no Carry
involved at any point.

AND, ORR and EOR are the instructions used to perform the three main
logical operations. The form is the same as previous commands:

AND (<suffix>) <dest>, <Operand1>, <Operand2>
ORR (<suffix>) <dest>, <Operand1>, <Operand2> 
EOR (<suffix>) <dest>, <Operand1>, <Operand2> 

In these cases, Operand1 is a register, while Operand2 can be a register or
immediate value. The operations themselves do not set the Status Register flags
but can be forced to do so with the suffix.

Here are a few examples of these instructions in use:

AND R0, R0, #1 @ preserve state of b0 in R0
ORR R1, R1, #2 @ ensure bit 1 in R1 is set
EOR R2, R2, #255 @ invert bits in low byte R2 

Here’s a short segment of code to look at:

MOV R0, #129
AND R0, R0, #1
ORR R0, R0, #2 
EOR R0, R0, #255 

The result is 0xFC and here’s how we arrived at it (dealing with just the low byte
of the word):

 Load 129   10000001 
 AND with 1   00000001 
 Result   00000001 
 OR with 2   00000010 
 Result   00000011 
 EOR with 255   11111111



 Result   11111100 

Here are some practical examples of the ORR and EOR commands in use, with a
typical application of each of them.



ORR to Convert Character Case
Program 8a illustrates how the ORR instruction converts a character from upper
case to lower case. For example, it will take ‘A' and convert it to ‘a’. The ASCII
value of the letter ‘A’ is 0x41 (65) and the ASCII character for ‘a’ is 0x61 (97).
By comparing the hex numbers, we can see that the difference between ‘A’ and
‘a’ is 0x20.

 ASCII   Value   Binary 
 A   0x41   0100 0001 
 a   0x61   0110 0001 
 Difference   0x20   0010 0000 

Figure 8a.  Binary difference between ASCII ‘A’ and ‘a’.

As both these characters mark the start of their section of the alphabet, it follows
that the difference between an uppercase and lowercase value would always be
the same. Figure 8a shows how this pans out in 8 bits of binary.

I hope you can see that we can achieve this difference by using the ORR
instruction with the binary value 0010 0000 or 0x20 (32).

Program 8a.   Converting character case.

/* Using ORR to toggle a character case */
.global _start

_start:
_read: @ read syscall
MOV R7, #3 @ Syscall number
MOV R0, #0 @ Stdin is keyboard
MOV R2, #1 @ read one character only 
LDR R1,=string @ string at string:
SWI 0

_togglecase:
LDR R1, =string @ address of char
LDR R0, [R1] @ load it into R0
ORR R0, R0, #0x20 @ change case



STR R0, [R1] @ write char back

_write: @ write syscall
MOV R7, #4 @ Syscall number
MOV R0, #1 @ Stdout is monitor
MOV R2, #1 @ string is 1 char long
LDR R1,=string @ string at start:
SWI 0 

_exit: @ exit syscall
MOV R7, #1
SWI 0

.data
string: .ascii " "

End Program 8a.

Program 8a above does this in the section called ‘togglecase’. The routine starts
by reading a character at the keyboard (press a capital letter and press Return)
which it then stores at ‘string’. The togglecase routine then places the address of
the stored character into R1 and uses a technique called indirect addressing to
load the character into R0. (This form of addressing is discussed in Chapter 15.)
The value in R0 is then masked with 0x20 and the indirect addressing technique
used to store the modified contents of R0 back at the address held in R1.

Note that no check is made here to ensure that the character entered is in the
range A-Z. How would you adjust the program to convert a lowercase character
into an uppercase one?



Bit Clear with BIC
The BIC instruction sets or clears individual bits in registers or memory locations.
Its format is:

BIC (<suffix>) <dest>, <Operand1>, <Operand2>

The Bit Clear instruction forces individual bits in a value to zero.

BIC R0, R0, #%1111 @ clear low 4 bits of R0.

If R0 held 0xFFFFFFFF then the example above would clear the lowest four bits
to leave 0xFFFFFFF0.

R0:    11111111 11111111 11111111 11111111
BIC #0xF: 00000000 00000000 00000000 00001111
Result:  11111111 11111111 11111111 11110000

The BIC command performs an AND NOT operation on Operand1 with
Operand2.



Flag Tests
There are two instructions whose sole purpose is to test the status of bits within a
word. Like CMP there is no destination for the result, which is reflected directly
in the Status Register (therefore the S suffix is not required). The two instructions
are TeSt BiTs (TST) and Test EQuivalence (TEQ). The formats are:

TST <Operand1>, <Operand2>
TEQ <Operand1>, <Operand2>

TST is a test bits instruction, and Operand2 contains a mask to test on Operand1.
It performs the equivalent of a logical AND with the outcome updating the Zero
flag:

TST R0, #128 @ Test if b7 of R0 is set 

TEQ is test equivalence and uses an EOR process. It is a handy way of
seeing if particular bits in registers are the same.

TEQ R0, R1 @ Test if R0 & R1 are same

You can use suffixes with both the TST and TEQ instructions so that you can test
for other conditions as well as that of the Zero flag (detailed in the next chapter).

Program 8b uses the TST instruction to convert a number held in R6 into a
binary number, which is then displayed on the screen. The number to be printed is
placed in R6. There are a few things of interest in this program which we have
not encountered yet and they will be explained in detail in the following chapters.
Note how the program is broken into clearly named sections.

Program 8b.   Printing a number as a binary string.

/* Convert number to binary for printing */ 
.global _start

_start:
MOV R6, #251 @ Number to print in R6
MOV R10, #1 @ set up mask
MOV R9, R10, LSL #31 
LDR R1, = string @ Point R1 to string



_bits:
TST R6, R9 @ TST no, mask
BEQ _print0 
MOV R8, R6 @ MOV preserve, no
MOV R0, #49 @ ASCII '1'
STR R0, [R1] @ store 1 in string
BL _write @ write to screen
MOV R6, R8 @ MOV no, preserve
BAL _noprint1

_print0:
MOV R8, R6 @ MOV preserve, no
MOV R0, #48 @ ASCII '0'
STR R0, [R1] @ store 0 in string
BL _write
MOV R6, R8 @ MOV no, preserve

_noprint1:
MOVS R9, R9, LSR #1 @ shuffle mask bits
BNE _bits

_exit:
MOV R7, #1
SWI 0

_write:
MOV R0, #1
MOV R2, #1
MOV R7, #4
SWI 0
MOV PC, LR

.data
string: .ascii " "

End Program 8b.

The mnemonic LSL is used in a couple of places. This stands for logical shift left
and is used to shuffle the bits in a word along — left in this case. In the program



it is used as follows:

MOV R10, #1 
MOV R9, R10, LSL #31

Here #1 is being placed into R10, via R9, and shifted 31 times to the left, so that
only the most significant bit in the register is set. This is because we cannot load
the value, we require directly into the register due to constraints that are imposed
on use of immediate values (more on this shortly).

So, the line does this:

MOV R10, #1: 00000000 00000000 00000000 00000001
LSL #31:    10000000 00000000 00000000 00000000
       << shift left by 31 places << 

We now enter the ‘bits’ loop:

_bits:
TST R6, R9 @ TST no, mask
BEQ _print0 
MOV R8, R6 @ MOV preserve, no
MOV R0, #49 @ ASCII '1'
STR R0, [R1] @ store 1 in string
BL _write @ write to screen
MOV R6, R8 @ MOV no, preserve
BAL _noprint1

_print0:
MOV R8, R6 @ MOV preserve, no
MOV R0, #48 @ ASCII '0'
STR R0, [R1] @ store 0 in string
BL _write
MOV R6, R8 @ MOV no, preserve

R6 holds the number (‘no’). We know that the most significant bit of the mask is
set (b31) and TST tests to see if it is in ‘number’ too. If it is, then the following
BEQ will occur and a 1 will be printed. If not a 0 will be printed. Note that in
each case we preserve the value in R6 as this is our number to be tested, and we
need to use R0 to print the 1 or 0 in the _write routine. The ASCII value for ‘1’
(49) or ‘0’ (48) is placed in R0 and stored in string: in either case. (This should be



familiar to you now as we have used this technique a few times in previous
programs.)

In either case we now use the _write routine as a subroutine, this means that
we only need to assemble it once in the program. The program uses:

BL _write

to jump to the routine. BL stands for Branch with Link. When this occurs the
address of the next instruction is saved, and the program jumps to the named
label. If you look at the end of the _write routine, it ends with:

MOV PC, LR

This effectively puts the saved address (in the Link Register) back into the
Program Counter (PC) thereby causing program flow to restart after the original
BL instruction. These concepts are dealt with in some detail in Chapter 10, so all
will become clearer.

In the _noprint1 section we use a logical shift right to shift the mask bit
along one place to the right, making sure that we update the Status Register flags
using the S suffix. The program continues to loop, and print 1s and 0s as required,
until all 32-bits have been tested.

_noprint1:
MOVS R9, R9, LSR #1 @shuffle mask bits
BNE _bits

This program is a great visual aid to see how bit patterns develop. When you run
it, work your way up through the numbers from ‘1’ to see the output. You should
recognise the binary very clearly now.

You could have a go at improving this program by requesting a number to be
entered at the keyboard and then displaying its value in binary. To do that though
you would need to be able to convert an ASCII value into hex so you can store it
in a register. A technique to do this is given later in the book.

In Program 9a there are a few instances where the ASCII value of 1 or 0 has
been required. In these cases we have used the ASCII number as an immediate
value, thus:

MOV R0, #49

It is also possible to do this using the character itself:



MOV R0, #’1’

Here the ASCII character is enclosed in single quotes. This is certainly more
readable and also means that you don’t have to go looking for the number
representation.



System Call Registers
One of the downsides of using operating system calls is that you need to think
carefully about register usage. Most Syscalls need information passed to them via
registers for them to complete their function. So, if you plan to use Syscalls, plan
your register usage from the start. It could save a lot of editing later.



9. Conditional Execution

The concept of the suffix was introduced in an earlier chapter to illustrate how S
can be appended onto instructions to force the Status Register flags to be updated.
For example:

ADDS R0, R1, R2 @ R0=R1+R2 & set flags

Without the S, using the instruction in its basic form, ADD has no effect on the
Status flags. S is just one of many suffixes that exist and can be used in a similar
way to expand the functionality of just about every operation in the ARM’s
instruction set.

Almost all ARM instructions can have a suffix applied to them that will only
allow the command to be executed if the condition under test is true. If the
condition is not met, then the instruction will be ignored. The suffix CS denotes
Carry Set, so the instruction it is appended to will only be executed if the Carry
flag is set at the time the ARM reaches the instruction. In programming terms, it
gives you the ability to make every instruction a conditional operation.

The list of condition codes is extensive and is given in Figure 9a. The GCC
Assembler understands these conditional codes, and you can append them for use
in your programs by adding the letters onto the end of the mnemonic. You can
leave spaces between the mnemonic and the condition code as well if this aids
readability. These two examples are both acceptable:

MOVCS R0, R1
MOV CS R0, R1

In these examples:

MOV CS R0, R1

the contents of R1 will only be moved into R0 if the Carry flag is set. Likewise:

MOV CC R0,R1

will only move the contents of R1 into R0 if the Carry flag is clear.
Some suffixes alter more than one flag and in such instances these

operations might require certain combinations of flags to be at a combination of



set or clear. Thus, we can conveniently group the condition codes into two sets:
those that are performed on the result of a single Status Register flag and those
that are executed based on the result in two or more flags.

 Suffix   Meaning 
 EQ   Equal
 NE  Not Equal
 VS  Overflow Set
 VC  Overflow Clear
 AL  Always
 NV  Never
 HI  Higher
 LS  Lower Than or Same 
 PL  Plus clear
 MI  Minus Set
 CS/HS  Carry Set
 CC/LO  Carry Clear
 GE  Greater Than or Equal 
 LT  Less Than
 GT  Greater Than
 LE  Less Than or Equal

Figure 9a. ARM assembly language condition codes.

Condition codes act on the status of the flags; they do not set the Status Register
flags in the first instance. You will need to use a compare instruction or an
associated S suffix instruction to do that. A good understanding of binary and
arithmetic operations will aid your understanding of how instructions are affected
by these condition flags.

There are examples of the use of conditional execution throughout the
programs in this book. Indeed, Chapter 10 also includes a perfect illustration of
how the use of conditional codes can greatly reduce the size of your program.

This chapter contains an awful lot of information. Even for the experienced
programmer it can be quiet daunting, so don’t be too concerned it if you don’t
fully understand it at this staged. Note its contents and refer to it when you need
to. Use Figure 9a as your reference point.



Single Flag Condition Codes
Falling into this group are the suffixes:

EQ, NE, VS, VC, MI, PL, CC, AL, NV
These conditional flags are provided in complementary pairs. In the first set
below, EQ and NE, they both act on the condition of the Zero flag — one when it
is set, and the other when it is clear. If you are testing one condition and it is false
then you do not have to test for the alternative condition as, by definition, it must
be true as it can only be one of two states.

EQ: Equal
Z=1: Instructions that use the EQ suffix will only be executed if the Zero flag is
set. This will be the case if the previous operation resulted in zero. Subtracting
two numbers of the same value will result in zero and accordingly set the Zero
flag. A compare operation would set the Zero flag if the two values being
compared were the same. If the result of any operation is not zero, then the Zero
flag is clear (Z=0).

Example:

MOVS R0, R1 @ Move R1 into R0 and set flags
MOVEQ R0, #1 @ If 0, load R0 with 1

Here, the Zero flag will be set if 0 is moved into R0 from R1. If this is the case
then the next instruction will be executed, and 1 will be written into R0. The
instruction will not be executed if the Zero flag is clear, thereby proving that the
value in R0 was non-zero.

NE: Not Equal
Z=0: Instructions that use the NE suffix will only be executed if the Zero flag is
clear. This will be the case if the previous operation did not result in zero.
Subtracting two unlike numbers will clear the Zero flag. A compare operation
would set the Zero flag if the two values being compared were the same. If the
result of any operation is not zero, then the Zero flag is clear (Z=0).

Example:

CMP R5, R6 @ Compare R6 with R5 & set flags
ADDNE R5, R5, R6 @ If not zero R5+R6 and put in R5

Here, the CMP instruction is used to compare contents of R5 and R6. If they are
not the same (so that the Zero flag will be clear, Z=0) then R5 and R6 are



summed and the result placed in R5.

VS: Overflow Set
V=1: Instructions that use the VS suffix will only be executed if the Overflow
flag is set. This flag is set because of an arithmetic operation producing a result
which cannot be represented in the 32-bit destination register, creating a potential
overflow situation. In cases like this, data placed in the destination register may
not have value and thus require corrective action by the programmer. Examples of
this can be found in Chapter 5.

VC: Overflow Clear
V=0: Instructions that use the VC suffix will only be executed if the Overflow
flag is clear. This flag is set because of an arithmetic operation producing a result
which cannot be represented in the 32-bit destination register. That is, an
overflow situation. If the flag is clear, then no such overflow has occurred. This
condition tests for the no overflow condition.

MI: Minus Set
N=1: Instructions that use the MI suffix will only be executed if the Negative flag
is set. This flag is set because of an arithmetic operation producing a result which
is less than zero. This would occur if a large number is subtracted from a smaller
one. Logical operations may also set the Negative flag if they cause bit-31 of the
destination register to be set.

Example:

SUBS R1, R1, #1 @ Subtract 1 from R1 & set flags
ADDMI R0,R0, #15 @ If negative add 0x0F to R0

Here, the SUB instruction takes 1 from the contents of R1, and the S suffix is
used to update the flags as the result is stored into R1. The ADD in the next line
only takes place if the N flag is set and if so 15 is added to R0.

PL: Plus Clear
N=0: Instructions that use the PL suffix will only be executed if the Negative flag
is clear. This flag is cleared if the result of an arithmetic operation is positive, one
that is greater than or equal to zero. Note that the EQ suffix will test for zero only,
the PL instruction tests for a plus or non-negative result. It is important to note the
subtle difference here.

Example:



SUBS R1, R1, #1 @ Sub 1 from R1 & set flags
ADDMI R0, R0, #15 @ If neg add 0x0F to R0
ADDPL R0, R0, #255 @ If pos add 0xFF to R0

This example illustrates how compilations of conditional instructions act on
alternative results. This builds on the MI example above: if the result was a
positive number then 255 is added to the contents of R0 and stored there. As you
can see, only one of these instructions can take place and both act on the result of
the SUBS instruction. Because neither of the following ADD instructions has
used the S suffix, the status flags will not have changed since the CMP
instruction.

CS: Carry Set (HS: Higher or Same)
C=1: Instructions that use the CS or HS suffix will only be executed if the Carry
flag is set. This flag is set if an arithmetic operation creates a result bigger than
32-bits. The Carry flag can be thought of as the 33rd bit. The Carry flag can also
be set by using an ARM shift operation which is examined in Chapter 11.

Example:

ADDS R0,R0,#255 @ Add 0xFF to R0 and save in R0
ADDCS R1,R1,#15 @ Carry set add 0x0F to R1 save in R1

CC: Carry Clear (LO: Lower)
C=0: Instructions that use the CC or LO suffix will only be executed if the Carry
flag is clear. This flag is clear if an arithmetic operation creates a result that fits
inside 32-bits. The Carry flag is also affected by using any ARM shift operation
which are examined in Chapter 11.

Example:

ADDS R0,R0,#255 @ Add 0xFF to R0 and save in R0
ADDCS R1,R1,#15 @ If Carry=1 add 0x0F to R1 save in R1
ADDCC R1,R1,#128 @ If Carry=0 add 0xF0 to R1 save in R1

As with the PL example, this has a definitive action that is controlled by the status
of the Carry flag.

AL: Always
Instructions that use the AL suffix are always executed and do not rely on the
setting of any of the Status Register flags. Given that instructions will always



execute if there are no conditional suffixes, the AL suffix is the default setting for
all appropriate instructions.

Example:

ADDAL, R0,R1,R2 @ Add R1 and R2 and save in R0
ADD R0,R1,R2 @ Add R1 and R2 and save in R0

These two instructions have the same result.
A common use of the AL suffix is with the Branch instruction to provide a

three-letter mnemonic and greater clarity:

B start @ Branch to start
BAL start @ Branch to start

NV: Never
Instructions that use the NV suffix are never executed and do not rely on the
setting of any of the status flags. This suffix is included for completeness. It can
be used as a way of making space within a program as the instruction will be
assembled. This space might be used to store data or modify the program itself at
some point, and in more advanced cases, allow for pipelining effects (Chapter
12).

Example:

ADDNV R0, R1, R2 @ Never perform the addition.



Multiple Flag Condition Code
Falling into this group are six suffixes:

HI, LS, GE, LT, GT, LE
These condition codes are executed based on the condition of two or more Status
Register flags. They are most often used after a CMP or CMN instruction. This
set of condition codes is further divided into two groups: those that operate on
unsigned numbers (HI and LS) and those that operate on signed numbers (GE,
LT, GT and LE).

HI: Higher (Unsigned)
C=1 AND Z=0: Instructions that use the HI suffix will only be executed if the
Carry flag is set and the Zero flag is clear. This happens in a comparison if
Operand1 is greater than Operand2.

Example:

CMP R10, R5 @ Compare Registers R10 and R5
MOVHI R10,#0 @ If R10 > R5 then set R10 to zero

It is important to remember that this condition assumes the two values being
compared are unsigned and that negative values are not being used in a twos
complement format.

LS: Lower Than or Same (Unsigned)
C=0 OR Z=1: Instructions that use the LS suffix will only be executed if the
Carry flag is clear and the Zero flag is set. This happens in a comparison if
Operand1 is less than Operand2. Again, it is important to remember that the
condition assumes that the two numbers being compared are unsigned.

Example:

CMP R10, R5 @ Compare Registers R10 and R5
ADDLS R10,R10,#1 @ If R10<=R5 add 1 & save in R10

GE: Greater or Equal (Signed)
(N=1,V=1) OR (N=0,V=0): This instruction will execute if both the Negative
flag and Overflow flag are the same. This happens when two values are being
compared: Operand1 was greater than or equal to, Operand2.

Example:



CMP R5, R6 @ Compare contents of R5 and R6
ADDGE R5,R5,#255 @ If R5 >= R6 then add 0xFF to R5

It is important to remember that this condition assumes the two values being
compared are signed quantities.

LT: Less Than (Signed)
(N=1, V=0) OR (N=0, V=1): This instruction will execute if the Negative and
Overflow flags are different. This happens if Operand1 is less than Operand2.
Again, the condition assumes that the two values being compared are signed
quantities.

Example:

CMP R5, #255 @ Compare contents of R5 with 0xFF
SUBLT R5,R5,R6 @ If R5<0xFF subtract R6 from R5, 
        @save result in R5

GT: Greater Than (Signed)
(N=1, V=1) OR (N=0, V=0) AND Z-0: This instruction will execute if the result
is a positive number and not zero. Here, Operand1 is greater than Operand2 and
the assumption is that signed numbers are used. So, both the Negative flag and
Overflow flag must be the same, and the Zero flag clear.

Example:

CMP R5, R6 @ Compare R5 with R6
ADDGT R0,R1,R2 @ If R5>R6 add R1+R2 & put in R0

LE: Less Than or Equal To (Signed)
(N=1, V=0) OR (N=0,V=1) OR Z=1: This instruction will execute if the result
between two values, Operand1 is less than or equal to Operand2. The assumption
is that signed numbers are used. To achieve this both Negative flag and Overflow
flag must be different, or the Zero flag must be set.

Example:

CMP R5, #10 @ Does R5 contain 0x0A?
SUBLE R0,R1,R2 @ If R5<=0x0A subtract R2 from R1 
     and put result in R0



Mixing the S Suffix
The S suffix can be mixed with conditional suffixes. This ensures that the result
of whatever action taking place will also update the Status Register flags. We saw
in a couple of earlier examples how preserving the status of flags after an action
means that it is possible to act on the outcome of a conditional execution for both
results. This assumes that the Status Register flags are not updated. If you want
the Status Register flags to be updated by the conditional operation, then the S
suffix should be added after the conditions suffix thus:

ADDCSS R0, R1, R2 @ R2+R1 if C=1, Update flags as well

It is important to place the S suffix after the condition code otherwise the
assembler will miss it if it is placed before.

Trying to assemble:

ADDSCS R0, R1, R2

gives an error.



10. Branch and Compare

This chapter has a more detailed look at the use of the compare instructions and
the most economical ways of using them.



Branch Instructions
A machine code program will run linearly executing each action, one after the
other. A branch instruction allows the program flow to be transferred to a
different point in the program, where the linear execution recommences until
another branch is encountered. The two common variants of the branch
instruction have the format:

B (<suffix>) <label>
BL (<suffix>) <label>

In effect, combined with conditional flags, there is a branch for every occasion.
Although it' is perfectly possible to use the B instruction on its own, it is
preferable to use the AL suffix so as not to lose the ‘B’ in a bigger program:

BAL start

But this is also perfectly acceptable:

B start

The <label> is a marked position in the assembly language program. There is a
physical limit to the distance a branch can occur. This is plus or minus 32 Mb, as
this is the largest address that can be represented in the space allocated for the
label position. The named label is not stored in the machine code, nor is the
absolute address of the label.; what is stored is the offset from the current
position. When the ARM encounters the branch instruction it treats the value
following as a positive (forward) or negative (backward) adjustment to the PC
from the current position.

Chapter 13 looks at Register 15 in more detail and discusses how branches
are calculated.



The Link Register
The Branch with Link instruction, BL, allows you to pass control to another part
of your program – a subroutine – and then return on completion. BL works like
the normal branch instruction in that it takes its destination as an address,
normally specified by a label in an assembly language program. However, before
it branches it copies the contents of the Program Counter (R15) into the Link
Register (R14).

BLEQ subroutine @ Branch & save PC if Z flag set
Once the subroutine has completed the contents of the Link Register, can be

transferred into the Program Counter to return control to the calling segment of
code:

MOV R15, R14

This is arguably the least elegant instruction implementation on the ARM chip. It
is effective and does the job; however, other CPUs have specific subroutine call
and return instructions. For example, on the 6502 chip the mnemonics JSR
<label> and RTS are used to jump and return to and from subroutines.

A MOV instruction is used to move the return address from R14 back into
the Program Counter. This will have no effect on the Status Register flags, and
therefore, flags are preserved from whatever was going on before the return.

It is important to remember that each time a BL instruction is executed the
contents of R15 are copied into R14. This means that if the program is already in
a subroutine and another is called, the original link address will be overwritten
with the new link address.

If your program is going to nest BL calls inside one another, the Link
Register must be preserved on each occasion. The Link Register can then be re-
seeded with the return address each time the subroutine is completed. In such
cases, housekeeping is important. Re-seeding the wrong address back into the
Program Counter will most likely crash your program.

A common way to store these nested addresses is to utilise the stack as a
store. This is described in Chapter 17.



Using Compare Instructions
Your machine code will regularly need to check the result of an operation and
then, depending on that result, take a course of action. There are a range of
instructions that allow you to do this and a couple also that jump, or ‘branch’ to
another part of the program. These comparisons instructions directly affect the
Status Register flags at which point you can act on what you find. The following
segment will count from 1 to 50 and uses compare and branch instructions to
control the loop to do so:

MOV R0,#1 @Initialise count 
loop:

ADD R0,R0,#1 @ Increment count 
CMP R0,#50 @ Compare with limit 
BLE loop

This program continues to add 1 to the value in R0, which was initially set at 1.
R0 is compared to 50, and a BLE occurs if Less than or Equal to is the result. So,
the loop control continues until R0=50. Then the loop continues until R0=51,
because R0 would have been incremented to 51 in the instruction before the CMP,
which is the point when the BLE instruction fails to loop back to ‘loop’.

This segment of code is perfectly acceptable, but we can reduce its length,
by making the loop count down thus:

MOV R0,#50 @ Initialise count 
loop:

SUBS R0,R0,#1 @ Decrement count 
BNE loop @ Loop if not Zero

Here, we use SUBS to decrement and set the flags and can therefore, get away
with excluding the CMP instruction. If you are counting a sequence of iterations
and do not need the count value for anything, it is better and more efficient to
count down. This means fewer instructions and a faster execution.



Compare Forward Thinking
Because the only effect of the comparison instructions is to test the condition of
Status Register flags, by thinking about what you require, you can get away
without using them. Let’s look at an example. The segment below is a loop that
will cycle until R0 and R1 are the same. If R0 is greater than R1 it will subtract
R1 from R0 and place the result in R0. If on the other hand R0 is less than R1, it
will subtract R0 from R1 and place the result in R1. When they are the same, the
program will finish.

MOV R0, #100 @ arbitrary values in R0 & R1 MOV R1, #20
loop:

CMP R0, R1 @ Are they the same: Z=1?
BEQ stop @ if so stop
BLT less @ if R0 < than R1 go to less
SUB R0,R0,R1 @ otherwise sub R1 from R0
BAL loop @ branch always back to start

less: 
SUB R1,R1,R0 @ subtract R0 from R1
BAL loop @ branch always to the start

While this code is perfectly acceptable and does the job, we can reduce it by
taking full advantage of conditional execution of instructions:

MOV R0, #100 @ arbitrary values in R0 & R1
MOV R1, #20

loop:
CMP R0, R1 @ Are they the same: Z=1?
SUBGT R0,R0,R1 @ sub R1 from R0 if Great Than
SUBLT R1,R1,R0 @ else sub R0 from R1 as Less
BNE loop @ branch is not equal

As we are testing for greater than and less than conditions, we can make direct
use of the GT and LT suffixes respectively and tag them onto the end of the SUB
subtraction instruction. Using Conditionals Effectively

In Chapter 8, we saw how to use the TST instruction to print out a binary
number. There, Program 8b used the section of code below to select whether a ‘1’
or ‘0’ will be used for printing:

_bits:



TST R6, R9 @ TST no, mask
BEQ _print0 
MOV R8, R6 @ MOV preserve, no
MOV R0, #49 @ ASCII '1'
STR R0, [R1] @ store 1 in string
BL _write @ write to screen
MOV R6, R8 @ MOV no, preserve
BAL _noprint1 

_print0:
MOV R8, R6 @ MOV preserve, no
MOV R0, #48 @ ASCII '0'
STR R0, [R1] @ store 0 in string
BL _write
MOV R6, R8 @ MOV no, preserve

On the face of things, this is a perfectly acceptable way to archive the result of
printing either a 1 or 0 to the screen dependent on the result of a test. Indeed, it is,
but that is without a full understanding of the ARM instruction set. Now consider
the listing for Program 10a and the new section of code from _bits down which,
using conditional instructions, is half the size of the original segment. Now,
dependent on the result of the TST instruction one of the MOV commands – and
only one – will get executed, dependent on the condition of the Zero flag. This is
much more elegant and easier to follow.

Figure 10a. Conditional execution to improve program size.

/* Convert to binary for printing */ 
.global _start

_start:
MOV R6, #251 @ Number to print in R6
MOV R10, #1 @ set up mask
MOV R9, R10, LSL #31 
LDR R1, = string @ Point R1 to string

_bits:
TST R6, R9 @ TST no, mask
MOVEQ R0, #48 @ ASCII '0'
MOVNE R0, #49 @ ASCII '1'
STR R0, [R1] @ store 1 in string
MOV R8, R6 @ MOV preserve, no
BL _write @ write to screen 



MOV R6, R8 @ MOV no, preserve
MOVS R9, R9, LSR #1 @ shuffle mask bits
BNE _bits

_exit:
MOV R7, #1
SWI 0

_write:
MOV R0, #1
MOV R2, #1
MOV R7, #4
SWI 0
BX LR @ Branch eXchange

.data
string: .ascii " "

End Program 10a.



Branch Exchange
The Branch Exchange (BX) and Branch with Link (BLX) offer a third way of
branching within a program. However, it should be said they are most commonly
used to effect an entry into Thumb code – a subset of ARM – a subject addressed
in Chapter 27, and as such should be avoided until that point and when you are
familiar with their added implications. How would you rewrite the routine so that
there is no need to use the BX instruction?



11. Shifts and Rotates

The ARM has an internal mechanism called the ‘barrel shifter’ which can shuffle
the bits in a word left or right. Most microprocessors have standalone instructions
that allow you to perform this directly. However, the ARM only allows these
movements as part of other instructions. It is a significant process because
moving bits left or right can be a simple way of multiplying or dividing numbers
quickly.

Three types of shifts that can be performed. They are logical, arithmetic and
rotate. Rotate is the only one that does not have an arithmetic function—it is
included purely to move bits. Figure 11a lists the six types of bit moves available
for use.
 Mnemonic  Meaning 
 LSL  Logical Shift Left 
 LSR Logical Shift Right
 ASL Arithmetic Shift Left
 ASR Arithmetic Shift Right 
 ROR Rotate Right
 RRX Rotate Right eXtend

Figure 11a.  Shift instructions available for use.

Although the barrel shifter is in operation during shifts and rotates, practically, its
operation is transparent to the user.



Logical Shifts
Logically shifting a number left or right by one position has the effect of doubling
it or halving it. By increasing the number of logical shifts, you can multiply and
divide numbers accordingly.

Figure 11b shows how a single Logical Shift Left (LSL) moves the bits on a
full word of data. In an LSL, the most significant bit (b31) drops out and into the
Carry flag and the hole made by b0 shifting along into b1 is filled with a 0.

Figure 11b. Logically shifting bits left.

Consider the single byte binary value 00010001. In decimal this is 17. If we
perform a logical shift on this number by one place to the left (LSL #1) we get:
00100010 which is 34. We have effectively doubled, or multiplied the number, by
two. This assumes that we drop off the top digit and insert a 0 at the least
significant bit. This is illustrated in Figure 11c.

Figure 11c.  Doubling a number with a single LSL.

This is a single byte example. The ARM uses four-bytes, so the whole word is
shifted to the left in this fashion. The bit that was in b7 gets moved across into the
next byte and into what is effectively b8, and so on. The bit that gets shifted out at
the very top, bit 31, gets moved into the Carry flag. The Carry flag can be tested
to see if there is an overflow in the number multiplication.



As mentioned, the ARM does not have any standalone shift instructions, but
it does implement them as an add-on to Operand2 to use within instructions and
they affect the whole 32-bits of the register specified. Using the example
illustrated above, we might code it thus:

MOV R1, #17
MOVS R0, R1, LSL#1

Note the structure of the syntax for this. Operand1 is the destination for the result
(R0), and the LSL is performed on Operand2 (R1). Here, the logical shift is given
as an immediate value, but it could also have been specified in a register, which
makes it available for alteration. A value from 0 to 31 can be used in a shift
command. Using:

LSL #5

would multiply a value by two, five times =32 (2 x 2 x 2 x 2 x 2). It would
perform LSL five times. Here, the new spaces would be filled with 0s and the
Carry flag would reflect the value of the last bit ‘falling out’ from b31. All the
other bits moved out are ‘lost’. This means that the multiplication only remains
true provided we do not lose any significant bits through the Carry flag.
Therefore, for large numbers care must be taken that significance is retained. In
other words, the result must fit inside 32-bits. This multiplication rule breaks
down if we were using twos complement numbers.



Logical Shift Right
Figure 11d shows how a Logical Shift Right (LSR) affects the bits in a word of
data. The most significant bit (b31) goes right with a 0 taking its place. The least
significant bit, b0 drops into the Carry flag.

Figure 11d.  Logically shifting bits right.

The effect of LSR is to divide the number by two. Figure 11e shows this using
our previous example. We start with 34 and perform an LSR #1 to arrive back at
our original value of 17. Here a 0 is drawn in at the top end (b31) and any value
falling out on the right (b0) is taken into the Carry flag. As with LSL the Carry
flag is used to capture what is falling out so it can be tested if required. Figure
11e.

Figure 11e.  Dividing a number by two with a single LSR.



Arithmetic Shift Right
In an arithmetical shift the sign bit is preserved. Here b31 is saved; everything
else is shifted one place to the right with b0 dropping into the Carry flag. These
examples are shifted by one place only, but the principle is the same for multiple
shifts with b31, the sign bit being preserved, and the last bit moved out of b0 is
dropped into the Carry flag. This is illustrated in Figure 11f:

Figure 11f.  Arithmetic shift right preserving sign bit.

The advantage of ASR is that the shift considers the sign of the data and so a twos
complement number may be represented. It extends the original sign of the
number from b31 to b30 and ensures the division is performed correctly for both
positive and negative numbers.

MOV R1, #255
MOV R2, #1
MOVS R0, R1, ASR R2

When we execute the segment above it would leave a value of 0x7F (128) in R0
with R1 and R2 unchanged, but the Carry flag set.

The conditional tests can also be used as with a normal MOV instruction.
This following line would only be executed if the Carry flag is set:

MOV CS S R0, R1, ASR R2

An arithmetic shift left (ASL) is identical in operation to LSL, and there is no
difference between them in the result. As a matter of course, you should always
use LSL instead of ASL as some assemblers may not compile it and issue an error
message. Others may just give a warning.



Rotations
There are two instructions that allow you to rotate bits to the right and in
conjunction with the Carry flag. Rotate Right (ROR) moves the bits out from the
low end and feeds them straight back in the high end. The last bit rotated out is
also copied into the Carry flag as well as being rotated around. Figure 11g
illustrates how the bits move. The Rotate instructions have no arithmetic action of
significance and are included to shift bit patterns.

Figure 11g.  The Rotate Right instruction.

The following segment:

MOV R1, #0xF000000F
MOVS R0, R1, ROR #4

would give a result of 0xFF000000 with the Negative and Carry flags set. The
ROR #4 shuffles the bits four places to the right.

The top bytes, 0xF000 move to the right by four giving 0x0F00; The low
bytes 0x000F move to the right by four to give 0x0000; The 0xF, which has
dropped out of the lower byte, is rotated to the top four bits of the high byte to
give 0xFF00. Of course, the bits in the middle would all be shuffled along as
well, but as they are 0s this is not noticeable. Finally, a copy is made of the last
bit out, which was originally in the position bit 4, and placed in the Carry flag.



Extended Rotate
There is also an extended version or Rotate Right called RRX:

MOV R0, R1, RRX

This RRX operation is unique in that you cannot specify the number of
movements it makes as you are only allowed one. RRX always and only rotates
data right by one position. The Carry flag value is dropped into b31, and the value
in b0 is moved into the Carry flag. Figure 11h shows how the bits are moved.

All bits are preserved albeit in a different order. RRX uses the Carry flag as a
33rd bit and so everything is preserved.

Figure 11h.  Rotate Right with Extend.



Uses of Shifts and Rotates
The shifts and rotate commands can be used with any of the following data
processing instructions:

ADC, ADD, AND
BIC
CMN, CMP
EOR
MOV, MVN
ORR
RSB
SBC, SUB
TEQ, TST

They can also be used to manipulate the index value of LDR and STR operations
as described in Chapter 13/15. This also illustrates some handy uses for this group
of modifiers. Chapter 12 also illustrates use of some of the logical instructions.



Immediate Constant Range
We have seen the use of immediate constants in instructions:

SUB R0, R1, #3

Here the immediate constant is specified as Operand2, ‘3’ in this case. However,
there is a limit to the size of the number that can be specified in this constant, and
more particularly, some numbers just can’t be used — 257, for example.

The reason for this is in the way ARM instructions are encoded. There are
only 12-bits available for storing an immediate value as the operand. The
encoding of ARM instructions is beyond the scope of this book. However,
accepting that 12-bits are available, this is how the ARM uses these bits: The 12-
bit-field is split into two, one part of 8-bits and one of 4-bits. The 8-bit-field is
used to represent a numeric constant and the 4-bit-field one of 16 different
positions (each themselves then shifted by two) which the 8-bit value may be
rotated to through an even number of positions.

Figure 11i summarises this scheme showing the position of the 8-bit value
afforded within the 32-bits as defined by the position bits, 0-15. The ‘+’ is used in
the diagram to represent 0s, in the hope it makes it easier to read. The ROR
column shows the value to be used in the shift.

A couple of examples should make this clearer. Suppose we wanted to use
173 as immediate constant. In binary this is:

00000000 00000000 00000000 10101101

This value can be presented in 8-bits, so no shift is required, and the position bits
will be set to 0.

Let’s now examine the number 19,968. In binary across 32-bits this is:

00000000 00000000 01001110 00000000

If we compare this to the patterns in Figure 11i, we can see this has the value
placed at position 12. To create this number as an immediate operand we would
use 78 (01001110) and rotate it right by 24.

This provides us with the second way that an immediate operand can be
specified as a shifted operand, and this takes the format shown in the following
line:

Instruction (<Suffix>) <Op1>, <Op2>, <Op3> <Shift>



Here’s an example:

MOV R1, #78
MOV R0, R1, ROR #24

Here, R1 is loaded with 78, then rotated right 24 places and the result placed
in R0. The result generated would be 19,968. Of course, we can use all these
values directly as immediate constants as the assembler will resolve them directly
for us, so we can use: MOV R0, #19968 and the assembler works it out. It is the
values that cannot be calculated in this way through Figure 11i that are the issue.



Figure 11i.  Immediate operands calculation.



Although 257 cannot be used as an immediate constant, it can be seeded by
storing it in a register and then using the register to specify the value.

ADD R0, R1, #257

would cause an error, along the lines of:

Invalid constant

but the following would achieve the same result:

MOV R2, #256 @ Load R2 with 256
ADD R2, R2, #1 @ Add one to make 257
ADD R0, R1, R2 @ Add 257 to R1 and save in R0.

If we are using MOV instructions, then the assembler allows us the omit this and
use the logical instruction directly to the same effect:

LSL R0, R1, #1
LSR R0, R1, #2
LSR R0, R1, #3
ROR R0, R1, #4
RRX R0, R1



Top Move
The MOVT instruction assists in loading values into registers, that might now be
possible using other methods. More particularly it can load a two-word value into
the top bytes of a specified register without disturbing the lower two words. For
example, we can use it to assist in the loading of an address into a register:

MOV R1, #0x0008
MOVT R1, #0x3F20

R1 would now contain, 0x3F200008.
Generally, the MOVT instruction it is used to load a value that could not

otherwise be done using an immediate value. So, if the assembler throws out an
error message along the lines:

Error: invalid constant (xxxxxxxx) after fixup.

Here ‘xxxxxxxx’ is the value you specified. The ‘fixup’ refers to the assembler
trying to resolve the issue but couldn’t and thus the error message! Thus, you will
need to use the MOV/MOVT combination.



12. Smarter Numbers

In Chapter 6 we introduced the two basic multiplication instructions MUL and
MLA. These were the original multiplication instructions wired into the ARM.
Since v3 of the ARM additional instructions have been added to deal with signed
and unsigned numbers up to 64-bits long. We’ll look at some of the more useful
ones here. Several have specific uses and are aimed at more complex tasks such
as digital processing.



Long Multiplication
The SMULL and UMULL instructions offer signed and unsigned multiplication
using two registers containing 32-bit operands to produce a 64-bit result, which is
split across two destination registers. The format of the instruction is:

SMULL (<suffix>) <destlLo>, <destHi>, <Op1>, <Op2>
UMULL (<suffix>) <destlLo>, <destHi>, <Op1>, <Op2>

For signed multiplication, the values passed through Operand1 and Operand2 are
assumed to be in twos complement form. You cannot use the PC in these
instructions and the SP should be avoided as it is not supported in some later
ARM chips, although it can be used on the Raspberry Pi. It should go without
saying that the two destination registers should be different.

The following example will produce the full 64-bits from the product of two
unsigned 32-bit numbers, assuming the two unsigned numbers are in R1 and R2.
On exit R3 and R4 hold the result with the low-word of the product in R3 and R4
the high-word.

UMULL R3, R4, R1, R2

To give you an idea of how code-saving these newer instructions are, the listing
presented as Program 12a will perform the same operation using the original
MUL instruction. As with the above example the routine assumes that the two
unsigned numbers are in R1 and R2 and on exit R3 and R4 hold the result, with
the low-word of the product in R3 and R4 the high-word. On exit, both R1 and
R2 are non-defined. R5, an extra register, is also used.

