

REQUIREMENTS
MODELING AND
CODING An Object-Oriented Approach

Q0260_9781786348821_TP.indd 1Q0260_9781786348821_TP.indd 1 30/9/20 11:47 AM30/9/20 11:47 AM

b2530   International Strategic Relations and China’s National Security: World at the Crossroads

b2530_FM.indd 6 01-Sep-16 11:03:06 AM

This page intentionally left blankThis page intentionally left blankThis page intentionally left blankThis page intentionally left blank

NEW JERSEY • LONDON • SINGAPORE • BEIJING • SHANGHAI • HONG KONG • TAIPEI • CHENNAI • TOKYO

World Scientific

Liping Liu
The University of Akron, USA

REQUIREMENTS
MODELING AND
CODING An Object-Oriented Approach

Q0260_9781786348821_TP.indd 2Q0260_9781786348821_TP.indd 2 30/9/20 11:47 AM30/9/20 11:47 AM

Published by

World Scientific Publishing Europe Ltd.
57 Shelton Street, Covent Garden, London WC2H 9HE
Head office: 5 Toh Tuck Link, Singapore 596224
USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601

Library of Congress Cataloging-in-Publication Data
Names: Liu, Liping (Computer scientist), author.
Title: Requirements modeling and coding : an object-oriented approach /
	 Liping Liu, The University of Akron, USA.
Description: London ; Hackensack, NJ : World Scientific Publishing Europe
	 Ltd., [2020] | Includes bibliographical references and index.
Identifiers: LCCN 2020018498 | ISBN 9781786348821 (hardcover) |
	 ISBN 9781786348876 (paperback) | ISBN 9781786348838 (ebook) |
	 ISBN 9781786348845 (ebook other) | ISBN 9781786348920 (ebook other)
Subjects: LCSH: Object-oriented programming (Computer science) | Software engineering. |
	 Computer software--Specifications. | Model-driven software architecture.
Classification: LCC QA76.64 .L58 2020 | DDC 005.1/17--dc23
LC record available at https://lccn.loc.gov/2020018498

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

Copyright © 2021 by World Scientific Publishing Europe Ltd.

All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means,
electronic or mechanical, including photocopying, recording or any information storage and retrieval
system now known or to be invented, without written permission from the Publisher.

For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance
Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy
is not required from the publisher.

For any available supplementary material, please visit
https://www.worldscientific.com/worldscibooks/10.1142/Q0260#t=suppl

Desk Editors: Ramya Gangadharan/Michael Beale/Shi Ying Koe

Typeset by Stallion Press
Email: enquiries@stallionpress.com

Printed in Singapore

Ramya - Q0260 - Requirements Modeling and Coding.indd 1Ramya - Q0260 - Requirements Modeling and Coding.indd 1 1/10/2020 2:18:03 pm1/10/2020 2:18:03 pm

b3881   Requirements Modeling and Coding6"×9"�

This book is dedicated to the memory of my mother,
Shengju Zhen (1939–2017), who believed in and insisted

on my education against all the odds during the Great
Proletarian Cultural Revolution.

b3881_FM.indd 5 05-10-2020 17:10:50

b2530   International Strategic Relations and China’s National Security: World at the Crossroads

b2530_FM.indd 6 01-Sep-16 11:03:06 AM

This page intentionally left blankThis page intentionally left blankThis page intentionally left blankThis page intentionally left blank

vii

b3881   Requirements Modeling and Coding6"×9"�

Preface

This book serves as a text for a capstone course on Systems Analysis
and Design in Information Systems programs. It conceptualizes business
objects and functions, develops business models and software architec-
tures, and enriches the models and the architectures by storyboarding use
cases along with user interface designs.

There are two obstacles in teaching object-oriented techniques in
Information Systems programs in business schools. First, many professors
were trained in structured methodologies, and/or have a native instinct of
thinking in functions due to their business background. They tend to have a
hard time converting their thinking into objects. Second, many Information
Systems programs offer one course on basic programming principles but
do not have the luxury to offer advanced object-oriented programming,
which is a prerequisite to a better understanding of object-oriented mod-
els. Therefore, most schools still teach structured methodologies, although
the software industry is primarily using object-oriented ones.

This book assumes little or no preparation in traditional structured
methodologies and modern object-oriented programming languages.
It bridges structured and object-oriented methodologies and turns exist-
ing knowledge in business data and functions into an asset, rather than a
burden, in learning object-oriented analysis and modeling.

This book is not about software development processes or methodolo-
gies such as systems development life cycle, agile, scrum, DevOps, etc.
Rather, it is concerned with how to faithfully model business requirements
and how to effectively develop systems specifications. All development
methodologies entail requirements analysis and modeling, and some of

b3881_FM.indd 7 05-10-2020 17:10:50

b3881   Requirements Modeling and Coding� 6"×9"

viii  Preface

the modern ones put more emphasis on software delivery rather than the
incremental commitment of models, documentations, and contracts. As
the Manifesto for Agile Software Development states, “We want to restore
a balance. We embrace modeling, but not in order to file some diagram in a
dusty corporate repository. We embrace documentation, but not hundreds
of pages of never-maintained and rarely-used tomes. We plan but recog-
nize the limits of planning in a turbulent environment.”

This book can serve any methodology but appears to work better with
the agile. The book emphasizes the integration of programs and models
with two goals in mind. First, it helps the reader to connect a modeling
construct to code so that he or she appreciates how certain models are
more useful than others to programmers. In over 20 years of teaching,
I found that students and even instructors often create models that lack
clarity to be interpreted and/or precision to be coded. Second, it helps to
reduce the gap between the end users and programmers; whether to model
a business function, a procedure, a business object, a use case, or a user
interface, the book shows its conversion into testable code. Thus, testing
and end-user involvement can be integrated into every stage of systems
development.

This book is not a text on computer programming, and so it does not
go in-depth into the nitty-gritty details. However, one of the key features of
the book is to present requirements modeling and code expression in par-
allel for students to understand modeling concepts better and for profes-
sionals to reduce the gap between analysis and development. Instructors
may choose to review the essential concepts and principles in an object-
oriented programming language such as C#, Java, or C++ from day one.
This book will use C# in all examples because C# bridges Visual Basic,
Delphi, C, and Java very well and also possesses an advantage over others
in prototyping graphical user interfaces (GUIs). Yet, the instructor may
choose Java instead without any difficulty.

This book uses Unified Modeling Language (UML) for diagramming
notations and IBM Rational Rhapsody as the modeling tool. Rhapsody
is a visual development environment that software developers can use to
create real-time or embedded systems. It is an integrated computer aided
software engineering tool that uses graphical models to generate soft-
ware applications in various languages including C, C++, Ada, Java, and
C#. The reader may choose other similar tools such as Poseidon, Visual
Paradigm, etc. The vendors of these tools typically provide free or low-
cost educational licenses to instructors and students.

b3881_FM.indd 8 05-10-2020 17:10:51

ix

b3881   Requirements Modeling and Coding6"×9"�

About the Author

Liping Liu is Professor of Management and
Information Systems at The University of Akron. He
received his Bachelor of Science in Applied
Mathematics in 1986 from Huazhong University of
Science and Technology, Bachelor of Engineering in
River Dynamics in 1987 from Wuhan University,
Master of Engineering in Systems Engineering in
1991 from Huazhong University of Science and
Technology, and Ph.D. in Business in 1995 from the

University of Kansas.   His research interests are in the areas of Uncertainty
Reasoning and Decision-Making in Artificial Intelligence, Electronic
Business, Systems Analysis and Design, Technology Adoption, and Data
Quality. Dr. Liu has published articles in Decision Support Systems;
European Journal of Operational Research; IEEE Transactions on System,
Man, and Cybernetics; International Journal of Approximate Reasoning;
Information and Management; Journal of Association for Information
Systems; Journal of Optimization Theory and Applications; Journal of Risk
and Uncertainty; among others.   Dr. Liu has made distinct contributions in
such fields as Decision Theory, Artificial Intelligence, and Research
Methodology. He provided the best axiomatization of the rank-and-sign
utility function and proposed a theory of coarse utility that explains the
St. Petersburg Paradox, Allais Paradox, and others better than any other util-
ity functions. He developed a theory of linear belief functions and applied
the concept to information integration in auditing, investment analysis,
model combination, matrix computation, etc. He proposed the concept of

b3881_FM.indd 9 05-10-2020 17:10:51

http://www.uakron.edu/

b3881   Requirements Modeling and Coding� 6"×9"

x  About the Author

predictive and mediating efficiencies to test the nomological validity of sec-
ond- or higher-order measurement models. His theories of coarse utilities
and linear belief functions are taught at the nation’s top Ph.D. programs in
such subjects as Accounting, Computer Science, Economics, Management,
and Psychology. His concept of predictive and mediating efficiencies is one
of two authoritative references on nomological networks, along with
Cronbach’s classic paper in 1955, by OMICS International.

Dr. Liu has served as a guest editor for International Journal of
Intelligent Systems, a co-editor for Classic Works on Dempster–Shafer
Theory of Belief Functions, and on the editorial boards of a few aca-
demic journals as well as on the program committees of many academic
conferences.

Dr. Liu has strong practical and teaching interests in e-business sys-
tems design, development, and integration using advanced DBMS, CASE,
and RAD tools. He has won several teaching awards. His consulting expe-
rience includes designing and developing a patient record management
system, a payroll system, a course management system, and an e-travel
agent, and providing corporate trainings on Oracle database administra-
tion, Oracle applications development, and object-oriented requirements
analysis and modeling for large corporations.

During the years of his Ph.D. study at the University of Kansas, Dr. Liu
was on the Dean’s List every year. His GPA at graduation was 4.0. His dis-
sertation has received the Best Dissertation Award.

During his undergraduate studies at Huazhong University of Science
and Technology, Dr. Liu was as the Chief Editor for College Mathematics
and Journal of Undergraduate Academy since his freshman year. He began
to publish papers in the top academic journals such as Journal of Systems
Science & Mathematical Sciences, Journal of Huazhong University of
Science & Technology, etc. His publications won him both the first and sec-
ond place in the 1986 Hubei Province Best Student Research Competition.
He also won China’s National Outstanding Research Achievement Award
for his research on energy planning in 1987.

Dr. Liu was significantly publicized by Changjiang Daily, Hubei Daily,
Guangming Daily, etc. for being the first person in China to pursue a double
major simultaneously from two different colleges. Starting from his sopho-
more year, he attended both Wuhan University and Huazhong University of
Science and Technology and earned two Bachelor degrees in three years. His
second degree thesis led to the obtainment of an analytical solution to a long-
lasting engineering problem related to the Three-Gorges Dam project.

b3881_FM.indd 10 05-10-2020 17:10:51

http://www.ku.edu/
http://www.hust.edu.cn/
http://www.hust.edu.cn/
http://en.whu.edu.cn/

xi

b3881   Requirements Modeling and Coding6"×9"�

Contents

Preface� vii

About the Author� ix

Chapter 1	 Introduction� 1

Information Systems� 1

Business applications� 4

Databases� 5

Systems Analysts� 5

Structured Development Processes� 6

Requirements discovery� 8

Data path� 8

Function path� 9

Object-Oriented Development Processes� 12

Review Questions� 15

Exercises� 15

Chapter 2	 A Review of Programming Principles� 17

Introduction� 17

Variable Declaration� 19

Primitive types� 20

Collection types� 20

b3881_FM.indd 11 05-10-2020 17:10:51

b3881   Requirements Modeling and Coding� 6"×9"

xii  Contents

Custom types� 22

Code Structure� 25

Operations� 26

Controls� 32

Exercises� 37

Chapter 3	 Modeling Functions and Procedures� 41

Introduction� 41

Capturing Function Requirements� 42

Process Modeling� 46

Activity Diagrams� 52

Review Questions� 65

Exercises� 66

Appendix: Algorithms� 69

Programming exercises� 70

Chapter 4	 Coding Functions and Procedures� 73

Introduction� 73

Operations and Methods� 73

Code Functions� 75

Execute Functions� 82

Review Questions� 84

Exercises� 85

Appendix: Text File Processing in C#� 86

Programming exercises� 92

Chapter 5	 Objects and Classes� 93

Introduction� 93

Programming Objects� 94

Data flow reduction� 97

Accessibility scope� 98

Real-World Objects� 99

Conceptual Objects� 100

b3881_FM.indd 12 05-10-2020 17:10:51

b3881   Requirements Modeling and Coding6"×9"�

Contents  xiii

Capture attributes� 100

Capture functions� 101

Autonomous agent heuristics� 103

Representing Conceptual Objects� 104

Attributes� 105

Operations� 107

Static attributes and operations� 108

Implementing Conceptual Objects� 109

Review Questions� 114

Exercises� 115

Chapter 6	 Class Diagrams� 119

Introduction� 119

Associations� 120

Cardinality� 120

Navigability� 121

Inheritance� 125

Implementation� 130

Review Questions� 147

Exercises� 148

Chapter 7	 Advanced Associations� 153

Introduction� 153

Composition and Aggregation� 153

Multivalued attributes� 157

Association Class� 158

Implementation� 159

Recursive Associations� 173

Multiway Associations� 177

Constrained Associations� 179

Exclusive and conjoint associations� 179

Dependent associations� 180

b3881_FM.indd 13 05-10-2020 17:10:51

b3881   Requirements Modeling and Coding� 6"×9"

xiv  Contents

Order and changeability constraints� 181

Exercises� 182

Chapter 8	 Practical Class Diagramming� 189

Introduction� 189

Design Patterns� 189

Practical Skills for Identifying Objects and Relationships� 197

Discovering objects and relationships using phraseology� 197

Exercises� 205

Chapter 9	 Use Case Modeling� 211

Introduction� 211

Connections� 211

Use Case Diagramming Elements� 212

Actors� 212

Use cases� 215

Use Case Diagrams� 219

Exercises� 225

Chapter 10	 Use Case Storyboarding� 227

Introduction� 227

Concepts and Templates� 228

Flow of Events� 231

Storyboarding via examples: Withdraw cash� 233

Storyboarding via examples: Checkout items� 236

GUI Design� 239

Prototyping in Visual Studio� 241

Exercises� 245

Appendix: Combo Box Extensions in C#� 247

Chapter 11	 Use Case Optimization� 255

Introduction� 255

Use Case Factorization� 255

Use Case Extension� 259

b3881_FM.indd 14 05-10-2020 17:10:51

b3881   Requirements Modeling and Coding6"×9"�

Contents  xv

Use Case Generalization� 264

Practical Use Case Modeling� 269

Packaging Use Cases� 271

Review Questions� 273

Exercises� 273

Chapter 12	 Requirements Documentation� 279

Introduction� 279

Requirements� 279

Vision Statements� 281

Scope� 282

Major Features� 287

Business Use Cases� 288

Business use case via examples: Relocation order� 290

Business Rules� 292

Structural rules� 293

Algorithmic rules� 293

Behavioral rules� 295

Functional Software Requirements� 297

Non-Functional Software Requirements� 300

Review Questions� 302

Exercises� 302

Chapter 13	 Requirements Elicitation and Validation� 305

Introduction� 305

Requirements Elicitation� 305

Requirement Validation� 309

Process-Oriented Requirements Validation� 316

Requirements elicitation� 316

Requirements documentation� 318

Requirements-Based Tests� 320

Review Questions� 325

Exercises� 325

b3881_FM.indd 15 05-10-2020 17:10:51

b3881   Requirements Modeling and Coding� 6"×9"

xvi  Contents

Chapter 14	 Collaboration� 327

Introduction� 327

Heuristics for Achieving Collaboration� 327

Heuristics 1: Operations symbolize object capabilities� 328

Heuristics 2: Operations fulfill responsibilities� 329

Heuristics 3: A hero delegates but does not relay� 330

Collaboration via Examples: Compute Order Amount� 331

Collaboration via Examples: Compute Grade Point Average� 337

Collaboration via Examples: Check Prerequisites� 342

Collaboration via Examples: Check Time Conflicts� 344

Exercises� 355

Chapter 15	 Collaboration Modeling� 359

Introduction� 359

Communication Diagrams� 360

Communication links� 362

Communication diagramming via examples:
Enroll classes� 367

Sequence Diagrams� 370

Sequence diagramming in Rhapsody� 371

Representing a use case story� 373

Sequence diagramming via examples: Food order system� 374

An afterthought� 383

Exercises� 384

Chapter 16	 A Complete Use Case Implementation� 387

Introduction� 387

Use Case and Storyboarding� 387

Collaboration Modeling� 390

Domain Classes� 390

Object Persistence� 399

Data Access and Control Objects� 406

Interface Classes� 415

Exercises� 420

b3881_FM.indd 16 05-10-2020 17:10:51

b3881   Requirements Modeling and Coding6"×9"�

Contents  xvii

Chapter 17	 From Structured to Object-Oriented Development� 421

Introduction� 421

Requirement Models� 424

Data flow diagrams� 425

Entity–relationship diagrams� 425

Class diagrams� 426

Conceptual Connections� 427

Cognitive Connections� 433

Empirical Evidence� 437

Summary Notes� 439

Bibliography� 443

Index� 447

b3881_FM.indd 17 05-10-2020 17:10:51

b2530   International Strategic Relations and China’s National Security: World at the Crossroads

b2530_FM.indd 6 01-Sep-16 11:03:06 AM

This page intentionally left blankThis page intentionally left blankThis page intentionally left blankThis page intentionally left blank

1

b3881   Requirements Modeling and Coding6"×9"�

Chapter 1

Introduction

The process of systems analysis is to chart a course to achieve a vision.
This text teaches how to analyze and model business requirements that
can then eventually be transformed into systems specifications for devel-
oping a computer-based information system that supports the vision. In
the process, we will learn how to develop evolving artifacts that represent
business requirements at one end and systems specifications at the other.
The target readers of the book are students and professionals who intend
to become or understand business analysts, whose primary role is to bridge
the gap between programmers and business end-users.

In studying this text, the reader shall pay close attention to the
following three streams of the course development: System, Process,
and Techniques. This chapter introduces three streams. First, we will
introduce the concept and the components of information systems
and the typical roles assumed by a system analyst. Then, we will intro-
duce the systems development life cycle and explain the deliverables
of each phase as well as the techniques to be used to produce said
deliverables.

Information Systems
A system is a set of interrelated and interacting elements that collaborate to
accomplish a specific purpose. This is a generic concept because it applies
to many other subjects of study such as biology, economics, and politics.
A system has the following features: (1) each element has its own purpose,

b3881_Ch01.indd 1 05-10-2020 16:31:12

b3881   Requirements Modeling and Coding� 6"×9"

2  Requirements Modeling and Coding

which serves the purpose of the entire system; (2) different elements are
interdependent; (3) the purpose and function of the individual elements
serve the purpose and functions of the entire system; and (4) the whole is
greater than the sum of individual elements.

An information system is a set of computer hardware, software, data-
base, and people that are integrated to provide a platform for transactional
and decisional support. A typical information system includes elements as
exampled in Table 1.

Computer hardware includes input and output devices, communica-
tion devices, central processing units (CPU), and data storage. The CPU
acts as the brain of a computer and is essentially an electronic circuitry
made of microswitches that use on/off states for 0s and 1s to perform basic
arithmetic, logic, controlling, and input/output operations. Inputs and out-
puts include monitors or terminals, keyboards, pointing devices, printers,
speakers and sound cards, video cards, scanners, etc. There are two broad
categories of storage: random access memory (RAM) and permanent
memory. The difference is that RAM is much faster than permanent mem-
ory (at least 107 faster), so almost all programs will store their temporary
data in blocks of RAM — called variables — for fast access. Yet, RAM is
temporary, and it will not survive a power shutdown. Permanent memory
will stay for a long period of time despite power failures. Examples of
this form include hard drive, floppy drive, CD, and DVD, etc. A hard drive

Table 1.   Information system constituents.

Hardware •	 Input (e.g., keyboard, mouse, touchscreen, microphone)
•	 Output (e.g., display, speakers)
•	 Central processing units
•	 Storage (random access memory and permanent memory like hard drive,

CD, DVD, jump drive, etc.)
•	 Communication devices (modem, network interface card, cable, hub,

switch, router)

Software •	 Operating systems (e.g., Windows, Mac OS, Android, iOS)
•	 Databases
•	 Business applications (e.g., forms and reports)

People •	 End users
•	 Programmers, developers, software engineers
•	 Business analysts, systems analysts
•	 Network engineers
•	 Database administrators, systems administrators

b3881_Ch01.indd 2 05-10-2020 16:31:12

b3881   Requirements Modeling and Coding6"×9"�

Introduction  3

stores 0s and 1s by magnetizing drive materials to different directions.
A CD records 0s and 1s by creating small dots (pits) so that pits and lands
reflect light differently.

Communication devices include modems, repeaters, bridges, routers,
network interface cards, and cables. Modem is a portmanteau made of two
words, modulation and demodulation, and these actions are responsible
for the conversion between analog data and digital data (0s and 1s). Cables
are responsible for sending raw electric or light signals representing 0s and
1s. Typical examples include patch cord made of unshielded twisted pairs
of copper wires and fiber optical ones made of a shielded glass thread.
Network interface cards are responsible for packing individual 0s and 1s
into data packets called frames and controlling the error of transmission.
Switches are used to create segments inside a network to improve its per-
formance and security. Routers are responsible for connecting individual
networks to form inter-networks, or internet.

People are an important part of the information system. The people
involved include end users, programmers, and those who play the role
of bridging these two groups or supporting them. The first set is sys-
tems analysts (or business analysts, business engineers, or systems
engineers), who acts as the middleman between users and program-
mers; they facilitate communications between the two groups so that the
users’ wants can be translated into program specifications, according to
which the program can then be developed. The second set includes the
database administrators, system administrators, and network adminis-
trators, who support both end users and programmers in sharing data,
system, and network resources. The third set is made up of support
technicians who help troubleshoot hardware and software issues for
other users.

This book will not teach how to manage people; the reader can take a
course in management or psychology to learn how to design and develop
effective organizations. This book will not teach how to analyze, model,
develop, and manage hardware components; the reader should take courses
in computer engineering or technology management to learn those aspects
of an information system. This book will also not teach how to analyze and
develop operating systems, which is usually taught in computer science.
As far as this book is concerned, an information system contains business
applications (or programs) that serve business end users for transactional
or decisional support, with databases in the back end as the central reposi-
tory of data resources for applications (Figure 1).

b3881_Ch01.indd 3 05-10-2020 16:31:12

b3881   Requirements Modeling and Coding� 6"×9"

4  Requirements Modeling and Coding

Business applications

Forms and reports are the typical business applications. They are the inter-
faces between the system and the user, and so are often referred to as user
interfaces. The difference between them is that a form is usually used for
viewing and entering data whereas a report is used to display and sum-
marize data.

Forms and reports often interact with the database through intermedi-
ate program modules called procedures, which run behind the scene. In
other words, procedures are the connectors of the front-end forms/reports
with the back-end databases. They collect data from forms and/or retrieve
data from databases, process them, and finally write the result back to
the database or display the result to the user. Procedures can be located
with front-end applications (such as in client/server systems), stored on
back-end databases (so-called stored procedures), or stored somewhere in
between such as applications servers. Procedures usually implement busi-
ness rules that are subject to change during daily business practice. Forms,
reports, and procedures constitute business applications.

Business applications are developed using application development
tools — computer programs that compile or interpret commands in a
programming language. Well-known examples include Visual Studio,
Eclipse, Power Builder, Oracle Developer, C++ Builder, Delphi, Dynasty,
etc. These tools often embed compilers to compile or interpret one or more
programming languages. For example, Eclipse supports Java develop-
ment, while Visual Studio supports C#, Visual Basic, Visual C++, Fortran,
etc. A generic program compiler or interpreter may be able to develop
applications. Yet modern systems development works better with a more
sophisticated tool possessing the feature of rapid application development
(RAD) for quick prototyping and modular assembling because these tools

Database

Procedures
Forms Reports

Figure 1.   The essential components of an information system.

b3881_Ch01.indd 4 05-10-2020 16:31:13

b3881   Requirements Modeling and Coding6"×9"�

Introduction  5

include a library of components or program modules that are ready to be
plugged into a project without re-inventing the wheel.

Databases

A database is simply a set of records, each of which is an array of observa-
tions made on one business object. The records must be connected based
on a certain logical data model. For example, a relational database packs
the records into tables or relations, and the records are then linked by
sharing common columns or by duplicating a primary key into a foreign
key. Another example is a network database that organizes the data into a
network of records linked by pointers, a concept commonly seen in pro-
gramming languages such as C++, COBOL, etc. An object-oriented data-
base encapsulates both records and the program modules that process the
records into higher-level units, called objects.

Databases are created and managed using database management sys-
tems (DBMS), computer programs that organize, validate, secure, and
manipulate data. In other words, it is a program for us to build a new data-
base, manage an existing database, and manipulate the data in the database.

In the old days, databases were developed and operated using a pro-
gramming language such as COBOL. Now, as a standard, a relational
DBMS speaks structured query language (SQL), and so any commands to
create and access a database must be in SQL. The use of SQL has become
extremely pervasive: you can use SQL to talk to a database interactively.
You can also embed SQL commands into a program and have them talk to
a database automatically.

Systems Analysts
To create a new system or improve existing ones, we need business end
users, who understand what to program but do not know how to program,
and programmers, who are the opposite. One may think it is enough to
assemble these two groups of people into a project team, as some devel-
opment methodologies suggest. The reality is that these two groups of
people often speak different languages and have different interests. A typi-
cal programmer speaks Java or C# and likes to lock himself into a base-
ment cell without interacting with people, especially those who do not
speak programming languages.

b3881_Ch01.indd 5 05-10-2020 16:31:13

b3881   Requirements Modeling and Coding� 6"×9"

6  Requirements Modeling and Coding

Wherever there is a language and/or interest barrier, there must be
a middleman who can overcome this barrier. Systems analysts are such
middlemen. Systems analysis and design is essentially a process of bridg-
ing end users and programmers. It discovers and documents end user
requirements, converts the requirements into programming specifica-
tions, and communicates these specifications to the programmers. In this
sense, a system analyst is a communicator or interpreter between users and
programmers.

In order to be an interpreter, one needs to speak two languages. To be
an effective systems analyst, one needs to speak the business languages
to talk to end-users as well as the programming languages to talk to pro-
grammers. Therefore, information systems programs are typically housed
in business schools and have courses in business functional areas as well
as in programming languages. Students take the programming courses not
to become programmers, but rather, to learn how to talk to programmers,
how to develop meaningful specifications, and how to prototype ideas to
meet end user requirements.

The role of the interpreter is passive. In fact, the purpose of an infor-
mation system is to support business needs. Thus, when creating or
improving an information system, there is often a need to change how
one can run a business with the new or improved systems. From this per-
spective, systems analysis is also a process of business re-engineering. It
analyzes existing business processes and designs a new way to improve
them. In this sense, a systems analyst is a process architect or engineer.
An associated subtle role that a systems analyst plays is that of a politi-
cian. When re-engineering a business process, various stakeholders may
be affected. Those who receive negative impacts, e.g., losing a comfort-
able job, may object to the change and/or the new design, regardless of
how brilliant it is.

Structured Development Processes
A systems development process may be roughly divided into six stages:
project proposal, analysis, design, development, implementation, and
maintenance. Systems development life cycle (SDLC) is a methodol-
ogy that emphasizes incremental commitment to a system development
project. Each stage starts with the approval of an overseeing committee
and finishes with promised deliverables for review by the committee. The
waterfall methodology has been challenged by newer alternatives such
as agile, scrum, DevOps, etc., which emphasize continuous delivery of

b3881_Ch01.indd 6 05-10-2020 16:31:13

b3881   Requirements Modeling and Coding6"×9"�

Introduction  7

software products rather than incremental commitment of deliverables.
The agile methodology, for example, encourages software testing and end-
user involvement in every stage of a development process, while DevOps
combines development with information technology operations and tries
to address the gap between development and implementation.

There is also an alternative interpretation of the SDLC that treats the
SDLC not as a development methodology but rather a map of the process
that converts user requirements into programming specifications. From
this viewpoint, RAD tools can be employed to paint forms and reports as
systems prototypes at a very early stage of the process. Joint application
development (JAD) may also be employed to involve users in every stage
of the SDLC.

Requirements analysis and modeling, as the first stage of the systems
development process, is done to discover, document, and validate business
requirements and communicate these precisely as system specifications
to the systems developer. At this stage, models, or pictures with intercon-
nected graphical symbols, are often used, since a picture is worth a thou-
sand words.

Conceptually, a model is an abstract representation of realities. Realities
are complex and multifaceted. When we model realities, we will ignore
insignificant details and focus on essentials. We will also have to take into
consideration a viewpoint from which to observe and describe them. We
often observe different facets of and build different models for the same
object when viewed from different viewpoints. Like in the old Indian tale,
the descriptions of an elephant by six blind men were dramatically differ-
ent. Therefore, to model an information system, we may need many differ-
ent models, with each one describing one perspective of the system.

Figure 2 shows an exploded view of the central stages of a typical
structured development process: analysis, design, and development along
two parallel paths, with one leading to the implementation of a database
(data path) and the other to the development of business applications
(function path).

•	 Data path: Business Object Models — Logical Data Model —
Databases.

•	 Function path: Business Process Models — Procedure Models —
Business Applications.

Before we go into detail about each model or deliverable in Figure 2,
we shall note that these two paths, despite proceeding in parallel, are not

b3881_Ch01.indd 7 05-10-2020 16:31:13

b3881   Requirements Modeling and Coding� 6"×9"

8  Requirements Modeling and Coding

independent because changing data requirements may alter functional
requirements, and the identification of functions can bring up new data
requirements. It must also be noted that in modern object-oriented analy-
sis, which is what this textbook is about, the two paths are integrated so
that data and functions are encapsulated into higher-level abstract units,
called objects.

Requirements discovery

A new project is usually initiated by problems and opportunities. A prob-
lem with the legacy system may stimulate a bottom-up proposal from
end-users to improve the system. Business opportunities and technology
advancements may engender top-down planning for a new up-to-date
system. In any case, a proposal must clearly identify the problems and
opportunities. It must define the scope of the project, e.g., what business
functions are to be included. It must have a forecast as regards the time
frame and resource requirements. After the proposal is accepted, following
studies of its financial and technology feasibilities, the analysis and design
can be conducted in the two parallel paths.

Data path

Business object models, or conceptual data models, represent the user
requirement on what data is needed for conducting business transactions
and supporting future managerial decision-making in a structured way.
Since data comes from observations on business objects, data models

Requirements
Discovery

En�ty–Rela�onship
Diagram

(Business Data Model)

Rela�onal Model
(Logical Data Model)

Ac�vity Diagrams
(Procedural Model)

Data Flow Diagrams
(Business Process Model)

Prototypes

Structured Charts
(Func�on Collabora�on) +

Database

Business
Applica�on

SQL

Analysis Design

Figure 2.   The structured systems development process.

b3881_Ch01.indd 8 05-10-2020 16:31:13

b3881   Requirements Modeling and Coding6"×9"�

Introduction  9

represent business objects such as things, events, concepts, people, etc.,
and the relationships between them that embody the requirements of data
navigation and business rules. The typical database course provides com-
prehensive coverage on how to use entity–relationship diagrams as such
models.

A conceptual data model, such as an entity–relationship diagram,
is the language a business analyst uses to communicate with end users.
This must then be converted into a logical data model — such as a rela-
tional model, a hierarchical model, or a network model — for computer
programmers to understand database programming specifications. The
conversion follows certain rules. For example, if the relational model is
chosen, each entity set will be converted into a table and each attribute will
be converted into a column of the table; for many-to-many relationships,
we will add a junction table, which is made of the duplicated primary keys
of both end tables. Also, if the relational model is chosen, certain normal-
ization procedures must be applied to reduce redundancies and operational
anomalies. The typical database course will introduce rules to convert an
entity–relationship diagram into a relational model. It may also cover how
to use a computer-aided software engineering (CASE) tool to automate the
conversion process.

A logical data model represents programming specifications for a
new database to be developed. In the olden days, you would have to ask
a programmer to implement the design using COBOL. Now, with the
availability of many commercial DBMS such as Oracle, Microsoft SQL
Server, MySQL, and IBM DB2, database implementation is simplified
into writing SQL commands. A special subset of SQL statements, called
data definition language, is used for creating and altering database objects
such as tables.

Function path

The function path starts with a process model that represents the func-
tional requirements of a system. The emphasis of process modeling is on
WHAT rather than HOW, i.e., what a user will do with the system and
what functionalities the user would like the system to have. For example,
when developing an online order system, usual functions include taking
orders, billing customers, querying order status, handling returns, etc.
A process model captures these processes and their relationships, such
as workflows or data flows. A typical conceptual process model in the

b3881_Ch01.indd 9 05-10-2020 16:31:13

b3881   Requirements Modeling and Coding� 6"×9"

10  Requirements Modeling and Coding

structured development is the data flow diagrams that graphically depict
a network of processes connected by data inputs and outputs, called data
flows.

A process model treats each process as a black box with inputs and
outputs. It does not say what the box contains or how each function is
performed, which is the realm of procedural modeling.

Like a business data model, business analysts use process models as
a language to communicate with end-users who understand business pro-
cesses. They must then translate process models into program specifica-
tions and talk to programmers. Unlike database specifications, however,
there may be several aspects of application specifications. For example,
in a structured methodology, there are three types of specifications: struc-
tured charts, procedural models, and application prototypes.

In structured development, one aspect of the program specification
is the program structure, or how the code modules are commanding or
being executed. The structural specifications are represented by structured
models, like structure charts. A structure chart shows how functions work
together or collaborate in a coordinated manner to achieve a higher-level
functionality.

The second specification is a procedural model that opens each black
box and details how each business process is performed logically and
sequentially. A procedural model can be created using pseudocodes, struc-
tured English, activity diagrams (used to be called program flow charts),
or even high-level scripting languages like Visual Basic, Oracle PL/SQL,
Power Script, and JavaScript. The benefit of using pseudocode or struc-
tured English is that you do not need to be concerned with the constraints
of strict programming syntax rules but focus on expressing the logics and
sequences of a procedure. However, the business analysts familiar with a
programming language may find it convenient and efficient to use actual
code to express a procedural model. Instead of learning pseudocode or
structured English and potentially enlarging the gap between modeling
and coding, using a high-level programming language in procedural mod-
eling can help achieve continuous delivery of software products.

Earlier, a program would run from start to finish without user inter-
vention or with occasional stops for user inputs. It displayed nothing but a
black box with plain lines of text outputs. The reader may have seen such
so-called console programs in their first course on programming princi-
ples. To develop a console program, procedural models, one for each pro-
cess, and a structured chart, would be sufficient program specifications.

b3881_Ch01.indd 10 05-10-2020 16:31:13

b3881   Requirements Modeling and Coding6"×9"�

Introduction  11

However, if a program is executed with human user interventions, the last
aspect of program specifications has to be user interfaces, like a form
or report. The user interface is most likely a graphical one in a modern
windowing environment or webpage. The collection of all linked user
interfaces represents a prototype for the application to be designed. Note
that a prototype is usually just a dummy framework to give end users the
feel and look of the applications. It is not a working program because the
code behind it may not exist or does not completely satisfy procedural
requirements.

Prototypes, procedural models, and structural charts represent pro-
gram specifications for an application to be developed by programmers.
They are the language a business analyst will use to communicate with
programmers. Often, there is mystery surrounding programmers who can
speak the cryptic code language. In fact, the most difficult task in software
development is to develop the specifications.

Data and function paths show the overall direction toward the comple-
tion of a development project. It spells out the deliverable of each phase
and the sequential or parallel arrangement of related activities for project
management. However, one should not misunderstand that it is possible
to move straight ahead without coming back to make modifications on
the deliverables of a previous stage. As a matter of fact, systems develop-
ment tends to be an iterative or evolving process. For example, after com-
municating with programmers, you may realize that you need to go back
to end-users and discuss some modifications on business data or process
models. Methodologies such as the agile and Scrum tend to overempha-
size this nature, thus calling for user involvement and code testing at every
stage. What is essential in the development process, however, is to ensure
that what is coded is exactly (or at least as close as possible) what a busi-
ness wants. Due to misunderstandings or misspecifications, a programmer
can deliver a donkey when the business wants a horse. There can be many
factors contributing to these misunderstandings and misspecifications, and
improper use of communication language is one of the most important.
Regardless of the choice of a methodology, we cannot underemphasize the
use of the right language to communicate with the right people. In addi-
tion, system analysts should attempt to understand the problem domain of
a business and not make unjustified assumptions about its requirements.
They must know how to protect themselves; if necessary, they should get
end-users or project managers to sign off models and specifications before
these are submitted, converted, and/or coded.

b3881_Ch01.indd 11 05-10-2020 16:31:13

b3881   Requirements Modeling and Coding� 6"×9"

12  Requirements Modeling and Coding

Object-Oriented Development Processes
A structured program is a collection of one or more reusable units, called
functions. One of these is the main function, also named as main(), that
acts the starting point of the whole program. Because of the separation of
data and functions, each function can virtually do nothing without being
fed the appropriate data inputs. Consequently, functional modules become
highly dependent on each other and coupled into a highly complex web of
functional calls and executions. A simple change in one function or data
source can cause ripple effects in many related modules. Also, in order to
achieve maximum reusability, each function tends to be a relatively small
module. The reader may have seen functions like upper(), lower(),
trim(), etc. These functions do nothing but change the data format
or remove spaces from input data. Counting these types of functions, a
typical medium- or large-sized system can easily consist of thousands of
modules. Maintaining and managing such modules is a nightmare, if not
impossible.

Because of these problems, structured development has given up its
dominance or even existence, and the new object-oriented development
has thus arisen. Object orientation advocates the encapsulation of both
data and functions that process data into a higher-level reusable unit called
class, which can then be used to create running instances, called objects.
We will elaborate more on these concepts in later chapters. But for now,
the reader can just imagine that things like windows, buttons, or menus are
objects, and the code that create those objects are classes.

An object-oriented program is made of one or more reusable classes,
one and only one of which must contain the main() function and act as
the starting point of the program. This is the static view of a program.
From a dynamic or running perspective, a program consists of one or
more collaborating objects that are created by the classes. Objects are data
holders and behavior executors. Instead of calling a function or issuing a
command directly, an object is called to execute a function by sending a
message to the object. Each object often contains many functions that are
related to each other and responsible for the same area of concerns. Often,
a task to be performed by the program can be delegated to one object spe-
cialized in the task. The object may need assistance from other objects to
perform a portion of the task. It does so by sending messages to the other
objects. Dynamically, a program is a network of objects that invokes each
other through messages.

b3881_Ch01.indd 12 05-10-2020 16:31:13

b3881   Requirements Modeling and Coding6"×9"�

Introduction  13

There are three benefits of the object-oriented approach. First, the
number of data flows and functional calls (or equivalently messages) have
been significantly reduced because data inputs to or outputs from a func-
tion are packaged inside the same object as the function. The following
analogy may help to understand the point better. If we ask a boy how old
he is, he does not need an input of his birth date and the current time to
answer the question. However, if we ask a calculator the same question, the
calculator will need to have the input data in order to answer the question.

Second, the number of program modules is dramatically reduced.
Because each class can pack tens or hundreds of functions, the number of
reusable program units is a lot lesser. Yet, all the functions can be still exe-
cuted individually by sending a message to its housing object. Third, pro-
gram modules become less coupled or dependent on each other. Although
objects still need to collaborate to perform a large task, most objects are
self-sufficient in performing a task.

What does object-oriented development mean for systems analysis
and design? Since functions and data are no longer separate, the final
product of analysis and design is not a set of interrelated functional mod-
ules. Rather, it is a set of classes that can be used to create functioning and
collaborating objects. These are two specific implications. First, there is
no need to model the data inputs and outputs of functions, and thus data
flow diagrams are no longer useful for modeling functional requirements.
Second, the dynamic view of a program is not function calls. Rather it
is object creation and collaboration through messages. Thus, structured
charts are no longer useful.

Regardless of structured or object-oriented development, we always
need to capture and model data and functional requirements. However,
since data and functions are now bundled into classes, we shall change our
terminologies and use the terms classes and objects throughout the sys-
tem development process. When modeling data requirements, we model
business or domain objects. When modeling functional requirements, we
model use cases, which are also classes.

Figure 3 shows the object-oriented systems development process and
deliverables along the way. The requirements discovery stage is the same as
for the structured development, including identifying problems and opportu-
nities; setting up visions, goals, and objectives; and discovering the solutions
and requirements that solve the problems, take advantage of the opportuni-
ties, and satisfy the goals and objectives. Then, in the analysis stage, we
model two views of the system: static view and dynamic view. From the

b3881_Ch01.indd 13 05-10-2020 16:31:13

b3881   Requirements Modeling and Coding� 6"×9"

14  Requirements Modeling and Coding

static point of view, we identify and model business objects that are business
data and business function carriers and assess their relationships as governed
by business rules. The deliverables are class diagrams. From the dynamic
point of view, we model use cases and their associations with actors, which
are groups of users that the use cases intend to serve. The deliverables are
use case diagrams. We will then storyboard, or tell a story about, each use
case by describing how the users interact with the system in a step-by-step
manner to execute the use case. This is done using structured English with
user interface prototypes. Structured English is used for procedural mod-
eling in structured development, but it has two exceptions here. First, if a
use case is performed by a human user, we will need to create one or more
user interfaces. This is called prototyping, which is identical to the struc-
tured requirements analysis. Prototyping is often underemphasized, but it
is a “must” for effective discovery of requirements and effective control of
development risks. Second, what the system does during interactions with
the users will have to be re-specified as the actions performed by one or
more objects that constitute the system. Re-specification is modeled by
either a communication diagram or a sequence diagram, from which one
can derive the functions to be housed by each class. Adding derived func-
tions to the classes in the initial class diagram, we arrive at an enriched class
diagram at the design stage. This will become the system specifications to
be communicated to programmers.

Data and functions are bundled into objects. Ideally, there should
be an object-oriented database that can save object data to make objects
persistent. Unfortunately, there is no commercial object-oriented DBMS
that supports such a large amount of transactional data. In the conceiv-
able future, we anticipate that organizations will continue using relational
DBMS for business objects. Thus, we still need to convert a business object
model into a logical data model as the database specification. The rules for

Requirements
Discovery

Class Diagram
(Business Objects)

Rela�onal Model
(Logical Data Model)

Class Diagram
(Design Objects)

Use Case Diagram
(Business Func�ons)

Use Case Stories
with Prototypes

Collabora�on
Diagrams +

Database

Business
Applica�on

SQL

Analysis Design

Figure 3.   The object-oriented development process.

b3881_Ch01.indd 14 05-10-2020 16:31:13

b3881   Requirements Modeling and Coding6"×9"�

Introduction  15

such conversion are essentially the same as in the structured development
described earlier.

Review Questions
  1.	 What is an information system?
  2.	 What is SDLC?
  3.	 What are the key features of the structured systems analysis and design

methodology?
  4.	 What tools are needed to develop an information system?
  5.	 What are the components of an information system in general, and in

specific to be designed in this course?
  6.	 What are the two most important roles played by systems analysts?
  7.	 What is different between computer science and information systems

as fields of study?
  8.	 What language does a relational DBMS speak?
  9.	 What models does a systems analyst use to communicate with end

users? With programmers?
10.	 What is RAD? How is it different from a programming language?
11.	 What is different between a logical data model and a conceptual (busi-

ness) data model?
12.	 What is different between a process model and a procedural model?

Exercises
1.	 Think about what tools you may need to build an information system to

sell books on the Internet, like amazon.com.
2.	 Please describe the major activities during systems design and the

deliverables of each activity (choose either the structured systems anal-
ysis and design methodology or the object-oriented methodology).

3.	 Write a short essay for a popular magazine to introduce information
systems as a field of study and make sure you point out its differences
from computer science.

4.	 Write a short ad for your employer on potential job openings in systems
analyst positions and make sure you give a job definition in the ad.

5.	 Use diagrams to illustrate and explain the systems development life
cycle. Make sure you list the deliverables, tools to be used, and the role
of systems analysts at each stage of the SDLC.

6.	 Use diagrams to illustrate the components of an information system.

b3881_Ch01.indd 15 05-10-2020 16:31:13

b2530   International Strategic Relations and China’s National Security: World at the Crossroads

b2530_FM.indd 6 01-Sep-16 11:03:06 AM

This page intentionally left blankThis page intentionally left blankThis page intentionally left blankThis page intentionally left blank

17

b3881   Requirements Modeling and Coding6"×9"�

Chapter 2

A Review of Programming Principles

Introduction
Regardless of programming languages and development models, there
are four basic types of instructions in any computer program that work
around one central concept, called a variable. In programming, a variable
is simply a memory block with a specific name, size, and location used to
store temporary data. The first chapter mentioned the difference between
random access memory (RAM) and permanent storage. In fact, RAM is
important in computer programming: the locations or blocks in RAM are
variables.

The four basic types of instructions are each concerned with how to
create memory blocks, how to change values in the memory blocks, how
to manipulate the values in the memory blocks, and how to view and save
the values in the memory blocks.

Variable declaration is to create a memory block. The size of the mem-
ory block is determined by the type of the variable declared. Using C# or
Java, we may declare the following types of variables: char (2 bytes) for
holding a Unicode character like ‘a’, ‘\n’ (new line character), ‘\t’
(tab character), int (4 bytes) for holding whole numbers, double (8 bytes)
for holding real numbers, and string for holding texts like “John Doe”,
“Ohio”, “23” (a number but stored as a text). For example, we may declare
two variables, price as a decimal and quantity as an integer, to store
the price of a product and the quantity of the product, respectively, for
computing the subtotal of the product in a purchase order.

b3881_Ch02.indd 17 05-10-2020 16:31:32

b3881   Requirements Modeling and Coding� 6"×9"

18  Requirements Modeling and Coding

Variable assignment is to put a value into a memory block, and it will
replace the existing content of the memory block by a new value. For exam-
ple, you may assign 6.98 to the price variable and 10 to the quantity
variable so that those two memory blocks will now hold data 6.98 and 10,
respectively. The new value can be obtained from a user through an input
device, from a data file on a storage device, from a database, from a mail
server, from a network server, or generated by a CPU operation. In C# or
Java, the assignment is done by using the “=” sign, where the value on the
right-hand side is assigned to the variable on the left-hand side. The fol-
lowing are some examples of variable assignments:

intHour = 23;
myFullName = “John Doe”;
mySalary = 4500.98;

Variable manipulation is to use the values inside memory blocks to
perform algorithmic or mathematical operations. For example, we may
multiply the values stored in the price and quantity locations to
compute the subtotal. Variable manipulation occupies the core posi-
tion in any program and may consist of a series of simple additions,
subtractions, multiplications, and divisions performed by the CPU. For
example, the right-hand side of the following code increases mySal-
ary by 5% and then uses the result to replace the existing content of
mySalary:

mySalary = mySalary * 1.05;

Variable report is to present the data in memory locations to human
users or to communicate the data to another device or a program. When
it comes to human users, we are used to seeing data in a meaningful con-
text in a familiar language, but data in memory blocks are simply binary
strings of 0s and 1s. Thus, we need to transform and re-express the data
in a format understandable to human users using an output device such as
a screen, a data file, a database, a mail server, or another computer on the
network for the user to see it or use it later. For example, we may use a
message box to output the value of a variable as follows:

MessageBox.Show(“my salary is “ + mySalary);

b3881_Ch02.indd 18 05-10-2020 16:31:32

b3881   Requirements Modeling and Coding6"×9"�

A Review of Programming Principles  19

which will display the words, made of two parts, using a dialogue box.
Note that the operator + here is used to concatenate or combine mul-
tiple words into one. For example, “John” + “Doe” will result in
“JohnDoe”, “Price is “ + “1.99” will result in “Price is
1.99”, etc.

The four statements must be in a logical order. We need to create a
memory block before assigning a value to the block. Only after the data
are in memory blocks is it possible to manipulate or report the data. Note
that when a variable is first declared, the current value in the memory
location holds whatever is left by the prior execution of some programs,
and so generally it is garbage. Thus, we need to put an initial value into
it. This is called initialization. An initial value may or may not be useful
data, but it must be of the right type. For example, you cannot put 1.00
into quantity because quantity is an integer variable but 1.00 is a decimal
value.

Variable Declaration
Variables are named according to certain naming conventions and should
avoid reserved words. For example, these are valid names: volume, length,
mySalary, screenSize. Some invalid ones include new, int, private, public,
class, because they use reserved words. class size, course#, student-ID are
also invalid because they contain unpermitted characters. The following
are example declarations:

char c, firstLetter, lastChar;
int intAge, intHours, intYear;
double mySalary, myWeight;
string myFirstName, myFullName, myStreet;

A variable can be simple, i.e., to hold only one item of data. It can be
complex, i.e., to hold object(s) such as word documents, windows controls
and events, and networks. In this case, the memory block holds a bunch of
data rather than a single value. For example, the following code declares
one variable to hold a point in time and another to hold a random number
generator:

DateTime currentTime;
Random myRandomNumberGenerator;

b3881_Ch02.indd 19 05-10-2020 16:31:32

b3881   Requirements Modeling and Coding� 6"×9"

20  Requirements Modeling and Coding

The following creates an array or collection of memory blocks that
holds a series of data of the same type:

double[] employeeSalaries;
string[] employeeNames;
string[,] names = new string[5,4];

In the following, we will review the declaration of three types of vari-
ables, from simple primitive types, to collections, and finally to custom
types.

Primitive types

Five primitive types of variables are illustrated below: bool (for true or
false values), int (for 32-bit integers), double (for 64-bit double precision
decimal numbers), char, and string (String for Java).

double price; //declare first
price = 6.98; //initiate next

�int quantity = 10;
//declare and initiate in the same time

bool isValid = true;

�char letter = ‘C’;
//char values are inside single quotes

�string username, password;
//declare multiple variables
�username = “scott”;
//string values are inside double quotes

Note that the string, or string of characters, is not really a primitive type,
but there is no harm in treating it like one in C# programming.

Collection types

When we need to create a lot of variables of the same type, e.g., a list of
product prices, a list of quantities, a list of state names, etc., we can use
arrays and list types. Arrays are used if the number of values is known,

b3881_Ch02.indd 20 05-10-2020 16:31:32

b3881   Requirements Modeling and Coding6"×9"�

A Review of Programming Principles  21

while lists are used if the number of values may change over time in the
code. In the following are illustrations of how to declare and initialize
arrays and lists.

double[] prices = new double[3];
//declare first and then initiate
prices[0] = 6.98;
prices[1] = 1.25;
prices[2] = 69.90;

�int[] quantities = {10, 200, 1};
//declare and initiate

List<double> lstPrices = new List<double>();
lstPrices.Add(6.98); //add list item
lstPrices.Add(1.25);
lstPrices.Add(69.90);
lstPrices.Remove(1.25); //remove list item

After we declare an array or list, we can access and manipulate the
individual items in the collection using their location index, starting from
0, and then increasing values, such as 1, 2, and so on, until the last item
index, as if they are usual primitive variables. For example, prices[1]
will be the second price in the array prices and listPrice[0] will
be the first price in the list lstPrices. The last item in prices has
index prices.count - 1, and the last item in lstPrices has index
lstPrices.length – 1 because the indices start from 0, not 1.

We may also use multi-dimensional arrays to store matrix or tabu-
lar data. For example, the following creates an array for a 3 × 2 table of
observations:

double[,] obs = new double[3,2];
//declare first and initialize next
obs[0,0] = 5.7;
obs[0,1] = 130;
obs[1,0] = 6.2;
obs[1,1] = 145;
obs[2,0] = 3.9;
obs[2,1] = 120;

double[,] obs = {{5.7, 130}, {6.2, 145}, {3.9, 120}};
//declare and initiate

b3881_Ch02.indd 21 05-10-2020 16:31:32

b3881   Requirements Modeling and Coding� 6"×9"

22  Requirements Modeling and Coding

Custom types

If data are complex and cannot be stored in any predefined types of vari-
ables, we then create custom types first and then declare variables with
these newly defined custom types. For example, if we want to create mem-
ory blocks to store data about each product, including its stock keeping
unit (SKU) ID, price, and quantity, we will not be able to use either primi-
tive types or collections because the data are not of the same type. SKU is
a string, price is a double, and quantity is an int. In this situation, we can
define our own custom types. The reader may realize later that this book is
essentially about defining custom types. Here, we just want to point out its
connection to the notion of variables.