Program 12a. Long multiplication ‘the hard way’

/* Multiply without use of UMULL */
/* mult: routine can be replaced with one instruction! */

@ R1=Unsigned 32-bit number 1 (low)
@ R2=Unisgned 32-bit number 2 (high)

@ On Exit:
@ R3=Result (low-word product)
@ R4=Result (high-word product)



@ R1= Undefined, R2= Undefined, R5= Undefined

.global _start
_start: 

MOV R1, #0xF0000002 @ Going to do...
MOV R2, #0x2 @ [R3,R4]=R1*R2

mult: 
MOVS R4, R1, LSR #16 @ R4 is ms 16-bits of R1
BIC R1, R1, R4, LSL #16 @ R1 is ls 16-bits of R1
MOV R5, R2, LSR #16 @ R5 is ms 16-bits of R2
BIC R2, R2, R5, LSL #16 @ R2 is ls 16-bits of R2

MUL R3, R1, R2 @ Low partial product
MUL R2, R4, R2 @ First mid-partial product
MUL R1, R5, R1 @ Second mid-partial product 
MULNE R4, R5, R4 @ High partial product

ADDS R1, R1, R2 @ Add mid-partial
ADDCS R4, R4, #0x10000 @ Add Carry to high partial
ADDS R3, R3, R1, LSL #16 @ Add middle partial product
ADC R4, R4, R1, LSR #16 @ Sum into low & high-words

MOV R7, #1 @ Exit Syscall
SWI 0

End Program 12a.

The ADDS following the MULNE test is used in preference to MLA here as we
need to preserve the Carry flag for the ADDCS that follows.
If you do not follow this example, try writing it out longhand, or work through it
using GDB, after you have read Chapter 14, so that you can view register
contents during a step-through process.



Long Accumulation
SMLAL and UMALA are the signed and unsigned equivalents of MLA. As with
the previous instructions the signed or unsigned values acting at Operand1 and
Operand2 are multiplied together, but in this instance the result is added to any
value already in destLo and destHi.

SMLALS R1, R2, R5, R6

There are also a couple of interesting variants of the command which are only
applicable with signed multiplication.

SMLAxy permits multiplication with accumulate using 16-bit operands with
a 32-bit accumulator. This is interesting and the full syntax is:

SMLA<x><y> (<suffix>)><dest>, <Op1>, <Op2>, <Op3>

Here <x> and <y> can be either B or T which stand for Bottom and Top, referring
to the bottom or top two bytes of Operand1 and Operand2, respectively.
Operand3 contains the value to be added to the result of the multiplication of the
bytes identified in Operand1 and Operand2.

For example:

SMLABTCC R0, R1, R2, R3

Here if the Carry is clear (CC) then the low half-word of R1 will be multiplied
with the top half-word of R2. The result will be added to the value in R3 and the
result stored in R0.

The SMLAWy instruction (Signed Multiply Wide) is similar but in this
circumstance either the top two or bottom two bytes of Operand2 are utilised to
multiply with Operand1. The upper 32-bits of the result (which may be 48-bits
long) are placed in the destination register. This is therefore a 16-bit by 32-bit
multiplication with accumulation. The full syntax is:

SMLAW<y> <dest>, <Operand1>, <Operand2>, <Operand3>

For example:

SMLAWB R0, R5, R6, R7

Here the bottom half-word of R6 is multiplied with the full word in R5 and the
value in R7 is added to the result, which is dropped into R0.



SMUAD and SMUSD work on 16-bit values and offer Signed Multiply with
Addition and Signed Multiply with Subtraction, with the twist of allowing
optional exchange of operand halves. The syntax for the commands is:

SMUAD<X> (<suffix>) <dest>, <Operand1>, <Operand2>
SMUSD<X> (<suffix>) <dest>, <Operand1>, <Operand2>

If ‘X’ is included in the instruction, then the most and least significant half-words
of Operand2 are exchanged. If ‘X’ is omitted, then no exchange takes place. The
instruction then multiplies the contents of the two lower half-words of Operand1
and Operand2 and saves the result, and then multiplies the contents of the two
upper half-words of the operands and saves the result.

For SMUAD (Dual Signed 16-Bit Multiply with Addition) the two partial
products are then added, and the result placed in the destination register. For
SMUSD (Dual Signed 16-Bit Multiply with Subtraction) the second partial
product (the upper half-word) is subtracted from the first partial product.
Example:

SMUSD R5, R7, R9



Division and Remainder
In Chapter 6 we saw that the early versions of the Raspberry Pi, namely the
original A and B along with the Zero, did not support an instruction to undertake
division. The ARM chips used in the subsequent versions, had SDIV and UDIV
introduced. Program 12b shows how you can carry out a division using two 32-bit
values without division specific instructions.

It assumes that the dividend is in R1, and the divisor is in R2. On exit R3
holds the quotient, R1 the remainder and R2 the original divisor. No check is
made to see if the divisor is zero, which will fail — but this is a simple check to
add. You will recall that the SDIV and UDIV instructions do not calculate the
remainder, so this routine might be useful if you require that value as well.

On completion R0 contains the quotient so, typing:

echo $?

Will print ‘5’. The remainder of the division (‘11’) is in R1.

Program12b. Division the long way.

/* Long Divide using no specific Divide instruction */
/* Provides Quotient and Remainder as result */
@ On Entry: R1=Dividend, R2=Divisor
@ On Exit: R3=Quotient, R1=Remainder, R2 Original Divisor

.global _start
_start:

MOV R1, #111 @ Going to do 111/20
MOV R2, #20
MOV R4, R2 @ Preserve Divisor
CMP R4, R1, LSR #1 

Div1: 
MOVLS R4, R4, LSL #1 @ Double Divisor until 
CMP R4, R1, LSR #1 @ 2xR4>divisor
BLS Div1
MOV R3, #0 @ Initialise quotient

Div2:
CMP R1, R4 @ Can we subtract R4?
SUBCS R1, R1, R4 @ Do so if possible



ADC R3, R3, R3 @ Double quotient, add new bit
MOV R4, R4, LSR #1 @ Halve R4
CMP R4, R2 @ Loop until gone past...
BHS Div2 @ ..original divisor
MOV R0, R3 @ Move quotient into R0

MOV R7, #1 @ Exit Syscall
SWI 0

End Program 12b.



Smarter Multiplication
We had a look at simple multiplication in an earlier chapter. Now armed with the
knowledge of shifts and bit operators, we can look at easier ways to achieve
multiplication results. In the examples that follow R0 is used as the main register,
However, any register may be used.

If you want to multiply by a factor of two then you should use LSL directly:

MOV R0, R0, LSL #n

Where ‘n’ is the constant. Replacing n above by, say 4, would produce:

R0=R0 x 2 x 2 x 2 x 2

This is, in effect, 2n.
To multiply by (2n)+1, examples being 3, 5, 9, 17 etc., use:

ADD R0, R0, R0, LSL #n

again, where n is the value.
Conversely to multiply by (2n)-1, examples being 3, 7, 15 etc., use:

RSB R0, R0, R0, LSL #n

where n is the value.
To multiply a number by 6 first multiply by three and then by two:

ADD R0, R0, R0, LSL #1
MOV R0, R0, LSL #1



Much More Inside
I have only touched on some of the more advanced arithmetical instructions
available on the ARM chip inside the Raspberry Pi. There are many, many more
along with several variations on the ones I have covered here. The best way to
examine these is simply to set up seed programs, that is programs which load
numbers into registers before executing a particular command, and then step-
through the executing program using GDB, examining the registers along the way
as you do so.



13. Program Counter R15

Register 15 is the Program Counter, and it is important. If you don’t treat it with
respect your program can crash. If this happens your Raspberry Pi will most
likely ‘freeze’ and will not recognise anything you do until you turn the power
switch off and re-boot. Time-consuming, annoying, and frustrating. It will happen
occasionally, but it’s good for the soul to keep those occasions to a minimum!

R15 performs a simple function. It keeps track of where your program is in
an executing machine code program. It holds the 32-bit addresses of a physical
memory location. In fact, the PC holds the address of the next instruction to be
fetched. So, if you happen to load it with a number which relates to your step
count for the day, you will understand why the program might crash.

The PC can be used within instructions in a variety of ways. R15 can be used
in data processing instructions, which means that it can be used as either
Operand1 or Operand2. Example:

ADD R0, R15, #8

This is an example of R15 acting as Operand1. This line would add 8 to the value
(address) in R15 and save the result in R0.

SUB R0, R9, R15

Here, as Operand2, the value in R15 is subtracted from R9 and the result stored in
R0.

R15 can also be used as the destination register in an instruction. In such
instances, it should expect to be loaded with an appropriate value for the Program
Counter as it will seek to fetch the next instruction from it.

MOV R15, R14

places the value held in R14 into R15. As R14 is the Link Register, this is an
effective way of returning from a previously called routine. Generally, it (or a
variation of it) will be used to hand control back to the point from where the
machine code was called.



Pipelining
It is important to understand how the ARM goes about fetching, decoding, and
executing instructions. The instruction pipeline is a design feature of the ARM
that is fundamental to its execution speed. This is because when it comes to
executing machine code the ARM is doing three things almost simultaneously:
fetching, decoding, and executing. As these operations cannot be performed on
the same instruction at the same time, the ARM has three instructions on the go at
once. It is executing one, decoding a second and fetching a third. When an
instruction is executed everything gets shuffled along one place as a new
instruction is fetched. The instruction that was previously fetched is then being
decoded, and the one that was being decoded is now being executed. There is a
continuous stream running through the pipeline as illustrated in Figure 13a.

 Cycle   Fetched   Decoded   Executed 
 Cycle 1   Op1  empty  empty
 Cycle 2  Op2  Op1  empty
 Cycle 3  Op3  Op2  Op1
 Cycle 4  Op4  Op3  Op2

 Figure 13a. The Fetch, Decode and Execute cycle of the ARM.

It takes three cycles for the ARM to fill the pipeline when it starts operating.
Once an instruction has been executed it is discarded as the next instruction
overwrites it. It is because of this multi-tasking process that the ARM can achieve
great processing speeds. During the process of decoding, the ARM is identifying
what registers are to be used in the instruction when it is executed.

In Figure 13a, on Cycle 4, the PC holds the address of Op4 — the next one
to be fetched. Figure 13b shows where each cycle of the pipeline is relative to the
PC.

 Contents   Action 
 PC   Next instruction to Fetch 
 PC-4  Being Decoded
 PC-8  Currently Executing
 PC-12  Previously Executed



 Figure 13b. The PC relative to instruction processing.

This three-stage pipeline was the original design of the ARM chip. In fact,
today’s ARM processors are even more sophisticated and the ARM chip in your
Raspberry Pi has a pipeline that is no less than eight operations long. But for this
book and the concepts we are evaluating the original model remains sound for
evaluating the pipeline effect (although we’ll come back to the subject in Chapter
27). The effect of pipelining must always be considered. Otherwise in certain
circumstances your program may not function as you might expect. Consider this
instruction:

MOV R15,R15

If you place this in your program it will cause the next instruction to be skipped.
This is because the address accessed from the PC is two-words (eight bytes) more
than the address of the MOV instruction. When written back into the PC by the
operation, execution resumes a couple of words (instructions) further on, thereby
skipping the instruction in between.

Remember that the address held in the PC is always eight bytes more than
the address of the instruction being executed.



Calculating Branches
We looked at branches in Chapter 10. Let’s examine how they are handled by the
Program Counter.

A branch typically takes this format:

BAL label

Here ‘label’ is taken to be a label or a marked position in the assembly language
program. Remember there is a physical limit to the distance a branch can occur; it
is plus or minus 32 Mb as this is the largest address that can be represented in the
space allocated for the label position. An absolute address is not stored. What is
stored is the offset from the current position. When the ARM encounters the
Branch instruction it treats the value following as a positive (forward) or negative
(backward) adjustment to the PC from the current position.

Because of the way instructions are encoded, the branch value is a 24-bit
signed offset in twos complement form. The word offset is shifted left by two
places (bits) to form a byte offset. This offset is added to the PC. Look at the
following example shown in Figure 13c:

 Address   Label   Instruction 
 0x1000     BEQ zero
     .....
     .....
 0x0120    BL notzero
     .....
 0x1C30  zero:  <instructions>
     .....
     .....
 0x2C30  notzero:  <instructions>  

 Figure 13c. Calculating branches.

The first column is the address of the instruction. Here we have two labels whose
addresses are 0x1C30 and 0x2C30. The first instruction:

BEQ zero



is located at 0x0100, and the second instruction:

BL notzero

is located at 0x0120.
Because of pipelining when the BEQ zero instruction is executing, the

instruction that is being fetched will be two instructions later, which is eight bytes
later. So, the byte offset for the BEQ instruction will be:

0x1C30 - 0x0100 - 8 = 0x1B28

So, the word offset for the BEQ zero instruction is:

0x1B28 / 4 = 0x6CA

For the ‘BL notzero’ instruction the calculation is:

0x23C0 - 0x0120 - 8 = 0x2B08
0x2B08 / 4 = 0xAC2

Backward branches work in a similar way but must have the pipeline affected
added to the calculation.

By using relative or offset values as branch destinations, it becomes possible
to write machine code programs that are totally relocatable. In other words, they
can be loaded and run into any part of memory. As soon as you hard code the
actual definitive address into place it ties the machine code into one location.



14. Debugging with GDB

The Raspberry Pi OS comes with a complete debugging tool, GDB, which you
will find useful when the time comes to unravel your programs and are trying to
understand why something doesn’t work the way you expected. It is also a great
way to learn about the operation of your programs.

One of two things generally happens when your machine code program
doesn’t work correctly. The first is that the result returned is not the one expected.
The second is that no result is returned, and the system freezes requiring a hard
reset. Of course, both situations can occur together as well!

For a wrong result, the likelihood is that a constant or address are out-of-
kilter. The positive side is that your routine seems to be functioning, and there are
no logical or branch errors. Here, it is a matter of trying to track down where the
‘error’ is occurring. The type of result being returned might give you a clue, and
you will need to examine this and make some deductions of your own. For
example, if you are getting a result that is one more than you were expecting (and
‘one’ in this case might not be a number) then perhaps a loop is being executed
more times than it should. The loop counter might need adjusting, or your
conditional branch instruction might need changing. Being able to see what a
loop counter value is at this point would be useful. It may also be that values in
registers have been mixed or not referenced correctly in your assembler — for
instance, you might have used R1 when you should have used R3, or you may
have wished to code an immediate value but didn’t specify it as such.



Frozen Cases
For a frozen Pi, things can be a bit more involved. Perhaps a routine is trapped in
a continuous loop. The loop counter may not be decremented and so will continue
to process while power is applied. It might also be that you have mismanaged a
stack or corrupted the Program Counter.

Trapping all these types of errors will become an everyday programming
task for you. It is part and parcel of programming. That is why it is useful to
develop your programs in small sections or functions. Each has a purpose, and
each can be tested independently.

If you find that a program crashes or hangs, one key issue is to locate at what
point this happens. The best way to do this is to get some visual feedback on how
far the machine code gets before being upset. This allows you to at least narrow
down your search. For example, if you are getting screen output from your code
then you will have some idea that most likely you ignore everything that went
before the last item displayed.

If you are having issues with your code and cannot narrow down the
segment creating the issue then you can populate your code with an instruction to
print out a marker on the screen, to show you where you are, and therefore have a
good idea exactly where the issue lies.

Let’s say a machine code program has five areas of operation. We could
place an appropriate call to a ‘_write’ style routine at the start of each one as
illustrated in Figure 14a.

.area1
BL _write @ PRINT A
...
.area2
BL _write @ PRINT B
...
.area3
BL _write @ PRINT C
...
.area4
BL _write @ PRINT D
...
.area5
BL _write @ PRINT E
...



 Figure 14a. Locating issues by use of a _write style function.

Now when the program is run, as each area is reached, a letter will be printed to
the screen. Let’s say we had the following result:

ABC

before the program froze. This would show that the program had seized
somewhere in area3, because ‘D’ was never printed. Now you can concentrate
your efforts in this area. You might add in additional calls to print out more letters
or numbers inside area3. This will then narrow your search and allow you to
concentrate your debugging efforts in the right area. Once you have narrowed the
area down you can look more closely at the segment.



Assembling for GDB
GDB is the GNU project debugger. It is supplied with Raspberry Pi OS and is run
from the command line. It provides a wide range of tools that will allow you to
interrogate your machine code programs in many ways from within an enclosed
environment. GDB can operate on many, many levels and it would be fair to say
that it has a command for almost every occasion. It is customisable as well. As
with most GNU software it has extensive documentation available online. In this
chapter we’ll look at some practical examples, and we’ll use Program 10a as the
centrepiece of the demonstration.

Before you can use GDB the core program has to be assembled using an
additional directive so that it generates additional information that can be used by
GDB:

as -g -o prog10a.o prog10a.s
ld -o prog10a prog10a.o

The -g option generates the additional data for the debugger. From your point of
view nothing different has happened. You can start GDB as follows:

gdb <filename>

where <filename> is the name of the assembled file to be interrogated. So:

gdb prog10a

will launch the debugger and load the information relating to prog10a. If you
forget to specify a filename then you can use the ‘file’ command at the gdb
prompt:

file prog10a

Now typing:

list

will produce the output shown in Figure 14b. (You may need to press the
<Return> key to continue the listing. This is where you see the ‘(gdb’) lines.) The
numbers at the start are simply line numbers. They relate to what you would see if
you had line numbers enabled when editing your source code. However, within



GDB you can utilise these numbers with many of the commands that are at your
disposal.

Important: The line numbers you have may differ from those shown here,
equally the memory addresses given here may also be different on your system.
This doesn’t make the listing wrong; you just need to relate to the changes in your
listing.

$ gdb prog10a
GNU gdb (Raspbian 8.2.1-2) 8.2.1
Copyright (C) 2018 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later &
<http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.
Type "show copying" and "show warranty" for details.
This GDB was configured as "arm-linux-gnueabihf".
Type "show configuration" for configuration details.
For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>.
Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/>.
For help, type "help".
Type "apropos word" to search for commands related to "word"...
Reading symbols from prog10a...done.
(gdb) list
1 /**** Convert number to binary for printing */ 
2 /* */
3 /* Registers: R6=number, R8=preserve, R9=mask */
4 /* R7 needed for syscall, R1 points to string */
5 
6 .global _start
7 
8 _start:
9 MOV R6, #251 @ Number to print in R6
10 MOV R10, #1 @ set up mask
(gdb) 
11 MOV R9, R10, LSL #31 
12 LDR R1, = string @ Point R1 to string
13 
14 _bits:



15 TST R6, R9 @ TST no, mask
16 MOVEQ R0, #48 @ ASCII '0'
17 MOVNE R0, #49 @ ASCII '1'
18 STR R0, [R1] @ store 1 in string
19 MOV R8, R6 @ MOV preserve, no
20 BL _write @ write to screen 
(gdb) 
21 MOV R6, R8 @ MOV no, preserve
22 MOVS R9, R9, LSR #1 @ shuffle mask bits
23 BNE _bits
24 
25 _exit:
26 MOV R7, #1
27 SWI 0
28 
29 _write:
30 MOV R0, #1
(gdb) 
31 MOV R2, #1
32 MOV R7, #4
33 SWI 0
34 BX LR
35 
36 .data
37 string: .ascii " "
(gdb) 
Line number 38 out of range; prog10a.s has 37 lines. (gdb) 

 Figure 14b. Listing a loaded file in GDB.



The Disassembler
A disassembler does the opposite to an assembler. It takes the values stored in
memory and converts them back into an assembly language listing. For example,
at the GDB prompt enter:

disassemble _start

You should get output that looks something like that shown in Figure 14c.
One thing the -g option did when it assembled the source code was to create

a list of the labels or functions defined in the original source code, which allows
us to refer to these directly when using GDB. The first column in the listing
generated is the address in memory where the code is assembled. (This address
may differ on your output.) The second column inside the chevrons shows the
number of bytes from the start of the function.

 Figure 14c. Disassembling a function in GDB.

Notice the last line in this listing has disassembled to something a little different
than was in our original source. It has converted the original:

LDR R1, = string



into an absolute address. In this case:

ldr r1, [pc, #60]

This means load R1 with the address which is 60 ahead of the current PC address
(R1=PC+60). So here pipelining is taken into account. The actual address is
0x100c4 and is given after the semi colon at the end of the line, as is the label it is
referring to!

You can also disassemble an area of memory by specifying a start and end
address. By using the ‘/r’ switch at the start it is also possible to include the
hexadecimal opcodes and operands.. For example:

disassemble /r _bits

will give the output shown in Figure 14d:



 Figure 14d. Using the /r switch when disassembling.

The third set of figures listed are the opcodes and operands for each of the
instructions. If you look at the address line starting 0x00010098 you can see that
the offset for the BL instruction has been calculated (0xb0). If the program is
‘running’ (discussed below) the current position of the PC is shown by a ‘\=>’ on
the left of one of the addresses.

Figure 14e provides a summary of some of the more common disassembly
options in GDB.



 Figure 14e. Common disassembly commands.



Breakpoints
The major debugging facility at your disposal is without a doubt the use of
breakpoints, and the ability to step-through commands one-by-one, single-
stepping, and allow you to watch your program in action.

Breakpoints are temporary halt signs in a machine code program, which
GDB allows you to place where and when you want, so when you run your
program from within GDB the program will be halted each time a breakpoint is
reached, at the same point, preserving all registers. By inserting one or more
breakpoints in a machine code program, it is possible to ‘stop and look at register
and flag contents at any chosen point. This can come in very handy when a
program is not working as it should. By examining the contents of registers and
the setting of flags you should be able to narrow down and kill the culprit causing
the problem. As you might imagine it is also a great way to learn the operation of
each instruction.

Breakpoints can be set using labels or line numbers using the ‘b’ command
at the GDB prompt thus:

b _bits

In the first case the breakpoint is set at the address where ‘_bits’ is assembled.
This will be confirmed visually thus:

Breakpoint 1 at 0x10084: file prog10a.s, line 15

Let’s set a second breakpoint immediately after the two conditional MOV
statements. From the file listing we can see this is at line 18:

b 18

Which returns:

Breakpoint 2 at 0x10090: file prog10a.s, line 18

Typing:

info b

will print a listing of any breakpoints set so far, as shown in Figure 14f:



 Figure 14f. Breakpoint listings. 
This shows the two breakpoints set. Deleting breakpoints is just as easy:

would delete breakpoint 2.
We can execute programs and get them to stop at defined breakpoints. If the

above two breakpoints are in place, typing:

run

at the GDB prompt would produce:

Breakpoint 1, _bits () at prog10a.s:15
15 TST R6, R9 @ TST no, mask

The program has run but has stopped before executing the command on line 15.
We can now get a dump of all the register contents by typing:

info r

This would give a listing like that shown in Figure 14g:



 Figure 14g. Register dump after breakpoint 1 has halted the program. 
At this point in the program the code listed through to line 14 will have been
executed and this is reflected in the contents of the registers. To continue to the
next breakpoint type:



continue

and then list the register contents again. These are shown in Figure 14h.



 Figure 14h. Register dump after breakpoint 2 has halted the program. 



Here we can see that the ASCII code for ‘0’ has been placed into R0 so the
MOVEQ command was the one that was executed. This is reflected in the CPSR
where the Zero flag is set. Note how the PC reflects where we are in the
execution cycle.

Try setting a third breakpoint at line 25 (this can be done while the program
is ‘running’) and continue to the breakpoint. Listing the register contents will
show output as depicted in Figure 14i.

R9 has been updated with the new mask value and note now how the link
register has an address in it. Compare the source listing so you can see where
these new values have come from.

You can execute your program in GDB a line at a time by simply pressing
the ‘s’ key. This is called ‘single stepping’. You should try this and watch the
program cycle through the _write function as well. You can also print the register
contents at any point. GDB is totally interactive and Figure 14j lists some of the
more popular commands to experiment with.



 Figure 14i. Register dump after breakpoint 3 has halted the program. 



Breakpoint Labels
Rather than worrying about program line numbers for setting breakpoints, you
can always devise a system of predefined labels to use within your source files.
Typically, this might be after data has been loaded from memory or a register, so
you can examine to see if it is loaded correctly; after a round of processing; and
equally on completion.

 Figure 14j. Common breakpoint commands.



Memory Dump
You can look at sections of memory, including your code and data areas. The
latter is useful to see how data is changed in response to your program's
operation. If you know that you have cleared memory or filled a section with 0s
before running your program, you can be sure that what is there after you have.

The ‘x’ (for examine) command produces output in a variety of formats. To
get a hex dump of memory of the program itself type the following at the GDB
prompt:

x/22xw _start

This will produce a listing like that shown in Figure 14k.

 Figure 14k. A hex dump of memory in GDB. 
The command format is as follows:

x/nfu <addr>

Here the ‘/’ is used to signify a change in the defaults; f being format which is
hexadecimal by default; and u the unit size. <addr> is the start address from
which this is to happen. In the example above ‘w’ specifies word or four-byte



wide units and to show 22 of them, starting at 0x08. Other unit sizes that are
available are: b=bytes, h=halfwords (bytes), g=giant words (eighth bytes).

When you specify a unit for x then that becomes the default value until it is
changed again. When GDB is started the default value is 1. The ‘i’ command in
combination with ‘x’ can be used as an alternate way to produce a disassembly
listing. Here:

x /13i 0x10084

will disassemble the _bits function, as shown in Figure 14l.
The combinations are almost endless, and it is a good investment of time to

print a copy of the GDB Manual out and keep it bound and close to hand. GDB is
really one of those tools that you will always be looking to get more from, and a
printed copy is a good place to make notes and keep track of your favourite
formats.



 Figure 14l. Disassembling combinations. 
Finally, if you are wondering, typing ‘quit’ will exit GDB and return you to the
Raspberry Pi OS command line.



Shortcuts
Most of the GDB commands can be limited to their starting letters:

info registers >> i r
continue     >> c
step       >> s
quit       >> q



GDB Make Options
You should consider working through the long multiplication example provided
as ‘prog12a’ using GDB. Stepping through the code line-by-line and printing the
register contents out is highly informative. It should also get you used to the ways
of workings with the debugging tool.

Of course, your use of makefile will arguably change as well. Now there is
the debug assembled code it is a good option therefore to use Make to assemble
in this manner utilising the ‘g’ option. The program listed as Program 14a
provides an updated makefile that allows this to happen. The format here is a bit
different.

Program 14a. Flexible makefile for debugging code.

OBJX = prog10a
OBJS = prog10a.o

ifdef GFLAG
STATUS = -g

else
STATUS =

endif

%.o : %.s
as $(STATUS) $< -o $@ 

debugfile: $(OBJS)
ld -o $(OBJX) $(OBJS)

gdbdebug: $(OBJX)
gdb $(OBJX)

clean:
rm -f *.o $(OBJS)
rm -f *.o $(OBJX)

End Program 14a.



You will need to save this as ‘makefile’ as well—be careful not to overwrite any
previous makefile you may have modified. Ultimately you will arrive at a way of
working that suits you.

As previously adjust the names of the source make file accordingly in the
first two lines. You can now assemble and link this with or without the -g option.
The key to doing this is remembering the ‘force option’ using the -B flag. Use
either:

make GFLAG=1 -B

To include the debug details, or:

make GFLAG= -B

In either case you can see from the resultant output in each case how the file is
being assembled and linked. You can also jump straight into gdb if you wish after
with:

make gdbdebug

You can delete all files other than the source files with:

make clean



15. Data Transfer

In most of the examples we have used so far, all data instructions have come from
either the contents of a register or an immediate constant, a specified value:

ADD R0, R1, R2
SUB R0, R1, #7

There is only so much information that can be held in a set of registers, and
registers generally must be kept clear to perform operations on data. In general,
data is created and then held at known memory locations. In such cases, we need
to manage these memory blocks. To load and store data in memory we must
know two things. First, the actual address of the data, and second, its ultimate
destination – where it’s coming from or going to. Registers are used in both
circumstances, and the method of doing so depends on the addressing mode used.
There are three addressing modes offered by the ARM:
 

Indirect Addressing
Pre-Indexed Addressing
Post-Indexed Addressing

These methods load or store the contents of a specified register, but in each case
the data source or destination is different.



ADR Directive
In Chapter 6 we examined the use of immediate constants and saw that although
the MOV and MVN instructions can be used to load constants into a register, not
all constant values are accessible in this way. The knock-on of this is that they
cannot be used to generate every available memory address for the same reason.
Therefore, the GCC Assembler provides a method that will load any 32-bit
address. In its simplest form it looks like this:

ADR <Register>, <Label>

An example would be:

ADR R0, datastart

Despite its appearance, the ADR is a directive and not an ARM instruction. It is
part of the assembler. What it does is take the hard work out of calculating the
right number for you. When the assembler encounters this directive, it does the
following:
 

Notes the address of where the instruction is being assembled.
Notes the address of the specified label.
Calculates the offset between the two memory positions.

It will then use this information as part of an appropriate instruction, normally
ADD or SUB, to reconstruct the location of the address or label containing the
information.

It’s worth looking at what we write in an example program and what gets
assembled to illustrate the point. Look at the listing given in Program 15a:

Program 15a. Use of the ADR directive.

/**** Using the ADR directive ****/
.global _start

_start:
ADR R0, value
MOV R1, #15

_exit:



MOV R7, #1
SWI 0

value:
.word 255

End Program 15a.

Program 15a does nothing really, other than point ADR at the data label and show
R0 as the destination register. When this is assembled using the -g option, it will
produce something like what is shown in Figure 15a, if you use GDB and enter:

x/5i _start

the ADR directive has not assembled an address. It has assembled a relative
address that will be used as an offset for the Program Counter. Here the ADD
instruction is used to add 8 to the PC, the address of value which comes right
after the last instruction.

 Figure 15a. Disassembly of Program 15a. 
Note also that the instruction:

SWI 0

Has been disassembled to:

SVC 0x00000000

Showing the mnemonics are interchangeable. The preferred method is probably
SVC these days, but I am still old hat and use SWI. The final line in the listing is



where the value 255 is stored. GDB tried to interpret this but didn’t recognise it
thus the message.

In GDB type:

x/5w _start

The output will be similar to that shown in Figure 15b:

 Figure 15b. Hex dump of Program 15a. 
Here the 255 (0xFF or 0x000000ff) stored at the label marked by ‘value:’ can
clearly be seen. This illustrates another new feature of the assembler. In an earlier
chapter we used the directive called ‘.string’ to load an ASCII character string
into memory. Here the ‘.word’ directive allows us to store a word — or four-bytes
— into memory. The format of this is shown clearly in Program 15a and it can be
referred to by using a named label. (We’ll look at ‘.word’ and other directives in
Chapter 18.)

This also illustrates another particularly important aspect of the ADR
pseudo-instruction. The values it references must always be within the ‘.text’ or
executable section of the code. You will recall that use of the .string directive,
which was being accessed by the LDR instruction, was placed in the .data section
of the code. If you try and use ADR to access information in a data area you will
get an error message.



Indirect Addressing
The ARM is constructed with a ‘load and store’ architecture, but you cannot
access memory locations directly. You can only access them indirectly via a
register. The beauty of indirect addressing is that it enables the whole of the
ARMs memory map to be reached through a single register.

There are two instructions that read and write memory data:

LDR LoaD Register from memory 
STR STore Register to memory

Indirect addressing provides an easy method to read or write to a memory
location. The address of the location is held in a register. So, the address location
is accessed indirectly. The advantage of this method is that you can change the
source or destination location simply by changing the contents of the register.
This makes it a handy way to dip into tables of data. Rather than writing a
separate routine for each, a general purpose one can be developed, with the
address operand being ‘seeded’ on each occasion the routine is called.

In its simplest form indirect addressing takes the format:

LDR (<suffix>) <Operand1> [<Operand2>] 
STR (<suffix>) <Operand1> [<Operand2>] 

For example:

LDR R0,[R1] @ Load R0 with contents of location in R1
STR R0,[R2] @ Store R0 at memory location in R2

Executing the above two instructions would effectively transfer a word of data
from one point in memory to another. Figure 15c illustrates this and is based on
the instruction:

LDR R0, [R1]

At the onset R1 holds the memory address, here 0x9308, and that memory
address contains the value 0xF80A. This value is loaded into R0. So, on
completion of the instruction R0 will contain 0xF80A. The value in R1 is
unaltered.

All the addressing modes allow use of suffixes to effect conditional
execution. So, for example:



LDREQ R0, [R1]

Here, the load operation into R0 from the address in R1 will only take place if the
Zero flag is set.

 Figure 15c. Indirect addressing of memory using LDR R0, [R1].



ADR and LDR
In previous examples we have seen that LDR can be used in a pseudo-instruction
manner to load the address of a label directly into a register. For example:

LDR R0, =string

would load R0 directly with the address of the label called string. The advantage
of LDR used in this way is that it can access memory across the board and is the
preferred method if you are using data sections specifically to hold information.
Labels accessed by ADR must be within .text sections of code and within the
executable code area.



Pre-Indexed Addressing
Pre-indexed addressing provides the ability to add an offset to the base address to
give the final address. The offset can be an immediate constant or a value in a
register, or indeed, the shifted contents of a register. The format of the instruction
is:

LDR (<suffix>) <destination>, [(<base>,(<offset>)]
STR (<suffix>) <destination>, [(<base>,(<offset>)]

The modifying constant or register is simply placed as part of Operand2,
separated by a comma, within the square brackets. For example:

LDR R0, [R1, #8]

Here, 0x08 is added to the address in R1 and the four-byte value at that address
(R1+8) is placed in R0. The value of R1 is not changed or adjusted by the
constant. This is depicted in Figure 15d. R1 contains the memory address 0x9300.
This is added to the specified constant value 8, to give a final source address of
0x9308. The contents of this location, 0xFBOA are loaded into R0.



 Figure 15d. Pre-Indexed Addressing. 



You can use two registers inside the square brackets too:

STR R0, [R1, R2]

This instruction, when executed, would store the value in R0 at the address given
by adding the contents of registers R1 and R2 together. R1 and R2 are not
adjusted in any way. You can also subtract the offset as well, simply by using a
minus sign:

LDR R0, [R1, #-8]
STR R0, [R1, -R2

Finally, the offset operand may be rotated using one of the shift operations thus:

LDR R0, [R1, R2, LSR#4]

The value in R2 is shifted right by two bits and added to R1. This gives the
address of the data to be loaded into R0. This final construction is useful when it
comes to moving through data held in memory, given that it is located in four-
byte blocks (viz, 32-bits and the size of a register) and that an LSL #2 operation
(which is 2 x 2 = 4) moves you elegantly to the next word boundary.

The following segment replaces the third item in a four-byte wide list with
the second item in the list, with the address of the start of the list held in R1, in
this example held as 0x9300:

MOV R2, #4 @ four-byte offset
LDR R4, [R1, R2] @ load R4 from (0x9300+4)
STR R4, [R1, R2, LSL #1] @ store R4 at(0x9300+8)

Here, 4 is given as the offset, tfor the first LSR. Then the LSL #1 shifts the bits
along by four places. The #4 in R2 becomes #8 which is added to the address in
R1. The value in R2 does not change itself. If you wanted to locate the next item
in this list, you would need to increment either R1 or R2 by four. But there is a far
more elegant way as we shall see.



Accessing Memory Bytes
Program 15b illustrates the use of pre-indexed indirect addressing, using an offset
to extract characters from a string located at a base address. It also uses the
instruction, LDRB to load a register with a single byte, and STRB to store a
single byte.

ASCII characters are represented in single bytes, so LDRB will allow us to
load single bytes of memory, rather than a word, at the specified location. To start
with, R1 is loaded with the address of the string, and 26 as an offset into R2. The
STRB instruction is complementary to LDRB in that it writes a single byte of
information into memory. Program 15b uses both commands to overwrite one
string with another:

Program 15b. Use of pre-indexed indirect addressing.

/* Use of pre-indexed addr to move characters */
.global _start

_start:
LDR R1, =string @ Get 1st string location
LDR R3, =numbers @ Get 2nd string location 
MOV R2, #26 @ chars in alphabet 

_loop:
LDRB R0, [R1, R2] @ get byte at R1+R2
STRB R0, [R3, R2] @ save byte to R3+R2
SUBS R2, R2, #1 @ decrement and flag set
BPL _loop @ and loop while positive 

_write:
MOV R0, #1
LDR R1, =numbers
MOV R2, #26
MOV R7, #4
SWI 0

_exit:
MOV R7, #1
SWI 0

.data
string:
.ascii "ABCDEFGHIJKLMNOPQRSTUVWXYZ"



numbers:
.ascii "01234567891011121314151617"

End Program 15b.

At entry, _start sets up R1 and R3 with the address of the two strings. R2 is used
to hold the counter which is initialised at 26 — the number of letters in the
alphabet.

The LDRB instruction loads the byte at R1+R2 into R0 and this is then
stored at R3+R2. So, first time around the last character in string: is stored over
the last character in numbers: R2 is decremented by one and while the number is
not zero or below the loop cycles again. When R2 reaches zero, the read/write is
completed and the _write routine prints the new string out.

Although we haven’t used immediate constants in these examples, they are
certainly available to you and may also be specified as negative values. Here are a
couple of examples:

STR R0, [R1, #0xF0]
LDR R0, [R1,#-4]

In the latter example, R0 would be loaded with data taken from an address which
is one word lower than the address contained in R1.



Address Write Back
In calculating the location in memory of the word or byte, the ARM adds the
contents of the items held inside the square brackets, the first being a register with
an address, and the second being a register or immediate constant. Once the result
of the addition of these values has been used it is discarded.

It is sometimes useful to retain the calculated address, and this can be done
in pre-indexed addressing, using a method called ‘write-back’. This is done by
including a ‘!’ at the end of the instruction, after the closing square bracket:

LDR R0, [R1, R2]!
LDRB R0, [R2, #10]!

In the first example, if we refer to our earlier programs, let’s assume that R1 holds
the address 0x9300 and R2 contains the index initially set at 26. Now, on the first
iteration R1 and R2 point to the address given by 0x9300+26 which is 0x931A.
This address is used to source the information and then 0x931A is written back
into R1.

To step-through an array of data held in memory we might use the
instruction:

LDR R0, [R1, #4]!

The value 4 will be added to R1 and thus create a single word step. The value in
R1 is updated to reflect R1+4. By including this in a loop we can quickly step-
through memory with little hindrance.



Post-Indexed Addressing
Post-indexed addressing uses the write-back feature by default. However, the
offset field isn’t optional and must be supplied. The offset is also handled
differently. Post-indexed addressing takes this format:

LDR (<suffix>) <Destination>, [<Operand1>],<Operand2>

The first thing to note is that the compulsory Operand2 is based outside the
square brackets to signify the difference in addressing mode. Here are a few
examples of how the instruction is formatted:

LDR R0, [R1], R2
STR R3, [R4], #4
LDRB R6,[R1], R5, LSL#1

When post-indexed addressing is used, the contents of the base register alone are
taken as the source or destination address (word or byte depending on the format
of instruction). Only after the memory has been extracted or deposited are the
contents of the offset field (Operand2) added to the base register and the value
written there. Thus, the offset is added post and not pre memory access. Figure
15e illustrates this diagrammatically for the command:

LDR R0, [R1], #8

The left-hand side of the diagram shows the situation before the command
executes. The contents of R0 are undefined at this stage. R1 contains the address
0x9300. The contents of 0x9300 contain 0xFF01, and this is taken and placed in
R0. The intermediate value 8 is then added to the contents of R1 (0x9300+08)
and the result written back into R1, which now contains 0x9308 as now reflected
on the right-hand side of the diagram.



 Figure 15e. Post-indexed addressing process. 
If the LDR line was executed again then the contents of 0x9308 would be
extracted and deposited in R0, and after 8 is added to it R1 would contain
0x9310.

Program 15c will create a machine code routine that uses post-indexed
addressing to join two strings to create one single string.

Note that in the data definitions for the string we use a slight twist on the
‘.ascii’ directive. Here we use ‘.asciz’ — which will place a zero byte (0x0) at the



end of the string, and we use this to see if we have reached the end of the strings
during the load and compare portions of the program.

Program 15c. Using post-indexed addressing.

/* Post-indexed addr to concatenate strings */ 
.global _start

_start:
LDR R2, =string1 @ load locations
LDR R3, =string2 @ of both strings

_loop:
LDRB R0, [R3], #1 @ Get string2 byte & +1
CMP R0, #0 @ is it end of string?
BNE _loop @ no, then get next byte
SUB R3, R3, #1 @ Yes, decrement back 1 

_copyloop:
LDRB R0, [R2], #1 @ get byte from string 1
STRB R0, [R3], #1 @ add to end of string 2
CMP R0, #0 @ is it 0?
BNE _copyloop @ if not get next char

_write:
MOV R0, #1 @ is 0 so print new
LDR R1, =string2
MOV R2, #24
MOV R7, #4
SWI 0

_exit:
MOV R7, #1
SWI 0

.data
string1:
.asciz "ABCDEFGHIJKL"
string2:
.asciz "012345678910"
padding:
.ascii "             "



End Program 15c.



Byte Conditions
Conditional suffixes may be used with the load and store instructions in a similar
fashion to others. However, when you are using the byte modifier with
conditionals, you should express the conditional instruction first, thus:

LDREQB R0, [R1]

Note the condition test EQ comes before B, the byte modifier. If they are not in
this order, an error message will result when you try to assemble the program.



PC Relative Addressing
Besides pre- and post-index addressing, the GCC Assembler implements an
additional pseudo-addressing mode itself – PC relative addressing. We have
already used this in previous examples, but it is worth highlighting its usefulness
under a separate sub-heading here.

The general format of instructions that use PC relative addressing is as
follows:

LDR <dest>, <address>

As before, the destination is always a register, into which — or from which — the
data is transferred. The address is either an absolute number or an assembler
label. In the latter case, the label marks the address from where the data will be
placed or gathered. Let’s look at a couple of examples:

LDR R0, 0x9300
STR R0, data

In the first case, the word located at 0x9300 would be loaded into R0. In the
second, the location which the label ‘data’ was assembled at would be used as the
destination of the word to be held in R0.

When the assembler encounters an instruction in such a format it looks at the
address or location of the address and calculates the distance from where it is to
the specified location. This distance is called the offset, and when added to the
Program Counter would provide the absolute address of the data location.
Knowing this, the assembler can compile an instruction that uses pre-indexed
addressing. The base register in this instruction will be the Program Counter, R15.
If we ignore effects of pipelining, the PC will contain the instructions address
when executed. The offset field contains the absolute offset number as previously
calculated by the assembler, with a correction for pipelining. (This is a similar
method to the one described for branches in Chapter 10).

It is important to remember that there is a set range restriction in the offset
that can be used in pre-indexed addressing. This is -4096 to 4096, and the offset
in PC relative addressing must be within this range.



16. Block Transfer

Efficiency is one of the key design concepts behind the ARM chip. With the large
number of registers and the consistent need to manipulate and move data, it
would be very inefficient to have to sequence a whole series of instructions to
transfer the contents block transfer of a set of registers from one place to another.
The LDM and STM instructions simplify multiple load and store between
registers and memory.

The format of the instruction is:

LDM <Options>(<Suffix>) <Operand1>(!), {<Registers>}
STM <Options>(<Suffix>) <Operand1>(!), {<Registers>}

Registers is a list of the registers, inside curly brackets and separated by commas,
to be included in the transfer. They can be listed in any order, and a range of
registers can be specified with the use of a hyphen, R5-R9.

Operand1 is a register which contains the address marking the start of
memory to be used for the operation. This address is not changed:

STM R0, {R1, R5-R8}

Here, the contents of the registers R1, R5, R6, R7 and R8 (five words or 20 bytes
in total) are read and stored sequentially, starting at the address held in R0. If R0
held 0x9300 then R1 would be stored here; R5 at 0x9304, R6 at 0x9308. This is
illustrated in Figure 16a.



Figure 16a. Storing register contents in memory.

This example in assumes that we want data to be stored in successively increasing
memory address locations, but this need not be the case. The ARM provides
options that allow memory to be accessed in an ascending or descending order,
and in which way the increment step is handled. In fact, there are four options as
listed in Figure 16b.



 Suffix   Meaning 
 IA   Increment After
 IB  Increment Before
 DA  Decrement After
 DB  Decrement Before

 Figure 16b. Suffixes for memory direction setting. 
The I or D in the suffix defines whether the location point is being moved
forwards (increasing) or backwards (decrementing) through memory. The base
address is being increased four-bytes at a time or decremented four-bytes at a
time.

After each instruction, the ARM will have performed one of the following:

Increment: Address = Address + 4 * n
Decrement: Address = Address - 4 * n

where ‘n’ is the number of registers in the register list.
The A or B options determine where the base address has the defined

adjustment before or after the memory has been accessed. There is a subtle
difference, and if you are not careful it can lead to your information being a word
askew to what you might have expected. This is illustrated in Figure 16c and
Figure 16d.



 Figure 16c. The effect of IA and IB suffixes on STM. 



In Figure 16c the left-hand model shows the storage pointer in Incrementing After
mode. After the first register has been stored (R0), the storage pointer has four
added to it and is incremented to Base+4 where the contents of R1 are placed. On
the right-hand side of the model Incrementing Before is in operation. When the
command is executed 4 is added to Base and the contents of R0 is stored at that
address.

In Figure 16d the actions are the same except that in each case 4 is
subtracted from Base either After or Before as illustrated.



 Figure 16d. The effect of DA and DB suffixes on STM.



Write Back
Unless the instruction asks for write-back to occur, then the address held in the
specifying register remains unaltered. Its contents remain the same as they were
when the command was first fetched. If we want a write-back to take place, the
‘!’ operator must be included:

LDMIA R0!,{R2-R4}
STMDA R0!,{R5-R8, R10}

The value written into the address register (R0) is the address calculated after the
last register in the list has been processed.

The STM and LDM instructions have a variety of applications. One of the
most obvious is that used in combination they can be used to preserve and restore
the contents of all the registers. If R0 holds the address of a free memory block,
then save all the registers with:

STMIA R0, {R1-R14}

And restore them later with:

LDM R0, {R1-R14}

if R0 again has the address of the memory block.
A word of caution about including R15 in a list like this. If you block restore

with LDM and include R15 you will most likely set your program into a
continuous loop.

This write-back feature in this block data transfer instruction is provided to
simplify the creation of stacks, the subject of the next chapter.



Block Copy Routine
Program 16a shows just how simple it is to copy a block of data from one place in
memory to another. In fact, just four lines of assembler is all it takes, and this
routine is robust enough to copy a block of memory that can be any length
provided it is divisible by eight.

It uses registers R3 and R4 to first load and then store the data, so any
information in them will be destroyed unless preserved first. R0, R1 and R2 hold
addresses that point to the start and end of the data and the start address of its
ultimate destination, respectively.

To see this work, you can use GDB. Make sure you assemble with the -g
option. Enter GDB and load the file:

gdb prog16a

Set a breakpoint at the _exit routine (this is right after the block copy loop):

break _exit

Now run the program:

run

The program will run to the breakpoint, at which point type:

x/2x &dest

The ‘&’ is used here to mean the ‘location of’ dest. If you do not use the
ampersand, then the data labels will not be recognised. When the two-words of
memory are displayed you will see that all the bits are now set (all fs) proving the
block copy worked, as they were zeroes originally.

The routine can be extended to handle bigger blocks of memory. For
example, by changing the two load and store instructions to read:

LDMIA R0!, {R3-R12}
STMIA R2!, {R3-R12}

you can work in blocks of 40 bytes (10 registers by 4 bytes each). Your data areas
will need to be adjusted accordingly, or rather than using labels you may need to
invoke absolute memory addresses.



Program 16a. Moving Blocks of Memory

/* Memory block copy routine */

.global _start
_start:

LDR R0, =begin @ load locations
LDR R1, =end @ of both strings
LDR R2, =dest @ addr of destination

_blockcopy:
LDMIA R0!, {R3-R4}
STMIA R2!, {R3-R4}
CMP R0, R1
BNE _blockcopy 

_exit:
MOV R7, #1
SWI 0

.section .data

begin:
.word 0xFFFFFFFF
.word 0xFFFFFFFF

end:
.word 0
.word 0

dest:
.word 0
.word 0

End Program 16a.



17. Stacks

Stacks have been a fundamental feature of computer systems since just after the
day dot. In many respects they are exactly what you might think them to be,
stacks of data, but they are stacks of data that you as the programmer own and
control. Their management is a fundamental component of designing programs.
Do it well and the program flows well. Do it badly and you’ll be reaching for the
power switch.

The general analogy is a stack of plates. In theory, you can continue putting
a plate on top of a plate. Unless you are attempting a trick, if you want to take a
plate off the stack it will be the last one you placed on it, the top plate. In this
respect the last one on is the first one off. We refer to this as a LIFO structure, last
in, first out. Try to take a plate out from the middle (or the bottom!) and, unless
you are careful, the lot comes crashing down. It’s a good analogy.



Push and Pull
In the early days of home computers on systems such as the 6502 microprocessor,
stacks were built in a simple fashion. You pushed data onto the stack and pulled
(popped) data off the stack. For the most part you didn’t even know where the
stack was — that was managed by the CPU. However, as a programmer you did
need to keep track of what order things went on to the stack. Generally, the
concept is still true today in that a sequence of data pulled from the stack is
always pulled from it in the reverse order it was pushed.

The instructions STM and LDM and their derivatives are what we use for
pushing (STM) and pulling (LDM) data onto and off ARM stacks. These stacks
are areas of memory that we as the programmer define. There is no limit to the
number of stacks that can be used. The only restriction is the amount of memory
available to implement them.

R13, also known as the Stack Pointer or SP, is designated to be used to hold
an address relating to the location of the stack, but you can use any of the
available registers for the purpose. If you are running several stacks you will need
to allocate more registers or manage where you store the addresses in memory.
Figure 17a illustrates a simple stack.



 Figure 17a. A simple stack where each stack item is four-bytes.

To implement a simple stack can use the following instructions. The important
thing to note is that the options for the STM instructions are always reversed for



the LDM instruction.

STMIA SP!,{R0-R12, LR} @ push registers onto stack
LDMDB SP!,{R0-R12, PC} @ pull registers from stack

The IA and DB suffix options (introduced in the last chapter) are used in tandem
to move up through memory to push them on, and then down through memory to
pull them off. The LR and PC registers are used to save the Program Counter’s
address—therefore this two-line combination is an effective way to save register
contents before calling a subroutine and restoring everything on return. The use
of the write-back function is vital. Without write-back the Stack Pointer will not
be updated, and the stack will effectively be corrupted as we will not know our
relative positive within it.

You may implement a stack with two pointers. The first is the base point,
and this locates to the memory location where the stack begins. The second is the
stack pointer which is used to point to the top of the stack. The base pointer
remains a static address; the stack pointer might be a moving address or an offset
from the base pointer. Hopefully, you can now understand how different
addressing modes could be used to organise different types of stacks. Whichever
way you fall, you will always need to keep a record of where the stack starts and
the point where it must end. Without defining these two end limits, you could get
into all sorts of trouble. Also, does the Stack Pointer provide the address of the
next free space in the stack or the last space used? To make this situation easier to
manage and to manage the balancing of pushes and pulls the pseudo instructions
PUSH, and POP can also be used to place and retrieve information to and from
the Stack:

PUSH {R0, R3, R5} @ Push R0, R3, R5 onto Stack
POP {R0, R5-R8} @ Pull R0, R5, R6, R7, R8 off stack



Stack Growth
In ARM architecture stacks are grouped by the way they grow through memory.
Stacks can ascend through memory as items are pushed onto them, and they can
descend through memory as data is pushed onto them. It’s like being in space —
there is no up or down, and the term is relative. Stand on the 10th floor of an
empty 20 storey building. The 10th floor is the only entry and each floor, above
and below, has four apartments. Eight families arrive; you can accommodate
them on two floors up or two floors down. How do you want to do it?

In computer memory terms a stack that grows up — or ascends through
memory — is one where the address grows larger. So as an item is pushed into it,
the Stack Pointer increases its address by four-bytes. A stack that grows in
memory by going down the memory address decreases; this is called a
descending stack. In all, there are four types of stacks as listed in Figure 17b:

 Postfix   Meaning 
 FA   Full Ascending Stack
 FD  Full Descending Stack
 EA  Empty Ascending Stack
 ED  Empty Descending Stack 

 Figure 17b. The four types of ARM stack. 
When the stack pointer points to the last occupied address on the stack it is
known as a full stack. When the stack pointer indicates the next available free
space on the stack, it is called an empty stack. Note that in this empty stack
scenario the stack can have data on it; it is used to signify the condition of the
next free word on the stack.

The option of full, empty, ascending or descending will often force itself on
you and may just be decided by the way you are looping through your data. It
may be easier to implement a descending stack as your code lends itself to a
decremented count and it’s easier to test for the Zero flag.

There are instructions in the instruction set that cater for these types of
stacks and these are shown in Figure 17c.

Here are some examples:

STMED R13!, {R1-R5, R6}
LDMFD!, {R1-R4, R6}



There is nothing to stop you using different types of stacks within the same
program. Just don’t mix them up! Equally, you will understand now why write-
back is compulsory in the construction of these instructions.

 Mnemonic Pair   Meaning 
 STMFE/LDMFD   Full Descending Stack
 STMFA/LDMFA  Full Ascending Stack
 STMED/LDMED  Empty Descending Stack
 STMEA/LDMEA  Empty Ascending Stack 

 Figure 17c. Instruction set to access stacks. 
Examples of these stacks are illustrated in Figure 17d and Figure 17e. By default,
a full descending stack if a format is not specified.



 Figure 17d. Full and empty ascending stacks.



 Figure 17e. Full and empty descending stacks. 



The best way to understand stacks and their manipulation is to experiment with
them. Try seeding an area of memory with known values, and then see if you can
move this section of memory to another location via a stack, with the information
and its order remaining intact.



Stack Application
Stacks have a multitude of applications, and we have already mentioned a few of
them:
 

Saving register contents
Saving and processing data

A third use is to save link addresses when subroutines are called. By pushing the
link addresses from the Link Register onto the stack, it is possible to create nested
(one inside another) routines without fear of losing control in the program. As
you link to a routine you push the link register onto the stack. You can then return
from each subroutine by pulling the link addresses off the stack and popping them
back into the Program Counter.

The stack also makes it relatively simple to swap register contents around
without ever having to go through another register. You simply push the required
registers in the stack and then pull them in the order you need them. Imagine this
situation where register contents need to be swapped: 

At first sight, this looks complex. However, the following four lines will
manage it:

STMFD SP!, {R0-R6}
LDMFD SP!, {R3, R4, R6}
LDMFD SP!, {R5}
LDMFD SP!, {R0, R1, R2}

The first line pushes R0 to R6 onto the stack. The top three items on the stack are
(in descending order) R0, R1 and R2. From the chart above these must go into
R3, R4, and R6 respectively, and this is what line two does.

The Stack Pointer is now positioned at R3, which is transferred into R5. This
leaves R4, R5 and R6 on the stack which, in the final line, is pulled into R0, R1
and R2,. What looks to be a complex task at the onset is in fact a simple one.



Framed Work
There is only one ‘official’ stack implement on which the instruction described in
this chapter will work. If you implement you own stack, you will need to manage
the memory block containing it yourself. This is helped by the use of labels
within your assembly listing.

One other method that used the ‘real’ stack is to create a Stack Frame. This
is an area on the stack which we can ‘reserve’ for our own use. In this scenario
we reset the stack pointer to create a gap within the stack for our own use.

If we wanted to store the contents of three registers, we would require 12
bytes (3 registers x 4 bytes =12). The segment below shows how we can achieve
this:

SUB SP, #12 @ Take 12 bytes off the stack pointer
STR R1, [SP]
STR R2, [SP, #4]
STR R3, [SP, #8]

The three registers R1, R2, and R3 are stored within the gap we have created as
illustrated in Figure 17f. You will need to remember to close this gap in the stack
when you have finished the operation you needed the space for:

ADD SP, #12

It is quite common to use this method to preserve register contents before calling
a function (see Chapter 21).



 Figure 17f. Forming a stack frame ‘gap’.



Frame Pointer
When a lot of use of the stack is being made it can be difficult to remember where
things are, and what offset is what. Rather than use the SP and offsets we can
invoke a Frame Pointer—this is a pointer to the stack frame. It is common
convention to use R11 as the FP, but this is not a hard and fast rule. Just
remember to push the registers contents onto the stack, so it can be restored later.
After creating the stack frame, we can set the FP to next free spot on the stack
(remembering it grows in descending addresses).

SUB FP, SP, #4
SUB SP, #12

Now we can use the FP to access our variables:

STR R1, [SP]
STR R2, [FP, #-4]
STR R3, [FP, #-8]



18. Directives and Macros

GCC provides many additional tools to help in the writing of machine code
programs. This includes instructions that allow you to store data within your
programs and the ability to pass information to them when they are called from
the prompt. All assembler directives begin with a period or full-stop and there are
a lot of them with GCC. We have already seen several of these in action in earlier
programs. In this chapter we’ll look at some of them in more detail.



Data Storage Directives
To store character string information within our programs, there are two options:

.ascii “This is the string to print.”

.asciz “This string has a zero added to the end”

A string is written between double quotes. The ‘z’ in the second option stands for
zero and a zero byte (0x00) is appended at the end of the string. This is a useful
way to end mark a string in memory as it allows for a simple Zero flag test when
you are looking for the end of it. Both directives allow for control or escape code
characters to be embedded within them by use of a backslash character, ‘\’. Figure
18a gives some of the more popular and useful ones:
 Option   Effect 
 \b   Backspace
 \f  Formfeed
 \n  Newline
 \r  Return
 \t  Tab
 \\  Include '\' in string
 \"  Include quotes in string 

 Figure 18a. Popular backslash controls for use in strings.

The following:

.ascii “1\t2\t3\r\n4\t5\t6\r\n7\t8\t9\r\n”

would print out a simple but neatly formatted table using any of the write routines
shown in this book. (Remember to change the string length count accordingly.)

As your programs become more sophisticated and have real application you
will need to store information in them. This might be in the form of constants,
addresses or messages to be printed. For the latter, we have used the string
operator. By placing the data within the body of the machine code, we can be safe
in the knowledge that it is ‘protected’.

In the block move example from Chapter 15 we saw a clear indication how
this could be done by using the ‘.word’ directive to write four-byte words of



information to memory. As well as ‘.word’ there are other directives that can
create space in a similar way. Program 18a shows two of these, ‘.byte’ and ‘.equ’.

 Program 18a. Use of .byte and .equ directives.

/* Use of byte and equ to sum a set of numbers */
.global _start

_start:
LDR R1, =values
LDR R2, =endvalues
MOV R0, #0

_loop:
LDRB R3, [R1], #increment
ADD R0, R0, R3
CMP R1, R2
BNE _loop

_exit:
MOV R7, #1
SWI 0 

.data

.equ increment, 1 

values:
.byte 1,2,3,4,5,6,7,8,9
endvalues:

End Program 18a.

The ‘.byte’ directive allows for a sequence of values separated by commas to be
stored sequentially in memory. As the directive suggests these values must be in
the range 0-255.

The ‘.equ’ directive allows an immediate value to be assigned to a name.
The name can then be used in your source files. This is handy in that if you need
to change the value at any point you just have to change the ‘.equ’ definition and
not any and every reference to it in the source.

If you look at the ‘.data’ section of Program 18a you can see that the
constant ‘increment’ has been assigned the value 1. You can see how this is used



as the post-indexing counter at the start of the _loop routine.
The label ‘values:’ is used to mark the start of the ‘.byte’ definition. A

second label called ‘endvalues:’ is used to mark the end of the ‘.byte’ sequence.
This is a handy technique to use when dealing with tables or arrays of data as a
simple CMP test sees if the end of the sequence has been reached. The program
illustrates this.

If you assemble, link, and run Program 18a and then enter:

echo $?

the value 45 should be returned, which is the sum of the bytes.
Figure 18b below summarises a few important data directives.

 Directive  Function 
 .equ  Assign immediate value to named label.

Example: .equ one, 1
 .byte Store byte sized values, separated by commas, into memory. 

Example: .byte 1,2,3,55,255
 .word  Store four-byte values, seperated by commas, into memory. 

Example: .word 0xFFFFFFFF, 0xFFFF

 Figure 18b. The common data storage directives.



Aligning Data
If you intend to store data within your executable segments, within the ‘.text’
sections of your program, then this can create problems. All assembled opcodes
must start on a word boundary. If you insert text or data that does not completely
fill the space to a four-byte boundary then the assembler will freak and issue you
with an:

Unaligned opcodes detected in executable segment

error.
Consider Program 18a. If you add these extra lines at the end of the _start:

section:

BAL _loop
string:
.ascii “12345”

and try to assemble the code you will get the above error. This can be corrected
by adding the following after the ‘.ascii’ definition:

.align 2

This pads out the space with 0s to the next word boundary. You can check this out
using GDB.

There is generally no reason to use the ‘.align’ directive outside of the
executable sections of your code. Any definitions made in data sections are
normally stored at the end of the file by the assembler to avoid such problems.



Macros
A macro is a fragment of code – which can be of any length – and is defined by a
name. The macro definition can be called from within the program by using the
macros name. During assembly, the assembler block that constitutes the macro
definition is inserted whenever the macro name is encountered in the listing.

Many programmers set about writing their library of macros that they can
use in a variety of circumstances. They simply load the macros they need and
then call the macro from their program when need. This differs from the pseudo-
code given in Figure 2b at the start of the book which uses subroutine calls to
jump to different parts of the program. Macros create linear code – one long
program! Both permit a group of instructions defined as a single entity.

Macros are not a substitute for subroutines since the macro is replaced with
the code and therefore makes the program execution linear in nature. Long
macros that are used many times in a program will result in an enormous
expansion of the final code size. In this case, a subroutine would be a better
choice, since the code in the body of the subroutine is not inserted into source
code when called.

Macros are useful when you have some difficult or complex calculations to
do and where it may be easy to make a typo mistake. You can use the constant
data inside the macro and pass the variable information to the macro each time
you can do it. Macros are also useful to avoid the overhead of a subroutine call
and return when the subroutine itself is but a few instructions.

Program 18b defines a simple macro, call ‘addtwo’ that takes two
parameters, ‘val1’ and ‘val2’, which are passed into R1 and R2 respectively, and
are summed together with their addition returned in R0.

 Program 18b. Implementing a simple macro.

/* Implement a simple macro #1 */
.global _start

_start:

.macro addtwo val1, val2
MOV R1, #\val1
MOV R2, #\val2
ADD R0, R1, R2

.endm



addtwo 3, 4

MOV R7, #1 @ exit through syscall
SWI 0

End Program 18b.

The ‘.macro’ directive is used to define the macro which we give a name,
‘addtwo’ and I have chosen to call the two parameters ‘val1’ and ‘val2’. As you
can see the macro definition is terminated by the directive ‘.endm’.

Note that inside the macro definition the two named parameters are preceded
with a backslash ‘\’ character. This is to signify to the compiler that they are
parameters and not absolute values. The most common mistake when writing
macros is to omit the backslash before parameters.

Calling, or ‘invoking’ the macro is simple, just insert the name in the
assembler and include the parameters. If you run Program 18b and then type:

echo $?

x/20i _start

You'll get the result 7.
It is worth looking at the code produced by Program18b. If you have

assembled and linked using the -g option, you can look at the code in GDB with:
Which will return something similar to what is shown below in Figure 18c.
Note that the disassembly shows that the immediate values have been passed

into the assembled code in the first two lines at <_start> and <_start+4>. This is
not a subroutine call. The required code is assembled inline at the point required.



 Figure 18c. Disassembled output from Program 18b. 
Program 18c shows a modified version of this which uses the MLA instruction to
add the products of each multiplication together. This time we define the
‘multtwo’ macro three times to pass three successive sets of values to the macro
to calculate:

(2*2)+(3*4)+(5*6)

The caveat here though is that, at this point, there is no error checking.

 Program 18c. Multi-calling a macro.

/* Implement a simple macro #2 */
.global _start

_start:

.macro multtwo val1, val2
MOV R1, #\val1
MOV R2, #\val2
MLA R0, R1, R2, R0

.endm



MOV R0, #0
multtwo 2, 2
multtwo 3, 4
multtwo 5, 6

MOV R7, #1 @ exit through syscall
SWI 0

End Program 18c.

Assemble, link, and execute the program. All being well then when the prompt
returns you can obtain the result using:

echo ?$

Which should return 46.
A disassembly of this same code will provide something like that shown in

Figure 18d is you are using GDB and:

x/20i _start

Note again how the macro has been assembled in absolute terms into the body of
the text, and this is a good illustration to allow us to highlight a few of the
implications of this, in no particular order:
 

The final code size of the assembled file will be larger than might be
otherwise expected. (In theory this could create a speed issue but in a RISC
environment this is not normally a problem.)
Debugging can be harder as it is easy to lose yourself in long code repeats.
You require greater diligence to ensure that your registers contents are saved
in the appropriate places if required.



 Figure 18d. Disassembled output from Program 18c.



Including Macros
Programs 18b and 18c show the usefulness of macros, however that assume that
the macro source at this point has the macro definition with the body source. A
major benefit of macros is that that you can create a macro library that allows you
to simply include the macro or macro library you require as an when assuming
that have been written accordingly of course! With this in mind let’s re-address
this issue by creating a simple math macro file that will supply the two functions
offered by Program 18b and Program18c. This Program 18d below which is in
fact just a source file that includes the macro definitions of both. Program 18e is
the testing program for this.

 Program 18d. AddMult macro file.

/* Macros: Addtwo and MultTwo *
.macro addtwo val1, val2

@ On Exit R1,R2 contain val1, val2
@ R0 contains result
MOV R1, #\val1
MOV R2, #\val2
ADD R0, R1, R2

.endm

.macro multtwo val1, val2
@ On Exit R1,R2 contain val1, val2
@ R0 contains accumulated result
MOV R1, #\val1
MOV R2, #\val2
MLA R0, R1, R2, R0

.endm

End Program 18d.

Program 18d can be saved as a normal text source file with the ‘.s’ option. There
is no need to assemble and link it as that will be undertaken when it gets included
in the main program when called. Just ensure that the filename used in the include
(line two of Program 18e) is the one used to save the macro definition file above.
(They should also be in the same directory at this point.)



 Program 18e. Macro Include Test

/* Test External Macros */
.include “Prog18d.s”
.global _start

_start:
MOV R0, #0

_add:
addtwo 3, 4

_mult:
multtwo 2, 2

_exit:
MOV R7, #1 @ exit through syscall
SWI 0

End Program 18d.

You can save, assemble and link Prog18e.s in the normal fashion. If you execute
and echo the result then the answer, 11, should be forthcoming.

If you disassemble the executable via GDB the output will be along these
lines:



 Figure 18e. Disassembled output from Program 18e. 
Additional labels were included in the source file when it was assembled. Using
GDB in this way, especially in multi-macro assembly, makes referencing and
identifying sections of code easier to distinguish.

The ARM instructions to load 0 into R0 was provided at the start of the code
- even though it wasn’t needed as the result of ‘addtwo’ would overwrite the
contents of R0 regardless. The result from the ‘addtwo’ routine was carried in the
‘multtwo’ routine and accumulated accordingly.

Again, here static values are provided to illustrate how a macro is treated at
assemble and link time. However, we can utilise memory to pass values into such
macro routines should we not know what their values are at the time of writing
the macro, and this can be facilitated using the Stack using the methods illustrated
in the previous chapter. Be careful though when using these stack frames within



macros as the accumulative effect of adjusting the stack can have catastrophic
effects on your data and program management if you are not careful.

Note: When you have code that may contain multiple labels and you are not
sure when the start an end may be exactly then a good trick is to make
disassembling your code easier is to use something like:

disassemble _start, _exit+8

This normally works for me as I try to be consistent in the way I enter and exit
my assembler code.

Many of the larger programs within this book can be constructed and
implemented as macros. There are one or two I have provided.

Mostly though, I have given the assembler as a single linear source file to
make it easier to read and understand. However, once you have grasped the
concepts you are good to go.



19. File Handling

Files play a big part in the operation of your Raspberry Pi. Almost all the
activities you undertake involve the use of a file. Mostly, the Raspberry Pi OS,
takes care of the file management. The system provides the infrastructure to allow
programs to interface with it and to perform most file operations. This ranges
from creating files, to opening and closing files and many other file operations we
take for granted.

In Chapter 8 we saw how we can take a line of text and overwrite it or
convert it from uppercase to lowercase. That ASCII text was located as a string as
part of the program itself. In that instance we knew where the string was located
as there was a named label identifying it. What if the information we need was in
a file stored on an SD Card or on a USB?

Files are a fundamental element to all computer operations, especially so
Raspberry Pi OS (Raspbian). In this chapter we’ll look at how to create, open,
close, read from and write to files. Figure 19a lists the system calls we will utilise
to do this.

 Operation   Description   Call   Syscall 
 Read   Read from a file  sys_read  3
 Write  Write to a file  sys_write   4
 Open  Open/Create a file   sys_open  5
 Close  Close a file  sys_close  6
 Create  Create a file  sys_creat  8
 Sync  Sync-flush a file  sys_fsync  118

 Figure 19a. File Associated System Calls used in Program 19a.

We’ve used some of these before, and most require additional information passed
to them before being called. Remember that the Syscall number (listed in Figure
19a) must be loaded into R7, and any additional details provided via R0-R6. Not
all registers are needed for every call, but assume they are unless you know
otherwise. R0 is often used to return information by the Syscall, such as an error
number or result.

The listing for Program 19a shows how you can use these calls. In this
example, taking the contents of a file, reading the first 26 characters from it into a



memory buffer, before writing them out to a new file. This example assumes that
the files are in the current directory, or the same directory as the program itself.
Nothing special in the 26 characters, other than our input file will comprise an
uppercase, alphabet (A-Z), which we’ll convert to lowercase, before writing it to
the new file. The program will also illustrate some file error checking along the
way.

 Program 19a. File Creation and Access.

/* File Creation and Access Using Syscall */
/* Create and Open File, Read from File, Write to File */

.global _start

_start:
@ Open file to read in from.
@ Assumes file exits in current directory
@ Or generates an error message (error1)

LDR R0, =inputFile @ Addr of filename
MOV R1, #o_rdonly @ flag read only file
MOV R2, #s_rdwr 
MOV R7, #sys_open @ Call open file
SWI 0

MOVS R8, R0 @ Save/Test file flag in R8
BPL moveon @ If positive, moveon
MOV R0, #1 @ Set screen as output
LDR R1, =error1 @ addr of error1 message
MOV R2, #18 @ string length
MOV R7, #4 @ Write code 
SWI 0 
B finish @ terminate program

moveon: 
@ Create/and-or Open File to write too

LDR R0, =outputFile
MOV R1, #(o_create+o_wronly)
MOV R2, #s_rdwr @ access rights
MOV R7, #sys_open @ load syscall 5



SWI 0 @ Make the call
MOVS R9, R0 @ Save file flag
BPL readlinein @ If positive file there
MOV R0, #1 @ Non-existent so error2
LDR R1, =error2
MOV R2, #18
MOV R7, #4
SWI 0
B finish @ terminal program

readlinein: @ read line from InFile.txt
MOV R0, R8 @ File descriptor R8>R0
LDR R1, =inbuffer @ location of inbuffer
MOV R2, #alphabet @ length of alphabetbuffer
MOV R7, #sys_read
SWI 0 @ InFile >> InBuffer
MOV R10, R0 @ Save bytes written in R10
MOV R1, #0
LDR R0,=inbuffer
STRB R1, [R0, R10] @ Write null terminator to buffer

convertUpperCase:
PUSH {R8}
PUSH {R9}
MOV R8, #0 @ counter

loop:
LDR R0, =inbuffer @ Move file from in to out
LDRB R1, [R0, R8] @ doing ORR conversion
ORR R1, R1, #0x20
LDR r0, =outbuffer
STRB R1, [R0, R8]
ADD R8, #1 @ increment loop counter
CMP R8, #26 @ is it alphabet length?
BNE loop @ no so loop again
POP {R9} @ restore file files
POP {R8}

writebuffer:



MOV R0, R9
LDR R1,=outbuffer @ addr of outbuffer
MOV R2, #alphabet @ length of alphabet
MOV R7, #sys_write @ write converted buffer
SWI 0
MOV R1, #0

@ flush and close 'infile'
MOV R0, R8
MOV R7, #sys_fsync
SWI 0 
MOV R0, R8
MOV R7, #sys_close
SWI 0

@ flush and close 'outfile'
MOV R0, R9
MOV R7, #sys_fsync
SWI 0
MOV R0, R9
MOV R7, #sys_close
SWI 0 

finish:
MOV R0, #0 @ Use 0 return code
MOV R7, #1
SWI 0 

.equ sys_open, 5

.equ sys_read, 3

.equ sys_write, 4

.equ sys_close, 6

.equ sys_fsync, 118

.equ o_rdonly, 0

.equ s_rdwr, 0666 

.equ o_wronly, 1

.equ o_create, 0100

.equ alphabet, 26 @ file length in bytes

.data



inputFile: .asciz "infile.txt"
outputFile: .asciz "outfile.txt"
error1: .asciz "Input file error \n"
error2: .asciz "Output file error\n" 
inbuffer: .fill (alphabet+1), 1, 65
outbuffer: .fill (alphabet+1), 1, 66

End Program 19a.

If you look at the end of the listing for Program 19a you will notice, there are
several ‘equ’ definitions setting up constants (a few lines after the label finish:).
The ‘.data’ section contains areas where string information is stored. These areas
are vital to the program as they contain system calls values, flag values and file
names. These label names and definitions are commonplace within the industry,
and thus enhance program readability. Many programmers create specific macro
file definitions that you can then ‘.include’ to help ensure consistency if you so
desire.

There is a minimum of three parameters required by the system for opening
a file, and these are provided in the first three registers thus:

R0:   Pointer to the filename to open, stored as a null terminated ASCII string.

R1:  Flag to specify a mode of action for file open, read, write, read/write.

R2:  Access mode permission values.

The first five code lines of the program open the file we want to read from. The
system number for this is 5. if the file does not exist, an error is generated.
Therefore, the filename is essential, and we load the address of this into R0. R1
requires for a code specifying the file operation; we use in this case 0 as it is
being open as a read-only file. R2 defines the permission values and 0666 (octal
666) is required here.

On return, R0 will contain details of any errors. If a positive number, then
the file was located and opened. If it returns a negative value, the file could not be
found or opened. An error occurred, and it’s not possible to proceed, therefore the
next section of lines prints out the ‘error1’ message string.

Assuming all is good the value passed into R8 for preservation (contains the
descriptor for the file), a small jump is made, and program operation continues at
‘moveon’.



Having successfully opened the ‘inputFile’ we do the same for the
‘outputFile’. Although, in this instance, if the file does not exist the syscall will
create it for us. Information is passed again through the sys_open call. If all is
good, the branch to ‘readlinein’ takes place, otherwise an ‘error2’ message is
printed to the screen, and the program ends.

At ‘readlinein’ we first move the file descriptor previously saved in R8 back
into R0. R1 is pointed to an address of where we can store the contents of the file
we are reading-in, and then takes a number that defines the number of bytes we
need to read in, before calling sys-read. The bytes are read and stored in the RPi
memory at the defined location. On return from the call the number of bytes
written is returned in R0. This is moved to R10, so we have a pointer as to where
we have ended. A zero is then written at the end of the buffer.

The ‘convertupcase’ and ‘loop’ sections that follow are all about doing
something with the information read in from our open file. This can be whatever
you want at this stage. For example, here, we are going to read each byte from the
‘inbuffer’, ORR it with 0x20 to convert to lowercase and the store it back to the
‘outbuffer’ location. As we need a register or two to work with the contents of R8
and R9 are pushed on the stack for the interim. On completion R8 and R9 are
restored, and the ‘outbuffer’ contents are written to the open output file (using the
restored R9 as the file descriptor handle).

Finally, the two files are flushed and closed using sys_fsync and sys_close,
again using the relevant file descriptors in R8 and R9.

A few points. Before running the program create the input file ‘infile.txt’
using a suitable text editor and place:

ABCDEFGHIJKLMNOPQRSTUVWXYZ

on the first line. Save the file to the same directory as Program 19a. Make sure the
filename is the same as used in the .data section of the listing.

In the listing the ‘inbuffer’ and ‘outbuffer labels are used as buffers for the
reading, converting and writing the information. In both cases, I fill the buffers
with a string of As (65) and Bs (66) to distinguish them from one another. If the
program performs correctly, these will end up with the uppercase and lowercase
alphabets in them, respectively. This is handy if you wish to debug the program at
any point you can also dump these sections of memory to see what is there, thus
helping you to identify where you are up to or otherwise at any point.

Assemble and link Program 19a. Ensure that ‘infile.txt’ is in the same
directory and then execute the program. All being well you should see
‘outfile.txt’ appear in the directory. Open ‘outfile.txt’ and examine the result.



If there are any logical errors within your source, they should show up in the
contents of ‘outfile.txt’. One advantage of using the character strings, including
the As and Bs used in the memory buffers, is that if anything other than what you
expected turns up in ‘outfile.txt’ you can pinpoint where the error is.

Once you have the program and any versions you derive from it running
correctly, you can always change the As and Bs to 0s should you wish.



File Permissions
When opening and reading files earlier we needed to specify several values which
we described as flags and modes. We placed these in R1 and R2 as part of the
syscall process. We defined these as numeric values.

Figure19b is the output from a directory containing the files needed and/or
created by executing Program 19a. You can get such a listing by entering the
following in a terminal window:

ls -l

Anything in the current directory will be shown in the listing, including
directories and files.

 Figure 19b. File Attributes. 
The first column is the one with the file attributes. A string of ten characters
makes up this column: an example would be:

rwxr-xr-x

In the first column. In the case of a file then after the first character (-) the
following nine characters come as sets of three which define if the file can be
read (r), written (w), or executed(x), or not (-). The three groups of three relate to
permission of the ‘owner’, the ‘group’ and ‘other users’ have.



So, in the case of the first file in the listing, it can be read, it can be written,
and it can be executed. When a ‘d’ exists as the first letter of the string, then this
indicates a directory and not a file.

The attributes for infile.txt are:

-rw-r--r-- 1 pi pi 28 Sep 25 09:39 infile.txt

In the example above, we can see the first letter is not d but a hyphen (-). So, we
know (infile.txt) is a file, not a directory. Next the owner’s permissions are ‘rw-’
so the owner can read and write but not execute. This may seem odd that the
owner does not have all three permissions, but the x permission is not needed as it
is a text file, to be read by a text editor, and not executable. The group’s
permissions are set to r--, so the group can read the file but not write/edit it in any
way — it is essentially like setting something to read-only. We can see that the
same permissions apply to everyone else as well.

Compare this to ‘prog19a’ where the attributes are:

-rwxr-xr-x 1 pi pi 2384 Sep 25 09:54 prog19a

Here the first letter is a hyphen (-). So, we know it is a file, not a directory. Next
the owner’s permissions are ‘rwx’ so the owner has the ability to read, write and
execute. The ‘Group’ and ‘Other’ permissions are set to r-x, so they can read and
execute the file but not write nor edit it in any way.

How does this relate to the numeric values we used in the program? The
mode was a three-digit number, in fact it was an octal number.

To come up with this three-digit number you need to consider what
permissions you want owner, group, and all others to have. Each operation is
represented by a number: r=4 w=2 x=1

Consider the ‘prog19a’ attributes. Breaking it down into the three groups of
three we have:

Owner: rwx = 4+2+1 = 7
Group: r-x = 4+0+1 = 5
Other: r-x = 4+0+1 = 5

The value then is 0755. (Remember the 0 at the front signifies an octal value -
base 8).

The two text files are:

Owner: rw-=4+2+0=6
Group: r--=4+0+0=4



Other: r--=4+0+0=4

Which becomes = 0644.



20. Using libc

The assembler and linker we have been using to write and create machine
programs so far is just a small part of the GCC Compiler. As I said at the onset
the GNU GCC compiler is a C Compiler. It will take programs written in the C
programming language and convert them into machine code. Broadly speaking, it
takes the C source file and translates it into an assembly language source file,
which in turn gets translated into an executable machine code program which is
linked together. We have been dealing with the last couple of processes here. But
that is only just the tip of the iceberg.

This is not a book about C programming, but that is not to say we cannot use
many of the features that C and the GCC Compiler provides. This includes libc,
which is the standard function library of C. As we saw in an earlier chapter, we
can use the operating system Syscall to perform common operations such as
input/output, memory management, and string manipulation.



Using C Functions in Assembler
Likewise, the C language has no in-built facilities for performing these functions
but provides the interface to allow access to them, without necessarily needing to
know a lot about the underlying Syscall itself. In addition, many of the things you
may be looking to program for yourself may already be found in libc or available
in other C libraries, and they can be included and linked into your own assembly
source. So, there are libraries to be found that are pre-packed and ready to be
included by the compile process. Figure 20a illustrates diagrammatically how libc
sits within the overall interface.

 Syscalls   User Space
 Kernal  libc   Procedures 

 Figure 20a. libc and user space.

The kernel in our case is the Raspberry Pi OS. The area above it is the user space.
This is where our files sit. Recall the addresses that were being displayed when
we used GDB to disassemble our programs. The libc code sits directly on top of
the kernel and any of our application code sits on top of this. Although it makes
no real difference operationally, diagrammatically we can see how easy it is for
the libc functions to tap into the kernel. For the most parts when an application is
written, because it is often written in C, it uses the libc interface to access the
Syscalls. Rarely in this situation would a programmer go directly to the Syscall.

The main reason for using the Syscalls directly and not using libc would be
one of space and speed. Some might also consider it a purer method of
programming and not the rather disjointed code that integrating libc creates. The
libc library is of a certain size and much of its basic configuration might be
redundant. This is not normally an issue, but for a tight, small routine where
speed and memory overhead might be critical then it may be a critical
consideration. Technically your own program becomes a procedure which uses
the resource libc provides.

From a user point of view a copy of ‘The GNU C Library Reference
Manual’ is essential. Not to learn C (but that isn’t a bad thing to do — you will
become increasingly aware of how fundamental it is to system and application
programming) but for the detail of the various functions you can access. This
contains information required and returned. In this chapter we’ll be looking at
some worked examples on these and using the above document as our source.
The GNU C Library Reference Manual can be found on the GNU website for



download. Another source of instant help is the online manual. At the command
line prompt type:

man printf

and you will get a lot of text output relating to the use and directives available
within this C function. Here ‘man’ stands for ‘manual’ and it will provide
information relating to the function name after it.



Source File Structure
The format of the source file used with the full GCC compiler is a little different
from what we have been using to date. It is no more difficult to create and is in
fact a lot simpler to compile as we do not need to do the assembly and link stages
separately — they can be done with a single command. Have a look at Program
20a. This is a revised version of the ‘write string’ code that formed Program 7a.

 Program 20a. GCC source file structure.

/* Printing a string with libc - requirements change */
/* string must end with zero using printf function */

.global main

.func main
main:

STMFD SP!, {LR} @ save LR
LDR R0, =string @ R0 points to string
BL printf @ Call libc
LDMFD SP!, {PC} @ restore PC

_exit:
MOV PC, LR @ simple exit

.data
string:
.asciz "Hello World String\n"

End Program 20a.

The first thing to notice is that the ‘global _start’ definition has been replaced
with ‘global main’ thus:

.global main

.func main
main:

The structure used is important as this is used by the compiler to tell libc where
the main program is located. Because all C and lib C routines are written as
named functions then we must declare this main part of our code as a function
and then use a label to impart exactly where the function starts. These three lines



do that. (As you can see, they effectively undertake the same task that ‘_start’
label does when using the assembler-linker only, notwithstanding the addition of
the function definition.)

The two instructions at the start and end of the main function save and then
restore the link register on the stack. These commands and their use were
discussed in Chapter 17. Strictly speaking they are not necessary here, but it is
often an accepted convention just to preserve the link register when a function is
entered. So, we’ll stick with it for now.

The libc function printf is used to print the asciz string defined at the end of
the listing. printf is not a C command but is a function defined in the library that
we can use. It is a very versatile function and all that is required before we call it
is for R0 to be given the address of the string. In all cases printf requires that the
string be terminated with a zero and therefore the asciz directive is — and should
always—be used.

Finally, we have abandoned our normal exit function for the much simpler
MOV instruction. The SWI version would have worked equally as well, but the
full GCC compiler will accept this exit method which is more common in the
wider programming world. You can continue to use the SWI method if you like
the option of using the echo command to display return contents.

If you have tried to assemble and link this command in the way we have
described so far it will have failed because there is no ‘_start’ entry point.
Compiling with GCC can be done in a single-step thus:

gcc <options> <destination_name> <input_name.s>

So, for Program 20a you might use:

gcc –o prog20a prog20a.s

and execute the program with:

./prog20a



Investigating the Executable
At this stage it is worth looking at the code that is compiled using GDB.
Recompile including the –g option to create the debugging data:

gcc –g –o prog20a prog20a.s

and then enter the disassembler:

gdb prog20a

If you now disassemble some code using:

disassemble main 

or:

x/44i main

you should see by the labels used that the library component of the file is tagged
on after ‘_exit:’. However, if you look through the listing you should also see
branches to addresses before your main entry point. Inspect these areas. You will
see that the labels associated in the listing indicate that this is libc initialisation
code. Your program has almost been wrapped within libc! As you look at the
listing you will probably notice some instructions that we haven’t discussed so far
(but will with the next program example).