The first custom type is enumeration, enum, which can be used to cre-
ate a variable that has a fixed list of possible values to take on. For exam-
ple, gender must be either male or female; course grade must be either A,
B, C, D, or F; color must be Red, Green, Black, etc., and US state name
must be OH, NY, MI, etc.

 //custom enumeration definition
  public enum Gender
  {
          Male,
          Female
  };
  //variable declaration and initialization
  Gender lisaGender;
  lisaGender = Gender.Female;

The reader may see the keyword public in front of enum in the type
definition. We will introduce this so-called access scope later, but for now
the reader just need know that, without public, the custom type cannot
be used to declare variables if the declarations are not located in the same
place as the type definition in code.

The second custom type is a structure, struct, used for creating
a collection of memory blocks of different kinds. For example, we can
define a custom type Product to store values of each product.

b3881_Ch02.indd 22 05-10-2020 16:31:32

b3881   Requirements Modeling and Coding6"×9"�

A Review of Programming Principles  23

 //custom struct definition
  public struct Product
  {
           public string SKU;
           public double Price;
           public int Quantity;
  };

 //variable declaration and initialization

  Product cup;
  cup.SKU = “1G-345-BE”;
  cup.Price = 6.98;
  cup.Quantity = 10;

The third type of custom types, class, goes one step further than
struct. It can create variables, called objects, that can store not only a
collection of values of different types but also code to process the values.
For example, Product class is defined in the following.

//custom class definition

Public class Product {
       private string sku;
       private double price;
       private int quantity;
       public double getSubTotal()
       //function to compute subtotal
       {
              double subtotal;
              subtotal = price * quantity;
              return subtotal;
       }
}

//declare variables of Product type

Product cup; //declare variable cup
cup = new Product();
//creating sub memory blocks for sku, price, etc.
Product milk = new Product();
//declare and create sub blocks

The reader may skip the section on the function to compute subtotal
in the above code; we will get into this in later chapters on modeling and
programing business functions.

b3881_Ch02.indd 23 05-10-2020 16:31:32

b3881   Requirements Modeling and Coding� 6"×9"

24  Requirements Modeling and Coding

To be able to manipulate the above variables cup and milk, we will
need to assign values to sub-memory blocks for SKU, price, and quan-
tity. This is usually done by constructors or data access methods such as
get() and set() functions in Java and properties in C#. Note in the
above code that Product() is a constructor for the class Product.
A constructor always takes on the same name as a class, but a construc-
tor is a function while a class is a type. A constructor is used to initial-
ize sub-blocks of a collection variable. For example, Product() here
will initialize the sub-blocks of cup and milk, including sku, price,
quantity, and the function getSubTotal.

We will learn more about classes later in the book. For now,
we use a few predefined custom classes in Visual Studio librar-
ies, such as DateTime, Random, Pen, SolidBrush, File,
OleDBConnection, StreamReader, etc., to appreciate how to
manipulate object variables.

//objects handling date and time

DateTime myBD; //declare first and initialize next
myBD = new DateTime(1988, 8, 8);

DateTime myBD = new DateTime(1988, 8, 8);
//declare and initialize

//objects generating random numbers
Random myGenerator = new Random();
int myNumber = myGenerator.Next(0,100);

//objects for drawing

Pen myBluePen = new Pen(Color.Blue);
SolidBrush myRedBrush = new SolidBrush(Color.Red);

//objects for Oracle database connections

string sConn = “Provider=MSDAORA;Data
Source=CBA12c;User ID=scott;Password=tiger”;

OleDbConnection myConn= new OleDbConnection
(sConn);

myConn.Open();

b3881_Ch02.indd 24 05-10-2020 16:31:32

b3881   Requirements Modeling and Coding6"×9"�

A Review of Programming Principles  25

Code Structure
Where do we declare, initialize, and manipulate variables? Instructions
in C# are organized into three layers: project (or namespace) layer, class
layer, and function layer. Each project contains one or more classes,
and each class contains one or more functions. Each layer is delimited
by curly braces { … }. Custom types such as enumerations, structures,
and classes are defined inside a project or a class. Variables are declared
inside a class or a function, but the assignments and manipulations
of the variables must be inside functions. Figure 1 shows an example
structure of three layers: inside CodeExercise project, there are two
enumerations (Day and Gender), one structure (Product), and one
class (Universe). Inside the Universe class, there is one function
(DoAll()).

For initial programming exercises, the reader may use either Syntax
Checker at ecourse.org/X/SyntaxChecker.aspx or Notepad ++ (open
source program). However, to be able to do the demonstrations and exer-
cises in later chapters, Microsoft Visual Studio is recommended. Here are
the two steps to follow to start using Visual Studio.

Step 1: Open Visual Studio, then use File → New → Project menu to
create a new project. Make sure to choose C# as the programming language
and Windows Forms Application as a template (see Figure 2).

Step 2: Use Project → Add Class menu to create a new class, specify a
class name, e.g., Universe, MickyMouse, Customer, Order, etc.
(see Figure 3).

After the above two steps, you will see a code page as in Figure 4. Note
that, before the namespace, there are a few lines of code, all starting with
keyword “using”, which provide default directives of built-in classes in the
Visual Studio library. For now, do not bother to change any of them. Instead,
we will restrict our code inside the namespace and class. First, add “public”
in front of “class Universe” and add custom types anywhere in parallel to
“class Universe {…}” layer. Figure 5 shows an example result.

For all other instructors, including variable declarations, assignments,
and manipulations, let us create a function as in Figure 6 and then write all
the code in this chapter inside the function “public void DoAll() {…}”
as shown in Figure 1.

b3881_Ch02.indd 25 05-10-2020 16:31:32

b3881   Requirements Modeling and Coding� 6"×9"

26  Requirements Modeling and Coding

namespace CodeExercise
{

public struct Product
{

public string SKU;
public double Price;
public int Quantity;

}

public enum Day
{

Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday
}

public enum Gender
{

Male, Female
}

public class Universe
{

public void DoAll()
{

double price; // declare first
Product cup;
cup.SKU = "1G-345-BE";
cup.Price = 6.98;
cup.Quantity = 10;

}
}

}

Figure 1.   C# three-layer code structure.

Operations
Computer programing involves four types of instructions in order: A vari-
able must be declared before you can give a value to it; a variable must
be initialized before you can use it for any operations that manipulate the
variable. Table 1 lists the operations in C# language.

As in primary school arithmetic, operations involving variables follow
the Parentheses, Exponents, Multiplication (*), Division (/), Addition, and
Subtraction (PEMDAS) order, except that we have more operations than
simple PEMDAS.

b3881_Ch02.indd 26 05-10-2020 16:31:32

b3881   Requirements Modeling and Coding6"×9"�

A Review of Programming Principles  27

Figure 2.   Create C# project.

Figure 3.   Add class to project.

b3881_Ch02.indd 27 05-10-2020 16:31:33

b3881   Requirements Modeling and Coding� 6"×9"

28  Requirements Modeling and Coding

Figure 4.   Sample code page for Universe.

namespace CodeExercise
{

public struct Product
{

public string SKU;
public double Price;
public int Quantity;

}

public enum Day
{

Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday
}

public enum Gender
{

Male, Female
}

public class Universe
{

}
}

Figure 5.   Sample code page after adding custom types.

b3881_Ch02.indd 28 05-10-2020 16:31:33

b3881   Requirements Modeling and Coding6"×9"�

A Review of Programming Principles  29

namespace CodeExercise
{

public struct Product
{

public string SKU;
public double Price;
public int Quantity;

}

public enum Day
{

Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday
}

public enum Gender
{

Male, Female
}

public class Universe
{

public void DoAll()
{

}
}

}

Figure 6.   Sample code page after adding function DoAll().

A course in computer programing will cover the details of the opera-
tions, and here we will use a few examples to illustrate the meaning and
the order of some unfamiliar operators; PEMDAS operators are common
knowledge for all college students.

Example 1: What is 3/4 and 3.0/4? What is 3%4?

Integer division results in an integral quotient, and thus 3/4 is 0. The
remainder is obtained by % operator, and so 3% 4 is 3. When an opera-
tion involves data of mixed type, an implicit cast is done by the operation
that coverts all special value types to the most generalized type in the
operations, e.g., Boolean values to integers, integers to decimal numbers,
and numeric values to text values. For example, in 3.0/4, the integer 4
will be cast into 4.0, and thus, 3.0/4.0 will be 0.75. As another example,
3 + “10” will be “310” rather than 13.

b3881_Ch02.indd 29 05-10-2020 16:31:33

b3881   Requirements Modeling and Coding� 6"×9"

30  Requirements Modeling and Coding

Table 1.   Operations.

Operator Description Level Associativity

[]
.
()
++
--

Access array element
Access object member
Invoke a method
Post-increment
Post-decrement

1 Left to right

++
--
+
-
!
~

Pre-increment
Pre-decrement
Unary plus
Unary minus
Logical NOT
Bitwise NOT

2 Right to left

()
new

Cast
Object creation

3 Right to left

*
/
%

Multiplicative 4 Left to right

+ -
+

Additive
String concatenation

5 Left to right

<< >>
>>>

Shift 6 Left to right

< <=
> >=

instanceof

Relational
Type comparison

7 Left to right

==
!=

Equality 8 Left to right

& Bitwise AND 9 Left to right

^ Bitwise XOR 10 Left to right

| Bitwise OR 11 Left to right

&& Conditional AND 12 Left to right

|| Conditional OR 13 Left to right

?: Conditional 14 Right to left

= += -=
*= /= %=
&= ^= |=

<< = >>= >>>=

Assignment 15 Right to left

b3881_Ch02.indd 30 05-10-2020 16:31:33

b3881   Requirements Modeling and Coding6"×9"�

A Review of Programming Principles  31

Example 2: Evaluate the following based on the declaration “int x =
3, y = 2;”:

·	 “x + y = ” + x + y
·	 “x + y = ” + (x + y)

Following the implicit cast and the order of operations, “x + y = ”
+ x + y will be “x + y = 32”, but “x + y = ” + (x + y)
will be “x + y = 5” because in the second expression, x + y will be
performed before the implicit cast.

Example 3: Evaluate the following based on the declaration “int x =
3, y = 2;”:

·	 ++x – y
·	 x++ – y
·	 x – ––y
·	 x – y––

This example is concerned about post- and pre-increments (++) or decre-
ments (--). A pre-operator is used to increment or decrement the value of
a variable before using it in an expression. In the pre-increment, a value
is first incremented and then used inside the expression. A post-increment
is just the opposite: a value is first used in the expression and then incre-
mented. For example, in ++x - y , x will become 4 before performing
x – y. Thus, ++x – y is 2. In contrast, in x++ - y, x will become 4
after x – y. Thus, x++ - y is 1.

Example 4: Evaluate the following operations following the declaration
“bool x = true; int y = 2;”:

·	 !x
·	 y == 2
·	 y%2 == 1
·	 x && !(y == 2)
·	 x || (y == 1)

b3881_Ch02.indd 31 05-10-2020 16:31:33

b3881   Requirements Modeling and Coding� 6"×9"

32  Requirements Modeling and Coding

This example is about how to use logical operations: ! for negation, &&
for AND, and || for OR. Thus, !x is false. Operator = is for assign-
ment, and == is for comparison. Thus, y == 2 will result in a logical
value, true, but y = 2 means to put value 2 into y’s memory block. In
the expression y%2 == 1, should we compare 2 == 1 first or should
we do y%2 first? According to the data given in Table 1, we should do %
before ==. Thus, y%2 == 1 results in the logical value false.

Example 5: What is x in the following statements after the declaration
“int x = 4;”?

·	 x = x + 1;
·	 x += 2;
·	 x -= 2;
·	 x *= 2;
·	 x ^= 2;
·	 x /= 2;

This example illustrates how to use assignment operations, which are per-
formed from right to left. In x = x + 1, x + 1 will be performed by
the assignment, and so x will be 5 after the assignment. +=, -=, *=, ^=,
and /= are just short-cut notations. For example, x += 2 stands for
x = x + 2, x ^= 2 for x = x^2, etc.

Controls
Operations may be repeatedly and/or contingently performed. The rep-
etition is controlled by loops, and contingency is controlled by decision
controls. In the following, we will use examples to illustrate the use of
for-loop, while-loop, if-else, and switch controls.

Control for-loop is for definite steps of repeated execution of some
operations. The following two snippets are, respectively, for finding the
sum 1 + 3 + 5 + … + 99, and the product 2*3*5*7*11*17*19.

int sum = 0;
for (int i = 1; i <= 100; i = i + 2) {
    sum = sum + i;
}

b3881_Ch02.indd 32 05-10-2020 16:31:33

b3881   Requirements Modeling and Coding6"×9"�

A Review of Programming Principles  33

int product = 1;
int[] factors = {2, 3, 5, 7, 11, 13, 17, 19}
foreach (int i in factors) {
   product = product * i;
}

Note here that we use two different for-loops: one uses an index to control
the steps of repetition and the other uses a list or an array to control the
steps.

Also, note that, before each loop, we need to declare a variable to hold
the result of the repeated operations. Here is a programming tip for initial-
izing the result variable before the loop: the variable should be initialized
to 0 for repeated additions and to 1 for repeated multiplications.

Control while-loop is for indefinite steps of repeated execution. For
example, to find the corresponding ASCII code for an integer 9876224342,
we need to repeatedly subtract the number by 128 until the result is between
0 and 128:

int i = 9876224342;
while (i > 127) {
    i = i - 128;
}

Yet another example, to find constant ()1 1 1
1! 2!1 1e

n

n nlim →∞ + = + += + …
()1 1 1

1! 2!1 1e
n

n nlim →∞ + = + += + …, of course, we cannot perform additions infinitely. However,
after many steps, the additional additions will not add any significant
values to the result, and so we may stop, say when we reach the term 1

!i ,
which is smaller than 0.000000001.

double x = 1, sum = 0;
int i = 0;
while (x > 0.000000001) {
    sum = sum + x;
    i++;

    //a definite loop for 1/i!
    x = 1;
   for (int k = 1; k <= i; k++) {
          x = x/k;
   }
}

b3881_Ch02.indd 33 05-10-2020 16:31:34

b3881   Requirements Modeling and Coding� 6"×9"

34  Requirements Modeling and Coding

Decision control if-else is a condition-based selective or contin-
gent execution of operations. The following two snippets do the following:
one tests if a random number is even or not and the other generates a text
greeting based on the current system time via DateTime.Now.

//test a random number
bool isEven;
Random g = new Random();
int value = g.NextInt(1,100);
if (value % 2 == 0) {
    isEven = true;
}
else {
    isEven = false;
}

//generates a greeting message
string greeting = “”;
int h = DateTime.Now.Hour;
if (h >= 8 && h < 12) {
    greeting = “Good Morning!”;
}
else if (h >= 12 && h < 18) {
    greeting = “Good Afternoon!”;
}
else {
    greeting = “Good Evening!”;
}

To find the maximum or minimum value in a list, we can set a tempo-
rary result first and go through each list item using a loop to test it against
the temporary one. Here is a programming tip for setting the temporary
value: the value should be initialized to the first element for finding the
maximum or minimum element in a list.

int[] values = {2, 3, 5, 7, 11, 13, 17, 19}
int max = values[0];
//initialize to the first list item
foreach (int v in values) {
    if (max < v) {
            max = v;
    }
}

b3881_Ch02.indd 34 05-10-2020 16:31:34

b3881   Requirements Modeling and Coding6"×9"�

A Review of Programming Principles  35

The next example determines if 31123 is a prime number or not, i.e.,
can it be wholly divisible by any whole integer that is no greater than the
square root of 31123.

int x = 31123;
int n = (int) Math.Sqrt(x); //explicit cast
bool isPrime = true;
//note to initialize the result to true
for (int k = 2; k < n; k++)
{
    if (x%k == 0) {
            isPrime = false;
            break;
    }
}

Note that, in the above case, we can discontinue the loop if at any
step we find that 31123 is wholly divisible. Here is a programming tip
for initializing the result variable in determining a truth value using a
loop: if the truth can be determined without going through the entire
loop, the variable is initialized to false. Otherwise, it is initialized to
true. The following example tests if all the values in a given list are
negative, and so the truth cannot be determined without going through
the entire list.

double[] values = {2.1, 0.5, 5.0, 5.0, 1.1, 1.3, 1.7,
-1.9}

bool positive = true;
foreach (double v in values) {
    if (v <= 0) {
           positive = false;
           break;
    }
}

Decision control switch is a case-based selective execution. It can
shorten many nested if-else statements into a simple list of cases based
on the value of a choice variable. For example, to convert a grade into a
GPA point, the following snippet uses switch statement using grade value,
which is a text such as A, B, C, etc.

b3881_Ch02.indd 35 05-10-2020 16:31:34

b3881   Requirements Modeling and Coding� 6"×9"

36  Requirements Modeling and Coding

double point;
switch (grade) {
    case “A”:
           point = 4.0;
           break;
    case “B”:
           point = 3.0;
           break;
    case “C”:
           point = 2.0;
           break;
    case “D”:
           point = 1.0;
           break;
    default:
           point = 0.0;
           break;
}

This example generates verbal feedback based on essay marks ranging
from 1 to 5:

string verbal;
switch (mark) {
    case 5:
           verbal = “Excellent”;
           break;
    case 4:
           verbal = “Very Good”;
           break;
    case 3:
           verbal = “Good”;
           break;
    case 2:
           verbal = “Fair”;
           break;
    default:
           verbal = “Poor”;
           break;
}

Finally, in the following is a more comprehensive example that maps
the text “aabacdefgh” into a “phone number”:

b3881_Ch02.indd 36 05-10-2020 16:31:34

b3881   Requirements Modeling and Coding6"×9"�

A Review of Programming Principles  37

string x = “aabacdefgh”;
x = x.ToUpper();
char[] chars = x.ToCharArray();
string pNumber = “”;
int n;
foreach (char c in chars){
     switch (c)
     {
         case ‘A’:
         case ‘B’:
         case ‘C’:
             n = 2;
             break;
         case ‘D’:
         case ‘E’:
         case ‘F’:
             n = 3;
             break;
         case ‘G’:
         case ‘H’:
         case ‘I’:
             n = 4;
             break;
         default:
             n = 5;
             break;
    }
    pNumber += n;
}

Exercises
  1.	 Create simple variables:

a.	 Declare a variable to hold your county sales tax rate.
b.	 Declare a variable to hold your name.
c.	 Declare a variable to store true/false value on whether today is

sunny or not.
d.	 Declare a variable to hold the number of classes you are taking.

  2.	 Create object variables:
a.	 Create a random number generator and declare a variable to hold

one of its generated value between 500 and 600.
b.	 Declare a variable to hold your birth date.
c.	 Declare a yellow brush object.

b3881_Ch02.indd 37 05-10-2020 16:31:34

b3881   Requirements Modeling and Coding� 6"×9"

38  Requirements Modeling and Coding

  3.	 Create arrays:
a.	 Declare an array to hold the names of pieces of a newly setup

chess game.
b.	 Get the names and heights of three of your friends. Declare an

array to hold their names and another one to hold their heights.
c.	 Declare an array to store data in the following matrix:

12.76 12.09 13.89

12.45 12.11 13.09

d.	 Declare an array to store the birthdates of all your family members.
  4.	 Create custom types and their variables:

a.	 Define a struct type of memory block that can hold the dimension
of rectangle — width and height — and then create a memory of
the type to hold one rectangle.

b.	 Define a struct type of point using x and y coordinates and then
declare and initialize three-point variables.

c.	 Define a struct of triangle using three points then declare and ini-
tialize one arbitrary triangle.

d.	 Define an enumeration type for degree with possible values as
either bachelor, master, or doctor and then declare and initialize
two variables of degree type.

  5.	 Create custom classes and objects:
a.	 Define class Employee and then declare two employee objects to

hold the data of your parents.
b.	 Define a type of memory that holds a student’s ID, name, major,

and admission date. Then declare a variable to hold your own data.
c.	 Define a type of memory block to hold a course’s number, title,

and credit hours. Then declare an array to hold all the courses
you are taking (Hint: You can create an array of objects such as
Employee[] employees = new Employee[3];).

  6.	 Write a program that simulates throwing a dice three times giving
random values from 1 to 6. The output should contain the values of
the dice and the probability for this combination to occur.

  7.	 What are the values of x, y, and z after the following code fragment?

int x = 5;
int y = 10;
int z = ++x * y-- + x++ - ++y + --x;

b3881_Ch02.indd 38 05-10-2020 16:31:34

b3881   Requirements Modeling and Coding6"×9"�

A Review of Programming Principles  39

  8.	 A year is a leap year if it is divisible by 4, but century years are not
leap years unless they are divisible by 400. Add parentheses to the
following expression to make the order of evaluation clearer.

year % 4 == 0 && year % 100 != 0 || year % 400 == 0

  9.	 What does the following code fragment print?

Console.WriteLine(1 + 2 + “abc”);
Console.WriteLine(“abc” + 1 + 2);
Console.WriteLine(“1 + 2 = “ + 1 + 2);
Console.WriteLine(“1 + 2 = “ + (1 + 2));

10.	 Considering the following code segment, what is printed after execut-
ing the code segment?

List<Integer> list1 = new ArrayList<Integer>();
list1.add(new Integer(1));
list1.add(new Integer(2));
list1.add(new Integer(3));
list1.set(2, new Integer(4));
list1.add(2, new Integer(5));
list1.add(new Integer(6));
Console.WriteLine(list1);

11.	 Find the larger one of two numbers in variables a and b.
12.	 Given numbers in the variables a, b, and c, find the smallest number

among them.
13.	 Write a code to determine if today is your birthday.
14.	 Given an array of decimal numbers, write a code to find out how many

of the numbers are positive.
15.	 You assign a number between 1 and 100 to put into variable myGuess.

Then you generate an integer between 1 and 100. Write a code to
determine if your guess is correct.

16.	 Create an array that contains five words. Then write a code to reverse
them.

17.	 Given coefficient values in the variables a, b, and c for quadratic equa-
tion ax2 + bx + c = 0, find the real solutions.

18.	 Find the sum 1 + 4 + 7 + 10 + 13 + … + 100.
19.	 Find the sum 2.1 + 4.1 + 6.1 + … + 200.1.
20.	 Find the factorial 21!
21.	 Given real numbers in an array of observations, find the mean

value.

b3881_Ch02.indd 39 05-10-2020 16:31:34

b3881   Requirements Modeling and Coding� 6"×9"

40  Requirements Modeling and Coding

22.	 Given real numbers in an array of observations, find the standard devi-
ation of the numbers.

23.	 Given real numbers in an array of observations, find the maximum
value.

24.	 Find the value of …+ + + +1 1 1
1! 2! 500!1 .

25.	 Find an approximate value of …+ + + +2 3
1 1 1
3 3 3

1 with the error of
approximation less than 0.000000001.

26.	 Find the sum of …+ + + +1 1 1 1
1*2*3 2*3*4 3*4*5 45*46*47

.
27.	 Assume the interest rate is 7% and you save 200 each year. Find the

total amount of money you will have in 20 years.
28.	 Assume the interest rate is 7% and you can pay back 50 each year for

50 years. How much money can you borrow today?
29.	 Write a code to determine if 876412313207 is a prime number or not.
30.	 Write a code to convert integer 9823432143243 into a binary number.
31.	 Write a code to determine an approximate value of π using the equa-

tion (error of approximation = 0.000000000000001):

1 1 1 1 14 1
3 5 7 9 11

π  = - + - + - + …  

32.	 Suppose there are missing values in an array of observations. Write
programs to move the numbers to the beginning contiguously so that
there are no missing blocks that interrupt the numbers.

b3881_Ch02.indd 40 05-10-2020 16:31:34

41

b3881   Requirements Modeling and Coding6"×9"�

Chapter 3

Modeling Functions and Procedures

Introduction
A business process is a collection of one or more information activities by
which data are transformed, stored, retrieved, modified, or distributed. It is
an abstraction of physical data processing activities such as data retrieval,
data modification, data insertion, data deletion, data transmission, or batch
calculation. A business process may be also called a business function.
Thus, these two terms are often used interchangeably.

Analysis involves decomposition and abstraction, and so does busi-
ness process analysis. Here, the abstraction is about how to represent a
business process. Decomposition means breaking down a large process
into smaller chunks. It may also mean breaking down a process into
non-breakable action units in a logical order, which is in the realm of pro-
cedure modeling. Therefore, in this chapter, we will study three aspects
of process modeling: process decomposition, process representation, and
procedure modeling.

Process analysis is an essential part of structured development. The
modern object-oriented methods tend to downplay its importance, with the
exception of procedural modeling, which has been reinstated to be an inte-
gral part of Unified Modeling Language (UML). This chapter introduces
process decomposition and representation, aiming at enhancing the under-
standing of the object-oriented approach. First, the so-called use cases in
the object-oriented method are nothing but a business process that delivers
a tangible value to the user. Function decomposition will help understand
functional requirements and identify use cases. Second, objects are nothing

b3881_Ch03.indd 41 05-10-2020 16:32:04

b3881   Requirements Modeling and Coding� 6"×9"

42  Requirements Modeling and Coding

but a high-level encapsulation of both data and functions. To understand
the concept of objects better, we first need to understand functions.

Capturing Function Requirements
A business process can be as large as the mission of an organization. It can
be an ongoing, continuous action performed by people to further the mis-
sion of the organization, such as those involved in marketing, accounting,
manufacturing, etc. It can be a low-level process, which supports a major
function and has time-oriented starting and ending points, such as market
analysis, promotional sales, annual auditing, etc. A process can be also as
small as one data activity or action, such as changing the mailing address
for a customer, creating a new account for a customer, etc. We sometimes
differentiate actions from activities. The difference between them is that an
action is atomic or not decomposable, whereas an activity may be decom-
posed into one or more smaller-scope actions or activities.

In general, systems analysis follows the divide-and-conquer approach
to both requirements modeling and systems design. This is particularly
true in process analysis. Large and complex processes are procedurally
difficult to understand. Therefore, they are difficult, if not impossible,
for systems analysts to specify and systems developers to implement. For
such a process, the usual approach is to break it down into multiple smaller
and simpler subprocesses so that each subprocess is easy to understand,
specify, program, and test. We shall apply this procedure to any complex
process until all processes are simple.

Besides vertical decomposition, which breaks down large and com-
plex processes into small and simple ones, decomposition may be also
done horizontally along the time line so that a long process is broken down
into short ones. If a process consists of a long sequence of data activities
that may be interrupted by physical activities, then it may be chopped into
short subprocesses at the point of interruptions.

Regardless of whether it is vertical or horizontal, decomposition must
satisfy the basic conservation principle as follows:

The Conservation Principle of Decomposition: Each process may be
decomposed into two or more child processes. However, the function to be
accomplished by the parent process should be accomplished by the sum of
the subprocesses only, no more and no less.

b3881_Ch03.indd 42 05-10-2020 16:32:04

b3881   Requirements Modeling and Coding6"×9"�

Modeling Functions and Procedures  43

Therefore, processes of different levels are better structured as a pro-
cess hierarchy. On the top is the overall business process that is on a global
scope and requires a long time to finish. At the next level are the major
business processes that support the overall process. In the third level are
the functions that support the major processes. In this manner each higher-
level process is then progressively refined into more detailed processes.
The refinement continues until there are processes that cannot be decom-
posed further. This process is called process or function decomposition.

The overall process is the mission of an organization or system. For
example, the overall process of a manufacturing company is to design and
produce its products, and the overall process for an inventory system is to
manage inventories.

Major processes are often those that directly support the externals of
the systems, such as end users and other connecting systems. They justify
the mission of the system to be built or give direct tangible values to the
users. So, operationally, the following processes usually qualify as major
functions: (1) capturing data from external agents, (2) maintaining data
storage, (3) generating and distributing data to externals, and (4) high-
level descriptions of data transformation operations. Technically, each
major function usually corresponds to a menu item on the main system
menu. For example, the major processes for an inventory system shall
include updating inventory, generating orders, and querying inventory
levels. These processes interface with external agents and provide tangible
values to them.

Theoretically, there is no definition on what is complex and what
is not. Thus, it is not always obvious when the decomposition stops. In
practice, however, a process is complex if one of the following conditions
is true:

1.	 How the process is performed programmatically is still unknown or
the code is perceived to be too long or too complex.

2.	 The process involves two or more data activities that are performed
programmatically differently.

3.	 The process consists of two or more activities, which need not neces-
sarily be performed at the same time or in certain times we may just
need to perform a subset of them.

Let us elaborate the third point above. Here, code reuse is a major
consideration for process decomposition. Even though a process is not

b3881_Ch03.indd 43 05-10-2020 16:32:04

b3881   Requirements Modeling and Coding� 6"×9"

44  Requirements Modeling and Coding

complex programmatically, we may still need to decompose it just because
one or more of the decomposed subprocesses can be re-used somewhere
else. For example, suppose we are given a flow of payments, and we need
a function to compute the net present value of the payments. The function
is so simple that a few lines of code can do the work. However, it might
be desirable to decompose it into two sub-processes: one that is special-
ized in checking and formatting any series of data into a standard array
and the second that computes the net present value for any array of data.
The advantage of doing this decomposition is that the two sub-processes
created can be re-used in many other places.

Note that the reader should not be too concerned about the function
decompositions beyond the identification of major functions; the use case
storyboarding, to be covered later, will be a more elaborate alternative to
function decomposition. The following shows a few classic systems and
their function decompositions, primarily of major functions.

Food Order System: The overall process for a food order system is to
process and maintain food orders, inventories, and payments. In this sys-
tem, obviously we would like to have a process to handle food orders.
Then we need a process to do accounting job and update goods sold data.
We should also have a process to update inventories. Finally, there must be
a process that generates reports for management. Among the four major
functions for the food order system, except for the function that handles
food orders, the other three functions should be simple enough to be
implemented by one form, one batch program, or one report. They do not
need to be decomposed. However, the function to handle food orders is
still complex. As we can perceive, the function must take orders, transfer
the orders to the kitchen, accept payments from customers, and gener-
ate receipts to give to the customers. In addition, order data may need
to trigger other functions such as updating goods sold and inventories.
Therefore, the function “Manage Food Order” is a complex process and
needs to be exploded. Putting all the pieces together, we should have a
function hierarchy as shown in Figure 1.

Student Registration System: A major process of a student registra-
tion system is to enroll students into courses. To this end, a few sub-
processes must be performed. The first is to search for an available course
to enroll, which may also include browsing all available courses. The
second is to check for prerequisites, i.e., only if a student who has fulfilled

b3881_Ch03.indd 44 05-10-2020 16:32:04

b3881   Requirements Modeling and Coding6"×9"�

Modeling Functions and Procedures  45

the requirement by having taken required prerequisites can enroll in said
courses. The third is to check for schedule conflicts: a student could not
take a course if time conflicts with other courses already registered for.
Finally, it will create actual enrollment by adding the student to the class
roster and print a confirmation for the student. The process hierarchy is
shown in Figure 2.

Student Admission System: The process of admitting new students is
complex and involves a lot of data activities. However, at the high level,
these activities may be organized into four major processes: manage
applications, evaluate applications, handle acceptance affairs, and print
management reports. These major processes need to be decomposed into
more detailed and programmable sub-processes. For example, “manage
applications” is too vague. It entails activities such as filling out appli-
cations, mailing applications, entering application data, obtaining test
scores, and checking for materials completeness. Among these activities,
some are purely physical, such as mailing applications, and thus outside
our analysis. Some may be a hybrid of physical and data activities, such

Food Order
System

Manage Food
Order

Update
Inventory

Update Goods
Sold

Generate
Report

Take Customer
Order

Generate
Kitchen OrderCollect Payment

Figure 1.   Process hierarchy for the food order system.

Register for a
Course

Check
Availability

Check
Prerequisites

Check Time
Conflicts

Create
Enrollment

Print
Confirma�on

Figure 2.   Process hierarchy of enrollment.

b3881_Ch03.indd 45 05-10-2020 16:32:04

b3881   Requirements Modeling and Coding� 6"×9"

46  Requirements Modeling and Coding

as checking for materials completeness and obtaining test scores, and we
will reframe them into programmable data processes. Figure 3 shows the
process hierarchy. Here, we use “File Application” to denote the process
of filling in applications by applicants or entering application data by
clerks. We reframe “Obtain Test Scores” as “Submit Test Scores”, that is,
the process of entering and validating test scores.

Process Modeling
A process consists of many data activities, but externally it may be con-
sidered as a black box, or data processor, that takes inputs and generates
outputs. Therefore, the external view of a process consists of data inputs,
outputs, and a box for the process. The box has a name, which is usually a
verb indicating the overall purpose of the process. For example, Figure 4
shows two simple functions: the first one is used to find the max of two
numbers (Figure 4(a)), and the second one is used to validate user login
(Figure 4(b)). They are simplified data flow diagrams.

The FindMax function is easy to imagine: if a > b, the max is a.
Otherwise the max is b. Thus, the inputs are enough for the function to
work. However, to validate a login, the user needs to enter a user name and

Student
Admission

Manage
Applica�on

Evaluate
Applica�on

Manage
Decision

Print Report

File Applica�on

Submit Test
Scores

Check for
Completeness

Schedule
Interview

Enter Interview
Result

Evaluate Essay

Print Decision
Le�er

Record
Confirma�on

Collect Deposit

Figure 3.   Process hierarchy of student admission system.

b3881_Ch03.indd 46 05-10-2020 16:32:05

b3881   Requirements Modeling and Coding6"×9"�

Modeling Functions and Procedures  47

a password, but the function must have access to a user account database or
file, or a data store, to check if the user entry matches one of the accounts
in the data store. Thus, a more elaborate data flow diagram shows not just
inputs and outputs but also data sources or data destinations, including
external agents such as users or other systems that interact with the pro-
cess, data stores such as data files and reference books that keep the data at
rest, and other processes that send data to or receive data from the current
process. For example, the ValidateLogin process may be represented
as in Figure 5(a). Similarly, Figures 5(b) and 5(c) are two processes used
by an e-commerce store to validate an online order, i.e., to approve or

maxFindMax

a

b

(a)

Y/NValidateLogin

User Name

Password

(b)

Figure 4.   Sample functions: (a) find max of two numbers and (b) validate user login.

Y/NValidateLogin

User Name

Password

Accounts

(a)

ValidateOrder Approval

Inventory

(b)

Receipt
Print Receipt

Order

Order

Payment

(c)

Figure 5.   Process representations: validate login (a), validate order (b), and print
receipt (c).

b3881_Ch03.indd 47 05-10-2020 16:32:05

b3881   Requirements Modeling and Coding� 6"×9"

48  Requirements Modeling and Coding

reject orders and to print receipts. At a minimum, the ValidateOrder
function will need to check for the availability of the ordered items, and
so it requires both order and inventory data as inputs. The output is simply
the approval decision of the order. The PrintReceipt function will
need to have order and payment data as inputs and the printed receipt as
the output.

In the following, we will show a few more processes in various sys-
tems, including patient appointment system, order system, and registration
system. Figure 6 shows that to enroll a student into a course, the process
needs to have data such as student ID, class ID, past student courses, and
course catalog. The outputs generated include a new enrollment record
in a data store and a confirmation and a billing invoice to be sent to the
student. Figure 7 shows one of its sub-processes that does nothing but
checking for prerequisites.

Figure 8 shows a process that makes appointments for patients. Of
course, it will need an appointment request from a patient as well as
existing schedule as inputs. It will print a confirmation to the patient and
create a new appointment record, as represented by the output flow to the
data store.

 Class ID
Billing Invoice

Enroll Student
Student ID

C

Confirmation

New Enrollment

Enrollment

Course Catalog

Past
Enrollment

Figure 6.   Representation of the enrollment process.

b3881_Ch03.indd 48 05-10-2020 16:32:05

b3881   Requirements Modeling and Coding6"×9"�

Modeling Functions and Procedures  49

Figures 9 and 10 show two processes in a point of sale system. To
receive a shipment, the user needs to have the invoice and the original
order to check the quantity and identity of the shipped items. The process
will also update the inventory and backlog data (if there is discrepancy).
To check out items, the process will need to have a list of order items and
a product catalog for pricing data. It will also need tax and payment infor-
mation. The output may include a new order and a receipt.

There exist some syntax rules to follow to create data flow diagrams.
For example, a function name must start with a verb, and there cannot be

Enrollment

Check for Prerequisite

Course Catalog

Class ID

Qualification Status

Student
ID

Figure 7.   Representation of check for prerequisites.

Schedule a
Patient Visit

Appointment Book

Request

Confirmation

New or
Updated

Appointments
Existing Schedule

Figure 8.   Representation of schedule patient visits.

b3881_Ch03.indd 49 05-10-2020 16:32:06

b3881   Requirements Modeling and Coding� 6"×9"

50  Requirements Modeling and Coding

a data flow directly connecting data stores and/or external entities without
a process in the middle. The most important rule that has relevance to this
book is the following so-called validity principle.

The Validity Principle of Process Representation: The basic principle
regarding the validity of process representation is that each process has
enough data inputs for it to be properly performed, and it generates value-
added outputs as the process name suggests.

This is reasonable; a process is simply a data processor and will stop
working without all data in place. The process must also generate value-
added outputs. Imagine if a process does nothing but simply spit out what
comes in? That process should be eliminated for the sake of efficiency.
What if a process is supposed to validate the order as its name suggests but
it prints a receipt? It does not do what it is supposed to do.

Check Out Product Data

Tax Rate Table

Order Items

Payment Info

O
rder

R
eceipt

Figure 10.   Representation of checking out process.

BackLog

Order Data
Order

New or Updated
Backlog

Invoice

Receive a Shipment

Update
Quantity

On
Hand

Existing
Quantity

On
Hand

Inventory

Figure 9.   Representation of receiving shipment.

b3881_Ch03.indd 50 05-10-2020 16:32:07

b3881   Requirements Modeling and Coding6"×9"�

Modeling Functions and Procedures  51

Figure 11 depicts a data flow diagram that shows the inputs and out-
puts of three processes performed in a student registration system, where
students and departments are two external entities. We can point out the
following violations of the validity principle in the process representation:

1.	 The process “Receive Course Request” appears to do nothing because
outflow is identical to the inflow. Such functions should be removed
to improve the efficiency of the system.

2.	 The process “Receive Course List” does not need the “Course Request”
data flow in order to perform its function, as implied by its name.

3.	 To check for availability, it is necessary to have information about
possible course offerings and the existing registration data. However,
the process “Check for Availability” does not have past registration
data to perform its function, as its name implies.

4.	 To the “Check for Availability” process, the “Scheduled Classes”
input is overlapping with the “Possible Classes” input.

5.	 The output “Class Schedule” seems to be more than what the “Check
for Availability” function can do. To make a class schedule for a stu-
dent, you need to first have a course request from a student and then
check for availability.

One possible correction is to rename the “Check for Availability”
process as “Schedule Classes.” The resulting diagram should be like the
ones in Figure 12. Another data store, Enrollment, has been added to

Receive Course List

Receive Course
Request

Check for Availability

Student

Department

Course List

Course Request

Course Request Scheduled Classes

Class Roster

Possible ClassesClass Schedule

Figure 11.   Sample violations of the validity principle.

b3881_Ch03.indd 51 05-10-2020 16:32:07

b3881   Requirements Modeling and Coding� 6"×9"

52  Requirements Modeling and Coding

reflect the need to check the existing registration to be able to check for
availability and fulfill course requests. After a class schedule is made for
a student, the enrollment data must be updated accordingly.

Activity Diagrams
Process modeling focuses on what functions are required and treats each
function as a black box. Procedure modeling exposes the black box inside
out and represents the process internally.

Although process decomposition and representation are important
conceptual building blocks toward the understanding of objects, they are
not formal deliverables or artifacts in the object-oriented analysis and
design. Procedural models are different, and they are used to describe use
cases as well as object behaviors and collaborations. The formal procedure
models include activity diagrams, structured English, state transition dia-
grams, communication diagrams, and sequence diagrams. In this chapter,
we will use activity diagrams and leave other procedural modeling tools to
be discussed in later chapters.

Activity diagrams were called program flow charts earlier and have
now been reinstated as a part of UML 2.0 standard. An activity diagram is
the best for describing how a function is performed sequentially and logi-
cally as a series of elementary or algorithmic actions and control flows.
It is often used as a programmer’s main point of understanding a process

Receive Course List

Schedule Classes

Student

Department

Course List Scheduled Classes

Class Roster

Possible Classes

Class Schedule

Course Request

Enrollment

Transcripts

New Enrollment Record

Figure 12.   A corrected diagram of Figure 11.

b3881_Ch03.indd 52 05-10-2020 16:32:08

b3881   Requirements Modeling and Coding6"×9"�

Modeling Functions and Procedures  53

or brainstorming a strategy for problem solving. Figure 13 depicts a simple
activity diagram showing a car wash process.

An activity diagram is read from top to bottom and left to right.
It consists of two elements:

·	 Activities or action states represent the invocation of an operation,
a step in a business process, or an entire business process. Activity is
represented as a rectangle node except for the initial state represented
as a solid circle and a final state represented as a buck eye. Both initial
and final nodes are action states.

·	 Transitions or threads represent the flow of control from one activ-
ity to another through a link between the activities. A transition that
involves an object is known as an object flow. The control flow is
represented by a directed arrow.

To create an activity diagram in Rational Rhapsody, first we create
a new project, then right click with the mouse on Package in the model
browser to add a new package, and finally right click on Activity group to
add a new activity. Note that all diagrams and diagram elements like activ-
ities are listed in groups in the model browser. Check View → Browser
menu item if the model browser does not open by default.

More sophisticated activity diagrams include additional diagram
elements such as the following:

·	 Decision node represents a transition where one action is followed by
one of a few possible actions.

·	 Merge node is where two or more transitions resulting from a deci-
sion node are combined.

·	 Fork is a transition where one action is followed by two or more
actions to be performed in parallel.

·	 Join is a point where two or more forked transitions re-join.
·	 Swimlane is a mechanism to group activities performed by the

organizational units.

lather
rinse

dry

Figure 13.   A simple activity diagram.

b3881_Ch03.indd 53 05-10-2020 16:32:08

b3881   Requirements Modeling and Coding� 6"×9"

54  Requirements Modeling and Coding

Decision nodes are used when we want to execute a different sequence
of actions depending on a condition. For example, to determine the maxi-
mum between two numbers a and b, the action depends on whether a > b
or not. A decision node is represented by a diamond with one control flow
in and multiple exclusive flows out. Each branchout control flow contains
a guard condition written in brackets. Guard conditions determine which
edge is taken after a decision node. The branchout flows join at a merge
node, which marks the end of the conditional behavior that was started at
the decision node. Merges are also shown with diamond-shaped nodes,
but they have multiple incoming flows and one outgoing flow. Figure 14
shows an example to use both decision and merge nodes. Note that to
create a guard condition in Rhapsody, we double click on the branchout
flow to open its property dialogue and enter the condition there.

Example 1 (Validate User Login): To validate a user login, we need to
check if a user name and a password match one of the account records in
a login database. To be tolerant of entry errors but protect against hacking,
we may restrict the number of entry errors to no more than three times.
Figure 15 shows an activity diagram for the process.

First, we initialize the output variable, valid, on whether an entry is
valid. Note that the validation process essentially corresponds to a while-
loop in programming, during which if any step finds a match, the loop
breaks, and the output variable takes on value true. Thus, we initialize
valid to the opposite, i.e., valid = false. When there is a loop, we
also initialize a loop count or condition variable. In the current example,
the variable is the number of entry errors, errorCount, and we initialize
it to zero.

Then, the diagram uses one action to get both user name and password
and one action to check if the account exists in the data store. If yes, the
process ends. If no, it will increment error count and then check if the
login errors are more than 3. If it is more than 3, the process ends with a
failure. Otherwise, it loops the control flow back to get a new entry.

get a and b compare a and b a>b?

max = a
[Y]

max = b
[N]

Figure 14.   Activity diagram for FindMax.

b3881_Ch03.indd 54 05-10-2020 16:32:08

b3881   Requirements Modeling and Coding6"×9"�

Modeling Functions and Procedures  55

Forks and joins represent concurrent actions. After a fork, one flow
is broken up into two or more simultaneous flows, and the actions along
all forked flows execute in parallel. At a join, all incoming actions must
finish before the action can proceed past the join. Forks and joins look
identical — they are both drawn with thick bars — but you can tell the
difference because forks have multiple outgoing flows, whereas joins have
multiple incoming flows.

Figure 16 shows the use of fork and join nodes to represent the paral-
lel actions, Prepare Case and Prepare Motherboard, in computer assembly.
Forks and joins may be drawn either horizontally or vertically. To change
the orientation, we right click on the node and choose Flip Left or Flip
Right in Rhapsody.

Note that both a decision and a fork have one inflow and multiple
outflows, but they are different; one and only one of the multiple flows

get user name and
password

check if account exists

set valid = true

increment
errorCount

set valid = false

exist?
[N]

[Y]
errorCount <3

[N]

[Y]

return valid

set errorCount = 0
and valid=false

Figure 15.   An activity diagram for validating account login.

b3881_Ch03.indd 55 05-10-2020 16:32:08

b3881   Requirements Modeling and Coding� 6"×9"

56  Requirements Modeling and Coding

out of a decision node is followed, whereas all flows out of a fork node
must be followed concurrently. A merge node also appears like to a join
node as they both have two or more incoming flows and a single outgo-
ing flow. They are different as a merge is used to unite several possible
incoming flows, only one of which presents a token to the merge; the join
reunites concurrent flows where each incoming flow presents a token to
the join.

Example 2 (Register Courses): To register a course for a student, as
Figure 7 shows, the process needs both student ID and class ID. After
having the inputs, the process can be split into three parallel flows, one
checking if the course is available, the second assessing if the student
has met the prerequisites of the course, and the third analyzing if the
course has time conflicts with the other currently enrolled ones. Only if
all checks are finished can we decide if the student can enroll into the
course. Figure 17 uses fork and join nodes for parallel checks before a
decision node.

There are times we need to model for-loop controls to represent
the situation in which we perform some actions repeatedly a definite num-
ber of times. For example, to compute the sum of numbers in a list, we add
each item in the list to the output variable one by one until all items are
added. Rhapsody turns a decision node into a for loop by carrying out the
following steps:

1.	 Double click on a decision node to open Features dialogue and select
FlowChartForLoop as the stereotype (see Figure 18).

2.	 Enter the relevant loop initialization code in the Loop initialization
field on the General tab of the Features dialogue.

3.	 Enter the relevant loop increment code in the Loop step field on the
General tab of the Features dialogue.

prepare case

prepare motherboard

Figure 16.   Forks and joins.

b3881_Ch03.indd 56 05-10-2020 16:32:08

b3881   Requirements Modeling and Coding6"×9"�

Modeling Functions and Procedures  57

get sid and classID

check availability check for prerequisites check for time conflicts

can enroll?

create enrollment record

[Y]

print confirmation

[N]

Figure 17.   The activity diagram for enrollment process.

Figure 18.   Specifying for-loop in Rhapsody.

b3881_Ch03.indd 57 05-10-2020 16:32:08

b3881   Requirements Modeling and Coding� 6"×9"

58  Requirements Modeling and Coding

Example 3 (Compute Mean and Variance): To compute the mean or
average value x of a list of numbers, x1, x2, …, xn, we need to compute the
sum of the numbers and divide the sum by the item count:

1 2 nx x x
x

n

+ + +
=



As mentioned in Chapter 2, whenever we use a loop to compute a sum,
we initialize the output variable to zero. When using a for-loop, there is
no need to initialize the loop-step count or condition variable, which is set
and initialized in the loop control node as in Figure 18. In this example, the
input data is a data list, dataList. The total number of items in dataL-
ist is expressed as dataList.Count, and the ith item in the list is
expressed as dataList[i]. The notations look like Java or C# codes
and are very concise to use in diagrams. Figure 19 shows the activity dia-
gram for computing the mean. Here, the for-loop node expresses the exit
condition i < dataList.Count like a decision node but hides the initializa-
tion and step increment behind. The hidden stuff can however be used for
code generation.

Variance measures how wide data are spread. Given the data x1, x2, …, xn,
assume the mean value is x , and so the standard formula for computing the
variance is:

− + − + + −
=



2 2 2
1 2() () ()

 nx x x x x x
var

n

get dataList

set sum = 0

i<dataList.Count?

add dataList[i] to sum

[Y]

[N]
return
sum/dataList.Count

Figure 19.   Compute mean value.

b3881_Ch03.indd 58 05-10-2020 16:32:09

b3881   Requirements Modeling and Coding6"×9"�

Modeling Functions and Procedures  59

According to the formula, we will need to first compute the mean value
as in Figure 19, and then use another loop to compute the sum of squared
differences between each item and the mean value. Thus, we would have
to go through the same data list twice in order to compute the variance.
Programmers are concerned with finding a better problem-solving strat-
egy, or algorithm, that uses a smaller number of arithmetic operations to
achieve the same goal. In the current problem, business users are statisti-
cians, and they will probably tell a system analyst that there is yet another
way to compute the variance, which is as follows:

− + − + + − + + + −
= =

 

2 2 2 2
1

2 2 2
1 22() () ()

 n nx x x x x x nx
var

n

x x x

n

The analyst should take advantage of knowledge and design the
algorithm via an activity diagram more efficiently. Figure 20 depicts such
an activity diagram. It uses one loop to add each item to variable sum and
adds the square of each item to variable sqSum. Thus, it initializes two
outcome variables, sum = 0 and sqSum = 0.

The above examples involve one loop in the algorithm. More complex
problems often entail the use of nested loops, or one loop inside the other
loop. Examples include sorting items in a list and comparing two lists to
see if they overlap or if one is a sublist of the other. The advanced reader
may continue to the following examples on how to solve problems using
nested loops.

Example 4 (Check Prerequisites and Check for Time Conflicts):
In Example 2, “check prerequisites” and “check for time conflicts”
are two of three concurrent activities to ensure a student is eligible to
take a course. How do we perform these activities in a more algorith-
mically detailed level? These activities essentially entail comparing
two lists.

The “check prerequisites” activity is used to compare two lists —
a list of required courses for taking a course and a list of completed
courses in a student’s transcripts — to see if the required courses are all
in the finished courses. If not, the student does not meet prerequisites.
Figure 21 shows an activity diagram. It first uses student ID and class
ID, respectively, to retrieve the completed course list, compCourses,
and the required course list, reqCourses, from the database. Then it
checks if every item in reqCourses is in compCourses. It uses two

b3881_Ch03.indd 59 05-10-2020 16:32:09

b3881   Requirements Modeling and Coding� 6"×9"

60  Requirements Modeling and Coding

nested for-loops to do so.1 The outer loop selects one required course
in each step, and the inner loop selects one completed course in each
step. If there is a match, it means the required course selected in the
outer loop is completed by the student, and so we will need to go back
to the outer loop to select another required course to continue. If it is not
a match, we will go back to the inner loop to select another completed

1 A better solution strategy is to use hashsets instead of lists for reqCourses and comp-
Courses since the courses in them don’t have to be ordered. Using hashsets, it takes a
constant amount of time to find if a required course is contained in compCourses regard-
less of the size of compCourses.

get dataList

set sum = 0
set sqSum = 0

add dataList[i] to sum
add dataList[i] squared to sqSum i<dataList.Count?

[[Y]]

set var = sqSum/dataList.Count -
mean squared

[N]

set mean =
sum/dataList.Count

Figure 20.   Compute mean and variance.

b3881_Ch03.indd 60 05-10-2020 16:32:09

b3881   Requirements Modeling and Coding6"×9"�

Modeling Functions and Procedures  61

course to compare. If, after finishing the entire inner loop, there is still
no match, it means the selected required course from the outer loop is
not in compCourses list. In this case, because at least one required
course is not completed, the whole activity must be aborted, and the
loops can be broken. The outcome is false, meaning that prerequisites

get student ID and class ID

retrieve compCourses retrieve reqCourses

set reqMet = true

i < reqCourses.Count?

j < compCourses.Count?

[Y]

compare reqCourses[i]
with compCourses[j]

[Y]

reqCourses[i]==compCourses[j]?

[Y]

[N]

set reqMet = false

[N]

return reMet

Figure 21.   Check prerequisites.

b3881_Ch03.indd 61 05-10-2020 16:32:09

b3881   Requirements Modeling and Coding� 6"×9"

62  Requirements Modeling and Coding

are not met. Thus, we initialize the outcome variable, reqMet, to its
opposite, true.