Investigating listings in this way is a great way to learn about machine code
programming. Remember, you can step-through this code and print register
values out at any time using GDB, so you can get a good insight into what is
happening and how.

The printf function is amazingly versatile. Program 20b shows how values
can be passed into printf and used in printing results.

 Program 20b. Passing parameters to printf..

/* Printing a string using libc and passing */
/* parameters to function for use in printf */

.global main

.func main



main:
PUSH {LR} @ use pseudo directive
LDR R0, =string @ R0 points to string
MOV R1, #10 @ first value in R1
MOV R2, #15 @ second value in R2
MOV R3, #25 @ result in R3
BL printf @ Call libc
POP {PC} @ restore PC with pseudo

_exit:
MOV PC, LR @ simple exit

.data
string:
.asciz "If you add %d and %d you get %d.\n"

The first thing to notice here is that the entry and exit instructions for main: have
changed. We are using PUSH and POP. These are compiler directives and not
ARM instructions, but they have the same effect as the ones used in Program 20a.
They are a lot easier to use as you don’t have to think too much about what type
of stack you are going to use and what order the stack adjusters are used in.
(However, it is worth remembering that should you decide to use another
assembler, directives may change and not be compatible with your existing code.
That said, you will almost certainly have to adjust your code format with a new
assembly program.)

The string definition here includes three parameters within it. These are
signified by the preceding ‘%’. If you compile and run this program you will see
that its output is: If you add 10 and 15 you get 25.

Looking at the listing for Program20b we can see that these three values
were passed in R1, R2 and R3. When using libc functions such as printf there is a
standard way to pass and return information into them and we’ll look at this in the
next chapter which deals with writing functions.

The table in Figure 20b below lists some of the output options available to
use within printf. This list is by no means extensive, but it does provide some
options for you to experiment with, using and editing the above program.

 Code   Function 
 %d   Print an Integer as a signed decimal number.
 %o  Print an Integer as an unsigned octal number.



 %u  Print an Integer as an unsigned decimal number. 
 %x  Print an integer as an unsigned hexadecimal
 %X  Print an integer as an unsigned hexadecimal

 number using upper case letters.
 %c  Print a single character.
 %%  Print a literal % character.

 Figure 20b. Output parameters recognised by printf. 



Number Input with Scanf
You could be forgiven for thinking that scanf performs the reverse task of printf,
but it does not. scanf takes a string of characters entered at the keyboard and
converts it into its numerical value and stores it in memory. For example, if when
using scanf you typed:

255

when requested scanf would store the binary equivalent in memory. In hex this
would be:

0xFF

The reason for discussing this routine at this point, rather than the string-input
routine equivalent of printf is that it illustrates another way a libc function expects
and uses data. Not all functions expect data in the same way. This is a concept
that you will need to bear in mind as you come to learn how to access libc
functions and write your own.

However, as with printf, scanf recognises many, many different formats and
you could spend a great deal of time learning and experimenting with them both.
For this example, we’ll stick with the use of integer values. This is the %d format
introduced in the previous program example.

The format for use of scanf is as follows (this is stylised — it is not how it
would be coded in C):

scanf <input_format>, <variable>

or:

scanf “%d”, integernumber

The steps for using scanf are these:
 

Declare a memory variable holding the address of the formatting string. This
will be a string “%d” for this example.
Declare a memory variable holding the address of where the value is to be
placed.
Make space on the stack for the converted ASCII string to be stored.



Notice how in this case we are pointing to the information indirectly; we are
passing the addresses of the relevant information. This is important to know
because it means that to use the indirect addresses we have to declare the
variables, and here we are talking about the ‘.word’ directive, within the text area.
The string definitions themselves should remain outside the text section and be
defined in the data segment of the code. The other thing you need to know is that
scanf stores its result on the stack, so to prevent it being corrupted we need to
adjust the stack point by a word to make a safe place for it. Program 20c should
help disperse the mist.

The line numbers are there to help in the description of the program and
should be omitted when you are entering the listing.

 Program 20c. Reading and converting a number with scanf.

 1 / *Reading a number using scanf */
 2 /* via registers and the stack */
 3 
 4 .global main
 5 .func main
 6 main:
 7 PUSH {LR}
 8 SUB SP, SP, #4 @ Make room on stack
 9 LDR R0, addr_format @ get addr of format
10 MOV R1, SP @ place SP in R1 and
11 BL scanf @ store entry on stack
12 LDR R2, [SP]
13 LDR R3, addr_number
14 STR R2, [R3]
15 ADD SP, SP, #4
16 POP {PC} @ restore PC
17
18 _exit:
19 MOV PC, LR @ simple exit
20
21 /* as scanf needs addresses of strings we */ 
22 /* assemble them in the text area */
23
24 addr_format: .word scanformat
25 addr_number: .word number
26



27 .data
28 number: .word 0
29 scanformat: .asciz "%d"

End Program 20c.

Let’s look at the listing. Lines 6 and 18 should be familiar and should be
considered part of standard procedure. Line 8 is where we adjust the stack pointer
by four-bytes to make some space for scanf. Before we call scanf we need to
place the SP address into R1 (line 10) and the address of the format string in R0
(line 9). The format string should indicate the details of the value that will be
entered at the keyboard and read by scanf. This ensures that the value is
converted correctly.

After calling scanf (line 11) the converted binary value is now held on the
stack, so this is retrieved (line 12) and the address of where it is to be saved is
placed in line 13. Then using indirect addressing the value is stored (line 14). To
tidy up, we should reset the stack point by adding the four additional bytes we
originally subtracted from it (line 15).

Lines 25 to 29 show how we create addresses to point to the actual data to be
utilised. The actual data is in the .data subsection (lines 27-29) and the addresses
of these two places are held in word length addresses within the text area defined
by lines 24 and 25. Thus on assembly the four-bytes of space created by line 24
will hold the address of the string “%d”. This is the formatting string we
encountered earlier. Line 25 creates a place for the address of where the result
returned by scanf will be placed.

When you run this program there will be no prompt. Just enter a number
such as 255 and press the return key. The prompt will be returned. If you have
compiled the program with debugging information enabled (the –g option) then
you can use GDB to single step-through the code and interrogate the registers at
each stage. This is a very worthwhile exercise and what seems a convoluted way
to do something is in fact remarkably simple once you have your head around it!

Program 20d extends the above routine to provide some interaction using
printf to request the value and then print the result.

Note that in this program the information is expected to be entered in
decimal format, but the result is displayed in hex — see the very last line of the
program.



Getting This Information
If you have no experience with C, you may be wondering how best to get all this
information and then understand how to use it. Good question. The bald answer is
that there is no central resource and that it comes down to investigation and
interrogation. Websites and user forums are a good source of detail for one. The
other way is to look at what the function itself does and by generating the source
code for it, then using GDB to interrogate it. As your knowledge of ARM
machine code increases then this will become a more common option and we’ll
have a look at just how to go about it in a later chapter.

 Program 20d. Combining scanf and printf.

/* Reading a number using scanf */
/* and printing it with prinf */

.global main

.func main
main:

PUSH {LR} @ use pseudo directive
SUB SP, SP, #4 @ make a word on stack

LDR R0, addr_messin @ get addr of messagein
BL printf @ and print it

LDR R0, addr_format @ get addr of format
MOV R1, SP @ place SP in R1
BL scanf @ and store entry on stack

LDR R1, [SP] @ get addr of scanf input
LDR R0, addr_messout @ get addr of messageout
BL printf @ print it all

ADD SP, SP, #4 @ adjust stack
POP {PC} @ restore PC

_exit:
MOV PC, LR @ simple exit



addr_messin: .word messagein
addr_format: .word scanformat
addr_messout: .word messageout

.data
messagein: .asciz "Enter your number: "
scanformat: .asciz "%d"
messageout: .asciz "Your number was 0x%X\n"

End Program 20d.



21. Writing Functions

Functions are the basic building blocks you can use to construct your programs. A
function has a name and a purpose, and it is written in such a way that it provides
a result each time it is called. The function will accept information and produce a
result based on the information it is given. It may also pass information back to
the calling program. All functions have a predefined structure, and if we want to
write a function ourselves then we should also follow that structure.

Ideally, before sitting down to write a program you should give its structure
some thought and as we saw in Chapter 2, try and plan your program as a set of
routines called from within a main controlling program. Each of these routines
may themselves call smaller routines. When breaking these down any section of
code that is used more than a few times could be worth writing as a function,
especially if you may look at using it in other programs. Effectively creating
reusable code.

However, there is an overhead in doing this because a function must
conform to certain standards which relate to entry and exit conditions. Clearly the
length of the function must be more than a few lines to make it worthwhile
coding.

Often when programming we don’t always plan as well as we should. One
thing I like doing is returning to code after completion and trying to re-structure
it. This can be rewarding and a way to do this is to look at what can be broken
down into functions.



Function Standards
A couple of the libc functions we looked at in the last chapter, namely printf and
scanf, both expected to receive and return information. We also saw that we can
pass information into these functions using the registers R0, R1, R2, and R3. This
is determined by a standard called the Application Binary Interface (ABI
standard) which was carefully devised and defines how functions should run. The
point being that if everyone follows the standard and writes their functions in the
same way, then everyone will be able to use each other’s functions. (C
programmers use the AAPCS standard which goes into things in a little more
detail). As far as we are concerned, they achieve the same result at code level, but
it is worth getting online and investigating both in a little more detail at some
point.

 Register   Role   Preserved 
 R0   Argument/Result  No
 R1  Argument  No
 R2  Argument  No
 R3  Argument  No
 R4  General  Yes
 R5  General  Yes
 R6  General  Yes
 R7  General  Yes
 R8  General  Yes
 R9  General  Yes
 R10  General  Yes
 R11  General  Yes
 R12  General  Yes
 R13 (LR)  Return Address  No
 R14 (SP)  Stack Pointer  Yes

 Figure 21a. Register designations in a function call.

Figure 21a details the purpose of each register when a function is called. In
summary a function should adhere to the following:
 



It may freely modify registers R0, R1, R2 and R3 and expect to find the
information in them that it requires to carry out its task.
It can modify registers R4-12, providing it restores their values before
returning to the calling routine.
It can modify the Stack Pointer providing it restores the value held on entry.
It must preserve the address in the Link Register so that it may return
correctly to the calling program.
It should make no assumption as to the contents of the CPSR. As far as the
function is concerned the status of the N, Z, C and V flags are unknown.

So, let’s break this down in a bit more detail.
It is this standard that says R0, R1, R2 and R3 (in that order) will be used as

inputs to a function. But this is only if the function requires four inputs. If it only
needs one then this goes in the first register R0, if it needs a second that must be
placed in R1 and similarly for R2 and R3. If it only needs one input, then it does
not matter what is in the other registers as they will not be used. If the function
returns a value it will always go in R0 - the first byte at least, so we can use ‘echo
$?’ to return a value.

The second point made is that the other registers R4-R12 inclusive must be
preserved so that when the calling program gets control back from the function
the contents of R4 through to R12 inclusive must be the same as when the
function was called. This is not to say we can’t use them. If your function needs
them, then one of the first things it should do (but not necessarily the very first as
we shall see) is to push their contents onto the stack and then restore them from
the stack before finishing. These two complementary instructions would do the
job:

STMFD SP!, {R4-R12} @ save registers R4 thro R12
LDMFD SP!, {R4-R12} @ restore R4 through R12



More Than Three
You may be asking at this point what happens if we need to pass more than four
items to the function we are calling? The answer lies in the next ‘rule’ in that we
can modify the Stack Pointer (SP) again provided we ensure that it is set correctly
on completion of the routine. However, this is not always strictly true, because if
we need to pass more information into the function the control of the SP has to be
managed by the calling routine, especially if the amount of data is unknown. If a
function must have an additional four items of data every time, then the function
can manage the SP, but you need to be wary of this.

You will recall in Program 20b we called printf to display three items of
information by passing the data through R1-R3. Program 21a extends this to pass
six values to the calling routine. The listing has lines numbered for ease of
discussion.

The program is pretty much identical until we get to line 13 where we start
taking the word values stored in lines 31-33 inclusive and pushing them onto the
stack. By the time we reach line 21 we have the address of the string in R0 whilst
R1, R2 and R3 hold the values 1, 2 and 3, respectively. Then the stack holds (at
the top) 6, and below that 5 and below that 4. Despite being single digits, these
are all words with values and occupy four-bytes each. If you run the program the
result you will see on screen is:

Values are: 1, 2, 3 and 6

 Program 21a. Passing function values via the stack.

 1 /** Printing a string using printf **/
 2/** and passing parameters to it **/
 3/** via registers and the stack **/
 4 
 5  .global main
 6  .func main
 7 main:
 8  PUSH {LR} @ use pseudo directive
 9  LDR R0, =string @ R0 points to string
10  MOV R1, #1 @ first value in R1
11  MOV R2, #2 @ second value in R2
12  MOV R3, #3 @ result in R3
13  LDR R7,=value1 @ get address of param
14  LDR R8, [R7] @ load value1 into R8



15  PUSH {R8} @ put on stack
16  LDR R7,=value2 @ repeat for value2
17  LDR R8, [R7]
18  PUSH {R8}
19  LDR R7,=value3 @ repeat for value3
20  LDR R8, [R7]
21  PUSH {R8}
22  BL printf @ Call libc
23  ADD SP, SP, #12 @ balance stack
24  POP {PC} @ restore PC
25
26 _exit:
27  MOV PC, LR @ simple exit
28 
29 .data
30 string: .asciz "Values are: %d, %d, %d and %d\n"
31 value1: .word 4
32 value2: .word 5
33 value3: .word 6

  End Program 21a.

This is because we only instructed printf to print an extra value, and it looked for
it on top of the stack. Adding in a couple more d% into the printf string will
provide the means to print the two additional values. You would also need to
swap the push order onto the stack if you wanted to ensure that the numbers were
displayed in the correct order.

Line 23 is the interesting one. We adjusted the SP by 12 bytes because of the
three PUSH instructions. This line moves the SP back those 12 places and ensures
that the system is hunky dory. This could have been achieved with three POP
instructions equally as well; however, this is a neat way to restore the status quo if
you are dumping a lot of data on the stack.

If a function requires the use of registers, then we should save the register
contents (and restore them after the function has completed). The simplest way to
do this would be to push the values straight onto the stack, but this could force
any required data down the stack and out of sync with the function. In situations
such as these the best answer is to save the register contents to an area of memory
that you have set aside for work space. Alternatively, you can look to push the
data on the stack first, adjusting the SP if required, and prior to pushing the
function parameters there.



If you are writing a function that needs additional information passed to it on
the stack and the registers saved, then you can use the stack for all of it as you are
managing the stack. If your function expected three items on the stack and you
needed to save R4 then you can access the stack directly at the three locations
using a simple immediate offset, something like this:

LDR R4, SP+4 @ Get first data word on stack

The second item would be at SP+8 and the third at SP+12.
Remember that these instructions do not adjust the SP so you must reset it on

completion as already described. (NB: If you find this difficult to visualise then
you can always physically draw the stack and identify where each item of data is
being placed.)



Preserving Links and Flags
One thing you must always remember when writing functions is that on
completion the function is going to need to return program control back to
whence it came. This means that it is imperative to preserve the integrity of the
Link Register. If you intend to call another function or routine at some point, then
you may well use a BL or BLX instruction to do so. If you do this then the
contents of the LR will be overwritten and lost. Therefore, they must be stashed
away safely in your memory workspace somewhere or pushed onto the stack for
later restoration.

There is no requirement for preserving the Status Flags. As far as the
function is concerned these are generally unknown. That said, your function may
have a requirement for the flags as a signal back to the calling line and this is a
valid way to signal information back, especially as R0 is the one standard way of
returning a value. For example, the N flag might be set on return to signal that an
error occurred, and an error code placed in R0.



Robust Print Routines
Sort routines are ideal mechanisms for function uses and also illustrate how you
can build libraries of routines that can perform consistently across your own
portfolio. Data manipulation and sorting is a particularly good use of computer
time. We’ll look at a flexible sort routine before the end of this chapter.

Robust print routines are also useful. We have looked at a few in earlier
chapters so, this one utilises the printf function and is flexible to your needs. This
example will print a vector of word width values. Program 21b is the subroutine
itself, and Program 21c will allow you to text it is working. There is nothing
special it requires the libc library as it utilises the printf function, so will need to
be assembled using GCC. To work the routine needs the address of the vector
containing the word elements, the number of elements and a couple of pointers to
allow the routine to keep track of its position in the vector.

 Program 21b. Print vector of words.

/* printw - This routine prints a vector of words */
/* R0 = address of vector */
/* R1 = number of vector elements */
/* R2 = pointer string to print first element */
/* R3 = pointer string to print next elements */

.global _printw

.equ _wsize,4

.align 2
_printw:

STMFD SP!, {R4, R5, R6, R7, LR} 
CMP R1, #0 @ exit if no elements
BLE _last
MOV R4, R0 @ save parameters to locals
MOV R5, R1
MOV R6, R2
MOV R7, R3
LDR R1, [R4], #_wsize @ load first element
MOV R0, R6 @ address of first string
BL printf @ print it
SUBS R5, R5, #1 @ decrement counter
BEQ _last @ exit if zero



_printw_loop:
LDR R1, [R4], #_wsize @ load next item
MOV R0, R7 @ address next string
BL printf @ print it
SUBS R5, R5, #1 @ decrement counter
BNE _printw_loop @ loop if more

_last:
LDMFD SP!, {R4, R5, R6, R7, PC} @ restore, return

  End Program 21b.

The test harness below has a list of items after the label ‘values’ - there are 11 in
total. These can be changed and edit as you require.

 Program 21c. Test printw.

/* Test subroutine printw */
.equ _size,4
.equ _items, 11

.global main

.align 2

.section .rodata
first: .asciz "Vector of words - values : %d"
rest: .asciz ", %d"
final: .asciz "\n"
values: .word 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60

.align 2

.text

main:
LDR R0, =values
MOV R1, =_items
LDR R2, =first
LDR R3, =rest
BL _printw
LDR R0, =final
BL printf



MOV R7, #1
SWI 0 

  End Program 21c.

Assuming both source files in your current directory you can assemble them as
follows:

gcc -o testprint prog21b.s prog21c.s

You can then execute the code with:

./testprint

As we have used both files in the same command line assembly, we do not need
to use the ‘include’ directive.

We will use Program 21b when for printing out the results of the next
routine.

The bubble sort, sometimes referred to as sinking sort, is the simplest sorting
algorithm that works by repeatedly swapping the adjacent elements if they are in
wrong order. The pass continues through the list is repeated until the list is sorted.
The algorithm, which is a comparison sort, is named for the way smaller or larger
elements "bubble" to the top of the list. The comments should help you
understand what is going on.

This simple algorithm performs poorly in real world use and is used
primarily as an educational tool. More efficient algorithms such as quicksort,
timsort, or merge sort are used by the sorting libraries built into popular
programming languages such as Python.

 Program 21d. Bubble Sort Routine.

/* Bubble Sort - bubble sorts vectors of words */
/* R0= start of vector of elements */
/* R1= Number of elements to sort */
/* R4 = current pointer */
/* R5 = inner counter */
/* R6 = keep_going flag */
/* R7 = first element */
/* R8 = second element */
/* R9 = swap register */



.global _bubble

.text
_bubble:

STMFD SP!, {R4, R5, R6, R7, R8, R9, LR}
CMP R1, #1 @ must be > 1
BLE _exit @ exit if nothing to do

SUB R5, R1, #1 @ Set inner counter
MOV R4, R0 @ Set current pointer
MOV R6, #0 @ Register set on swap

_loop:
LDR R7, [R4], #size @ load element
LDR R8, [R4] @ and next element
CMP R7, R8 @ compare them
BLE no_swap @ branch if second greater

MOV R6, #1 @ set keep_going flag
SUB R4, #size @ reset to first element
LDR R9, [R4] @ Load word at address
STR R8, [R4] @ Save lower value back in memory
STR R9, [R4, #size]! @ Complete swap process

no_swap:

SUBS R5, #1 @ decrement counter
BNE _loop @ loop again if not finished

end_inner:
CMP R6, #0 @ check if done
BEQ _exit @ and leave if not set
MOV R6, #0 @ clear flag 
MOV R4, R0 @ reset pointer
SUB R5, R1, #1 @ reset counter
B _loop @ And go again

_exit:
LDMFD SP!, {R4, R5, R6, R7, R8, R9, PC}

.data

.equ size,4



  End Program 21d.

The listing provided as Program 21d will test the bubble sort. This test has 16
items in total and includes signed, negative numbers. The routine prints then
before the sort and then after the sort. The number of items can be changed and
adjusted to suit.

 Program 21e. Bubble Sort Test.

/* Bubble Sort Test */ 

.global main 
main:
LDR R0, =values
MOV R1, #items
LDR R2, =before
LDR R3, =comma
BL _printw
LDR R0, =new_line
BL printf
LDR R0, =values
MOV R1, #items
BL _bubble

LDR R0, =values
MOV R1, #items
LDR R2, =after
LDR R3, =comma
BL _printw
LDR R0, =new_line
BL printf

MOV R7, #1
SWI #0

.equ items,16

.data
before: .asciz "Order before sorting, values are : %d" 
after: .asciz "Order after sorting, values are : %d"



comma: .asciz ", %d"
new_line:.asciz "\n"
values: .word 12, 2, 235, -64, 28, 315, 456, 63, 134, 97, 221, -453, 190333, 145,
117, 5

  End Program 21d.

Ensure that the source for Program 21b is in the same directory as Program 21d
and Program 21e and assemble the files with:

gcc -o testbubble prog21b.s prog21d.s prog21e.s

and execute with:

./testbubble



21. Writing Functions

As I have already stated this isn’t a book about learning to program in C, but
the fact is as you delve deeper into ARM assembler on your Raspberry Pi you
will probably be drawn towards C. At the very least you will probably want to
learn more about the libc functions so that you can take advantage of them in
your own programs. You might want to look at the machine code that constitutes
the libc functions to see how they work, and learn from them. This is called
reverse engineering and it plays a major part in all software development, as
programmers look at how other programmers have achieved certain results and
seek to improve on those themselves.

While the libc functions are well documented from a C programmer’s
perspective, there is not a lot of detail about using them at the lower machine
code level. I guess this is understandable. Given that C is relatively
straightforward and there are literally thousands of program examples available to
you (in manuals, online and in forums) it is extremely easy to write a C program
containing a particular function that you can compile into an assembly language
source file and then examine it, investigate it and refine it for your own purposes.

With GCC and GDB you have the tools to do so at your disposal. This
chapter provides an introductory primer towards that goal. You may well
encounter some frustrating times, but as you become more familiar with the way
GCC converts C into machine code then you will become more familiar with the
code it is generating.



GCC - The Swiss Army Knife
GCC is a bit like a Swiss Army Knife, it must be able to deal with all situations
and it goes about it in a methodical manner. The use of the assembler and linker
as standalone tools in the earlier part of this book shows that GCC isn’t a single
beast; it is more a controller for several GNU programs, running them one-by-one
in order to produce a result. But the good thing is that we can stop the process at
any point in that chain and this is to our benefit.

GCC can compile a C program to an executable file with just a single
command line thus:

gcc –o tornado tornado.c

This will take a C program called tornado.c and convert it to an executable file
called ‘tornado’. It does this using several separate steps:
 

Pre-processor (CPP):
This takes the C source and gathers information about the #defines and
#includes so that it has a list of all the variables and additional bits of
information and files it will need.
GCC: 
Creates the assembly language source listing. It does this by using some
basic rules and building the sections of code needed as a series of building
blocks which calls functions in libc. It effectively organises your data and
information using the functions rules we discussed in the previous chapter
and then inserts the function call. It then assembles the code required to
handle any information returned before starting the process again. Once this
is complete the source file, with a ‘.s’ extension, is complete.
AS: 
The assembler takes the source file and converts it into an object file (.o) as
described much earlier in this book.
LD: 
The linker takes the object code file and adds to it all the additional files and
libraries required. Again, this process was described in an earlier chapter.



In Chapter 14 we saw that by using GDB the final executable code produced by
GCC is not a straightforward start-to-finish linear flow but an integrated suite of
code that can provide a solution to every legal C program given to it!

What GCC does not give you is tight, highly refined machine code. If space
and speed are critical then you need to code at the lowest level. The Raspberry Pi
OS (Raspbian) itself is written mostly in C and compiled. But critical areas of it
are coded directly in assembler. Compiled code can be optimised at the source
stage and GCC provides some automated options for doing this. However, this is
outside the scope of this book. But in a way, when looking at the assembler
source file created to execute a particular function, what we will be doing is to
optimise the source, cutting away everything that is not needed, until we have the
bare bones assembler to do what we need.



A Simple C Framework
The framework for a C program is simple enough. Program 22a illustrates the use
of the C function ‘putchar’ to print a single ASCII character to the screen. It has
six lines.

 Program 22a A simple C program to print an asterisk.

#include <stdio.h>

int main()
{
putchar(‘*’);
return 0;
}

  End Program 22a.

The first line tells the compiler that the file stdio.h should be included in the
compilation. This is the file that includes the standard input-output interfaces
including functions such as printf and the one we are interested in now —
putchar. This is the part of the file that would be handled by the pre-processor
described earlier, and this is the case for any line that begins with a hash.

The actual program starts with the function named main(). All functions
begin with an opening brace ‘{’ and end with a closing brace ‘}’. Everything
between the opening and closing braces is considered a part of the function.
main(), like all C functions, must state what kind of value it returns. The return
value type for main() is int, which means that this function returns an integer to
the operating system when it completes. Here, it returns the integer value 0. A
value may be returned to the operating system to indicate success or failure or
using a failure code to describe the cause of failure.

Hopefully you will have already cottoned onto how the main() in the C
program above ties in with the main function in our assembler source files to date
(and to a lesser extent the start function in the assembler listings that we looked at
the start of this book).

In amongst all this we have the crux of the program – putchar – being
instructed to print an asterisk to the screen.



Program 22a can be entered using a text editor (Vim or Geany), but the file
should be created with the .c extension:

prog22a.c

To compile this C program into an executable and run it we use:

gcc –o prog22a prog22a.c
>

You should see an asterisk printed on the screen before the prompt. Look
carefully it is easy to miss!



Sourcing the Assembler
Given what we have learnt in the past few chapters you might be able to take a
good guess at what you would expect to see in the assembly language source code
generated for this C program. The function prints a single character. We would
expect therefore that, as specified by the AAPCS standard, the ASCII code for the
character to be printed would be loaded into R0. No other information is passed.
The routine will complete with a return value of 0, so we should also expect to
find this passed back in R0 as per standard. Let’s C!

To create an assembler listing from a .c file we use the –S directive (note
must be capital ‘S’), thus: gcc –S –o prog22a.s prog22a.c

GCC will create a file called prog22a.s and this will hold the assembler
listing. Open this in a text editor and you should see something similar (it may not
be identical) to what is shown in Figure 22a.

You should be able to quickly identify the body of the program in here. In
fact, of the 30 plus lines of assembler only a handful of them are of significance
relative to what we are after. All the additional information can ultimately be
discarded but was an important transformation step for GCC when it did the
initial conversion. This conversion is very methodical and is a case of one size
fits all using a brute force method of working. GCC must create workspace for
each function it is dealing with in the conversion process and has to protect this
workspace for its needs. In broad terms it does this by partitioning an area on the
stack for the function’s use. This is called to the stack frame (introduced in
Chapter 17 which is tracked using a Frame Pointer (FP), also introduced in
Chapter 17.

This marks the start of the stack frame and each function creates its own
stack frame to manage local variables. The stack frame is therefore an important
aspect of a C program, but they are less important in creating assembler.
However, understanding what it does is important in allowing us to deconstruct C
derived assembler, more on which in due course.

Back to the listing. It is good at this point to create a backup of this initial
assembly file. You will want to start deleting lines and adjusting code to create a
smaller compact source file that you can assemble and test. Thus:

cp prog22a.s prog22a.so

would create a copy with the .so indicating to you that it is source original.



 Figure 22a.  The assembler generated by GCC from the C program. 



Our purpose here is to cut this source down so that we can assemble and link it
directly and produce the same result as the original C program. GCC has
constructed the assembler source using some basic building blocks. The first 15
lines provide various items of information. There is a directive identifying the
instruction set for which this code is to be compile (armv6) and the specific
floating-point unit to be used (VFP). The eabi attributes (embedded-application
binary interface) are specifies standard conventions for file formats, data types,
register usage, and options that are present or absent on the CPU. The attribute
settings listed above are not important, for our purposes and so can be deleted.

There follows the file name and definition of the ‘.text’ section. Again, for
our small assembler construct these can both be deleted.



 Figure 22b.  The C assembler source with directives removed. 
Having done all that we are left with the listing shown in Figure 22b, with line
numbers for ease of reference. The first three lines define the main() function, and
we will need to edit these slightly for use in our assembly listing. This is followed
by a couple of comments (lines 4 and 5) provided by the compiler in relation to
management of the stack frame for this routine. Again, we will not need these,
and they can be deleted.

Lines 6 and 12 act in tandem to preserve the addresses held in the Frame
Pointer and Link Register The FP is of no importance to us here but we do need



to preserve the LR before calling the putchar routine so a suitable PUSH and POP
instruction can be substituted here. Line 7 can also be removed as we do not need
to process anything relating to the FP.

The crux of our code comes down to lines 8 and 9. The ASCII code for the
asterisk (42) is moved into R0 and putchar is called. Lines 10 and 11 are then
used to place a zero in R0. You will recall that the original C function is to return
zero. For our purposes, we do not strictly need these two lines and they can be
removed. What we are left with is the listing presented as Program 22b.

 Program 22b. The final putchar listing.

.global main

.func main
main:

PUSH {LR}
MOV R0, #42
BL putchar
POP {PC}

  End Program 22b.

This listing will assemble and run correctly. Although the original C program was
relatively trivial the methodology used to create and reduce the assembler source
that it creates is sound and can be applied in virtually all cases.



A printf Example
We have already examined the use of printf in assembly language programs, but
we’ll look at it again, this time from the C perspective as it provides a good
insight into how C programs are constructed that will be useful when looking at
the assembler. Program 22c is the C file for the famous “hello world” program.
On the face of it, this is not much different from our previous putchar example.
But in fact, it is.

 Program 22c. C listing for the ‘hello world’ program.

#include <stdio.h>
int main()
{

printf("hello world");
return 0;

}

  End Program 22c.

You can convert this to assembler using:

gcc –S –o prog22c.s prog22c.c

Figure 22c lists the derived assembler minus the initial header and footer
directives, again this may differ from your output but will fundamentally be the
same.

Given our knowledge of printf and applying what we learnt above, the main:
section of the program should be straightforward — nothing new to learn here. It
is the other areas that are of interest —notably the areas marked by the labels
LC0, L4 and L3. The L4 label is not required nor is the ‘.align 2’ directive — the
label will clearly be on a word boundary as it comes directly behind code. L3
marks a reserved word to hold the address of the ‘hello world’ text marked by
LC0. This was a technique that we used when playing with the scanf function in
Program 20c but is different to the method we used in our original printf program,
Program 20a. It is worth comparing the two side by side.



 Figure 22c.  The compiled assembler for the C printf program. 



As a final exercise you might want to try compiling a scanf example, as this
combines a few of these techniques and accesses the stack for information.
Program 22d is what you will need. If you compile and run this the keyboard will
wait for you to enter a number. There will be no additional responses as it is the
bare function we are concerned with.

A reminder here that scanf uses the stack to store and pass its converted
numeric value, so you will need to manage the stack and Frame Pointer in the
assembler.

 Program 22d. A C listing for using the scanf function.

#include <stdio.h>
int main()
{
int myvariable;

scanf("%d", &myvariable);
return 0;

}

  End Program 22d.



Frame Pointer Variables
Just a word to the good about the Frame Pointer relative to dissecting your
listings in this way. If the original C programs contains variables then the Frame
Pointer will be used to point to these values, so it becomes important in your
deconstruction. Consider these two lines of assembler:

LDR R2, {FP, #-8}
MOV R0, R2

The first line shows that a variable is located at the position given by FP-8 and
this result is accessed and moved into R0. If the original C listing has several
variables you will need to identify where each one is located on the stack, by
seeking out similar code lines. Of course your assembler will not have a Frame
Pointer, or it would be assigned a value it is often set equal to the SP by the code,
so you will need to translate these into labelled locations.

(In ARM, R11 is normally used as the Frame Pointer register, although this
may vary between Operating Systems.)



Disassembling System Calls
In Chapter 7 we had a look at Syscalls and how to interface with the actual
operating system calls directly with them. Of course, we have since learnt of libc
and how we can make use of its own functions such as printf. Using libc comes
with a memory overhead which you might not be prepared to live with when
space is tight, and at these times Syscalls can come into their own. This is fine in
principle, but the trouble is that hard detail about Raspberry Pi OS (Raspbian)
Syscalls is rather scarce on the ground. For popular Syscalls such as printing a
string to the screen you will find many examples if you search the net. The same
cannot be said if you wanted to create a directory or produce a directory listing.
But the information is there if you use a bit of common sense and are prepared to
do a little reverse engineering. Doing this with a few examples will test your
knowledge of the ARM and the way it works on the Raspberry Pi, and you will
learn heaps from doing it.

Appendix B provides a list of the first 195 Syscalls. These are generally the
ones you will use most. The book support website also contains links to an
unofficial site where you can find out more information on Syscalls. One other
option is to have a go at working it out for yourself!

The examples above are ones we have encountered and already explained,
and this is done deliberately to make it easier to explain what GCC is doing in its
compile process. You may not be forewarned with such knowledge when looking
at new functions. But GCC goes about its business in a predefined way and the
processes will not vary. Information is passed in registers and on the stack (and
via the Frame Pointer), so it is often just a matter of identifying what is where and
then working back from there.

You may also find it easier to open a second text editor window and set
about creating a new assembly listing alongside the one created with GCC, rather
than editing the original one. This is especially sound advice if the listing contains
a lot of data access as the tables tend to flop all over the place.



23. GPIO Functions

Pi Eye: This chapter contains programs that may need to be modified depending
on the version of the Raspberry Pi you are using. The text and body of the
assembler script will contain change details at the relevant points in the chapter.

The GPIO port has been one of the fundamental features of the Raspberry Pi
since launch. It has been accessible on all models and on most has a ready
installed connector to allow you to plug in and play.

We’ll look at how the GPIO interface is connected to the Raspberry Pi and
how you can use machine code to access that connection, thereby enabling you to
read and write the individual pins. While this isn’t a primer on the GPIO
interface, understanding how it sits with the Raspberry Pi is fundamental to
understanding how to program it.

Many of the kits you can purchase and use with the GPIO, come with special
libraries of code you can download and use. This is typically written in Python or
Scratch and is certainly an ideal way to check that any hardware connections are
sound should you run into debugging difficulties at any time. The code listed this
in chapter originated on a Raspberry Pi and has been tested on multiple versions
of Raspberry Pi.

GPIO extension and interface boards have evolved since the original
Raspberry Pi was released, however I have seen people be quite inventive in
connecting them. For my purposes here I have utilised the CamJam/EduKit.
However, any suitable interface should work. Other kits such as the RasP.io
Breadboard Pi Bridge exist (see Figure 23a) and are worth checking out,
(www.rasp.io/bbpi).



Memory Mapping
The Raspberry Pi uses memory mapped I/O. The addresses used for I/O are
widely known and specifically retrievable from the associated Broadcom data
sheet. For early Raspberry Pi models, addresses 0x20000000 to 0x20FFFFFF, are
for I/O devices. In later versions 0x3F000000 to 0x3EFFFFFF are reserved for
I/O devices. Be aware that this is not all reserved for the GPIO memory but for all
peripheral interfaces in total.

The location of these blocks of memory, and specifically in future releases,
may well change and the memory allocated to the GPIO port. Obviously, that
would make programs that access the GPIO port directly potentially
incompatible. Given also that Raspbian has been renamed and effectively re-
launched as Raspberry Pi Operating System, it may be possible, however
unlikely, that some of the standard underling Linux routines are further modified.

If reading the Broadcom data sheets you should be aware that the ARM
cores and the VideoCore GPU share the same memory space but at different
addresses on that device. Be clear to distinguish between BUS address, VC
address and ARM address. The same thing appears differently to each system
which is often the source of much confusion. The GPIO is offset from a
‘peripheral base address’ by 0x200000 and needs to be added to it to access it.
For our purposes the information required for this exercise is provided here.

The kernel includes a driver to a special character file, ‘/dev/mem’, which is
a mirror of main memory. Similar to any file, we can open it, read bytes from or
write bytes to it, and close it. The “position” of each byte in ‘/dev/mem’ is the
byte address in physical memory. In principle, we could program the GPIO
device by opening ‘/dev/mem’, moving a pointer to the desired location of a
GPIO port, and writing the appropriate value in that byte location.

Writing directly to areas of this I/O memory can be a risky thing, and as such
ROS won’t allow us to do that. It has a built-in self-protect mechanism meaning
only ‘root’ users can access it. This ensures we don’t do anything that might
otherwise cause the operating system to lock or crash.

A secure method of accessing this GPIO memory does exist using a scheme
that uses a similar memory mapping technique and a driver at ‘/dev/gpiomem/’
which writes changes directly to the GPIO control area via a designated block of
memory which is effectively a mirror of the real memory (this is often referred to
a virtual memory). Thus, if we make any changes that have an adverse effect
(hanging the system for example), we should be able to cycle the power to reset
everything. This driver ensures that nothing can go drastically wrong, but
obviously only works with the GPIO area.



Because the Broadcom data sheet provides us with the basic start address of
each I/O peripheral area we can let the operating system calculate the virtual
memory address for us and everything remains pretty transparent from that point.

In Chapter 19 we examined some of the file system calls need to open and
close files using Syscalls. Reading and wring to the GPIO is not unlike running a
filing system, but this time around we’ll make things a little simpler by using the
main Linux system calls.



 Figure 23a. The Breadboard Pi Bridge from RasP.io.



The GPIO Controller
The GPIO has its own controller and this contains no less than 41 registers. The
first five of these registers deal with reading and writing to the 54 GPIO pins.
These pins are numbered GPIO 0 through to GPIO 53 although only a handful or
so of these are available to us to connect to on the GPIO expansion port itself.
And then it depends on the size of the GPIO header, 26-pins on early Raspberry
Pi and 40-pin on the more recent ones. (Figure 23f at the end of this chapter
defines the GPIO header layout diagrammatically.)

It should be noted also that the GPIO Controller pin numbers do not run
concurrently on the main GPIO header connector and may differ again on any
expansion board you have attached. Please ensure you familiarise yourself with
the system you are using as the pin numbers here relate specifically to the
numbers assigned by BCM. Equally, there are several different numbering
systems used in the setup, and it can get confusing. I’ll try and guide you through
these. Note: the header pin number does not correspond to the GPIO pin number.

If you have a Terminal window open on the Desktop you can type ‘pinout’ at
the prompt to get information regarding your GPIO header and various other
settings.

The first five of the GPIO Controller registers, their names, and the pins they
are associated with are listed in Figure 23b.

 No   Name   Code   Offset   Pins 
 0   GPIO Function Select 0   GPSEL0   #0  0-9
 1  GPIO Function Select 1  GPSEL1  #4  10-19 
 2  GPIO Function Select 2  GPSEL2  #8  20-29
 3  GPIO Function Select 3  GPSEL3  #12  30-39
 4  GPIO Function Select 4  GPSEL4  #16  40-49
 5  GPIO Function Select 5  GPSEL5  #20  50-53

 Figure 23b. GPIO registers and pin control. 
Each of these registers is 32-bits wide and each pin has three bits assigned to it
within each register. The ‘Offset’ column above I related to the number of bytes
that must be added to the address of the GPIO. More on which shortly. Note here
that ‘pin’ refers to GPIO pin. Not the connection header pin number. The example
we will look at here is GPIO Pin 22 which Program 23a, will utilise.

Looking at Figure 23b, we can see that Pin 22 has an offset of 8 bytes and is
therefore located in GPSEL2. Figure 23c below shows that Pin 22 has bits 6,7,



and 8 linked with it in the 32-bits of the address where GPSEL2 is located.

 Figure 23c. Bit association with GPSEL2. 
You may have noticed in Figure 23b that not all the bits in Register 5 are used.
This is correct. Only the first 12 bits are used, and the others are classed as
‘reserved’. Likewise, bits 30 and 31 in each of the other registers are unused.

The base address for the GPIO controller in Raspberry Pi Operating System
changes depending on the Raspberry Pi you are using as listed in Figure 23d.

 RPi   SoC   Base Address   GPIO Offset 
 A+   BCM2835  0x20000000  0x200000
 B   BCM2835  0x20000000  0x200000
 Zero   BCM2835  0x20000000  0x200000
 2  BCM2836  0x3F000000  0x200000
 3  BCM2837  0x3F000000  0x200000
 3+  BCM2837B0  0x3F000000  0x200000
 4  BCM2711  0x3F000000  0x200000
 400  BCM2711C0    0x3F000000  0x200000

 Figure 23d. GPIO Base Addresses 
To obtain the address of any GPSEL register we need to add the ‘offset’ value
(Figure 23b) to the sum of the ‘peripheral base’ and ‘GPIO offset’ addresses
(Figure 23d). GPSEL0 is located at this starting point (as offset is zero). To access
the second register, GPFEL1, then we need to add four to the controller’s base
address. GPSEL2 has an offset of 8, so its address would be either:

(0x3F000000+0x200000)+8 = 0x3F200008

or:



(0x20000000+0x200000)+8 = 0x20200008

depending on the model Raspberry Pi you are writing for.
Therefore, to access pin number 22 on the GPIO header, we need to use bits

6-8 at 0x08 relative to virtual address in our program that we get from a call to
the mmap function.



GPIO In and Outs
It is important to understand how these bits are assigned as we will need to
address them individually at various times to make things happen in their
associated registers. And to be sure that we don’t corrupt or alter the value of
other bits in the register. Using one of the pins is a two-step process:
 

1. Select the function of the specific GPIO pin, either as an input or as an
output. This only has to be done once, unless the function of the pin changes.

2. Turn the pin on (Set) or off (Clear). There are two separate sets of GPIO
registers for doing this, GPSET and GPCLR. You do this as required.

(Note: Do not confuse GPSEL and GPSET, they have totally different functions
within the GPIO controller!)

As indicated above the first item on the list is to select the function of the
GPIO pin we’ll be using. In this example it is 22 (GPIO 22).

To assign a pin as an input we must store a 0 in the three associated bits
(000). To make the same pin an output we must write a 1 to those same three bits
(111). For example, to make GPIO 22 an output we must place 111 in bits 6, 7
and 8. To achieve this we could write the binary value:

0b111

to the identified bits in GPSEL2. Of course, we must preserve and not overwrite
any other bits that may be set or clear so we would do this using a bitwise
operator. (Other bit combinations assign other functions to the pins, so it is
important to get this right.

So far, we have looked at configuring the function of a pin as an input or an
output. To turn the pin on (set) or off (clear) we must write some values into
another register.

There are four registers associated with setting and clearing pins and these
are detailed in Figure 23e.

 No   Name   Code   Offset   Pins 
 7   GPIO Pin Set 0   GPSET0   #28  0-31
 8  GPIO Pin Set 1  GPSET1  #32  32-53 
 10  GPIO Pin Clear 0  GPCLR0  #40  0-31
 11  GPIO Pin Clear 1   GPCLR1  #44  32-63



 Figure 23e. GPIO registers for setting and clearing. 
There is a single bit associated with each pin for the purpose of setting and
clearing. To set GPIO 22 we would write a ‘1’ into bit 22 of GPSET0. To clear
the same bit, we would need to write a ‘1’ into bit 22 of GPCLR0.

If you were to write a 1 to bit 22 in GPSET0 but GPIO 22 was defined as an
input nothing would happen. If you then set GPIO 22 to an output, an attached
LED would light. The last value written to either GPSET0 or GPCLR0 in this
case is remembered and used when the status of the pin is changed.

As we can see from Figure 23e the offset for GPSET0 is 28 and for
GPCLR0 is 40 and this value added to the base address to the GPIO controller to
calculate the required address.

Program 23a is the listing needed and this is broken down into several
segments marked with comments. Remember the process is as follows:
 

1.  Open file
2.  Memory Map the GPIO
3.  GPIO Pin Turn On
4.  GPIO Pin Turn Off
5.  Unmap Memory and Close file

The listing is annotated so it should be easy to follow though, even if some of the
offset and register details are still a bit hazy.

Read the note at the after the end of the listing on how to ‘run’ the program
and the flags that must be used.

 Program 23a. File access to GPIO memory.

/* Accessing GPIO using virtual memory mapping */
/* Using preferred methodology uses GPIO Pin 22*/

@ Constants for assembler - memory map associated
.equ gpiobase,0x3F000000 @ RPi 2,3,4,400 peripherals
.equ offset, 0x200000 @ start of GPIO device
.equ prot_read, 0x1 @ can be read
.equ prot_write,0x2 @ can be written
.equ readwrite,prot_read|prot_write
.equ mapshare, 0x01 @ share changes
.equ nopref, 0



.equ pagesize, 4096 @ memory size

.equ o_rdwr, 00000002 @ open for read/write

.equ o_dsync, 00010000 @ values are octal not hex

.equ o_sync,04000000

.equ o_allsync,o_sync|o_dsync

.equ openflags,o_rdwr|o_sync @ open file flags

@ Constants for Function Select
.equ pinnumber,22 @ pin number-change for others
.equ output, 1 @ use pin for output
.equ pinfield, 0b111 @ 3 bits
.equ input, 0 @ use pint for input
.equ seconds,2 @ sleep value

@ Constants for assembler pinclear and pinset
.equ pinbit, 1 @ 1 bit for pin
.equ registerpins, 32
.equ GPCLR0, 0x28 @ clear register offset
.equ GPSET0, 0x1C @ set register offset

@ addresses of messages and values
devicefile: .word device
openMode: .word openflags
gpio: .word gpiobase+offset
openerror: .word openstring1
memerror: .word memstring2

@ Constant program data
.section .rodata
.align 2

device: .asciz "/dev/gpiomem"
openstring1: .asciz "Didnt open /dev/gpiomem\n"
memstring2: .asciz "Didnt Map /dev/gpiomem \n"

@ The program starts and runs from here
.text
.align 2
.global main



main:
@ Open /dev/gpiomem for read/write and syncing

LDR R0, devicefile @ address of /dev/gpiomem string
LDR R1, openMode @ flags for accessing device
BL open @ call open
MOVS R4, R0 @ error check
BPL moveon1 @ If positive, moveon
LDR R0, openerror @ error, tell user
BL printf
B _exit @ and end program

moveon1:
@ Map GPIO to main memory location so we can access them
@ Keep a copy of the mapped memory address returned in R0

MOV R4, R0 @ use r4 for file descriptor
MOV R8, R0 @ Save a copy of file descriptor 
LDR R9, gpio @ address of GPIO
PUSH {R9} @ Copy on stack for mmmap
PUSH {R8} @ file descriptor on stack for mmap
MOV R0, #nopref @ let kernel pick memory
MOV R1, #pagesize @ get 1 page of memory
MOV R2, #readwrite @ read/write this memory
MOV R3, #mapshare @ share with other processes
BL mmap @ R0-R3+top of stack has info
MOV R9,R0 @ save mapped address
CMP R0, #-1 @ check for error
BNE moveon2 @ no error, continue
LDR R0, memerror @ error, tell user
BL printf
B _exit 

moveon2: 
@ Select pin number and function.

MOV R0, R9 @ programming memory
MOV R1, #pinnumber @ pin number (22)
MOV R2, #output @ pin function (1)
MOV R4, R0 @ save pointer to GPIO
MOV R5, R1 @ save pin number



MOV R6, R2 @ save function code

@ Compute address of GPFSEL register and pin field
MOV R3, #10 @ divisor
UDIV R0, R5, R3 @ GPFSEL number
MUL R1, R0, R3 @ compute remainder
SUB R1, R5, R1 @ for GPFSEL pin 

@ Set up the GPIO pin function register in programming memory
LSL R0, R0, #2 @ 4 bytes in a register
ADD R0, R4, R0 @ GPFSELn address
LDR R2, [R0] @ get entire register 
MOV R3, R1 @ need to multiply pin
ADD R1, R1, R3, lsl #1 @ position by 3
MOV R3, #pinfield @ gpio pin field (0b111)
LSL R3, R3, R1 @ shift to pin position
BIC R2, R2, R3 @ clear pin field
LSL R6, R6, R1 @ shift func code to pin position
ORR R2, R2, R6 @ enter function code
STR R2, [R0] @ update register

@ setGPIOpin
@ All OK, now turn on the LED
@ Requires mmap address and pin number

MOV R0, R9 @ Get memory address
MOV R1, #pinnumber @ Get pin number (22)
ADD R4, R0, #GPSET0 @ point to GPSET regs in R4
MOV R5, R1 @ save pin number

@ Compute address of GPSET register and pin field 
MOV R3, #registerpins @ divisor
UDIV R0, R5, R3 @ GPSET number
MUL R1, R0, R3 @ compute remainder
SUB R1, R5, R1 @ for relative pin position
LSL R0, R0, #2 @ 4 bytes in a register
ADD R0, R0, R4 @ address of GPSETn

@ Set up the GPIO pin function register in programming memory
LDR R2, [R0] @ get entire register
MOV R3, #pinbit @ one pin (1)



LSL R3, R3, R1 @ shift to pin position
ORR R2, R2, R3 @ set bit
STR R2, [R0] @ update register

@ Wait for seconds
MOV R0, #seconds @ wait seconds
BL sleep

@ clearGPIOpin
@ Clears a GPIO pin. Requires mmap addr & pin number

MOV R0, R9 @ Get GPIO mapped address
MOV R1, #pinnumber
ADD R4, R0, #GPCLR0 @ pointer to GPSET regs.
MOV R5, R1 @ save pin number

@ Compute address of GPSET register and pin field 
MOV R3, #registerpins @ divisor (32)
UDIV R0, R5, R3 @ GPSET number
MUL R1, R0, R3 @ compute remainder
SUB R1, R5, R1 @ for relative pin position
LSL R0, R0, #2 @ 4 bytes in a register
ADD R0, R0, R4 @ address of GPSETn

@ Set up the GPIO pin funtion register in programming memory
LDR R2, [R0] @ get entire register
MOV R3, #pinbit @ one pin
LSL R3, R3, R1 @ shift to pin position
ORR R2, R2, R3 @ clear bit
STR R2, [R0] @ update register

@ unmapGPIOmemory 
@ On completion need to remocve memory mapping
@ and close file

MOV R0, R5 @ memory to unmap
MOV R1, #pagesize @ amount we mapped
BL munmap @ unmap it

closeDev:
MOV R0, R8 @ file descriptor
BL close @ close file



@ end program here
_exit:

POP {R8} @ restore SP to entry level.
POP {R9}
MOV R7, #1
SWI #0

  End Program 23a.

Note that to assemble and generate the executable you will need to use the
following, otherwise you will likely generate an error:

gcc -march=”armv8-a” -g -o gpio22 prog23a.s

This will generate an executable called gpio22 if you saved the above source file
as ‘prog23a.s’. The program assumes that an LED or similar is attached to
GPIO22 and will turn it on (illuminate), wait for two seconds and then turn it off.
Either side of this it will create and open a virtual memory map and then do the
reverse on completion. (GPIO22 as it seems to be available on all models of the
Raspberry Pi released to date.)



Building the Code
That’s quite a lot to take in, so let’s work through the program section by section.
The first blocks of code define the constants, and label definitions. These occupy
the first page or so of the file. This section ends with three asciz string definitions.
From the comments and the previous text the function of each of these should
become apparent if not already. The program itself starts at ‘main:’. Opening the
file we want to map, requires two pieces of information. This is the address of
device name we want to open and the properties to be assigned for the file when
opened. These need to be loaded into R0 and R1 respectively. The address of the:

‘/dev/gpiomem’ 

string is provided by the address pointer specified in ‘devicefile’. A quick trip to
‘open’ in the Linux kernel is all that is needed. On return to our program, R0 will
contain the file descriptor or a negative number indicating an error occurred and
the file couldn’t be opened. In the case of the latter the appropriate error message
is displayed, and the program terminates. This should be familiar following on
from the knowledge gained in earlier chapters. All being well the program flow
resumes at ‘moveon1’ where we save a copy of the file descriptor in R4 for
program use and a backup for use later (R8). We also need to save a copy of the
peripheral address provided to access the GPIO (0x3F200000) and preserve a
copy of this in R9. These two items are then pushed on the top of the stack. The
‘mmap’ function will undertake the process of mapping the virtual memory for us
to use. It takes six arguments as follows:
 

1. R0=The address where the device should be mapped. Best in this instance to
allow the system to choose it, indicated by using a null value or zero.

2. R1=The amount of memory required for the mapping. One ‘page’ is
sufficient, specified as 4096 bytes.

3. R2=A number specifying the protection given to the mapped memory. This
must tie in with the protection that was specified in the original open
operation. Namely the ability to read and write and allow the mapped
memory to be synchronised with information written to it.

4. R3=A value specifying whether the mapped memory can be shared with
other devices or not. Normally it is best to allow such sharing as you may
want to have other programs accessing the GPIO concurrently.

5. {R9}= The physical memory location of the I/O device. 6



6. {R8}= Value of the file descriptor to the device being mapped. This came
from our call to open.

The last two items in our list have been pushed onto the top of the stack. The
mmap function call expects a total of six items of information and therefore looks
to the stack to provide them as only four are passed through registers R0-R3.

On return from the mmap call the memory address that the GPIO has been
mirrored into is R0. This is saved by the program into R9. If -1 is returned then an
error has occurred, and an error message is provided, and the program exited.
Otherwise, program flow continues at ‘moveon2’, and everything is primed and
ready for selecting the GPIO pin number and function required of it!

The next block of code (the next six lines straight after ’moveon2’) primes
the registers ready for the programming of the relative GPFSEL register and pin
field. These values are initially R0, R1 and R2 and then copied into R4, R5 and
R6 respectively so the originals can be utilised.

The next section is fundamental to computing the address of the GPFSEL
register and field. This includes an instruction we haven’t looked at before, UDIV,
and is one of the reasons why special flags are needed to assemble the listing.
UDIV divides an unsigned 32-bit value into another unsigned 32-bit value,
producing a 32-bit unsigned result. This provides a quotient, but any remainder is
thrown away and the result rounded down to the next whole number. However,
we want the remainder to provide us with the GPFSEL pin, so we need to
compute this as well. Three lines of code do this.

In our segment of assembler, the quotient is calculated by divining R5 by R3
thus:

UDIV R0, R5, R3 @ Unsigned divide R0=R5/R3
 R0=0x16/0x0A
 R0=0x02

The use of 10 as the divisor (0x0A) in R3 is the constant in converting the
decimal value (base 10). The result, 2, is provided as 0x16/0x0A or 22/10=2.2,
thus 0x02 rounded down, this is our GPSEL number. Next, we need to compute
the remainder from the quotient to obtain the GPSEL pin number. Multiply the
quotient by the divisor (now in R0):

MUL R1, R0, R3 @ R1=R0*R3
 R0=0x02*0x0A
 R1=0x14

Next, subtract the result in R1 from the value in R5:



SUB R1, R5, R1 @ R1=R5-R1
 R1=0x16-0x14
 R1=0x02

This gives us the GPSEL number and the GFSEL pinfield, so we can set-up the
GPIO pin function register. We need to account for there being four bytes (one
word) in a register, do this by shifting the value left by two positions:

LSL R0, R0, #2
 R0=0X02,<<2
 R0=0X08

This provides the offset of 0x08, which is added to the base address returned by
mmap. (Note this address was returned for a RPi 3B with 1GB of memory. It is
likely different on other configurations of RPi; however you can remain oblivious
to this address as it is calculated for you.) Look back at Figure 23a and you will
see that the offset for GPFSEL2 is #8. This is calculated below.

ADD R0, R4, R0
 R0=0x76FFF8000+0x08
 R0=0x76FFF8008

We can then read the contents of this memory address in R0, into R2, 0x40 in this
instance.

LDR R2, [R0]
 R0=[0x76FFF8008]
 R2=0x40

Now the pin number previously stored in R1 is moved into R3:

MOV R3, R1 @ need to mov R1 into R3 pin
 R3=0x02

And then shifted by three shift its position by three:

ADD R1, R1, R3, LSL #1 
 R1=0x02+0x2,<<1
 R1=0x06

Consult Figure 23b and see that Pin 22 is 6.



MOV R3, #pinfield @ gpio pin field
 R3=0x07

LSL R3, R3, R1 @ shift to pin position
 R3=0x07<<0x06
 R3=0x1C0

The GPIO pinfield value is moved into R3, seven in this case. The pin field value
is then shifted left by six to give 0x1C0 in R3.

The BIC instruction performs a bitwise AND between the NOT of a bit
pattern and the register value. The net effect is to clear the bits in the register as
specified by the bit pattern. Before shifting the function code to the pin position:

BIC R2, R2, R3
 R2=0x040 BIC 0x1C0
 R2=0

LSL R6, R6, R1
 R6=0x01 << 0x06
 R6=0x40

ORR R2, R2, R6 @ enter function code
 R2=0x0 ORR 0x40
 R2=0x40

Store the contents of R2 at the location specified by the address in R0 =
0x76FFF8008.

STR R2, [R0]
 0x76FF8008 = 0x040

Now we can turn the pin ‘on’ using the mmap address and the pin number. These
are copied in R0 and R1 having previously been saved.

MOV R0, R9
 R0=0x76FF8000
MOV R1, #pinnumber @ 0x16= GPIO 22
 R1=0x16

Add the pin number to the original mmap address. To point to the GPSET
registers:



ADD R4, R0, #GPSET0 
 R4=0x76FF8000+0x1C
 R4=0x76FF801C

Save the pin number for later use:

MOV R5, R1 @ save pin number
 R5=0x16

Move the register pins number (32) into R3:

MOV R3, #registerpins
 R3=0x20

Utilise UDIV as previously to calculate the GPSET number and then work out the
remained, for relative position:

UDIV R0, R5, R3 @ GPSET number
 R0=0x16/0x20
 R0=0

UDIV R0, R5, R3 @ GPSET number
 R0=0x16/0x20
 R0=0

MUL R1, R0, R3 @ compute remainder
 R1=0x0 x 0x20
 R1=0

ADD R1, R1, R3, LSL #1 
 R1=0x02+0x2,<<1
 R1=0x06

SUB R1, R5, R1 @ for relative pin position
 R1=0x16- 0x0
 R1=0x16

LSL R0, R0, #2 @ 4 bytes in a register
 R0=0 << 2
 R0=0



Perform additions to get the address of GPSET in virtual memory:

ADD R0, R0, R4 @ address of GPSETn
 R0 = 0 + 0x76FF801c
 R0=0x76FF801c

Access contents of the entire register at address given in R0:

LDR R2, [R0] @ get entire register
 R2=[0x76ff801c]
 R2=0x6770696f

Load R3 with pin bit constant (1):

MOV R3, #pinbit @ one pin
 R3=1

Logically shift left the value by contents held in R1 (relative pin position):

LSL R3, R3, R1
 R3 = 1 << 0x16
 R3= 0x400000

Logically OR this with the contents in R2 to provide new value:

ORR R2, R2, R3 @ set bit
 R2= 0x6770696f ORR 0x400000
 R2= 0x6770696f 

And update the register by storing it in virtual memory:

STR R2, [R0] @ update register
 R2=0x6770696f
 R0=0x76ff801c
 0x76ff801c=0x6770696f

This will now turn the pin (and LED if attached) ‘on’.
The same methodology is used to turn the pin off and therefore any attached

LED. I’ll leave you to work through the code utilising the above technique.
You only require minimal changes to adapt the program to work on other

pins. simply change the value assigned to ‘pinnumber’ in the section marked



‘Constants for Function Select’ to ‘17’ and re-assemble. The program will work
out the rest of the details for you.

The program listing is provided as a single contiguous file. More to make it
easier to read. Once you understand its operation it is a good candidate to section
it into a series of macros–see Chapter 18 for a refresher on macros.



Other GPIO Functions
Just as a reminder: There are several other registers that form part of the GPIO
Controller that can be used and programmed using these methods. As already
mentioned you will need to get a copy of the appropriate BCM peripherals data
sheet to get the specific detail that you need relating to the other registers, their
functions and what you need to do to use them. It is all there. You can check out
the official Raspberry Pi website for more information and links to download
these.

One final thing in relation to the data sheet. If you look at the memory maps
at the start of the document you will see that the ARM peripherals are mapped as
starting at 0x7E000000, whereas in Raspbian or Raspberry Pi OS, on Raspberry
Pi Zero and 1, they start at 0x2000000 and 0x3F000000 for Raspberry Pi 2, 3, 4,
and 400. All operating systems implement their own memory addressing systems
which overlay the ones provided by default by the CPU. This allows the OS in
question to implement virtual memory mapping — a technique that allows
program and applications to use more memory than is actually available to them
by swapping data in and out of memory from the SD Card in use or the hard drive
attached. From a practical point of view, when you access the Broadcom data
sheet you should remember that all the peripheral addresses specified in the text
are bus addresses and must be translated into physical addresses. Thus, the GPIO
Controller start address is given as 0x7E200000 but we implement as
0x3F200000 or 0x20200000 in our programs depending on the model.

Finally, a word of warning. The GPIO pins control a whole host of functions
on your Raspberry Pi and if you are not careful you can crash the operating
system. Always save your work before you try to execute any machine code file
for the first time.



GPIO Pins Explained
Figure 23f depicts the 40-pin header that is fitted to the more recent Raspberry Pi
modules. The first thing to notice is that there are effectively three columns of
information, which are repeated on the left and right side of the ‘Header’ column)
in the centre.

For a Revision 2.0, 26-pin header then Header Pins 1-26 are still relevant
and have the same assignments. Revision 1.0 is different. If you have a Raspberry
Pi with a 26-pin header, you should check the Raspberry Pi website to determine
which Revision you have. Generally, the original Pi 1 Model B was fitted with
Revision 1.0.



 Figure 23f. Raspberry Pi GPIO Header Connections 



Header Pins: The ‘Header’ is the physical aspect on your Raspberry Pi, and the
numbers 1-40 down the centre represent the 40 pins on the header connector.
These numbers are often referred to as the ‘Header Pin Numbers’ and each one is
wired into the Raspberry Pi to provide a specific function. These functions are
defined by the columns that appear to the left and right as already mentioned.

Pin: The Pin column, in most instances provides the number of the GPIO
pin itself (FSEL). Thus GPIO 22 is wired into Header Pin 15. In some instances,
the Pin is also wired to provide poser or act as a ground. Thus, Header Pin 1 is 3.3
volts, and Header Pin 6 is Ground. The two ‘Do Not Connect ‘options are in fact
GPIO 0 and GPIO 1 but are reserved for other functions.

A GPIO pin designated as an output pin can be set to high (3V3) or low
(0V). If designated as an input, the pin can be read as high (3V3) or low (0V).
This is made easier with the use of internal pull-up or pull-down resistors. Pins
GPIO2 and GPIO3 have fixed pull-up resistors, but for other pins this can be
configured in software.

Register: The Function Select Register is listed in this column. Figure 23a
has more details on these. GPSEL 0, 1 and 2 are the ones commonly used here.

Bits: These are the three bits in the related GPSEL register that control the
GPIO pin. Look at Header Pins 11 and 13. These both have bits 21-23 associated
with them however they are in different registers GPSEL1 and GPSEL2.

Other Functions: In addition to being input and output devices, GPIO pins
can be used for a variety of alternative more advanced functions. For example,
software pulse width modulation (PWM) is available on all pins, whilst hardware
PWM is available through GPIO 12, GPIO 13, GPIO 18 and GPIO 19. Serial TX
via GPIO14; and RX via GPIO15. Other options exists and these can be found on
the Raspberry Pi website.



24. Floating-Point

In our everyday use of computers, we take the use of floating-point numbers point
numbers for granted. After all what use would a bank have of a computer that
couldn’t work out decimal points? When we use spreadsheets, calculators and
even some word-processing packages, the ability to perform simple calculations
down to several decimal points is accepted without a second thought. But what
about assembly language? All the number action we have looked at to date, and
there’s not been that much in reality, has been dealing with integer numbers,
values without any fractional part.

The management and manipulation of floating-point numbers takes a great
deal of processing grunt and this is not provided in the first instance by the ARM
chip—it is supplied by something called a co-processor. As we will see in
Chapter 30, the ARM chip used in the Raspberry Pi forms part of a ‘bigger’
infrastructure known as a SOC or System-on-Chip. It is more than just the ARM
chip itself, and one of these additional items is some additional hardware circuitry
that handles floating-point math. This co-processor as it is known is the VFP or
Vector Floating-Point co-processor and this supplies additional architecture,
including registers and instructions to allow floating-point to be included in
assembly language programs. Better still GCC and GDB support these too and do
so as the IEEE 754 definition they conform to standardises the format of floating-
point numbers to provide a common format across computer platforms.

In these next couple of chapters, we’ll look at how the floating-point
architecture is implemented and the instructions which we can use to include real
numbers in our own programs. This should provide you with more than enough
information to use them in a practical way and display your results for the world
to see.



VFP Architecture
Modern software, mainly media codecs and graphics accelerators, operate on
large amounts of data that is less than word sized. 16-bit data is common in audio
applications, and 8-bit data is standard in graphics and video, and there is lots of
it. When performing these operations on a 32-bit microprocessor, parts of the
microprocessor are unused but continue to consume power. To make better use of
this excess, wasted processor capacity, Single Instruction Multiple Data (SIMD)
technology introduced the use of a single instruction to perform the same
operation in parallel on multiple data elements of the same type and size. This
way, the hardware that frequently adds two 32-bit values instead performs four
parallel additions of 8-bit values in the same amount of time.

The creators of the Raspberry Pi have been keen to utilise the full benefits of
the ARM microprocessor, but if you follow the technology world closely you will
have noticed that there is a never-ending stream of ARM microprocessors
available. This makes compatibility difficult as they all offer something different.
For that reason, only three versions of ARM have been used with the various
Raspberry Pi at the time of writing. Namely ARMv6, ARMv7 and ARMv8.
(There are other reasons but hardware and software compatibility is fundamental
to the concept of the Raspberry Pi.)

VFP2 architecture is implemented on the ARM v6 chip fitted to Raspberry
Pi 1 models A, B, A+ and B+. On the Raspberry Pi 2 and Raspberry Pi 3 the
ARMv7/8 chip supports VFP4 which encompasses VFP2 but includes an
expanded instruction set. We’ll deal with the basics that are common to both here.

The VFP provides support for single-precision and double-precision
numbers. As the name implies the latter can represent numbers in more detail
than the former. To this end a single-precision number occupies a word of
memory (32-bits or binary32), whilst a double occupies two-words of memory
(64-bits or binary64). You will recall that the ARM can use 32-bit numbers for its
standard values, and this begs the question: are the single-precision floating-point
numbers that are available as big as the integer ones? The answer is yes, they are,
and they can be much bigger as it boils down to the way in which they are
represented. The following are examples of floating-point or real numbers:

0.2345
546.6735268
1.001011010
4E7



In the latter case the number is 4*10 to the power of 7 or 4x107. The 7 is the
exponent and means ‘raised to the power of’. In single and double-precision
numbers the values can be encoded into the bits so that they have a sign bit, an
exponent portion and a fractional or mantissa portion. In this way large or small
numbers can be depicted.

Figure 24a below shows how a single-precision and double-precision
number are laid out. In the circumstance of double-precision numbers, the two-
words must occupy consecutive memory locations and be word-aligned.



 Figure 24a. Construction of single and double-precision numbers.

Sign (S)
This can be 0 or 1 to represent positive or negative values, respectively. It is
held in the most significant bit of the number.

Exponent
The exponent is the value we need to shift the mantissa along to the left to
restore it to its original value. It is held between the sign bit and fraction.



Fractional
Also called the mantissa, this is the number following the point and it can
obviously be a binary value to represent the real number. The mantissa will
have been normalised, that is shifted along to the right until we are left with
a single digit on the left of the dot. In double-precision numbers it occupies
the whole of the least significant word and part of the most significant word.

In a single-precision floating-point the mantissa is 23-bits (+1 for the integer one
for normalised numbers) and the exponent is 8-bits, meaning the exponent can
range from -126 to 127. In a double-precision the mantissa is 53-bits (+1 as for
single) and the exponent is 11-bits, so the exponent ranges from -1022 to 1023).

For completeness there is also a third type of number representation. This is
called NaN, an acronym for ‘Not a Number’. This is used in special
circumstances where a value cannot be represented in single or double-precision
manner. It is a fascinating topic—not least as there are also two different types of
NaN and is worth investigating further if you are interested in this type of thing.



The Register File
The load and store architecture of the ARM chip persists in VFP and to deal with
floating-point values it provides a set of registers specifically for the purpose.
There are 32 in all with the prefix S and numbered S0-S31. These registers are
used to hold single-precision values as they are all one word wide. For the
manipulation of double-precision numbers these registers can be paired up to
form up to 16 two-word width registers. D is used to denote this, and they are
numbered D0 to D15. Figure 24b illustrates this in principle.



 Figure 24b. The VFP Register File. The Sx registers may be used individually
or paired to create a double-precision register, Dx. 



You should be clear that these registers are one and the same and although the
values in registers may be either single or double, they can only contain one value
at a time. Thus, S0 and S1 can be used individually for two single-precision
values or combined as D0 for a double-precision value. If D0 is loaded with a
value, then the contents of S0 and S1 are wiped. It is perfectly possible to have
single-precision value in S0 and S1 and a double-precision value in D1 as D1 is
composed of S2 and S3.

Please note that there are no warning devices or alarm systems to tell you
what is in what register. That is up to you to look after — this is machine code
after all. You are the manager. These registers are grouped into scalar registers
(S0-S7/D0-D3) and vectorial register banks (S8-S31/D4-D15) for usage purposes
—and the group determines how they are accessed, which we’ll look at with
some examples later.

As you might expect there are instructions to deal specifically with moving
both single and double-precision values to and from memory and registers and a
variety of instructions for arithmetic functions. Let’s look at a simple example
first that will also show how to use printf to display a floating-point number.
We’ll also use it to highlight a few points.



Managing and Printing
Program 24a illustrates a few basic operations involving floating-point numbers
and illustrates a technique to to use printf to display a floating-point value on the
screen.

This is important as it will allow you to display the results of any operations
you do. The first thing to note is that you cannot load a floating-point value
directly into a register; you must do it indirectly via a register. This concept
should be familiar and the way the code is structured, as shown below.

 Program 24a. Printing a floating-point value with printf.

/* Printing a floating-point number */ 
.global main
.func main

main:
LDR R1, addr_value1 @ Get addr of value1
VLDR S14, [R1] @ Move value1 into S14
VCVT.F64.F32 D5, S14 @ Convert to B64

LDR R0, =string @ point R0 to string
VMOV R2, R3, D5 @ Load value
bp:
BL printf @ call function 
MOV R7, #1 @ Exit Syscall
SWI 0

addr_value1: 
.word value1

.data
value1: .float 108.65625
string: .asciz "Floating point value is: %f\n"

  End Program 24a

The first line of code loads the address of value1 into R1. In the next line this is
used as the indirect address of the value to be loaded into S14. The VLDR stands



for Vector LoaD Register. The third line then converts the value into a double-
precision one. This is because printf can print double-precision values but not
single-precision ones, which is the format of the value in S14. The instruction is
complex but is surprisingly easy to read and construct when you know how:

VCVT Vector Convert instruction
.F64 Convert to Binary64 – viz double-precision
.F32 From Binary32 – viz single-precision
  D5 Destination double-precision register
 S14 The source single-precision registers

The order is the important thing to remember here: the target comes before the
source.

The next three lines are all about getting printf ready to use. As before R0
must point to the string to print. Normally R1, R2, and R3 are used to pass
additional values to printf. However, we can only get one double-precision value
in those three registers, so the definition is that R2 and R3 are used (R1 is
ignored). VMOV moves D5 into R2 and R3. The %f directive is used in the print
string and printf is smart enough to know that this directive indicates a double-
precision value and so just looks in R2 and R3 for it. (If you call other libc
functions then you may be able to pass two double-precision values through to it
as R0-R3 are allocated for the purpose in normal ARM use.)

You can also see in the data section that the ‘.float’ directive is used to store
the floating-point value.

Printing more than one double-precision value with printf follows the same
route as previously. The additional items are pushed onto the stack. However,
PUSH and POP or their equivalents become a little redundant here as we are
dealing with two-word values for each double-precision number. Program 22b
will build on the previous listing to do this.

The load and conversion process remains the same, but obviously using
different registers, and the VPUSH instruction is used to place the value on the
stack. Additional values can be added in the same way.

Note that most floating-point numbers that a computer can represent are just
approximations. One challenge in programming with floating-point values is
ensuring that the approximations lead to reasonable results. If the programmer is
not careful, small discrepancies in the approximations can snowball to the point
where the results become meaningless.



Assembling and Debugging VFP with GDB
The GCC methodology is ideal for testing and debugging code at this level. One
of the advantages using the full gcc compile method is that GCC will invariably
handle all the behind-the-scenes leg work for you. So, when it parses the
assembler it understands you are using floating-point opcodes and therefore
attaches and assembles the additional information required. It will also handle the
requirements of utilising functions such as printf. For instance, you can assemble
Program24a thus:

gcc -g -o prog24a prog24a.s

Then utilise the GDB debugging tools to examine and step-through the code.
GDB provides debugging tools for operation with the VFP (and Neon which we
will cover in in Chapter 26). All the options outlined in Chapter 14 are valid, and
GDB will disassemble machine code files correctly. You can also access the VFP
registers by adding the extension ‘all’ to the info command line thus:

info r all

or:

i r a

This will list the D and S registers, (plus the Q registers used by Neon which we
will discuss in a later chapter). You will notice that this also lists D registers up to
D31, whereas we only identified registers to D15 earlier. The D register set is
extended to correlate with the Neon Q registers as we shall see.

The ‘all’ function provides a lot of data. You can limit the amount of data
displayed by specifying individual registers. First though insert a breakpoint
using the ‘bp:’ label that was part of the listing assembled by typing:

b bp

at the GDB prompt. You will get a message confirming this. Remaining within
GDB type:

run

The code will execute up to the breakpoint which is immediately before the call
to the printf function. Everything else prior to this break has been executed. We



can now look at the contents of the relevant registers by typing:

info r s14 d5 r0 r1 r2 r3

The output is shown below. For the sake of clarity, I have reformatted slightly this
for the D5 register output to make it much easier to read here.

s14 108.65625 (raw 0x42d95000)
d5 {u8 = {0x0, 0x0, 0x0, 0x0, 0x0, 0x2a, 0x5b, 0x40},
u16 = {0x0, 0x0, 0x2a00, 0x405b}, 
u32 = {0x0, 0x405b2a00}, 
u64 = 0x405b2a0000000000, 
f32 = {0x0, 0x3}, f64 = 0x6c
r0 0x2102c 135212
r1 0x21028 135208
r2 0x0 0
r3 0x405b2a00 1079716352

To recap the six registers in the output above are shown immediately prior to the
printf call, and therefore have all the information passed into them. S4 This
clearly shows the single-precision value as 108.65625 – also seen its raw binary
value of 0x42D95000. D5 The representation we are normally interested in here
is the U32 number. This is shown as: 0x405b2a00 in 32bits and (with 0) in the
other 32 bits. You can also see this as 0x405b2a0000000000 in u64 (64-bits). R0
holds the address of the value the address of the string to be used by printf R1
Has the address of the single-precision number to be printed. R2, R3 Hold the
value to be printed by printf. This is there same as shown in D5 above.

Therefore, R2 and R3 are holding a double-precision value, stored in two
registers. This is because printf only prints double-precision numbers.

The value in D5 is the value 108.656250 represented as a single-precision
binary number.

Edit Program24a and change the number to be converted to:

108.6000

Reassemble the file and execute the program again (no need to go into GDB).
The result returned is:

Floating point value is: 108.599998



The value converted back is not 108.60000. This is a rounding error. A small
discrepancy, in fact just -0.00000152587890625. However, if compounded,
especially by multiplication it might ultimately become quite significant.

The reason for the variation is in the way the way the decimal value is
converted into a binary representation. In some cases, these errors can and
regularly do occur. It didn’t occur in the original example as the initial value
converts correctly.

Using GDB is a good way to learn what instructions do, and how the various
combinations of actions affect the flags and results.

You can still assemble and link your floating-point code as a two-stage
process using ‘as’ and ‘ld’ providing you follow the rules laid down in the early
chapters of this book. However, you will also need to link the run-time libraries
you require for any external functions called, such as printf or scanf etc when you
link them. In these instances, we’ll stick with the GCC compiler to do the process
for us.

The debugger can be used is the -g option is included in the assemble
sequence as normal.



Load, Store and Move
As with the standard ARM instruction set the VFP instruction set provides a
versatile set of instructions to shift information around. VLDR and VSTR load
and store single register quantities using indirect addressing. Here are a few
examples:

VLDR S1, [R5] @Load S1 with F32 value at addr in R5
VLDR D2, [R5, #4] @Load S2 with F64 value addr+4 in R5 
VSTR S3, [R6] @Store F32 value in S3 at addr in R6

Pre-indexed addressing is used in the second example to add 4 to the address held
in R5 before the operation completes.

We can also use pre-indexed addressing with write-back as well, to update
the address in the indexing register. This is useful when dealing with operations
working on sets of registers, as shown here:

VLDMIAS R5!,{S1-S4} @ Copy S1, S2, S3, S4 & update R5

In this example the values in the four registers S1, S2, S3 and S4 are copied
sequentially to the word location starting at the address held in R5. When the
operation is completed the length of space used for the storage is added to R5.
This means that R5 will now point to the next address—the one after S4. If the
instruction had read:

VLDMIAS R5!, {D1-D4} @ Copy D1, D2, D3, D4 & update R5

then the same operation would have taken place, but the instruction would have
allowed two-words (8 bytes) per register and added 32 bytes to the value in R5. If
you do not wish to update R5 then exclude ‘!’ from the instruction.

The addressing modes in operation here are similar in fashion to those
described in Chapter 15 but notice how the registers and information are arranged
differently. There is no post-indexed addressing operation.

 Program 24b. Manipulating and printing two or more fp values.

/* Printing two floating-point numbers */

.global main

.func main



main:
SUB SP, SP, #16 @ Make space on stack
LDR R1, addr_value1 @ Get addr of value1
VLDR S14, [R1]
VCVT.F64.F32 D0, S14
LDR R1, addr_value2 @ Get addr of value2
VLDR S15, [R1]
VCVT.F64.F32 D1, S15

LDR R0, =string @ point R0 to string
VMOV R2, R3, D0 @ first value
VSTR D1, [SP] @ second on stack
BL printf 
ADD SP, SP, #16 @ restore stack

MOV R7, #1 @ Exit Syscall
SWI 0 

addr_value1: .word value1
addr_

value2: .word value2

.data
value1: .float 1.54321
value2: .float 5.1
string: .asciz "The FP values are %f and %f\n"

  End Program 24b

VPUSH and VPOP can be used with curly brackets to transfer several items to
and from the stack:

VPUSH {S1-S4} @ put S1, S2, S3, S4 onto stack
VPOP {S5-S8} @ pull them into S5, S6, S7 and S8

The VMOV instruction allows values to be freely transferred between different
register sets. When there is a transfer between a VFP register and an ARM
register then the transfer is done bit-by-bit and no conversion takes place.



VMOV S1, S2 @ Copy S2 into S1
VMOV S1, S2, R3, R5 @ Copy R3 to S1 and R5 to S2
VMOV R2, R4, D1 @ Copy loD1 to R2 & hiD1 to R4

In the last example a double-precision value (8 bytes) is being transferred into
two registers. In such instances it is important to be aware of the order of the hi
and lo bytes of the floating-point value as failure to do so can radically alter the
value saved. Once again, no conversion is performed, and it is a bit-for-bit
transfer. The value is preserved if the transfer is reversed as nothing has changed.

You can use the VMOV instruction to copy information from ARM to VFP
registers and thus you can use the command to allow you to store ARM register
contents in the Register File if you are looking for extra space:

VMOV S1, R1 @ Store R1 in S1



Precision Conversion
Both programs at the start of this chapter included conversion from single to
double-precision values. This was done as the printf function directive ‘%f’
requires a double-precision value as its source to work correctly. The VFP
architecture allows for conversion to work in several directions. It can also
perform double-precision to single-precision transformation, but it can also
simplify signed and unsigned integer values conversions. You should bear in
mind that conversion can lead to a loss of precision and some rounding of values,
particularly where a floating-point number is transformed into an integer.

There are four operators that can be used with VCVT to define the
conversion source and targets, two of which must always be used, one as the
source and one as the target. These are detailed in Figure 24c.

 Suffix   Meaning 
 .F32   Single Precision. 32-bit one-word width values.
 .F64  Double Precision. 64-bit two-word width values.
 .S32  Signed Integer. 32-bit one-word width values.
 .U32  Unsigned Integer. 32-bit one-word width values.

 Figure 24c. Suffixes which can be used in number conversion.

The basic syntax of VFP instructions is thus:

VCVT <Target><Source> <Reg-Target>, <Reg-Source>

The suffixes ‘.F32’ and ‘.F64’ can be appended to arithmetic or conversion
instructions to determine whether the quantities being manipulated are single or
double-precision. We have already seen an example of this in the conversion
process in both programs above.

The example used in Program 22a was:

VCVT.F64.F32 D5, S14

This took the single-precision (F32) value in S14 and converted it into a double-
provision (F64) value to be stored in D5. A few more examples with short
explanations are listed below:



VCVT.F32.F64 S10, D2 @ Double in D2 to single in S10
VCVT.F32.U32 S10, R2 @ Unsigned int in R2 to single in S10
VCVT.S32.D64 D4, R2 @ signed int in R2 to double in D4



Vector Arithmetic
The VFP instruction set provides a comprehensive range of instructions to
perform all the arithmetic operations you might expect. The format follows the
standard form illustrated so far with F32 and F64 being used to specify single and
double-precision values. Operations are performed on one precision format value
in each instruction line as single and double-precision values cannot be mixed.
An example for each instruction available is given below, remembering that there
are ‘.F32’ and ‘.F64’ flavours of each:

VADD.F32 S0, S1, S2 @ Addition S0=S1+S2
VSUB.F64 D0, D2, D4 @ Subtraction D0=D2-D4
VDIV.F64 D4, D5, D1 @ Divide D4=D5/D1
VMUL.F32 S2, S4, S1 @ Multiply S2=S4*S1
VNMUL.F64 D4, D3, D2 @ Mult and negate. D4=-(D3*D2)
VMAL.F64 D4, D3, D2 @ Mult and accumulate D4=D4+(D3*D2)
VSUB.F64 D0, D1, D2 @ Mult and Subtract D0=D0-(D1xD2)
VABS.F32 S0, S1 @ Absolute S0=ABS(S1)
VNEG.F32 S2, S3 @ Negate S2=-S3
VSQRT.F64 D0,D1 @ Square Root D0=SQR(D1)



25. VFP Control Register

The VFP co-processor provides three system registers. The most important of
these from our perspective is the Floating-Point Status and Control Register or
FPSCR. You can think of this as the CPSR for the normal ARM instruction set, in
that it provides flag status information. Indeed, the N, Z, C and V flags are all
present and have the same application. Figure 25a shows how the register is set
out for the programmer whilst Figure 25b details the function of the register bits
that we’ll be discussing here.

 Figure 25a. Floating-Point Status and Control Register layout.

The operation and function of several of these flag sets will be covered in these
pages. However, the operation of exceptions, although introduced in a
forthcoming chapter for the ARM chip itself is not detailed to any degree.

Bits  Flag Set   Detail 
31-28  Condition Flags  Negative, Zero, Carry, Overflow
23-22  Rounding Mode  Controls rounding of values
21-20  Stride  Controls step size taken in vector banks 
18-16  Len  Controls vector length
12-8  Exception Status  Enables trapping of exception types
4-0  Cumulative Exception   Trap cumulative exceptions

 Figure 25b. Register function summary. 



Conditional Execution
We first looked at these condition codes in Chapter 10. The precise meanings of
the condition code flags differ depending on whether the flags were set by a
floating-point operation or by an ARM data processing instruction. This is
because floating-point values are never unsigned, so the unsigned conditions have
no meaning. (There is also another reason involving NaN values but as we have
not delved into these in this overview, they are not significant at this point.)