The “check for time conflicts” activity is also used to compare two
lists, a list of candidate time slots for the new course to be enrolled and
another list of committed time slots for the existing courses that a student
has already registered, to see if there is any overlap. If yes, the student
will have time conflicts while taking the new course. Figure 22 shows

get student ID and class ID

retrieve comSlotsretrieve candSlots

overlap = false

overlap = true

return overlap

i < comSlots.Count?

overlap?
[Y]

j < candSlots.Count?

[N]

[N] [Y]

check if comSlots[i]
overlaps with canSlots[j]

[Y]

[N]

Figure 22.   Check for time conflicts.

b3881_Ch03.indd 62 05-10-2020 16:32:09

b3881   Requirements Modeling and Coding6"×9"�

Modeling Functions and Procedures  63

an activity diagram. It first uses student ID and class ID, respectively, to
retrieve the list of committed time slots from the existing courses, denoted
by comSlots, and the list of candidate time slots from the new course
to be enrolled, denoted by canSlots. Then it uses nested loops to check
if each item in comSlots is overlapping with any item in canSlots.
If there is one pair of time slots overlapping with another set, the activ-
ity can be terminated, and the outcome will be true, meaning there exists
some time conflict if the student takes the new class. Thus, we initial-
ize the outcome variable overlap to false. The outer loop picks
one time slot from comSlots, and the inner picks one time slot from
canSlots. We check if the two picked time slots overlap. If they do, we
reset the outcome variable to true and bring the activity to the end. If the
two do not overlap, then we go back to the inner loop to pick up another
time slot from canSlots to continue. If, after going through the entire
inner loop, we find no overlaps, meaning the time slot picked from the
outer loop does not overlap with any of candidate time slots, we go back to
the outer loop to pick out another committed time slot to continue. If, after
going through the entire list of committed time slots, we find no overlaps,
we bring the process to the end.

Example 5 (Bubble Sort): This example tackles a classic problem in an
algorithm course in computer science. The problem is about how to sort
a list of numbers in ascending order. There exist several problem-solving
strategies or algorithms to tackle the problem. One of them is the so-called
bubble sort. The strategy uses multiple passes to go through the list. In the
first pass, it brings the largest number to the last place. In the second pass,
it brings the second largest number to the second to last place. In general,
in the ith pass, it brings the ith largest number to the ith to the last place. In
each pass, it compares each number to its next neighbor and swaps them
if it is larger. Assume the list is (1 5 4 2), and the following is a simple
illustration of bubble sort. Note that the two numbers to be compared in
each step are shown in bold, and the number of steps gets smaller as more
passes are finished.

First pass (through the entire list):
Step 1: (1 5 4 2) → (1 5 4 2) by comparing 1 and 5, no swap is need
because 1 < 5
Step 2: (1 5 4 2) → (1 4 5 2) by comparing 5 and 4, swap the numbers
because 5 > 4

b3881_Ch03.indd 63 05-10-2020 16:32:09

b3881   Requirements Modeling and Coding� 6"×9"

64  Requirements Modeling and Coding

Step 3: (1 4 5 2) → (1 4 2 5) by comparing 5 and 2, swap the numbers
because 5 > 2

Second pass (through the list without the last number):
Step 1: (1 4 2 5) → (1 4 2 5) by comparing 1 and 4, no swap is need
because 1 < 4
Step 2: (1 4 2 5) → (1 2 4 5) by comparing 4 and 2, swap the numbers
because 4 > 2

Third pass (through the list without the last two numbers):
Step 1: (1 2 4 5) → (1 2 4 5) by comparing 1 and 2, no swap is needed
because 1 < 2

Three passes, and in total six comparisons and possible swaps, bring the
four numbers in the list in ascending order. Bubble sort is one of the most
efficient algorithms for sorting numbers. Figure 23 shows an activity

get dataList

set n = dataList.Count

i < n?

j < n - i?

[N] [Y]

dataList[j] > dataList[j+1]?

[Y]

swap dataList[j] with dataList[j+1]

[Y]

[N]

return dataList

Figure 23.   Bubble sort.

b3881_Ch03.indd 64 05-10-2020 16:32:09

b3881   Requirements Modeling and Coding6"×9"�

Modeling Functions and Procedures  65

diagram for the algorithm. It uses two nested loops: the outer loop steps
through the passes, and the inner loop steps through the steps in each pass.
If the list has n numbers, there will be n passes. Since the first pass will
bring the largest number to the last place, the second pass just needs to
go through the first n – 1 numbers. Similarly, the ith pass just needs to go
through the first n – i numbers. Therefore, in the ith pass, the inner loop
will only go through steps j = 0, j = 1, …, and j = n – i – 1.
In each step, we compare the jth number with the ( j + 1)th number and
swap them if the jth number is larger. Then we move to the next step
and compare the ( j + 1)th number with the ( j + 2)th number, and the
process continues to the last two numbers: the (n – i – 1)th number and
the (n – i)th number. After the inner loop is finished, we move back to
the outer loop to do the next pass. After all passes are finished, we bring
the activity to the end.

Review Questions
  1.	 What is a process, and how is it different from an activity?
  2.	 Are activity and action the same thing?
  3.	 What is the overall process, and what is special with major processes?
  4.	 Among the three activities in process analysis, which will deliver the

useful artifacts for the object-oriented method?
  5.	 Why must each process have sufficient input?
  6.	 Why must each process produce value-added output?
  7.	 What are the tools for procedural modeling?
  8.	 What is different between process representation and procedural

modeling?
  9.	 If a process entails only one command to be performed, will it be

considered a complex or major process?
10.	 Identify whether each of the following is a process in the sense of per-

forming data activities, and briefly answer why it is or is not. Note that
if it is not entirely a process, can you re-frame or rephrase it to be one?
a.	 Plow the field to grow rice
b.	 Packing orders for shipping
c.	 Receiving shipments
d.	 Check inventory level
e.	 Grade student projects
f.	 Recruit employees

b3881_Ch03.indd 65 05-10-2020 16:32:09

b3881   Requirements Modeling and Coding� 6"×9"

66  Requirements Modeling and Coding

Exercises
  1.	 Suppose you develop a point-of-sale system for a small retail store to

manage its daily transactions and management. What are the major
processes? If there is any process that is complex, decompose it and
finally create a process hierarchy for the system.

  2.	 An inventory system is responsible for generating orders if the actual
stock falls below the minimum re-order level and for paying invoices
to suppliers. It is responsible for updating inventory added if a new
order is received and updating inventory used based on the inventory
decrement data generated from the ordering system. It should also
allow the manager to query inventory levels. Create a process hierar-
chy for the inventory system.

  3.	 Create the process representations for the following business
processes:
a.	 Admit students.
b.	 Check for order status.
c.	 Handle customer returns.

  4.	 Create activity diagrams for the following simple processes:
a.	 Find the solution to a quadratic equation ax2 + bc + c = 0.
b.	 Check whether an integer is a prime number or not.
c.	 Check whether today is your birthday.
d.	 Find how many numbers of a certain character appear in a text.
e.	 Find the max of three decimal numbers.
f.	 Find the variance of three numbers.

  5.	 Create an activity diagram for the following procedures:
a.	 Check if two list of names are overlapping.
b.	 Find the standard deviation of a list of decimal numbers.
c.	 Sort a list of integers from smallest to biggest.
d.	 Find the maximum of a list of decimal numbers.
e.	 Check if a name is in a list of names.
f.	 Find all the prime factors of any integer.

  6.	 Create activity diagrams for the following business processes:
a.	 Assume the existence of these database tables: students, classes,

enrollment, instructors, and teaching assignments. Check if a stu-
dent and a teacher are related.

b.	 Assume the existence of these database tables: students, courses,
prerequisites, classes, enrollment. Check if a student has a prereq-
uisite for taking a new class.

b3881_Ch03.indd 66 05-10-2020 16:32:09

b3881   Requirements Modeling and Coding6"×9"�

Modeling Functions and Procedures  67

c.	 Assume the existence of these database tables: students, classes,
enrollment. Check if a student has time conflict in taking a new
class.

d.	 Assume the existence of these database tables: borrowers, titles,
copies, and rentals. Return a rental.

e.	 Assume the existence of these database tables: sales, items, inven-
tories. Handle customer returns.

  7.	 Suppose there are missing values in an array of observations. Create
an activity diagram to move the numbers to the beginning contigu-
ously so that there is no missing block that interrupts the numbers.

  8.	 Whenever a new patient is seen for the first time at Cyberdale Care
Center, he or she has to finish a patient information form that asks
name, address, phone number, insurance carrier, and yes/no answers
to certain questions such as whether a patient is allergic to certain
drugs, whether the patient has had any surgery in the last five years,
etc. When a patient calls to schedule a new appointment or change an
existing appointment, the receptionist checks the appointment sched-
ule for an available time. Once a good time is found for the patient, the
appointment is scheduled. If the patient is new, an incomplete entry
is made in the patient file; the full information will be collected when
the patient arrives for the appointment. Sometimes, appointments
are made so far in advance that the receptionist will have to send a
reminder postcard to each patient a week before the appointment.
Develop an activity diagram to show the business process.

  9.	 To enroll a student into a class, the registration system must check
whether the student has all the prerequisites taken, whether the class
is still open, and whether the total number of credit hours the student
registers is not beyond the maximum allowed. After a student finishes
her registration, she will need to pick up a printed confirmation that
shows all the courses she has registered, the date/time, section num-
ber, credit hours, and instructor for each class. Also, the confirmation
paper shows the student status, state of residence, the total number
of credit hours, and the total amount to be paid to the college. The
student will bring the confirmation to the business office and make a
deposit, which is equivalent to 20% of the total amount to reserve her
registration. If she fails to do so within 10 days, her registration will
be canceled. The system also actively monitors the number of students
signed up for each class. Three days before the class starts, if the num-
ber of registered students for a class is less than 15, the class will be

b3881_Ch03.indd 67 05-10-2020 16:32:09

b3881   Requirements Modeling and Coding� 6"×9"

68  Requirements Modeling and Coding

canceled. The registered students will be informed to find alternative
classes. To better serve the students and departments, the system has
functionality for students to make course requests for future terms.
The requests will be summarized and sent to departments so that they
can make informed decisions on what needs to be offered in the future.
Create the following diagrams:
a.	 Create the process hierarchy to show the decomposition of the

overall process.
b.	 Create the activity diagram to show the internal workings of the

overall process.
10.	 The National Parks Association wants to track the attacks on visitors

by animals in the parks. For each incident, the name and address of
the person is recorded, along with the type of animal that attacked, the
date of the attack, and the location of the attack. Answer the following
sub-questions:
a.	 Identify the functions to be performed in the tracking system.
b.	 Create a data flow diagram for the function SearchForAccidents.
c.	 Create an activity diagram for the process SearchForAccidents.

11.	 Professor Johnson wants to set up an application to keep track of the
attendance records of his classes. This is how he would like to check
attendance. First, he will create a class meeting with specific begin-
ning and ending times. Then he can print out a sheet that has all regis-
tered students so that he can check who is in and who is not.
a.	 Identify the functions to be performed in the tracking system.
b.	 Create a data flow diagram for the function CheckAttendance.
c.	 Create an activity diagram for the process CheckAttendance.

12.	A warehouse receives supplies from various vendors and checks
out the items to its customers, including individual employees and
departments. The actual cost of each item is billed to the customers
who use the supplies. Internally, as a convention of organizing inven-
tories, supplies are organized into categories. For each supply, the
maximum and minimum inventory levels are kept so that when the
stock of a part is below the minimum, an order will be issued to get
it refilled.
a.	 Identify the functions to be performed in the tracking system.
b.	 Create a data flow diagram for the function CheckOut.
c.	 Create an activity diagram for the process CheckOut.

b3881_Ch03.indd 68 05-10-2020 16:32:09

b3881   Requirements Modeling and Coding6"×9"�

Modeling Functions and Procedures  69

13.	 The Board of Watson Town Memorial Hospital has recently decided to
develop a new information system to manage their patient admissions
and discharges. The hospital handles two types of patients: outpatient
and resident patient. As typical, each time when a new patient comes,
the data about his/her identification, address, phone, and issuance
carriers are recorded. If a patient is resident, he/she will be assigned to
a bed and an admission date is recorded. After the treatment, a nurse
has to sign off the discharge card. For an outpatient, the nurse will set
a check-back time after each treatment.
a.	 Identify the functions to be performed in the tracking system.
b.	 Create a data flow diagram for the function CheckIn.
c.	 Create an activity diagram for the process CheckIn.

Appendix: Algorithms
Besides following the order of DAMO (declaration–assignment–manipu-
lation–output) and PEMDAS, we often need an algorithm, or problem-
solving strategy, to write instructions to solve a problem. In fact, the most
difficult task in computer programming is not memorizing, understanding,
and/or applying programming principles, syntax rules, and programming
language-specific constructs but rather how to design a problem-solving
strategy. A computer programmer may be fluent in a programming lan-
guage, but he or she may not know how to solve a domain problem.
Systems analysts, with assistance from end users, play a critical role in
systems development not only by capturing and modeling requirements
but also designing algorithms. Then a programmer’s job is to re-express
the algorithms using code.

Algorithm design entails both domain knowledge and creativity; so
no book can teach how to design algorithms. An algorithm course in com-
puter science mostly teaches us how to evaluate the efficiency of an algo-
rithm. This chapter teaches us how to represent an algorithm using activity
diagrams. This Appendix uses examples and exercises to show that algo-
rithm design is sometimes just about raw intelligence.

Example 1: Use a balance to single out the lightest egg among 100 eggs.
Programmers may realize this problem is identical to finding the minimum
of 100 numbers. A simple strategy would be: (1) compare 1st egg with the

b3881_Ch03.indd 69 05-10-2020 16:32:09

b3881   Requirements Modeling and Coding� 6"×9"

70  Requirements Modeling and Coding

2nd one, find the lighter one, called theLight; (2) compare theLight with
the 3rd egg, and swap the 3rd one with theLight if the 3rd one is lighter;
(3) repeat (2) to compare theLight with the 4th, 5th, … , and 100th egg.

Of course, you may be able to come up with a more sophisticated
strategy to solve the problem faster. Then your algorithm is more efficient
than the simple one here. Unfortunately, for this problem, there is no better
algorithm.

Example 2: Use a balance to sort 100 eggs from the lightest to the heaviest.
We just learned an algorithm called bubble sort to sort 100 numbers in ascend-
ing order. Here is the strategy translated from the bubble sort: (1) compare
1st with 2nd and swap them if 1st is heavier than the 2nd; (2) compare the
2nd with the 3rd and swap them if the former is heavier; (3) repeat the same
procedure for the 3rd with 4th, 4th with 5th, … , 99th with 100th; (4) repeat
the above steps 1–3 again and again until there is nothing to swap. Can you
think of a better algorithm to solve this problem?

Programming exercises

1.	 You have 12 eggs of equal weight, with one of them being bad. How
can you use the fewest number of balance uses to single out the bad
egg?

2.	 You have a 4-gallon jug and a 3-gollon jug. No measuring tools are
available. There is a pump that can be used to fill the jugs with water.
How can you get exactly 2 gallons of water into the 4-gallons jug?

3.	 A jail has 20 locked cells numbered Cell 1, Cell 2, …, Cell 20. There
are much fewer prisoners, each occupying one cell, and so there are
some empty cells. The jail manager wants to move the prisoners to
consecutive cells, starting from Cell 1. After moving, the prisoners
are still kept in the same order as they were before. What is the best
approach to perform this operation?

4.	 A goat, a wolf, and a salad are on one side of a river and you need to
get them to the other side using your boat. You can carry one item in
your boat to the other side at any given time. However, when the goat
and the wolf are left alone the wolf will eat the goat. If the goat and the
salad are left alone the goat will eat the salad. As long as you are with
them nothing will happen, i.e., the wolf won’t eat the goat and the goat

b3881_Ch03.indd 70 05-10-2020 16:32:09

b3881   Requirements Modeling and Coding6"×9"�

Modeling Functions and Procedures  71

won’t eat the salad. How do you bring the goat, the wolf, and the salad
across the river using the boat?

5.	 A salesman has a list of cities, each of which he must visit once. There
are direct roads between each pair of cities on the list. Find the route
the salesman should follow for the shortest possible round trip that
both starts and finishes at any one of the cities.

Boston NY Miami Dallas

Boston 250 1450 1700

NY 250

Miami 1450 1200 1600

Dallas 1700 1500 1600

b3881_Ch03.indd 71 05-10-2020 16:32:09

b2530   International Strategic Relations and China’s National Security: World at the Crossroads

b2530_FM.indd 6 01-Sep-16 11:03:06 AM

This page intentionally left blankThis page intentionally left blankThis page intentionally left blankThis page intentionally left blank

73

b3881   Requirements Modeling and Coding6"×9"�

Chapter 4

Coding Functions and Procedures

Introduction
The primary role of a systems analyst is to bridge the gap between pro-
grammers and business users. Therefore, to be an effective communicator,
a systems analyst needs to speak the language that a programmer speaks. In
this chapter, we will elaborate on how a programmer speaks the language
of business processes. As we will see, coding is nothing but an alterna-
tive, more rigorous representation of processes that we modeled in the last
chapter. Another purpose of this chapter is to establish an intuition toward
the understanding of concepts of objects or classes in later chapters.

Operations and Methods
An operation is the evolution of the external representation of a business
process, whereas a method is the evolution of a procedural model. They
are both evolving artifacts of the same business process in programming
language.

From the programmer’s perspective, a process is still a data processor,
as was seen in Chapter 3. There are two differences however. The first is
the terminologies to be used to name a process or its parts. The second is
the method to be used to represent the functions, which is more rigid and
cryptic.

In programming, a process may be called a function, procedure, or
module that processes data inputs, which are called parameters, and gen-
erates outputs called returns or output parameters (see Figure 1).

b3881_Ch04.indd 73 05-10-2020 16:32:28

b3881   Requirements Modeling and Coding� 6"×9"

74  Requirements Modeling and Coding

For example, if a simple process is to add two integers to obtain their
sum, the two integer addends will be input parameters and the sum, which
is also an integer, is the return (see Figure 2).

The actual program in Java or C# is as follows:

int Sum(int a, int b)
{
       return a + b;
}

Here, the code inside curly braces {} contains the actual instructions
that do the job: it does the addition (a + b) and outputs the result using
the return statement. The function is named Sum with two integer
parameters int a and int b. The keyword int in front of the function
indicates the return’s data type as integer.

As we can see, a function is programmed as a code block consisting
of two parts: head and body. The head includes the name of the function,
a list of parameters of the function, and the return’s data type. The body
defines how the function works. In this book, we call the head of a func-
tion an operation and the body of the function a method. They are the
terminologies to be used when we introduce the concepts of objects and
classes in the later chapters.

return
Function

parameter 1

parameter 2

parameter n

Figure 1.   A business process from a programmers’ perspective.

int a + biSum

int a

int b

Figure 2.   A function of adding two integers.

b3881_Ch04.indd 74 05-10-2020 16:32:28

b3881   Requirements Modeling and Coding6"×9"�

Coding Functions and Procedures  75

It is easy to see that an operation corresponds to the external represen-
tation of the process: inputs to parameters, outputs to returns, and process
name to function name (see Figure 3).

A method corresponds to the internal representation of a business
process, i.e., procedural model. A method can not only be expressed as a
procedural model but also implemented in actual code. In fact, if a busi-
ness analyst is fluent in a programming language, he or she could well use
the language to express the internal logics of a business process in lieu of
activity diagrams or structured English to bridge the gap between model-
ing and coding.

Code Functions
In this section, we will write code to implement a few process and proce-
dure models to show how to convert business processes to operations and
methods. Some of the example processes and procedures are depicted as
diagrams in the last chapter.

Example 1 (Find Max): Suppose a process computes the maximum of
two decimal numbers. The two inputs are any two decimal numbers, and
the output is the decimal number that is the maximum of the original two
numbers (see Figure 4(a) of Chapter 3). The operation can be written as:

decimal FindMax(decimal a, decimal b)

Here, the name of the function is FindMax. Parentheses surround
two parameters a and b, both of which are decimal numbers. The decimal
in front of the function name is the data type of the return values by the

int a + biSum

int b

int a

int Sum(int a, int b)mnt

Figure 3.   From data flow diagrams to code.

b3881_Ch04.indd 75 05-10-2020 16:32:28

b3881   Requirements Modeling and Coding� 6"×9"

76  Requirements Modeling and Coding

function. The function body or method is expressed as an activity diagram
in Figure 14 of Chapter 3. The following is the Java or C# code of the
procedure:

if (a >= b)
{
       return a;
}
else
{
       return b;
}

The method defines how the operation works through a sequence of
instructions on how to find the result given two numbers a and b. The pro-
cedure is simple here; when a is bigger than b, the result is a. Otherwise
it is b. Putting the operation and the method together, we obtain the whole
function.

decimal FindMax(decimal a, decimal b)
{
       if (a >= b)
       {
              return a;
       }
       else
       {
              return b;
       }
}

Does every process require data inputs or generate outputs? Not nec-
essarily. This may sound odd because a process is just a data processor,
transforming inputs into outputs. Without data, what can it transform? Yet,
we can think about it this way: a process still needs data inputs, but if it
can get the data from an available source such as a computer system, it
will not need them as explicit inputs. For example, to produce a greeting
like “Good Morning,” a process needs to know the current time, which is
readily available from a computer system without an explicit input. In fact,
when a function is located inside an object, all the data owned by the
object do not need to be explicit inputs to the function. We call this feature
data flow reduction in later chapters.

b3881_Ch04.indd 76 05-10-2020 16:32:28

b3881   Requirements Modeling and Coding6"×9"�

Coding Functions and Procedures  77

In a similar way, we can understand the scenarios in which a function
does not produce outputs. A function still produces outputs, but the outputs
are not in the form of data to be used by other processes. Examples of such
outputs include printed documents, updated databases, email messages
dispatched, or message boxes displayed. If a function is placed inside an
object, its result, when merely changes the object data, will not be in the
form of explicit outputs.

How do we code a process if it does not take inputs or does not return
any outputs? If a process does not take any explicit inputs, we will attach
a pair of empty parentheses () to the function name and leave out any
parameters. If a process does not return any output to other processes, we
will mark the return type as void.

Example 2 (Produce Greeting): Assume that this process takes the cur-
rent time and produces a message like “Good Morning” to be displayed
in a message dialogue. Because it gets the current time from the computer
system, it does not need any input. Because it generates a result not in the
form of data to be used by other processes, it does not have a return value.
The operation or function head may be written as:

void ProduceGreeting()

and the method may be programmed by using DateTime object to get the
current system time and hour.

{
      DateTime currentTime = DateTime.Now;
      int currentHour = currentTime.Hour;
      string myGreeting;
      if (currentHour > 6 && currentHour <= 12)
             myGreeting = “Good Morning”;
      else if (currentHour >12 && curentHour <=18)
             myGreeting = “Good Afternoon”;
      else
             myGreeting = “Good Evening”;
      MessageBox.Show(myGreeting);
}

In the same token, data inputs from and outputs to data stores are
usually considered as a system’s internal data, and thus they will not be
expressed as explicit inputs or outputs.

b3881_Ch04.indd 77 05-10-2020 16:32:28

b3881   Requirements Modeling and Coding� 6"×9"

78  Requirements Modeling and Coding

Example 3 (Check Prerequisites): The process of checking prerequi-
sites takes class ID, student ID, course catalog, and enrollment records as
inputs and generate Boolean value true or false as output (see Figure 6 in
Chapter 3). Assume that both course catalog and enrollment records are
tables in a relational database and assume class ID and student ID are both
integers. Then the operation will be expressed as:

bool CheckPrerequisites(int classID, int studentID)

Here, data stores Enrollment and CourseCatalog are not
expressed as parameters or returns in the operation. Also, bool means
the return data type is a Boolean number, true or false. The method
is expressed as an activity diagram in Figure 21 of Chapter 3, and its code
implementation requires database instructions in SQL and code to connect
to databases and run SQL commands.

{
      �//g�et prerequisites from CourseCatalog using

classID
      �//g�et completed courses from Enrollment using

studentID
      //check if prerequisites are completed
      //return true or false accordingly
}

Example 4 (Message Encryption): Encryption entails the use of a key
to change a plain text message into a cryptic one so that no one can
understand the message without the key. The process is diagramed in
Figure 4.

Encryption, in general, is a complex process to code, but we will illus-
trate it using Caesar’s cipher in what follows. We will use an integer as
a key to increment the ASCII code for each character in the original text

string encryptedMsg

Encryption

string msg

Int key

Figure 4.   Encryption process.

b3881_Ch04.indd 78 05-10-2020 16:32:28

b3881   Requirements Modeling and Coding6"×9"�

Coding Functions and Procedures  79

message. If the incremented code value is beyond the 0–127 range, we
will add or subtract 128 to bring the code into the valid range. The input
parameters are a key and a text message, and the output is an encrypted
text message. In the function body, the function first converts a message
into an array of characters, adds the key to the integer ASCII code of each
character, and outputs the result as the encrypted message.

string Encryption(string message, int key)
{
   char[] a;
   a = message.ToCharArray();
   string encodedMessage = “”;
   int length = a.Length;
   for (int i = 0; i < length; i++)
   {
       int j = (int) a[i]) + key;
       while(j > 128)
           j = j - 128;
       while(j < 0)
           j = j + 128;
       char c = (char) j;
       encodedMessage = encodedMessage + c.ToString();
   }
   return encodedMessage.ToString();
}

When a process takes multiple pieces of data of the same type as
inputs, we can combine the inputs into either an array or a list as one input.
Similarly, if a process outputs a list of values of the same type, we can use
a list or an array as the return data type.

Example 5 (Factorization): Create a function that returns all the prime
factors of an integer. Here, we use an array list (not array) to hold the list of
possible prime factors. The reason to use ArrayList instead of Array is that
ArrayList allows to dynamically extend the number of memory sub-blocks
while Array has its size fixed at the time of declaration.

The strategy to solve the problem is to repeatedly divide factor 2 out
of an integer until the quotient becomes an odd number. Then we use a
for-loop to go through all the odd numbers starting from 3, 5, 7, etc., to
extract out smaller prime factors one by one. Note that after all the smaller
prime numbers are extracted, a larger odd number to be tested must be a
prime number.

b3881_Ch04.indd 79 05-10-2020 16:32:28

b3881   Requirements Modeling and Coding� 6"×9"

80  Requirements Modeling and Coding

private ArrayList Factorization(int n)
{
    int quotient = n;
    ArrayList factors = new ArrayList();
    factors.Clear();
    while (quotient%2 == 0)
    {
       factors.Add(2);
       quotient = quotient / 2;
    }

    for (int i = 3; i <= quotient; i = i + 2)
    {
       while (quotient%i == 0)
       {
          factors.Add(i);
          quotient = quotient / i;
       }

   }

   return factors;
}

What if there is a process that returns data to be used by other pro-
cesses while simultaneously executing actions such as prints documents
and creates new database records? What if a process returns multiple
values of different types? In these cases, we may use out parameters in
a programming language like C# that supports the concept. The regular
parameters we have used so far are in parameters; they carry data inputs
to a process. We can also use parameters to carry the return values out.
Such parameters are called out parameters. Since we can use multiple out
parameters, we can use the device to return multiple different values. Also,
there is no need to have the function return a value, we can make the opera-
tion as void and so the function can not only return values but also perform
data actions that do not return any values.

For example, suppose a process is created to get what day of the week
today is. It does not need any input since the system knows the current date
and time. The return data is an integer from 1 to 7, with 1 for Sunday, 2 for
Monday, etc. Thus, the operation can be written as:

int GetDayOfWeek()

b3881_Ch04.indd 80 05-10-2020 16:32:28

b3881   Requirements Modeling and Coding6"×9"�

Coding Functions and Procedures  81

The method may be expressed using the built-in DateTime class in
C# as follows:

{
       DateTime today = DateTime.Now;
       return (int) today.DayOfWeek;
}

Note here that (int) is used to convert or cast the data type of
DayOfWeek into an integer. In the following we describe another way to
create the function using an out parameter:

void GetDayOfWeek(out int day)
{
       DateTime today = DateTime.Now;
       day =(int) today.DayOfWeek;
}

Here, we use the out-parameter day to return the day of week and
change the whole function’s return type to void.

Can we create two functions with the same name as above? The answer
is no in structured programming. However, in objected-oriented program-
ming, a special feature called overloading allows the reuse of a function
name if the functions have different signatures. Two signatures are dif-
ferent if the functions have different names, different number of param-
eters, or different types of parameters at the same location. For example,
Sum(int a, int b) can overload Sum(decimal a, decimal
b), Sum(int a, int b, int c), Sum(int a, decimal b),
and Sum(). But it cannot overload Sum(int x, int y) because the
two functions have the same number of parameters and have the same type
of parameter at each place despite the differences in name.

Example 6 (Descriptive Statistics): In the last chapter, we modeled a pro-
cedure that can compute the mean and the variance using one pass through
a list of data. We can do even better than that: we can compute all descrip-
tive statistics, including max, min, average, sum, count, variance, standard
deviation, etc., in one function by using out parameters. The data flow
diagram of the process is shown in Figure 5, and its C# code is as follows:

public void DescriptiveStat(List<double> data, out
int count, out double mean,

b3881_Ch04.indd 81 05-10-2020 16:32:28

b3881   Requirements Modeling and Coding� 6"×9"

82  Requirements Modeling and Coding

                 out double variance, out double max,
                 out� double min, out double stdev,

out double sum)
{
     sum = 0;
     count = data.Count;
     double sqSum = 0;
     max = data[0];
     min = data[0];
     foreach (double item in data)
     {
         sum = sum + item;
         sqSum = sqSum + Math.Pow(item, 2);
         if (max < item)
             max = item;

         if (min > item)
             min = item;
     }
     mean = sum / count;
     vari�ance = (sqSum - count * Math.Pow(mean, 2)) /

count;
     stdev = Math.Sqrt(variance);
}

Execute Functions
A function is created for reuse. A function encapsulates individual com-
mands or instructions to perform a high-level task that needs to be exe-
cuted repeatedly. The code that calls a function is called a function caller.
Calling a function is simple. First, if a function requires input parameters,
we will need to prepare for the inputs: declare the variables to hold input
values and assign the parameter values to the variables. Next, depending

DescriptiveStat

double max

list<double> data

double min
double sum

double mean
double variance

int count

Figure 5.   Descriptive statistics.

b3881_Ch04.indd 82 05-10-2020 16:32:29

b3881   Requirements Modeling and Coding6"×9"�

Coding Functions and Procedures  83

on whether the function returns a value or not, the call can be handled in
three different ways:

1.	 If a function returns one value, we will need to declare a variable so
that it can hold the returned value and then run the function on the
right-hand side of an assignment. For example, suppose we want to
find the maximum of two decimal numbers e and π, we will call the
function FindMax as follows:

decimal x, y;  //prepare for inputs
x = Math.E;    //assign Math.E to x
y = Math.Pi;   //assign Math.Pi to y
decimal result;  //prepare for the output
result = FindMax(x, y); //call the function

2.	 If a function does not return a value, calling the function reduces to the
preparation of the inputs and the function is called as a command. For
example, suppose we want to call ProduceGreeting() function,
here is the code:

ProduceGreeting();

3.	 In case a function returns multiple values via out parameters, you will
need to prepare values for input parameters and declare a variable to
hold the value for each out parameter. Then call the function as a com-
mand, the output variables will bring the return values to be used by
the caller. Here is the example:

int weekday;
GetDayOfWeek(out weekDay);

	 At this point, weekday will have the result for us to use in the code
afterwards.

In structured programming, a function is the most basic unit of usable
code, and a program is simply a juxtaposition of one or more functions.
These functions are interdependent in the sense that some functions may
call other functions in order to perform a more complex task. There is one
main() function, which is the entry point of the program and will be
called by the user. The main function will then start to call other functions,

b3881_Ch04.indd 83 05-10-2020 16:32:29

b3881   Requirements Modeling and Coding� 6"×9"

84  Requirements Modeling and Coding

which can in turn call still other functions, toward the fulfillment of an
entire task.

Example 7 (Find Maximum): Earlier we created a function that finds
the maximum of two decimal numbers: decimal FindMax(decimal
a, decimal b). Its procedure is very simple; just compare a and b and
pick the greater. What if we need to find the maximum of more than two
numbers? The reader may try to use the same algorithm to compare three
numbers, four numbers, etc., but soon we will find out that it is not an easy
job; we will need many nested if-else statements to compare three num-
bers, four, five, or more numbers.

A creative strategy is to reuse FindMax(decimal a, decimal b)
function to compare the current max with additional number. Here is the
implementation of the strategy to find the max of four numbers:

decimal FinxMax(decimal a, decimal b, decimal c,
decimal d)

{
   decimal max;
   max = FindMax(a, b);
   max = FindMax(max, c);
   max = FindMax(max, d);
   return max;
}

Function calls demonstrate the advantage of functions. To use a func-
tion, there is never a need to know the internal code of the function; we
only need to know the function head or operation. Another advantage is
implicit. Modular functions are reusable, and there is never a need to copy
and paste a same section of the code anymore. It allows an organization
to create a library of functions and use them as pluggable modules for
new development projects. Maintenance becomes easier since, if there is
change, only one place needs to be changed as opposed to changing many
places that duplicate the same code.

Review Questions
1.	 Compare functions, operations, and methods.
2.	 What is overloading?
3.	 Use an example to show how to convert a business process into the

operation and method?

b3881_Ch04.indd 84 05-10-2020 16:32:29

b3881   Requirements Modeling and Coding6"×9"�

Coding Functions and Procedures  85

4.	 What are the key features of the structured systems analysis and design
methodology?

5.	 What does a computer do when you declare a variable, assign a value
to a variable, manipulate a variable, and output the value of a variable?

6.	 What should be the appropriate sequence of using the four types of
instructions?

Exercises
  1.	 For each process in Figure 3 of Chapter 3, create the external represen-

tation and then convert it into an operation.
  2.	 Create the activity diagram for the process of message encryption as

shown in the code of the text.
  3.	 Use pseudo-code to express the method for the functions:

CheckForAvailablity and CheckforTimeConflicts.
  4.	 Use Activity Diagrams to express the method for the following functions:

a.	 MakeAppointmentForPatient.
b.	 ReceiveShipment.

  5.	 Create a function that converts a numerical grade into a letter grade
using the common scale used in your school. Then use Visual Studio
to create a windows form with two text boxes so that when one box
shows a numerical grade, the other box shows the letter grade.

  6.	 Create a function that coverts a decimal integer into a binary integer.
  7.	 Using Visual Studio to create a windows form with a large text box

and then create two buttons to encrypt and decrypt the message in the
text box. Make sure to use the function Encrypt in the book.

  8.	 Code the following simple processes:
a.	 Find the maximum of a list of decimal numbers.
b.	 Check if a name is in a list of names.
c.	 Find the solution to a quadratic equation ax2 + bc + c = 0.
d.	 Check if an integer is a prime number or not.
e.	 Find all the prime factors of any integer.

  9.	 Use activity diagrams to model the following procedures and code it
in C#:
a.	 Check if two list of names are overlapping.
b.	 Find the standard deviation of a list of decimal numbers.
c.	 Sort a list of integers from the smallest to the biggest.
d.	 Given a list of names, find how many names are over 20 characters.
e.	 Given a list of decimal numbers, find out how many of the numbers

are zeros.

b3881_Ch04.indd 85 05-10-2020 16:32:29

b3881   Requirements Modeling and Coding� 6"×9"

86  Requirements Modeling and Coding

f.	 Given a list of dates, find a sub-list of dates that fall in 2018.
g.	 Given two lists of numbers, find a list of numbers that are com-

mon in both lists.
h.	 Encrypt a text message by adding a 32-bit binary number to each

block of 10 characters in the message.
i.	 Given two time periods, determine if they are overlapping or not.
j.	 Given two time periods, determine the amount of overlapping

time in days between them.
10.	 Code for the following business processes:

a.	 Assume the existence of these database tables: Students, Classes,
Enrollment, Instructors, and TeachingAssignments. Check if a
student and a teacher are related.

b.	 Assume the existence of these database tables: Students, Courses,
Prerequisites, Classes, Enrollment. Check if a student has met the
prerequisites for taking a new class.

c.	 Assume the existence of these database tables: Students, Classes,
Enrollment. Check if a student has time conflict in taking a new class.

d.	 Assume the existence of these database tables: Borrowers, Titles,
Copies, Rentals. Return a rental.

e.	 Assume the existence of these database tables: Sales, Items,
Inventories: Handle customer returns.

Appendix: Text File Processing in C#
This chapter created a function to find descriptive statistics. A reasonable
next step toward the use of the function is to get data from a text file. To
read data from a text file using C#, we need to use the following three
built-in classes, accessible by “using System.IO” directive:

·	 File — Use method OpenText() to open an existing file and
CreateText() to create a new file.

·	 StreamReader — Use the method ReadLine() to read one line
from the text file.

·	 StreamWriter — Use the method Write() and WriteLine()
to write to a text file.

In addition, we may need OpenFileDialog object to open a text
file to read or write. To use OpenFileDialog or any other dialog
objects, there are three steps to follow: (1) create and show a dialog; (2) get
dialog results using DialogResult object; and (3) process the dialog

b3881_Ch04.indd 86 05-10-2020 16:32:29

b3881   Requirements Modeling and Coding6"×9"�

Coding Functions and Procedures  87

result. For example, the following is an example of using FontDialog
to change the font for textbox txtResult:

FontDialog fontD = new FontDialog();
DialogResult myResult = fontD.ShowDialog();
if (myResult == DialogResult.OK)
 {
    Font f = fontD.Font;
    txtResult.Font = f;
 }

It is the same idea to use OpenFileDialog. The following example
uses an OpenFileDialog object to browse a file to open and get the
data into a list box and then call the function “Descriptive Statistics” to
perform the calculation.

Example 1: Create a form with one list box that allows one to load all data
from a data file to the box. Then, when the button “Compute” is pressed,
use the textbox to show all the descriptive statistics.

The following uses Tab Control to design the user interface1 to sepa-
rate data from the result:

1 The reader may refer to Chapter 10, Page 239, for user interface design techniques.

b3881_Ch04.indd 87 05-10-2020 16:32:29

b3881   Requirements Modeling and Coding� 6"×9"

88  Requirements Modeling and Coding

The Load button will open a file dialog to open a text file and load the
data into the list box in Tab 1, and the Compute button will compute the
statistics and display it in the result text box in Tab 2. Since both buttons will
have to share a common list of data — the Load button that creates the list and
the Compute button that uses the list — we will create an array: string[]
strData to hold the data from a text file, outside the functions, to respond
to the button clicks. Such a variable is called a global variable.

string[] strData;
private void btnLoad_Click(object sender, EventArgs e)
{
   OpenFileDialog mydialog = new OpenFileDialog();
   mydialog.InitialDirectory = @”c:\”;
   myd�ialog.Filter = “Text Files (*.txt)|*.txt|All

Files(*.*)|*.*”;
   if(mydialog.ShowDialog()==DialogResult.OK)
   {
      strData = File.ReadAllLines(mydialog.FileName);
   }
   lbData.DataSource = strData;
}

Then, the Compute button will compute the result and show the
result in Tab 2:

private void btnCompute_Click(object sender, EventArgs
e)

{
   double[] dblData = new double[strData.Length];
   double sum = 0;
   for (int i=0;i<strData.Length;i++)
   {
        dblData[i] = Convert.ToDouble(strData[i]);
   }
   Universe myTool = new Universe();
   List lstData = dblData.ToList();
   //change array to list
   double variance = myTool.FindVar(lstData);
   txtResult.Text = “Variance:” + variance + “\r\n”;
   tabControl1.SelectedTab = tabPage2; //show Tab 2
}

In the above code, we used ReadAllLines() function of File
object to retrieve all the lines in a text file. We can also read the file line by

b3881_Ch04.indd 88 05-10-2020 16:32:29

b3881   Requirements Modeling and Coding6"×9"�

Coding Functions and Procedures  89

line by using ReadLine() method of StreamReader object. In this
case, a file is first opened, the file location pointer points to the first line, if
there is any line, and each time when the ReadLine() function is called,
the pointer automatically advances to the next line, if it exists. The end of
a file is reached if ReadLine() retrieves a null value. The following
is the code to load data into a list and then use the list as the data source
of a list view.

//create a global list lstData to hold data
   List lstData;

//initialize lstData in Form_Load or form constructor
   lstData = new List();

//load data into lstData when form starts
private void cmdLoad_Click(object sender, System.

EventArgs e)
{
      lstData.Items.Clear();
      OpenFileDialog myDialog = new OpenFileDialog();
      myDialog.InitialDirectory = @”C:\”;
      myDialog.Filter = “text files (*.txt)|*.txt|All

      files (*.*)|*.*”;

      if (myDialog.ShowDialog() == DialogResult.OK)
      {
            StreamReader myReader = File.OpenText

            (myDialog.FileName);
            string aLine;
            aLine = myReader.ReadLine();
            while (aLine != null)
            {
                  lstData.Add(Convert.toDouble(aLine.

                  Trim()));
                  aLine = myReader.ReadLine();
            }
            myReader.Close();
            
            //add lstData to a listbox lbData
            lbData.DataSource = lstData;
     }
}

Next, we can call Universe object to find variance.

b3881_Ch04.indd 89 05-10-2020 16:32:29

b3881   Requirements Modeling and Coding� 6"×9"

90  Requirements Modeling and Coding

private void cmdCompute_Click(object sender, System.
EventArgs e)

{
    Universe myTool = new Universe();
    double variance = myTool.FindVar(lstData);
    txtResult.Text = “Variance:” + variance;
}

Finally, we can call Universe object to find descriptive statistics.

private void cmdCompute_Click(object sender, System.
EventArgs e)

{
    Universe myTool = new Universe();
    double min, max, a, v, s;
    int c;
    my�Tool.FindStatistics(lstData, out c, out min,

out max, out a, out v, out s);
    txtResult.Text += “Sample Size:\t\t” + c + “\r\n”;
    txtResult.Text += “Min:\t\t” + min + “\r\n”;
    txtResult.Text += “Max:\t\t” + max + “\r\n”;
    txtResult.Text += “Mean:\t\t” + a + “\r\n”;
    txtResult.Text += “Variance:\t\t” + v + “\r\n”;
    txtResult.Text += “Std Deviation\t: “ + s + “\r\n”;
}

Example 2: Create a text file called users.txt that stores a list of user names
and passwords. Then use Visual Studio to create a login form, called frm-
Main, with two text boxes, called txtUser and txtPassword, and a second
blank windows form called frmSecond, to validate users against the file.
Of course, you should have an exit button that allows the user to unload the
application in case of failure to log in.

private void cmdLogin_Click(object sender, System.
EventArgs e)

{
      �StreamReader myStream = File.OpenText(@”c:\

   users.txt”);
      string aLine;
      bool found = false;
      aLine = myStream.ReadLine();

      �//aLine has two pieces of data to be split into uid and pwd

b3881_Ch04.indd 90 05-10-2020 16:32:29

b3881   Requirements Modeling and Coding6"×9"�

Coding Functions and Procedures  91

     string[] userAccount;
      while (aLine != null && found == false)
      {
             userAccount = aLine.Split(‘,’);
             �if ((txtUser.Text == userAccount[0]) &&

   (txtPassword.Text == userAccount[1]))
                   found = true;
             else
                   aLine = myStream.ReadLine();
      }
      myStream.Close();
      if (found == true)
      {
             frmMain.ActiveForm.Hide();
             frmSecond myApp = new frmSecond();
             myApp.Show();
      }
      else
      {
             �MessageBox.Show(“You provided an invalid

   account. Try again”);
      }
}

Let us once again use dialogues. Let us modify the exit button to allow
the user to make a choice before exiting.

private void cmdExit_Click(object sender, System.
EventArgs e

{
      �string myQuestion = “Do you really want to

   exit?”;
      string myTitle = “Exit or not?”;
      �MessageBoxButtons myButtons =

   MessageBoxButtons.YesNo;
      DialogResult myResult;
      �myResult = MessageBox.Show(this, myQuestion,

   myTitle, myButtons);
      if (myResult == DialogResult.Yes)
      {
           Application.Exit();
      }
}

b3881_Ch04.indd 91 05-10-2020 16:32:29

b3881   Requirements Modeling and Coding� 6"×9"

92  Requirements Modeling and Coding

Programming exercises

  1.	 Create a method to multiply two decimal numbers.
  2.	 Create a method to test whether an integer is even or odd.
  3.	 Create a method that changes weekday number 1–7 into weekday

names. For example, 1 → Sunday, 2 → Monday, etc.
  4.	 Create a method that returns the last character when given a string.
  5.	 Create a method that finds whether today is your birthday.
  6.	 Create a method that will return the mean and standard deviation of

any three numbers.
  7.	 Create a method that finds the number of a certain character in a text.
  8.	 Create a method that computes the factorial of any integer.
  9.	 Create a method SumToN(int n) such that it computes 1 + 2 + 3 + … + n.
10.	 Create the method ToCelsius that converts a temperature in Fahrenheit

into one in Celsius. Then create a form with two boxes, respectively,
for Celsius and Fahrenheit degrees and one button for the conversion.

11.	 Create a method to covert numerical grades (such as 94, 89, etc.) into
letter grades.

12.	 Create a method that returns an income tax by giving an income.
Assume income tax rate is 15% for income over $45,000, 18% for
income over $65,000, and 25% for income over $100,000.

13.	 Create a method that returns a text in its reversed order (Hint: use
x.subString(0,1) to get the first character of x; use x.length to get the
number of characters in x).

14.	 Create a method to test if a number is prime or not; you would need to
test if it divisible by any number greater than 1 and less than its square
root. For example, to test if 34 is prime, you will test if it is divisible
by 2, 3, or any number less than Math.Sqrt(34). If it is, then 34 is not
prime. Create a method to test if an integer is prime.

15.	 Opening a data file to get a list of data and then call the function to get
descriptive statistics into a text box.

16.	 Open a text file to load two-dimensional data where each row has
multiple pieces of data separated by commas, and show the data using
either ListView or Data Grid View.

b3881_Ch04.indd 92 05-10-2020 16:32:29

93

b3881   Requirements Modeling and Coding6"×9"�

Chapter 5

Objects and Classes

Introduction
In the last two chapters, we learned the concept of functions. The key dif-
ference between the traditional structured development and the modern
object-oriented development lies in how to place functions. In structured
development, functions are the basic unit of a program. The functions and
the data, inputs to, and outputs from functions to be processed, are sepa-
rated. In object-oriented development, functions are not the basic units of a
program and are not separate from the data they process. Instead, data and
functions are packed together into a higher level of program units called
objects. A program is made of one or more classes. A class acts as a tem-
plate to create objects of the same kind.

From the end user perspective, objects are nothing more than real-
world objects such as a person, a car, an order, an account, an event, or a
pen that have both attributes (data) and behavior (functions), and a class
is simply a group of real-world objects of the same kind. The connection
between real-world objects and programming objects justifies the method
of object-oriented systems analysis: the very same artifacts, objects, and
classes, evolve along the development process — end-users, analysts, and
programmers all communicate using the same terminologies but refer to
different underpinnings.

This chapter explains the basic concepts of objects and classes, includ-
ing the end-user’s conception, analysts’ abstraction, and the programmer’s
creation. We will use the understanding of processes and functions to

b3881_Ch05.indd 93 05-10-2020 16:32:57

b3881   Requirements Modeling and Coding� 6"×9"

94  Requirements Modeling and Coding

understand these concepts. We will also discuss a few principles on how to
allocate functions into objects.

Programming Objects
From the programmer’s viewpoint, an object is a memory block that stores
both data and function code readily available to be executed. That is, an
object encapsulates both data and functions. In this sense, an object is
nothing but a variable. But unlike primitive variables that store an integer
or Boolean number, an object may store many different pieces of data
and the executable code of functions. Figure 1 is a schematic picture of a
dog object and a person object. Most of the time, we cannot see objects
because they live inside the computer memory. However, some special
programming objects are observable. Examples include a running screen,
a control like command buttons, or an instance of running system.

What data does an object possess and what functions can it execute?
These are specified or defined by a program module called a class. A class
is like a template that a programmer codes using a programming language
such as C++, C#, or Java at the design time, and then it can be used for

name: Mochi

birthDate: 11/27/2016

breed: Maltese

string Bark() { return “woof, woof, woof”; }

int GetAge() {
TimeSpan ts =

DateTime.Now – birthDate;
Return (int) ts.Days/365;

}

...

name: Louisa

birthDate: 1/1/1990

job: physician

string Greet(){
int h = DateTime.Now.Hour;
if (h > 6 && h < 12)

return “Good Morning”;
else if (h >= 12 && h < 18)

return “Good Afternoon!”;
else

return “Good Evening!”;
}

int GetAge(){
TimeSpan ts = DateTime.Now – birthDate;
Return (int) ts.Days/365;

}

...

(a) (b)

Figure 1.   Illustration of programming objects: (a) a dog and (b) a person.

b3881_Ch05.indd 94 05-10-2020 16:32:57

b3881   Requirements Modeling and Coding6"×9"�

Objects and Classes  95

creating objects that execute functions at the runtime. A class and its
objects are analogous to a cookie cutter and cookies: how each cookie
looks like is determined by the cookie cutter. How each object looks like
and behaves is determined by the class.

A class is a basic reusable program unit in an object-oriented program,
and a computer program is made of one or more classes. Each class is
made of a list of data items (variables) and behavior items (functions).
The following shows the Dog and Person classes used to create the
sample objects in Figure 1. For example, the code defines that the Dog
class has three variables: name, birthDate, and breed, and two func-
tions: Bark() and GetAge(). A variables or function inside a class
may also be called a member: a variable is a data member, and a function
is a behavior member. Note that data members are also called instance
or global variables, as opposed to those local variables declared inside a
function.

public class Dog
{
       string name;
       DateTime birthDate;
       string breed;

       string Bark()
       {
              return “woof, woof, woof”;
       }

       int GetAge()
       {
              TimeSpan ts = DateTime.Now - birthDate;
              return (int) ts.Days/365;
       }
}

public class Person
{
       string name;
       DateTime birthDate;
       string job;

       string Greet()
       {

b3881_Ch05.indd 95 05-10-2020 16:32:57

b3881   Requirements Modeling and Coding� 6"×9"

96  Requirements Modeling and Coding

              int h = DateTime.Now.Hour;
              if (h > 6 && h < 12)
              {
                      return “Good Morning”;
              }
              else if (h >=12 && h < 18)
              {
                      return “Good Afternoon”;
              }
              else
              {
                      return “Good Evening”;
              }
       }

       int GetAge()
       {
              TimeSpan ts = DateTime.Now - birthDate;
              return (int) ts.Days/365;
       }

      Void ChangeJob(string newJobTitle)
       {
              job = newJobTitle;
       }
}

A class may contain a special kind of functions called constructors.
Like any function, a constructor may have parameters and can be over-
loaded, i.e., multiple constructors can have the same name if they have
different signatures. However, it has two differences from other functions.
First, a constructor takes the same name as the class. Second, a constructor
is used to create new objects rather than to perform data processing tasks,
and so it does not return any values. Thus, there is no void, int, string, etc.,
in front of a constructor’s signature. Here are two example constructors
for the Dog class.

Dog()
{
       birthDate = DateTime.Now;
       name = “Mochi”;
}

Dog(DateTime aDate, string aName)

b3881_Ch05.indd 96 05-10-2020 16:32:57

b3881   Requirements Modeling and Coding6"×9"�

Objects and Classes  97

{
       birthDate = aDate;
       name = aName;
}

The first constructor will create a default dog with a birth date as the
current system time and “Mochi” as the name. To create a new dog object
with this constructor, the code is as follows:

Dog aDog = new Dog();

Here, the left-hand side declares variable aDog as of Dog object, and
the right-hand side really uses the constructor to create aDog object by
calling the default constructor. After its creation, aDog will take “Mochi”
as the name and the current system time as the birth date. The object can
perform any of the two functions as the Dog class defined. For example,
through the following code:

string greeting = aDog.Bark();

object aDog will greet a visitor, and through

int age = aDog.GetAge();

object aDog will tell his or her age.
The second constructor will allow one to create a dog object with a

specific birth date and a specific name. For example, the following code
will create bDog with “January 3, 2009” as the birth date and “Cloudy”
as the name.

Dog bDog = new Dog(Convert.ToDateTime(“January 3,
2009”), “Cloudy”);

After bDog is created, it will have two pieces of data — a name and
a birth date — and, of course, it can execute any functions as the aDog
object.