Without exception the only VFP instruction that can update the status flags
is VCMP and this sets the relative bits in the FPSCR. However, condition flags
and instructions are controlled by the APSR (Application Program Status Register
—CPSR) and so the FPSCR flags should be copied across into the APSR. There
is a specific instruction to do this:

VMRS APSR_nzcv, FPSCR

The VCMP instruction comes in .F32 and .F64 flavours and can be used thus:

VCMP.F32 S0, S1 @ S0-S1 and set condition flags
VCMP.F64 D2, D3 @ D2-D3 and set condition flags

The entire contents of the FPSCR can be transferred to an ARM register thus:

VMRS R4, FPSCR @ Copy FSPCR into R4

And likewise, the FPSCR can be loaded with the contents of an ARM register
allowing the bits to be predetermined and set:

VMSR FSPCR, R4 @ Copy R4 into FPSCR

Using the bitwise operators (AND, ORR, EOR) this instruction allows you to
mask individual bits and provides a mechanism to test specific condition flags.
This is used specifically in dealing with the bits associated with ‘len’ and ‘stride’
which we’ll discuss shortly. Figure 25c details the meanings of the condition code
mnemonics for both ARM and VFP side by side for comparison.

Remember that one of the huge befits of using conditional execution is to
reduce the number of branch instructions required and thereby reduce the overall
size of your code. Branch instructions also carry a bigger overhead in execution
timings — typically three cycles to refill the processor pipeline. For example:



VADDEQ.F32 S0, S1, S2 @ Execute only if C=1 
VSUBNE.F64 D0, D2, D4 @ Execute only if negative

Suffix   After ARM Instruction   After VCMP Instruction 
 EQ   Equal  Equal
 NE  Not Equal  No Equal or unordered
 CS  Carry Set  Equal, Greater Than or unordered
 HS  Insigned Higher or same  Equal, Greater Than or unordered
 CC  Carry Clear  Less Than
 LO  Unsigned Lower  Less Than
 MI  Negative  Less Than
 PL  Postive or Zero  Equal, Greater Than or unordered
 VS  Overflow  Unordered
 VC  No Overflow  Not unordered
 HI  Unsigned Higher  Greater Than or unordered
 LS  Unsigned Lower or same  Less Than or unordered
 GE  Signed Greater Than or Equal  Greater Than or Equal
 LT  Signed Less Than  Less Than or unordered
 GT  Signed Greater Than  Greater Than
 LE  Signed Less Than or Equal  Less Than or Equal or unordered
 AL  Always  Always

 Figure 25c. Condition code comparison ARM v VFP 
Program 25a shows how easy it is to use these commands. This simply loads
values into S14 and S15 and then compares them using the VCMP instruction.
This sets the flags in the FPSCR. The VMRS instruction is then used to copy the
NZCV flags across into the ARM Status Register. Then depending on the status
of the C flag, register R0 is loaded with 0 or 255. After running the program, you
can use:

echo $?

to display the result.
You can play with the values of the constants being loaded into the two

single-precision registers and use GDB to check the register values to watch the
process for yourself. You might like to try extending the program to create a loop



that counts down in 0.1 increments, printing them on the screen as you do so and
exiting when zero is reached.

 Program 25a. Conditional VFP-based execution.

/* Conditional execution in VFP code */

.global main

.func main
main:

LDR R1, addr_value1 @ Get addr value1
VLDR S14, [R1]
VCVT.F64.F32 D1, S14

LDR R1, addr_value2 @ Get addr value2
VLDR S15, [R1]
VCVT.F64.F32 D2, S15

VCMP.F32 S14, S15 @ Compare S14 and S15
VMRS APSR_nzcv, FPSCR @ Copy flag set across

MOVEQ R0, #0 @ If C=1, R0=0
MOVNE R0, #255 @ If C=0, R0=255

MOV PC, LR

addr_value1: .word value1
addr_value2: .word value2

.data
value1: .float 1.54321
value2: .float 5.1

  End Program 25a.



Scalar and Vector Operations
In the previous chapter when looking at the Register File I mentioned that the
registers can be divided into scalar and vectorial banks for access purposes.
Figure 25d illustrates how this architecture is arranged.

In the earlier examples we have implied that all operations are working on
individual registers. However, the VFP can group registers into vectors or sets of
registers. For vector operations, the VFP register file can be viewed as a
collection of smaller banks. Each of these smaller banks is treated either as a bank
of eight single-precision registers or as a bank of four double-precision registers.
The number of registers used by a vector is controlled by the LEN bits in the
FPSCR. Practically the register banks can be configured as one of the following:
 

Four banks of single-precision registers, S0 to S7, S8 to S15, S16 to S23,
and S24 to S31
Four banks of double-precision registers, D0 to D3, D4 to D7, D8 to D11,
and D12 to D15
Any combination of single-precision and double-precision banks.

 Figure 25d. The four VFP banks and associated registers. 



Normally the value of LEN in VFP is set to 1 so that an instruction will only
operate on the registers defined in the instruction. However, by increasing the
value of LEN we can make the instruction operate on the rest of the registers in
the associated bank of registers. So, a vector can start from any register and wrap-
around to the beginning of the bank. In other words, if a vector terminates beyond
the end of its bank, it wraps around to the start of the same bank. Figure 25e
shows how this works in tabular form.

It is important to note that a vector cannot contain registers from more than
one bank, so if the length wraps back to the start the operation stops at that point,
once the bank is full.

Referring to Figure 25e, the first entry is LEN 2. This means that the number
of registers to be operated on is two. The start register is D11. Looking at Figure
25d we can see that D11 is at the last register in Bank 2. Wrap around means that
the next register in the bank is in fact D8 (D12 is in Bank 3).

The first register used by an operand vector is the register that is specified as
the operand in the individual VFP instructions. The first register used by the
destination vector is the register that is specified as the destination in the
individual VFP instructions.

 LEN   Start   Registers Used 
 2   D11  D11, D8
 3  D7  D7, D4, D5
 4  S5  S5, S6, S7, S0
 5  S22  S22, S23, S16, S17, S18 

 Figure 25e. LEN and its effect on bank wrapping.

In the table above the registers accessed have been consecutive ones, in other
words they followed the numeric order allowing for wrap-around. However, they
can also occupy alternative registers, and this is defined by the setting of the
STRIDE bits in the FPSCR. In the examples given in Figure 25e the STRIDE
setting would have been 1 as the registers used are consecutive. But a STRIDE
setting of 2 would have forced alternative registers to be used. Figure 25f
illustrates this in tabular form also.

 LEN   STRIDE   Start   Registers Used 
 2 1   2  D1  D1, D3
 3  2  S1  S1, S3, S5



 4  2  S6  S6, S0, S2, S4
 5  1  S22  S22, S23, S16, S17, S18  

 Figure 25f. How LEN and STRIDE affects vector wrap-around. 
As we have said, a vector cannot use the same register twice, so the combinations
of LEN and STRIDE settings are limited.

Consider the following instruction:

VADD.F32 S8, S16, S24 @ S8=S16+S24

By default, LEN=1, and STRIDE=1 and so the contents of S16 and S24 are added
together with the result placed in S8. However, if we set LEN=2 and STRIDE=2
and execute the same instruction, it will be the same as executing the following
two instructions with 1+1 settings:

VADD.F32 S8, S16, S24 @ S8=S16+S24
VADD.F32 S10, S18, S26 @ S10=S18+S26

In turn setting LEN=4 and STRIDE=2 and performing the same instruction would
execute as though the following four instructions had taken place:

VADD.F32 S8, S16, S24 @ S8=S16+S24
VADD.F32 S10, S18, S26 @ S10=S18+S26
VADD.F32 S12, S20, S28 @ S12=S20+S28
VADD.F32 S14, S22, S30 @ S14=S22+S30

As you can see this is a potent programming method and is especially useful
when it comes to matrix operations on blocks of numbers.



Which Type of Operator?
Essentially VFP arithmetic can be performed on scalars, vectors or both together.
When LEN=1 (default) then all VFP operations are scalar in nature. When LEN
is set to anything else then they can be any scalar, vector or mixed. How this
works is in your control only by your selection of the register banks used or
source and destination registers.

For most purposes Bank 0 (S0-S7/D0-D3) is a scalar bank and the remaining
three banks are vector banks. A mixed operation (scalar and vector) occurs when
the destination register is in one of the vector banks. Figure 25g provides some
examples followed by brief descriptions of the type of action being performed.
Although VADD is used through these examples, the action is applicable to all
VFP arithmetic instructions.

 
STRIDE LEN Instruction  Result 
 1 1 VADD.F64

D0, D1, D2
D0=D1+D2. Scalar as destination (D0) is in Band 0.

1 1 VADD.F32
S4, S8, S20

S4=S8+S20. Scalar as destination (S4) is in Bank 0.

2 4 VADD.F32
D10, S16,
S24

S10=S16+S24; S12=S18+S26; S14=S20+S28;
S8=S22+S30. Vectoral, notice wrap around on final
iteration.

2 2 VADD.F64
D4, D8, D0

D4=D8+D0; D6=D10+D12. Mixed as second
source in Bank 0.

 Figure 25g. Examples of Scalar, Vector and Mixed operations.



Len and Stride
The bits associated with LEN and STRIDE in the FPSCR can be set up using
VMRS and VMSR instructions to transfer the required bit pattern into the
FPSCR. This has to be done through an ARM register and is a two-part process,
as the FPSCR must be copied across first so that the flag settings may be
maintained, and a mask applied just to affect the settings of LEN and STRIDE.
Any ARM register can be used, and the two-way process would look like this:

VMRS R4, FPSCR @ Copy FSPCR into R4 carry out bit setting here
VMSR FPSCR, R4 @ Copy R4 into FPSCR

The LEN field occupies three bits (b16-b18) whilst the STRIDE field occupies
two bits (b20-b21). Figure 25h shows the various bit combinations for LEN and
STRIDE and the outcomes for each as well as their reliability with single and
double-precision numbers.

Not all combinations return predictable results and should be avoided. Use
the table to select what combination works for the type of values you are dealing
with. You will see from this that STRIDE bits are only ever 00 or 11 to represent
1 and 2, respectively. LEN operates so a value of 1 is represented by 000 (ie, the
actual binary stored is one less than value).



 Figure 25h. STRIDE & Vector LEN combinations effect on single and double-
precision numbers. 
Program 25b demonstrates how vector addressing delivers the third option listed
in Figure 25g. The bulk of the listing is given over to first seeding values and then



printing them out using printf. The theory behind the latter should be familiar to
you now, and as we will ultimately be printing four double-precision values, three
of these have to be pushed onto the stack so the main: function begins by
reserving 24-bytes for just this purpose, 24-bytes being three words.

The actual instruction being executed is:

VADD.F32 S10, S16, S24

This involves three vector banks in Bank 1, Bank 2, and Bank 3. As we will be
using STRIDE=2, LEN=4 as our vector control settings. Bank 1 is used to hold
results (S10, S12, S14, S8), Bank 2 will hold the first set of values (S16, S18,
S20, S22) and Bank 3 the second set of values (S24, S26, S28, S30).

Five values have been defined for use. To make things easier to check, a
single value is assigned into the Bank 2 registers and then four separate values
assigned to each of the registers in Bank 3.

The lenstride: entry point marks where the FPSCR is seeded with the
settings for STRIDE and LEN. We require settings of 2 and 4, respectively.
Looking at Figure 23h we can see in line 8 the binary settings to achieve this for
single-precision are 11 and 011 (a ‘normal’ operation for single-precision).

As STRIDE and LEN are separated by a single bit the bit pattern, we need to
seed is 110011. This in turn needs to be shifted so the leftmost bit starts at b21 in
the FPSCR, an LSL #16 achieves this.

Looking at the program listing, the ‘convert:’ routine transforms the Sx
registers in Bank 1 into double-precision values in Bank 0. In this program Bank
0 is not touched so these registers are free, but beware, you must ensure that you
have at least one double-precision register that you can use if you plan to utilise
printf, otherwise you will be doing a lot of register moving and restoring.

 Program 25b. Using LEN and STRIDE to sum vectors.

/*** Using LEN and STRIDE to sum vectors ***/
.global main
.func main

main:
SUB SP, SP, #24 @ room for printf
LDR R1, addr_value1 @ Get addr of values
LDR R2, addr_value2
LDR R3, addr_value3
LDR R4, addr_value4



LDR R5, addr_value5

VLDR S16, [R1] @ load values into
VLDR S18, [R1] @ registers
VLDR S20, [R1]
VLDR S22, [R1]
VLDR S24, [R2]
VLDR S26, [R3]
VLDR S28, [R4]
VLDR S30, [R5]

lenstride:
/* Set LEN=4 0b101 and STRIDE=2 0b11 */

VMRS R3, FPSCR @ get current FPSCR
MOV R4, #0b110011 @ bit pattern
MOV R4, R4, LSL #16 @ move across to b21
ORR R3, R3, R4 @ keep all 1's
VMSR FPSCR, R3 @ transfer to FPSCR

VADD.F32 S10, S16, S24 @ Vector addition
VADD.F32 S12, S18, S26
VADD.F32 S14, S20, S28
VADD.F32 S8, S22, S30

convert:
/* Do conversion for printing, making sure not */
/* to corrupt Sx registers by overwriting */

VCVT.F64.F32 D0, S10 
VCVT.F64.F32 D1, S12 
VCVT.F64.F32 D2, S14 
VCVT.F64.F32 D3, S8
LDR R0, =string @ set up for printf
VMOV R2, R3, D0
VSTR D1, [SP] @ push data on stack
VSTR D2, [SP, #8]
VSTR D3, [SP, #16]
BL printf
ADD SP, SP, #24 @ restore stack

_exit: 



MOV R0, #0
MOV R7, #1
SWI 0

addr_value1: .word value1
addr_value2: .word value2
addr_value3: .word value3
addr_value4: .word value4
addr_value5: .word value5

.data
value1: .float 1.0
value2: .float 1.25
value3: .float 1.50
value4: .float 1.75
value5: .float 2.0

string: 
.asciz " S10 is %f\n S12 is %f\n S14 is %f\n S8 is %f\n"

  End Program 25b.

I make no apologies for the simplicity of this program, but it does provide a good
way to get to grips with the FPSCR and the STRIDE and LEN bits.



26. Neon

At the time of writing, this chapter is not relevant to the original Raspberry Pi 1
series nor the Raspberry Pi Zero board. This is because Neon was introduced with
the Raspberry Pi 2 release, or more specifically the version of the ARM chip that
was used in its design. Neon is closely tied in with the VFP architecture
introduced in the ‘Floating-Point’ chapter. However, it is not the floating-point
unit (FPU) of the ARM processor. (Refer back to Figure 1c, in Chapter 1 to see
the evolution of the chips used on the Raspberry Pi.)

Neon is an advanced SIMD (Single Instruction, Multiple Data) processing
unit that can apply a single action too many pieces of data at one time, without
the data ever leaving the registers! So much so it appears you are just loading and
then storing data. In this way, you can get more ‘speed’ (or completed operations)
out of Neon than you can a standard SISD (Single Instruction, Single Data)
processor running at the same clock rate.  Neon’s importance comes in the fact
that it can sort repetitive complex information quickly using a process called
interleaving.

Figure 26a depicts the philosophy behind how Neon operations work. While
a normal processor would do A0+ B0=C0, A1+B1=C1 (on left), the Neon system
does this in one instruction producing the same output (on right).



 Figure 26a. Neon operations can be carried out in parallel.

Neon supports several data types:
 

32-bit single-precision floating-point
8, 16, 32 and 64-bit signed and unsigned integers
8 and 16-bit polynomials

The convention used to distinguish types is to put the first letter of the type before
the size. For example, an unsigned 32-bit integer would be U32, 32-bit floating-
point would be F32 and so on.

You should consider a few differences between the Neon and VFP systems:
 

Neon does not support double-precision floating-point numbers.
Neon only works on vectors and does not support advanced operations such
as square root and divide.
VFP offers some specialised instructions not supported by the Neon unit
(SQRT for example).



Neon is used to crunch lots of numbers quickly. If you need floating-point
precision, then use the VFP. However, bear in mind that the Neon hardware
shares the same floating-point registers supplied by the VFP, so if you are using
both formats together ensure your register management is up to-scratch.

As illustrated in Figure 26b the Neon system uses a bank of 32 by 64-bit
registers which can also be configured as 16 by 128-bit registers:
 

32 x 64-bit (‘double-word’) registers: D0-D31
16 x 128-bit (‘quad-word’) registers: Q0-Q15

Here the D registers of the VFP are doubled up to make the Q or Quad registers.
These registers are aliased so that the data in a Q register is the same as that
in its two corresponding D registers. For example, Q0 is aliased to d0 and d1,
and the same data is accessible through either register type.

To enhance Neon performance and reduce code density the Neon instruction
set includes structured load and store instructions that can load or store single or
multiple values from or to single or multiple ‘lanes’ in a vector register. These
load and store operations are incredibly versatile and can manipulate data during
the load and store operation, pulling data from memory and simultaneously
separate values into different register.



 Figure 26b. The Neon register configuration. Compare this to Figure 22b to
see how the register structure is built.



Neon Assembler
Program 26a is a simple example for you to try and ensure that Neon is operating
on your Raspberry Pi. It will also confirm that you have the assemble and link
operations correct. Assuming a source file name of:

prog26a.s

To assemble and link the code:

as -mfpu=neon-vfpv4 -g -o prog26a.o prog26a.s
ld -o prog26a prog26a.o

The option:

-mfpu=neon-vfpv4 

on the assembler command line, specifies that Neon instructions are permitted. If
you leave out the option, then you will almost certainly get multiple error
message. Include the ‘g’ option if you wish to look at the operation in GDB.

 Program 26a. A Simple Neon Test.

/* Simple Neon test */
.global _start

_start:
LDR R0, =number1
LDR R1, =number2

VLD1.32 {Q1}, [R0]
VLD1.32 {Q2}, [R1]
VADD.I32 Q0, Q1, Q2

MOV R7, #1
SWI 0

.data
number1: .word 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
number2: .word 2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0



End Program 26a.

The source only has three lines that you will be seeing for the first time, and you
could probably hazard a good guess at least one of these does! The program puts
the values 1 and 2 into Q1 and Q2 respectively and then adds them, storing the
result in Q0. VLD moves the numbers into registers, and the VADD sums them to
provide a result.

GDB can be used to interrogate Neon, provided the -g option is used during
assembly. The Neon registers are accessed by number. For example, a break point
after the VADD operation in Program 26a would allow you to see the result of the
operation with:

info r q0 q1 q2

Because the Q registers can be used to contain so many formats, and much of the
detail you provide in the Neon commands specify just this, all possible outputs
can be seen when you use this method in GDB. The result should be clear though,
as shown here (which I have formatted to make it easier to see):

q0
{u8 = {0x3, 0x0 <repeats 15times>}, 
u16 = {0x3, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}, 
u32 = {0x3, 0x0, 0x0, 0x0}, 
u64 = {0x3, 0x0}, 
f32 = {0x0, 0x0, 0x0, 0x0}, 
f64 = {0x0, 0x0}}

q1 
{u8 = {0x1, 0x0 <repeats 15 times>}, 
u16 = {0x1, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}, 
u32 = {0x1, 0x0, 0x0, 0x0}, 
u64 = {0x1, 0x0}, 
f32 = {0x0, 0x0, 0x0, 0x0}, 
f64 = {0x0, 0x0}}

q2 
{u8 = {0x2, 0x0 <repeats 15 times>}, 
u16 = {0x2, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}, 
u32 = {0x2, 0x0, 0x0, 0x0}, 
u64 = {0x2, 0x0}, 



f32 = {0x0, 0x0, 0x0, 0x0}, 
f64 = {0x0, 0x0}}



Neon Instructions and Data Types
Figure 26c lists the data type specifiers available in Neon instructions. Data types
are represented using a bit-size and format letter although. As the chart shows not
all data types available in all sizes.

In Program 26a the VADD instruction specifies I32. From the table we can
see this is a 32-bit integer (or unspecified type) addition. It is important to
understand that registers can hold one or more elements of the same data type.
Thus, we may not be looking at an overall value in the register but the individual
values of the elements in the vector.

 Type   8-Bit   16-Bit   32-Bit   64-Bit 
Unsigned Integer   U8  U16>  U32  U64
Signed Integer  S8  S16  S32  S64
Integer of Unspecified type  I8  I16  I32  I64
Floating-Point number  n/a  F16  F32 (or F)  n/a
Polynomial over {0,1}  P8  P16  n/a  n/a

 Figure 26c. Neon data type specifiers.

The number of elements to be operated on is indicated by the specified register
size:

VADD.I16 Q0, Q1, Q2

indicates an operation on 16-bit integer elements stored in 128-bit Q registers.
These operations are carried out by dividing the vector into a series of lanes –
such that the operation is performed on eight 16-bit lanes in parallel. This is
illustrated below in Figure 26d which also shows pictorially how ‘lanes’ are
organised. The instruction performs a parallel addition of eight lanes of 16-bit
elements from vectors Q1 and Q2, storing the result in Q0.



 Figure 26d. Manipulating data lanes in Neon.

With larger register sizes register split into equal size any of type elements and
the operation is performed on the same element of each register.

Here’s an example where the unsigned 16-bit contents of D0 and D1 are
summed in four 16-bit parallel lanes. The elements of D0 and D1 being added to
create four result elements in D2:

VADD.U16 D2, D1, D0

Assuming that the contents in D0 and D1 are as shown below, then the result is as
per D2.



 Figure 26e. Adding lane data in Neon.

Of course, D0 and D1 combined are also Q0, whilst D2 is the lower ‘half’ of Q1.
There is nothing to stop you using this to your advantage is you wish to
manipulate individual lanes of data. There are some examples of this later in this
chapter.

Some instructions take different size input and output registers. For example:

VMULL.S16 Q0, D2, D3

multiplies four 16-bit lanes in parallel, producing four 32-bit products in a 128-bit
destination vector! Instructions specify what’s in the vectors.

For Neon there are no status flags organised on a per lane basis. If an overall
result is required and there is a chance that a carry would be significant then it
must be handled using the wider result. As per the example above for instance.
Otherwise, the Neon registers use the summary flags in the VFP FPSCR, and
there are instructions to act on the results therein.

The datatype always corresponds to the source – you cannot promote past
64-bit or demote to less than 8-bit. Some instructions can promote and demote as
part of its operation:



VADDL.S32 Q0, D0, D1 @ 2x signed 32-bit promotion to 64-bit and add
VADDW.S32 Q0, Q0, D2 @ Promotes D2 to S64 and does 2x64-bit adds
with Q0



Addressing Modes
Neon has limited ability when used as an addressing mode source. For example,
this loads D0 with the contents of the address held in R0:

This addressing mode was used in combination with the Q register to load a
vector in Program 26a.

This next example does the same but adds the size of transfer to R0 after the
transfer has taken place, which is handy when you are storing data in sequential
blocks of memory.

VLD1.64 {D0}, [R0]!

Finally, this next instruction adds the contents of R1 to R0 after D0 is loaded with
the contents of the address held in R0:

VLD1.64 {D0}, [R0], R1



VLD and VST in their Stride
The Neon load and store instructions are number-crunchingly good. The syntax of
the instruction is made up of five parts.
 

The instruction itself, either VLD for load or VST for store.
A number specifying the gap between corresponding elements in each
structure (interleave pattern).
An element type specifying the number of bits in the accessed elements.
A set of 64-bit Neon registers to be read or written. (Up to four registers can
be listed, depending on the interleave pattern.)
An ARM register containing the location to be accessed in memory. The
address can be updated after the access, dependent on the addressing mode
used.

Program 26a used the VLD instruction to load Q1 and Q2 with the contents of
some numbers stored in memory and pointed to by R0 thus:

VLD1.32 {Q1}, [R0]

This is the load instruction at its very simplest. The interleave pattern here is 1. In
this case the data is accessed as is and it’s a straight transfer – one item after the
other sequentially and in order. It is common to use 1, 2, 3 or 4 for the interleave
pattern for one to four equally sized elements, where the elements are the usual
Neon supported widths of 8, 16 or 32-bits:
 

VLD1 loads one to four registers of data from memory, with no de-
interleaving. Use this when processing an array of non-interleaved data.
VLD2 loads two or four registers of data, de-interleaving even and odd
elements into those registers. Use this to separate stereo audio data into left
and right channels.
VLD3 loads three registers and de-interleaves. Useful for splitting RGB
pixels into their own channels.
VLD4 loads four registers and de-interleaves. Use it to process ARGB image
data, for instance.

These instructions have great uses in the audio-visual processing environment.
You can use ‘2’ for separating stereo audio data into left and right channels; ‘3’



for splitting RGB pixels into separate streams, and ‘4’ to process ARGB image
data. These are just some applications. In all these examples the VST instruction
can also do the same before it stores data to memory.

VLD 2.8 {D14, D15}, [R0]

Breaking down as:
 

2: This is the interleave pattern (stride). It may be 1, 2, 3 or 4.
8: This is the data type: 8, 16 or 32.
D14, D15: This is the list of Neon registers to be used. Up to four registers
can be included.
[R0]: The ARM register containing the address of the data.

Figure 24f below illustrates part of the operation of:

VLD2.16 {D0, D1},[R0]

Would load the D0 and D1 (Q0) registers with four 16-bit elements in the first
register (D0), and four 16-bit elements in the second (D1), with adjacent pairs
(the Xs and Ys) separated to each register.



 Figure 26f. Selectively loading data into registers with VLD2.16 {D0, D1},
[R0].

Changing the size to 32-bits loads the same amount of data, but now only two
elements make up each vector, again separated into X and Y elements. The



operation of:

VLD2.32 {D0, D1},[R0]

is illustrated in Figure 26g:



 Figure 26g. Selectively loading data from memory into registers with VLD2.32
{D0, D1}, [R0]



Element size potentially affects the data entity and, as a rule, if you specify the
correct element size to the load and store instructions, bytes will be read from
memory in the appropriate order. If not, then you may need to undertake some
manual adjustment at some point. Getting your data sitting right in memory in the
first instance is always a good bit of housekeeping. For example, when loading
32-bit elements, align the address of the first element to at least 32-bits.

Program 26a can be used as the basis of some investigation. This takes some
simple visual data and performs a VLD on it. If you compile this with the -g
option, you can jump into GDB and inspect the registers to see what has
happened to your data. You can add to the program simply using different values
using additional registers so you can get a good visual idea of what is happening.

One of the most common uses for this sort of Neon instruction is to read and
sort RGB video data. If you imagine that the information was stored as a
sequence of R,G,B, R,G,B, R,G,B as 24-bit data then you could sort the three
channels into R, G and B using:

VLD3.8 {D0, D1, D2}, [R0]

Here the red information will be in D0, the green in D1 and the blue in D2.
Some instructions can reference individual scalar elements, which are

referenced using the array notation Vn[x]. (Array ordering is always from the
least significant bit.)

Consider this command:

VLD4.8 {D0[2], D1[2], D2[D2], D3[2]}, [R0]

This would take the element in the third lane from the four vectors and store them
at the address in R0, leaving the other lanes intact.



Load of Others
In addition to structural loads and stores Neon also provides two other formats for
the instruction:

VLDR and VSTR to load or store a single register as a 64-bit value.
VLDM and VSTM to load multiple registers as 64-bit values.
The latter can be useful for pushing and pulling registers from the stack.



Neon Intrinsic
Because of the complexity of Neon applications (decoding video or sound for
your Raspberry Pi for example), the C language, or derivatives of it (C++ for
instance) is invariably used to write code for compiling into ARM machine code.
However, the most direct way to utilise Neon is writing assembler code, not least
because, as we have seen in earlier chapters, the code produced by the compiler
out of the C file is not always ‘tight’ and can be wasteful of resources. Equally, C
doesn't always make the best register decisions when compiling.

The term ‘Neon Intrinsic’ is often used to refer to C compilation of Neon.
An intrinsic function is a function available for use in a programming language
whose implementation is handled specifically by the compiler. Typically, it
substitutes a sequence of automatically generated instructions for the original
function call, like an inline function. Unlike an inline function, though, the
compiler should have an intimate knowledge of the intrinsic function and can,
therefore, better integrate it and optimise it for the situation.

Intrinsic functions are often used to explicitly implement vectorization and
parallelisation in languages which do not address such constructs as part of their
syntax. The compiler parses the intrinsic functions and converts them into vector
math or multiprocessing code appropriate for the target platform.

Neon Intrinsics are a set of definitions that induces use of Neon when
compiling the C program. Some programmers love them; some hate them. For
performance-critical programs then I am not a fan. It’s too easy for the compiler
to inject extra register unload/load steps between your intrinsic operations. The
effort to get it to stop doing that is more complicated than just writing the stuff in
raw Neon assembler. At this level, it’s good to know what’s happening and
control it yourself. Especially if speed is critical.



Neon Arrays
Because Neon can manipulate large amounts of data with one instruction, it is
often used to code graphics software. For example, if you rotate a picture on your
smartphone or tablet the process is probably done by manipulating blocks of data
using Neon instructions.

The following code will rotate the contents of a block of four Q registers
through 90 degrees. Figure 26h shows the matrix before and after rotation. The
numbers on the left refer to the Q registers, and the grid numbers are placeholders
for each lane so you can see the before and after state. The data is loaded into the
Q registers and as array ordering is always from the least significant bit, the D
registers aliased against them will have the appropriate values in them also.

 Figure 26h. Rotating data through 90 degrees.



Program 26b lists the assembly code that will produce this. The data used is
simple numbers just so that you can visually inspect the start and end results via a
GDB register dump. Let’s work through each block and look at the a few of the
instructions operation as we encounter them.

 Program 26b. Rotate a 2D matrix by 90 degrees (clockwise).

/* Rotate 4x4 Matrix Through 90 Degrees */

.global _start
_start:

@ Get data pointers
LDR R0,=matrix0
LDR R1,=matrix1
LDR R2,=matrix2
LDR R3,=matrix3

@ Load Q0-Q3 with the data
VLD1.32 {Q0}, [R0]
VLD1.32 {Q1}, [R1]
VLD1.32 {Q2}, [R2]
VLD1.32 {Q3}, [R3]

@ Transpose Matrix and then interleave inner pairs
bp1:

VTRN.32 Q0, Q1
VTRN.32 Q2, Q3
VSWP D1, D4
VSWP D3, D6

@ Mirror flip matrix
VREV64.32 Q0, Q0
VREV64.32 Q1, Q1
VREV64.32 Q2, Q2
VREV64.32 Q3, Q3

@ Swap high and low halves



VSWP D0, D1
VSWP D2, D3
VSWP D4, D5
VSWP D6, D7

@Store result
bp2:

VST1.32 {Q0}, [R0]
VST1.32 {Q1}, [R1]
VST1.32 {Q2}, [R2]
VST1.32 {Q3}, [R3]

MOV R7, #1
SWI 0

.data
matrix0: .word 0,1,2,3
matrix1: .word 4,5,6,7
matrix2: .word 8,9,10,11
matrix3: .word 12,13,14,15

  End Program 26b.

There are some instructions we have used for the first time here, and if you are
interested in digging deeper, you might want to work through these
diagrammatically substituting the numbers for colour in a 4 x 4 grid.

The data for our array is stored at the end of the listing as mart of the ‘.data’
block. The numbers 0 through to 15 are used as per the matrix. After starting R0,
R1, R2 and R3 are pointed their respective lines and these are loaded as 32-bit
values into Q0, Q1, Q2 and Q3, respectively. If you look at the registers prior to
the two transpose commands executing you should see these quite clearly.
Especially if you look at the u32 register output. The registers at this point will
show:



The first operation is to deal with transposing the matrix itself. VTRN (Vector
Transpose) treats the elements of its operand vectors as elements of 2 x 2 matrices
and transposes them.

@ Transpose Matrix
VTRN.32 Q0, Q1
VTRN.32 Q2, Q3

The first line transposes Q0 and Q1, therefore ‘1’ and ‘4’ are transposed, as are
‘3’ and ‘6’. The second line deals with Q2 and Q3 where ‘9’ and ‘B’ and ‘E’ are
transposed, respectively.



The first line transposes Q0 and Q1, therefore ‘1’ and ‘4’ are transposed, as are
‘3’ and ‘6’. The second line deals with Q2 and Q3 where ‘9’ and ‘B’ and ‘E’ are
transposed, respectively.

VSWP (Vector Swap) is then utilised to exchange the contents of two
vectors. The vectors can be either double-word or quadword. There is no
distinction between data types. In fact, it is used to interleave:

VSWP D1, D4
VSWP D3, D6

D1 is the ‘high’ two elements of Q0 and D4 is the ‘low’ two elements of Q2. You
can see on the left-hand matrix below that ‘8 and C’ have swapped places with ‘2
and 6’. On the right-hand matrix ‘9 and D’ have been swapped with ‘3 and 7’ as
the elements of D3 and D6 are swapped.



VREV64 instruction is used to reverse the order of the 32-bit elements within
each double-word of the vector. This is done on each of the four Q registers
using:

@ Mirror flip matrix
VREV64.32 Q0, Q0
VREV64.32 Q1, Q1
VREV64.32 Q2, Q2
VREV64.32 Q3, Q3

The matrix now looks thus:



Now all that is required is to realign some of the elements by swapping the low
and high halves of each full register thus:

@ Swap high and low halves
VSWP D0, D1
VSWP D2, D3
VSWP D4, D5
VSWP D6, D7

Which completes the rotation, prior to being stored back in memory.



If you compile Program 26b you can use the two labels ‘bp1’ and ‘bp2’ as
breakpoint specifiers. Then display the Q0, Q1, Q2 and Q3 registers at both
points. I have only shown the U32 data in the output below.:

Breakpoint 1, bp1 () at Prog26b.s:21
21 VTRN.32 Q0, Q1
(gdb) info r q0 q1 q2 q3
q0 u32 = {0x0, 0x1, 0x2, 0x3}
q1 u32 = {0x4, 0x5, 0x6, 0x7} 
q2 u32 = {0x8, 0x9, 0xa, 0xb} 
q3 u32 = {0xc, 0xd, 0xe, 0xf}

Breakpoint 2, bp2 () at Prog26b.s:42
42 VST1.32 {Q0}, [R0]
(gdb) info r q0 q1 q2 q3
q0 u32 = {0xc, 0x8, 0x4, 0x0} 
q1 u32 = {0xd, 0x9, 0x5, 0x1} 
q2 u32 = {0xe, 0xa, 0x6, 0x2} 
q3 u32 = {0xf, 0xb, 0x7, 0x3} 



Order Correctly
It is important that your order you data correctly, and consistently when you do
any matrix calculations. This is to ensure that you are calculating on the same
elements as required in the matrix being processed. At some point you will need
to move information from a source to place where the information can be
manipulated. Think of a vector as a one-dimensional array. Memory occupies a
linear space, so it is also a one-dimensional area. A matrix is a two-dimensional
object. A 4x4 matrix provides 16 ‘cells’ arranged in an array consisting of four
rows and four columns. How is this moved into a vector that is both sensible and
convenient to be processed?

In computing, row-major order and column-major order are the most popular
methods for storing multidimensional arrays in linear storage These are illustrated
in Figure 26i.

 Figure 26i. Illustrating column-major order and row-major order storage
options.

In column-major order the data is stored placing the columns one after the other.
So, in Figure 24i Column 0 data 1, 4, 7 and placed in the first three spaces in the
vector. These are followed immediately by Column 1 (2, 5 and 8) and finished
with Column 3 (3, 6 and 9).

In row-major order each row is done sequentially. Therefore, the first row (1,
2, 3) and then the second (4, 5, 6) and finally the third (7, 8, 9). The process is the
same for whatever sized matrix in use. If you know the size of the array and the



method of storage, then it can safely be deconstructed and reconstructed with no
errors. It is also another method which allows you to sort and move data quickly
and efficiently. Look at Fig 26i again. If you took the column-major data and then
deconstructed it using row-major, you have a method or rotating the matrix.

Generally, you will decide the data storage you want to use. It may also be
stipulated by the routine you want to use or the language environment you
ultimately working in (C or Python for example). But with knowledge of Neon it
is possible to manipulate the data between the two regardless, although it is better
to stick to one for simplicity.



Matrix Math
Matrix math is a relatively straight forward operation utilising the with the VFP
and/or Neon Co-processor. The next two examples show how to add and multiply
them together. There are many other operations that can be performed and,
applying some principles here along with a good understanding of matrix
manipulation, should allow you to develop what you need.

To add two matrices, you sum the corresponding elements in each column to
create a third matrix containing the result. As shown in Figure 26j.

 Figure 26j. Adding two matrices together.

This example forms the basis of Program 26c.

 Program 26c. Adding two 4x4 Matrices together.



/* Add two 4x4 matrices together */
/* column-major Order */

@ Pointers:
@ R10 = pointer to where 4x4 matrix result will be stored
@ R11 = pointer to 4x4 matrix 1, single-precision floats
@ R12 = pointer to 4x4 matrix 2, single-precision floats
@ d16-d19 and d20-d23 (Q8, Q9, Q10, Q11) for Matrix 1
@ d8-d11 and d12-d15 (Q4, Q5, Q6, Q7) for Matrix 2
@ d24-d27 and d28-d31 (Q12-Q15) contains result on exit

.global main

.func main
main:

LDR R10, =result
LDR R11, =matrix1
LDR R12, =matrix2

VLD1.32 {D16-D19},[r11]! @ Q8-Q9 load M1, 2 lines
VLD1.32 {D20-D23}, [r11]! @ Q10-Q11 load M1, 2 lines
VLD1.32 {D8-D11},[r12]! @ Q4-Q5 load M2, 2 lines
VLD1.32 {D12-D15}, [r12]! @ Q6-Q7 load M2, 2 lines

VADD.F32 Q12, Q8, Q4 @ Q12=Q8+Q4
VADD.F32 Q13, Q9, Q5 @ Q13=Q9+Q5
VADD.F32 Q14, Q10, Q6 @ Q14=Q10+Q6
VADD.F32 Q15, Q11, Q7 @ Q15=Q11+Q7 

VST1.32 {D24-D27}, [r10]! @ D24-D27 store 1st eight
VST1.32 {D28-D31}, [r10]! @ D28-D31 store 2nd eight

@ Following code will print out results
matrixprint: 
.equ Num, 4 @ number of bytes 
.equ Cells, 16 @ umber of matrix cells

LDR R10, =result @ R10 hold address of result matrix
MOV R7, #Cells @ R7 holds matrix cell counter

loop: 



LDR R0, [R10] @ Get data item into R0
VMOV S2, R0 @ Get into FPU register
VCVT.F64.F32 D0, S2 @ Convert to single-precision
VMOV r2, r3, D0 @ Into R2 and R3 for fprint
LDR R0, =string @ Point R0 to string
BL printf @ call fprint function
ADD R10, #Num @ increment address of next result
SUBS R7, #1 @ decrement cell counter
BNE loop @ do next cell if not complete

MOV R7, #1 @ otherwise exit
SWI 0

string: .asciz "Result is: %f\n"
.data
matrix1: .single 106.6,2.4,4.5,6.2

.single 105,4,6,8

.single 104,6,8,10

.single 103,8,10,12

matrix2: .single 2,3,4,5
.single 3,4,5,6
.single 4,5,6,7
.single 5,6,7,8

result: .word 0,0,0,0 
.word 0,0,0,0 
.word 0,0,0,0 
.word 0,0,0,0 

End Program 26c.

Assemble, link and run the program with:

gcc -mfpu=neon-vfpv4 -g -o prog26c prog26c.s
./prog26c

The output you see should be:



Result is: 108.599998
Result is: 5.400000
Result is: 8.500000
Result is: 11.200000
Result is: 108.000000
Result is: 8.000000
Result is: 11.000000
Result is: 14.000000
Result is: 108.000000
Result is: 11.000000
Result is: 14.000000
Result is: 17.000000
Result is: 108.000000 
Result is: 14.000000
Result is: 17.000000
Result is: 20.000000

Again, if you interrogate the program using GDB, you will see the results. Notice
in the results printed via the program that the rounding error we discussed
previously is also present. Program 26c contains a routine called ‘matrixprint’
that can be used to print the 4x4 matrix. This is also used in Program 26d and can
be adapted to provide an easy visual output of results or values during points of a
programs execution. It’s always nice, simply displaying memory and register
contents have we have done, show that it’s just as easy to check on progress as we
have done in the samples beforehand.



Multi Matrix
There are two types of multiplication for matrices: scalar multiplication and
matrix multiplication. Scalar multiplication is easy. You just take a regular
number (called a "scalar") and multiply it on every entry in the matrix, thus:

 Figure 26k. Multiply a matrix by a scalar.

On matrix multiplication (non-scalar) you multiply each of the elements of a row
in the left-hand matrix by the corresponding elements of a column in the right-
hand matrix, and then sum the resulting ‘n’ products to obtain one element in the
result matrix. Program 26d given below keeps things simple by using two
matrices of equal size and assumes that the matrices are stored in memory in
column-major order. The process for multiplication is the same, as illustrated
below (Figure 26j), where the math for first column result is shown. The same
will be done for the next three columns to calculate the result:



 Figure 26l. Calculating the first column of a 4 x 4 matrix multiplication.

In the program, each column from the matrix is loaded into a Neon register; we
can use the vector-by-scalar multiplication (VMLA) instruction to calculate the
result for each column. We must also add the results together for each element of
the column, which we do use the accumulating version of the same instruction.

Remember that the D registers are aliased with the Q registers so that we can
access the contents of these register, either way, remembering that Q0 is the
combination of D0 and D1 and so forth.

The program beings by loading the first eight elements matrix (Matrix 1)
into D16-D19, and the second eight elements in D20-D23 which correspond to
Q12 and Q13. It then loads the contents of Matrix 2 into D0-D7 (Q0- Q1).



The crux of the program then operates through these instructions which can
calculate a single column using just four Neon instructions:

VMUL.f32 Q12, Q8, D8[0]
VMLA.f32 Q12, Q9, D8[1]
VMLA.f32 Q12, Q10, D9[0]
VMLA.f32 Q12, Q11, D9[1]

Here, the first instruction (VMUL.F32) takes x0, x1, x2 and x3 (in register Q8)
and each is multiplied by y0 (element 0 in D0), and the result is stored in Q12.
The three subsequent VMLA.F32 instructions operate on the other three columns
of the first matrix, multiplying by corresponding elements of the first column of
the second matrix. Results are accumulated into Q12 to give the first column of
values for the result matrix.

This set of instructions must be executed three more times to calculate the
second, third and fourth columns. Here we use values Y4 to Y15 from the second
matrix in registers Q1 to Q3.

This makes this calculation part ideal for implementation as a macro,
however although this is ideal for ease of coding it can create a timing issue due
to an effect known as ‘Scheduling’. Often when adjacent multiply instructions
that write to the same register are placed next to one another, the Neon processor
must wait for each operation to complete before it can move the next one into the
pipeline.

By separating the instructions out so that the accumulate operations do not
overlap Neon register access they can continue to be feed into the Neon pipeline
to ensure speed is maintained to achieve real parallel operations.