Data flow reduction

In a class, variables are ordinary variables, and functions are ordinary func-
tions that we see in structured programs. A class simply packs them into

b3881_Ch05.indd 97 05-10-2020 16:32:58

b3881   Requirements Modeling and Coding� 6"×9"

98  Requirements Modeling and Coding

a higher-level program module. There are, of course, differences, or there
will be no object-oriented advantages. The most significant difference is
that when a function is packed inside a class, it does not need a param-
eter when the class already has the data member or variable. For example,
does GetAge() not need to know the birthday in order to be performed?
Yes, it does. However, each dog knows his or her birth date: the class
Dog has birthDate variable, and it will reserve a sub-memory slot
to store a birth date value for each dog object created. Therefore, when a
dog object executes GetAge() function, it does not need a birthday as
an input. In contrast, to rename a job title for any Person object, we will
need to tell what the new job title is because the object does not know the
new title. Yet in this case, the function does not need to output any data
because the function is to simply change the exiting data stored in the
memory sub-slot for the job variable. Data flow reduction is one of the
four important advantages of object-orientation: A functions does not need
a parameter if the parameter value is known by the object or provided by
a variable in the class. Other advantages are encapsulations, inheritance,
and polymorphism.

Accessibility scope

Since variables and functions are located inside a class, they belong to the
class. Privatization gives rise to ownership and so creates the issue of who
can access what. Of course, each object can access its own data members
and execute its own functions. What about other objects? Do they have
the same privilege? As a matter of fact, this can be specified by adding a
keyword — either public or private — called accessibility scope, in front
each variable or function. Here, public means that all objects have access
to a variable or a function whereas private means only the owner object
has access.

Two additional scopes are protected and package, which we will use
in later chapters. Here, protected means only the owner or its children
(see Chapter 6 for the concept of children or subclasses) have access to
the variable or function, and package means all the objects created by
the classes inside the same package or project as the owner object have
access.

How do we decide whether a variable or function should be declared
as public or private? The encapsulation principle, one of the three pillars

b3881_Ch05.indd 98 05-10-2020 16:32:58

b3881   Requirements Modeling and Coding6"×9"�

Objects and Classes  99

in object-oriented development, recommends keeping all variables pri-
vate or protected. If there is a need to access an object’s data, we should
do so through functions. The rationale is to improve the manageability of
code change: if a class adds or removes a variable, or changes a variable’s
data type or format, the change will create a ripple effect to all the places
that access the variable. However, if we restrict its access to one class,
then the code change will be restricted to the class locally. Ripple effects
occur in structured development (see Chapter 17). The same problem will
re-occur in object-oriented programs if data members are not private.

Real-World Objects
From the end-user’s viewpoint, an object is any real-world entity, real or
imaginary, tangible or intangible, that has both data and behavior. A class
is a group of the objects of the same type. For example, in a university,
individual students such as “Lisa Johnson” are objects while the group
of all students constitutes the Student class. Similarly, courses, profes-
sors, events, classrooms, tools, meetings, accounts, transactions, products,
tasks, assignments, projects, and enrollments are all business objects, and
they can be grouped into respective classes.

There are times people may use different terminologies for classes and
objects. For example, a class can be called an entity set or a type, and an
object can be called an entity or an instance.

From the programmer’s perspectives, objects are data holders and
behavior executors, i.e., objects have both data members and behavioral
members. In programming, data members are variables. From the end
user’s perspective, data members are attributes, properties, or character-
istic of an object. Each object can be described by a set of characteristics.
For example, we can describe a student by his or her student ID, last name,
first name, major, address, etc. We call these properties attributes or fields.
For another example, we can describe a course by a course number, a title,
a credit hour, and a description.

From the end user’s perspective, a behavioral member is a behavior
that the object can perform. For example, a student object should be able
to register for a course, an airplane should be able to fly, an account object
should be able to credit or debit, and a printer object should be able to
print. In this case, “Register”, “Fly”, “Credit”, and “Print” are behavioral
members.

b3881_Ch05.indd 99 05-10-2020 16:32:58

b3881   Requirements Modeling and Coding� 6"×9"

100  Requirements Modeling and Coding

Conceptual Objects
The goal of requirements modeling is to create artifacts that will lead to a
computer program. Then what is the point of modeling real-world objects
like a student sitting in the classroom, a meeting being held in the third floor,
or an account in the book? The answer to the question is simple. Because
real-world objects are data holders, a model of these objects will capture
the data requirements for the system. Then what is the point of modeling
functions such as Register, Fly, Credit, and Print? Correctly answering this
question entails a mindset transformation for thinking in objects.

Let us first distinguish the following three concepts of objects: real-
world object, conceptual object, and programming object. A real-world
object is a business data holder and a behavior performer. The real-world
object will stay in the real world. The conceptual object is a model of the
real-world object that captures the required data to be processed and func-
tions that process the data. It is the conceptual object that will eventually
evolve into and be implemented as a programming object that stores both
data and functions capable of processing the data. The following are the
links of the related concepts:

Real-world objects → conceptual objects → programming objects

Real-world classes → conceptual classes → programming classes

Note that our conception of conceptual objects includes those of anal-
ysis objects and design objects, which some authors attempt to distinguish
as the evolutionary differences of the same abstraction in two different
stages. Analysis objects is the model of a real-world object with some
technical details such as data types and function parameters left out. When
evolving into the design stage, the model becomes more refined with all
technical details included. Of course, at the design stage, additional objects
such as user interfaces and controllers may emerge as design objects in
addition to those refined conceptual objects.

As in any models, a conceptual object entails abstraction, i.e., take a
perspective to view the real-world object and captures its relevant attri-
butes and related functions or operations.

Capture attributes

As far as which attributes are to be captured, the judgment criterion is rel-
evance. A real-world object has a lot of attributes, but a conceptual object

b3881_Ch05.indd 100 05-10-2020 16:32:58

b3881   Requirements Modeling and Coding6"×9"�

Objects and Classes  101

only captures a few relevant ones. For example, a real-world student has
name, address, phone number, height, weight, blood type, color, genes,
etc. Obviously, we do not need all these data for a student registration sys-
tem. All but name, address, and phone number are possibly irrelevant. On
the other hand, for a clinical system, the data on height, weight, and blood
type become relevant.

The relevance criterion is easy to apply when we know that a certain
real-world object contains a certain list of attributes. However, beginners
tend to feel uncertain in the early stage of conceptualizing the objects. For
example, should city and state be considered as objects or attributes? Is an
account number an attribute of customers or accounts? Here are some of
practical guidelines.

Singletons: If a class has only one attribute, consider it an attribute of
another class. The scenario likely occurs when one takes an object attri-
bute, e.g., city, temperature, weight, and creates its own class. Also related
to this case is when one divides one object into two or more objects and
ends up with several classes with attributes arbitrarily separated.

Derivatives: If one attribute can be derived from other attributes,
delete it unless there is a need to keep the intermediate computational
result. There is no need to store a value that can be calculated. Calculations,
if needed, should be done by functions. Thus, derived values suggest the
need for functions.

Transplants: Transplants are mislocated attributes. For example, an
account object should not have attributes from its owners, such as cus-
tomer ID or social security number. A course-offering object should not
have attributes for the instructor such as office, phone, etc. Watch out
for attributes like xNumber, xCode, or xId — they are often class X’s
attributes.

Capture functions

Which functions are to be captured? This is a big problem, and later chap-
ters of this book on use case modeling will scientifically address this prob-
lem. For now, we just need to know one basic principle: the functions to be
captured must support business processes.

The attributes in a conceptual object are a subset of the data items of
the real-world counterparts. However, the functions of a conceptual object
may not correspond to the behavior performed by the real-world counter-
parts. This is the very reason one school of thought proposes focusing on
object data rather than functions when modeling business objects. Indeed,

b3881_Ch05.indd 101 05-10-2020 16:32:58

b3881   Requirements Modeling and Coding� 6"×9"

102  Requirements Modeling and Coding

when data are captured, the functions to process data tend to be bundled
together. We will follow this approach for modeling business objects.

A real-world student can go to class, study, and take tests. They
can also eat, sleep, and listen to their iPod. If the system is to simulate
students’ learning experience, then going to class, studying, and taking
tests will be the ones to be captured. However, they will be pointless if
we develop management information systems like a student registration
system in which functions are used to process object data. Functions to
be captured must be the ones that support the mission of a system to
be developed, i.e., they are the functions acquired through the process
analysis. For example, a registration system needs the functions to check
for prerequisites, check for availability, change student majors, update
grades, etc. These functions — instead of Learn, Take Tests, or Sleep —
should be captured.

Allocating operations to objects is the most difficult task for begin-
ners. In fact, it is essentially the skill that differentiates a beginner from
an expert. Our later chapters on collaboration models will deal with this
problem extensively. For now, we will present one basic principle: a func-
tion enables an object that processes its data.

Enabling objects prescribes where each function will be allocated.
In a student registration system, who changes student majors or updates
grades? In the real world, a real person such as a registrar does it. Which
object do we allocate this function to? It is tempting to pack it into the reg-
istrar object, but it is wrong to do so on several counts. First, which object
holds data members such as a major? It is a student. A registrar object
will have to communicate with the student object in order to get the major
changed. Is it not simpler to ask the student object to perform the function
without the registrar? Second, packing the functions like “change major”
into the registrar object will eventually make one or two objects so power-
ful and perform all the functions, and the remaining objects do nothing but
hold data. In the registration system, the powerful objects will be the ones
like registrar, advisor, or department chair because they perform all the
registration functions in the real world.

To enable an object, a function that processes data shall be packed
into the object that holds most of the data. For example, since a student
object has data on major and grade point averages (GPA), the functions to
change a major and update GPA shall be packed into the Student class.
Why? Because by doing so we archive the data flow reduction and avoid
unnecessary data passing between objects. A student object can perform

b3881_Ch05.indd 102 05-10-2020 16:32:58

b3881   Requirements Modeling and Coding6"×9"�

Objects and Classes  103

its functions independently without involving other objects. Therefore,
objects become more autonomous, and classes become less coupled.

For another example, in the real world, a manager is responsible for
annual salary increases for her employees. The function to update sal-
ary needs to be captured. Where do we pack the function: Employee or
Manager? According to the same principle, it should be the Employee
class because each employee object has the salary as an attribute.

Does this mean that each student can change her own GPA, and each
employee can change his or her own salary? No. The objects that have the
capabilities are conceptual ones, which will be implemented as a part of
the computer system. They are not real-world objects.

A real-world object may be lifeless by itself. However, its conceptual
counterpart must still be alive. For example, in the real world, an account
does not have life. But the conceptual account object will have capabilities
such as handling withdrawals and deposits. It can also answer account-
related inquires. For another example, in the real world, an appointment
is lifeless and maneuvered by a secretary. In the conceptual counterpart,
it is alive, with the ability of creating new appointments and updating
existing ones.

Enabling conceptual objects may be also used for discovering func-
tions rather than merely allocating them. If an object has an attribute, what
do we typically do with the attribute values? The primitive data activities
are CRUD ones, i.e., creating new values, retrieving the values, updating
the values, and deleting the values. For example, students have contact
data and GPAs, and thus we should have functions to update contacts and
GPA. Non-primitive operations may process several attributes or call other
operations to fulfill a high-level task. For example, each order item object
has quantity, price, and discount attributes, so why do we not create an
operation to calculate subtotal?

Autonomous agent heuristics

As a corollary of the principle of enabling conceptual objects, we can stip-
ulate the following important heuristics for object modeling: Each concep-
tual object should be an intelligent autonomous agent with capabilities to
process its own data. We can apply the heuristics to analyze a few classic
cases.

First, should a driver start a car, or should a car start itself? A car has
full knowledge of itself, including its ignition system and engine, how

b3881_Ch05.indd 103 05-10-2020 16:32:58

b3881   Requirements Modeling and Coding� 6"×9"

104  Requirements Modeling and Coding

to fire the ignition system, and how to connect ignition to engine. Thus,
according to the autonomous agent heuristics, the function should be allo-
cated to a car. In contrast, if we allocate the function into the driver object,
the car object would have to pass all the knowledge to the driver object
in order to program the function. This is too much to pass! Would it not
be easier to define Start() in the car object and have the driver merely
execute/call the Start()function by sending a message to the car object
if it needs to drive the car?

A related case arises from a popular riddle among object-oriented
developers. I expand and rephrase it like this. On an object-oriented farm
lives an object-oriented farmer who raises object-oriented babies, along
with many object-oriented cows that produce object-oriented milk for
the babies. There are many functions these objects must perform. Let us
consider two of them: Get Milk and Feed Milk. Should a cow be able
to unmilk itself, should milk be able to uncow itself, or should a farmer
squeeze milk from a cow? Should a child drink the milk or should a farmer
feed the milk?

Since a cow has full knowledge of its milk, it is easy to program how
to produce milk if the operation is inside the cow. Thus, a cow should have
the unmilk operation to be autonomous. In contrast, a farmer must have
full knowledge of a cow, including where the milk is stored, in order to
program SqueezeMilk operation if we pack the SqueezeMilk function into
the farmer object. Asking a milk object to unmilk is also too much: the
milk object needs to know a lot about the cow object such as where the
milk is stored and by which route the milk is supposed to leave the cow’s
body. Similarly, a baby knows his- or herself and can easily program how
to drink milk. In contrast, for a farmer to feed milk, he or she must get
hold of milk first and know the baby’s internal organs very well, including
where the mouth, the throat, and the lungs are located, and how to oper-
ate those organs. Thus, it is a baby’s responsibility to drink milk, not a
farmer’s responsibility to feed the milk. Of course, a farmer knows how to
raise a baby, and when it is time for the baby to eat, he or she can be lazy
and send a message to the baby and ask the baby to drink milk.

Representing Conceptual Objects
We use a rectangular box with three compartments as the model of a class.
In the first compartment, we use a single noun with the first letter in caps

b3881_Ch05.indd 104 05-10-2020 16:32:58

b3881   Requirements Modeling and Coding6"×9"�

Objects and Classes  105

to label the respective class name. We list all the attributes in the second
compartment. Each attribute has a name along with its data type such as
int, string, decimal, etc. and accessibility scope as symbolized by – for pri-
vate, + for public, # for protected, and ~ for package. Figure 2 shows four
conceptual classes, Dog, Person, Account, and Student, along with
a few sample attributes and operations, drawn using Rhapsody, which uses
a lock icon for the private scope, a key icon for the protected scope, and
window icon for the public scope.

To create classes in IBM Rhapsody, right click with the mouse on
a package and choose the popup menu Add New → Diagrams → Class
Diagram. Then two windows will be open (see Figure 3): the main win-
dow with a blank canvas for us to draw a class diagram and a side window
to list the diagram tools. To create a class, drop the class icon in the tool-
box to the canvas and give a class name. Then right click on the class and
choose the popup menu Add New → Attributes or Add New → Operations
to add attributes and operations. After an attribute or operation is added,
double click on its name to change its name or data type. To change its
accessibility scope, double click on the attribute or operation icon to open
its features window. By default, all attributes and operations are set with
public accessibility. This violates the encapsulation principle, and so we
need to change the scope for each attribute by opening its features window.
To remove an attribute or operation, double click on the box for a class to
open the features window of the class, which has tabs for adding or delet-
ing attributes and operations.

Attributes

Attributes are expressed in the attibuteName:DataType format in
class diagrams. Primitive data types such as int, double, char, bool, and

Figure 2.   Illustration of conceptual classes.

b3881_Ch05.indd 105 05-10-2020 16:32:59

b3881  R
equirem

ents M
odeling and C

oding
�

6"×9"

106 
R

equirem
ents M

odeling and C
oding

Figure 3.   Create classes in Rhapsody.

b3881_C
h05.indd 106

05-10-2020 16:32:59

b3881   Requirements Modeling and Coding6"×9"�

Objects and Classes  107

string are available in most programming languages. Complex types are
language dependent. For example, in C#, DateTime type is available
while in Java, Date and Time type are used. For multi-valued attributes,
we can use an array or a list as the data type. For example, a student object
may have multiple majors. We can use List<string> as the data
type for attribute majors (see Figure 4). If a type is not available or we
want to be language independent, we may create custom types, which are
classes themselves. For example, if we need to define an attribute called
activePeriods for the Student class to specify the time periods a
student is enrolled, you can create a class called Period with two attri-
butes beginDate and endDate, and then use the type to define attri-
bute activePeriods as of type List<Period> (see Figure 4).

Figure 4 shows the Employee class also with a custom type. In
this example, employee objects have eid, name, job, hireDate,
salary, and manager as attributes, and Raise, GetManager, and
Assign as functions. Note that the data type for the manager attribute
is Employee, the class in question. Operation GetManager is used to
find the manager of an employee, and Assign is used to put an employee
to a new job under a new boss.

Operations

Operations are expressed in the

FunctionName(Parameter 1: Data Type, Parameter 2:
Data Type, …): Return Data Type

Figure 4.   Attributes with custom types.

b3881_Ch05.indd 107 05-10-2020 16:33:00

b3881   Requirements Modeling and Coding� 6"×9"

108  Requirements Modeling and Coding

format in class diagrams. That is, each operation has a name along
with a list of possible parameters and corresponding data types, and the
data type of a return value such as void, int, decimal, string, etc. It also
has a symbol for accessibility. Note the difference on how to express oper-
ations in class diagrams and how to write function heads. For example,
the function “decimal ComputeMax (decimal a, decimal b)”
will be written as ComputeMax(a : decimal, b : decimal) :
decimal. The correspondence is shown in Figure 5.

As discussed in Chapter 4, a function has two parts: operation that
defines what objects can do, and method that specifies a procedure on
how the operation is carried logically and procedurally. The operations are
listed in the third compartment, but the method will be documented sepa-
rately using a procedural model such as an activity diagram.

Static attributes and operations

Typically, an attribute is about individual objects, and each object has a
specific measure of the attribute value. For example, one student may have
a name as John and another as Lisa. However, there are occasions we need
to capture the attributes that are invariant across individual objects; they
are attributes of the entire group of objects or class. For example, school
name, average GPA, and the total number of students are not an individ-
ual student’s attributes but of the Student class or group. We symbol-
ize a class-level attribute, or static attribute, by underlining the attribute
name as studentCount in Figure 4. The programmer will add modifier
“static” to symbolize a class variable as static:

static private int studentCount;

By the same token, a function is usually the behavior of an object, i.e.,
only the object can execute the function. However, there are cases when

ComputeMax(a : decimal, b : decimal) : decimal

decimal ComputerMax(decimal a, decimal b)

Figure 5.   Notation of operations in class diagrams.

b3881_Ch05.indd 108 05-10-2020 16:33:00

b3881   Requirements Modeling and Coding6"×9"�

Objects and Classes  109

a function is executed by the class. A programmer marks such a function
as “static” as for a variable. In class diagrams, we underline class-level or
static functions. For example, in the Student class, some examples of
static functions include GetStudentCount, UpdateAverageGPA,
etc. In Figure 4, we showed GetStudentCount() as an example static
function. Note that a constructor, used for creating new objects, is by
nature a static function even though it is not labeled so. In requirements
modeling, however, there is seldom a need for documenting constructors.
CASE tools such as IBM Rhapsody may be configured to create construc-
tors automatically.

To specify class-level attributes and operations as static ones in
Rhapsody, double click on the attribute or operation icon to open its
features window.

Implementing Conceptual Objects
Real-world objects eventually evolve into programming objects. First,
the real-world objects are abstracted into conceptual objects. We call this
step objects modeling, in which relevant data are captured and functions
obtained through business process analysis or use case descriptions are
packed into the objects. The second step is to convert conceptual objects
into programming ones. We call this step implementation. Implementation
entails the choice of programming language and sometimes the platform
on which the code will be deployed. In this section, we will use C# to code
all the conceptual classes illustrated in the chapter.

The code for both Dog and Person classes has already been shown
earlier in the chapter. The following is the code for the Account class in
Figure 2. Note that each conceptual class maps into a programming class,
each attribute is mapped into a variable declaration, and each operation is
mapped into a function declaration.

public class Account
{
   private int acctNo;
   private double balance;
   private DateTime openDate;

   public void Credit(decimal amt)
   {
       //
   }

b3881_Ch05.indd 109 05-10-2020 16:33:00

b3881   Requirements Modeling and Coding� 6"×9"

110  Requirements Modeling and Coding

   public void Debit(decimal amt)
   {
       //
   }

   public double GetBalance()
   {
       //
   }
}

The body of each function is empty at this stage and will be filled in by
implementing the respective procedure model as seen in last few chapters.
Here, the GetBalance() function simply returns the balance that each
account object has, and the Credit() and Debit() functions simply
increment and decrement an amount from the balance. Thus, these func-
tions can be implemented without any procedural model per the spirit of
the agile development.

public class Account
{
   private int acctNo;
   private double balance;
   private DateTime openDate;

   public void Credit(double amt)
   {
      balance = balance + amt;
   }

   public void Debit(double amt)
   {
      balance = balance - amt;
   }

   public double GetBalance()
   {
      return balance;
   }
}

The Employee class in Figure 4 can be implemented similarly. The
reader just notices that attribute manager is declared as a variable of

b3881_Ch05.indd 110 05-10-2020 16:33:00

b3881   Requirements Modeling and Coding6"×9"�

Objects and Classes  111

Employee; it is perfectly fine to use a class as a custom type to define attri-
butes or operations inside the same class. Operation Assign() assigns
a job title and a manager to an employee, which leads to a change of the
values in the sub-memory slots corresponding to the job and manager
variables of the employee object, and GetManager() returns whatever
value is currently inside the sub-memory slot of the manager variable.
Operation Raise() is used to raise an existing salary by a percent and
to change the value in the sub-memory slot corresponding to salary
variable of the employee object. These operations may be implemented as
follows without procedural models:

public class Employee
{
   private int eid;
   private string name, job;
   private DateTime hireDate;
   private double salary;
   private Employee manager;

   public void Raise(double percent)
   {
       salary = salary + salary * percent;
   }

   public void Assign(string title, Employee boss)
   {
       job = title;
       manager = boss;
   }

   public Employee GetManager()
   {
       return manager;
   }
}

To implement the Student class in Figure 4, we need to code the
Period class first. The operation GetDays() finds the number of days
between beginDate and endDate of each period object. The follow-
ing implementation sends a message to a built-in TimeSpan object,
which finds the days as a decimal value.

b3881_Ch05.indd 111 05-10-2020 16:33:01

b3881   Requirements Modeling and Coding� 6"×9"

112  Requirements Modeling and Coding

public class Period
{
        private DateTime beginDate;
        private DateTime endDate;

        public int GetDays()
        {
            TimeSpan ts = endDate - beginDate;
            return (int) ts.Days;
        }
}

The following code is the complete implementation of the
Student class in Figure 4. First, notice that we combined the dec-
laration of two variables, lastName and firstName, because they
are all the same type. Next, notice that studentCount is declared as
a static variable and majors as a list. Finally, notice that, in order to
compute the number of days a student is active in each active period,
we delegate the job to a Period object because it is specialized in
dealing with time periods, and then we use a for-loop to add the days
of all the active periods.

public class Student
{
      private int sid;
      private string lastName, firstName;
      private List(<string> majors;
      private double credits;
      private double gpa;
      static private int studentCount;
      private List<Period> activePeriods;

      public static int GetStudentCount()
      {
             return stuCount;
      }

      public int GetActiveDays()
      {
             int days = 0;
             foreach (Period p in activePeriods) {
                    days = days + p.GetDays();
             }
             return days;
      }

b3881_Ch05.indd 112 05-10-2020 16:33:01

b3881   Requirements Modeling and Coding6"×9"�

Objects and Classes  113

      �public void UpdateCredit(string grade, double
   credit)

      {
             //
      }
}

Operation UpdateCredits() is used to update total credits and
GPA for a student when a new course is completed. It takes the credit hour
and the grade of the finished course and changes the values of variables gpa
and credits. This operation is not a simple one and deserves a procedural
model delineating its logic. First, we need a solution strategy or algorithm.
One such strategy is to compute the total number of points by multiplying
existing GPA with existing total credits and adding the new points from the
newly finished course. The new total points divided by the new total credits
will be the new GPA. Second, we need a procedural model to implement
the algorithm. An activity diagram or structured English, as we will use in
describing use cases in later chapters, will help in this. The following is
the updated code of the Student class, in which the boldfaced portion
implements the above solution strategy to update GPA and credits:

public class Student
{
       private int sid;
       private string lastName, firstName;
       private List(<string> majors;
       private double credits;
       private double gpa;
       static private int studentCount;
       private List<Period> activePeriods;
      
       public static int GetStudentCount()
       {
       return stuCount;
       }
      
       public int GetActiveDays()
       {
              int days = 0;
              foreach (Period p in activePeriods) {
                     days = days + p.GetDays();
              }
              return days;
       }

b3881_Ch05.indd 113 05-10-2020 16:33:01

b3881   Requirements Modeling and Coding� 6"×9"

114  Requirements Modeling and Coding

       �public void UpdateCredit(string grade, double
   credit)

       {
          double totalHours = credits + credit;
          double totalPoints = 0;
          double newPoints = 0;
          switch (grade)
          {
             case “A”:
                newPoints = 4;
                break;
             case “B”:
                newPoints = 3;
                break;
             case “C”:
                newPoints = 2;
                break;
             case “D”:
                newPoints = 1;
                break;
             case “F”:
                newPoints = 0;
                   break;
             default:
                  �throw new Exception(“invalid

grade”);
          }
          totalPoints = gpa * credits + newPoints;
          credits = totalHours;
          gpa = totalPoints / totalHours;
       }
}

Review Questions
  1.	 What are the three types of objects and how are they related?
  2.	 What are criteria to decide which functions are allocated into an object?
  3.	 Give a few examples of real-world objects and list their data attributes

and behaviors.
  4.	 Where do you pack the function?

a.	 A shelf object “shelfs” a book or a book “stands” on a shelf?
b.	 A mower “cuts” grass or grass “shrinks”?
c.	 A registrar “enrolls” a student, a student “registers” for a class, or

a class “enlists” a student?

b3881_Ch05.indd 114 05-10-2020 16:33:01

b3881   Requirements Modeling and Coding6"×9"�

Objects and Classes  115

d.	 A manager “receives” a shipment or a shipment “updates” its
status?

e.	 A pilot “lifts” an airplane or the airplane “rises”?
  5.	 List three example conceptual objects for each of the following systems:

a.	 Inventory system
b.	 Online order system
c.	 Airline reservation system
d.	 Medical record system

  6.	 Think of three examples of static attributes and static operations in any
conceptual objects.

  7.	 In the real world, a telephone object has attributes such as phone num-
ber and on or off status and functions such as dial, turn on, turn off,
hang up, etc. Think of two situations or systems in which these data
functions are captured.

  8.	 What are the basic members in a class?
  9.	 What is encapsulation? Should a data member (variable) be declared

as public or private? Why?
10.	 True or False:

a.	 An object has both data and behaviors. A class is a template that
defines the data and behaviors.

b.	 A class cannot have more than one constructor.
c.	 All classes are used to create new objects.
d.	 A property is a data member.

11.	 What are the three types of behaviors an object can have?
12.	 A method is declared as private in a class. Then who can invoke the

method?
13.	 Who can invoke a public method?
14.	 What is the difference between protected and public?
15.	 Can a protected method or property be accessible to children, grand-

children, and great-grandchildren classes?
16.	 What is overloading?
17.	 Can a property read and change the value of a private variable?
18.	 Does a property have to be tied to a data member?

Exercises
  1.	 Use a CASE tool to create following classes and then use C# or Java

to implement the classes:
a.	 Order (data: oid, odate, oamount; behavior: changeAmount,

computeTax).

b3881_Ch05.indd 115 05-10-2020 16:33:01

b3881   Requirements Modeling and Coding� 6"×9"

116  Requirements Modeling and Coding

b.	 Product (data: sku, desc, price, qty; behavior: changeQTY,
computeValue).

c.	 Author (data: id, name, street_address, city, state, zip, country,
phone, email).

d.	 Publisher (data: companyName, contact, address, phone, email).
e.	 Article (data: title, authors, page_ranage, journal, publicationDate).
f.	 Book (data: ISBN, authors, title, publisher, price, publicationDate).
g.	 Proceedings (data: ISBN, editors, title, publisher, price, publca-

tionDate, ConferenceTitle, ConferenceDate, ConferenceLocation,
articles).

h.	 Appointment (data: time, reason, location, participants).
  2.	 Create the following classes using C# and make at least five attributes

for each:
a.	 Flight
b.	 Course
c.	 Shipment
d.	 Customer
e.	 Apartment

  3.	 Create Account class with appropriate attributes such as acctNo, bal-
ance, and status (indicating whether an account is flagged or not), then
crate an operation to allow withdrawal of money from an account. Note
that if the account is flagged or if the withdrawal is above the balance,
the transaction should be denied. Use an activity diagram to describe
the procedure used for implementing the withdrawal operation.

  4.	 A classroom is a real-world object. It has data like room number, size,
equipment, etc. It has functions such as Open, Close, Turn Light On,
Dim Light, House Meetings, etc. Then create a conceptual object of a
classroom for the student registration system. What data and functions
should you capture?

  5.	 A student club wants to have a database to manage its data on mem-
bers. The club assigns members to its numerous committees. It is
possible that one member can serve in more than one committee and
will chair at most one committee. Each year, the club organizes many
events. Each time, the club assigns one committee to oversee an event.
List the real-world objects with the data and functions they perform.
Then create the model of these objects.

  6.	 Create User class with data members like username, password, sta-
tus, and userRole and an operation Login(). Does the operation need
parameters username and password? Why? Use a procedure model to
describe the procedures necessary to perform an operation Login().

b3881_Ch05.indd 116 05-10-2020 16:33:01

b3881   Requirements Modeling and Coding6"×9"�

Objects and Classes  117

Basically, the user must enter a user ID and a password. The system
will have to check whether the information matches one of the account
records to allow the user to enter the system. The account is locked if
the user tries over three times unsuccessfully.

  7.	 Use Java or C# to create Inventory class as follows:
a.	 Data members: productID, locationID, qty, minQty, maxQty.
b.	 Behavioral members: checkout(int amount), checkin(int amount),

isFull() — determine if the inventory is full, isTooLow() is to
determine the inventory level is too low.

  8.	 Use Java or C# to create Cat class as follows:
a.	 Data members: name, breed, birthdate, weight.
b.	 Behavioral members: eat (double amountOfFood), findAge(),

exercise(int minutes) (assume a cat can reduce 0.1 grams of weight
per minute of exercise but cannot exercise more than 60 minutes at
a time without taking 12 hours to recover).

  9.	 Use Java or C# to create Classroom class as follows:
a.	 Data members: building, room, numberOfSeats, phone.
b.	 Behavioral members: getName() — return something like “103C

Simens Hall”, getSeats().
10.	 Use Java or C# to create a balloon class as follows:

a.	 Data members: x and y coordinates, size, color.
b.	 Behavioral members: moveHorizontal(int delta), moveVertical(int

delta), expand(int delta), show(Graphics paper), pop() — balloon
will destroy itself.

11.	 Use Java or C# to create a rectangle class as follows:
a.	 Data members: coordinates for the top left corner, width, length.
b.	 Behavioral members: getPerimeters(), getArea(), move(int

xChange, int yChange), resize(int widthChange, int lengthChange).
12.	 Use Java or C# to create a triangle class as follows:

a.	 Data members: vertexA, vertexB, vertexC (use Point structure).
b.	 Behavior members: getPerimeters (the total length of three size),

isIsosceles — check if the triangle is isosceles, isTriangle() to
check if the sum of any two sides is greater than the other side.

13.	 Use Java or C# to create Order class as follows:
a.	 Data members: oid, orderDate, promisedDate, shipDate, delivery-

Date, amount, status.
b.	 Behavioral members: isOnTime() — check if the delvieryDate is

ahead of promisedDate, timeToDelivery() — get number of days
from order to delivery, getLateFees() — company pays 1% fee to the
customer for every day of delay in delivery according to the contract.

b3881_Ch05.indd 117 05-10-2020 16:33:01

b2530   International Strategic Relations and China’s National Security: World at the Crossroads

b2530_FM.indd 6 01-Sep-16 11:03:06 AM

This page intentionally left blankThis page intentionally left blankThis page intentionally left blankThis page intentionally left blank

119

b3881   Requirements Modeling and Coding6"×9"�

Chapter 6

Class Diagrams

Introduction
In the previous chapter, we learned how to model individual objects,
including their data and behavior, using conceptual objects and then
implement them into programming objects. Real-world objects do not
live in isolation, they are related. For example, a building object contains
classroom objects, a student object registers for courses, and instructor
objects are a kind of employee objects, which in turn are a kind of per-
son objects. Real-world objects relate to each other through two general
types of relationships: association and inheritance. Inheritance is a sim-
pler relationship merely symbolizing that one object is a special kind of
another object. Inheritance enables a child object to behave like its parent
object. Association has a broad scope: it includes contacts, ownerships,
assignments, containments, etc. Associations enable the objects to com-
municate with one other.

A class diagram is a graphical model representing conceptual objects,
as groups or classes, and their relationships. Therefore, in class diagram-
ming, we must abstract not only individual objects but also their rela-
tionships, which link objects together. In this chapter, we learn how to
model these relationships and introduce the concepts of cardinality (or
multiplicity) and navigability. Then we will discuss how the relationships
may be implemented into computer programs.

b3881_Ch06.indd 119 05-10-2020 16:33:18

b3881   Requirements Modeling and Coding� 6"×9"

120  Requirements Modeling and Coding

Associations
Real-world objects may participate in relationships with each other through
contacts, ownerships, communications, correspondences, containments,
assignments, etc., which can be all modeled as associations. For examples,
a customer places an order, a pilot flies an airplane, a document is printed
by a printer, a student takes a course, a customer has an account, a build-
ing has a room, a student lives in a dormitory, a professor is assigned to
teach a course, a professor advises a student, a transaction is done under
an account, etc. All these are represented as associations in class diagrams.

Since we group conceptual objects into classes, we use lines con-
necting classes to show the associations between individual objects in the
classes. For example, to show that a customer takes an order, we use a line
to connect Customer and Order classes. The result is a class diagram
(see Figure 1).

Note that the line in the class diagram represents all the associations
between individual customers and orders. In the real world, each order is
made by one customer, but a customer may take many orders. One simple
line will not be able to show these details, but with the concept of cardinal-
ity, we can capture a portion of this nature.

Cardinality

To capture the multiplicity of associations, we express the maximum and
the minimum numbers in an association line. The maximum cardinality
expresses the maximum number of associations that one object at each end
can possibly participate in. Typically, we do not need to express the exact

Customer

cid:int
cname:string

Order

odate:DateTime
oid:int

1 *

Figure 1.   Association between customer and order.

b3881_Ch06.indd 120 05-10-2020 16:33:18

b3881   Requirements Modeling and Coding6"×9"�

Class Diagrams  121

magnitude of the maximum cardinality. Instead, we just need to express
whether the maximum number is one or multiple using symbols 1 or *,
respectively, because in computer programming, the maximum cardinali-
ties of two or more will be treated equally using a list or array.

The minimum cardinality expresses the minimum number of associa-
tions that one object at each end can possibly participate in. Again, we
typically do not specify the exact magnitude. Instead, we want to know
whether the minimum cardinality is 0 or 1; in computer programming, the
minimum cardinality 0 or 1 means whether a foreign data member can be
optional or not, i.e., has missing values or not.

We use a symbol consisting of the minimum and maximum cardinali-
ties separated by two dots to show the range of cardinality. For example, if
a customer may take zero or more orders, then the cardinality shown at the
Order side of the relationship will be 0..*, which may be shortened as *.
On the other hand, if each order is made by one and only one customer, we
express it as 1..1, which may be shortened as 1 (see Figure 1). In general,
the range of cardinalities is shown as m..n, with m being the minimum and
n the maximum cardinality, but not all CASE tools support the general
range notation.

Navigability

The second characteristic of an association is navigability. The notion of
cardinalities is the same as that in data modeling, but the notion of navi-
gability is unique to class diagramming. Both data modeling and class
diagramming are concerned with navigability, but they have different con-
cerns. In data modeling, navigability is concerned with whether, given
the knowledge of one record, users can query the related other records.
The navigability is always bidirectional; if two tables have an association,
users can search for the associated records in both directions. For example,
given an order, users can find what items are in the order. On the other
hand, given an item, the users need to find what orders contain the item.

In class diagraming, navigability is concerned with whether one object
can delegate a task to the other one or send messages to the other one for
help to perform a task. The navigability may be unidirectional sometimes.
For example, for an order object to compute the total amount of the order,
it needs to ask an item object for help to obtain the item price. However,
we could not contemplate any need in the opposite direction, i.e., an item
object needs help from an order object. Therefore, in class diagrams, we

b3881_Ch06.indd 121 05-10-2020 16:33:18

b3881   Requirements Modeling and Coding� 6"×9"

122  Requirements Modeling and Coding

need to explicitly mark whether the navigability of an association is unidi-
rectional or bidirectional.

Besides the need for asking help, navigability may be also reframed
to be concerned with whether one object needs to have knowledge of the
other one. Here, knowledge means data; by saying that a customer object
has knowledge of customer ID, name, and address, we mean the customer
object has those data members. When modeling individual objects like
orders and customers, the reader very likely makes customer as a data
member of Order and orders as a data member for Customer. Why
does the reader think we need those foreign data members? It is because of
our common sense that an order object needs to know who makes the order
and a customer needs to know the orders he or she has made. In a class
diagram, associations replace the foreign data members. For example, a
student may have one or more active periods on campus, and thus we cre-
ated a custom type Period and captured activePeriods as a foreign
data member of the Student class in the last chapter. Alternatively, we
can use an association to replace activePeriods data member as in
Figure 2.

The need for knowledge may be also unidirectional. In the above
example, a student object has one or more active periods, but a period
object does not have knowledge of any student object. Therefore, the asso-
ciation is drawn as unidirectional, pointing from Student to Period.

Student

admitDate:DateTime
credits:double
firstName:string
gpa:double
lastName:string
sid:int
majors:List<string>
studentCount:int

GetActiveDays():int
GetGPA():double
GetStudentCount():int
UupdateCredits(grade:string,credit:double):void

Period

beginDate:DateTime
endDate:DateTime

GetDays():int

1..*

Figure 2.   Unidirectional association to replace data member activePeriods.

b3881_Ch06.indd 122 05-10-2020 16:33:19

b3881   Requirements Modeling and Coding6"×9"�

Class Diagrams  123

Similarly, an order object needs to have the knowledge of the items
included in the order; when we print an order confirmation, for example,
we need to list item descriptions, prices, etc. In contrast, there is hardly a
need for an item object to know the orders that contain the item. To print
an item catalog, for example, does each item need to refer to the list of
orders that contain the item? Therefore, based on the need for knowledge,
the association between Order and Item should be also considered to be
unidirectional (see Figure 3).

Needs for knowledge and needs for help are, in fact, equivalent. We
can understand the equivalence as follows. In a class diagram, each object
is designed to handle one area of concerns: it has a set of native data mem-
bers, and all functions are designed to be specialized in processing the
native data members. If these data members are needed somewhere else,
the tasks of processing these data members must be delegated to the host
object who owns the native data. For example, an item object is specialized
in handling item information such as stock keeping unit (SKU), descrip-
tion, price, color, quantity on hand, etc. If an order needs to acquire or
process item information such as price or quantity on hand, it needs to ask
an item object for help. Similarly, when a student object needs to compute
the total number of active days on campus, it delegates the job to a period
object.

In the real world, only when two people know each other can they
help each other. This same protocol applies to the programming world:
two objects can communicate or send messages to each other only if they
know each other. A class diagram models the need for knowledge and

Order

oid:int
odate:DateTime
promiseDate:...

Item

sku:string
description:string
price:double
color:string

1..*

Figure 3.   Unidirectional association between Order and Item.

b3881_Ch06.indd 123 05-10-2020 16:33:20

b3881   Requirements Modeling and Coding� 6"×9"

124  Requirements Modeling and Coding

need for help between two conceptual objects using associations; two
conceptual objects are associated if and only if their programing coun-
terparts can command each other to provide services. When and only
when Customer and Order are associated in a class diagram can
a customer object in a computer program call an order object to per-
form its functions like GetOrders(), ComputeOrderTotal(),
TrackOrderStatus(), etc. Similarly, an order object can ask the
customer object to perform functions like UpdateCustomerInfo(),
NotifyCustomer(), etc.

By default, an association between two classes is two-way navigable,
meaning the objects both know and serve each other. In other words, the
navigability is bidirectional when an association line has no direction, for
example, as the association between Customer and Order in Figure 1.
In the case in which one object needs to know or use the other but not vice
versa, we use an arrow head explicitly at the end of an association to rep-
resent unidirectional navigability: If object A has an association pointing
to object B, it means that A has knowledge about B, or A can send mes-
sages to B asking for help, but B does not need to know A or B cannot send
messages to A. Figure 2 illustrates the unidirectional association between
Order and Item objects. For another example, a pilot needs to use an
airplane and thus needs to ask the airplane to provide service, to take off,
for example, but the airplane does not need to know the pilot and does not
ask the pilot to provide services (see Figure 4).

To create associations in Rhapsody, select Association in the diagram
toolbox (see Figure 3 of Chapter 5) and click on each class box to be con-
nected by the association line. Then double click on the association line
to open its features window, which has two tabs, respectively, for the two

Pilot Airplane

1

Figure 4.   Unidirectional association between Pilot and Airplane.

b3881_Ch06.indd 124 05-10-2020 16:33:20

b3881   Requirements Modeling and Coding6"×9"�

Class Diagrams  125

ends to specify the multiplicity and navigability of each end (see Figure 5).
If an association is one-way navigable, for example, from Order to Item,
we will check the Navigable box at the Item end and uncheck Navigable
box at the Order end. Note that we check the Navigable box at the end
we want the direction to point to. Also, for unidirectional associations, we
only need to specify the cardinality at the end the arrow is pointing to. It
might be more convenient to use Directed Association in the toolbox to
draw unidirectional associations, whose features window will have only
one end, the one arrow points to, to specify cardinalities.

Inheritance
The second type of relationships among objects is inheritance, which may
be equivalently called generalization/specialization or supertype/subtype.
It is used to represent “is-a-kind” relationships between objects. For exam-
ples, a dog is a kind of animal, a car is a kind of vehicle, a square is a kind
of shape, a desk is a kind of furniture, and full-time employees and part-
time employees are both kinds of employees. In class diagrams, we use

Figure 5.   Feature window of associations.

b3881_Ch06.indd 125 05-10-2020 16:33:20

b3881   Requirements Modeling and Coding� 6"×9"

126  Requirements Modeling and Coding

a line with a hollow triangle arrow to model the inheritance relationship.
The triangle arrow is pointing from a child (or specialized or subtype)
class to the parent (or generalized or supertype) classes, indicating that the
child object is a kind of a parent object (see Figure 6 for examples).

Inheritance may be equally considered for a containment relation-
ship between classes, where a superclass contains subclasses. As such, it
allows one to model a large group of objects that are identical overall but
with minor differences. For example, all employees have attributes like
employee ID, name, job, hire date, etc. Yet full timers have salary, but part
timers have hourly rates and work hours. To emphasize these minor differ-
ences while not duplicating many identical data and behavioral members,
we could factor the common attributes and operations out of all employ-
ees into a generalized class called Employee and then put the specialized
attributes and operations that are only relevant to full timers and part timers
into two specialized classes: FullTimer and PartTimer (see Figure 7).

Inheritance is one of four features of object-orientation: it makes
objects “rich.” Is inheritance not making a lot of people rich? Just imagine
if someone has designed and programmed a powerful class that can cre-
ate objects capable of flying, swimming, shooting enemies, or launching
rockets, etc. By merely inheriting from the powerful one, a new class will
possess the same capabilities; implicitly, all child objects inherit all the
attributes and operations of a parent object along with the association
relationships that the parent object may have with other objects.

To take advantage of inheritance, there are two enhancements that
need to be added to a class diagram. First, inheritance cannot override the
accessibility scope; if an attribute or operation is declared as private in the
parent class, it will not be accessible by its child — needless to say, it will
be inherited. Therefore, to enable inheritance, data and operation to be

Animal

DogCat

Shape

Square Triangle

Vehicle

Car

Figure 6.   Example inheritance relationships.

b3881_Ch06.indd 126 05-10-2020 16:33:21

b3881   Requirements Modeling and Coding6"×9"�

Class Diagrams  127

inherited cannot be private. The public accessibility scope for data will be
too dangerous. In the middle is the protected scope. Here, protected means
only the owner or its child objects have access to the data or operation.
Therefore, all the attributes and private operations to be inherited will be
declared as protected, symbolized by #.

Second, a child object can inherit an operation from its parent object
and at the same time may have a choice to modify the method of execut-
ing the operation. Note that, from the programming perspective, functions
process object data. The child object inherits its parent’s data members
and, in addition, owns its own special data. Thus, inherited functions may
need to process additional data owned by the child object. Thus, a func-
tion programmed for the parent class may be insufficient or irrelevant
to the child class. For example, Employee class may define function
ComputePay(), and PartTimer and FullTimer will inherit these
functions. However, the child classes will perform the operation differ-
ently; a full timer uses salary, but a part timer uses wage and work hours to

Employee

hiredate:DateTime
job:string
name:string
eid:int
manager:Employee

FullTimer

salary:double

PartTimer

hourlyRate:double
workHours:double

Figure 7.   Employee and its child classes.

b3881_Ch06.indd 127 05-10-2020 16:33:21

b3881   Requirements Modeling and Coding� 6"×9"

128  Requirements Modeling and Coding

obtain the pay amount. To address this need, the child class may choose to
inherit an operation (function head) but not how the operation is performed
(or method/function body). The child objects can override an inherited
function by modifying its inner logic or method. A function that is antici-
pated to be modified by a child must be declared as virtual, and then
the child class must re-declare the operation as override. The class
diagram may not show virtual or override. Instead, when an operation is
shown in both parent and child classes, the qualification of virtual in
the parent and override in the child classes are default.

Extending the second enhancement further, we can even declare a
function in the parent class without the function body or method, i.e., the
function has only the function head or operation. Such an operation is
called abstract. If a class has one or more abstract operations, the class
itself becomes abstract. If all operations of a class are abstract, and in
addition there are no data members in the class, the class is called an inter-
face. Here is an example interface:

interface IFlyable {
       void Fly();
       void TakeOff();
       void Land();
}

An interface essentially defines a set of operations or property signa-
tures as a common protocol for child classes to implement. There are two
reasons for abstract operations: (1) an interface or abstract class does not
have data for the methods to be defined, and (2) a lead programmer may
just want to specify a common operation for all child classes to follow as
the common standard for implementation.

In programming, we use the modifier “abstract” in front of an abstract
operation or class. The following code declares an abstract function
PrintCheck without a function body:

protected abstract void PrintCheck(DateTime ckDate);

In class diagrams, the names of abstract operations and classes are
shown in italics. For example, in Figure 8, Employee class is abstract,
and the class has one abstract operation PrintCheck().

In this example, an employee object cannot define the function body
or the method; generic employee objects do not have data on how much

b3881_Ch06.indd 128 05-10-2020 16:33:21

b3881   Requirements Modeling and Coding6"×9"�

Class Diagrams  129

needs to be paid. The full timer will have a regular salary to be printed
on check along with other benefits, while a part timer has a wage rate
and gets paid depending on the number of hours of work. So, we declare
PrintCheck() as an abstract operation for all employees, and then
implement the methods separately for full timers and part timers. When
implementing the function for full and part timers, we will declare the
operations as override, indicating the function to be defined is going to
modify the one from generic employee objects.

protected override void PrintCheck(DateTime ckDate);
{
       //code for printing checks
}

What is good about declaring an abstract operation? The question is
related to another basic feature of object-orientation that programmers all

Employee

hiredate:DateTime
job:string
name:string
eid:int
manager:Employee

ComputePay():double
PrintCheck(ckDate:DateTime):void

FullTimer

salary:double

PartTimer

hourlyRate:double
workHours:double

Figure 8.   Abstract classes and operations.

b3881_Ch06.indd 129 05-10-2020 16:33:22

b3881   Requirements Modeling and Coding� 6"×9"

130  Requirements Modeling and Coding

love to use: polymorphism. The word means that one thing has the ability
to morph into many forms in different contexts. In computer program-
ming, by declaring an abstract operation, one programmer sets a standard
for all others to follow when implementing the operation. In other words,
the operation may have different ways of implementation. When it is
the time to use the operation, there is no need to know the differences of
how the operation is implemented. A uniform message like employee.
PrintCheck(DateTime.Now) can be sent to all employee objects,
regardless of whether each one is a part timer or a full timer. The com-
piler will decide which implementation is to be used when printing each
check; if the employee is a full timer, the operation implemented in the
FullTimer class will be used or else the method in the PartTimer
class is used. Therefore, abstract operations are polymorphic at both the
time they are implemented and when they are used.

Implementation
In the previous chapter, we demonstrated how to implement individual
conceptual objects, attributes, and operations. Essentially, a conceptual
class becomes a programming class, an attribute becomes an instance or
global variable, and an operation becomes a function head. Now let us
learn how to implement association and inheritance relationships.

Using C# language, inheritance relationships are implemented by
appending the parent class name to the child using a colon (:). For exam-
ple, suppose A is the parent class of B (B  A), the implementation is:

public class A
{
       //
}

public class B : A
{
       //
}

Associations are implemented as foreign instance variables, but details
depend on maximum cardinality and navigability. First, if navigability is
bidirectional such as A↔B, then we will implement the association using

b3881_Ch06.indd 130 05-10-2020 16:33:22

b3881   Requirements Modeling and Coding6"×9"�

Class Diagrams  131

two foreign instance variables: one is of B in A, and the other is of A
in B. However, if the association is unidirectional such as A → B, then
we implement it by creating a foreign instance variable of B in A but no
variable of A in B. Foreign instance variables may be declared as a single
variable or a collection depending on the maximum cardinality. For exam-
ple, each order is taken by one customer. The foreign instance variable of
Customer in the Order class will be a single variable.

public class Order
{
       Private Customer aCustomer;
}

On the other hand, each customer can take many orders. The foreign
instance variable of Order in the Customer class will be an array or list.

public class Customer
{
       Private List<Order> orders;
}	

Note that array is one of collection types in C#. It may not be the best
collection type because the number of objects contained in the array vari-
able cannot be dynamically changed. Also, it has limitations in terms of
the method to retrieve or search for a list item. To avoid these limitations,
programmers generally prefer the following collections, such as List or
ArrayList, and Dictionary or HashTable, in C#:

1.	 Use List if there is a sequence order among the list items or if we
want to use an integer sequence number to retrieve a list item;

2.	 Use Dictionary if we want to retrieve or search for an item using
an arbitrary key.

Figure 9 is a list of implementation rules based on unidirectional
navigability; if it is bidirectional, we will just need to follow the same rule
to create an instance variable of A in B.

Note that, in implementing a class diagram, we should implement all
relationships before implementing operations. Otherwise, we would face
difficulty in implementing some operations because of a lack of some

b3881_Ch06.indd 131 05-10-2020 16:33:22

b3881   Requirements Modeling and Coding� 6"×9"

132  Requirements Modeling and Coding

foreign instance variables. The general order of implementing a class dia-
gram is as follows:

1.	 Implement individual classes and their native attributes. Implement
simple operations, especially those that do not require foreign instance
variables.

2.	 Implement association and inheritance relationships. There is no pref-
erential order of implementation between inheritance and association
relationships.

3.	 Implement operations. This step usually involves heavy coding, and
the reader may be required to have prior programming experience to
perform this step.

Example 1: Figure 10 shows a slightly modified class diagram for employ-
ees and their child classes by adding a fringe benefit as an attribute and
Salesman as a child class of FullTimer. Since salary is going to be
inherited by Salesman, we make it protected.

First, let us implement individual classes. Employee has four data
members: eid, name, hire date, and fringe benefit, one virtual method to
compute payment, and one abstract method to print check. Note that we
use keyword “abstract” to indicate that the class is abstract and the opera-
tion PrintCheck is abstract. Also note that the abstract operation does
not have a function body.

A B

1

public class A
{

Private B b;
}

A B

1

1

*

public class A
{

Private B[] b;
}

A B

1 *

{ordered}

public class A
{

Private List b;
}

A B

1 *

{qualifier}

public class A
{

Private Dictionary<string, B> b;
}

Figure 9.   List of implementation rules based on unidirectional navigability.

b3881_Ch06.indd 132 05-10-2020 16:33:22

b3881   Requirements Modeling and Coding6"×9"�

Class Diagrams  133

abstract class Employee
{
           protected string eid;
           protected string name;
           protected DateTime hireDate;
           protected double fringeBenefit;

           public virtual double ComputePay()
           {
                  return fringeBenefit;
           }

           �public abstract void PrintCheck(DateTime
   chDate);

}

The following implementation creates the child class FullTimer.
The child class overrides computePay method by adding salary to

Employee

hiredate:DateTime
job:string
name:string
eid:int
manager:Employee
fringeBenefit:double

ComputePay():double
PrintCheck(ckDate:DateTime):void

FullTimer

salary:double

PartTimer

hourlyRate:double
workHours:double

Salesman

commission:double

Figure 10.   Class diagram for employees.

b3881_Ch06.indd 133 05-10-2020 16:33:23

b3881   Requirements Modeling and Coding� 6"×9"

134  Requirements Modeling and Coding

the base pay, which is obtained by using base.ComputePay(). Note
that if a function is created in the parent class, the child class can call a
function in the parent by referring the parent as base. To invoke func-
tion ComputePay(), for example, use base.ComputePay(). Since
PrintCheck() is an abstract operation, the child class must provide
implementation, or we will get NoImplementation exception. The
following code uses a message box to show words about what is the total
pay and what is the fringe benefit. Of course, we could create a more
elaborate display looking like a real check, but we shall not be overly con-
cerned with it for now; it is better to be deferred to the time when we learn
how to design and code graphic user interfaces in later chapters.

class FullTimer : Employee
{
       protected double salary;

       public override double ComputePay()
       {
              return base.ComputePay() + salary;
       }

       public override void PrintCheck()
       {
             �MessageBox.Show(“The total salary

   is “ + this.ComputePay() + “, which
   include a fringe benefit of “ + base.
   ComputePay());

       }
}

The following code defines child class PartTimer, which has
hourly rate and work hours as special data members. It also overrides
ComputePay method by adding the product of hourly rate and work
hours to the fringe benefit as calculated by the parent class.

class PartTimer : Employee
{
       private decimal workHours;
       private decimal hourlyRate;

       public override double ComputePay()
       {

b3881_Ch06.indd 134 05-10-2020 16:33:23

b3881   Requirements Modeling and Coding6"×9"�

Class Diagrams  135

              �return base.ComputePay () + workHours *
   hourlyRate;

       }

       public override void PrintCheck()
       {
              �MessageBox.Show(“Your fringe benefit

   is “ + base.ComputePay() + “ and your
   total pay is “ + this.ComputePay());

       }
}

Finally, we implement Salesman as a child class of FullTimer.
To modify the method for ComputePay, we add commission to whatever
payment is computed by the parent, which in this case is FullTimer.

class Salesman : FullTimer
{
       private decimal commissions = 0;

       Public override double ComputePay()
       {
              return base.ComputePay() + commission;
       }
}

Example 2: Figure 11 extends the Account class introduced in the
last chapter by including account owners, and three special types of
accounts: checking accounts, savings accounts, and certificate deposit
(CD) accounts. The association between Owner and Account is easy to
understand; an owner may have one or more accounts, but each account
has only one owner. The association between CheckingAccount
and SavingsAccount represents the assumption that each checking
account has one or more associated savings accounts.

Assume that each checking account has a quota for the number of
checks to be cleared, a CD has a definite yearly interest rate and maturity
date, and a savings account has varying interest rates over time, with each
rate having a valid period.

There are a few ways to model the interest rates. For example, we
could represent interest rates using two multi-valued attributes: one for
a list of interest rates and one for a list of valid periods. But the problem

b3881_Ch06.indd 135 05-10-2020 16:33:23

b3881   Requirements Modeling and Coding� 6"×9"

136  Requirements Modeling and Coding

with this method is that the correspondence between the two lists must be
always maintained in the same order, or interest rates may not correspond
to their respective valid periods. Instead of this method, here we create a
custom type, called InterestRate, that ties each interest rate with a
valid beginning date and a valid ending date. Then, we represent the multi-
ple interest rates of a savings account by a unidirectional association from
SavingsAccount to InterestRate, meaning each savings account
may have one or more InterestRate objects as foreign data members.
To compute the interest for a period, we may have to use multiple interest
rates because during the period there may be multiple valid rates. Thus,
we need to get the number of days for each rate to be applicable and create
two operations in InterestRate class for that purpose.

A related point to mention is that different types of accounts have dif-
ferent ways to credit interests: a checking account does not accrue inter-
ests, a CD account credits interests only at the maturity date, and a savings
account credits interests periodically. Thus, we create an abstract operation,

Account

acctNo:string
balance:double
openDate:DateTime

Credit(amt:double):void
CreditInterest():void
Debit(amt:double):void
GetAcctNo():string
GetBalace():double

CheckingAccount

minBalanceReq:double
SavingsAccount

lastInterestCreditAt:DateTime

1 *

CD

interestRate:double
maturity:DateTime

IsMatured():bool

Owner

cid:int
cname:string

CreditInterest():void
FindAccount(acctNo:int):Account
ListAccounts():List<Account>

1..* *

InterestRate

interestRate:double
validFrom:DateTime
validTo:DateTime

GetOverlapDays(s:DateTime,e:DateTime):int
GetRate():double

1..*

Figure 11.   The class diagram for bank accounts.

b3881_Ch06.indd 136 05-10-2020 16:33:24

b3881   Requirements Modeling and Coding6"×9"�

Class Diagrams  137

CreditInterest(), in Account class to take advantage of polymor-
phism; every day, we can send one uniform message to all accounts to
credit their interests, but it is up to each account to decide how they will
respond to the message according to account type. CreditInterest()
can take many forms: a checking account will simply add zero interest to
the balance, a CD will only add the total interest to the balance if the day
falls on the maturity, and a savings account will add interest if the day is
30 days after the last credit date.

Now let us implement the class diagram. First, we create skeleton
classes with their native instance variables and operations. For the opera-
tions that can be easily coded, we may just write the code as we see in
the following code for Credit, Debit, GetAcctNo, GetBalance,
IsMatured, GetRate, etc. For operations that cannot be coded, leave
the function body empty for now. Note that the Debit function will
deduct the withdrawal amount from the account balance if there is suf-
ficient funds. Otherwise, the function will throw an exception.

public class Owner
{
   private string cid;
   private string cname;

   public List<Account> ListAccounts()
   {
       //
   }

   public Account FindAccount(string no)
   {
       //
   }

   public void CreditInterest()
   {
       //
   }
}

public abstract class Account
{
   protected string acctNo;
   protected double balance;
   protected DateTime openDate;

b3881_Ch06.indd 137 05-10-2020 16:33:24

b3881   Requirements Modeling and Coding� 6"×9"

138  Requirements Modeling and Coding

   public string GetAccountNo()
   {
       return acctNo;
   }

   public double GetBalance()
   {
       return balance;
   }
   public virtual void Debit(double amt)
   {
      if (balance > amt)
          balance = balance - amt;
      else
          throw new Exception(“insufficient fund”);
   }

   public virtual void Credit(double amt)
   {
      balance = balance + amt;
   }

   public abstract void CreditInterest();
}

public class CD
{
   private double interestRate;
   private DateTime maturity;

   public bool isMatured()
   {
       if (DateTime.Now >= maturity)
           return true;
       else
           return false;
   }
}

public class CheckingAccount
{
   private double minBalanceReq;
}

public class SavingsAccount

b3881_Ch06.indd 138 05-10-2020 16:33:24

b3881   Requirements Modeling and Coding6"×9"�

Class Diagrams  139

{
   private DateTime lastInterestCreditAt;

}

public class InterestRate
{
   private double interestRate;
   private DateTime validFrom;
   private DateTime validTo;

   public double GetRate()
   {
       return interestRate;
   }

   public int GetOverlapDays(DateTime s, DateTime e)
   {
          //
   }
}

Next, let us implement relationships. For the bidirectional association
between Owner and Account, we create foreign instance variables (see
the two bold lines as follows).

public class Owner
{
   private string cid;
   private string cname;
   private List<Account> accounts;

   public List<Account> ListAccounts()
   {
       //
   }

   public Account FindAccount(string no)
   {
       //
   }

   public void CreditInterest()
   {
       //

b3881_Ch06.indd 139 05-10-2020 16:33:24

b3881   Requirements Modeling and Coding� 6"×9"

140  Requirements Modeling and Coding

   }
}

public abstract class Account
{
   protected string acctNo;
   protected double balance;
   protected DateTime openDate;
   protected List<Owner> owners;

   public string GetAccountNo()
   {
      return acctNo;
   }

   public double GetBalance()
   {
      return balance;
   }
   public virtual void Debit(double amt)
   {
       if (balance > amt)
           balance = balance - amt;
       else
           throw new Exception(“insufficient fund”);
   }

   public virtual void Credit(double amt)
   {
       balance = balance + amt;
   }

   public abstract void CreditInterest();
}

For the three inheritance relationships, we will code them along with
the required implementation of abstract operations (see the boldfaced
code).

public class CD : Account
{
   private double interestRate;
   private DateTime maturity;

   public bool isMatured()

b3881_Ch06.indd 140 05-10-2020 16:33:24

b3881   Requirements Modeling and Coding6"×9"�

Class Diagrams  141

   {
     if (DateTime.Now >= maturity)
         return true;
     else
         return false;
   }

   public override void CreditInterest()
   {
       //
   }
}

public class CheckingAccount : Account
{
   private double minBalanceReq;
   public override void CreditInterest()
   {
       //
   }
}

public class SavingsAccount : Account
{
   private DateTime lastInterestCreditAt;

   public override void CreditInterest()
   {
          //
   }
}

The bidirectional association between CheckingAccount and
SavingsAccount is implemented by creating foreign data members
(see the boldfaced code).

public class CheckingAccount : Account
{
   private double minBalanceReq;
   private List<SavingsAccount> associatedSavings;
   
   public override void CreditInterest()
   {
       //
   }

b3881_Ch06.indd 141 05-10-2020 16:33:24

b3881   Requirements Modeling and Coding� 6"×9"

142  Requirements Modeling and Coding

   }

public class SavingsAccount : Account
{
   private DateTime lastInterestCreditAt;

   private CheckingAccount associatedChecking;
   
   public override void CreditInterest()
   {
           //
   }
}

The unidirectional association between SavingsAccount and
InterestRate is implemented by adding a list of InterestRate
objects as a foreign data member inside SavingsAccount (see the
boldfaced code).

public class SavingsAccount : Account
{
   private DateTime lastInterestCreditAt;

   private CheckingAccount associatedChecking;
   private List<InterestRate> rates;

   public override void CreditInterest()
   {
       //
   }
}

Now some operations may become easy to code. All operations in
Owner class can be coded because of foreign data member accounts
(see the boldfaced code). Here, CreditInterest() simply asks each
account in the accounts list to perform its CreditInterest()
operation, and FindAccount() will go through each account to find
one that has a matching account number.

public class Owner
{
   private string cid;
   private string cname;

b3881_Ch06.indd 142 05-10-2020 16:33:24

b3881   Requirements Modeling and Coding6"×9"�

Class Diagrams  143

   private List<Account> accounts;

   public List<Account> ListAccounts()
   {
       return accounts;
   }

   public Account FindAccount(string no)
   {
       foreach (Account a in accounts)
       {
           if (a.GetAccountNo() == no)
               return a;
       }
       throw new Exception(“no account found”);
   }

   public void CreditInterest()
   {
       foreach (Account a in accounts)
           a.CreditInterest();
   }
}

After implementing inheritance relationships, we can modify any vir-
tual function coded in the parent class if we so desire. For example, we
modified the code for Debit() function inside the SavingsAccount
class, assuming a savings account must maintain $1,000 minimum balance
(see the boldfaced code).

public class SavingsAccount : Account
{
   private DateTime lastInterestCreditAt;

   private CheckingAccount associatedChecking;
   private List<InterestRate> rates;

   public override void Debit(double amt)
   {
       if (balance > 1000 + amt)
           base.Debit(amt);
       else
           �throw new Exception(“minimum balance

   error”);
   }

b3881_Ch06.indd 143 05-10-2020 16:33:24

b3881   Requirements Modeling and Coding� 6"×9"

144  Requirements Modeling and Coding

   public override void CreditInterest()
   {
       //
   }
}

Finally, let us code CreditInterest() function for each type
of account. A checking account does not accrue interest, and so nothing
needs to be done. A CD account will credit interest on the maturity date
based on the number of years the CD has been opened using the standard
compound formula as follows:

= × +(1)yearsbalance balance rate

The following is the implementation of CreditInterest() func-
tion in both CheckingAccount and CD classes (see the boldfaced code).

public class CD : Account
{
   private double interestRate;
   private DateTime maturity;

   public bool isMatured()
   {
       if (DateTime.Now >= maturity)
           return true;
       else
           return false;
   }

   public override void CreditInterest()
   {
       if (DateTime.Today == maturity.Date)
       {
           TimeSpan ts = maturity - openDate;
           double years = ts.Days / 365.0;
           �balance = balance * Math.Pow(1 +

interestRate, years);
       }
   }
}

public class CheckingAccount : Account
{

b3881_Ch06.indd 144 05-10-2020 16:33:25

b3881   Requirements Modeling and Coding6"×9"�

Class Diagrams  145

   private double minBalanceReq;
   private List<SavingsAccount> associatedSavings;

   public override void CreditInterest()
   {
       //
   }
}

It is more complex to code the CreditInterest() function for
a savings account because different rates may be applicable for different
segments of the interest period. First, for any interest period between
times s and e, let us ask InterestRate object to find the number of
overlapping days between the interest period and the interest rate appli-
cable period. The code would involve a lot of comparisons among four
different dates, but the following code uses a smart solution strategy:
find the maximum start date between s and validFrom and the mini-
mum end date between e and validTo, and then find the number of
days between the maximum start date and the minimum end date (see the
boldfaced code).

public class InterestRate
{
   private double interestRate;
   private DateTime validFrom;
   private DateTime validTo;

   public double GetRate()
   {
       return interestRate;
   }

   public int GetOverlapDays(DateTime s, DateTime e)
   {
        if (s > validTo || e < validFrom)
            return 0;

b3881_Ch06.indd 145 05-10-2020 16:33:25

b3881   Requirements Modeling and Coding� 6"×9"

146  Requirements Modeling and Coding

        else
        {
            DateTime minEnd, maxStart;
            if (s < validFrom)
                maxStart = validFrom;
            else
                maxStart = s;

            if (e < validTo)
                minEnd = e;
            else
                minEnd = validTo;

            TimeSpan ts = minEnd - maxStart;
            return ts.Days;
        }
   }
}

With the GetOverlapDays() function, we can now go through
each interest rate in a savings account to find its applicable days that over-
lap with the interest period and use the days to find the interest to be added.
After finding the total interest during the interest period, update the bal-
ance and the last interest credit date (see the boldfaced code).

public class SavingsAccount : Account
{
   private DateTime lastInterestCreditAt;

   private CheckingAccount associatedChecking;
   private List<InterestRate> rates;

   public override void Debit(double amt)
   {
       if (balance > 1000 + amt)
           base.Debit(amt);
       else
           �throw new Exception(“minimum balance

   error”);
   }

   public override void CreditInterest()
   {

b3881_Ch06.indd 146 05-10-2020 16:33:25

b3881   Requirements Modeling and Coding6"×9"�

Class Diagrams  147

       double sum = 0;
       �TimeSpan ts = DateTime.Now -

   lastInterestCreditAt;
       if (ts.Days >= 30)
       {
           foreach (InterestRate ir in rates)
           {
               double rate = ir.GetRate();
               �double years = ir.GetOverlapDays(lastIn

   terestCreditAt, DateTime.Now) /
   365.0;

               �sum = sum + balance * Math.Pow(1 +
   rate, years);

           }
           balance = balance + sum;
           lastInterestCreditAt = DateTime.Now;
       }
   }
}

Review Questions
1.	 What is the cardinality of the relationship between Product and Order?
2.	 Provide a justification that Customer and Account must have bidirec-

tional association.
3.	 What is the relationship between Order and Shipment?
4.	 If the knowledge of Product is important to Order but not vice versa,

what kind of navigability exists between Product and Order?
5.	 Make up three real-world objects that can be modeled as inheritance

relationships.
6.	 What is the difference between overload and override?
7.	 When do you use virtual to modify a method?
8.	 What is an interface? How is it different from an abstract class?
9.	 Give example of objects or classes that use the following concepts:

a.	 Abstract operation.
b.	 Static attribute.
c.	 Interface.
d.	 Private operation.
e.	 Recursive relationships.
f.	 Generalization/specialization relationships.

b3881_Ch06.indd 147 05-10-2020 16:33:25

b3881   Requirements Modeling and Coding� 6"×9"

148  Requirements Modeling and Coding

Exercises
  1.	 Complete the list of implementation rules for the case when A and B

have bidirectional associations.
  2.	 Create the following classes and subclasses and draw the class dia-

grams, and then create the classes in Visual Studio using C#.
a.	 Student (as an abstract class that has name, birth date, address,

campus fees, and an abstract method of computing the tuitions
and fees).

b.	 PartTimeStudent is a special kind of student whose tuition is cal-
culated based on the number of credit hours taken and tuition per
credit.

c.	 FullTimeStudent is a special kind of student who pays the whole
amount regardless of the number of credits taken.

d.	 Course is a catalog entry with information like cno, title, descrip-
tion, and credit.

e.	 Section is offered under a catalog Course entry to be offered for
students to enroll. It has attributes like Section Number, Date and
Time, Capacity, etc.

f.	 Section needs to know information about Course such as credit
hours; however, a Course catalog entry does not need to know
anything about Sections offered under the course.

  3.	 Build a class diagram for a factory that represents the following
requirements and business rules. Make up your own attributes for each
object involved. Then create all the classes using C#.
a.	 A component can be used to make any of several other components.
b.	 A component can be made of several other components.
c.	 A component can be constructed from several raw materials.
d.	 A raw material is used in several components.
e.	 There are two kinds of raw materials, some are perishable and

have definite expiration date and others are nonperishable.
f.	 Each component is produced by a single worker.
g.	 A worker can produce many kinds of components.

  4.	 A student club wants to have a database to manage its data on mem-
bers. The club assigns members to its numerous committees. It is
possible that one member can serve in more than one committee and
will chair at most one committee. Each year, the club organizes many
events. Each time, the club assigns one committee to oversee an event.

b3881_Ch06.indd 148 05-10-2020 16:33:25

b3881   Requirements Modeling and Coding6"×9"�

Class Diagrams  149

Build a class diagram to model the club’s business objects and then
convert the diagram into skeleton code using C# or Java.

  5.	 A professor wants to keep data for all his books, publishers, and
authors so that whenever he has comments he can communicate with
the authors using US Mail, phone, or email. He also likes to have data
about the publishers because he may need to go to the company’s web-
site or call the company to look for more information. Create a class
diagram to model the business objects and their relationships and then
convert the diagram into skeleton code using C# or Java.

  6.	 A tiny library contains thousands of publications of different kinds
such as books, journals, conference proceedings, and videos. For each
publication, the library tracks its title, publication date, and publica-
tion type, the publisher, and the authors. In addition, different publi-
cations will have additional data required. For example, each book
has an ISBN and page count; a video has an ISBN and length; a con-
ference proceeding has ISSN, ISBN, page-count, and the total num-
ber of articles included; a journal has an ISSN. As a convention, the
library catalog also contains extensive contact data about publishers
and authors such as their mailing addresses and phone numbers. Draw
a class diagram to model the domain objects and business rules for the
library.

  7.	 The board of Watson Town Memorial Hospital has recently decided
to develop a new database to manage their patient admissions and dis-
charges. The hospital handles two types of patients: outpatient and
resident patient. As typical, each time a new patient comes, the data
about his/her identification, address, phone, and issuance carrier are
recorded. If a patient is a resident, he/she will be assigned to a bed and
an admission date is recorded. After the treatment, a nurse must sign
off the discharge card. For an outpatient, the nurse will set a check-
back time after each treatment. Develop a class diagram to model the
objects requirements for the hospital.

  8.	 Implement the following class diagrams using C# or Java:
a.	 Service transactions

Customer

cid:int
cname:string

Organization

creditLine:double

Transaction

amount:double
tdate:DateTime
tid:int

1 *

Service

description:string
sku:string
unitCost:double

* 1..*

b3881_Ch06.indd 149 05-10-2020 16:33:25

b3881   Requirements Modeling and Coding� 6"×9"

150  Requirements Modeling and Coding

b.	 Insurance

Employee

eid:int
hiredate:DateTime

Patient

pid:int
pname:string

Dependent

relation:string

1

*

Treatment

tid:int
tDate:DateTime1 *

c.	 Medical records

Doctor

field:string

Nurse

seniority:int

Physician

eid:int

ename:string

Operation

description:string

oDate:DateTime
1..* *

b3881_Ch06.indd 150 05-10-2020 16:33:26

b3881   Requirements Modeling and Coding6"×9"�

Class Diagrams  151

  9.	 Implement the following class diagram. Note that the length of the
time is measured in minutes.

Receptionist

eid:int
ename:string

Patient

pid:int
pname:string

ComputeTotalVistTime(bDate:DateTime,eDate:DateTime):int

Visit

diagonsis:string[]
vid:int

ComputeRestTime():int
ComputeVisitCost():double
GetLength():int

1 *

*

1

Inpatient

bed:string
urgent:bool

Outpatient

minitesToLeave:int

Appointment

aid:int
slot:Period

1

*

0,1 0,1

1 *

Diagnosis

dDate:DateTime
diagnosis:string
did:int
note:string

*

Period

beginDate:DateTime
endDate:DateTime

GetDays():int
Overlap(p:Period):bool

1

10.	 Write C# code to implement the following class diagram. Note that to
code the function ComputeOrderAmount(), we assume that the quan-
tity of each ordered product is one unit.

Department

cno:int
cname:string

GetOrders():List<Order>

Order

odate:DateTime
oid:int
promiseDate:DateTime

DaystoPromised():int
ComputeOrderAmount():double

1 *

Product

color:string
desc:string

GetItemValue():double
GetUnitCost():double

1..*

Perishable

expire:DateTime
storateTemperature:double

IsExpired():bool

Corporate

credtiLine:double
contact:string

b3881_Ch06.indd 151 05-10-2020 16:33:27

b2530   International Strategic Relations and China’s National Security: World at the Crossroads

b2530_FM.indd 6 01-Sep-16 11:03:06 AM

This page intentionally left blankThis page intentionally left blankThis page intentionally left blankThis page intentionally left blank

153

b3881   Requirements Modeling and Coding6"×9"�

Chapter 7

Advanced Associations

Introduction
In this chapter we will learn how to create class diagrams using advanced
associations, including composition and aggregation, association objects,
reflexive association, multiway associations, and exclusive and dependent
associations. These advanced concepts are often optional; not all CASE
tools support their modeling, and not all programming languages support
their implementation, but they tend to add richer semantics to generic
associations and can improve the efficacy of the implementation using an
advanced object-oriented language such as C++.

Composition and Aggregation
Composition and aggregation are two special kinds of associations —
containment or whole-part associations. They are often used to model the
associations between big objects and small objects in a way that a big
object contains or has a small object as a part, or a small object belongs to
or is a part of the big object. To be precise, let us call the big object con-
taining object and the small object contained object.

Although both composition and aggregation model containment,
composition is stronger than aggregation. A containment is composi-
tion if the contained objects cannot exist without the containing object;
if the containing object is destroyed, all its contained objects will be also
destroyed. Otherwise, a containment is aggregation. There is another way
to tell the difference: a containment is composition is the containment is

b3881_Ch07.indd 153 05-10-2020 16:33:41

b3881   Requirements Modeling and Coding� 6"×9"

154  Requirements Modeling and Coding

exclusive; each contained object can only be contained by one contain-
ing object, i.e., the maximum cardinality is one on the containing object
side. The following are a few examples of both types of containment
relationships:

Composition: A car contains wheels, a folder contains other folders
and files, a house contains rooms, a watermelon contains seeds, a pen con-
tains barrels, an order contains line items.

Aggregation: A room contains walls, a department contains employ-
ees, a country contains cities, a bank association contains banks.

In the above examples, a wall may belong to several rooms, an
employee may work for several departments, a city may belong to several
countries (like Jerusalem; not meant to take a political side), and a bank
may belong to several associations. Thus, all these containment relation-
ships are aggregations.

Composition and aggregation are represented by attaching a diamond
to the containing end of the association. A solid diamond is for compo-
sition, and a hallow one for aggregation. In Rhapsody, we can refine a
generic association by selecting either shared or composition as the aggre-
gation kind at the end of contained objects (see Figure 5 of Chapter 6).
We may also more conveniently pick Aggregation or Composition tool in
the toolbox in Rhapsody (see Figure 3 of Chapter 5) to draw a contain-
ment relationship directly. Figure 1 shows four examples of containment
relationships.

Containment relationships can be nested in several levels. For exam-
ple, a car contains an engine, and the engine contains cylinders. Thus, a
cylinder is a composite part of a car and an engine. In this case, their rela-
tionship should be modeled in a gradual or transitive containment order as
the one shown in Figure 2(a) rather than 2(b).

Sometimes, it may not be easy to tell whether an association is of
containment or not and whether a containment should be modeled as com-
position or aggregation. For example, in the case that a person owns a
pen, should we model it as containment or not? For another example, in
the case that a ballpoint pen has a top, should we model the relationship
as composition or aggregation? Here is a general guideline: use a more
general relationship against a special one. There is not much loss in using
aggregation instead of composition, and there is no harm in using associa-
tion instead of containment. For example, Figure 3 models the ownership
relationship as a usual association, and a ballpoint aggregates tops, assum-
ing the tops for a ballpoint may be used for other pens.

b3881_Ch07.indd 154 05-10-2020 16:33:41

b3881   Requirements Modeling and Coding6"×9"�

Advanced Associations  155

The reader should not confuse containment with inheritance; inheri-
tance may be understood as a containment relationship between classes,
or groups of objects, whereas composition or aggregation is a relationship
between individual objects. For example, the Animal class contains the
Dog class, but it does not make sense to say an animal contains a dog.
Similarly, a car contains an engine, but it will make no sense to say the Car
class contains the Engine class because an engine is not a kind of car.

Composition and aggregation are special kinds of associations, and so
they are implemented in the same way as associations in Java or C#. When
using an advanced language such as C++ that supports the notion of point-
ers, the subtle difference lies in how to control the life of contained objects
in memory management. For aggregations and generic associations, an
instance variable may be of a pointer to a contained object so that when the
containing object is destroyed, the pointed contained one can be still alive.

Car Wheel

1 1..*

Country City

1..* *

Building Room

1 *

Wall

1..* *

Folder

1

*

File

1*

Figure 1.   Examples of composition and aggregation.

b3881_Ch07.indd 155 05-10-2020 16:33:43

b3881   Requirements Modeling and Coding� 6"×9"

156  Requirements Modeling and Coding

However, for compositions, the instance variable is the actual contained
object so that when the containing object is destroyed, the contained object
is also destroyed.

Person Pen

1..* *

Barrel

1 1

Rollerball Ballpoint Top

0,1 0,1

Figure 3.   Example with composition, aggregation, and inheritance.

Car Engine

1 1..*

Cylinder

1 1..*

Car Engine

1 1..*

Cylinder

11..*

(a)

(b)

Figure 2.   Nested containment relationships.

b3881_Ch07.indd 156 05-10-2020 16:33:44

b3881   Requirements Modeling and Coding6"×9"�

Advanced Associations  157

Multivalued attributes

A multivalued attribute is the one that may have multiple values for one
object. For example, if diploma is an attribute for employees, then we will
have situations wherein some employees have more than one diploma, say
BA, MS, MBA, etc. while others may have none. For another example, in
the health insurance applications, “dependents” is a multivalued attribute
for policy holders (see Figure 4).

In data modeling, attributes are required to be single valued to con-
form to the first normal form, and multivalued ones are converted into
weak entities. In class diagramming, there is no such restriction. In fact,
we may have a collection type like array and list for multivalued
attributes, as seen in earlier chapters.

Another approach to handle a multivalued attribute in class diagram-
ming is to take the attribute out of the hosting object and make it a con-
tained object. In this way, each value becomes an object contained by
the hosing object. For example, dependents become contained objects,
contained by a policyholder object. In this approach, there is no limit on
how many values the multivalued attribute can have. In addition, in this
approach, we may have more attributes, rather than just dependent names,
to describe the dependents. To represent the fact that each dependent is
insured under one policyholder exclusively, we should use a composition
relationship between the containing objects and the contained objects (see
Figure 4).

Using this approach, composition essentially corresponds to the con-
cept of weak entities in data models. Weak entities cannot exist indepen-
dently and must depend on a strong entity to exist; if the record of the
strong entity is destroyed, all the records on its associated weak entities
will be also destroyed. Also, the cardinality between the strong and the
weak entities must be 1 to many. In a sense, the strong entity is a containing

PolicyHolder

dependents:List<string>

PolicyHolder Dependent

1 *

Figure 4.   Two ways to model multivalued attributes.

b3881_Ch07.indd 157 05-10-2020 16:33:45

b3881   Requirements Modeling and Coding� 6"×9"

158  Requirements Modeling and Coding

object, and the weak entities are contained objects. Their relationship is of
composition.

Association Class
Unlike regular objects such as students, courses, classrooms, etc., an asso-
ciation object does not correspond to real-world objects. Instead it is an
association relationship that is reframed as an object. There are two sce-
narios in which we may need association objects in lieu of associations.
First, an association object is needed when we have attributes to describe
the characteristics of an association or want the association to be able to
perform some operations on the attributes. For example, in a university reg-
istration system, there are associations between students and course sec-
tions (or offerings). Where can we keep data on students’ grades for each
section they finish? Which objects perform operations such as searching
for finished courses of a student or updating the enrollment status? Note
that a grade is neither an attribute of a student nor an attribute of a course
offering alone; it ties to both a student and a course offering. In this sense,
we may think the grade is an attribute for the association between a student
and an offering. Thus, we turn the association into an association object.
For another example, a containment relationship between an order and an
item should be also transformed into an association object if we need to
capture the data on the quantity of the item in the order.

The second use case of association objects is to model dynamic asso-
ciations. For example, a facility may be assigned to departments for meet-
ings. The assignment is changing over time, and we need to keep track
of the changes for the planning purpose; we need to dynamically create,
modify, or remove the associations. Modeling these associations as asso-
ciation objects is probably the best approach in handling such dynamic
associations.

In Rhapsody, associative classes are drawn as a regular class with a
dashed line attached to an association line. The dashed line is drawn using
the Anchor tool in the diagramming toolbox (see Figure 3 of Chapter 5).
Note that, after an associative class is attached to an association by an
anchor, the association will take the name of the association class. Figure 5
illustrates two association classes, OrderLine for aggregations between
Order and Product, and Enrollment for associations between
Student and CourseOffering. Here, a course offering means a sec-
tion or class offered under a course.

b3881_Ch07.indd 158 05-10-2020 16:33:45

b3881   Requirements Modeling and Coding6"×9"�

Advanced Associations  159

Association objects are very similar to associative entities or gerunds
in data models. Yet the reader shall note a significant difference between
them: in data models, associative entities are used only for many-to-many
relationships, as in the case between Student and CourseOffering.
In contrast, association objects may be used for relationships of any car-
dinality. For example, Figure 6 uses association objects to represent mar-
riage relationship between a man and a woman.

Implementation

To code a class diagram with association classes, we may imagine each
association class as a regular one that cuts into the middle of the two
classes that the original association ties, and the association class is then
removed from the original association (see Figure 7).

The reader may notice that the equivalent class diagram in Figure 7 has
two redundant relationships between Student and CourseOffering:

Order

odate:DateTime
oid:int
promiseDate:DateTime

GetOrderAmount():double

Product

color:string
desc:string
qty:double
sku:string
unitcost:double

GetItemValue():double
GetUnitCost():double

OrderLine
* 1..*

OrderLine

qty:double

GetQty():double

Student

sid:int
lastName:string
firstName:string
admitDate:DateTime
credits:double
gpa:double

GetGPA():double
GetActiveDays():int
AddClass(c:CourseOffering):void
DropClass(c:CourseOffering):void
IsEnrolled(c:CourseOffering):bool
GetTotalCredits():double
IsFinished(c:Course):bool

CourseOffering

section:string
cap:int

Enroll(s:Student):void
Drop(s:Student):void
PostGrade(s:Student,g:string):void
GetCourse():Course

Enrollment
**

Enrollment

grade:string
status:bool

UpdateStatus(newStatus:bool):void
ChangeGrade(newGrade:string):void
GetPoints():double

Figure 5.   Association objects illustrated.

b3881_Ch07.indd 159 05-10-2020 16:33:45

b3881   Requirements Modeling and Coding� 6"×9"

160  Requirements Modeling and Coding

Individual

CivilPartnership
0,1

0,1

Male Female

Marraige
1,01,0

Marraige

issueDate:DateTime
location:string
certificateNo:string

CivilPartnership

RegistrationDate:DateTime
location:string

Figure 6.   Association objects for 1:1 relationships.

Student

sid:int
lastName:string
firstName:string
admitDate:DateTime
credits:double
gpa:double

AddClass(c:CourseOffering):void
DropClass(c:CourseOffering):void
IsEnrolled(c:CourseOffering):bool

CourseOffering

cap:int
section:string

Enroll(s:Student):void
Drop(s:Student):void
PostGrade(s:Student,g:string):void
GetCourse():Course

* *

Enrollment

grade:string
status:bool

ChangeGrade(g:string):void
UpdateStatus(s:bool):void

1 *
* 1

Figure 7.   Equivalents to association classes.

b3881_Ch07.indd 160 05-10-2020 16:33:46

b3881   Requirements Modeling and Coding6"×9"�

Advanced Associations  161

the original direct association and the indirect one connected by the
Enrollment class. Do we still need to keep the original direct associa-
tion when the association is converted into an association class? In data
modeling, the answer is negative. However, in class diagramming, there
appears to be an advantage of keeping the original direct association. For
example, it allows two related objects to send messages directly without
going through a middleman.

The reader shall also note the cardinality and the navigability of the
two new associations to Enrollment in Figure 7. Cardinalities can be
obtained by analyzing the nature of association objects: each Enrollment
object connects one Student object and one CourseOffering object,
and so the cardinalities at the Student end and at the CourseOffering
end are both 1. On the other hand, each Student object is associated with
multiple CourseOffering objects via multiple associations, and thus
the cardinality of its relationship with Enrollment at the Enrollment
end is zero or more. Similarly, the cardinality at the Enrollment end of
the relationship between CourseOffering and Enrollment is zero
or more. The cardinalities may be also directly derived from those of the
original direct associations by cross-copying, as shown in Figure 8.

The navigability can be obtained as follows. First, each association
object needs to have knowledge of who is participating in the associa-
tion. Thus, it is always navigable from an association class to the classes
at both ends. Second, if one object has knowledge of the other one, it
should also have the knowledge of its association with the other one, and
vice versa. Therefore, the two new associations with the Enrollment
class are bidirectional. In the case of unidirectional associations, the object

Student

sid:int
lastName:string
firstName:string
admitDate:DateTime
credits:double
gpa:double

AddClass(c:CourseOffering):void
DropClass(c:CourseOffering):void
IsEnrolled(c:CourseOffering):bool

CourseOffering

cap:int
section:string

Enroll(s:Student):void
Drop(s:Student):void
PostGrade(s:Student,g:string):void
GetCourse():Course

* *

Enrollment

grade:string
status:bool

ChangeGrade(g:string):void
UpdateStatus(s:bool):void

1 *
* 1

Figure 8.   Deriving cardinalities for bidirectional association classes.

b3881_Ch07.indd 161 05-10-2020 16:33:46

b3881   Requirements Modeling and Coding� 6"×9"

162  Requirements Modeling and Coding

that does not have the knowledge of the other one also does not have the
knowledge of its associations with the other one. For example, Figure 9
shows an equivalent class diagram for the association class OrderLine
in Figure 5. A simple rule on the navigability may be summarized as fol-
lows: the navigable arrowhead, if any, is copied to the same end from the
original association to a new association with the association class.

With the equivalent representation, an association class can be imple-
mented as usual. Now let us implement the association class, Enrollment,
based on its equivalent representation in Figure 7. First, we create a skel-
eton code for each class, including native attributes, functions that can be
easily coded, and the heads of the functions that cannot be coded.

public class CourseOffering
{
   private int section;
   private int cap;

   public void Enroll(Student stu)
   {
      //
   }

   public void Drop(Student stu)
   {
      //
   }

   public void PostGrade(Student stu, string g)
   {
      //
   }
}

Order

odate:DateTime
oid:int
promiseDate:DateTime

GetOrderAmount():double

Product

color:string
desc:string
qty:double
sku:string
unitcost:double

GetItemValue():double
GetUnitCost():double

* 1..*

OrderLine

qty:double

GetQty():double

1 1..*
* 1

Figure 9.   Deriving cardinality and navigability for unidirectional association classes.

b3881_Ch07.indd 162 05-10-2020 16:33:46

b3881   Requirements Modeling and Coding6"×9"�

Advanced Associations  163

public class Enrollment
{
   private int status;
   private string grade;

   public void ChangeGrade(string g)
   {
       grade = g;
   }

   public void UdpateStatus(bool s)
   {
       status = s;
   }
}

public class Student
{
   private DateTime admitDate;
   private int sid;
   private string lastName, firstName;
   private double credits, gpa;

   public bool IsEnrolled(Section sec)
   {
      //
   }
   public void AddClass(Section sec)
   {
      //
   }

   public void DropClass(Section sec)
   {
      //
   }
}

Next let us implement associations as instance variables per the same
rules in Chapter 6. The implementation of the Enrollment class is
straightforward; each Enrollment object has one instance of Student
and one instance of CourseOffering because the maximum cardinali-
ties of its relationship with both Student and CourseOffering are 1
(see the boldfaced code).

b3881_Ch07.indd 163 05-10-2020 16:33:46

b3881   Requirements Modeling and Coding� 6"×9"

164  Requirements Modeling and Coding

public class Enrollment
{
   private int status;
   private string grade;
   private Student student;
   private CourseOffering section;

   public void ChangeGrade(string g)
   {
      grade = g;
   }

   public void UdpateStatus(bool s)
   {
      status = s;
   }
}

In the real world, each course offering has multiple students, and
accordingly multiple association links with the students. Thus, each
CourseOffering object corresponds to multiple instances of
Student and multiple instances of Enrollment. We must use a col-
lection type, such as an array, a list, or a dictionary, to define the instance
variables. Here, we use a list for the Student objects and a dictionary for
the Enrollment objects (see the boldfaced code).

public class CourseOffering
{
   private int section;
   private int cap;
   private List<Student> enrollees;
   private Dictionary<int, Enrollment> roster;

   public void Enroll(Student stu)
   {
      //
   }

   public void Drop(Student stu)
   {
      //
   }

   public void PostGrade(Student stu, string g)

b3881_Ch07.indd 164 05-10-2020 16:33:46

b3881   Requirements Modeling and Coding6"×9"�

Advanced Associations  165

   {
      //
   }
}

Note that in C#, a List variable contains a list of values, but a
Dictionary variable contains a list of key-value pairs. The following
code shows their difference in handling a list of text values. A dictionary
uses a hashed key value as the address for each item and is thus more effi-
cient to search for an item. To find an item in a plain list, the computer must
exhaustively go through every item in order to find an item we need. For
example, in the following code, to remove “Ohio” from lstStates, the
computer will need to check each value in the list. In contrast, to remove
the value from dicStates, it just needs to use the hashed value of 1 as
the index to find the item and remove the item.

List<string> lstStates = new List<string>();
lstStates.Add(“Ohio”);
lstStates.Add(“Illinois”);
lstStates.Remove(“Ohio”);

Dictionary<int, string> dicStates = new Dictionary
<int, string>();

dicStates.Add(1, “Ohio”);
dicStates.Add(2, “Illinois”);
dicStates.Remove(1);

The code

private Dictionary<int, Enrollment> roster;

creates instance variable roster as a dictionary to hold a list of student
ID — Enrollment object pairs so that we will be able to use a student
ID to refer to and search for an Enrollment object. For example, we
can refer the Enrollment object for the student with ID 1234567 as
roster[1234567]. Of course, to access the private sid variable of
the Student class, we need to create either a data accessor or property in
the Student class (see the boldfaced code).

public class Student
{
   private DateTime admitDate;

b3881_Ch07.indd 165 05-10-2020 16:33:46

b3881   Requirements Modeling and Coding� 6"×9"

166  Requirements Modeling and Coding

   private int sid;
   private string lastName, firstName;
   private double credits, gpa;

   public string SID
    {
       get {return sid;}
       set {sid = value;}
    }

    public bool IsEnrolled(Section sec)
    {
        //
    }
    public void AddClass(Section sec)
    {
        //
    }

    public void DropClass(Section sec)
    {
        //
    }
}

With the declared instance variables for the two associations to
Student and Enrollment, we can now implement the DropStudent
and PostGrade functions in the CourseOffering class (see the
boldfaced code).

public class CourseOffering
{
   private int section;
   private int cap;
   private List<Student> enrollees;
   private Dictionary<int, Enrollment> roster;

   public void Enroll(Student stu)
   {
       //
   }

   public void Drop(Student stu)
   {
       enrollees.Remove(stu);
       roster.Remove(stu.SID);

b3881_Ch07.indd 166 05-10-2020 16:33:46

b3881   Requirements Modeling and Coding6"×9"�

Advanced Associations  167

   }

   public void PostGrade(Student stu, string g)
   {
       roster[stu.SID].ChangeGrade(g);
   }
}

Note how convenient it is to remove an Enrollment object when
dropping a student and to change grade for a specific student. If the
instance variable roster were declared as a plain list, the code to imple-
ment the functions would involve a loop to search for the Enrollment
object as follows.

public class CourseOffering
{
   private int section;
   private int cap;

   private List<Student> enrollees;
   private List<Enrollment> roster;

   public void Enroll(Student stu)
   {
       //
   }

   public void Drop(Student stu)
   {
       enrollees.Remove(stu);
       foreach (Enrollment e in roster)
       {
           if (e.GetStudent() == stu)
               roster.Remove(e);
       }
   }

   public void PostGrade(Student stu, string g)
   {
       foreach (Enrollment e in roster)
       {
           if (e.GetStudent() == stu)
               e.ChangeGrade(g);
       }
   }
}

b3881_Ch07.indd 167 05-10-2020 16:33:46

b3881   Requirements Modeling and Coding� 6"×9"

168  Requirements Modeling and Coding

To add a student, we will need to create a new Enrollment object
for the student and add it to roster. To this end, we will create two con-
structors, one default and one non-default, for the Enrollment class as
shown by the boldfaced code.

public class Enrollment
{
   private bool status;
   private string grade;
   private Student student;
   private CourseOffering section;

   public Enrollment()
   {
       //
   }

   public Enrollment(Student stu, CourseOffering sec)
   {
       student = stu;
       section = sec;
   }

   public Student GetStudent()
   {
       return student;
   }

   public void ChangeGrade(string g)
   {
       grade = g;
   }

   public void UdpateStatus(bool s)
   {
       status = s;
   }
}

Then to add a student, we just need to add the student to the enroll-
ees list and add a new Enrollment object to the roster dictionary
(see the boldfaced code).

public class CourseOffering
{

b3881_Ch07.indd 168 05-10-2020 16:33:46

b3881   Requirements Modeling and Coding6"×9"�

Advanced Associations  169

   private int section;
   private bool status;

   private List<Student> enrollees;
   private Dictionary<int, Enrollment> roster;

   public void Enroll(Student stu)
   {
       enrollees.Add(stu);
       Enrollment e = new Enrollment(stu, this);
       roster.Add(stu.SID, e);
   }

   public void Drop(Student stu)
   {
       enrollees.Remove(stu);
       roster.Remove(stu.SID);
   }

   public void PostGrade(Student stu, string g)
   {
       roster[stu.SID].ChangeGrade(g);
   }
}

The Student class is implemented similarly. Since each
Student object corresponds to multiple CourseOffering and
multiple Enrollment objects, we use a list type for the instance
variable of CourseOffering and a dictionary type for the instance
variable of Enrollment (see the boldfaced code). Note that the dic-
tionary transcript uses CourseOffering objects as keys and
Enrollment objects as values. To see if the current student object is
enrolled into a specific section, we simply check if enrolledSec-
tions contains the section. To enroll a student into a course offering, the
code is simply to add the CourseOffering object to the enrolled-
Sections list and to create and add a new Enrollment object to
the transcript dictionary for the Student object. To drop a course
offering, the code just does the opposite.

public class Student
{
   private DateTime admitDate;
   private int sid;

b3881_Ch07.indd 169 05-10-2020 16:33:46

b3881   Requirements Modeling and Coding� 6"×9"

170  Requirements Modeling and Coding

   private string lastName, firstName;
   private double credits, gpa;

   private List<CourseOffering> enrolledSections;
   pri�vate Dictionary<CourseOffering, Enrollment>

transcript;

   public string SID
   {
       get {return sid;}
       set {sid = value;}
   }

   public bool IsEnrolled(CourseOffering sec)
   {
       return enrolledSections.Contains(sec);
   }

   public void AddClass(Section sec)
   {
       enrolledSections.Add(sec);
       Enrollment e = new Enrollment(this, sec);
       Transcript.Add(sec, e);
   }

   public void DropClass(Section sec)
   {
       enrolledSections.Remove(sec);
       transcript.Remove(sec);
   }
}

Of course, when a student enrolls into a course offering, the course
offering should also add the student to its roster. Similarly, when the
student drops a course offering, the section should also remove the stu-
dent from its roster. Thus, we will need to update the instance variables
enrollees and roster in the CourseOffering class. To do so, we
may create a synchronization function in the CourseOffering class as
follows.

public void Sync(string type, Student s, Enrollment
e = null)

{
    if (type == “add”)

b3881_Ch07.indd 170 05-10-2020 16:33:46

b3881   Requirements Modeling and Coding6"×9"�

Advanced Associations  171

    {
        enrollees.Add(s);
        roster.Add(s.SID, e);
    }
    else if (type == “drop”)
    {
        enrollees.Remove(s);
        roster.Remove(s.SID);
    }
}

Then, when adding or dropping a course offering, the student
object can ask the CourseOffering object to perform a synchroniza-
tion (see the boldfaced code). Note that the above Sync() function has
an optional argument e since synchronizing a drop does not need the input
of an Enrollment object.

public class Student
{
   private DateTime admitDate;
   private int sid;
   private string lastName, firstName;
   private double credits, gpa;

   private List<CourseOffering> enrolledSections;
   private Dictionary<CourseOffering, Enrollment>

  transcript;

   public string SID
   {
      get {return sid;}
      set {sid = value;}
   }

   public bool IsEnrolled(CourseOffering sec)
   {
      return enrolledSections.Contains(sec);
   }

   public void AddClass(Section sec)
   {
      enrolledSections.Add(sec);
      Enrollment e = new Enrollment(this, sec);
      Transcript.Add(sec, e);

b3881_Ch07.indd 171 05-10-2020 16:33:46

b3881   Requirements Modeling and Coding� 6"×9"

172  Requirements Modeling and Coding

      Sec.Sync(“add”, this, e);
   }

   public void DropClass(Section sec)
   {
      enrolledSections.Remove(sec);
      transcript.Remove(sec);
      sec.Sync(“drop”, this);
   }
}

Synchronization must be also performed when a CourseOffering
object adds or drops a student. Thus, we also need to create a synchroniza-
tion function in the Student class as follows.

public void Sync(string type, CourseOffering sec,
Enrollment e = null)

{
    if (type == “add”)
    {
        enrolledSections.Add(sec);
        transcript.Add(sec, e);
    }
    else if (type == “drop”)
    {
        enrolledSections.Remove(sec);
        transcript.Remove(sec);
    }
}

And then call a CourseOffering object to perform the function
when the object adds or drops a student (see the boldfaced code).

public class CourseOffering
{
    private int section;
    private bool status;

    private List<Student> enrollees;
    private Dictionary<int, Enrollment> roster;

    public void Enroll(Student stu)
    {
        enrollees.Add(stu);

b3881_Ch07.indd 172 05-10-2020 16:33:46

b3881   Requirements Modeling and Coding6"×9"�

Advanced Associations  173

        Enrollment e = new Enrollment(stu, this);
        roster.Add(stu.SID, e);
        stu.Sync(“add”, this, e);
    }

    public void Drop(Student stu)
    {
        enrollees.Remove(stu);
        roster.Remove(stu.SID);
        stu.Sync(“drop”, this);
    }

    public void PostGrade(Student stu, string g)
    {
        roster[stu.SID].ChangeGrade(g);
    }
}

Before we conclude this section, let us revisit whether we should
keep the two redundant relationships when implementing association
classes. We should note that in the above implementation, the two lists
in the Student class — enrolledSections and transcript —
and two lists for the CourseOffering class — enrollees and
roster — are redundant. In fact, transcript.Keys will be a list of
enrolled sections for a student and roster.Keys will be a list of enroll-
ees for a course offering. The question is whether transcript.Keys
is identical to enrolledSections and whether roster.Keys is
identical to enrollees. If they are, the instance variables enrolled-
Sections and enrollees become unnecessary. In the above code for
adding and dropping a student or a section, both lists for the association
class are always synchronized, and so only transcript and roster
are needed. As an exercise, the reader may update the above implementa-
tion accordingly.

Recursive Associations
Associations may relate objects from the same class or group. For exam-
ple, one course may be a prerequisite for other courses, an employee may
be a supervisor of other employees, a person may be married to another,
and a part is a component to make another part. To model these associa-
tions, we will use an association relationship to link a class to itself in class

b3881_Ch07.indd 173 05-10-2020 16:33:46

b3881   Requirements Modeling and Coding� 6"×9"

174  Requirements Modeling and Coding

diagrams. We call this type of association unary, reflexive, or recursive.
Figure 10 shows two examples of recursive associations, respectively,
for the relationship between courses and their prerequisites and between
employees and their supervisors. A prerequisite is also a course, and so the
association is a recursive one between courses. Note that a course must
have prerequisites, but a prerequisite does not need to know which courses
use it as a prerequisite. Thus, the association is a unidirectional recursive
one. Similarly, supervisors are employees, and so the relationship between
supervisors and employees are recursive.

Recursive associations are implemented in the same manner as usual
associations as in the previous chapter. For example, to implement the
Course class in Figure 10, we first create a blank class as follows:

Course

cno:string
title:string
credits:double

GetCredits():double
FindPrerequisites(cno:string):List<Course>

requires

1

*

Employee

eid:int
hiredate:DateTime
name:string
job:string

Assign(title:string,boss:Employee):void
GetHireYears():int
GetManager():Employee

1

*

Figure 10.   Recursive associations.

b3881_Ch07.indd 174 05-10-2020 16:33:48

b3881   Requirements Modeling and Coding6"×9"�

Advanced Associations  175

class Course
{
   private string cno;
   private string title;
   private double credits;

   public void GetCredits()
   {
       return credits;
   }

   public List<Course> FindPrerequisites(string cno)
   {
      //;
   }
}

To implement the recursive association, we just imagine two separate
copies of Course class connected by the association relationship. Since
the navigability is unidirectional, we just need to create objects of one end
as the instance variable, named prerequisites, in the second end.
The maximum cardinality is *, and so we use a list type for the instance
variable. Thus, we have an instance variable in the class as follows:

private List<Course> prerequisites;

With this new foreign data member, the code for GetPrerequisites
is as simple as telling the value of a data member. The following is the
complete implementation:

class Course
{
   private string cno;
   private string title;
   private double credits;

   private List<Course> prerequisites;

   public void GetCredits()
   {
       return credits;
   }

   public List<Course> GetPrerequisites()

b3881_Ch07.indd 175 05-10-2020 16:33:48

b3881   Requirements Modeling and Coding� 6"×9"

176  Requirements Modeling and Coding

   {
       return prerequisites;
   }
}

Note that due to unidirectional navigability, we create one instance
variable. If the recursive association is bidirectional, we will have to create
two instance variables. For example, to implement the Employee class
in Figure 10, we will create two foreign instance variables, manager
for an employee and subordinates for a manager (see the boldfaced
code).

public abstract class Employee
{
   private List<string> addresses;
   protected string eid;
   protected string ename;
   protected DateTime hiredate;
   protected string job;

   protected Employee manager;
   protected List<Employee> subordinates;

   public int GetHireYears()
   {
       TimeSpan ts = DateTime.Now - hiredate;
       return ts.Days / 365;
   }

   public Employee GetManager()
   {
       return manager;
   }

   public void Assign(string t, Employee boss)
   {
       manager = boss;
       job = t;
   }
}

Like any other associations, a recursive association may also have its
own data or functions and so is modeled as an association class. For exam-
ple, between each pair of a supervisor and a supervisee, we may need to

b3881_Ch07.indd 176 05-10-2020 16:33:48

b3881   Requirements Modeling and Coding6"×9"�

Advanced Associations  177

have data on the assignment date and nature. Similarly, a course may not
only require another course as a prerequisite but also students must pass
the prerequisite with a minimum level of proficiency or grade. Figure 11
shows the use of association classes to capture the need for data in recur-
sive associations.