 Program 26d. Single-Precision Matrix Multiplication

/* Neon 4 x 4 Single-Precision Matrix Multiplication */
/* Column-major order */

@ Pointers:
@ R10 = pointer to where 4x4 matrix result will be stored
@ R11 = pointer to 4x4 M1, single-precision floats
@ R12 = pointer to 4x4 M1, single-precision floats
@ d16-d19 and d20-d23 (Q8, Q9, Q10, Q11) for M1
@ d8-d11 and d12-d15 (Q4, Q5, Q6, Q7) for M2
@ d24-d27 and d28-d31 (Q12-Q15) contains result



.global main

.func main
main:

LDR R10, =result
LDR R11, =matrix1
LDR R12, =matrix2

VLD1.32 {D16-D19},[R11]! @ Q8-Q9 load M1, 2 lines
VLD1.32 {D20-D23}, [R11]! @ Q10-Q11 load M1, 2 lines
VLD1.32 {D8-D11},[R12]! @ Q4-Q5 load M2, 2 lines
VLD1.32 {D12-D15}, [R12]! @ Q6-Q7 load M2, 2 lines

VMUL.f32 Q12, Q8, D8[0] @ RC0 = (M1 C0) * (M2 C0 E0)
VMUL.f32 Q13, Q8, D10[0] @ RC1 = (M1 C0) * (M2 C1 E0)
VMUL.f32 Q14, Q8, D12[0] @ RC2 = (M1 C0) * (M2 C2 E0)
VMUL.f32 Q15, Q8, D14[0] @ RC3 = (M1 C0) * (M2 C3 E0)
VMLA.f32 Q12, Q9, D8[1] @ RC0 += (M1 C1) * (M2 C0 E1)
VMLA.f32 Q13, Q9, D10[1] @ RC1 += (M1 C1) * (M2 C1 E1)
VMLA.f32 Q14, Q9, D12[1] @ RC2 += (M1 C1) * (M2 C2 E1)
VMLA.f32 Q15, Q9, D14[1] @ RC3 += (M1 C1) * (M2 C3 E1)

VMLA.f32 Q12, Q10, D9[0] @ RC0 += (M1 C2) * (M2 C0 E2)
VMLA.f32 Q13, Q10, D11[0] @ RC1 += (M1 C2) * (M2 C1 E2)
VMLA.f32 Q14, Q10, D13[0] @ RC2 += (M1 C2) * (M2 C2 E2)
VMLA.f32 Q15, Q10, D15[0] @ RC3 += (M1 C2) * (M2 C3 E2)

VMLA.f32 Q12, Q11, D9[1] @ RC0 += (M1 C3) * (M2 C0 E3)
VMLA.f32 Q13, Q11, D11[1] @ RC1 += (M1 C3) * (M2 C1 E3)
VMLA.f32 Q14, Q11, D13[1] @ RC2 += (M1 C3) * (M2 C2 E3)
VMLA.f32 Q15, Q11, D15[1] @ RC3 += (M1 C3) * (M2 C3 E3)

VST1.32 {D24-D27}, [R10]! @ d24-d27 store 1st eight
VST1.32 {D28-D31}, [R10]! @ d28-d31 store 2nd eight

@ Following code will print out results if required

matrixprint: 
.equ Num, 4 @ Number of bytes 



.equ Cells, 16 @ Number of matrix cells

LDR R10, =result @ R10 address of result matrix
MOV R7, #Cells @ R7 matrix cell counter

loop: 
LDR R0, [R10] @ Get data item into R0
VMOV S2, R0 @ Get into FPU register
VCVT.F64.F32 D0, S2 @ Convert to single-precision
VMOV R2, R3, D0 @ Into R2 and R3 for fprint
LDR R0, =string @ Point R0 to string
BL printf @ Call fprint function
ADD R10, #Num @ Inc address of next result
SUBS R7, #1 @ Decrement cell counter
BNE loop @ Next cell if not complete
@ Otherwise finish
MOV R7, #1 @ exit
SWI 0

string: .asciz "Result is: %f\n"

.data
Matrix1: .single 106.6,2.4,4.5,6.2
.single 105,4,6,8
.single 104,6,8,10
.single 103,8,10,12

Matrix2: .single 2,3,4,5
.single 3,4,5,6
.single 4,5,6,7
.single 5,6,7,8

result: .word 0,0,0,0 
.word 0,0,0,0 
.word 0,0,0,0 
.word 0,0,0,0 

  End Program 26d.



As with previous program the ‘matrixprint’ routine is used to display the matrix
results. Thus:

gcc -mfpu=neon-vfpv4 -g -o prog26d prog26d.s
./prog26d

Result is: 1459.199951
Result is: 80.800003
Result is: 109.000000
Result is: 136.399994
Result is: 1877.800049
Result is: 101.199997
Result is: 137.500000
Result is: 172.600006
Result is: 2296.399902
Result is: 121.599998
Result is: 166.000000
Result is: 208.800003
Result is: 2715.000000
Result is: 142.000000
Result is: 194.500000
Result is: 245.000000

Figure 26m below shows Matrix1 and Matrix2 as used in Program26d. The third
Result matrix (M1*M2) is also shown. Referring to Figure 26l we can see that the
top left cell is calculated as: =(X3*Y0)+(X7*Y1)+(X11*Y2)+(X15*Y3) =
(106.6*2)+(105*3)+(104*4)+(103*5) =1459.2



 Figure 26m. Matrix Multiplication



Macro Matrix Example
If you remove the ‘matrixprint’ routine from the code listed in Program26d then
there is a lot of repetition within the body of the matrix calculations. This makes
it a prime candidate for the use of a macro. The example above was important to
illustrate how to use Neon to undertake the multiplication process. Now that is
done, let’s look at the macro version of the same assembly code, which is listed
below as Program26e, in this instance minus most of the comments for clarity.
The macro itself uses just six lines of code including the enclosing directives.

 Program 26e. Single-Precision Matrix Multi - Using Macro Version

/* Floating-Point 4x4 Matrix Multiplication */
/* Using a macro to reduce coding */

.global main

.func main

main:
LDR R10, =result
LDR R11, =matrix1
LDR R12, =matrix2

.macro matrixf32 resultQ, col0_d, col1_d
VMUL.f32 \resultQ, Q8, \col0_d[0] @ ele0 by Matrix C0
VMLA.f32 \resultQ, Q9, \col0_d[1] @ ele1 by Matrix C1
VMLA.f32 \resultQ, Q10, \col1_d[0] @ ele2 by Matrix C2
VMLA.f32 \resultQ, Q11, \col1_d[1] @ ele3 by Matrix C3

.endm

VLD1.32 {D16-D19}, [R11]! @ first eight elements of M1
VLD1.32 {D20-D23}, [R11]! @ second eight elements of M1
VLD1.32 {D0-D3}, [R12]! @ first eight elements of M2
VLD1.32 {D4-D7}, [R12]! @ second eight elements of M2

@ Call macro
matrixf32 Q12, D0, D1 @ matrix 1 * matrix 2 col 0
matrixf32 Q13, D2, D3 @ matrix 1 * matrix 2 col 1
matrixf32 Q14, D4, D5 @ matrix 1 * matrix 2 col 2
matrixf32 Q15, D6, D7 @ matrix 1 * matrix 2 col 3



VST1.32 {D24-D27}, [R10]! @ save first 8 elements of result.
VST1.32 {D28-D31}, [R10]! @ save second 8 elements of result.

@ Insert printmatrix code below if you wish to print results
@ Or download full program from www.brucesmith.info

MOV R7, #
SWI 0

string: .asciz "Result is: %f\n"

.data
matrix1: .single 106.6,2.4,4.5,6.2

.single 105,4,6,8

.single 104,6,8,10

.single 103,8,10,12

matrix2: .single 2,3,4,5
.single 3,4,5,6
.single 4,5,6,7
.single 5,6,7,8

result: .word 0,0,0,0 
.word 0,0,0,0 
.word 0,0,0,0 
.word 0,0,0,0 

  End Program 26e.



27. Thumb Code

Thumb is the name given to a subset of the ARM instruction set. More
significantly it is a 16-bit (two-byte) implementation, so instructions can in theory
be coded in half the space of an equivalent ARM program but in reality,
achieving the same result in a third less space. This higher code density makes
Thumb code popular where memory constraints are tight. You will probably not
see a lot of Thumb programs around on the forums. This is mainly because most
Thumb code seems to be written and compiled from C. But that isn’t to say we
can’t hand assemble it.

In terms of hardware there is no real difference between the way in which
ARM and Thumb instruction sets function — they are one and the same.
Although Thumb is a 16-bit implementation register sizes do not change. R0 is
still a word wide, as are the other registers. What is different is how they are
fetched and interpreted before execution. Thumb instructions are expanded into
their 32-bit equivalents internally by the hardware, so it doesn’t slow down their
execution in any way— ARM speed is maintained. This makes it perfectly
acceptable to mix normal sections of ARM and Thumb code and jump from one
to the other; in fact, jumping from ARM to Thumb is the preferred way to enter
Thumb code.

If you flick back to Chapter 5 and look at Figure 5c the diagram shows the
Status Register configuration. Bit 5 is the ‘T’ bit, and this is normally clear to
indicated ARM State. When the T bit is set (T=1) then the chip is in Thumb State.
We’ll look how to move between states and write a simple program that can be
the shell for any Thumb code you may wish to write. But first….



Differences
The Thumb instruction set will be very familiar to you, but there are differences
that need to be borne in mind. If you understand these, you should have no
difficulties implementing and writing a Thumb program from your existing ARM
knowledge (which should be quite extensive at this point). And of course, GCC
supports Thumb as does GDB, so the tools to do so are readily available.

The major architectural difference is that your code does not have direct
access to all the ARM registers; only R0 to R7 inclusive are available. Registers
R8 to R12 inclusive can only be used in conjunction with MOV, ADD, SUB and
CMP. There is limited access to R13 (SP), R14 (LR) and R15 (PC) and only
indirect access to the CPSR. There is no access to SPSR and the VFP instructions
cannot be accessed from Thumb State.



 Figure 27a. Thumb registers accessibility.



The registers and code that are not available can be accessed from the program,
but only after ARM State is switched back in. In other words, you must first come
out of Thumb State to execute what you want to do and then switch back into
Thumb State to continue. Figure 27a summarises these register restrictions.
However, the advantage of all this is that when you move between ARM and
Thumb State the contents of registers are preserved!

The other significant difference is that mnemonic representations of Thumb
instructions are shorter, often with one less operand. Compare these ARM and
Thumb versions of ADD:

ADDS R2, R2, #16 @ ARM State immediate addition
ADD R0, #3 @ Thumb equivalent, dest implied

The conditional code modifiers for instructions are not available, with only
branch relative instructions conditionally executable. Therefore, you cannot
execute instructions like:

ADD CC R0, #3

in Thumb State.
The shift and rotate operator’s ASR, LSL, LSR and ROR are implemented

as standalone instructions and are no longer available as a modifying operand.
The following code segment illustrates the format for use:

LSL R2, R3 @ Shift R2 left number positions in R3

In the example above, if R2=4 and R3=1 then R2 would become 8.
Thumb branch instructions are limited in scope. The B variant, as used in

Program 27a, is the only one that is conditional, but the range here is limited to a
label that must be within a signed single byte value, effectively -256 to 254. A
non-conditional branch instruction can be extended to a range within an 11-bit
signed immediate value, -2048 to +2046 bytes.

The BL instruction is not conditional but because it can be used in an
indirect manner the address range can be up to 4Mb in either direction. An
example of this is provided at the end of the next section.

There are also significant changes to multiple load-store and stack access
instructions, and these are covered below separately.



Assembling Thumb
To switch between ARM and Thumb states, you should use the GCC directives:

.arm 

.thumb 

respectively.
These directives replace the oft seen older versions ‘.code32’ and ‘.code16’,

which will work on the current version of GCC on the Raspberry Pi, but these
should be considered as old hat now. If necessary, these directives will also
automatically insert up to three bytes of padding to align to the next word
boundary for ARM, or up to one byte of padding to align to the next half-word
boundary for Thumb. Thus, use of ‘.align’ is unnecessary.

Both ‘.arm’ and .’thumb’ must be used to direct the assembler what to
compile. They do not assemble any instructions themselves; they just direct the
assembler as to what follows. Rather than having to play with bit-5 directly in the
CPSR the state change will be handled directly for you if you follow the correct
protocol for doing so which involves using the BX instruction.

 Program 27a. How to invoke Thumb State and run Thumb code.

@ Use of Thumb code on Raspberry Pi 
@ This divide routine is R0/R1 
@ with R2=MOD and R3=DIV 

.global main

.func main

.arm
main:

ADR R0, thumbcode+1
MOV LR, PC
BX R0

exit: 
MOV R0, #0
MOV R7, #1
SWI 0

@ All Thumb code to be placed here 



.thumb

thumbcode:
MOV R3, #0 

loop:
ADD R3, #1
SUB R0, R1
BGE loop
SUB R3, #1
ADD R2, R0, R1
BX LR @ Return to ARM

  End Program 27a.

Essentially, if you load the link address of the start of the Thumb code into R0
and set the least significant bit of R0 (that is b0=1) then Thumb State will be
invoked automatically when the Thumb code is reached with BX. This implies
that you must always start from ARM State, but that must be the case anyway as
that is the state the chip fires up in. Program 27a above shows how this works in
practice. (Note the use of ‘@’ for comments. GCC Thumb code does not like the
inclusion of ‘/* */’ style comments and these can sometimes cause an error.)

The thumb instructions are located from the ‘thumbcode:’ label. This
address is loaded into R0 at the start of main: and 1 is added to the address to set
the least significant bit of R0. The BX (Branch with eXchnage) is executed and
the address in R0 is swapped into the PC. Because ARM and Thumb instructions
are word or half-word-aligned respectively, bits 0 and 1 of the address are ignored
because these bits refer to the half-word and byte part of the address.

The instructions at thumbcode perform a division routine (although we have
not loaded any data into them to work with!) before the BX LR returns code back
to the calling ARM code. ARM State is switched back in due to the requirement
to execute an ARM instruction. Note that you must switch back to ARM State to
call a SWI call or a function such as printf.

You must use a BX LR instruction at the end of the ARM subroutine to
return to the caller. You cannot use the MOV PC, LR instruction to return in this
situation as it will not update the T bit for you thereby delivering the State
change.

It is worth having a look at how GDB sees the assembled program as it
confirms some of the differences outlined earlier. Figure 27b shows output from
GDB using:



x /13i main

As usual the addresses listed in the first column may be different on your
Raspberry Pi. (You can use the gcc route to compile in the normal fashion,
nothing special needed.)

(gdb) x /13i main
0x103d0 <main>: add r0, pc, #17
0x103d4 <main+4>: mov lr, pc
0x103d8 <main+8>: bx r0 
0x103dc <exit>: mov r0, #0
0x103e0 <exit+4>: mov r7, #1
0x103e4 <exit+8>: svc 0x00000000
0x103e8 <thumbcode>: movs r3, #0
0x103ea <loop>: adds r3, #1
0x103ec <loop+2>: subs r0, r0, r1
0x103ee <loop+4>: bge.n 0x103ea <loop>
0x103f0 <loop+6>: subs r3, #1
0x103f2 <loop+8>: adds r2, r0, r1
0x103f4 <loop+10>: bx lr

 Figure 27b. Disassembling Program 27a. 
Notice how the ‘S’ suffix in Thumb is applied to the data instructions in the
‘thumbcode:’ portion of the listing. When dealing with registers R0-R7 all data
processing instructions update the Status Flags and so the S suffix is enforced
automatically by the assembler.

Also note that the BGE instruction has a ‘.N’ appended to it. In Thumb the
‘.N’ specifier forces the assembler to generate a 16-bit encoding. In this case, if
the instruction cannot be encoded in 16 bits, the assembler generates an error.

The process of mingling segments of ARM and Thumb code together is
called interworking and you are free to write code that moves between the two
instructions sets if you so desire. The same ADR-BX process can be used
throughout. If for example an ARM routine was located at the label ‘armroutine’
then it could be called with:

ADR R0, armroutine
BX R0 @ Branch exchange to armroutine

Before making any calls that utilise the Link Register you should preserve its
contents on the stack so that you can return to the original point of entry, and then



recall the program originally entered at main, so that the program can complete its
flow correctly.

Although BX is used in the examples above, the BLX instruction can also be
used to jump into Thumb code. This instruction automatically saves the PC into
the LR, so the MOV LR, PC instruction included in the listing is not needed. The
+1 is still required for the entry address to switch state. The BX instruction should
still be used to return from any called routine.

main: ADR R0, thumbcode+1
BLX R0

Program 27b shows how these come together in practice using the printf function
to print the result of a division performed in an extended program. Note that the
additional ARM code follows the Thumb code. This is necessary otherwise the
compiler will create an error when trying to create the relative branch address to
the ARM code. Note also that the ‘.arm’ and ‘.thumb’ directives should be before
the label marking the section of appropriate code.

 Program 27b. Using external functions by interworking code.

@ Interworking ARM and Thumb code to call printf 
.global main
.func main
.arm

main:
ADR R5, thumbstart+1
BX R5 

.thumb
thumbstart:

MOV R0, #9 @ Do 9/3
MOV R1, #3
MOV R3, #0

loop:
ADD R3, #1
SUB R0, R1
BGE loop
SUB R3, #1 @ R2=MOD
ADD R2, R0, R1 @ R3=DIV
ADR R5, divprint



BX R5

thumbreturn:
@ Continue adding code as required
@ Call ARM functions as and when needed 
ADR R5, exit
BX R5 @ Return to exit

.arm 
divprint: 

LDR R0, =string
MOV R1, R3 @ DIV in R3,MOD in R2 already
BL printf
ADR R5, thumbreturn+1
BX R5

exit:
MOV R7, #1
SWI 0

.data
string: .asciz "Result of 9/3 is: %d MOD %d\n"

  End Program 27b.



Accessing High Registers
Only a handful of instructions can access the full set of ARM registers. As
already stated most Thumb instructions are limited to R0-R7 and automatically
update the CPSR in doing so. Figure 27c lists the instructions and format use for
accessing the higher registers R8-R14 and the PC. Apart from CMP these
instructions do not update the CPSR.

Mnemonic   Destination   Modifiers 
 MOV   <dest>,  <operand 1>
 ADD  <dest>  <operand 1
 CMP  <operand 1>,   <operand 2>
 ADD  <dest>  <operand1>|<#immediate
 ADD  <dest>  <operand1>, < operand2>|<#immediate 
 SUB  <dest>  <operand1>,|<#immediate
 SUB  <dest>  <operand1>, < operand2>|<#immediate

 Figure 27c. Thumb instructions that can access all ARM registers..



Stack Operators
The Thumb stack instructions are the most significant departure from the ARM
instruction set, in fact opting to use the more traditional PUSH and POP terms.
We have seen these before as they are provided as pseudo-instructions by the
GCC Compiler. In Thumb their action is similar so you should have little
difficulties in getting to grips with them. However, there is a significant
difference in that no stack pointer (SP) is available to the instruction. This is
because R13 is fixed as the Stack Pointer in Thumb operations and is
automatically updated by the instructions.

PUSH {R1-R4} @ Push R1, R2, R3 & R4 onto stack
POP (R2-R3} @ Pop top 2 items into R2 and R3

PUSH can include the LR in its list and POP can include the PC, otherwise
registers are limited to R0-R7 inclusive. In the first instance the SP address is
adjusted by four-words: in the second by two-words. In ARM terms PUSH
performs:

STMDB SP!, <REGLIST>

and POP performs:

LDMIA SP!, <REGLIST>



Single and Multi-Register
The LDR and STR instructions are supported by Thumb but not all addressing
modes are. In fact, only three are available for use with these and associated
commands. Figure 27d lists these, which are based on the pre-indexed addressing
concept, and supply offset by register or by an immediate operand.

Multi-register access is limited to the use of increment after addressing
modes using LDMIA and STMIA instructions. Note also that the ‘!’ update
operator is not an option as it is in ARM State, it is mandatory:

STMIA R1!, {R2, R3, R4}

 Addressing Mode   Example 
 Load/Store Register  LDR R0, R1
 Base+Offset LDR R0, [R1, #5] 

LDR R0, [R1, R2]
 Relative LDR R0, [PC, #8]

 Figure 27d. Addressing mode samples in Thumb State.



Functions in Thumb
The example given in Program 27b illustrates how an ARM, or more exactly libc,
function can be called from Thumb code. As mentioned previously, you switch
back to ARM State. There is nothing stopping you creating your own functions in
Thumb code—a function consisting entirely of Thumb code that runs exclusively
in Thumb State. But when calling the function, it must have the least significant
bit of the pointer to it set. As the linker in the compiler cannot do this, you
yourself must do it within your calling code, especially if you use an absolute
address.

Thus, when you call any standalone Thumb code from another section of
Thumb code, the entry condition is identical as if you were entering Thumb code
from ARM State. You add one to the link address.

Interestingly, you can have two functions with the same name—one for
ARM and one for Thumb. The linker allows this provided they operate within
different instruction sets. However, this shouldn’t be considered good practice
and should generally be avoided.



ARMv7 Thumb Instructions
As part of the release of ARMv7 architecture (Raspberry Pi 2B and later), seven
new instructions were added to the Thumb instruction set, the most significant of
which is Compare and Branch on Zero, or Non-Zero. This instruction compares
the value in the register with zero and conditionally branches forward a constant
value. It does not affect the condition flags.

CBNZ R0, newdest @ R0<>0 then branch to 'newdest'
CBZ R0, next @ R0=0 then branch to 'next'

Both instructions can take a ‘N’ or ‘.W' modified as follows: ‘.N’ is ‘narrow’ and
informs the assembler to generate a 16-bit encoding. ‘.W’ is ‘wide’ and signifies
a 32-bit encoding. A ‘N’ (16-bit) is selected by default, whereas assembling in the
A32 state will result in a 32-bit or wide encoding.

NOP

Is ‘No Operation’ and does nothing other than providing padding which may be
needed to ensure the following instruction sits on a 64-bit boundary. It also delays
the program by a cycle.

Other new instructions include YIELD, SEV, WFE and WFI which are
concerned with events and interrupts as they happen.

An ‘IT’(if-then) instruction was added which permits up to four successive
instructions to execute based on a tested condition, or on its inverse. IT is ignored
when compiling into ARM code, but when compiling into Thumb, it generates an
actual instruction. For example:

CMP R0, R1 @ if (R0 == R1)
ITE EQ @ R0 = R2;
MOVEQ R0, R2 @ Thumb: condition via ITE 'T' (then)
@ else R0 = R3;
MOVNE R0, R3 @ Thumb: condition via ITE 'E' (else)



28. Unified Language

It was a long way back, but in Chapter 1, under the sub-heading ‘Raspberry Pi
OS’, we examined the differentiation between 32-bits and 64-bits and the use of
terms A32 and A64 to distinguish between 32 and 64-bit ARM.

A Thumb-2 instruction set was introduced with ARMv6T2 (and included in
subsequent releases) and added more instructions to the base set but also allows
most of the new Thumb instructions to be conditionally executed. If you like,
Thumb-2 offers a ‘best of both worlds’ compromise in that it has access to both
16-bit and 32-bit instructions allowing programmers who are tight for space to
extract the maximum bang-per-byte by combing the two. Thumb-2 was therefore
a significant step towards the development of a Unified Assembler Language
(UAL).

UAL is a standard syntax model for ARM implemented from ARMv7
onward for A32 and T32 instructions. It supersedes earlier versions of both the
A32 and T32 assembler languages. Code that is written using UAL can be
assembled for A32 or T32 for any ARM processor. However, not every assembler
provides full coverage. GCC generally does and can assemble code written in
pre- and post-UAL format.

From ARMv4T to ARMv7-A there are two instruction sets: ARM and
Thumb. They are both ‘32-bit’ in the sense that they operate on up to 32-bit-wide
data in 32-bit-wide registers with 32-bit addresses. In fact, where they overlap,
they represent the exact same instructions–it is only the instruction encoding
which differs, and the CPU effectively just has two different decode front-ends to
its pipeline which it can switch between.

Based on the combined A32 and T32 instruction sets, UAL forms a
consistent programming model. This way you should produce the most
economical and productive code possible. UAL implements some changes to both
ARM and Thumb code to help in this standardisation, as well as the addition of
new instructions. Use of this new syntax will affect backwards compatibility of
code, unless your assembler is smart enough to figure out how to deal with it,
whilst assembling it.

The GCC compiler (and I would assume other compatible compilers) will be
able to assemble code written in pre-UAL and UAL syntax. If it is your intention
to use UAL, ensure that your source code contains the directive:

.syntax unified



With any other definitions at the start of your code. You may also need to specify
the architecture you are utilising – discussed later.

T32 extends the Thumb instruction set with bit-field manipulation, table
branches and conditional execution operations. At the same time, the ARM
instruction set is extended in areas to maintain equivalent functionality in both
instruction sets.

This combination produced a Unified Assembler Language (UAL), which
supports assembly of either Thumb or ARM instructions from the same source
code; versions of Thumb first seen on ARMV7 processors are essentially as
capable as ARM code (including the ability to write interrupt handlers).

With this knowledge, we should re-address the concept of Thumb-2 for
clarity. From ARMv6 there are two instruction sets: ARM (A32) and Thumb-2
(T32). They are both ‘32-bit’ in the sense that they operate on up to-32-bit-wide
data in 32-bit-wide registers with 32-bit addresses. Where they overlap they
represent the same instructions, it is only the instruction encoding which differs,
and the CPU effectively just has two different front ends to its pipeline which it
can switch between to decode the instruction.

T32 encompassed not just additional instructions (mostly with 4-byte
encoding, although there are a few two-byte encoding) to bring it almost to parity
with ARM, but also allows conditional execution of most Thumb instructions. A
mixed 16/32-bit instruction stream provides the economy of space of Thumb
combined with most of the speed of pure ARM code. A stated aim for T32 was to
achieve code density similar to Thumb with performance like the ARM
instruction set on 32-bit memory.

If performance is critical, then it is important to have at least half the
instructions encoded as 16-bit to get maximum speed.

The general rules for generating the 16-bit form of the instructions are:
 

Use registers in the range R0-R7
Set the condition flags unless the instruction is conditional wherever possible
Use immediate constants in the range 0-7 or 0-255



Thumb Changes
Changes have been made to the original Thumb syntax to bring T32 in line with
A32. In original Thumb code where the first operand and destination operand
were the same, you need only specify it once. Now they must both be specified
so:

ADD R0, R1 @ Old Thumb format
ADD R0, R0, R1 @ UAL format

In a similar fashion, where the instruction sets the condition flags you must
enforce this with the standard ‘S’ suffix:

ADD R0, R1, R2 @ Old Thumb format
ADDS R0, R1, R2 @ UAL format

Now, the MOV instruction is used as an addition operation with zero as an
immediate value:

MOV R0, R1 @ Old Thumb format
ADD R0, R1, #0 @ UAL format

And to confuse matters, the CPY instruction becomes a MOV instruction:

CPY R0, R1 @ Old Thumb format
MOV R0, R1 @ UAL format

Increment after becomes the default addressing mode for the LDM instruction:

LDMIA R0!, {R0, R1} @ Old Thumb format
LDM R0!, {R1, R2} @ UAL format

And write-back is not specified in LDM now if the base register is in the register
list:

LDMIA R0!, {R0, R1} @ Old Thumb format
LDM R0, {R0, R1} @ UAL format



New A32 Instructions
Figure 28a lists the 'new' instructions added to the A32 instruction set as part of
UAL. For T32 the BL and BLX instructions are confirmed 32-bit operations.
Below are a few examples, and all can be used with an optional condition if
required. Use of narrow and wide directives are also permitted.

Mnemonic  Action 
 BFC   Bit Field Clear
 BFI  Bit Field Insert
 MLS  Multiply and Subtract
 MOV New wide variant. Loads a 16-bit immediate value into bits 0-15 of

register.
 MOVT Move Top. Loads a 16-bit immediate value into bits 16-31 of a

register.
 RBIT  Reverse bits in a word
 SBFX  Signed Bitfield Extract
 UBFX  Unsigned Bitfield Extract

 Figure 28a. New A32 instructions.

BFC clears any number of adjacent bits at any position in a register and does so
without affecting any of the other bits:

BFC R0, #5, #3

Clears bits 5, 6, and 7 of the value held in R0.
BFI copies any number of low order bits from a register into the same bits of

the specified destination register:

BFI R0, R1, #5, #3

Copy bits 5, 6 and 7 from R1 into bits 5, 6, and 7 of R0.
MLS multiplies two register values and then subtracts the least significant

32-bits of the result from a third register and writes the result to a destination
register:

MLS R0, R1, R2, R3



Multiply the contents of R1 and R2, subtract the least significant 32-bits from R3
and place into R0.



Compare by Zero
One of the most common cases is a comparison by zero. Figure 28b illustrates the
differences between ARM, T32 and T16 for this operation:

 State   Mnemonics   Length 
 ARM  CMP R0, #0; BEQ <label>  8 bytes
 T32 CMP R0, #0; BEQ <label>  4 bytes
 T16 CBZ R0, <label>  2 bytes

 Figure 28b. Compare by Zero – code options. 
As we can see, in T16, CBZ has replaced CMP+BEQ from the ARM and Thumb
states and condensed it into one instruction which is two bytes long.



Assembling UAL
The ARM processor can only work in either ARM State or Thumb State. It’s the
case even in pre-UAL supporting processors. You cannot intermix A32 and T32
code. To use A32 and T32 code in the same program, you must do so in blocks
and switch between states at the appropriate point. Called ‘interworking’ the
technique was introduced in Chapter 27 – nothing has changed. However, you
should use the directive:

.syntax unified

At the top of your source along with your other directives to invoke UAL. When
you compile the source, you should also specify the architecture you are
compiling for, for example:

march=armv8-a

Code written using UAL can be assembled for A32 or T32 for any ARM
processor using this technique.

As we have seen some T32 instructions can have either a 16-bit encoding or
a 32-bit encoding. If you do not specify the instruction size, by default:
 

For forward reference LDR, ADR, and B instructions, the compiler should
generate a 16-bit instruction, even if that results in failure for a target that
could be reached using a 32-bit instruction.
For external reference LDR and B instructions, the compiler should generate
a 32-bit instruction.
In all other cases, the compiler should generate the smallest size encoding
that can be output.
In all other cases, the compiler should generate the smallest size encoding
that can be output.

If you want to override these defaults, then you should use the ‘.W’ or ‘.N’ to
specify instruction width (wide or narrow) to ensure a particular instruction size.
The ‘.W’ post-fix is ignored when assembling A32 code, so you can safely use
this specifier in programs that might assemble as A32 or T32 code.

Because instruction may be a mix of 16-bit and 32-bit wide, it is important
to monitor address alignment. From ARMv7 architecture on, the A bit in the
System Control Register (SCTLR) controls whether alignment checking is



enabled or disabled. The exception is in ARMv7-M, the UNALIGN_TRP bit, bit
3, in the Configuration and Control Register (CCR) controls this. (See Chapter 29
regarding these registers.)

If set alignment checking is enabled, all unaligned word and halfword
transfers cause an alignment exception. If disabled, unaligned accesses are
permitted for the LDR, LDRH, STR, STRH, LDRSH, LDRT, STRT, LDRSHT,
LDRHT, STRHT, and TBH instructions. Other data-accessing instructions always
cause an alignment exception for unaligned data. For STRD and LDRD, the
specified address must be word-aligned.

 Program 28a. Unified Assembly Language

@ Use of UAL code on Raspberry Pi 
@ Add two values using short subroutine call
@ gcc option can be used also

.syntax unified

.global _start
_start: 

MOV r0, #10 @ set up parameter
MOV r1, #5 @ set up parameter
MOV r2, #5
MOV r3, #20
BL doadd @ Call subroutine

MOV R4, #0xFF00
MOVT R4, #0xFFFF
MLA R0, R1, R2, R3

stop: 
MOV R7, #1
SWI 0

doadd:
ADD r0, r0, r1 @ Subroutine code, UAL format
BX lr @ Return from subroutine>

  End Program 28a.

Assemble and run the above with:



as -g -o prog28a.o prog28a.s
ld -o prog28a prog28a.o
./prog28a
echo $?

The result 45 will be printed with the echo$? command.
UAL is a common syntax for A32 and T32 instructions. However, it

supersedes earlier versions of both the A32 and T32 assembler languages. Code
that is written using UAL can be assembled for A32 or T32 for any ARM
processor. Investigate some of the source files on the ARM website and you will
notice that the ‘.syntax unified’ directive is largely common to them all.



29. Exception Handing

This chapter provides an overview of exception handling, the various modes of
ARM operation, vectors, and interrupts. This is a fundamental design aspect of
the ARM chip and provides a clever and versatile way to customise the way your
chosen operating system works. It should be considered an advanced topic and as
such its detail is beyond the scope of this book. However, it is fascinating as is the
whole concept of interrupts which are fundamental to everyday Raspberry Pi
operation. As such an overview here is provided which will certainly help you
should you delve into areas such as bare metal programming or look at writing
your own OS to run on your Raspberry Pi. And these are all tasks you should
consider a next step on the learning curve.

As an Operating System Raspberry Pi OS is defensive in the way it is
configured, and its core, the kernel memory management prevents you from
accessing something that is not mapped into the process memory map., it will not
let you just read and write to arbitrary memory locations. It is for this reason that
the GPIO pins and other hardware components of the Raspberry Pi cannot be
accessed from a standard machine code program running under ROS. This is
different from an OS such as RISC OS where the whole system is deployed in a
way to make it easy to configure and reconfigure for the programmer's needs.
Indeed, a whole wave of SYS calls are provided in RISC OS just for this purpose.
I say this just to indicate that it is an OS worth trying if you wish to play with
interrupts and events in a controlled manner. (RISC OS is free as a downloadable
OS from the Raspberry Pi website, and you can find out about RISC OS
Assembly Language programming by going to www.brucesmith.info.)

Direct memory access can only be performed by operating as a root user or
by writing a standalone OS that replaces Raspberry Pi OS — bare metal
programming in effect.



Modes of Operation
In Chapter 5, we examined the Current Program Status Register and saw how the
individual bits within it were used as flags to denote certain conditions. The
figure presented then is shown again as Figure 29a.

 Figure 29a. The Status Register configuration.

The N, Z, C and V flags should be familiar. The ones we are concerned with now
are held in the low byte of the register in bits 0 to 7.

The Mode bits are located from 0 to 4 (five in total), and their setting
determines which of the six operating modes the ARM operates in. Figure 29b
summarises these modes. Any of them can be entered by changing the CPSR.
Except for User Mode and Supervisor Mode all modes can be entered when an
exception occurs.



 Figure 29b. The ARM’s six modes of operation.

User Mode is the one used by default by programs and applications. This is the
environment we work in, and in truth, we as programmers never have to leave it,
unless we are looking to be more adventurous and take over total control of the
ARM chip itself. This is not for the novice and care needs to be taken when that
line is breached.

Referring again to Figure 29a, bits 7 and 6 are used for enabling and
disabling IRQ and FIQ interrupts, respectively. If a bit is set the associated
interrupt is disabled. If the bit is clear, then the interrupt is enabled. Bit 5 is the
Thumb mode bit and is discussed in Chapter 27. For all interrupts, this bit is clear,
and the processor is operating in ARM State.



Vectors
Vectors play an important role in the operation of the ARM chip. A vector is a
known location in memory that is exactly one word, or 32-bits wide. (Not to be
confused with vectors in VFP.)

There are two types of vectors: hardware and software vectors. Hardware
vectors are hardwired to the ARM chip itself and they never change, and as
Figure 29c shows, they are located at the very beginning of the memory map.
However, in the ROS, the vector table can be located at a higher address in
memory, here starting at 0xFFFF0000.

Hardware vectors control the ultimate flow of information and are a set of
memory addresses that are ‘known’ to the ARM chip. The term ‘known’ here
means that they are physically ‘hardwired’ and are thus termed hardware vectors.
Hardware vectors typically control the flow of abnormal events which the chip
itself cannot deal with. They are often referred to as exception vectors and they
reside smack bang at the start of the memory map from 0x00000000 to
0x0000001C. Figure 29c lists the hardware vectors.

 Figure 29c. The ARM Hardware vectors.



One common reason for manipulating the hardware vectors is to change the
machine’s response to memory access faults. If some non-existent memory is
accessed then one of the memory faults vectors, 0x0000000C to 0x00000014, is
called. The normal effect of this is for the Operating System to report a fatal error
and stop executing the current task. Sometimes, for example when writing a
memory editor, this is not a very desirable occurrence. It would be better simply
to warn the user that a particular location is invalid and allow editing to continue
for the rest of memory.

Vectors are useful to the programmer as they allow programs to access
standard routines without directly calling the physical address where the machine
code for the routine is stored.

In the early days of computers Operating Systems were small and everything
was ‘hard-coded’, meaning address where used in absolute terms. The problem
with using absolute addresses and by this, I mean a real physical address rather
than a branch offset for example, is that you are always tied to that address. If the
OS is updated then, a pound to a pinch of salt, that address will change. Now any
external or third-party code that uses that absolute address might be snookered. If
the code is updated and its execution point is changed, all that needs to happen is
for the address in the vector to be changed.

The second advantage to using vectors is that we, as the programmer, can
also change the address in the vector—we can intercept it. By doing this we can
modify and change the way the Raspberry Pi operates. This is not easy under
ROS but if you plan to write bare metal code then you will be required to take
control of the vector table yourself and manage its requirements.

When an exception interrupt occurs, the processor stops what it is doing and
jumps to the appropriate location in the vector table. Each location contains an
instruction pointing to the start of a specific handling routine. These instructions
normally take one of three forms as shown in Figure 29d.



 Figure 29d. Instructions that may be used in a vector.



For example, when an IRQ interrupt occurs it ultimately goes via the IRQ vector.
This location is 32-bits wide and is just big enough to contain an instruction that
facilitates an instruction to branch elsewhere.



Register Arrangements
Each of the modes has an associated set of registers available to it. The registers
available to the programmer vary according to the current CPU operating mode.



 Figure 29e. The ARM programmer’s model.



When executing in User Mode the full set of registers, R0 to R15, are available
for use. However, when the CPU switches into another operation mode, this all
changes. Figure 29e shows the register arrangement depending on the mode of
operation. All modes have dedicated stack pointers and link registers associated
with them. Whilst all modes except for User Mode have a new register, the Saved
Program Status Register, available to them, only FIQ mode has several dedicated
registers from R8-R12. Otherwise registers remain unchanged.

The SPSR is used to hold a copy of the User Mode Status Register when one
of the other modes is entered. The User Mode does not have, and it does not need
an SPSR. An important point to note here is that the CPSR is only copied into the
SPSR when an exception or interrupt is raised; it is not changed if you physically
write to the CPSR to change mode.

The idea behind this banked register system is that each processor mode has
some private registers which it can make use of without affecting the values of
the normal registers, thus ensuring that the programmer does not have to worry
about saving the contents of their own User Mode registers when an alternative
mode is entered.

Figure 29f shows how the low byte of the CSPR looks when one of the
modes is invoked. Except for User Mode, all modes are privileged. When power
is first applied to the ARM chip it starts off in Supervisor Mode.



 Figure 29f. Bit settings for Mode changes in CPSR.

Interrupts can be enabled and disabled very easily in ARM — using masking.
Bits 7 and 6 enable or disable IRQ and FIQ interrupts, respectively. If either bit is
set, then the associated interrupt is disabled and will not be processed. When an
exception or interrupt occurs, the interrupt mask bit will normally be set by the
chip. For a number of modes, the FIQ bit remains unchanged (uc).



Exception Handling
An exception handling is a condition that requires the halting, temporary or
otherwise, of whatever code is executing. A segment of code called an exception
handler is called at this point. It identifies the condition and passes control to the
appropriate route to handle the exception. When an exception causes a mode
change the following sequence of events needs to happen:
 

The address of next instruction is copied into the appropriate LR
The CPSR is copied into the SPSR of the new mode
The appropriate mode is set by modifying bits in the CPSR
The next instruction is fetched from the vector table
When the exception has been dealt with, control can be returned to the code
that was executing when the exception occurred.

Control can be returned as follows:
 

The LR (minus an offset) is moved into the PC
The SPSR is copied back into CPSR and by default this automatically
changes the mode back to the previous one
If set, the interrupt disable flags are cleared. Clear the interrupt disable flags
to re-enable interrupts.



 Figure 29g. Swapping registers on at a privileged exception.

The illustration above in Figure 29g illustrates what happens at a register level
when a SWI call is made. The concept is the same for any of the privileged mode
exceptions. The SP and LR of the accessing Mode are switched in over the User
Mode ones to allow the exception to be serviced, whilst preserving the status of
the interrupted program. The return address is copied from the User Mode PC and
stored in the LR of the privileged mode being invoked. R14_svc in the example
above.

By preserving the status of the three User Mode registers shown, the status
quo of program execution can be maintained when the SVC Mode call has been
serviced simply by swapping them back. As stated earlier the CPSR is only saved
into the requesting mode’s SPSR when an exception occurs. It does not happen
when the mode is changed by flipping the Mode bits.



MRS and MSR
There are two instructions which can be used directly to control the contents of
the CPSR and SPSR and they can be used on the whole contents or at bit level.

The MRS instruction transfers the contents of either the CPSR or SPSR into
a register. The MSR instruction works the opposite way and transfer the contents
of a register into either the CSPR or SPSR. The instruction syntax is as follows:

MRS (<suffix>) <Operand1>, <CSPR|SPSR>
MSR (<suffix>) <CSPR|SPSR|Flags>, <Operand1>
MSR (<suffix>) <CSPR|SPSR|Flags>, #immediate

Some examples will make their operation clearer. The following three lines of
code could be used to enable IRQ Mode:

MRS R1, CPSR
BIC R1, R1, #0x80
MSR CPSR_C, R1

First the CPSR is copied into R1 where it is then masked with 10000000 to clear
the bit at b7 – the position of the I flag. (see Figure 26a). R1 is then written back
to CPSR. Note the use of the ‘_C’ as an addition to the CPSR operand. For
programming, the CPSR and SPSR are divided into four different sectors. These
are illustrated below in Figure 29h.

 Figure 29h. The CPSR/SPSR segments to control updating.

By using the correct adjunct(s) on the appropriate instruction we can ensure that
only the correct bits of the associated register are updated. The F, S, X and C
suffixes may be used in like fashion.

To disable the IRQ, the following segment of code would suffice:

MRS R1, CPSR
ORR R1, R1, #x080



MSR CPSR_C, R1

The same commands can be used to effect a mode change thus:

MRS R0,CPSR @ copy the CPSR
BIC R0,R0,#0x1F @ clear mode bits
ORR R0,R0,#new_mode @ select new mode
MSR CPSR,R0 @ write CPSR back

In User Mode you can read all the bits of the CPSR, but you can only update the
condition of the field flag, ie, CPSR_F.



Interrupts When?
Interrupt Request Mode (IRQ) and Fast Interrupt Mode (FIQ) are called when an
external device pages the ARM chip and demands its attention. For example, the
keyboard generates an interrupt whenever a key is pressed. This is a signal to the
CPU that the keyboard matrix should be read, and the ASCII value of the key
entered into the keyboard buffer. If the ASCII value is 0x0D (RETURN), the
keyboard buffer must be interpreted.

The analogy here can be you, sitting at your own keyboard learning
Raspberry Pi Assembly Language. At some point your phone starts to ring. You
have been interrupted. So, you stop what you are doing (you may make a quick
note to remind you or you may save your work) and answer the phone (you deal
with or process the interruption). When you have completed the phone call, you
hang up and return to what you were doing before the interruption.

The process with the ARM chip is much the same. It receives an interrupt
signal at which point it saves what it is doing in line with what we have already
discussed and then hands control to the calling interrupt routine by invoking the
appropriate mode of operation. When the interrupt has finished its work (in the
keyboard example this would be reading the key press and placing the ASCII
code in the keyboard buffer) it hands control back to the ARM which restores all
its previously saved information and returns to User Mode, picking up where it
left off.

So here the interrupt is a function of the ARM chip itself, but how it is dealt
with and what happens thereafter is a feature of the software handling it —
Raspberry Pi OS in this case.

Without an effective interrupt system, the Raspberry Pi at software level
would have to spend a lot of its time checking all attached components just to see
if anything has happened, taking up time and resources. Think of all the
connections to your Raspberry Pi — keyboard, mouse, USB ports, disk drives...
They all require servicing, and often.

Fast Interrupts (FIQs) are deemed to have the highest priority and are the
ones that must be serviced first. For example, connected disk drives, otherwise
data might be lost. The only time a FIQ is not serviced first is when another FIQ
is in the process of being serviced. The Interrupt Request (IRQ) line is deemed to
be of lower priority where a slight delay will not create any problems.

The need for speed in processing an FIQ interrupt is signified by its position
in the hardware vector table. It is the last in the list. This is because it actually
begins executing right at that point—the other vectors all perform other branch
instructions further into the system software. The FIQ code resides in the space



after the vector at 0x1C. It is then the job of the appropriate interrupt coding to
identify which device caused the interrupt and process it accordingly and as
quickly as possible.



Your Interrupt Decisions
When dealing with interrupts you need to make the decision about other
interrupts. What happens if a new interrupt occurs whilst you are handling an
existing interrupt? The easiest method is to invoke what is called a non-nested
interrupt handling scheme. In this all interrupts are disabled until control is
handled back to the interrupted task. The downside of this is that only one
interrupt can be serviced at a time, and if a succession of interrupts are occurring
you may lose some of the requests. This could have consequences.

A nested interrupt scheme allows more than one interrupt to be handled at a
time and in this case, you would look to re-enable interrupts before fully servicing
the current interrupt. This is more complex, but it solves the problems that can
occur with interrupt latency, which is the interval of time from an external
interrupt signal being raised to the first fetch of an instruction of the raised
interrupt signal.

For an FIQ, the IRQs are disabled as the FIQ is deemed critical in relation.
In all cases the implementation of a stack for interrupt handling (interrupt

stack) is considered essential for context switching between the modes and
preserving information. If several interrupts occur at the same time the details
need to be stored somewhere for processing as the sequence is dealt with.



Returning from Interrupts
When the interrupt service routine has been performed, the Operating System
must return to the original program which was interrupted by the FIQ or IRQ.
This is done by using the following instruction:

SUBS R15, R14, #4 

This restores the Program Counter so that the interrupted program can be resumed
from exactly the point at which it was suspended. The 'subtract 4' calculation is
required to correct for the effects of pipelining. Providing that the interrupt
handling routine has not corrupted any shared registers or workspace, the
program will continue executing as if the interrupt had never happened.



Writing Interrupt Routines
Usually, you will not need to create interrupt routines service routines of your
own because the OS provides a well-defined system for doing so. If you intend to
write direct interrupt handling routines, you should observe the following rule to
avoid potential disasters:
 

Do not re-enable interrupts in the handling routine. If this is done, a second
IRQ/FIQ could interrupt the processor before it has finished handling the
first. Sometimes this may be permissible, but you could be walking on thin
ice if you do it. Be very aware!
The interrupt routine must be written as economically as possible.
Processing the interrupt at maximum speed should be a major goal. If it
keeps interrupts disabled for too long, then the normal Raspberry Pi
background activities will grind to a halt. The keyboard will lock, various
software clocks will lose time etc.
All shared processor registers should be preserved. They should contain the
same values on exit from the interrupt routine as they did on entry to the
interrupt. This is vital if the interrupted task is to be resumed correctly.
The interrupt handling routine should avoid calling OS routines. It is
possible that one of these routines would be only half executed when it is
interrupted by IRQ/FIQ. If re-entered in the interrupt routine, work space
could be disturbed, potentially causing the routine to corrupt when resumed.



30. System on a Chip

The square chip in the centre of the Raspberry Pi board is the one that this book
has been all about. Everything we have been doing in the preceding pages has
been taking place inside that square. Figure 30a shows it in all its glory. In fact,
that bit of silicon is much more than just an ARM chip. It is a System-On-Chip
device.

Broadly speaking, a SoC is a microchip that has all the components required
to drive a computer. The composition of the SoC has changed for each version of
Raspberry Pi that has been released., However the basic components are an ARM
compatible CPU and an on-chip graphics processing unit GPU (a VideoCore IV).
The CPU speeds range from 700 MHz (Raspberry Pi 1) to 1.2 GHz for the
Raspberry Pi 3. Similarly, the on-board memory range from 256 MB to 1 GB
RAM.



 Figure 30a. A Raspberry Pi with the SoC at its heart.



Built specifically for the Raspberry Pi 4, the BCM2711B0 –the silverish item in
Figure 30a – is a 64-bit quad core Cortex-A72 (ARMv8-A) System-On-Chip
running at 1.5GHzs .It includes the Broadcom VideoCore VI – the first upgrade
to the graphics processor, for the Raspberry Pi, as well as the various co-
processors discussed in this book.

The large black chip is the memory that comes in 1GB, 2GB, 4GB or 8GB
flavours.

The SoC technology is increasingly popular, and the packaging of numerous
components onto a single integrated circuit (IC) means that the devices they are
embedded into become ever smaller. If you have a close look at the Raspberry Pi
board then you will see that much of the space is taken up by components that
allow us to connect to it! The actual computer part probably occupies only about
10% of the printed circuit board! Indeed, more and more has been placed onto the
Raspberry Pi board with each version release.

Make no mistake, the SoC technology used on the Raspberry Pi is on the
cutting edge, and you can expect to see it become prevalent in major advances in
technology as the physical size of the SoC device continues to implode. Because
of its great digital capabilities, you might expect to see similar silicon devices
restoring sight to the blind and providing sound for the deaf in the not-too-distant
future.

Another major advantage of the SoC design is the fact that it doesn’t require
a lot of power and it becomes very efficient because of the small distances that
signals travel. Remember how much heat standard PCs throw out and where
much of the space is given over to cooling?

There is a downside to SoC technology from the consumer point of view and
a reason why those devices do not easily dominate the consumer and general
market, and that is their lack of ability to be upgraded. Essentially you can’t do
this because everything is metaphorically glued into one place, so you can’t
readily add new memory or upgrade the core processor. When you are finished
with the device, you effectively throw it away. So, your Raspberry Pi will no
doubt become out-dated but then you would have to simply replace it with the
newer model. Doers this make the Raspberry Pi a disposable computer?



The ARM Chip & Instruction Sets
At the heart of the SoC on the Raspberry Pi is the ARM core. SoCs are not
limited to ARM chips but they are the processor of choice due to the use of RISC
which offers power saving advantages. The ARM chip itself has been around for
over 30 years now and it has gone through continual development. The ARM11
used in the original Raspberry Pi was launched in 2003 and is built around the
ARMv6 architecture. The ARMv7 chip used in the Raspberry Pi 2 is a few years
older and is one of the fastest, most energy efficient chips available. The ARM v8
in the Raspberry Pi 3 is yet another step and its speed now make it possible to run
popular Operating Systems such as Windows 10 and Ubuntu. The chip has a
quad-core which means that it can multi-task, ie do several things at once, that
was not previously possible on the original single-core chip.

We have seen two of the instruction sets that ARM provides on the
Raspberry Pi, namely ARM and Thumb. Historically, there was a third instruction
set called Jazelle. It was primarily intended to assist in mobile phone software
development, and since release of the ARMv7 architecture has been de-
emphasised.



Co-processors
The ARM design allows for additional processing hardware to be connected to it.
(Interestingly this was a unique design structure introduced by Acorn as early as
1983 with the launch of its Second Processor Tube interface which allowed
additional CPUs to be bolted onto the side of the BBC Micro. This would allow
other processor dependent Operating Systems such as CP/M to be run. An ARM
Second Processor unit was one of the last released for the BBC Micro!)

As these are designed to support the ARM, they are called co-processors. Up
to 16 can be connected and are numbered from 0-15. Instructions such as MCR
and MRC can be used to communicate with them, and many co-processors add
their own instruction sets which are worth investigating.

We have already examined one co-processor in detail: The Vector Floating-
Point co-processor which provides real number management to the otherwise
integer-orientated ARM chip. In fact, the VFP occupies two slots, being CP10
and CP11 in the system. CP14 and CP15 are also reserved for system use, but the
others are all free for use.



Pipeline
We examined the pipeline in Chapter 13. At that point we looked at the original
generic three-stage process and hinted then that ARMv6 has an 8-stage operation.
The eight stages are described in Figure 27b. During operation, dependent on the
instruction being performed the pipeline will route one of three different ways to
process stages 5, 6 and 7 and so will further maximise the instruction process
prowess of the chip.

There are three blocks of operation that can be switched in at stages 5, 6 and
7 depending on the operation taking place. For example, if a multiply instruction
is being processed then these stages are induced in place of the other parallel
stages. This allows the ARM to deliver just about one instruction for each cycle.

The Fetch stages can hold up to four instructions, whist the Execute,
Memory, and Write stages can contain a predicted branch, an ALU or multiply
instruction, a load/store multiple instruction and a co-processor instruction in
parallel execution.

It would be possible to increase the length of the pipeline, but it is
impractical to do so as it would increase power consumption and create heat. This
would have a devastating effect on small systems such as the Raspberry Pi
meaning bigger power supplies and more space between components and perhaps
even aided cooling! This is much less of a problem with the energy efficient
Raspberry Pi 2 which has four cores it can utilise.



 Figure 30b. The eight-stage pipeline of the ARMv11 includes sub-pipelines
which can be banked in for maximum efficiency.



Memory & Caches
Depending on what model Raspberry Pi you have it will come with a certain
amount of memory. This memory is part of the SoC, and this sits on top of the
ARM chip in an arrangement called ‘package on package’.

The ARM also has an area of amazingly fast memory called a memory cache
that it can use for its own purposes. These are for instruction and data storage and
are respectively known as Icache and Dcache. Incidentally, these caches are
controlled by the System control co-processor (CP15), as is all memory, thus
enabling the ARM to get on with processing instructions. A second cache called
L2 is also on-board. However, this is used exclusively by the VideoCore.



The GPU
The Graphics Processing Unit is the other major component of the SoC
configuration. It is a Broadcom VideoCore IV unit that provides 1080 high
resolution graphics using a combination of Open software and hardware
accelerated computing. Although information on this proprietary system has been
thin on the ground, several groups have been working at supplying information
through GitHub sites. Example files in C can now be downloaded and bindings
for other languages such as Python and Java exist.



ARMv8 Overview
The ARMv8 architecture was introduced to Raspberry Pi users with the release of
Raspberry PI 2B v1.2 utilising the Broadcom chip BCM2837. The underlying
architecture of the BCM2837 is identical to the BCM2836. The only significant
difference is the replacement of the ARMv7 quad-core cluster with a quad-core
ARM Cortex A53 (ARMv8) cluster. This was then carried on into the various
iterations of the Raspberry Pi 4 utilising a different quad-core based on the
Cortex-A72. These iterations also included VFPv4 and Neon. Also, significantly
with the Raspberry Pi 4, the redesign of the boards allowed for an 8Mb memory
version, which should better enable Linux usage and the porting and application
of the Raspberry Pi OS in a 64-bit environment.

The original concept behind ARMv8 was to provide ARM with a clean slate
with which to design and encode an entirely new instruction set. The brief was for
it to be 64-bit instruction set whist adhering as much as possible to keeping
mnemonics and processes familiar. A64 provides a new start. Hopefully, the new
instruction set will remain consistent across architectures to allow stability for the
development and continuity in implementation. And as already mentioned,
Custom Instructions are a real possibility going forward with future core releases.

Because of the sheer weight of numbers, (units in the market, not processing
power!) 32-bit ARM will remain accessible and a processor of choice for existing
designers and developers. Not least because the programmers have vast
experience in 32-bit code and there is a sea of AArch32 legacy applications in
use. While there are some 64-bit only ARM processors (Cortex A34 for instance),
dual compatibility remains a high priority. For this reason, part of the brief was,
as much as possible, to maintain compatibility with older architectures whist
streamlining both ARM and Thumb instruction sets. Thus, the Unified Assembler
Language concept was developed for backward compatibility, plus improved
operation in the FPU.

As we saw at the start of this book in Figure 1c, the latest Raspberry Pi
ARM chips can run in both 32-bit (AArch32) and 64-bit (AArch64) state. Going
forward it should be possible to run AArch32 and Arch64 apps within a AArch64
OS. However, an AArch32 OS could only run AArch32 apps. This means is that
you could host a mix of 32-bit and 64-bit applications under the same 64-bit
kernel. How this pans out though remains to be seen.



Raspberry Pi OS 64-Bit
In May 2020, a beta version of Raspberry Pi OS was released, and this largely
featured an updated version of the standard 32-bit version. This can be installed
on the Raspberry Pi 3 and Raspberry Pi 4. At the time of writing, it is available in
Beta version so may contain bugs as much as the original development of
Raspbian did on the 32-bit version. It worked fine when I installed it on a
dedicated SD Card and there is an active community moving forward with it.



In Summary
This has been a quick look at the technology that drives your Raspberry Pi, at the
core of which is the ARM chip that this book has shown you how to program. It
is by no means definitive, but it does show that there are exciting new
technologies still emerging on your Raspberry Pi that you can investigate and be
at the cutting edge of exploring. The Raspberry Pi with quad-core chips opens-up
even more possibilities for those willing to investigate.



Archimedes Principle

 Figure 30c. The Acorn Archimedes boasting an ARM2 cpu.

The Acorn Archimedes was designed by Acorn Computers Ltd in Cambridge,
England. The system was based on Acorn’s own ARM architecture processors
and proprietary Operating System – RISC OS. The first model was introduced in
1987, and systems in the Archimedes family were sold until the mid-1990s.

Powered by an ARM2 it provided better performance than Intel’s 286
despite having 245,000 less transistors than Intel’s big chip. (In fact, ARM2 had
only 25,000 transistors!) This ‘lack’ of transistors told a lot about the relative
simplicity of the ARM. The design, utilised a 32-bit CPU (with 26-bit
addressing), running at 8Mhz, a significant upgrade from 8-bit home computers.
If you would like to learn more about RISC OS head to www.brucesmith.info.



A. ASCII Character Set
Binary  Dec  Hex  ASC
0010 0000  32  20  ?
0010 0001  33  21  !
0010 0010  34  22  "
0010 0011  35  23  #
0010 0100  36  24  $
0010 0101  37  25  %
0010 0110  38  26  &
0010 0111  39  27  '
0010 1000  40  28  (
0010 1001  41  29  )
0010 1010  42  2A  *
0010 1011  43  2B  +
0010 1100  44  2C  ,
0010 1101  45  2D  
0010 1110  46  2E  .
0010 1111  47  2F  /
0011 0000  48  30  0
0011 0001  49  31  1
0011 0010  50  32  2
0011 0011  51  33  3
0011 0100  52  34  4
0011 0101  53  35  5
0011 0110  54  36  6
0011 0111  55  37  7
0011 1000  56  38  8
0011 1001  57  39  9
0011 1010  58  3A  :
0011 1011  59  3B  ;
0011 1100  60  3C  <
0011 1101  61  3D  =
0011 1110  62  3E  >
0011 1111  63  3F  ?
0100 0000  64  40  @
0100 0001  65  41  A
0100 0010  66  42  B



0100 0011  67  43  C
0100 0100  68  44  D
0100 0101  69  45  E
0100 0110  70  46  F
0100 0111  71  47  G
0100 1000  72  48  H
0100 1001  73  49  I
0100 1010  74  4A  J
0100 1011  75  4B  K
0100 1100  76  4C  L
0100 1101  77  4D  M
0100 1110  78  4E  N
0100 1111  79  4F  O
0101 0000  80  50  P
0101 0001  81  51  Q
0101 0010  82  52  R
0101 0011  83  53  S
0101 0100  84  54  T
0101 0101  85  55  U
0101 0110  86  56  V
0101 0111  87  57  W
0101 1000  88  58  X
0101 1001  89  59  Y
0101 1010  90  5A  Z
0101 1011  91  5B  [
0101 1100  92  5C  \
0101 1101  93  5D  ]
0101 1110  94  5E  
0101 1111  95  5F  _
0110 0000  96  60  `
0110 0001  97  61  a
0110 0010  98  62  b
0110 0011  99  63  c
0110 0100  100  64  d
0110 0101  101  65  e
0110 0110  102  66  f
0110 0111  103  67  g
0110 1000  104  68  h
0110 1001  105  69  i
0110 1010  106  6A  j



0110 1011  107  6B  k
0110 1100  108  6C  l
0110 1101  109  6D  m
0110 1110  110  6E  n
0110 1111  111  6F  o
0111 0000  112  70  p
0111 0001  113  71  q
0111 0010  114  72  r
0111 0011  115  73  s
0111 0100  116  74  t
0111 0101  117  75  u
0111 0110  118  76  v
0111 0111  119  77  w
0111 1000  120  78  x
0111 1001  121  79  y
0111 1010  122  7A  z
0111 1011  123  7B  {
0111 1100  124  7C  |
0111 1101  125  7D  }
0111 1110  126  7E  ~



B. ARM Instruction Set

The following pages contain a summary of the ARM instruction set arranged by
operation type. It is not definitive nor complete in anyway and it is intended
simply as an aid-memoir and includes many of the instructions covered herein.
Remember that instructions may vary with architecture, with some being
depreciated or adapted. 
The guides at www.arm.com are an excellent way of learning about new ARM
processors and the architecture detail of the instructions for each of them.
The following abbreviations and their meanings are used:

Rn  Destination Register, where ‘n’ is register number.
Rm  Operator Register, where ‘n’ is register number.
Rdn   Destination register is Rd or Rn, depending on if optional {Rd,}is
specified. 
N   Negative condition code. Set to 1 if result is negative.
Z   Zero condition code. Set to 1 if the result of the instruction is 0.
C   Carry condition code. Set to 1 if the instruction results in a carry. 
V   Overflow condition code. Set to 1 if the instruction results in an overflow.
#  Immediate constant
{ }  Optional parameters 
{ | }   Alternative optional parameters 
( | )   Alternative required parameters 

Load/Store Suffixes
Format    Description
B  Zero extended byte.
H  Zero extended half-word: 16-bits 
SB   Sign extended byte.
SH  Sign extended half-word: 16-bits.
S  Optional S indicates the Status Register is updated.  
No suffix for Load/Store indicates four-byte transfer.

Compare and Test Instructions
Format    Description
CMP  Rn,Rm  Compare registers, update status 



CMP  Rn,#K  Compare 8-bit K, update status
TST  Rn,Rm  Test registers, update status
TST  Rn,#K  Test with 8-bit K, update status
TEQ  Rn,Rm  Test Equivalent, update status
TEQ  Rn,#K  Test Equivalent 8-bit K, update status

Branch Instructions
Format   Description     
B  label   Unconditional branch to label      
BEQ   label   Branch if EQual     
BNE   label   Branch if Not Equal     
BLT   label   Branch if Less Than (Signed)      
BLE   label   Branch if Less than Equal (Signed)     
BGT   label   Branch if Greater Than (Signed)     
BGE   label   Branch if Greater than Equal (Signed)     
BLO   label   Branch if LOwer (Unsigned)     
BLS   label   Branch if LOwer or Same (Unsigned)     
BHI   label   Branch if HIgher (Unsigned)     
BHS   label   Branch if Higher or Same (Unsigned)   
BL   label   Update Link Register and Branch       
BX   Rn   Branch to address in register Rn 

Arithmetic Instructions
Format   Description       
ADD{S}  {Rd,} Rn,Rm   Add two registers
ADD{S}  {Rd,} Rn,#K   Add register with 8-bit constant K     
ADC{S}  {Rd,} Rn,Rm   Add two registers with Carry (C) C   
ADC{S}  {Rd,} Rn,#K   Add register with 8-bit K & Carry(C)      
SUB{S}  {Rd,} Rn,Rm   Subtract two registers 
SDIV    Signed Divide    
SUB{S}  {Rd,} Rn,#K   Subtract 8-bit constant K   
SBC{S}  {Rd,} Rn,Rm   Subtract two registers with Carry    
SBC{S}  {Rd,} Rn,#K   Subtract 8-bit K from reg with Carry     
MUL  {Rd,} Rn,Rm   Multiple regs (Signed or Unsigned)
MLA    Multiple and Accumulate
MLS    Multiply and Subtract 
NOP    No Operation    
UMULL   RdL,RdH,Rn,Rm   Unsigned multiple (64-bit result)   
SMULL   RdL,RdH,Rn,Rm   Signed multiple (64-bit result)     



Logical Instructions
Format     Description
AND{S} {Rd,} Rn,(Rm|#K)  AND registers or 8-bit constant K
BIC{S}  {Rd,} Rn AND NOT Rm  Bit Clear    
ORR{S} {Rd,} Rn,(Rm|#K)  OR registers or 8-bit constant K  
EOR{S} {Rd,} Rn,(Rm|#K)  Exclusive OR register or 8-bit constant K   
NEG{S} {Rd,} Rn   Negate a register   
LSL{S} {Rd,} Rn,(Rm|#K)   Logical Shift Left
LSR{S} {Rd,} Rn,(Rm|#K)   Logical Shift Right 
ASR{S} {Rd,} Rn,(Rm|#K)   Arithmetic Shift Right
ROR{S} {Rd,} Rn,(Rm|#K)   ROtate Right

Data Movement Instructions
Format   Description       
MOV{S}  Rd,Rm   Copy value from Rm to Rd  
MOVW   Rd,#K   Copy 16-bit constant K to Rd (Zero Ext) 
MOVT   Rd,#K   Copy 16-bit constant K to Rd [31:16]P
PUSH   Rn   Place Rn on top of the Stack
POP   Rn   Place the top of Stack into Rn 
SVC   n  Supervisor Call (Software Interrupt SWI)
  
STR{B|H}  Rt,[Rn,#+/-K]   Store: Regular Immediate Offset Addr (8-
bit K)
STR{B|H}  Rt,[Rn,#+/-K]!    Store: Pre-index Immediate Offset Addr
(8-bit K)
STR{B|H}   Rt,[Rn],#+/-K    Store: Post-index Immediate Offset[Rn]
STR{B|H}  Rt,[Rn,Rm {,LSL #s}]   Store: Register Offset Addressing

LDR{B|H|SB|SH}  Rt,[Rn,#+/-K]    Load: Regular Immediate Offset
Addr (8-bit K)   
LDR{B|H|SB|SH} Rt,[Rn,#+/-K]!    Load: Pre-index Immediate Offset
Addr (8-bit K) 
LDR{B|H|SB|SH} Rt,[Rn],#+/-K    Load:Post-index Immediate Offset Addr
(8-bit K) 
LDR{B|H| SB|SH} Rt,[Rn,Rm {,LSL #s}]   Load: Register Offset
Addressing   



C. RPi OS Syscalls

The first 192 System calls are listed below including a brief description of the call
function. There is no official source or documentation of Linux System Calls
therefore documentation is limited to voluntary sources.

Sys  Action  Function
0  restart-syscall  Restart a System call.
1  exit  Terminate the current process
2  fork   Create child process
3  read   Read from file descriptor
4  write   Write to file descriptor
5  open   Open / create file or device
6  close   Close a file descriptor
7  waitpid   Wait for process termination
8  creat   Create child process
9  link   Assign new name to a file
10  unlink   Delete name & file it refers to
11  execuve   Execute program
12  chdir   Change working directory
13  time   Get time in seconds
14  mknod   Create directory or special/ordinary file
15  chmod   Change permissions of a file
16  lchown   Change ownership of a file
18  oldstat  (Abandoned)
19  lseek   Reposition read/write file offset
20  getpid   Get process identification
21  mount   Mount filesystems
22  umount   Unmount filesystems
23  setuid   Set user identity
24  getuid   Get user identity
25  stime   Set time
26  ptrace  Process trace
27  alarm   Set alarm clock for delivery of signal
28  oldfstat  
29  pause   Wait for signal
30  utime  Change access and/or modification times



33  access   Check user’s permissions for a file
34  nice   Change process priority
35  ftime  Return date and time
36  sync   Commit buffer cache to disk
37  kill   Send signal to a process
38  rename   Change the name or location of a file
39  mkdir   Create directory
40  rmdir   Delete (an empty) directory
41  dup   Duplicate a file descriptor
42  pipe   Create pipe
43  times   Get process times
45  brk   Change data segment size
46  setgid   Set group identity
47  getgid   Get group identity
48  signal   ANSI C signal handling
49  geteuid   Get user identity
50  getegid   Get group identity
51  acct *   Switch process accounting on or off
52  umount2   Mount and unmount filesystems
54  ioctl  Control device
55  fcntl  Manipulate file descriptor
57  setpgid  Set/get process group
58  ulimit :  Getrlimit(2)
60  umask   Set file creation mask
61  chroot   Change root directory
62  ustat   Get file system statistics
63  dup2   Replace second w/ duplicate of first file descriptor
64  getppid   Get process identification
65  getpgrp   Set/get process group
66  setsid   Create session, set process group ID
67  sigaction   Examine and change signal status
70  setreuid   Set real and / or effective user ID
71  setregid   Set real and / or effective group ID
72  sigsuspend   POSIX signal handling functions
73  sigpending   POSIX signal handling functions
74  sethostname   Set host name
75  setrlimit   Get/set resource limits and usage
76  getrlimit   get/set resource limits and usage
77  getrusage   Get/set resource limits and usage
78  gettimeofday   Get time



79  settimeofday   Get time
80  getgroups   Get list of supplementary group IDs
81  setgroups   Set list of supplementary group IDs
82  select+K4:  Synchronous I/O multiplexing
83  symlink   Make new name for a file
84  oldlstat  
85  readlink   Read value of a symbolic link
86  uselib   Select shared library
87  swapon   Start swapping to file/device
88  reboot  Reboot or enable/disable Ctrl-Alt-Del
89  readdir   Read directory entry
90  mmap   Map files or devices to memory (defunct)
Sys  Action  Function
91  munmap   unmap files or devices to memory
92  truncate   Truncate file to specified length
93  ftruncate   Truncate file to specified length
94  fchmod   Change permissions of a file
95  fchown   Change ownership of a file
96  getpriority   Get program scheduling priority
97  setpriority   Set program scheduling priority
98  profil   Execution time profile
99  statfs   Get file system statistics
100  fstatfs   Get file system statistics
101  ioperm   Set port input/output permissions
102  socketcall   Socket system calls
103  syslog   Read/clr kernel msg buffer; loglevel
104  setitimer   Set an erval timer
105  getitimer   Get value of an erval timer
106  stat   Get file status
107  lstat   Get file status
108  fstat   Get file status
110  iopl   Change I/O privilege level
111  vhangup   Virtually hang-up the current process
112  idle   Make process 0 idle
113  vm86old   Enter virtual 8086 mode
114  wait4   Wait for process termination, BSD
115  swapoff   Stop swapping to file/device
116  sysinfo   Info on overall system statistics
117  ipc  System V IPC system calls
118  fsync   Sync complete in-core state with disk



119  sigreturn   Ret from sig so cleanup stack
120  clone   Create child process
121  setdomainname   Get/set domain name
122  uname   Get name & info about current kernel
123  modify_ldt   Get or set ldt
124  adjtimex   Tune kernel clock
125  mprotect   Control allowable accesses to memory
126  sigprocmask   POSIX signal handling functions
127  create_module   Create module entry
128  init_module   Initiate loadable module entry
129  delete_module   Delete module entry
130  get_kernel_syms   Retrieve kernel & module syms
131  quotactl  Manipulate disk quotas
132  getpgid   Set/get process group
133  fchdir   Change working directory
134  bdflush   Start/flush/tune buffer
135  sysfs   Get file system type information
136  personality   Set process execution domain
138  setfsuid   set user id for file system checks
139  setfsgid   set group id for file system checks
140  llseek  R/W file offset
141  getdents   Get directory entries
142  newselect+K4:  Sync I/O multiplexing
143  flock   Apply/remove advisory file lock
144  msync   Synchronize file with a memory map
145  readv   Read a vector
146  writev   Write a vector
147  getsid   Det session ID
148  fdatasync   Synchronize in-core data with disk
150  mlock   Disable paging for parts of memory
151  munlock   Re-enable paging for parts of memory
152  mlockall   Disable paging for calling process
153  munlockall   Re-eenable paging for calling process
154  sched_setparam   Set scheduling parameters
155  sched_getparam   Get scheduling parameters
156  sched_setscheduler   Set scheduling algo/param
157  sched_getscheduler   Get scheduling algo/param
158  sched_yield   Yield processor
159  sched_get_priority_max   Get static priority rng
160  sched_get_priority_min   Get static priority rng



161  sched_rr_get_erval  Fetch SCHED_RR erval
162  nanosleep   Pause execution for specified time
163  mremap  Re-map a virtual memory address
164  setresuid   Set real, eff. and saved user ID
165  getresuid   Get real/effective/saved user ID
166  vm86 s   Enter virtual 8086 mode
167  query_module  For bits pertaining to modules
168  poll   Wait for event on file descriptor
169  nfsservctl   Kernel nfs daemon
170  setresgid   Set real,effective,saved group ID
171  getresgid   Get real/effective/saved group ID
172  prctl  Operations on a process
173  rt_sigreturn  Cleanup stack after return from signal
174  rt_sigaction  Examine/change a signal action
175  rt_sigprocmask  Examine/change block signals
176  rt_sigpending :  Examine pending signals
177  rt_sigtimedwait  Wait for queued signals
178  rt_sigqueueinfo  Queue a signal and data
179  rt_sigsuspend  Wait for signal
180  pread  Read from file descriptor at given offset
181  pwrite  Write to file descriptor at given offset
182  chown   Change ownership of a file
183  getcwd   Get current working directory
184  capget   Get process capabilities
185  capset   Set process capabilities
186  sigaltstack  Set/Get signal stack context
187  sendfile  Transfer data between file descriptors
190  vfork   Create child process & block parent
191  getrlimit   Get resources limit
192  mmap2  Map file or devices to memory  





Table of Contents
Using This eBook

Acknowledgements
Dedication

1. Introduction
Imagination Unlimited
Start Experimenting
GNU C Compiler
Learn by Example
What Will You Learn?
Fourth Edition and Compatibility
Raspberry Pi OS
What About 64-bit?
Keyboard Computing
The Significance of ARM
Raspberry Pi Through the Ages
Compute Modules
Notation in Use
Table Terminology
Centre for Computing History
Companion Website and Free Books

2. Starting Out
Numbers with Meaning
ARM Instructions
The Transformation Process
Why Machine Code?
Language Levels
Into Orbit
RISC and Instruction Sets
Assembler Structure
Error Of Your Ways
Cross Compilers
The Raspberry Pi ARM Chips(s)

3. First Time Out
The Command Line
Creating A Source File
Come to the Execution



Assembler Errors
The Components
Lack of _start
Linking Files
Tidying Up
A Comment on Comments
Geany Programmer’s Editor

4. Bits of a RISC Machine
Binary to Decimal
Binary to Hex
Hex to Decimal and Back
Binary Addition
Subtraction
Twos Complement Numbers
When Twos Don’t Add Up
Desktop Calculator

5. ARM Arrangements
Word Lengths
Byte and Word Accessed Memory
Registers
R15 - Program Counter
Current Program Status Register
Bits and Flags
Setting Flags
S Suffix
R14: The Link Register
R13: The Stack Pointer

6. Data Processing
Addition Instructions
Subtraction
Multiplication
Divide Arrives
Move Instructions
Compare Instructions
Ordering Numbers

7. ROS Ins and Outs
SWI and SVC Commands
Writing to the Screen
Reading from the Keyboard
eax and Others



8. Logical Operations
Logical AND
Logical OR
Logical EOR
Logical Instructions
ORR to Convert Character Case
Bit Clear with BIC
Flag Tests
System Call Registers

9. Conditional Execution
Single Flag Condition Codes

EQ: Equal
NE: Not Equal
VS: Overflow Set
VC: Overflow Clear
MI: Minus Set
PL: Plus Clear
CS: Carry Set (HS: Higher or Same)
CC: Carry Clear (LO: Lower)
AL: Always
NV: Never

Multiple Flag Condition Code
HI: Higher (Unsigned)
LS: Lower Than or Same (Unsigned)
GE: Greater or Equal (Signed)
LT: Less Than (Signed)
GT: Greater Than (Signed)
LE: Less Than or Equal To (Signed)

Mixing the S Suffix
10. Branch and Compare

Branch Instructions
The Link Register
Using Compare Instructions
Compare Forward Thinking
Branch Exchange

11. Shifts and Rotates
Logical Shifts
Logical Shift Right
Arithmetic Shift Right
Rotations



Extended Rotate
Uses of Shifts and Rotates
Immediate Constant Range
Top Move

12. Smarter Numbers
Long Multiplication
Long Accumulation
Division and Remainder
Smarter Multiplication
Much More Inside

13. Program Counter R15
Pipelining
Calculating Branches

14. Debugging with GDB
Frozen Cases
Assembling for GDB
The Disassembler
Breakpoints
Breakpoint Labels
Memory Dump
Shortcuts
GDB Make Options

15. Data Transfer
ADR Directive
Indirect Addressing
ADR and LDR
Pre-Indexed Addressing
Accessing Memory Bytes
Address Write Back
Post-Indexed Addressing
Byte Conditions
PC Relative Addressing

16. Block Transfer
Write Back
Block Copy Routine

17. Stacks
Push and Pull
Stack Growth
Stack Application
Framed Work



Frame Pointer
18. Directives and Macros

Data Storage Directives
Aligning Data
Macros
Including Macros

19. File Handling
File Permissions

20. Using libc
Using C Functions in Assembler
Source File Structure
Investigating the Executable
Number Input with Scanf
Getting This Information

21. Writing Functions
Function Standards
More Than Three
Preserving Links and Flags
Robust Print Routines

23. GPIO Functions
Memory Mapping
The GPIO Controller
GPIO In and Outs
Building the Code
Other GPIO Functions
GPIO Pins Explained

24. Floating-Point
VFP Architecture
The Register File
Managing and Printing
Assembling and Debugging VFP with GDB
Load, Store and Move
Precision Conversion
Vector Arithmetic

25. VFP Control Register
Conditional Execution
Scalar and Vector Operations
Which Type of Operator?
Len and Stride

26. Neon



Neon Assembler
Neon Instructions and Data Types
Addressing Modes
VLD and VST in their Stride
Load of Others
Neon Intrinsic
Neon Arrays
Order Correctly
Matrix Math
Multi Matrix
Macro Matrix Example

27. Thumb Code
Differences
Assembling Thumb
Accessing High Registers
Stack Operators
Single and Multi-Register
Functions in Thumb
ARMv7 Thumb Instructions

28. Unified Language
Thumb Changes
New A32 Instructions
Compare by Zero
Assembling UAL

29. Exception Handing
Modes of Operation
Vectors
Register Arrangements
Exception Handling
MRS and MSR
Interrupts When?
Your Interrupt Decisions
Returning from Interrupts
Writing Interrupt Routines

30. System on a Chip
The ARM Chip & Instruction Sets
Co-processors
Pipeline
Memory & Caches
The GPU



ARMv8 Overview
Raspberry Pi OS 64-Bit
In Summary
Archimedes Principle

A. ASCII Character Set
B. ARM Instruction Set
C. Raspbian Syscalls


	Using This eBook
	Acknowledgements
	Dedication

	1. Introduction
	Imagination Unlimited
	Start Experimenting
	GNU C Compiler
	Learn by Example
	What Will You Learn?
	Fourth Edition and Compatibility
	Raspberry Pi OS
	What About 64-bit?
	Keyboard Computing
	The Significance of ARM
	Raspberry Pi Through the Ages
	Compute Modules
	Notation in Use
	Table Terminology
	Centre for Computing History
	Companion Website and Free Books

	2. Starting Out
	Numbers with Meaning
	ARM Instructions
	The Transformation Process
	Why Machine Code?
	Language Levels
	Into Orbit
	RISC and Instruction Sets
	Assembler Structure
	Error Of Your Ways
	Cross Compilers
	The Raspberry Pi ARM Chips(s)

	3. First Time Out
	The Command Line
	Creating A Source File
	Come to the Execution
	Assembler Errors
	The Components
	Lack of _start
	Linking Files
	Tidying Up
	A Comment on Comments
	Geany Programmer’s Editor

	4. Bits of a RISC Machine
	Binary to Decimal
	Binary to Hex
	Hex to Decimal and Back
	Binary Addition
	Subtraction
	Twos Complement Numbers
	When Twos Don’t Add Up
	Desktop Calculator

	5. ARM Arrangements
	Word Lengths
	Byte and Word Accessed Memory
	Registers
	R15 - Program Counter
	Current Program Status Register
	Bits and Flags
	Setting Flags
	S Suffix
	R14: The Link Register
	R13: The Stack Pointer

	6. Data Processing
	Addition Instructions
	Subtraction
	Multiplication
	Divide Arrives
	Move Instructions
	Compare Instructions
	Ordering Numbers

	7. ROS Ins and Outs
	SWI and SVC Commands
	Writing to the Screen
	Reading from the Keyboard
	eax and Others

	8. Logical Operations
	Logical AND
	Logical OR
	Logical EOR
	Logical Instructions
	ORR to Convert Character Case
	Bit Clear with BIC
	Flag Tests
	System Call Registers

	9. Conditional Execution
	Single Flag Condition Codes
	EQ: Equal
	NE: Not Equal
	VS: Overflow Set
	VC: Overflow Clear
	MI: Minus Set
	PL: Plus Clear
	CS: Carry Set (HS: Higher or Same)
	CC: Carry Clear (LO: Lower)
	AL: Always
	NV: Never

	Multiple Flag Condition Code
	HI: Higher (Unsigned)
	LS: Lower Than or Same (Unsigned)
	GE: Greater or Equal (Signed)
	LT: Less Than (Signed)
	GT: Greater Than (Signed)
	LE: Less Than or Equal To (Signed)

	Mixing the S Suffix

	10. Branch and Compare
	Branch Instructions
	The Link Register
	Using Compare Instructions
	Compare Forward Thinking
	Branch Exchange

	11. Shifts and Rotates
	Logical Shifts
	Logical Shift Right
	Arithmetic Shift Right
	Rotations
	Extended Rotate
	Uses of Shifts and Rotates
	Immediate Constant Range
	Top Move

	12. Smarter Numbers
	Long Multiplication
	Long Accumulation
	Division and Remainder
	Smarter Multiplication
	Much More Inside

	13. Program Counter R15
	Pipelining
	Calculating Branches

	14. Debugging with GDB
	Frozen Cases
	Assembling for GDB
	The Disassembler
	Breakpoints
	Breakpoint Labels
	Memory Dump
	Shortcuts
	GDB Make Options

	15. Data Transfer
	ADR Directive
	Indirect Addressing
	ADR and LDR
	Pre-Indexed Addressing
	Accessing Memory Bytes
	Address Write Back
	Post-Indexed Addressing
	Byte Conditions
	PC Relative Addressing

	16. Block Transfer
	Write Back
	Block Copy Routine

	17. Stacks
	Push and Pull
	Stack Growth
	Stack Application
	Framed Work
	Frame Pointer

	18. Directives and Macros
	Data Storage Directives
	Aligning Data
	Macros
	Including Macros

	19. File Handling
	File Permissions

	20. Using libc
	Using C Functions in Assembler
	Source File Structure
	Investigating the Executable
	Number Input with Scanf
	Getting This Information

	21. Writing Functions
	Function Standards
	More Than Three
	Preserving Links and Flags
	Robust Print Routines

	23. GPIO Functions
	Memory Mapping
	The GPIO Controller
	GPIO In and Outs
	Building the Code
	Other GPIO Functions
	GPIO Pins Explained

	24. Floating-Point
	VFP Architecture
	The Register File
	Managing and Printing
	Assembling and Debugging VFP with GDB
	Load, Store and Move
	Precision Conversion
	Vector Arithmetic

	25. VFP Control Register
	Conditional Execution
	Scalar and Vector Operations
	Which Type of Operator?
	Len and Stride

	26. Neon
	Neon Assembler
	Neon Instructions and Data Types
	Addressing Modes
	VLD and VST in their Stride
	Load of Others
	Neon Intrinsic
	Neon Arrays
	Order Correctly
	Matrix Math
	Multi Matrix
	Macro Matrix Example

	27. Thumb Code
	Differences
	Assembling Thumb
	Accessing High Registers
	Stack Operators
	Single and Multi-Register
	Functions in Thumb
	ARMv7 Thumb Instructions

	28. Unified Language
	Thumb Changes
	New A32 Instructions
	Compare by Zero
	Assembling UAL

	29. Exception Handing
	Modes of Operation
	Vectors
	Register Arrangements
	Exception Handling
	MRS and MSR
	Interrupts When?
	Your Interrupt Decisions
	Returning from Interrupts
	Writing Interrupt Routines

	30. System on a Chip
	The ARM Chip & Instruction Sets
	Co-processors
	Pipeline
	Memory & Caches
	The GPU
	ARMv8 Overview
	Raspberry Pi OS 64-Bit
	In Summary
	Archimedes Principle

	A. ASCII Character Set
	B. ARM Instruction Set
	C. Raspbian Syscalls