Multiway Associations
Each binary association connects two objects at a time. Sometimes, three
or more objects may simultaneously join into a single high-order or multi-
way association. Figure 12 shows two of such examples, where a diamond
is a symbol for a multiway association and the dashed line connects it to an
association class. Note that IBM Rhapsody does not support the modeling

Employee

eid:int
hiredate:DateTime
name:string
job:string

Assign(title:string,boss:Employee):void
GetHireYears():int
GetManager():Employee

Assignment
1

*

Assignment

assignDate:DateTime
assignNature:string

Course

cno:string
title:string
credits:double

GetCreditHours():double
FindPrequisites(cno:string):List<Course>
GetMinGrade(prereq:Course):string

Requirement

*

*

Requirement

minGrade:string

Figure 11.   Recursive association classes.

b3881_Ch07.indd 177 05-10-2020 16:33:48

b3881   Requirements Modeling and Coding� 6"×9"

178  Requirements Modeling and Coding

of multiway relationships. So, a multiway association may be drawn as an
association class, and all the participating objects are linked to the associa-
tion. The alternative representation, along with the constraint that requires
all the associations to the association class hold simultaneously, will be
equivalent to the original multiway association.

1 1

1

-begin : Date
-end : Date
-role : string

Assignment

Task

Machine Worker

1 1

1

-shippingFee : decimal

Shipment

Customer

Vendor Warehouse

Figure 12.   Multiway association classes.

b3881_Ch07.indd 178 05-10-2020 16:33:48

b3881   Requirements Modeling and Coding6"×9"�

Advanced Associations  179

The essence of multiway relationships, as opposed to multiple binary
relationships, is that all the objects must participate in each relationship
simultaneously. If one quits, the relationship does not exist. Workplace
assignments may be modeled as a 3-way association, where each assign-
ment must be for one worker, on one task, and at one machine. Without
any of them, the assignment is incomplete, and the association does not
exist. If multiple shifts exist as in a manufacturing setting, assignments
may be 4-way associations among workers, tasks, machines, and shifts.
Attributes such as performance and quality must be declared in the 4-way
association class.

Shipments may also be modeled as 3-way relationships among ven-
dors, warehouses, and customers. A possible attribute for each shipment
is shipping fee, which is assessed based on the vendor from which the
order is made, the warehouse from which the order is shipped, and the cus-
tomer to whom the shipment is to be delivered. In other words, it is deter-
mined simultaneously by all three objects: Customer, Warehouse, and
Vendor. Therefore, a shipping fee is an attribute for the 3-way associa-
tion class. It cannot be an attribute for a vendor, a warehouse, or a cus-
tomer alone. It cannot be an attribute of a binary association between any
two of them either.

Constrained Associations
When using an association class to replace a multiway association, we
realize that, sometimes, we need to add constraints to associations. The
results are constrained associations. In this section, we introduce a few
optional techniques to represent constraints among associations, includ-
ing exclusive relationships, conjoint associations, dependent relationships,
and order and changeability constraints. All these techniques are parts of
the UML standard. However, they are not supported by all CASE tools.

Exclusive and conjoint associations

Exclusive associations are those relationships that cannot hold simultane-
ously in the sense that if an object participates in one of them, it cannot
participate in the others. For example, in a college, each office can be
assigned to either one full-time teacher or several part-time ones. However,
it cannot be assigned to both. In other words, the two association relation-
ships between an office and a full-time teacher and between the office and

b3881_Ch07.indd 179 05-10-2020 16:33:48

b3881   Requirements Modeling and Coding� 6"×9"

180  Requirements Modeling and Coding

a part-time teacher are exclusive. For another example, in corporate train-
ings, some employees teach a training class while other employees take
the training class. However, one employee cannot take and teach a class
at the same time. Thus, the two associations are exclusive. To represent
exclusive associations, we can use predefined OR constraint to link the
associations (see Figure 13).

Conjoint associations are just the opposite of exclusive associations.
Two or more associations are conjoint if they must hold or exist simulta-
neously. For example, to represent a multiway association using an asso-
ciation class, we will connect each participating object to the association
class with an association relationship, and these relationships must be con-
joint. To model conjoint associations, we use predefined AND constraint
to link the conjoint associations.

Dependent associations

Dependent associations involve two relationships wherein one is depen-
dent on the other in the sense that if one changes, the other will be affected.
Like dependencies between classes, use cases, and packages, we use a

PartTimer

FullTimer

Office

1

1..*

0..* 0..1

Instructor

Employee TrainingClass
1 0..*

0..* 0..*

{OR}

{OR}

Figure 13.   Exclusive associations.

b3881_Ch07.indd 180 05-10-2020 16:33:48

b3881   Requirements Modeling and Coding6"×9"�

Advanced Associations  181

dashed arrow pointing from the depending association to the dependent
association to model the dependency. In addition, one shall attach a text to
indicate the nature of the dependency. For example, in Figure 14, we show
an example of dependent relationships, where the association between
Country and Capital refines the association between Country and
City.

Order and changeability constraints

Order and changeability constraints apply to attributes and associations as
well. Since associations will be eventually implemented as foreign data
members, these two constraints essentially govern whether the data mem-
bers should be ordered or not if a data member takes on a list of values
and whether the values of a data member are changeable, frozen, removed
only, or added only.

For example, suppose an employee has zero or more diplomas. The
attribute diploma will be of an array type. It may make sense to require
that, if there are more than two diplomas, we order the values from high-
est degree to lowest one. Thus, we shall make diploma attribute ordered.
Similarly, each employee’s dependents, if any, shall be ordered too. For
another example, a flight involves two or more airports, i.e., departure,
arrival, and stopover locations, which shall be ordered. Thus, we can apply
order constraint to the airport end of the association (see Figure 15).

Changeability allows one to specify whether an attribute value or an
association end should be changeable, frozen, add only, or remove only.
For an employee object, the id attribute should be set as frozen and diploma
attribute should be set “add only” because, once obtained, a diploma cannot

Country

City

Capital
1

1

*

*

{refine}

Figure 14.   Dependent associations.

b3881_Ch07.indd 181 05-10-2020 16:33:48

b3881   Requirements Modeling and Coding� 6"×9"

182  Requirements Modeling and Coding

be modified or removed. Similarly, if an employee’s dependents can only
be added but not removed or modified, then the Dependent end of the
association in Figure 15 shall be set as “add only.” For another example, if
a flight is set to fly a fixed route from a departure airport, through zero or
more stopovers, and arrive at the destination airport, then the airport end
of the association in Figure 15 shall be set frozen.

Exercises
  1.	 Give two examples for each of the following relationships and draw

the corresponding class diagrams:
a.	 Composite relationships.
b.	 Aggregate relationships.
c.	 Generation/specialization relationships.
d.	 Recursive relationships.

  2.	 Give one example of the following relationships and draw the corre-
sponding class diagrams:
a.	 Exclusive relationships.
b.	 3-way relationships.
c.	 Dependent relationships.
d.	 {frozen} relationships.
e.	 {ordered} relationships.

Employee

diploma:string[]

Dependent

1 *

{ordered}

Flight Airport

* *

{ordered}

Figure 15.   Order constraints.

b3881_Ch07.indd 182 05-10-2020 16:33:49

b3881   Requirements Modeling and Coding6"×9"�

Advanced Associations  183

  3.	 Use class diagrams to model the following business needs:
a.	 An order contains multiple items and sometimes may contain

multiple quantities of the same item.
b.	 A medical treatment often involves multiple procedures, with

each one having a unique id and cost. Sometimes a treatment may
apply the same procedure multiple times; clinics need to know the
quantity in order to bill customers correctly.

c.	 In the assembly industry, raw materials and ready-to-use parts
may be used to build other parts. How would you handle the quan-
tity of raw materials and parts used in the assembly? (Of course,
raw materials cannot be used to make raw materials.)

d.	 Test results, including x-ray files and various blood test indica-
tors along with expert reading comments, are kept for each test
performed on patients.

e.	 A national merchandise club sells products at different prices at
different locations and to different members. Where do we keep
data about the prices?

  4.	 A college has a few meeting facilities that can be reserved for indi-
viduals and departments, called customers. Here are the ongoing tasks
for the facility manager: make and change reservations, print out the
list of customers who will be using each facility for each day, and if
a customer calls in, query the facility the customer reserved. In addi-
tion, after the facility is used as scheduled, its reservation status will
be updated, and an invoice will be sent to the customer for payments.
Create a class diagram with appropriate operations in each class and
then program the classes using C# or Java.

  5.	 Use Java or C# to implement the following class diagram:

Treatment

tDate:DateTime
tid:int

ComputeTreatmentCost():double

Procedure

desc:string
unitCost:double

GetUnitCost():double

TreatProc
* 1..*

TreatProc

note:string
qty:int

GetProcedure():Procedure

b3881_Ch07.indd 183 05-10-2020 16:33:49

b3881   Requirements Modeling and Coding� 6"×9"

184  Requirements Modeling and Coding

  6.	 An academic department wants to put its annual report online. It has
information about individual faculty: interest areas (AI, Software
Engineering, Networking, etc.), recent publications, information about
degrees (year granted, institution), and personal information (address,
phone number, email, photograph, webpage, etc.). It has information
about publications too: authors (may be by more than one faculty
member and/or student), title of publication, date published, where
published, and interest area(s). There is information about research
groups: faculty and students in the group (student info includes inter-
est areas, name, phone number, email, photograph, webpage, and
faculty advisor), name of group, interest area(s). There are overview
pages with: all faculty interested in different interest areas (e.g., all
software engineering faculty), all faculty publications, arranged by
year, pictures, and names of all faculty. Develop a class diagram to
capture the domain knowledge in the text.

  7.	 A gymnastics team wants to keep records of its gymnasts’ scores in
competition in addition to personal information about them (name,
age, height, weight, sex, etc.). Female gymnasts compete in four exer-
cises: balance beam, uneven bars, vault, and floor. Male gymnasts
compete in six exercises: horse, parallel bars, high bar, rings, vault,
and floor. Each competition has the gymnasts compete in all their
exercises once, except for vault, which is done twice, and the best
score is kept. The team wants to track the coaches, too, to be able to
evaluate if gymnasts do better with certain coaches. Develop a class
diagram to capture the domain knowledge in the text.

  8.	Whenever a new patient is seen for the first time at Cybercare Center,
he or she must finish a patient information form that asks name,
address, phone number, insurance carrier, and yes/no answers to cer-
tain questions such as whether a patient is allergic to certain drugs,
whether the patient has any surgery in the last five years, etc. The
patient can provide data on one insurance carrier so that the clinics
can file claims on her behalf. The claim must have information about
the visit, such as the date, purpose, a list of procedures performed,
and the cost. Develop a class diagram to model the objects require-
ments for the clinic.

  9.	 Use Java or C# to implement the following class diagram involving
association classes:

b3881_Ch07.indd 184 05-10-2020 16:33:49

b3881   Requirements Modeling and Coding6"×9"�

Advanced Associations  185

Product

qty:double
sku:string
unitcost:double

GetUnitCost():double

Transaction

tdate:DateTime
tid:int

GetTransactionTotal():double

TransactionLine
1..

Rental

status:bool

Period

beginDate:DateTime
endDate:DateTime

GetDays():int

* 1

TransactionLine

discount:double
qty:int

GetDiscount():double
GetProduct():Product
GetQty():int

10.	 Whenever a new patient is seen for the first time at Cyberdale Care
Center, she has to finish a patient information form that asks name,
address, phone number, insurance carrier, and yes/no answers to cer-
tain questions such as whether a patient is allergic to certain drugs,
whether the patient has any surgery in the last five years, etc. When
a patient calls to schedule a new appointment or change an existing
appointment, the receptionist checks the appointment schedule for an
available time. Once a good time is found for the patient, the appoint-
ment is scheduled. If the patient is new, an incomplete entry is made in
the patient file; the full information will be collected when the patient
arrives for the appointment. Sometimes, appointments are made so far
in advance that the receptionist will have to send a reminder postcard
to each patient a week before her appointment. Develop a class dia-
gram to model the objects requirements for the clinic.

11.	 Professor Bizmind does a lot of consulting in his life. He used to use
FastBook to manage his bills and payments. Now he feels that the
software cannot be customized to fit his needs. In particular, he would
like his clients to be able to make job requests using the Internet.
The client can get feedback immediately if the requested time con-
flicts with his existing schedule. The request can then be modified for
another time, canceled, or sent regardless. Bizmind then looks at all
the requests every day. If the requested time can be honored, he will
update his schedule and send a confirmation to the client. Otherwise,
he will talk to the client using email or phone to set up another time.
Then he updates the schedule on the agreed date/time and sends an
automatic confirmation. In terms of request details, the professor has

b3881_Ch07.indd 185 05-10-2020 16:33:50

b3881   Requirements Modeling and Coding� 6"×9"

186  Requirements Modeling and Coding

itemized a list of standard activities such as Data Analysis, Systems
Administration, IT planning, etc. A client can just simply select one or
more activities when she makes a job request. The professor also has
standard unit fee associated with each activity. He may give discounts
based on the quantity (e.g., number of hours) performed on an activ-
ity. A bill will be sent after each job is finished and at the beginning of
each month, if a client has outstanding balance. A minimum payment
and a due date will be specified on the bill. Late fee may be levied if
a payment is overdue. Develop a class diagram to capture the domain
objects required by the professor.

12.	 When members join OMCA health club, they pay a fee for a certain
length of time. Most memberships are for 1 year, but memberships for
short periods are available. Due to various promotions throughout the
year, it is common for members to pay different amounts for the same
length of membership. The club wants to mail out reminder letters to
members to ask them to renew their memberships one month before
their memberships expire. Some members have been angry when
asked to renew at a much higher rate than their original membership
contract. So, the club needs to keep track of the price paid so that
the managers can override the regular prices with special prices when
members are asked to renew. The system must keep track of these new
prices so that renewals can be processed accurately. One of the prob-
lems in the health club industry is the high turnover rate of members.
Although some members remain active for many years, about half of
the members do not renew their memberships. This is a major problem
because the club spends a lot in advertising to attract each new mem-
ber. The manager wants to track each time a member comes into the
club. The system will identify heavy users and generate a report so the
manger can ask them to renew their memberships early at a reduced
rate. Likewise, the system should identify those who do not come to
the club often so that the manager can call them and attempt to attract
them in the club. Create a class diagram for the problem.

13.	 To enroll a student into a class, the registration system must check
whether the student has all the prerequisites taken, whether the class
is still open, and whether the total number of credit hours the student
registers is not beyond the maximum allowed. After a student fin-
ishes her registration, she will need to pick up a printed confirmation
that shows all the courses she has registered, the data/time, section
number, credit hours, ecourse.org access code, and instructor for each

b3881_Ch07.indd 186 05-10-2020 16:33:50

b3881   Requirements Modeling and Coding6"×9"�

Advanced Associations  187

class. Also, the confirmation paper shows the student status, state of
residence, the total number of credit hours, and the total amount to
be paid to the college. The student will bring the confirmation to the
business office and make a deposit, which is equivalent to 20% of the
total amount, to reserve her registration. If she fails to do so within
10 days, her registration will be canceled. The system also actively
monitors the number of students signed up for each class. Three days
before the class starts, if the number of registered students for a class
is less than 15, the class will be canceled. The registered students will
be informed to find alternative classes. To better serve the students and
departments, the system has functionality for students to make course
requests for future terms. The requests will be summarized and sent to
departments so that they can make informed decisions on what to be
offered in the future. Create a class diagram for the problem.

b3881_Ch07.indd 187 05-10-2020 16:33:50

b2530   International Strategic Relations and China’s National Security: World at the Crossroads

b2530_FM.indd 6 01-Sep-16 11:03:06 AM

This page intentionally left blankThis page intentionally left blankThis page intentionally left blankThis page intentionally left blank

189

b3881   Requirements Modeling and Coding6"×9"�

Chapter 8

Practical Class Diagramming

Introduction
We have learned the basic mechanics of class diagramming and some
advanced features. To apply the mechanics and features requires practice,
experience, and domain knowledge. However, there are certain valuable
heuristics, design patterns, and practical methods that can help overcome
some of the difficulties. In this chapter, we will introduce a few design
patterns to improve the efficiency of class diagramming. Note that there
are specialized books on those topics, but here we introduce a few simple
aspects. Then we will study the phraseology, a linguistic analysis approach
to object modeling, to model large practical problems.

Design Patterns
From time to time, people often find that some class diagrams are strik-
ingly similar despite the differences in their problem domains. The simi-
larity is not due to coincidence. Rather, it is because of the existence of
common patterns. In this section, we study a few such common patterns.

The Transaction Pattern: This pattern comes from the model that shows
a customer making 0 or more orders, each of which in turn contains one
or more items, and an item may be ordered by 0 or more orders. The class
diagram is shown in Figure 1.

Transaction pattern applies to all transaction or request situations such
as rentals, returns, shipments, bids, requests, applications, reservations,

b3881_Ch08.indd 189 05-10-2020 16:34:06

b3881   Requirements Modeling and Coding� 6"×9"

190  Requirements Modeling and Coding

etc., although some may have nothing to do with orders. The following are
some examples modeled using this pattern:

Example 1: Patrons make rentals (or returns), each of which contains one
or more books (Figure 2). Because different rentals and items may have
different due times, an association object is used to keep the data on dues.

Example 2: In procurement, employees or departments propose purchase
requests to the purchasing department (Figure 3). Each proposal requests
one or more products to buy.

Customer Order

1 *

Product

Lineitem
* 1..*

Lineitem

Figure 1.   The transaction pattern.

Patrons Rental

1 *

Book

Due
* 1..*

Due

Figure 2.   Library rentals.

b3881_Ch08.indd 190 05-10-2020 16:34:07

b3881   Requirements Modeling and Coding6"×9"�

Practical Class Diagramming  191

Example 3: During March of every year, students sign up for course offer-
ings to take for the following academic year (Figure 4). For each pair of
registration and class, the system needs to keep track of its various verifi-
cation or approval status on whether it has special permissions, whether it
must be approved, etc.

Example 4: Each company has 0 or more job positions. Each position gets
0 or more applicants, and each position requires one or more skills with
specific proficiency requirements (Figure 5).

Department Request

1 *

Product

Lineitem
* 1..*

Lineitem

Figure 3.   Purchase requests.

Student Registration

1 *

Class

Verification
* 1..*

Verification

Figure 4.   Student registrations.

b3881_Ch08.indd 191 05-10-2020 16:34:08

b3881   Requirements Modeling and Coding� 6"×9"

192  Requirements Modeling and Coding

The Assembly Pattern: This pattern, which some authors called the com-
posite pattern (Gamma et al., 1995), comes from a manufacturer setting,
where some parts and/or materials are used to assemble other parts or
products. Figure 6 is the class diagram for the pattern.

The assembly pattern is useful for situations with hierarchical compo-
sitions from an individual element up to more and more complex objects.
The following are a few examples of this pattern:

Company Position

1 *

Skill

Proficiency
* 1..*

Proficiency

Figure 5.   Job advertisements.

Part

Product
1

*

Material

Figure 6.   The assembly pattern.

b3881_Ch08.indd 192 05-10-2020 16:34:09

b3881   Requirements Modeling and Coding6"×9"�

Practical Class Diagramming  193

Example 5: A storage artifact includes directories (or folders) and files,
while a directory may contain other artifacts such as sub-directories and/
or files (Figure 7).

Example 6: In a society, both organizations and individuals are legal
representatives, and an organization contains other legal representatives
(Figure 8).

Example 7: Both a network and a computer are systems, and a network
contains other systems such as sub-networks and computers (Figure 9).

The Representative Pattern: This pattern comes from the use of poly-
morphism to model exclusive associations. It may sometimes be called
the party pattern (Hay 1996). Figure 10 shows two class diagrams using
the pattern. Here, each bank account belongs to either an individual or
an organization, but not both. Thus, we generalize Individual and
Organization into Customer to be associated with Account. Each
customer is the representative of an individual or an organization.

The relationship between claims and patients also follows this pat-
tern. A claim may be either filed by an individual patient or by a clinic,

StorageUnit

File
Directory

1

1..*

Figure 7.   File systems.

b3881_Ch08.indd 193 05-10-2020 16:34:09

b3881   Requirements Modeling and Coding� 6"×9"

194  Requirements Modeling and Coding

LegalEntity

Person
Community

1

1..*

Figure 8.   Social systems.

System

Computer
Network

1

1..*

Figure 9.   Computer systems.

b3881_Ch08.indd 194 05-10-2020 16:34:10

b3881   Requirements Modeling and Coding6"×9"�

Practical Class Diagramming  195

but not both. Instead of using two exclusive associations — one between
clinics and claims and one between patients and claims — we can create a
representative, say Filer, which represents either a patient or a clinic to
participate in an association with a claim. Figure 11 is the class diagram
for the case.

Later in this book, we will find the representative patterns applicable
to use case modeling, where a representative may be used to represent two
or more actors who play the same role and two or more use cases that have
almost identical sequence of interactions between an actor and the system.
In fact, this pattern is widely used in practical class diagramming using
phraseology: when we see a sentence that connects one or more subjects to
one or more objects by a verb, the subjects and/or objects will often better
be modeled by a representative. For example, to model the sentence “an
office is assigned to either one full-time professor or multiple part-time
instructors,” we should find a representative of both full-time professors
and part-time instructors to connect with offices.

Account Customer

* 1..*

IndividualOrganization

Figure 10.   The representative pattern.

b3881_Ch08.indd 195 05-10-2020 16:34:10

b3881   Requirements Modeling and Coding� 6"×9"

196  Requirements Modeling and Coding

The Manifestation Pattern: What is difference between a course and a
course offering? The former is a catalog entry listed in the college bul-
letin, whereas the latter is a concrete course section or a manifestation
taught by an instructor and taken by students. Their relationships, shown
in Figure 12, exhibit an interesting pattern that is followed by many other
examples, which are as follows:

1.	 Test: Tests such as SAT and GRE are catalog entries with information
such as test name and description. The actual tests are offered under
catalog tests, scheduled on a specific date and place, and participated
in by students.

Filer Claim

1 *

Patient
Clinic

Figure 11.   Insurance claims.

Course CourseOffering

1

Figure 12.   The manifestation pattern.

b3881_Ch08.indd 196 05-10-2020 16:34:10

b3881   Requirements Modeling and Coding6"×9"�

Practical Class Diagramming  197

2.	 Flight: Flights such as UA112 and UA111 are catalog entries with a
flight number, a route, and days. Actual flights are those that passen-
gers can book and are scheduled on a date.

3.	 Video: In a video rental store, videos are catalog entries with informa-
tion such as ISBN, title, length, description, authors, and publisher.
Actual video tapes are those that can be rented by customers and have
information such as UPC bar code, whether it is rented out or not, etc.

Practical Skills for Identifying Objects
and Relationships
Acquiring domain knowledge is the TAO to discovering objects. However,
do not expect clients or users to tell you what objects they have or what
you may need; they may not understand object-oriented concepts. Instead,
what they can tell you are what they can see or touch, or their complaints
with software or their work, or what they want to achieve, or how they do
their work. Therefore, it is the business analyst’s job to discover objects
from what clients and users can offer.

Two common forms of what a user can offer are business forms/reports
and problem statements. Business forms and reports tell what data are cur-
rently used. Domain objects are business entities that we need to keep or
process data for. Thus, if we can find out what data an organization uses
or is going to use, the holders or carriers of the data will be the domain
objects to be identified. To find out data content, the best approach is to
collect existing business documents, including sample forms and reports,
in electronic or paper format. For example, Figure 13 shows a customer
order form. According to the data shown on the form, there are three types
of objects involved: customers, orders, and products. Within each order,
each product has a separate order quantity and price, which can only be
registered with the relationship between a product and an order. Therefore,
we need to create an association class for the relationship between Order
and Product, and Figure 14 shows the class diagram to capture the data
on the form well.

Discovering objects and relationships using phraseology

Business-, user-, and software requirements are often expressed in tex-
tural descriptions. Phraseology is a technique to identify objects, attributes,

b3881_Ch08.indd 197 05-10-2020 16:34:10

b3881   Requirements Modeling and Coding� 6"×9"

198  Requirements Modeling and Coding

operations, and relationships by analyzing the grammatical structure of a
written text. The technique focuses on the nouns contained in a text and
decides whether each noun is relevant or not, and, if relevant, whether it
should be modeled as an object or attribute. It then focuses on connection
words like from, to, off, of, like, is, etc., that link one or more objects and
decides whether each of such words establishes a relationship between the
identified objects. Finally, it analyzes the verbs contained in the text, deter-
mines who carries out the action, and determines whether the verb is an
action word that process data or not. If a data action is carried out by a busi-
ness stakeholder, the verb will probably suggest a use case. If a data action
is carried out by a domain object, the verb probably suggests an operation.

Figure 13.   Sample customer order form.

Customer

cno:int
cname:string
street:string
city:string
state:string
zip:string

Order

oid:int
odate:DateTime
promiseDate:...
pDate:DateTi...

1 *

Product

desc:string
unitcost:double
prodNo:string

LineItem
* 1..*

LineItem

qty:int

Figure 14.   Class diagram to capture data in the sample order form.

b3881_Ch08.indd 198 05-10-2020 16:34:11

b3881   Requirements Modeling and Coding6"×9"�

Practical Class Diagramming  199

Action nouns sometimes indicate relationships. When being asked
about what the users want to keep or process data, typically they describe
things like enrollment, assignment, shipment, transaction, teaching, etc.
These action words, most of time, indicate relationships between two or
more objects. We may need to ask the user to describe the meaning of
words to understand the role of various parties involved.

Of course, there will be many nouns, connection words, and verbs that
are irrelevant to the problem domain as judged by use cases or require-
ments. They will be left out. In the following, we use two examples to
demonstrate this technique.

Example 1: ABC University Business Office receives supplies from
various vendors and checks out the items to internal departments. The
actual cost of each item is billed to the departments who use the supplies.
Internally, as a convention of organizing inventories, supplies are organized
into categories. For each supply, the maximum and minimum inventory
levels are kept so that when the stock of a part is below the minimum,
a replacement order may be issued and sent to a vendor to get it refilled.

By reading the text, we identify the following nouns:

Business office, supplies, departments, actual cost, items, convention,
inventories, categories, maximum inventory level, minimum inventory
level, stock of a part, parts, vendors, and orders.

The nouns are then filtered in the following order:

1.	 Remove the objects that we do not want to keep data for: For example,
since we are building a system for the business office, we do not need
to keep and process data about the business office itself. Thus, the
noun “business office” can be removed. Similarly, the noun “conven-
tion” does not belong to the domain and can be removed.

2.	 Remove the synonyms: For example, supplies, items, inventories, and
parts are obviously synonyms. We can delete all but keep one, say
supplies.

3.	 Differentiate objects from attributes: For each of the remaining nouns,
some of them will be identified as objects while others are attributes.
For example, supplies, vendors, categories, and orders are identified
as objects. The nouns “maximum inventory level,” “minimum inven-
tory level,” and “stock of a part” are attributes for supplies.

b3881_Ch08.indd 199 05-10-2020 16:34:11

b3881   Requirements Modeling and Coding� 6"×9"

200  Requirements Modeling and Coding

Thus, we identified the following objects with attributes:

Supplies (actual cost, stock, maximum inventory level, minimum inven-
tory level), Departments, Categories, Vendors, and Orders.

As nouns indicate objects and attributes, connection words including
verbs usually indicate relationships, especially when the object and the
subject of a verb have both been identified as objects. For example, the
sentence “supplies are organized into categories” indicates relationships
between categories and items (synonym for supplies). Similarly, “Items are
checked out to departments” indicates relationships between supplies and
departments. For this purpose, let us underline all the connection words:

“ABC University Business Office receives supplies from various
vendors and check out the items to internal departments. The actual cost
of each item is billed to the departments who use the supplies. Internally,
as a convention of organizing inventories, supplies are organized into
categories. For each supply, the maximum and minimum inventory levels
are kept so that when the stock of a part is below the minimum, a replace-
ment order will be issued and sent to a vendor to get it refilled.”

The underlined connection words are extracted into the following list:
business offices receives supplies, supplies from vendors, business office
checks out supplies, supplies are checked out to departments, departments
use supplies, actual cost is of a supply, actual cost is billed (by Business
Office), actual cost to departments, supplies are organized into categories,
maximum and minimum inventory levels are kept (by Business Office),
stock is of a supply, stock is below the minimum inventory level, order is
issued and sent (by Business Office) to vendor, vendor fills order.

Now review the connections one by one in the following order:

1.	 Some of these connections are already known. For example, stock and
actual cost are attributes of supplies. Remove them!

2.	 Some connections are linking objects with somebody or something
not identified as objects. Remove them for now or consider them in
use case modeling later. For example, “receive,” “check out,” “kept
by,” “billed by,” and “issued and sent by” are the actions carried out
by Business Office, which is outside the list. In fact, they indicate five
use cases: receive supplies, check out items, bill departments, check
inventory levels, and issue orders (see the next chapter).

3.	 Analyze the multiple connections between the same objects to see
whether they are of different connections in terms of characteristics.

b3881_Ch08.indd 200 05-10-2020 16:34:11

b3881   Requirements Modeling and Coding6"×9"�

Practical Class Diagramming  201

If they are the same, remove duplicates. For example, “order to
vendor” and “vendor fills order” should be the same. Similarly,
“supplies are checked out to departments,” “departments use supplies,”
and “actual cost to departments” are identical.

After these steps, we come up with a short list as follows: supplies
from vendors, supplies are checked out to departments, supplies are orga-
nized into categories, stock is below the minimum inventory level, and
vendors fill orders. Among the five remaining connections, “stock is below
the minimum inventory level” suggests an operation to compare stock
levels. The other four connections suggest associations. For each associa-
tion, we need to decide whether it is direct, or if it is established through
another middleman object. The criterion is whether we need to keep data
on the action verbs or not. If yes, the middleman object is used. Supplies
are ordered from vendors, and supplies are checked out to departments.
We need to keep data on the order and check out actions, for example,
their dates, places, and amounts, etc., so that we can track the history of
the actions. Thus, there is a middleman class, ReplacementOrder,
between Supply and Vendor, and there is also CheckOut between
Supply and Department. Also, by applying the transaction pattern
to both cases, we identify two association classes. Finally, “Supplies are
organized into categories” means that each supply belongs to a category. It
is a direct association because we do not need to track the action of orga-
nizing supplies into categories.

Summarizing all the above findings, we come up with a class dia-
gram as shown in Figure 15. Note that, after relationships are identified,
the determination of mapping cardinality and relationship types (compos-
ite, aggregate, association, dependence, or generalization) are often not
difficult.

In this example, all the objects and the relationships are identified
using phraseology. This is not always the case. In particular, the relation-
ships between objects are often not hinted by connection words. Instead,
they must be identified through alternative routes. There are three alter-
native strategies we can use to determine whether there is a relationship
between any objects.

1.	 Navigational Test: Given an object in one class, do we need to find
the corresponding objects in the other class? If this test is positive,
then there will be relationships between the two classes. For exam-
ple, between ReplacementOrder and Vendor, given an order,

b3881_Ch08.indd 201 05-10-2020 16:34:11

b3881   Requirements Modeling and Coding� 6"×9"

202  Requirements Modeling and Coding

do we need to know to whom we will send the order? Of course, the
answer is positive. Therefore, we need to model relationships between
ReplacementOrder and Vendor. For another example, between
ReplacementOrder and Supply, given an order, do we need to
know what is in the order? Yes, of course. Thus, there is an association
between them.

2.	 Responsibility Test: If an object in one class has one or more operations
that require the knowledge of and/or request services from an object
in the other class, then these two classes should be connected. For
example, we already know that to create a new replacement order if
the stock is below the minimum inventory level, i.e., the “create order”
operation in the Order class, requires knowledge about supplies.
Thus, ReplacementOrder and Supply should be connected. In
later chapters, we will see that after a use case is fully described, more
such collaborations will become evident and can be used to identify
the relationships.

3.	 Domain Knowledge Test: All the relationships must be consistent
with domain knowledge. The navigational and responsibility tests
may indicate high-level or indirect relationships. Domain knowl-
edge will supplement them by providing detailed navigation and col-
laboration maps and direct relationships. For example, phraseology

DepartmentCheckout

coDate:DateTime
coID:string 1*

Supply

desc:string
maxLevel:double
minLevel:double
qty:double
sku:string

CheckoutLineItem
1..

Vendor

phone:string
vName:string

1

1..*
ReplacementOrder

odate:DateTime
oid:string

ReplacementOrderLine1 1..*

1

*

ReplacementOrderLine

price:double
qty:double

CheckoutLineItem

qty:double

Category

cateName:string
type:string

1..*

*

Figure 15.   Class diagram for Example 1.

b3881_Ch08.indd 202 05-10-2020 16:34:12

b3881   Requirements Modeling and Coding6"×9"�

Practical Class Diagramming  203

indicates relationships between Supply and Department. But
how is a supply related to a department? The domain knowledge tells
us that a department makes checkout transactions and each transac-
tion contains certain items. Therefore, we need to create a new class
called CheckOut and then link Department to CheckOut and
CheckOut to Supply.

Example 2: Insure-A-Person Inc. provides health insurance services to
employees and their family members across America. Due to the need
to promote its customer relations, the company has decided to open a
web-based system for clinics and individual customers to be able to file
claims on the Internet 24 hours a day and 7 days a week. The company has
approached you to design the system for that purpose. According to the
company, this is how the web-based system is supposed to work. Within
60 days of seeking treatments for himself or any of his family members, a
customer needs to log on to the system and file a claim. First, you specify
the name of a patient, the date and the place the service was provided, and
the primary doctor providing the service. Then, you detail the procedures
performed by the doctor. In the medical industry, all procedures have been
standardized with fixed identification numbers and short descriptions. The
insurance company will pay for the service based on all the procedures
performed by the service.

Reading the text one round, we can identify the following nouns that
may be relevant (irrelevant nouns are ignored):

Employees, family members, customers, clinics, claims, 60 days, treat-
ments, name, patient, date, place, service, primary doctor, procedures,
identification numbers, descriptions.

Treatments and services are synonyms, and so are places and clin-
ics. Employees and customers are also synonyms, and they are related to
patients, which also include family members. Thus, we can eliminate the
duplicates but keep patients as a generalization of employees and their
family members. Nouns like 60 days, date, name, identification numbers,
and descriptions are attributes. Thus, we identified the following objects
along with the mentioned attributes:

Patient (name), Employee, Dependent, Clinic, Claim, Treatments (date),
Doctor, Procedure (identification numbers, description).

b3881_Ch08.indd 203 05-10-2020 16:34:12

b3881   Requirements Modeling and Coding� 6"×9"

204  Requirements Modeling and Coding

Next, let us analyze connection words. A few connection words like
“of” indicate attributes of objects as shown above. Some are irrelevant such
as “Insure-A-Person Inc. provides health insurance services.” Ignoring all
those, we come up with a short list to be analyzed:

Clinics file claims, patients file claims, claims for treatments, treatments
for patients, clinics provide treatments, doctors provide treatments, doc-
tors perform procedures, treatments contain (perform) procedures.

Since a claim cannot be filed by both a patient and a clinic, the relation-
ships are exclusive. To resolve the exclusiveness, we can abstract Patient
and Clinic to an abstract representative called Filer (see the representative
pattern). Procedures are described as a catalog entry, and actual procedures
are performed by doctors. Thus, the manifestation pattern applies. Also,
since doctors perform treatments and treatments contain actual procedures,
the connection “doctors perform procedures” indicates an indirect rela-
tionship. Figure 16 shows the class diagram summarizing all the above
findings.

Filer

Patient

pname:string

Clinic

Dependent
Employee

*1

Claim

1 *

Treatment

tDate:DateTime

1 *

1 *

Procedure

desc:string
unitCost:double

ProcedurePerformed

1 *

1

*

Doctor

* 1

Figure 16.   Class diagram for Example 2.

b3881_Ch08.indd 204 05-10-2020 16:34:13

b3881   Requirements Modeling and Coding6"×9"�

Practical Class Diagramming  205

Exercises
  1.	 Give one of your own examples to apply the following patterns:

a.	 Manifestation pattern.
b.	 Transaction pattern.
c.	 Representative pattern.
d.	 Assembly pattern.

  2.	 Construct a class diagram that reflects the data requirements for the
data input form shown in Figure 17.

  3.	 Construct a class diagram that reflects the data requirement from the
data input form shown in Figure 18.

  4.	 In Video Shack, customers are required to have a family membership
card that is used mainly to ensure that they have a credit card, live in
the neighborhood, and can be contacted in case they are late in return-
ing their rentals. Video Shack has a varied stock of videos classified
into such categories as comedy, adventure, children’s, and romantic.
Any title is obtainable from one distributor who owns the rights to
it. Video Shack deals with about 25 distributors for different titles.
It may carry many copies of a popular new title or only a single copy
of some classics. Popular titles may have to be reordered. Most of the

Figure 17.   A data input form for displaying student grades.

b3881_Ch08.indd 205 05-10-2020 16:34:13

b3881   Requirements Modeling and Coding� 6"×9"

206  Requirements Modeling and Coding

videos are rented for a standard price. However, there is sometimes a
premium price for new releases. There is also a discount during week-
days. Customers agree to return rentals by noon of a set date, and they
can reserve up to five videos in advance to ensure that they will be
available when desired. Design a class diagram for a system that can
be used to record purchases of videos from suppliers, record rentals
and returns by customers, and produce a printed catalog of current
holdings categorized by title and type. In addition, Video Shack would
like to be able to get listings of how many copies they have of each
title and how often each title has been rented.

  5.	 You have been hired to design a system for a small healthcare orga-
nization. The clinic consists of several examining rooms and a few
rooms for short-term critical-care patients. A core staff of seven physi-
cians is supplemented by internists from a local teaching hospital. The
clinic wants to computerize the patient records. All patient medical
data is stored in a folder kept in a large central file cabinet. Arriving
patients sign in at the front desk. A clerk checks the billing records,
prints out a summary status sheet, and obtains the file number from
the computerized system. The clerk then pulls the medical data folder
and selects an examination room. After waiting for the physician, the
clerk moves the data packet and the patient to the examination room.

Figure 18.   The data input form for receiving shipments.

b3881_Ch08.indd 206 05-10-2020 16:34:13

b3881   Requirements Modeling and Coding6"×9"�

Practical Class Diagramming  207

A nurse records basic medical data (weight, blood pressure, etc.).
The physician makes additional notes to both the medical and billing
data and generally writes a prescription order, which is given to the
patient and recorded on the charts. When the patient leaves, the clerk
enters the new billing data into the system, collects any payments, and
prints a list of charges and a receipt. The new billing data is forwarded
to the appropriate insurance company. The medical data is returned
to the filing cabinet. When the patient gets a prescription filled, the
pharmacist calls the clinic for verification. A clerk retrieves the medi-
cal data, identifies the prescription, and verifies or corrects the order.
Draw a class diagram to capture the requirements for an automated
medical record system.

  6.	 Create a class diagram to identify the primary business objects of the
following business and show their relationships: A hardware store
approaches you to design a new POS system to manage its invento-
ries and sales. The store carries four different categories of products,
including tools, lumber, plumbing items, and lawn-and-garden sup-
plies. At first, you thought a simple sales system would work for this
company. After all, each item has a cost, a description, and a list price.
But after talking with the managers, you quickly learned that the items
sold by this company have important differences.
a.	 The tools have warranties, but the garden plants and lumber do

not. Note that warranties have details including duration, descrip-
tion, and applicable conditions.

b.	 Some items, like the plumbing supplies, have special attributes,
and so managers often want to search based on those character-
istics. For example, the plumbing department manager might
want to know the inventory level of all 1/4-inch-interior-diameter
pipes.

c.	 All garden products have either a high temperature or low tem-
perature or both — some plants must be moved inside if the tem-
perature drops below a certain level.

d.	 When clerks and managers check out items, they often must take
different actions depending on which item is sold. For instance,
when clerks ring up a sale for certain chemicals in the lawn-and-
garden category, they are supposed to get the Federal pesticide
license number of the customer.

e.	 When the store orders certain electrical tools, it must send license
and authorization numbers to the supplier.

b3881_Ch08.indd 207 05-10-2020 16:34:13

b3881   Requirements Modeling and Coding� 6"×9"

208  Requirements Modeling and Coding

f.	 The store also has two types of customers: Individuals and
Contractors. Contractors are those who have registered with the
store to obtain a lower price. Certain large contractors get addi-
tional discounts on some items like plumbing, electrical, and
heating equipment. Discounts for these special contractors are
negotiated individually.

g.	 A similar problem exists with suppliers — each one grants the
store a different level of discounts. Each one also asks for different
types of authorization numbers to get a discount on certain prod-
uct, and some require the use of electronic data interchange (EDI)
or touch-tone orders to get the best discounts. When managers
order items, they must identify the supplier, find the best condi-
tions, and follow the rules specified by that supplier.

  7.	 Draw simple class diagrams for the objects referenced by each of the
following sentences. Apply appropriate heuristics and design patterns
and add a few appropriate data members and operations.
a.	 After each treatment, either patient or clinic can file insurance

claims.
b.	 After each visit, the physician will create an order for additional

tests or write a prescription.
c.	 In project management, of course, a project consists of one or

more activities, and often a big project is made of many small
projects.

d.	 Customers, including individuals and organizations, can order
various products, some of which are perishable, with an expira-
tion date, from the store.

e.	 A computer system is sometimes made of just one computer, but
nowadays often made of one or more networks of computing
devices that collaborate.

f.	 Vendors dispatch thousands of shipments, each of which contains
one or more products, and track their status using RFID technology.

g.	 EMR systems keep not only static data on tests and medicines,
but also detailed daily patient records such test results of the tests
performed on each patient.

  8.	 Draw simple class diagrams using the manifestation pattern for each
of the following cases:
a.	 The video shack keeps multiple copies of each video title.
b.	 The hospital has thousands of procedurals in book but can perform

only a handful per day.

b3881_Ch08.indd 208 05-10-2020 16:34:13

b3881   Requirements Modeling and Coding6"×9"�

Practical Class Diagramming  209

c.	 Many courses are in book, but the department schedules less than
50 per term.

d.	 A patron can reserve up to three books at a time but can check out
unlimited number of books.

  9.	 Draw simple class diagrams using the representative pattern for each
of the following cases:
a.	 An appointment may be made for a receptionist or a patient.
b.	 A customer can either buy or sell online with the web store.
c.	 A patient may come to the hospital for either an inpatient or

outpatient visit.
d.	 The agent represents its clients or the employees of the clients in

defending their cases in count.
10.	 Draw simple class diagrams using the assembly patterns for each of

the following cases:
a.	 Army unit includes individual soldiers and smaller units.
b.	 An academic program is made of courses and other programs

of education and training.
c.	 An ecosystem is made of individual species and smaller

ecosystems.
11.	 Draw simple class diagrams using the transaction pattern for each of

the following cases:
a.	 Each division may propose 0 or more bid request, each of which

is sent to one or more vendors to request for bids. Some special
instructions may be noted to different vendors.

b.	 Customers can make reservations, each of which can reserve one
or more video titles, but the system needs to keep track of their
urgency or priority.

c.	 A meal contains one or more foods, each of which uses one or
more materials. One material can be used in 0 or more foods. For
each meal, a specific instruction is noted for using each material.

b3881_Ch08.indd 209 05-10-2020 16:34:13

b2530   International Strategic Relations and China’s National Security: World at the Crossroads

b2530_FM.indd 6 01-Sep-16 11:03:06 AM

This page intentionally left blankThis page intentionally left blankThis page intentionally left blankThis page intentionally left blank

211

b3881   Requirements Modeling and Coding6"×9"�

Chapter 9

Use Case Modeling

Introduction
Use case analysis is a process of creating artifacts that represent dynamic
system functions (processes) and procedures (operations), both of which
we have studied in earlier chapters. It consists of two stages: use case
diagramming and use case storyboarding. The deliverables, accordingly,
include use case diagrams and use case descriptions along with user
interfaces (UI). In this chapter, we will learn (1) the basic mechanics of
use case modeling techniques and (2) how to identify use case model
elements, including use cases and actors, from requirements.

Connections
We have learned how to draw class diagrams. There is no doubt that class
diagrams are the most important deliverables of the systems analysis
and design process, but remember that classes in a class diagram have
both attributes and operations. Attributes are data about the objects and
are often easy to identify (and the reader may have a separate Database
Management course to cover the techniques extensively), but where and
how can we come up with the operations?

In Chapters 3 and 4, we learned the concept of functions and how
to represent them internally and externally as well as programmatically.
The chapters also briefly discussed the methods of functional decomposi-
tion and data flow diagramming, which are the formal methods that the
structured methodology uses to identify functionalities. These methods are

b3881_Ch09.indd 211 05-10-2020 16:34:28

b3881   Requirements Modeling and Coding� 6"×9"

212  Requirements Modeling and Coding

meant to help us understand the concept of classes and objects, but they
are not formal object-oriented methods for identifying functionalities.

In Chapters 5–8, we learned how to allocate functions, if captured,
into the responsible objects. The chapters emphasized the heuristics and
principles of data flow reduction and responsibility distribution. However,
there are three problems to solve in order to complete the picture. The first
is what major functions we should capture. The second is how to ensure
that we will capture all the functions that are in support of the mission of
the system, no more and no less. The third, which is somehow cynical, is
how we can capture functionalities using a method that is consistent with
the object-oriented methodology, i.e., obeying the principles of encapsula-
tion, inheritance, and polymorphism.

The use case modeling resolves all these issues. From the point of sup-
porting the mission of a system, we capture the major functions that deliver
values to the user. These functions are called use cases. By describing
each use case as a step-by-step sequence of interactions between the user
and the system, we can capture all the sub-functions or operations needed
to support the major function. In other words, we derive the subprocesses
or operations by describing the sequence. Furthermore, by understand-
ing that each action performed by the system is eventually performed
by one or more objects, we can elaborate the use case description into
a collaboration diagram that shows how participating objects collaborate
with each other to perform a use case. Naturally, the actions performed by
each object shall be those allocated to the object. Therefore, the use case
analysis discovers and formalizes the process requirements and enriches
the class diagrams by identifying and allocating operations into objects.

Use Case Diagramming Elements
Two basic constructs in use case diagrams are actor and use cases. The
reader may be surprised to know that both actors and use cases are classes,
and so use case diagrams are a special kind of class diagrams. Thus,
actors and uses cases are connected through association and inheritance
relationships.

Actors

An actor is a group of users that play the same role in using (or interact-
ing with) the system to be developed. Users are instances of actors. Sounds

b3881_Ch09.indd 212 05-10-2020 16:34:28

b3881   Requirements Modeling and Coding6"×9"�

Use Case Modeling  213

familiar? Yes, an actor is a class, and a user is an instance or object. When
understanding the concept and applying it to the identification of actors,
we note the following four guidelines:

1.	 The user can be a person, an organization, or another system that
communicates with the system. In general, it is an autonomous agent
that is external to the system to be developed but interacts with it. So,
we shall not restrict the concept of actors to physical human beings.

2.	 Sometimes there are many users who do the same thing, and some-
times one user may do different things with the system. In any case,
we group all the users that play the same role into each group to make
it an actor even though the group may have only one user. If a person
plays different roles, then he or she belongs to different actors.

3.	 Not all the things that interact with the system are users or agents.
A criterion to judge whether they are users or not is whether they have
the capability of requesting services from or providing services to the
system to be developed. For example, in an automatic teller machine
(ATM), the credit card holder uses a credit card to interact with the
ATM. Is the credit card a user? It is external to the system and interacts
with the system. However, does it have ability to request services (or
gain value) or provide service? The answer is no. Thus, credit cards
should not be treated as an actor.

4.	 Actors must be logically outside the system to be developed. A sys-
tem is made of one or more classes, including domain (or business)
classes, control classes, and user interface classes. Sometimes, sys-
tems also include hardware components and databases. All these are
not external to the system, and so they should not be considered as
actors. Then what about employees who will use the system? Do we
not already represent employees as the Employee class, which is a
part of the system? A tricky question. Yes, we modeled employees into
the system as the Employee class, but we did not actually teleport
actual employees into the system. So, actual employees are still out-
side the system.

To recap, an actor represents a group of autonomous agents that provides
services to and/or request services from the system and plays the same role
in doing so. Depending on whether an actor can request services (and thus
derive values) from the system or not, an actor may be classified into pri-
mary and secondary. A primary actor actively uses the system and gains

b3881_Ch09.indd 213 05-10-2020 16:34:28

b3881   Requirements Modeling and Coding� 6"×9"

214  Requirements Modeling and Coding

value from the use, whereas a secondary actor plays a supporting role to
serve the system.

Example 1 (ATM): Note that an ATM is a system consists of both hard-
ware components and software objects, while most information systems
are purely software. ATMs are a good example for us to learn the concepts
of use case modeling. An ATM serves bank customers as well as other
credit card holders, allowing them to withdraw money, deposit money,
transfer money, and inquire about account balance. It requires services
from machine operators to refill the cash dispenser, retrieve swallowed
cards, and retrieve deposited checks. It also requires the bank system and
the card networks to validate transactions. Thus, the actors of an ATM
include Customer, Card Holder, Operator, Bank, and Card Network, with
Customer, Card Holder, and Operator as primary actors. The values they
derive from the ATM include serving their banking needs or fulfilling their
job responsibilities. Bank and Card Network are secondary actors since
they gain no value from the ATM.

In a use case diagram, actors are represented as stick human figures
(see Figure 1). Some CASE tools use a rectangle box with a stereotype
<<actor>> for non-human system actors. Indeed, an actor is a class, a
stereotyped class. Rhapsody does not support the differentiation, and so
we will use stick figures for all actors.

Actors are defined and identified based the role that their users play.
Naturally, some users can play more roles than others, and so we may
want to indicate that one actor is a special type of another actor based on
the roles. For example, the role of Customer is a kind of Card Holder; as a
card holder, a customer uses a debit card to withdraw cash. However, cus-
tomers can do a lot more than be a card holder. For examples, customers

CardHolderActor OperatorActorCustomerActor BankActor CardNetworkActor

Figure 1.   Actors in the ATM example.

b3881_Ch09.indd 214 05-10-2020 16:34:28

b3881   Requirements Modeling and Coding6"×9"�

Use Case Modeling  215

can use the ATM to deposit money, transfer money, and inquire about
account balances. Thus, we may model the Customer actor as a special-
ized or enriched Card Holder actor using an inheritance relationship (see
Figure 2). A diagram that shows the roles of actors, like Figure 1, is called
a role map. Remember that a specialized or child actor can do more, or
perform more use cases, than its parent actor.

Note that there exists no association relationship between actors. By
definition, actors are outside the boundary of the system to be developed.
Thus, how they may interact with each other is outside our modeling
scope, and thus the associations between actors are not our business. For
example, in the ATM example, the Bank actor and the Card Network
actor may have interactions; clearly, the bank lends money to a card
holder, and it will contact the Card Network to get the money back.
However, such interactions between actors are not modeled in a use case
diagram.

Use cases

A use case, aka system use case, captures a major function to be provided
by the system. Conceptually, it is a class — a stereotyped class. The con-
cept may be defined differently from two perspectives. The first is based
on usage instances, each involving instances, or users, of one primary
actor who uses the system to derive a value from the system. Example
usage instances include: a student using the registration system to register
for a course offering, a customer using an ATM to withdraw cash, etc.
A use case is a group of usage instances that deliver the same type of value
to the same primary actor. Thus, a use case is a class.

CardHolderActor CustomerActor

Figure 2.   Role map.

b3881_Ch09.indd 215 05-10-2020 16:34:29

b3881   Requirements Modeling and Coding� 6"×9"

216  Requirements Modeling and Coding

Note that some usage instances may produce results of no observable
value due to failures and due to incompleteness, whereas other may deliver
more than one observable result of value. A use case is a class of usage
instances, each of which delivers one observable result of value to the pri-
mary actor. The reader shall note these three key points here: (1) all usage
instances of a use case serve the same purpose or deliver the same type of
value to the primary actor, (2) all usage instances result in one and only
one observable result of value, and (3) all usage instances are performed
by the users of the same primary actor. In brief, a use case must deliver
one observable result of value to one primary actor. Usages that result in
no observable value to the primary actor or two or more values will not be
considered as instances of a use case.

The second perspective is to define use cases based on the interactions
between a user and the system. Let us contemplate a sequence of interac-
tions. Imagine a card holder — who may be a passenger in an airport, a
customer in a grocery store, or a patient in a hospital — wants to withdraw
cash from an ATM. The typical sequence of interactions between the user
and the system is as follows:

  1.	 Card Holder inserts a card into ATM.
  2.	 ATM validates the card.
  3.	 ATM asks for a pin number.
  4.	 Card Holder enters a pin number.
  5.	 ATM validates the pin number.
  6.	 ATM asks for a withdrawal amount.
  7.	 Card Holder enters a withdrawal amount.
  8.	 ATM authorizes the withdrawal amount.
  9.	 ATM dispenses cash.
10.	 Card Holder takes cash.
11.	 ATM prints a receipt.
12.	 ATM records the transaction.
13.	 ATM releases the card.
14.	 Card Holder takes the card.
15.	 ATM goes idle.

Note that the above sequence of interactions does not refer to a spe-
cific card holder, a specific teller machine, a specific card, or a specific
withdraw amount. By varying all these parameter values, the sequence
represents a group of all usage instances between a card holder and the
system for the purpose of withdrawing money. Therefore, a use case may

b3881_Ch09.indd 216 05-10-2020 16:34:29

b3881   Requirements Modeling and Coding6"×9"�

Use Case Modeling  217

be defined as a sequence of interactions that leads to one observable result
of value to the primary actor.

This second definition is practical and may be more appealing to
structured systems developers because it essentially makes a use case
equivalent to a function, which, by definition, is made of a sequence of
activities that work together to perform a high-level task. In practice, this
mindset does not cause any trouble to business analysts, with two excep-
tions. One exception is that a use case model shows associations between
actors and use cases, and thus it is a stereotyped class diagram. In contrast,
in the structured development, a process model shows data or work flows
between functions.

Another exception is that a use case must deliver an observable result
of value to the user whereas a function does not have to. Note that the defi-
nition of use cases emphasizes one primary actor and one purpose in terms
of one observable result of value to the primary actor. Not all functions
performed by the system are use cases. For example, the ATM validates
cards, validates pin numbers, prints receipts, etc. Since these functions do
not lead to any observable result to the user, they are not use cases. By the
same token, any incomplete sequence of interactions is not a use case.

Not all complete sequences are use cases either. Here is one example:

1.	 Card Holder inserts a card into ATM.
2.	 ATM validates the card.
3.	 ATM displays “invalid card”.
4.	 ATM releases the card.
5.	 Card Holder removes the card.
6.	 ATM goes idle.

Apparently, a card holder wants to use the ATM for some purpose but
encounters failure. Since the sequence does not lead to any observable
result of value, this is not a use case either.

Here is another example. A card holder, who happens to be a customer,
uses an ATM provided by the customer’s bank. The customer first deposits
a check into her account and then moves on to withdraw some cash. The
sequence of interactions obviously serves two purposes, deposit money
and withdraw money, and it will lead to two observable results of value to
the user. Such a sequence is also not a use case. A sequence that delivers
multiple observable results of value may have to be split into atomic ones.
Otherwise, there will be too many different combinations of sequences to
be captured as use cases.

b3881_Ch09.indd 217 05-10-2020 16:34:29

b3881   Requirements Modeling and Coding� 6"×9"

218  Requirements Modeling and Coding

In sum, an incomplete sequence of interactions is not a use case, and
a complete sequence that does not end with any observable result or ends
with two or more results is also not a use case.

This delineates a dramatic difference between structured and object-
oriented development: the former is feature-focused while the latter is
value-focused. In structured development, we try to capture any desirable
functionality or feature — simple or complex, creative or destructive —
as a function. Functions are arranged in a layered structure via function
decomposition, where simple lower-level functions support a complex
higher-level one. In contrast, in object-oriented development, we capture
only those functionalities that provide a value to a primary actor as use
cases. Validating cards and printing receipts are necessary functions that
an ATM must possess, but they are not use cases because no user uses the
ATM merely for validating a card or printing a receipt. Similarly, playing
video games and streaming movies may be desirable features, but they are
not use cases because they do not serve any ATM users.

Here is value-focused thinking. To capture use cases, we need to first
capture who the users or primary actors are. Then we ask the users what
they want from the system or what values they can obtain from the system.
In the ATM example, Card Holder, Customer, and Operator are three pri-
mary actors. Card holders use the system to withdraw cash. Bank custom-
ers use the system to deposit money and inquire about account balance.
They also withdraw cash like other card holders. An operator uses an ATM
for maintenance purpose, including refilling cash dispenser and printer
and retrieving deposits and swallowed cards. Therefore, there are four
use cases for the ATM system: withdraw money, deposit money, inquire
balance, and perform maintenance. Since nobody uses an ATM for validat-
ing cards or streaming videos, these features will not be captured as use
cases.

In use case diagrams, use cases are shown as oval circles (see Figure 3),
and each use case is named with a verb, similar to the way in which we
name functions in data flow diagrams or actions and activities in activity
diagrams.

withdraw cash deposit money inquire balance perform
maintenance

Figure 3.   Use cases for ATM.

b3881_Ch09.indd 218 05-10-2020 16:34:29

b3881   Requirements Modeling and Coding6"×9"�

Use Case Modeling  219

Use Case Diagrams
A use case diagram is a graphical representation of how actors are
associated with system use cases. The primary components of a use
case diagram include actors, use cases, associations between an actor
and a use case, a role map to show the role generalization/specialization
relationships between actors, and relationships between use cases such as
generalization/specialization, inclusions, and extensions (see Chapter 11).
Figure 4 shows the use cases we have identified so far and their associa-
tions with the primary actors in the ATM example.

Since a use case is a class, and so is an actor, their relationship is an
association, representing that a user in the role of the actor uses or per-
forms an instance of the use case. A use case diagram is a special kind of
class diagrams. Thus, it follows the syntax rules of class diagramming.
For example, an association may be marked with cardinalities, quantifying
how many users are involved with one usage instance of a use case and
how many usage instances of a use case are associated with one user. The
cardinality is useful to model problems like game playing, where several
game players may be involved in one gaming session, and video streaming,

CardHolderActor

withdraw cash

OperatorActor

CustomerActor

deposit money

inquire balance

perform
maintenance

Figure 4.   Use cases and associations with actors.

b3881_Ch09.indd 219 05-10-2020 16:34:29

b3881   Requirements Modeling and Coding� 6"×9"

220  Requirements Modeling and Coding

where one user downloads two or more videos at the same time. It also
allows an actor to be optional in an association with a use case as in the
case where a manager user is optional in checking out items in a store, for
example, to override prices (see Figure 5). Note that, by default, a use case
diagram does not show cardinalities. In Rhapsody, we can right click on
an association and go to Display Options dialog box to check Multiplicity
in order to view cardinalities.

Unlike a regular class diagram, a use case diagram has one special
syntax rule: each use case is associated with one and only one primary
actor in accordance with the requirement that each use case serves one and
only one primary actor. However, each use case may be associated with
multiple secondary actors. For example, the “checkout items” use case
in a point of sale (POS) system is associated with one primary actor —
Cashier — and three secondary actors — Customer, Manager, and Credit
Card Network (see Figure 5).

The reader may notice in Figure 5 that the primary actor is drawn on
the left-hand side of a use case whereas secondary actors are placed on the
right-hand side. This is a convention. Indeed, secondary actors play only
supporting roles, and the focus of a use case diagram is on the primary
actor.

CashierActor

checkout items CustomerActor

CreditCardNetwork

*

*

ManagerActor

*

0,1

Figure 5.   “Checkout Items” use case.

b3881_Ch09.indd 220 05-10-2020 16:34:29

b3881   Requirements Modeling and Coding6"×9"�

Use Case Modeling  221

Adding secondary actors to Figure 4, we have an updated use case dia-
gram for the ATM example (see Figure 6). Here, all the use cases involving
bank accounts must interact with the Bank for authorization and account
updates. For a card holder, the “Withdraw Cash” use case must interact
with a card network for authorization. Of course, the card network will
need to contact the bank that issued the card to gain authorization and
transfer funds, but that is not a concern when designing the ATM.

Note that Figure 6 uses role maps to address two special needs. First,
both bank customers and card holders perform the “Withdraw Cash”
use case, in which they play the same role. Since a customer does more
than just withdraw cash, we invoke an inheritance relationship to model
Customer to be a special kind of Card Holder, and thus Customer will
inherit the association between Card Holder and the “Withdraw Cash” use
case. By doing so, we conform to the rule that each use case is associated
with one and only one primary actor.

Second, the “Withdraw Cash” use case involves either Card Network
or Bank as a secondary actor for authorization. We may use two separate
associations to connect the use case to both Card Network and Bank actors
since there is no restriction on how many secondary actors can be associ-
ated with a use case. Note that these two associations are exclusive. When
withdrawing money from a bank account, there is no need to involve a
card network, and vice versa. How can we model such a situation? One

CardHolderActor

withdraw cash

OperatorActor

CustomerActor

BankActor

CardNetworkActor

deposit money

inquire balance

perform
maintenance

Figure 6.   Use case diagram for ATM example.

b3881_Ch09.indd 221 05-10-2020 16:34:29

b3881   Requirements Modeling and Coding� 6"×9"

222  Requirements Modeling and Coding

solution is to use {OR} constraint, linking the associations to indicate that
the concerned associations are exclusive (see Chapter 7). The second solu-
tion is to split the use case into two separate ones: one for card holders and
one for bank customers. When using the second solution, we will not need
to use the inheritance relationship between Card Holder and Customer
actors. Both solutions are undesirable because they create duplicate arti-
facts in a use case diagram as well as redundancies and complexities in
describing the use cases (see the next chapter).

The third solution is to use the representative pattern and model Bank
as a special kind of Card Network, as in Figure 6. Alternatively, we can
create Authorization actor as a representative to both Card Network and
Bank and use a role map to show that Card Network and Bank are special
kinds of Authorization actors and then associate the “Withdraw Cash” use
case to Authorization and other use cases to Bank (see Figure 7).

We will have other alternative solutions to the above problem. In
Chapter 11, we will learn three use case optimization techniques to opti-
mize use case models in order to reduce the redundancies and complexities
of use case description. These techniques include factorization, extension,
and inheritance. A brief definition of these is provided in the following:

1.	 Factorization: We may factorize a portion of a use case into a separate
use case, called inclusion use case, and use <<include>> relationship
between the base and inclusion use case to show the factorization.

CardHolderActor

withdraw cash

OperatorActor

CustomerActor

BankActor
CardNetworkActor

deposit money

inquire balance

perform
maintenance

AuthorizationActor

Figure 7.   Alternative use case diagram for ATM example.

b3881_Ch09.indd 222 05-10-2020 16:34:30

b3881   Requirements Modeling and Coding6"×9"�

Use Case Modeling  223

2.	 Extension: We may optionally insert a sequence of interactions into
a use case to enrich or extend its value. We model the sequence to be
optionally inserted as an extension use case and use the <<extend>>
relationship to connect it to the use case to be enriched.

3.	 Generalization: If one use case is essentially the same as the other
except for the differences in a few steps in their sequences of interac-
tions, we may invoke the representative pattern and model them as
child use cases of a representative one.

Example 1: The Board of Watson Town Memorial Hospital has recently
decided to develop a new information system to manage their patient
admissions and discharges. The hospital handles two types of patients:
outpatient and resident patient. As typical, each time a new patient comes,
the data about his/her identification, address, phone, and issuance carriers
are recorded. If a patient is a resident, he/she will be assigned to a bed and
an admission date is recorded. After the treatment, a nurse must sign off
the discharge card. For an outpatient, the nurse will set a check-back time
after each treatment. Identify actors and use cases based on the text and
develop a use case diagram.

The primary users of this system include receptionists, nurses,
and patients, where receptionists and nurses are primary actors who
actively request services while patients play a secondary role in assisting

admit patient

discharge inpatient

schedule follow-ups

ReceptionistActor

NurseActor

PatientActor

InpatientActor

OutpatientActor

Figure 8.   Use case diagram for patient admission system.

b3881_Ch09.indd 223 05-10-2020 16:34:30

b3881   Requirements Modeling and Coding� 6"×9"

224  Requirements Modeling and Coding

receptionists and nurses to fulfill their functions. The use cases include
admit patient, discharge inpatient, and schedule follow-ups for outpa-
tients. The use case diagram is shown in Figure 8.

Example 2 (Student Registration System): Many users will use a
registration system: students use it to search for courses and manage
registrations, departments use it to schedule and change offerings, regis-
trar uses it to print transcripts, advisors use it to override prerequisites,

search for
courses

manage
registrations

override
prerequisites

ProfessorActor

StudentActor

AdvisorActor

DepartmentActor

RegistrarActor

BursarActor

manage course
offerings

print roster

post grades

print transcripts

Figure 9.   Use case diagram for student registration system.

b3881_Ch09.indd 224 05-10-2020 16:34:30

b3881   Requirements Modeling and Coding6"×9"�

Use Case Modeling  225

and professors use it to print rosters and post grades. Identify primary
and secondary actors, identify use cases, and draw a basic use case
diagram.

Grouping the users by their roles, we can identify five primary actors:
Student, Professor, Advisor, Department, and Registrar. We identify six
use cases as follows: search for courses, mange registrations, override pre-
requisites, manage course offerings, print rosters, post grades, and print
transcripts. We identify Bursar as a secondary actor because the “Manage
Registration” use case will need to update the bursar with updated credit
hours for assessing tuitions and fees and inquire about payment status in
order to allow students to register for a new course.

Students, advisors, and departments can all enroll students into
courses. However, an advisor can override prerequisites besides adding or
dropping offerings, and a department can manage offerings beyond what
students and advisors can do. Thus, we use a three-layer role map to show
that Advisor is a child of Student, and Department is a child of Advisor
(see Figure 9).

Exercises
1.	 Using the example of a point-of-sale system for a small retail store in

a mall, list relevant actors and use cases.
2.	 If you are a structured systems developer, think of two example func-

tions that you have developed wherein one is a use case and the other
is not. Use the concept of use cases to explain why they are so.

3.	 In the ATM example, is the “play game” a good use case? Why or
why not? What about “steel money”? Is it a use case for the actor
“theft”?

4.	 How would you handle the situation of two or more users using the
same use case? (Hint: You need to consider whether the users are play-
ing the same role and whether the users are performing the same use
case simultaneously).

5.	 (Restaurant): When a customer walks into a restaurant, a waitress
comes and greets him and takes his order. The system will then con-
vert the order bill into a kitchen order so that the cook can make the
food. Finally, the customer will come to the front desk to pay for the
food and service using the system. Periodically, the restaurant owner
consults with the system for revenues, profits, and inventories. The

b3881_Ch09.indd 225 05-10-2020 16:34:30

b3881   Requirements Modeling and Coding� 6"×9"

226  Requirements Modeling and Coding

actors of this system will include Customer, Waitress, Owner, and
Cook. Identify use cases and draw a basic use case diagram.

6.	 (Inventory System): An inventory system is responsible for generat-
ing orders if the actual stock falls below the minimum re-order level
and pay invoices to suppliers. It is responsible for updating inventory
added if a new order is received and updating inventory used based
on the inventory decrement data generated from the food ordering
system. It should also allow the manager to query inventory levels.
Identify actors and use cases and create a use case diagram for the
inventory system.

7.	 (Student Club): A student club wants to have a database to manage
its data on members. The club assigns members to its numerous com-
mittees. It is possible that one member can serve in more than one
committee and will chair at most one committee. Each year, the club
organizes many events. Each time, the club assigns one committee to
oversee an event. Identify actors and use cases and create a use case
diagram for the club management system.

8.	 (Facility Management): University A has several meeting facilities
that can be reserved for individuals and departments, called custom-
ers. Here are the ongoing tasks for the facility manager: make and
change reservations; print out the list of customers who will be using
each facility for each day; and if a customer calls in, she can query the
facility the customer reserved. In addition, after the facility is used as
scheduled, its reservation status will be updated, and an invoice will
be sent to the customer for payments. Identify actors and use cases and
draw a use case diagram for the reservation manager.

b3881_Ch09.indd 226 05-10-2020 16:34:30

227

b3881   Requirements Modeling and Coding6"×9"�

Chapter 10

Use Case Storyboarding

Introduction
Use case modeling is to discover and capture functional requirements,
whereas use case storyboarding is to procedurally and logically describe
each captured use case as a sequence of interactions along with flows to
handle exceptions and alternatives.

There are several models for procedure modeling, including activity
diagrams, sequence diagrams, communication diagrams, state transition
diagrams, and structured text descriptions. We have learned how to use
activity diagrams to model the internal logic of functions in Chapter 3.
The same model, of course, can be used to describe use cases too. However,
the convention is to use structured English along with an established tem-
plate. Structured text has the advantages of being expressive and free from
interpretation errors if done accurately and precisely. In fact, storyboard-
ing is the primary method for modeling the internal logics of a use case
because a well-developed and validated use case description often acts as
a reference contract, in case of disputes, between business users and pro-
grammers in the systems development process. Of course, textual descrip-
tion comes with some disadvantages. For example, it does not give the
developer a quick visual view of how the sequences of control move along.
The programmer must read it carefully before grasping the big picture.

Use case storyboarding is a process to capture detailed functional
requirements to fulfill a use case. Through storyboarding, we understand
what low-level or elementary functions that the system needs to perform in
order to deliver the observable result of value to the primary actor.

b3881_Ch10.indd 227 05-10-2020 16:34:59

b3881   Requirements Modeling and Coding� 6"×9"

228  Requirements Modeling and Coding

Storyboarding serves the same purpose as function decomposition in
structured development but has many advantages over function decompo-
sition. First, storyboarding ensures that all the derived functions are neces-
sary and essential to fulfill the use case and that all the derived functions
work together to deliver value to the user. We will not create fancy but
useless functions, and we will not miss essential ones.

Second, storyboarding allows one to see how the derived functions
logically follow each other to bring a use case to success. Function decom-
position does not render such a logic, and a different model such as a
structured chart may be needed as supplement.

Third, storyboarding renders requirements modeling a creative pro-
cess. In story writing, a novelist can creatively design a plot to resolve
conflicts. Similarly, in use case storyboarding, an analyst can creatively
re-engineer how the users may perform a use case by designing better
graphical user interfaces (GUIs), re-arranging the sequence of some
interactions, plotting a different sequence to bring a use case to the
resolution, etc.

Concepts and Templates
A use case description is a structured text via a list of interactions
between the primary actor and the system with a clearly identifiable
beginning and end. It exposes and develops the plot of a use case based
on one typical instance of the actor, i.e., a user, and one typical instance of
the use case, i.e., a usage, as the representative instances of their respective
classes.

In real life, typical users follow a common flow to the completion of
the use case, but occasionally some users may encounter obstacles due
to running conditions and must adopt a workaround. It is important that
we describe a sequence of interactions not only in the most common
scenario but also in alternate scenarios that end up with success through
an alternate route or exceptional scenarios that may result in a failure.
This is done through the distinction of the basic flow for the most com-
mon success scenario used by typical users, alternate flows for alternate
scenarios due to different run-time conditions, and exceptional flows for
error scenarios that will lead to the failure of the use case. For example,
when describing the “withdraw cash” use case in the ATM problem, the
basic flow will list the interactions that lead to the successful withdrawal
of cash without hiccups. However, what if the inserted card cannot be

b3881_Ch10.indd 228 05-10-2020 16:34:59

b3881   Requirements Modeling and Coding6"×9"�

Use Case Storyboarding  229

validated? What if the user enters pin codes incorrectly? What if the
account has exceeded the maximum daily withdrawal limit? What if the
user forgets to take his card from the ATM? Some of these scenarios may
have workarounds to eventually lead to success and will be described as
alternate flows. Others may be doomed to failure and will be described
by exceptional flows.

To improve the readability of use case stories, organizations often fol-
low a template to describe use cases. A template typically splits a use case
story into four categories: (1) A required identification and brief summary
of the use case, (2) required lists or flow of interactions in all scenar-
ios, (3) optional graphical user interface requirements, and (4) optional
non-functional requirements. Some templates, example, the Business
Requirement Document template in Howard Podeswa (2005), are more
comprehensive and include additional categories such as pre- and post-
conditions, class diagrams, activity diagrams, message and prompts,
business rules, and external interfaces. The additional entries are either
supplementary to the textual description or common references by the
description. Class diagrams can provide background information about
the system, and activity diagrams augment the use case description with
logic details. Business rules and user interfaces are the common reference
sections to which the description may point. Prompts and messages are
simplified user interfaces meant for the system to solicit simple data from
human users and to display simple feedback.

This book follows a streamlined template consisting of five sections:
Use Case Overview, Flow of Events, GUIs, Business Rules, and Prompts
and Messages. User case overview lists the name, the ID, the purpose, the
primary actor of a use case, and a use case diagram to show the context of
the interactions to be described. Flow of Events is the main section hous-
ing basic, alternate, and exceptional flows. The other three sections are
optional; they exist if necessary.

A template also prescribes a system to label the parts of a use case
description. Note that, after being drafted, a use case story may have to go
through several stages of evaluation before being ratified. It is important
that there is a label system that can identify each elementary part of a
story, such as a step in a flow of events, a business rule, a user interface,
etc. by a unique numerical label. This book suggests the following system.
In describing the flow of events, the steps in the basic flows are labeled as
1, 2, 3, etc. An alternate or exceptional flow is labeled based on the label
of the step from which the alternate or exceptional scenario is created.

b3881_Ch10.indd 229 05-10-2020 16:34:59

b3881   Requirements Modeling and Coding� 6"×9"

230  Requirements Modeling and Coding

For example, the following is a snapshot of the basic flow for the “with-
draw cash” use case:

4.	 Card Holder enters a pin number
5.	 ATM validates the pin number
6.	 ATM asks for a withdraw amount

There are two possible scenarios or run time errors that may come
out of Step 5: Pin may be incorrect, and account may be on hold. In
the first case, the ATM shall allow the user to re-enter a pin, eventually
leading to success. It should be described as an alternate flow. Under
the second scenario, the use case will fail indefinitely, and it should
be described as an exceptional flow. These two flows may be labeled,
respectively, as 5a and 5b, with the steps in each alternate or exceptional
flow labeled as .1, .2, .3, etc.

Alternate Flows:

5a: invalid pin:

.1  ATM displays “invalid pin” message (PM1)

.2 � ATM verifies the number of error pin entries is less than
five

.3  Go to Step 3

Exceptional Flows:

5b: account on hold:

.1  ATM displays “account on hold” message (PM2)

.2  ATM ejects the card

.3  Card Holder takes the card

.4  ATM goes idle

If there are further alternate or exceptional scenarios out of alternate
flows, these scenarios are labeled according to the new step label. For
example, out of the second step of the “5a: invalid pin” flow, i.e., 5a.2,
there is a scenario wherein the card holder enters wrong pin codes five
times, in which event the system shall kill the use case for security pur-
poses. The scenario will lead to a new exceptional flow as follows:

b3881_Ch10.indd 230 05-10-2020 16:34:59

b3881   Requirements Modeling and Coding6"×9"�

Use Case Storyboarding  231

Exceptional Flows:

5a.2a: too many pin entry errors:

.1  ATM displays “too many pin entry errors” message (PM3)

.2  ATM ejects the card

.3  Card Holder takes the card

.4  ATM goes idle

The label 5a.2a symbolizes the first exceptional scenario out of the
second step of the alternate flow 5a. Additional scenarios, if any, may be
labeled as 5a.2b, 5a.2c, etc., accordingly.

Using the above labeling scheme, each flow and each step have a
unique label. For example, labels such as 5a, 7b, etc. identify alternate or
exceptional flows, whereas 5a.2a.3 and 5a.1, respectively, identify Step 3
in the flow 5a.2a and Step 1 in the flow 5a.

Business rules, user interfaces, and prompts and messages are labeled
sequentially. For example, BI2 refers the second business rule, UI5 the
fifth user interface, and PM2 the second prompt or message. For example,
the following is a snapshot of the Prompt and Message section, where
PM1, PM2, and PM3 are referenced in the above sample flows.

Prompts and Messages:

	� PM1 (invalid pin): Your pin entry does not match. Please try
again.

	 PM2 (account on hold): Your account is on hold. Please call
(800) 111-1111 for details.

	 PM3 (too many pin entry errors): Your account is locked due to
pin entry errors.

Flow of Events
The essential part of a use case story is the “Flow of Events” section.
A few guidelines are outlined here on how to write the events or interac-
tions in a flow:

1.	 Describe each interaction using a short concise sentence in the
active voice, and do not use ambiguous non-measurable adjectives.

b3881_Ch10.indd 231 05-10-2020 16:34:59

b3881   Requirements Modeling and Coding� 6"×9"

232  Requirements Modeling and Coding

For example, we should say “Card Holder inserts a card” instead of
“A card is inserted by Card Holder.” For another example, we should
say “ATM displays ‘Invalid Pin’ message for 3 seconds” instead of
“ATM displays ‘Invalid Pin’ for a while.”

2.	 Use consistent names for subjects and objects. For example, if we
call the user Card Holder, we should carry the name through and
should not call the user “Card Holder” in one place and “Customer”
in another.

3.	 Follow the logical order of events and remember that there must be a
response following a request. For example, when an ATM asks for a
pin number, the next logical step should be a response from the user to
enter a pin number.

4.	 Assume a positive running condition in the current flow and
use alternate or exceptional flows to handle negative ones. Avoid
using if-else statements inside a sentence. For example, after the
sentence “ATM validates the card,” we assume the card is valid in
the basic flow but use an exceptional flow to document the opposite
scenario.

5.	 Understand what constitutes the system and do not describe inter-
actions among actors and any other entities that are not a part of
the system. For example, an ATM consists of hardware components
and interfaces, and thus we document events like “Card Holder
inserts a card.” In contrast, a POS system is made of software objects
and a barcode scanner. Shopping basket and conveyor belts are not
a part of the system, and so actions like “Customer places items
on the belt” are not interactions between the user and the system.
Cashier and Customer are both actors, and so actions like “Cashier
greets Customer” are not interactions between the user and the
system either. These actions should not be described in a flow of
events.

In this section, we will provide two complete examples of story-
boarding: Withdraw cash using an ATM, and checkout items using a
POS system. The examples demonstrate the differences in describing two
types of systems: an ATM is made of mostly hardware components and
interfaces, whereas a POS mostly software objects. The reader should also
pay attention to the design of GUIs to appreciate how an effective GUI
may help simplify storyboarding.

b3881_Ch10.indd 232 05-10-2020 16:34:59

b3881   Requirements Modeling and Coding6"×9"�

Use Case Storyboarding  233

Storyboarding via examples: Withdraw cash

The “withdraw cash” use case allows a card holder to withdraw cash using
an ATM. The primary actor is Card Holder and the secondary actor is
Card Network. We assume that, as a precondition, the ATM is idle and has
enough cash to begin with. The postcondition includes: (1) the amount of
cash is equal to the pretransaction amount minus the withdrawal amount,
(2) the slot reader is empty or else swallows the forgotten card. Figure 1
shows the portion of the use case diagram that acts as the context diagram
for storyboarding.

We will omit the use case summary section, but the reader can fill in
the blank based on the above problem description. The following is a snap-
shot of the “Flow of Events” section:

Flow of Events
Basic Flow:

  1.	 Card Holder inserts a card
  2.	 ATM validates the card
  3.	 ATM asks for a pin (UI1)
  4.	 Card Holder enters a pin (UI1)
  5.	 ATM asks Card Network for authorization
  6.	 Card Network authorizes the request
  7.	 ATM asks for a withdrawal amount (UI2)
  8.	 Card Holder enters a withdrawal amount
  9.	 ATM checks and validates the withdrawal amount
10.	 ATM dispenses cash
11.	 Card Holder takes cash
12.	 ATM prints a receipt (UI3)
13.	 ATM ejects the card
14.	 Card Holder takes the card
15.	 ATM records the transaction
16.	 ATM goes idle

CardHolderActor

withdraw cash

CreditCardNetwork

Figure 1.   The context diagram for the “Withdraw Cash” use case.

b3881_Ch10.indd 233 05-10-2020 16:34:59

b3881   Requirements Modeling and Coding� 6"×9"

234  Requirements Modeling and Coding

Alternate Flows:

6a.  invalid pin:

.1  ATM displays “invalid pin” message (PM1)

.2  ATM checks if pin entries exceed the limit

.3  Go to Step 3

9a.  withdraw limit exceeded:

.1  ATM displays “withdraw limit exceeded” message (PM4)

.2  Go to Step 7

Exception Flows:

2a.  invalid card:

.1  ATM displays the “invalid card” message (PM6)

.2  ATM ejects the card

.3  Card Holder takes the card

.4  ATM goes idle

6b.  account on hold:

.1  ATM displays “account on hold” message (PM2)

.2  ATM ejects the card

.3  Card Holder takes the card

.3  ATM goes idle

6a.2a.  too many pin entry errors:

.1  ATM displays “too many pin entry errors” message (PM3)

.2  ATM ejects the card

.3  Card Holder takes the card

.4  ATM goes idle

11a.  cash forgotten:

.1  ATM takes cash back

.2  ATM displays “forgotten cash” message (PM5)

.3  ATM swallows the card

.4  ATM goes idle

b3881_Ch10.indd 234 05-10-2020 16:34:59

b3881   Requirements Modeling and Coding6"×9"�

Use Case Storyboarding  235

User Interfaces

	 UI1. Pin Entry UI

	 UI2. Withdraw Amount UI

	 UI3. Receipt UI

Transaction ID: 42333
ATM: Montrose of OH 44335
Account No: XXX3455
Withdraw: $50.00
Transaction Date: 1/23/2009 14:29PM
New Balance: $2406.33

Thank You!

Prompts and Messages

	 PM1 (invalid pin): Your pin entry does not match. Please try again.
	 PM2 (account on hold): Your account is on hold. Please call (800) 111-

1111 for details.

b3881_Ch10.indd 235 05-10-2020 16:34:59

b3881   Requirements Modeling and Coding� 6"×9"

236  Requirements Modeling and Coding

	 PM3 (too many pin entry errors): Your account is locked due to pin entry
errors.

	 PM4 (withdraw limit exceeded): The amount exceeds the withdrawal limit.
	 PM5 (cash forgotten): ATM took cash back, and transaction was voided.
	 PM6 (invalid card): The card is not recognized.

In this example, the reader shall note that a reference item such as a
user interface, a business rule, or a message may be referenced by multiple
steps. For example, UI1 is referenced in Steps 3 and 4.

Changing textual description can be very tedious due to how we label
offspring alternate and exceptional flows. For example, if you add or
delete a step, the whole sequence number changes, and so do the labels for
alternate and exceptional flows.

Note also that all alternate flows will route back to the basic flow,
whereas exceptional ones will not. If all flows must end with the same
system state, we use a postcondition to stipulate the state rather than write
a flow to reach the state. For example, what should we do if a card holder
forgets to remove his card? It may happen in basic flow and exceptional
flows, and so it is not clear whether we should handle it as an alternate or
exceptional flow. In the basic flow, since cash is withdrawn, the use case
succeeds, and we should not handle it as an exceptional flow. On the other
hand, an exceptional flow will lead to the failure of the use case, and so
we cannot handle the forgotten card scenario as an alternate flow. The
best option is probably to state a postcondition that the ATM swallows the
forgotten card if the card reader is not empty.

Storyboarding via examples: Checkout items

For a POS, the most important use case is probably to check out items for
customers. It is performed by a cashier with the help of a customer. A credit
card network may be involved to pay for the transaction. Thus, Cashier is
the primary actor, and Customer and Credit Card Network are secondary
actors. Note that a manager may need to provide overrides in case the price
cannot be retrieved or the discount cannot be applied. This override may
be another sequence of interactions that can be optionally included into the
“checkout items” use case. We will handle optional sequences in the next
chapter. Figure 2 shows the context diagram for the use case.

b3881_Ch10.indd 236 05-10-2020 16:34:59

b3881   Requirements Modeling and Coding6"×9"�

Use Case Storyboarding  237

In the following description, we assume that a customer commonly
swipes a credit card for a full payment of the purchase, but the system is
designed to allow multiple payments to be made against one transaction.

Flow of Events
Basic Flow:

  1.	 Cashier starts a new transaction

	 [Steps 2–4 repeat for each item in the basket]

  2.	 Cashier scans an item
  3.	 The system retrieves the item description and price (UI1)
  4.	 The system computes the subtotal and tax

	 [Steps 5–11 repeat for each payment until zero balance]

  5.	 Customer swipes a credit card
  6.	 The system displays credit card payment option (UI1)
  7.	 The system retrieves credit card number, expiration, and security

code (UI1)
  8.	 Cashier verifies the credit card
  9.	 Cashier presses Pay button (UI1)
10.	 The system requests payment authorization from Credit Card

Network
11.	 The system computes remaining balance (UI1)
12.	 The system prints a receipt
13.	 The system goes idle

Alternate Flows:

	 2a.  produce lookup:

	 .1  Cashier selects produce lookup (UI1)

CashierActor

checkout items CustomerActor

CreditCardNetwork

*

*

Figure 2.   The context diagram for the “Checkout Items” use case.

b3881_Ch10.indd 237 05-10-2020 16:34:59

b3881   Requirements Modeling and Coding� 6"×9"

238  Requirements Modeling and Coding

	 .2  The system gets the weight
	 .3  Continue to Step 3

	 2b.  bad bar code:

	 .1  The cashier enters bar code (UI1)
	 .2  Continue to Step 3

	 5a.  check payment:

	 .1  Cashier presses check payment screen (UI1)
	 .2 � Cashier enters check number, routing number, and amount

(UI1)
	 .3  Cashier stamps the check
	 .4  Cashier presses Pay button (UI1)
	 .5  The system opens Cashier drawer
	 .6  Cashier inserts check and closes drawer
	 .7  Continue to Step 11

	 5b.  cash payment:

	 .1  Cashier presses cash payment screen (UI1)
	 .2  Cashier enters tendered amount (UI1)
	 .3  The system computes change
	 .4  The system opens Cashier drawer
	 .5  Cashier takes change and closes drawer
	 .6  Continue to Step 11

	 5c.  credit card payment with amount limit:

	 .1  Cashier presses credit card payment screen (UI1)
	 .2  The customer chooses payment amount
	 .3  Customer swipes credit card
	 .4  Continue to Step 7

Exception Flows:

	 1–4a.  customer cancels:

	 .1  Cashier presses Cancel button (UI1)
	 .2 � The system prompts “Cancellation Confirmation” message

(MP1)
	 .3  Cashier presses Yes button
	 .4  The system goes idle

Prompts and Messages

	 PM1. Cancellation Confirmation — “Are you sure to cancel? Press Yes to
continue.”

b3881_Ch10.indd 238 05-10-2020 16:34:59

b3881   Requirements Modeling and Coding6"×9"�

Use Case Storyboarding  239

User Interfaces

	 UI1. Checkout Screen

This example illustrates the power of user interfaces: a well-designed
graphical user interface reduces the number of interactions, improves the
efficiency of performing a use case, and make the description of the use
case clearer and easier to understand. As we see in UI1, by using a pictured
combo box, the cashier can select a produce or fruit to weigh instead of open-
ing another form with a portfolio of produce to select. By embedding tabbed
controls for payment options, it avoids the need to go to another screen for
handling payments. The same checkout screen can even handle tax exempt
and coupon options, which may be optional sequences to be plugged into the
“checkout item” use case (see Chapter 11 for extension use cases).

GUI Design
User interfaces, including screens and reports, not only support use case
storyboarding but also serve as the device for business analysts to com-
municate with end users to elicit their implicit knowledge about the pro-
cedures of conducting use cases. User interfaces include software as well
as hardware components that the users use to interact with the system. For
example, the ATM machine has a card reader, a cash dispenser, a receipt
printer, a numerical keyboard to enter pin number and amounts, and keys
for confirming, canceling, or going back. The ATM must also have a screen
to display messages and prompts. These are hardware user interfaces.

b3881_Ch10.indd 239 12-10-2020 16:35:49

b3881   Requirements Modeling and Coding� 6"×9"

240  Requirements Modeling and Coding

The reader should not confuse user interfaces with external interfaces,
which are hardware and software components through which the system
interacts with external systems. For example, the modem used by an ATM
to communicate data with a credit card network and the bank system are
external interfaces, and these may be listed under the External Interfaces
section of a use case story.

In modern windowing and web-based systems, user interfaces are
mostly graphical. GUIs play a critical role in use case storyboarding.
While a story creatively delineates how the process will be used, GUIs
creatively imagine the look and feel of the system. These two aspects of a
use case story are intertwined: a creative GUI can lead to the creation of
a new plot for a use case, and an effective GUI can also help improve the
effectiveness of its description.

There are many books discussing the criteria, principles, or guidelines
for GUI designs. Most of the guidelines are common sense, while some
are based on psychological research. This book does not have room for
detailed exposition of these guidelines but summarizes the principles in
three words: Character, Control, and Cognition.

Character refers to the goal of achieving aesthetic characteristics,
i.e., GUIs must look good. This principle embodies at least two sub-
aspects. First, each form or report (or web page) must be neat and clean
with appropriate grouping of related information. It does not waste
valuable screen spaces and, at the same time, does not look too crowded.
Second, across forms or reports (or web pages), there should be consis-
tency in sizes, looks, and locations of controls such as labels, text boxes,
buttons, etc.

Control refers to the goal of giving users a sense of self-control, i.e., the
users feel that they are in control of the system rather than being controlled
by the system. This principle implies many sub-principles. For example,
after each user action, the system must provide feedback through words
and signs, and users must be given an option to reverse their action to go
back to the previous state, if possible. Otherwise, enough warnings must
be present before an irrevocable action.

Cognition refers to the goal of helping users to overcome their limited
cognitive capabilities. For example, users do not want to memorize and

b3881_Ch10.indd 240 05-10-2020 16:35:00

b3881   Requirements Modeling and Coding6"×9"�

Use Case Storyboarding  241

do not want to think, and so we should not design GUIs that count on
their short-term memory or mental math. For another example, making a
decision is hard, and so we should avoid too many user choices and pres-
ent a clear task flow for users to follow instead. For yet another example,
people have perceptional or behavioral biases, and so we should design
GUIs to take advantage of their psychology to prevent errors and improve
efficacies.

Prototyping in Visual Studio

User interfaces are often created using rapid application development
(RAD) tools such as Microsoft Access, Microsoft Visual Studio, Eclipse,
Oracle Developer, etc. In the following, we will learn how to use Visual
Studio to create the checkout screen seen earlier in this chapter.

When creating a new project using C# language and Windows
Application template, Visual Studio will create a form with a blank canvas
for us to draw controls on. We can add addition forms using Project  Add
Windows Form menu. Visual Studio has a rich set of graphical controls in
the toolbox (see Figure 3). The common controls include Button, Label,
TextBox, CheckBox, ComboBox, RadioButton, and MenuStrip. A label is
for displaying a text that cannot be changed by the user, and a text box for
a text that can be changed. If an entry has only two to five possible val-
ues, e.g., a gender is either male or female, radio buttons or check boxes
may be better alternatives than a text box for data entry. Radio buttons
allow one value to be entered, but check boxes allow multiple values to be
selected. If an attribute has tens of possible values, e.g., music genre can
be rock, jazz, blues, etc., a list box or a combo box may be used. A combo
box allows one value to be selected, but a list box allows multiple val-
ues to be chosen. Buttons are for executing commands. If there are many
commands, they should be grouped into menu strips.

The use of each control amounts to dragging the icon from the toolbox,
dropping it onto the canvas, and setting its properties using the Properties
Window, which can be opened by using the View  Properties Window
menu if not opened by default. The two basic properties of each control
are name and text: the name is just like that for a variable and follows the
same naming conventions (see Chapter 2), and the text is the caption of
the control. A list box and a combo box have an Items property that allows
us to enter a list of values. To attach a command to a control, click on the

b3881_Ch10.indd 241 05-10-2020 16:35:00

b3881   Requirements Modeling and Coding� 6"×9"

242  Requirements Modeling and Coding

Events tab of Properties Window and double click on the name of the event,
which will trigger the execution of the command. For example, for a com-
mand button or a menu item in a menu strip, the typical event to trigger a
command is Click.

The checkout screen in the earlier section used three advanced
features. The first is using a label to show a live clock. This is achieved by
the following procedure:

1.	 Add Label to the form and rename it lblClock.
2.	 Add a timer object to the form and rename it timerCO.
3.	 In the properties window of timerCO, set Enabled to true, Interval to

1,000 (milliseconds).

Figure 3.   The Visual Studio toolbox for GUIs.

b3881_Ch10.indd 242 05-10-2020 16:35:00

b3881   Requirements Modeling and Coding6"×9"�

Use Case Storyboarding  243

4.	 Double click on timerCO, and add the following code to timerCO_
Tick() event:

private void timerCO_Tick(object sender, EventArgs e)
{
     lblClock.Text = DateTime.Now.ToLongDateString();
     lblClock += “ ” + DateTime.Now.ToLongTimeString();
}

The second feature is to use a DataGridView with button columns to
show checkout items by using the following procedure and code:

1.	 Add DataGridView control on the form and rename it dgvItems.
2.	 Add two button columns to the lgvItems and label them as Delete and

Edit by clicking on the little triangle of the grid control and selecting
Add Columns menu.

3.	 Double click on any blank spot of the form, and add the following
code to the form load event:

  DataTable dt = new DataTable();
  dt.Columns.Add(“SKU”, typeof(string));
  dt.Columns.Add(“Description”, typeof(string));
  dt.Columns.Add(“Price”, typeof(double));
  dt.Columns.Add(“QTY”, typeof(double));
  dt.Columns.Add(“Sub Total”, typeof(double));

  DataRow dr = dt.NewRow();
  dr[“SKU”] = “01-23456”;
  dr[“Description”] = “Apple Iphone X”;
  dr[“Price”] = 999.99;
  dr[“QTY”] = 1;
  dr[“Sub Total”] = 999.99;
  dt.Rows.Add(dr);

  dr = dt.NewRow();
  dr[“SKU”] = “01-23423”;
  dr[“Description”] = “Apple Macbook Pro 256GB 13.3”;
  dr[“Price”] = 1999.00;
  dr[“QTY”] = 2;
  dr[“Sub Total”] = 3998.00;
  dt.Rows.Add(dr);

  dgvItems.DataSource = dt;

b3881_Ch10.indd 243 05-10-2020 16:35:00

b3881   Requirements Modeling and Coding� 6"×9"

244  Requirements Modeling and Coding

The third feature is to use a combo box to show a list of produce and
fruits. This cannot be done using the standard ComboBox control. Thus,
we need to extend its capability to draw pictures in the list items. This can
be done in many ways. The Appendix in the end of this chapter shows two
such extensions. The following procedures show how to use the extensions
to create the pictured combo box in UI1:

1.	 Add a new class called ComboBoxExtension and copy the code given in
the Appendix to replace everything in the ComboBoxExtension.cs file.

2.	 Build the project using Build  Build Solution menu.
3.	 Go to the checkout form in design view and open the ToolBox. You will

see two custom controls added: ColorSelector and ImagedComboBox
(see Figure 4).

4.	 Drag ImagedComboBox to the form in design view and rename it
imageCBOProduce.

5.	 Add photos for some fruits and produce such as apple.png, grapes.
png, and carrot.png into the project bin\debug folder.

6.	 Write the following code inside the form load event:

	 imageCBOProduce.Items.Add(new ComboBoxExtension.
ComboBoxItem(“Apple”, Image.FromFile(“apple.png”)));

	 imageCBOProduce.Items.Add(new ComboBoxExtension.
ComboBoxItem(“Grapes”, Image.FromFile(“grapes.png”)));

	 imageCBOProduce.Items.Add(new ComboBoxExtension.
ComboBoxItem(“Carrot”, Image.FromFile(“carrot.png”)));

	 imageCBOProduce.SelectedIndex = 0;

Figure 4.   The ToolBox with ImagedComboBox.

b3881_Ch10.indd 244 05-10-2020 16:35:00

b3881   Requirements Modeling and Coding6"×9"�

Use Case Storyboarding  245

That is, after compiling or running the project, we will see a combo
box filled with a list of photos for apples, grapes, and carrots beside the
fruit names.

Exercises
  1.	 (Student Registration System): It is perceivable that many people use a

registration system. For example, students use it to enroll into courses,
departments use it to schedule courses, advisors use it to enforce pre-
requisites and enroll students into a class under special conditions,
professors and registrars use it to print rosters, the school business sys-
tem uses it to assess payments, etc. Grouping these agents by their
roles, we can identify actors as follows: Student, Professor, Registrar,
Department, Advisor, and Business System. Here, Business System
is a secondary actor and all others are primary actors. Both profes-
sors and registrar print rosters, but conceivably there are some dif-
ferences. For example, a professor can print rosters for his or her
own course whereas the registrar can do it for all courses. Identify
primary and secondary actors, identify use cases, and draw a basic
use case diagram. Then describe the use case “drop a class” using
the streamlined template. Make sure to include all scenarios as well
as GUIs.

  2.	 (Restaurant): When a customer walks into a restaurant, a waitress
comes and greets him and takes his order. The system will then con-
vert the order bill into a kitchen order so that the cook can make the
food. Finally, the customer will come to the front desk to pay for the
food and service using the system. Periodically, the restaurant owner
consults with the system for revenues, profits, and inventories. The
actors of this system will include Customer, Waitress, Owner, and
Cook. Identify primary and secondary actors, identify use cases, and
draw a basic use case diagram. Then describe the use case “take food
order” using the streamlined template. Make sure include all scenarios
as well as GUIs.

  3.	 (Video Rental): In Video Shack, customers are required to have a fam-
ily membership card that is used mainly to ensure that they have a
credit card, live in the neighborhood, and can be contacted in case
they are late in returning their rentals. Video Shack has a varied
stock of videos classified into such categories as comedy, adventure,
children’s, and romantic. Any particular title is obtainable from one

b3881_Ch10.indd 245 05-10-2020 16:35:00

b3881   Requirements Modeling and Coding� 6"×9"

246  Requirements Modeling and Coding

distributor who owns the rights to it. Video Shack deals with about
25 distributors for different titles. It may carry many copies of a popu-
lar new title or only a single copy of some classics. Popular titles may
have to be reordered. Most of the videos are rented for a standard
price. However, there is sometimes a premium price for new releases.
There is also a discount during weekdays. Customers agree to return
rentals by noon of a set date, and they can reserve up to five videos
in advance to ensure that they will be available when desired. Design
a use case diagram for a system that can be used to record purchases
of videos from suppliers, record rentals and returns by customers, and
produce a printed catalog of current holdings categorized by title and
type. In addition, Video Shack would like to be able to get listings of
how many copies they have of each title and how often each title has
been rented. Describe the use case “Reserve Video”.

  4.	 (Electronic Medical Records): You have been hired to design a sys-
tem for a small health care organization. The clinic consists of sev-
eral examining rooms and a few rooms for short-term critical-care
patients. A core staff of seven physicians is supplemented by internists
from a local teaching hospital. The clinic wants to computerize the
patient records. All patient medical data is stored in a folder kept in
a large central file cabinet. Arriving patients sign in at the front desk.
A clerk checks the billing records, prints out a summary status sheet,
and obtains the file number from the computerized system. The clerk
then pulls the medical data folder and selects an examination room.
After waiting for the physician, the clerk moves the data packet and the
patient to the examination room. A nurse records basic medical data
(weight, blood pressure, etc.). The physician makes additional notes
to both the medical and billing data and generally writes a prescription
order, which is given to the patient and recorded on the charts. When
the patient leaves, the clerk enters the new billing data into the system,
collects any payments, and prints a list of charges and a receipt. The
new billing data is forwarded to the appropriate insurance company.
The medical data is returned to the filing cabinet. When the patient
gets a prescription filled, the pharmacist calls the clinic for verifica-
tion. A clerk retrieves the medical data, identifies the prescription, and
verifies or corrects the order. Draw a use case diagram to capture the
functional requirements for an automated medical record system.

  5.	 Design a graphic user interface for airline agents to book flights for a
customer. We assume that one booking is for one trip from one airport

b3881_Ch10.indd 246 05-10-2020 16:35:00

b3881   Requirements Modeling and Coding6"×9"�

Use Case Storyboarding  247

to one destination, and the customer can buy several tickets for several
passengers.

  6.	 Design a graphical user interface for a video rental store to do check-
out. Note that, besides renting, the store also sells used videotapes
and other miscellaneous items. For rentals, the cashier needs to scan
a membership card and the screen should display the member infor-
mation and if there is an outstanding balance due to late returns or
damages.

  7.	 Design a graphic user interface for a small restaurant to take cus-
tomer orders. Note that the waiter depends on the order information to
remember the exact table and seat to deliver foods and drinks and send
the final bill.

  8.	 Design a graphic user interface for the receiving dock employee to
check in shipments. When a shipment has arrived, a shipping slip is
used to retrieve the order information. The employee will check each
ordered item to make sure the quality and quantity are correct. If error
occurs, e.g., missing items or damaged items, the employee will note
the problem on the screen, and the system can then generate a notice
to the vendor and create a backorder when the check-in job is finished.

  9.	 Design a graphic user interface for student enrollment. The screen
should have the capability to search for offerings and add offerings to
a basket. The user must be informed of whether a student has met the
prerequisites to take an offering and whether she has time conflicts
with another course she has enrolled in or is about to enroll in.

10.	 Design a graphic user interface for creating questions in a question
library. Each question is of True/False, Multiple Choice, Select-
All-That-Apply, or short answer type. It has the main question text
along with 0–5 possible answers. Occasionally, some question text or
answers may contain image, video, music, or document files.

Appendix: Combo Box Extensions in C#
The following code is by Bassam Alugili for a tutorial in codeproject.com.
It is reproduced here for convenience since the website requires an account
to download the code.

using System;
using System.Drawing;
using System.Windows.Forms;

b3881_Ch10.indd 247 05-10-2020 16:35:00

b3881   Requirements Modeling and Coding� 6"×9"

248  Requirements Modeling and Coding

using System.ComponentModel;
using System.Linq;
using System.Collections;

namespace ComboBoxExtension
{

 public sealed class ColorSelector : ComboBox
 {
     public ColorSelector()
     {
         DrawMode = DrawMode.OwnerDrawFixed;
         DropDownStyle = ComboBoxStyle.DropDownList;
     }

     �protected override void
    OnDrawItem(DrawItemEventArgs e)

     {
         e.DrawBackground();

         e.DrawFocusRectangle();

         if (e.Index >= 0 && e.Index < Items.Count)
         {
             �DropDownItem item = (DropDownItem)

Items[e.Index];

             �e.Graphics.DrawImage(item.Image,
e.Bounds.Left, e.Bounds.Top);

             e.Graphics.DrawString(item.Value, e.Font,
                   new SolidBrush(e.ForeColor),
                   �e.Bounds.Left + item.Image.Width,

    e.Bounds.Top + 2);
         }
         base.OnDrawItem(e);
     }

}

public sealed class DropDownItem
{

 public string Value { get; set; }

 public Image Image { get; set; }

 public DropDownItem()
     : this(“”)

b3881_Ch10.indd 248 05-10-2020 16:35:00

b3881   Requirements Modeling and Coding6"×9"�

Use Case Storyboarding  249

 { }

 public DropDownItem(string val)
 {
     Value = val;
     Image = new Bitmap(16, 16);
     using (Graphics g = Graphics.FromImage(Image))
     {
         �using (Brush b = new SolidBrush(Color.

    FromName(val)))
         {
             �g.DrawRectangle(Pens.White, 0, 0, Image.

    Width, Image.Height);
             �g.FillRectangle(b, 1, 1, Image.Width -

    1, Image.Height - 1);
         }
     }
 }

 public DropDownItem(string val, Color color)
 {
     Value = val;
     Image = new Bitmap(16, 16);
     using (Graphics g = Graphics.FromImage(Image))
     {
         using (Brush b = new SolidBrush(color))
         {
             �g.DrawRectangle(Pens.White, 0, 0, Image.

    Width, Image.Height);
             �g.FillRectangle(b, 1, 1, Image.Width -

    1, Image.Height - 1);
         }
     }
 }

 public override string ToString()
 {
     return Value;
 }

}

[Serializable]
public class ComboBoxItem
{

 private object _value;

b3881_Ch10.indd 249 05-10-2020 16:35:00

b3881   Requirements Modeling and Coding� 6"×9"

250  Requirements Modeling and Coding

 private Image _image;
 public object Value
 {
     get
     {
         return _value;
     }
     set
     {
         _value = value;
     }
 }

 public Image Image
 {
     get
     {
         return _image;
     }
     set
     {
         _image = value;
     }
 }

 public ComboBoxItem()
 {
     _value = String.Empty;
     _image = new Bitmap(1, 1);
 }

 public ComboBoxItem(object value)
 {
     _value = value;
     _image = new Bitmap(1, 1);

 }

 public ComboBoxItem(object value, Image image)
 {

b3881_Ch10.indd 250 05-10-2020 16:35:00

b3881   Requirements Modeling and Coding6"×9"�

Use Case Storyboarding  251

     _value = value;
     _image = image;
 }

 public override string ToString()
 {
     return _value.ToString();
 }

}

public class ComboCollection<TComboBoxItem> : CollectionBase
{

 public EventHandler UpdateItems;
 public ComboBox.ObjectCollection ItemsBase { get; set; }

 public ComboBoxItem this[int index]
 {
     get
     {
         return ((ComboBoxItem)ItemsBase[index]);
     }
     set
     {
         ItemsBase[index] = value;
     }
 }

 public int Add(ComboBoxItem value)
 {
     var result = ItemsBase.Add(value);
     UpdateItems.Invoke(this, null);
     return result;
 }

 public int IndexOf(ComboBoxItem value)
 {
     return (ItemsBase.IndexOf(value));
 }

 public void Insert(int index, ComboBoxItem value)
 {
     ItemsBase.Insert(index, value);

b3881_Ch10.indd 251 05-10-2020 16:35:00

b3881   Requirements Modeling and Coding� 6"×9"

252  Requirements Modeling and Coding

     UpdateItems.Invoke(this, null);
 }

 public void Remove(ComboBoxItem value)
 {
     ItemsBase.Remove(value);
     UpdateItems.Invoke(this, null);
 }

 public bool Contains(ComboBoxItem value)
 {
     return (ItemsBase.Contains(value));
 }

}

public class ImagedComboBox : ComboBox
{

 private ComboCollection<ComboBoxItem> _items;

     �[DesignerSerializationVisibility(DesignerSerialization

    Visibility.Hidden)]
 public new ComboCollection<ComboBoxItem> Items
 {
     get { return _items; }
     set { _items = value; }
 }

 public ImagedComboBox()
 {
     DropDownStyle = ComboBoxStyle.DropDownList;
     DrawMode = DrawMode.OwnerDrawVariable;
     DrawItem += ComboBoxDrawItemEvent;
     MeasureItem += ComboBox1_MeasureItem;
 }

     �protected override ControlCollection
    CreateControlsInstance()
 {
     _items = new ComboCollection<ComboBoxItem>
     {
         ItemsBase = base.Items
     };

b3881_Ch10.indd 252 05-10-2020 16:35:00

b3881   Requirements Modeling and Coding6"×9"�

Use Case Storyboarding  253

     _items.UpdateItems += UpdateItems;

     return base.CreateControlsInstance();
 }

     �private void ComboBox1_MeasureItem(object sender,
    MeasureItemEventArgs e)
 {
     var g = CreateGraphics();
     var maxWidth = 0;
     foreach (var width in
         Items.ItemsBase.Cast<object>().Select(element =>
           (int)g.MeasureString(element.ToString(),
           Font).Width).Where(width => width > maxWidth))
     {
         maxWidth = width;
     }
     DropDownWidth = maxWidth + 20;
 }

     �private void ComboBoxDrawItemEvent(object sender,
    DrawItemEventArgs e)
 {
     e.DrawBackground();
     if (e.Index != -1)
     {
         var comboboxItem = Items[e.Index];
         �e.Graphics.DrawImage(comboboxItem.Image,
       �        �e.Bounds.X, e.Bounds.Y, ItemHeight,

    ItemHeight);

         �e.Graphics.DrawString(Items[e.Index].Value.
    ToString(),

         �Font,Brushes.Black,new RectangleF(e.Bounds.X
    + ItemHeight,

         e.Bounds.Y, DropDownWidth, ItemHeight));
     }
     e.DrawFocusRectangle();
 }
}

}

b3881_Ch10.indd 253 05-10-2020 16:35:00

b2530   International Strategic Relations and China’s National Security: World at the Crossroads

b2530_FM.indd 6 01-Sep-16 11:03:06 AM

This page intentionally left blankThis page intentionally left blankThis page intentionally left blankThis page intentionally left blank

255

b3881   Requirements Modeling and Coding6"×9"�

Chapter 11

Use Case Optimization

Introduction
In the previous chapter, we learned how to describe a use case textually.
Storyboarding is time consuming and error prone, and it is important that
use cases are parsimonious, i.e., captured use cases do not have redun-
dant sequences in need of descriptions. In this chapter, we will learn
three advanced use case modeling techniques on how to optimize use
case models. Particularly, we will learn how to use two special depen-
dency relationships — include and extend — and inheritance relationships
between use cases to reduce redundant storyboarding.

Use Case Factorization
Often, we find that the descriptions of different use cases overlap. In the
last chapter, for example, we detailed the sequence of how to perform
the “withdraw cash” use case. If we had worked out other use cases such
as “inquire balance” and “deposit money,” we would realize that these
use cases have a few common subsequences of interactions. For example,
in the basic flow for the “withdraw cash” use case in the last chapter,
Steps 1 to 6 are required for all these use cases, and so are all alternate and
exceptional flows coming out of those steps. How could we optimize these
use cases in order to remove or reduce duplicates?

If two or more use cases share a common sub-sequence of interac-
tions, a standard technique is to factor this common sequence out into a
separate use case, called inclusion use case, and then add the inclusion

b3881_Ch11.indd 255 05-10-2020 16:35:16

b3881   Requirements Modeling and Coding� 6"×9"

256  Requirements Modeling and Coding

use case to the base use cases from which the sub-sequence was taken
out. For example, Steps 1 to 6 may be factored out into a use case that
does nothing but authorize transactions. We anticipate that all other use
cases require similar authorizations for them to be performed successfully.
Therefore, we create “authorize transactions” as an inclusion use case and
use a dashed line labeled with <<include>> pointing to the “authorize
transactions” use case (see Figure 1). Such a dashed line denotes an inclu-
sion relationship.

Conceptually, an inclusion relationship is a stereotyped dependency,
a special kind of dependency between classes. Here, it means the base
use case depends on the inclusion use case. This can be understood in the
sense that the base use case depends on the inclusion use case to perform
a part of its task, and any change in the inclusion use case affects how the
base case works.

Since an inclusion use case is a sub-sequence, it does perform a com-
plete task to produce an observable result of value to the primary actor.
Thus, it is not a use case by itself.

It is possible that base use cases have several segments of common
sub-sequences to be factored out. For example, in a POS, both “check-
out items” and “return orders” use cases involve a common sequence to
process payments, which may be factored out as an inclusion use case
“process payments.” Besides, both use cases also involve another common
sub-sequence that deals with item scanning. Thus, we may factor “scan
items” as another inclusion use case (see Figure 2).

The reader should be aware that the factorization technique should not
be overused, i.e., we should not create an inclusion use case if a common

withdraw cash

deposit money

inquire balance

authorize
transactions

«include»

«include»

«include»

Figure 1.   Inclusion use case “Authorize Transactions” in the ATM.

b3881_Ch11.indd 256 05-10-2020 16:35:16

b3881   Requirements Modeling and Coding6"×9"�

Use Case Optimization  257

sequence is short. Otherwise, we achieve a small marginal reduction of the
redundancy in use case description at the cost of making a use case model
unnecessarily complex. We may end up with too many small use cases,
and the management of these cases becomes difficult.

Operationally, an inclusion use case is inserted into a step in the descrip-
tion of the base use case. For example, we may have “include (authorize
transactions)” as a step in the description of the “withdraw cash” use case.
If the inclusion use case has hiccups, we document possible scenarios of
inclusion failure as alternate or exceptional flows just like we do for any
other interaction steps. The following is a snapshot of the updated descrip-
tion of the “withdraw cash” use case.

Use Case: withdraw cash
Type: base use case

Flow of Events
Basic Flow:

	 1.  ATM checks authorization status
	 2.  ATM asks for a withdrawal amount
	 3.  Card Holder enters a withdrawal amount
	 …..

Alternate Flows:
	 1a.  not authorized:

	 .1  Include (authorize transactions)
	 .2  Continue to Step 2

checkout items

process payments

«include»

return orders

«include»

scan items

«include»

«include»

Figure 2.   Inclusion use cases for a POS.

b3881_Ch11.indd 257 05-10-2020 16:35:17

b3881   Requirements Modeling and Coding� 6"×9"

258  Requirements Modeling and Coding

Exception Flows:
	 1a.1a.  authorization failed:

	 .1  ATM displays “authorization failed” message
	 .2  ATM ejects the card
	 .3  ATM goes idle

Note that in the above description, we include “authorize transactions”
use case in an alternate flow rather than in the basic flow. This helps to
prevent the inclusion use case from being executed repeatedly if the user
may need to perform multiple use cases that all require the inclusion use
case as the predecessor. A customer may deposit a check and then move on
to withdraw cash. We do not want the customer to exit the current session
after finishing the “deposit money” use case and then do another round
of authorization for performing the “withdraw cash” use case. Instead,
the ATM should check if the customer has been authorized first and then
require authorization if not.

Since the inclusion relationship is unidirectional, an inclusion use case
is described without reference to the base use case; one inclusion use case
may be included into multiple base use cases. The following is a complete
description of the “authorize transactions” inclusion use case:

Use Case: authorize transactions

Type: inclusion use case

Flow of Events
Basic Flow:

	 1.  Card Holder inserts a card
	 2.  ATM validates the card
	 3.  ATM asks for a pin (UI1)
	 4.  Card Holder enters a pin (UI1)
	 5.  ATM asks Card Network for authorization
	 6.  Card Network authorizes the request

Alternate Flows:
	 6a.  invalid pin:

	 .1  ATM displays “invalid pin” message (PM1)
	 .2  ATM checks if pin entries exceed the limit
	 .3  go to Step 3

Exception Flows:
	 2a.  invalid card:

	 .1  ATM displays “invalid card” message (PM4)
	 .2  ATM ejects the card

b3881_Ch11.indd 258 05-10-2020 16:35:17

b3881   Requirements Modeling and Coding6"×9"�

Use Case Optimization  259

	 .3  Card Holder takes the card
	 .4  ATM goes idle

	 6a.2a.  too many pin entry errors:
	 .1  ATM displays “too many pin entry errors” message (PM3)
	 .2  ATM rejects the card
	 .3  Card Holder takes the card
	 .4  ATM goes idle

	 6b.  account on hold:
	 .1  ATM displays “account on hold” message (PM2)
	 .2  ATM ejects the card
	 .3  Card Holder takes the card
	 .4  ATM goes idle

User Interfaces

	 UI1. Pin Entry UI

Prompts and Messages

	 PM1 (invalid pin): Your pin entry does not match. Please try again.
	 PM2 (account on hold): Your account is on hold. Please call (800) 111-

1111 for details.
	 PM3 (too many pin entry errors): Your account is locked due to pin entry

errors.
	 PM4 (invalid card): The card is not recognized.

Use Case Extension
Factorization optimizes use case descriptions by factoring out a required
common sequence, whereas extension lets the base use case optionally
plug in another sequence of interactions, called an extension use case, to
be enriched.

b3881_Ch11.indd 259 05-10-2020 16:35:17

b3881   Requirements Modeling and Coding� 6"×9"

260  Requirements Modeling and Coding

During performing the “withdraw cash” use case, at the point when
the ATM asks for a withdrawal amount, a customer may want to know his
or her account balance. Instead of canceling the ongoing use case to check
balance, isn’t it better that the “withdraw cash” use case has the option to
allow the customer to inquire about balance?

It might be tempting to create a new “withdraw cash with checking
balance” use case to have a built-in sequence to check balance. However,
the new use case will duplicate the behavior of the existing ones “with-
draw cash” and “inquire balance.” Of course, most customers do not bother
to check balance when withdrawing cash, and nobody wants to perform
“withdraw cash” in order to check balance. Thus, we cannot leave out the
existing “inquire balance” and “withdraw cash” use cases.

A better alternative is to model the “inquire balance” sequence as
an optional extension to the “withdraw cash” use case. The optional
on-demand insertion of a use case is modeled using a dashed line with
the <<extend>> label, called an extension relationship. The use case to
be plugged in is called an extension use case, whereas the use case that
receives the plug-in is called the base use case. The extension relation-
ship is pointing to the base use case; the extension use case can augment,
extend, or enrich the behavior of the base use case. Like the inclusion rela-
tionship, the extension relationship is conceptually a stereotyped depen-
dency between classes. Here, it means that the extension use case depends
on the base use case, and changes in the base use case affect the extension
use case but not vice versa.

Extension makes a base use case more powerful; it enables the base
use case to be more efficient and more capable. It allows the base use
case to handle more varieties of applicable situations while allowing
some users to take shortcut routes. Although it does not change the
value to be delivered to the primary actor, it does make some users more
satisfied.

When using extension relationships, the base use case may indicate
the extension points at which the extension use case may be inserted.
The extension use case may also specify the condition under which the
extension will be triggered. For example, Figure 3 shows an extension rela-
tionship, where “withdraw cash” is a base use case and “inquire balance”
is an extension use case. The extension point is when the customer enters a
withdrawal amount. Note that some CASE tools will automatically create
a compartment for extension points in a base use case when an extension
relationship is drawn. Unfortunately, Rhapsody does not have this feature
yet. The condition of an extension relationship as well as the references to

b3881_Ch11.indd 260 05-10-2020 16:35:17

b3881   Requirements Modeling and Coding6"×9"�

Use Case Optimization  261

the extension points are optionally shown in a comment note attached to
the corresponding extension relationship.

Situations involving extension use cases are widely prevalent. The fol-
lowing are sample scenarios that occur to me on a typical day. At this time
of writing this book or performing the “write books” use case, I occasionally
check spellings and change fonts or insert the extension use cases “check
spellings,” “change font,” etc. While taking a break, I go to an online book-
store to perform the “make orders” use case. Realizing that I have a coupon,
I request the “apply coupons” extension use case. On my way home, I pass
by a video rental store to borrow video tapes. While performing the “rent
videos” use case, the cashier realizes that I am not a member yet, and so she
must insert the “create memberships” use case as an extension to the “rent
videos” use case so that she does not have to void the transaction and start all
over again. Figure 4 shows the above extension relationships.

Note that one base use case may have multiple extension use cases, and
one extension use case may be inserted into multiple places, or extension
points, of a base use case. For example, at any point of performing the “write
books” use case, I may apply “check spelling” and “change fonts” use cases.

Operationally, this is how extensions work. The base use case is com-
plete on its own, and the extension use case interrupts the flow of the base
use case at extension points. While carrying out the flow of the base use
case, when it reaches the first extension point, the condition attached to
the extension use case is evaluated once to decide whether the flow should
be interrupted. Once the system confirms that the extension applies, the
extension will be invoked at all the succeeding extension points without
re-evaluation of the condition.

withdraw cash

inquire balance

«extend»

extension points: enter
withdraw amount

user pressed
Check Balance
button

Figure 3.   Extension of “Withdraw Cash” by “Inquire Balance.”

b3881_Ch11.indd 261 05-10-2020 16:35:17

b3881   Requirements Modeling and Coding� 6"×9"

262  Requirements Modeling and Coding

There are two different approaches to the description of an extension
use case. A simple approach is to use an alternate flow, with the execution
condition as the flow scenario, to describe the extension use case inside
the base one. Indeed, an extension is an interruption to the basic flow but
will flow back to the basic flow. The following is a snapshot to describe
the “apply coupons” extension with the graphical user interface UI2 and
message PM5 not included here:

Flow of Events
	 Basic Flow:

	  …
	 4.  The system computes the order total
	 5.  Customer swipes a credit card
	  …

(b) Checkout items

(c) Rent videos

checkout items
apply coupons

«extend»extension points:
compute order

user clicked
Apply Coupon
button

rent videos
create memberships

«extend» extension points: scan
membership card

user pressed
Create button

(a) Write books

write books
change fonts

«extend»
check spelling

«extend»extension points: any step

user selected font
family and/or size

user pressed Check
Spelling menu

Figure 4.   Examples of extension use cases.

b3881_Ch11.indd 262 05-10-2020 16:35:17

b3881   Requirements Modeling and Coding6"×9"�

Use Case Optimization  263

	 Alternate Flows:
	 4a.  user clicked Coupon button:

	 .1  The system displays the coupon dialog box (UI2)
	 .2  Cashier enters a coupon code
	 .3  Cashier presses Apply button
	 .4  The system validates the coupon
	 .5  go to Step 4

	 4a.4a.  coupon not valid:
	 .1  The system displays “coupon not valid” message (PM5)
	 .2  go to Step 4a.2

The simple approach is applicable if the extension use case does not
deliver an observable result of value to any primary actor as in the case
of “apply coupons,” “check spellings,” and “change fonts” in Figure 4.
However, when an extension use case is itself a base use case, using
alternate flows is not an option. In this case, we will use the second
approach. First, the base use case explicitly marks the extension points at
the beginning of the flow of events. The following shows how to describe
the “withdraw cash” use case along with the “inquire balance” extension:

Use Case: withdraw cash
Type: base use case
Flow of Events

	 Extension point: enter withdrawal amount (Step 3)
	 Basic Flow:

	 1.  ATM checks authorization status
	 2.  ATM asks for a withdrawal amount
	 3.  Card Holder enters a withdrawal amount
	   …..

	 Alternate Flows:
	 1a. not authorized:

	 .1  Include (authorize transactions)
	 .2  Continue to Step 2

	 Exception Flow:
	 1a.1a. authorization failed:

	 .1  ATM displays “authorization failed” message
	 .2  ATM ejects the card
	 .3  ATM goes idle

Then, an extension use case is described as usual. It does not have
to reference which base use case is to be extended but may optionally
document the conditions in which the extension use case is activated.

b3881_Ch11.indd 263 05-10-2020 16:35:17

b3881   Requirements Modeling and Coding� 6"×9"

264  Requirements Modeling and Coding

For example, the “inquire balance” extension may be triggered when the
user presses a three-dot button next the withdrawal amount or the “check
balance” menu item.

Use Case: inquire balance
Type: extension use case
Flow of Events
	 Condition: the user pressed “check balance” button
	 Basic Flow:

	 1.  Check authorization status
	 2.  ATM asks Bank for account balance
	 3.  Bank responds with account balance
	 …

	 Alternate Flow:
	 1a. not authorized:

	 .1  Include (authorize transactions)
	 .2  Continue to Step 2

	 Exception Flow:
	 1a.1a. authorization failed:

	 .1  ATM displays “authorization failed” message
	 .2  ATM ejects the card
	 .3  ATM goes idle

Both inclusion and extension involve the insertion of one sequence
of interactions into another. They have some important differences. First,
an inclusion use case is a required sequence by the base use case, while
an extension use case is optional. Second, the directionality of the two
relationships is opposite: the inclusion relationship is pointing away from
the base use case, while the extension is pointing toward the base use
case. Third, an inclusion use case is not a complete sequence to deliver an
observable result of value to the primary actor, while an extension use case
may itself be a base use case.

Use Case Generalization
If the descriptions of two or more use cases are similar overall but do have
differences here or there in some steps, we can generalize these use cases
using a representative one. For example, the two use cases of deposit check
and deposit cash are very similar in their descriptions. The difference is
that, for a cash deposit, an ATM counts cash and updates available account
balance, while for a check deposit, a customer enters a deposit amount,

b3881_Ch11.indd 264 05-10-2020 16:35:17

b3881   Requirements Modeling and Coding6"×9"�

Use Case Optimization  265

and the system updates pending account balance. Figure 5 shows the
use case diagram for the generalization of “deposit checks” and “deposit
cash” into the representative one, “deposit money,” using an inheritance
relationship.

Generalization applies not only to base use cases but also inclusion
and extension ones. When it is applied to inclusion or extension use cases,
in fact, it can not only optimize use case descriptions but also offer a device
to model exclusive inclusion or extension relationships. For example, the
inclusion use case “authorize transactions” deals with two different autho-
rizations, one with Card Network for Card Holder and one with Bank for
Customer. Earlier, we proposed treating the Bank actor as a special kind of
the Card Network actor. We could model the situation by splitting “autho-
rize transactions” into two separate inclusion use cases: “authorize with
Card Network” and “authorize with Bank” (see Figure 6). By doing so, we
will have a paradox here: which one of them should be the inclusion use
case for the “withdraw money” use case. On the one hand, the “withdraw
money” use case selectively includes “authorize with Card Network” for
card holders and “authorize with Bank” for bank customers. On the other
hand, by definition, an inclusion use case is not optional and must always
be included into the base use case. How do we handle such a paradox?

The solution lies in the notion of polymorphism. Remember the rep-
resentative pattern? If an object has an exclusive association with two or
more other objects, we generalize the two or more objects into a represen-
tative one. Similarly, if a base use case has an exclusive inclusion relation-
ship with two or more inclusion use cases, we generalize the inclusion
use cases into a representative inclusion use case. So, the solution is to
create a generalized inclusion use case called “authorize transactions” that
can take two forms: “authorize with Card Network” for card holders and

deposit money

deposit checks deposit cash

Figure 5.   Generalization of “deposit checks” and “deposit cash.”

b3881_Ch11.indd 265 05-10-2020 16:35:17

b3881   Requirements Modeling and Coding� 6"×9"

266  Requirements Modeling and Coding

“authorize with Bank” for bank customers. This is a better solution than
the earlier ones. It not only resolves the above paradox but also clarifies
the relationships with other use cases and the two secondary actors of the
ATM system: (1) the “authorize with Card Network” use case is associated
with the Card Network actor only, (2) the “Authorize with Bank” use case
is associated with the Bank actor only, and (3) the “authorize with Bank”
use case will be the only inclusion use case for the “deposit money” and
“inquire balance” use cases (see Figure 7).

Generalization is often used when two or more use cases achieve the
same goal via different technologies or achieve different goals via the
same business process. The following are additional examples of use cases
that can be generalized:

•	 “take order via Internet” and “take order over the phone” can be gen-
eralized into “take order” use case

•	 “check prerequisite with finished courses,” “check prerequisite with
equivalent experience,” and “check prerequisite with instructor’s
consent” can be generalized into the “check prerequisite” use case

•	 “book a flight” and “register training courses” may be generalized into
an abstract “make reservation” use case

•	 “file case documents” and “file regulatory documents” may be gener-
alized into “file documents” use case

Here, the first two examples are use cases of achieving the same user
goal via alternate routes, whereas the last two examples are use cases of
achieving different goals using the same process.

withdraw cash

inquire balance

«extend»

extension points: enter

withdraw amount

user pressed
Check Balance
button

authorize with Card
Network

«include»

authorize with Bank

«include»

Figure 6.   Which inclusion use to include?

b3881_Ch11.indd 266 05-10-2020 16:35:17

b3881   Requirements Modeling and Coding6"×9"�

Use Case Optimization  267

Figure 8 shows an optimized use case model for the POS, where a
cashier performs “checkout items” use case, which is extended by “apply
coupon,” “exempt taxes,” and “check price.” The use case includes
“process payments” as an inclusion use case. Since there are three different
techniques to process payments, a generalization technique is employed to
deal with their similarities.

Use case generalization allows one to abstract similar use cases into
a common requirement while simultaneously retaining the possibility of
describing the differences at the sequence level. It is much like the coun-
terpart for regular objects, where child objects inherit from parent objects

CardHolderActor

withdraw cash

CustomerActor BankActor

CardNetworkActor

deposit money

inquire balance

«extend»

authorize
transactions«include»extension points: enter

withdraw amount

user pressed
Check Balance
button

deposit checks deposit cash

authorize with Card
Network

authorize with Bank

«include»

«include»

AuthorizationActor

Figure 7.   The use case model for ATM.

CashierActor

checkout items

CustomerActor

CreditCardNetwork

process payments

«include»

return orders

«include»

scan items

«include»

«include»

apply coupons

«extend»

extension points:
compute order

user clicked
Apply Coupon
button

check price

«extend»

ManagerActor

CustomerServiceActor

exempt tax

«extend»

pay by credit cards pay by check pay by cash

generate sales
report

Figure 8.   The use case model for POS.

b3881_Ch11.indd 267 05-10-2020 16:35:18

b3881   Requirements Modeling and Coding� 6"×9"

268  Requirements Modeling and Coding

all data and operations while retaining the possibility of adding special-
ized attributes and operations and overriding the behavior of inherited
operations.

Therefore, to describe similar use cases, we first fully describe their
representative one and then partially describe the different interactions
pertaining to each sub–use case to override the interactions in the repre-
sentative use case. For example, the basic flow of the “authorize transac-
tions” use case is as follows, where the reference UI1 was shown in the
previous chapter but omitted here.

Use Case: authorize transactions
Type: inclusion use case
Flow of Events

	 Basic Flow:
1.  Card Holder inserts a card
2.  ATM validates the Card
3.  ATM asks for a pin (UI1)
4.  Card Holder enters a pin (UI1)
5.  ATM asks for an authorization center for authorization
6.  The authorization center replies with authorization

Then, the child use cases can modify the above generic sequence
slightly into the following two overridden flows:

Use Case: authorize with Card Network
Type: sub use case
Flow of Events

	 Basic Flow:
5.  ATM asks Card Network for authorization
6.  Card Network replies with authorization

Use Case: authorize with Bank
Type: sub–use case
Flow of Events

	 Basic Flow:
5.  ATM asks Bank for authorization
6.  Bank replies with authorization

At the sequence level, both use case factorization and generaliza-
tion deal with duplicate interactions. However, the two techniques have
differences. First, the use cases to be generalized are similar in the sense

b3881_Ch11.indd 268 05-10-2020 16:35:18

b3881   Requirements Modeling and Coding6"×9"�

Use Case Optimization  269

that they deliver the same value to the primary actor via different technolo-
gies or different values to different actors via the same flows. In contrast,
the use cases from which we extract an inclusion use case may just hap-
pen to have a common segment in their descriptions. Second, use cases
to be generalized look almost identical except for a few steps here or
there, i.e., sporadically. They may have no common sub-sequence to be
extracted as an inclusion use case, or they may have too many, but each
common segment has very few interactions to be justified to be a separate
use case.

Practical Use Case Modeling
Discovering use cases from business requirements documentation is an
essential skill that the business analyst needs to learn. No matter whether
it is a vision statement or a business use case (see the next chapter), a
requirement document describes some aspects of the system such as sys-
tem interactions, functionalities, or constraints. These verbal descriptions
often carry a lot of message about business objects and system use cases.
In an earlier chapter, we learned how to uncover business objects for class
diagramming. In this section, we demonstrate how to uncover system use
cases from verbal descriptions using an example.

Example 1: ABC University Business Office receives supplies from
various vendors and checks out the items to internal departments.
The actual cost of each item is billed to the departments that use the
supplies. Internally, as a convention of organizing inventories, supplies
are organized into categories. For each supply, the maximum and mini-
mum inventory levels are kept so that when the stock of a part is below
the minimum, a replacement order may be issued and sent to a vendor
to get it refilled.

To discover use cases, we first underline all the verbs while reading
the passage because some verbs indicate interactions with the system.
Next, we identify the nouns that are the names of business stakeholders
or existing systems. Those nouns will likely give clues on the identifica-
tion of actors. Then, for each underlined verb, we determine whether the
action is executed by a business stakeholder and whether the action needs
the system to be carried out. If the answers to both tests are positive, then

b3881_Ch11.indd 269 05-10-2020 16:35:18

b3881   Requirements Modeling and Coding� 6"×9"

270  Requirements Modeling and Coding

the verb suggests a system use case. Finally, after all system use cases are
identified, one or more optimization techniques may be applied to reduce
model complexity and description redundancy.

Following the above procedure, let us first underline all the verbs:
ABC University Business Office receives supplies from various ven-

dors and check out the items to internal departments. The actual cost of
each item is billed to the departments that use the supplies. Internally,
as a convention of organizing inventories, supplies are organized into
categories. For each supply, the maximum and minimum inventory levels
are kept so that when the stock of a part is below the minimum, a replace-
ment order will be issued and sent to a vendor to get it refilled.

The names of business stakeholders include Business Office,
Internal Department, and Vendors. The underlined verbs suggest interac-
tions carried out by each of the business stakeholders and are grouped
as follows:

•	 Business Office: receive [supplies], check out [supplies], bill [depart-
ments], organize [supplies into categories], keep [minimum and maxi-
mum inventory], check [inventory level], issue [replacement order],
send [replacement order]

•	 Department: use [supplies]
•	 Vendor: fulfill [orders]

Are departments and vendors going to interact with the system?
Probably not. Thus, we identified Business Office as the only primary
actor. Look at each action performed by Business Office: keep inven-
tory and check inventory indicate the same action; issue and send
orders are related interactions, which can be represented in one use
case; organize inventory into categories is probably an action that does
not need the system to do anything. Thus, we come up with five use
cases: receive supplies, check out items, bill departments, check inven-
tory levels, and issue orders. Among them, “bill department” is some-
thing the Business Office will have to do when checking out supplies to
departments. Thus, we can model it as an inclusion use case. “Issue and
send order” may be optionally executed when the inventory level is low.
Thus, we may model it as an extension use case to enrich the behavior
of checking inventories. Figure 9 shows the final use case diagram for
ABC Business Office.

b3881_Ch11.indd 270 05-10-2020 16:35:18

b3881   Requirements Modeling and Coding6"×9"�

Use Case Optimization  271

Packaging Use Cases
Packaging means to re-structure the use cases into packages for a simpli-
fied high-level view of use cases and their dependence. For diagrams like
Figures 7 and 8, packaging is probably unnecessary. However, if a use case
diagram contains tens or hundreds of use cases, it is going to be messy and
overwhelming instead of being informational. Packaging then becomes
essential.

We may use either top-down or bottom-up approaches to develop pack-
ages. In the top-down approach, we start with packages or sub-systems
and then develop a use case diagram for each package. In the bottom-up
approach, we start with discovering individual use cases and then regroup
them into packages.

There are several strategies for regrouping use cases into packages. These
include packaging by actors, packaging by functional concerns, packaging
by deployment locations, packaging by changes, etc. Based on the actors, it
makes sense for the ATM system to separate the use cases associated with
the machine operator from use cases that are associated with customers and
card holders. Based on functional concerns, it makes sense to separate all
transaction use cases from support ones. For example, we may group the
three use cases related to authorization into one package and the other use
cases, including “withdraw cash,” “deposit money,” and “inquire balances”
into another package. Finally, if some use cases are anticipated to be more
frequently changed than others, it would make sense to single them out.

Business Office

checkout supplies

generate bills

«include»

receive supplies

check inventory level

extension point: check
quantity on hand

generate refill orders
«extend»

user clicks Create
Order button

DepartmentActor

VendorActor

Figure 9.   The use case diagram for ABC Business Office.

b3881_Ch11.indd 271 05-10-2020 16:35:18

b3881   Requirements Modeling and Coding� 6"×9"

272  Requirements Modeling and Coding

(a) Package diagram

(b) Authorization services package

(c) Transactional services package

(d) Operational services package

OperatorServices TransactionServices AuthorizationServices

BankActor

CardNetworkActor

authorize
transactions

authorize with Card
Network

authorize with Bank

AuthorizationActor

CardHolderActorCardHolderActor

withdraw cash

CustomerActor

deposit money

inquire balance

«extend»

extension points: enter
withdraw amount

user pressed
Check Balance
button

deposit checks deposit cash

OperatorActor

perform
maintenance

Figure 10.   Use case packages for the ATM system.

b3881_Ch11.indd 272 05-10-2020 16:35:18

b3881   Requirements Modeling and Coding6"×9"�

Use Case Optimization  273

The most important criterion for a successful packaging is that the
resulting packages are loosely coupled, i.e., they are not heavily depen-
dent on each other. Such dependencies are represented by directed dash
lines pointing from the depending package to the dependent one. Figure 10
shows the package diagram for the ATM system and associated use case
diagrams. Note that in the package diagram, the transaction service pack-
age depends on the authorization services package.

Review Questions
1.	 Think of an example wherein two or more use cases contain a com-

mon sequence of interactions that may be factored out into a separate
inclusion use case.

2.	 Think of an example of two or more similar use cases that may be
generalized into a representative use case.

3.	 Refer the textual descriptions for “authorize transaction,” “authorize with
Card Network” and “authorize with Bank,” and then think about whether
you can use <<include>> to replace a generalization relationship.

4.	 If two or more primary actors use a same use case, how could you
make the use case to be associated with only one primary actor?

5.	 If one use case exclusively includes one of a few inclusion use cases,
how could you handle the UML modeling difficulty?

6.	 Draw an extend use case diagram by considering the use case “shrink
balloon” and the possibility that a balloon gets shrunk automatically
over time while flying.

Exercises
1.	 In the purchasing department, each purchase request is assigned to

a caseworker within the department. This caseworker follows the
purchase request through the entire purchasing process and acts as
the sole contact person with the person or unit buying the goods or
services. The department refers to its fellow employees buying goods
and services as “customers.” The purchasing process is such that pur-
chase requests over 1500 must be out for bid to vendors, and the asso-
ciated request for bids for these large requests must be approved by
the department. If the purchase is under 1500, the product or service

b3881_Ch11.indd 273 05-10-2020 16:35:18

b3881   Requirements Modeling and Coding� 6"×9"

274  Requirements Modeling and Coding

can simply be bought from any approved vendor, but the purchase
request must still be approved by the department and they must issue
a purchase order. Create a use case diagram with appropriate applica-
tion of optimization techniques and create a textual description for the
use case “process purchase requests.”

2.	 Create a use case diagram with appropriate application of optimi
zation techniques for a standard point of sale system and develop
a textual description of the use case “process sale.” Here is the
business use case description. A customer arrives at the checkout to
pay for her selected items. The cashier scans each item’s bar code
and records quantity, if it is greater than one. The cash register dis-
plays the price of each item, its description, and quantity. When
all the items are entered, the cashier indicates the end of sale. The
cash register displays the total cost of the purchase including tax.
Occasionally, a customer may have tax exempt status, and so the
cashier must check the certificate and remove the sales tax. Very
often, a customer may come with a special coupon that the cashier
may need to scan or record in order to apply discounts. The cus-
tomer may select one of the three following methods to pay for the
transaction:

a.	 Cash: the cashier takes the money from the customer and
puts it into the cash register, and the cash register indicates
how much change is due to the customer.

b.	 Check: the cashier verifies that the customer is in good stand-
ing by sending a request to an authorization center via the
cash register.

c.	 Credit card: the customer slides her credit card and the cash
register sends a request for authorization to an authorization
center.

�After the payment, the cash register records the sale and prints a
receipt, which the cashier then hands to the customer.

3.	 BizbyOrder Books is specialized in ordering books for two types of
customers: individuals and businesses in lower Manhattan. This is
how these two customers are different. When an individual customer
orders books, he or she has to pay 20% downpayment. A business
customer can establish a credit line with BizbyOrder and pays 50%
downpayment if and only if the order amount exceeds its credit limit.

b3881_Ch11.indd 274 05-10-2020 16:35:18

b3881   Requirements Modeling and Coding6"×9"�

Use Case Optimization  275

The bookstore orders its books through five national distributors.
Because of various special agreements in the book industry, each pub-
lisher sells its books exclusively to one distributor. This is how the
bookstore runs its daily business. Each time a customer comes in to
buy a book, the bookstore uses its database system to find the title and
locate the distributor that sells the book. Then the customer will leave
their contact information and make a downpayment (if needed) for
BizbyOrder to send the order to a distributor. When an ordered book
comes in, the customer will be contacted to pick up and pay the rest of
the balance.
a.	 Please draw a use case diagram to capture the functional require-

ments by BizbyOrder,
b.	 Storyboard use case “process order.”

4.	 Here are some descriptions of the OMCA club operations. When
members join OMCA health club, they pay a fee for a certain length
of time. Most memberships are for 1 year, but memberships for
short periods are available. Due to various promotions throughout
the year, it is common for members to pay different amounts for the
same length of membership. The club wants to mail out reminder let-
ters to members to ask them to renew their memberships one month
before their memberships expire. Some members have been angry
when asked to renew at a much higher rate than their original mem-
bership contract. So, the club needs to keep track of the price paid so
that the managers can override the regular prices with special prices
when members are asked to renew. The system must keep track of
these new prices so that renewals can be processed accurately. One
of the problems in the health club industry is the high turnover rate
of members. Although some members remain active for many years,
about half of the members do not renew their memberships. This is a
major problem because the club spends a lot in advertising to attract
each new member. The manager wants to track each time a member
comes into the club. The system will identify heavy users and gener-
ate a report so the manger can ask them to renew their memberships
early at a reduced rate. Likewise, the system should identify those
who do not come to the club often so that the manager can call them
and attempt to attract them to the club.
a.	 Create a use case diagram with appropriate application of optimi-

zation techniques for the OMCA health club.
b.	 Describe the use case “renew membership.”

b3881_Ch11.indd 275 05-10-2020 16:35:18

b3881   Requirements Modeling and Coding� 6"×9"

276  Requirements Modeling and Coding

5.	 Here is a high-level procedural description of how ecourse.org
handles student enrollment. To enroll a student into a class, the
registration system must check whether the student has all the pre-
requisites taken, whether the class is still open, and whether the total
number of credit hours the student registers is not beyond the maxi-
mum allowed. After a student finishes her registration, she will need
to pick up a printed confirmation that shows all the courses she has
registered for, the date/time, section number, credit hours, ecourse.
org access code, and instructor for each class. Also, the confirmation
paper shows the student status, state of residence, the total number
of credit hours, and the total amount to be paid to the college. The
student will bring the confirmation to the business office and make
a deposit, which is equivalent to 20% of the total amount, to reserve
her registration. If she fails to do so within 10 days, her registration
will be canceled. The system also actively monitors the number of
students signed up for each class. Three days before the class starts,
if the number of registered students for a class is less than 15, the
class will be canceled. The registered students will be informed to
find alternative classes. To better serve the students and departments,
the system has functionality for students to make course requests for
future terms. The requests will be summarized and sent to depart-
ments so that they can make informed decisions on what is to be
offered in the future.
a.	 What is the scope of the system to be designed?
b.	 Please draw a use case diagram and apply the optimization tech-

niques if necessary.
c.	 Package use cases into a package diagram.
d.	 Design the printed confirmation after registration.
e.	 Who is the actor for the use case “cancel registration” due to failed

payment, and describe the use case in English with appropriate
graphical user interfaces?

6.	 Professor Bizmind does a lot of consulting in his life. He used to use
FastBook to manage his bills and payments. Now he feels that the
software cannot be customized to fit his needs. In particular, he would
like his clients to be able to make job requests using the Internet.
The client can get feedback immediately if the requested time con-
flicts with his existing schedule. The request can then be modified for
another time, canceled, or sent regardless. Bizmind then looks at all
the requests every day. If the requested time can be honored, he will

b3881_Ch11.indd 276 05-10-2020 16:35:18

b3881   Requirements Modeling and Coding6"×9"�

Use Case Optimization  277

update his schedule and send a confirmation to the client. Otherwise,
he will talk to the client using email or phone to set up another time.
Then he updates the schedule on the agreed date/time and sends an
automatic confirmation. In terms of request details, the professor has
itemized a list of standard activities such as Data Analysis, Systems
Administration, IT planning, etc. A client can simply select one or
more activities when making a a job request. The professor also has a
standard unit fee associated with each activity. He may give discounts
based on the quantity (e.g., number of hours) performed on an activ-
ity. A bill will be sent after each job is finished and at the beginning of
each month, if a client has outstanding balance. A minimum payment
and a due date will be specified on the bill. Late fee may be accessed
if a payment is overdue.
a.	 Please draw a use case diagram, apply the optimization techniques

if necessary.
b.	 Package use cases into a package diagram.
c.	 Describe the use case “make job request” with appropriate graphi-

cal user interfaces.
7.	 Insure-A-Person Inc. provides health insurance services to employees

and their family members across America. Due to the need to promote
its customer relations, the company has decided to develop a web-
based system for clinics and individual customers to be able to file
claims on the Internet 24 hours a day and 7 days a week. The company
has approached you to design a relational database for that purpose.
According to the company, this is how the web-based system is sup-
posed to work. Within 60 days of seeking treatments for himself or
any of his family members, a customer needs to log on to the system
and file a claim. First, you specify the name of a patient, the date and
the place the service was provided, and the primary doctor providing
the service. Then, you detail the procedures performed by the doctor.
In medical industry, all procedures have been standardized with fixed
identification numbers and short descriptions. The insurance company
will pay for the service based on all the procedures performed by the
service.
a.	 Create a use case diagram and apply optimization techniques if

necessary.
b.	 Package the above use case diagram into a package diagram.
c.	 Describe the use case “File Claim” with appropriate graphical

user interfaces.

b3881_Ch11.indd 277 05-10-2020 16:35:18

b3881   Requirements Modeling and Coding� 6"×9"

278  Requirements Modeling and Coding

8.	 The Board of Watson Town Memorial Hospital has recently decided to
develop a new information system to manage their patient admissions
and discharges. The hospital handles two types of patients: outpatient
and resident patient. As typical, each time a new patient comes, the
data about his/her identification, address, phone, and insurance carri-
ers are recorded. If a patient is a resident, he/she will be assigned to a
bed and an admission date recorded. After the treatment, a nurse has
to sign off the discharge card. For an outpatient, the nurse will set a
check-back time after each treatment.
a.	 Create a use case diagram with appropriate optimization techniques.
b.	 Storyboard the use case “check in patient” including appropriate

graphical user interfaces.
9.	 Use the appropriate optimization technique to draw use case diagrams

for the following use case(s):
a.	 While checking out videos, a cashier in BlockBuster Video may

optionally create a new membership for a customer who does not
have an account yet or search for membership ID if a customer
does not bring his membership card.

b.	 While checking out in a grocery store, some customers may pres-
ent coupons for discounts.

c.	 Overall, for the POS, checking out items and returning items are
pretty much the same except that for returns, a receipt is scanned
first before scanning each item and at the end, the payment is typi-
cally a refund. How do you optimize these use cases?

d.	 In a hospital registration system, checking in inpatient and outpa-
tient processes are almost identical except that for inpatients a bed
is assigned.

e.	 In a student registration system, to be able to enroll into a class,
the system must make sure the prerequisites are met. In some
other processes, such as plan for future courses, the system must
also consider prerequisites.

f.	 For an ATM, it seems that in all transactions, the final steps will be
abut printing receipts, recording transactions, and dispensing the
card. How do you optimize the use cases for an ATM?

b3881_Ch11.indd 278 05-10-2020 16:35:18

279

b3881   Requirements Modeling and Coding6"×9"�

Chapter 12

Requirements Documentation

Introduction
Requirements discovery and development proceeds object and use case
modeling, but we postpone it to this later chapter because we need to first
understand the concepts of use cases and objects before we can see how
requirements connect to the concepts. In this chapter, we will go back to
the initial stage of the development process and learn the techniques on
how to document requirements. In detail, we will learn how to develop
vision statements, how to specify project scopes, how to develop major
features, how to develop business rules, how to develop business use cases,
and how to develop software requirements.

Requirements
Requirements, functional and non-functional, may be classified into three
levels: business requirements in the blue sky level, user requirements at the
sea level, and software requirements in the deep ocean level (see Table 1).
Different elemental requirements can be classified into one or more of
these categories for documentation. When deciding where to include
what, besides considering the scope differences of the three categories,
we may also consider two other criteria: (1) contractual vs. informational;
and (2) sensitive vs. public. In this chapter, we will describe the elements
by scope only.

b3881_Ch12.indd 279 05-10-2020 16:35:44

b3881   Requirements Modeling and Coding� 6"×9"

280  Requirements Modeling and Coding

Business requirements express high-level expectations by an organi-
zation on the system to be developed. They specify how the mission of the
system should be aligned with the mission of the organization. Business
requirements describe the primary benefits that the system will provide
to all stakeholders, including customers, employees, users, and sponsors.
They provide background on the rationale and historical or organizational
context of the project; describe the business problems to be solved, busi-
ness opportunities to be taken, and business threats to be addressed by
the project; outline business objectives and success criteria that the proj-
ect will help to achieve; and summarize the business risk associated with
developing or not developing the system.

User requirements are specifications of what values the system must
bring to its users. They are the derivatives of business requirements and are
expressed as system use cases.

Software requirements, expressed as classic “shall” statements, are
the most detailed specifications of how the system shall look and feel,
shall answer user requests, shall enforce business rules, and shall respond
to environmental events. They also include other non-functional require-
ments on performance, control, security, usability, integrity, availability,
reliability, compatibility, etc.

Three levels of requirements represent three different perspectives in
specification. Their boundary lines are often fuzzy, in part because they are

Table 1.   Requirements classification.

Functional Non-functional

Business Background, business objectives, risks, strategic alignment, value chain
integration

vision, scope, feature, business
use cases

business rules

User User goals, tasks, resources including usability, usefulness, and quality

system use cases information, interfaces

Software Measurable software specifications

behavioral statements PIECES: performance, integrity,
efficiency, control, economy, service
(reliable, flexible, accessible,
scalable, etc.)

b3881_Ch12.indd 280 05-10-2020 16:35:44

b3881   Requirements Modeling and Coding6"×9"�

Requirements Documentation  281

all deliverables in the requirements development stage and are produced
by requirements engineers with the assistance of business stakeholders.
They are fuzzy also because some requirements or related artifacts are
cross-boundary in nature, e.g., (1) business objects and data are referenced
and specified in all requirements, (2) business rules are referenced in user
requirements and enforced in software requirements, and (3) business use
cases (or business processes) belong to either business requirements or
user requirements.

Vision Statements
Business requirements provide the foundation for the development of user
and software requirements. As an important part of business requirements,
a vision statement presents the long-term purpose of the system and an
idealistic picture of how the system aligns with business objectives and
satisfies the needs of all business stakeholders. Essentially, a vision state-
ment synthesizes and summarizes business requirements and provides a
clear vision for the entire software development process. Thus, it guides
user and software requirements development. Because of this nature, the
vision statement may be included into either the business requirements
document or the user requirements document, if an organization desires to
have separate documents for different requirements.

Often a vision statement may be phrased using a standard template.
For example, one such template, suggested by Geoffrey A. Moore (1991),
is as follows:

For [target customer] who [statement of need or opportunity], the
[product name] is [a product category] that [key benefits, compelling
reasons to buy or use]. Unlike [primary competitive products, current
system, or current business process], our product [statement of primary
differentiation and advantages]

The following are two example vision statements following the template.
The first is to envision a food order system targeted at cafeteria and
restaurant owners, and the second is a centralized electronic medical
record system.

The Vision of E-Servant: For restaurants and cafeteria who desire to
improve service quality and reduce service staffing costs, the e-servant

b3881_Ch12.indd 281 05-10-2020 16:35:44

b3881   Requirements Modeling and Coding� 6"×9"

282  Requirements Modeling and Coding

is an electronic food order system that allows customers to make orders
without using a waiter or waitress. The system allows the customers to
browse specials of the day, to custom food flavor or taste, and to format
and dispatch kitchen orders automatically. It also allows the customer to
check out with credit card without waiting for a cashier. Unlike the cur-
rent manual ordering system, our product will cut customer wait time by
90%, reduce food wastes by 30%, and reduce staffing by 80%. Our prod-
uct will also generate all sales reports and submit sales tax in compliance
with all local government regulations.

The Vision of Electronic Medical Records: For all healthcare providers
and consumers who want a single point of access to all patient informa-
tion, the Electronic Medical Records is an information system that pro-
vides a central repository of patient medical data and a suite of tools to
retrieve and update the data. The system will contain information such as
medical history of the patient, past diagnosis, test results, prescriptions,
and communications between doctors and patients. It will also act as a
legal record of the care and provides information to public health, epi-
demiological studies, and clinical research. Unlike the current manual or
paper records, our product will defragment separate medical records into a
single universal patient record, which improves data accessibility and data
quality and makes it easy for physicians to perform effective and efficient
diagnosis and exchange patient information across clinics and practices.
It will also reduce the workload for managing patient data and cut the
clinic staffing costs by 60%.

Scope
To elaborate a bit more about a vision statement, business requirements
should include a system scope, which delineates a set of software fea-
tures and business tasks (or business use cases) that the system enables
and delimits certain capabilities that the system will not include. Unlike a
vision, a scope is often tied to a specific timeframe or release version due
to resource limitations at a certain point in time. The scope may change
over time. The scope description sets the boundary of the system to be
developed and the context the system lives in. It specifies what is included
and what is not. Sometimes, a graphic model such as a context diagram
provides an alternative to a scope statement by showing the system in
the context of the universe of actors or stimuli. A scope description may
be included into either the business requirements document or the user
requirements document.

b3881_Ch12.indd 282 05-10-2020 16:35:44

b3881   Requirements Modeling and Coding6"×9"�

Requirements Documentation  283

Depending on how we view the relationship between a system and its
context, there may be four different kinds of context diagrams to circum-
scribe a scope. The first type, focusing on interactions between the system
and its users, shows the system instances as a use case and the connections
to the context as associations. Figure 1 depicts such an interaction context
diagram for the ATM.

An interaction context diagram circumscribes the system boundary
by showing who external actors are and how their instances are associated
with a system instance. It is a high-level use case diagram from a bird’s-
eye view. As such, it may omit a lot of technical details such as role maps
among actors, dependencies among associations, and multiplicities of the
associations. Figure 1 explicitly displays multiplicities to show that, at any
moment, there is 0 or 1 instance of each primary actor connected to one
system instance for the purpose of understanding the nature of concurrent
interactions and the requirements for concurrency control.

An interaction context diagram may serve as a starting point to develop
use case diagrams for the system. Yet it does not convey much information

ATM

OperatorActor

0,1

1

BankActor

1..*

1

CardNetworkActor

1..*

*
CardHolderActor

0,1 1

CustomerActor

0,1

1

Figure 1.   An interaction context diagram for an ATM.

b3881_Ch12.indd 283 05-10-2020 16:35:44

b3881   Requirements Modeling and Coding� 6"×9"

284  Requirements Modeling and Coding

on the functional requirements for analysts to discover use cases except
that the role of each actor implies a system use case to be executed by the
actor.

The second type of context diagrams, focusing on data flows between
the system and external entities, shows the system as one function (or data
processor) and its connections to the context as data flows. These data
flows are either initiated from an external entity or delivered to an external
entity. They are often mission-critical, justifying the purpose or mission
of the system in the context. Figure 2 shows the context diagram for a
food order system. This type of context diagram is an important deliver-
able for structured development; data inputs and outputs implicitly convey
what the system is supposed to do, and therefore may give hints for dis-
covering functional requirements. For example, the food order system in
Figure 2 can take food orders and customer payments, generate customer
receipts, update the inventory system with inventory being used, generate
formatted kitchen orders, and print sales reports for managers. Clearly, it
conveys the related functional requirements, some of which may become
use cases.

The third type of context diagrams addresses event–response relation-
ships between the system and its context. The diagram shows the system
as the responder of events and the context as the dispatcher of events.
Unlike the other types of context diagrams, here, the context may not
be described as a set of actors, external entities, or agents, and event–
response relationships may not be represented as associations, data flows,
or dependencies. Figure 3 shows a gate control system that responds to
the change of light, time, and weather as well as the presence of objects

Food Order SystemCustomer

Kitchen

Manager

Inventory
System

Order

Receipt

Payment

Inventory Decrement

Kitchen Order

Sales Report

Figure 2.   A data-flow context diagram for a food order system.

b3881_Ch12.indd 284 05-10-2020 16:35:44

b3881   Requirements Modeling and Coding6"×9"�

Requirements Documentation  285

by invoking appropriate responses including “open gate,” “close gate,”
“report incident,” “turn on lights,” “close lights,” etc.

An event context diagram is important for developing real-time event-
driven systems. A gate control system, for example, does not have any par-
ticular users. Instead, its use cases are triggered by external events. During
the evening or weekend, the system will not respond to any events and
keep the gate and light off. During working hours, events like bad weather,
low light, and the presence of an object will trigger the light to turn on. The
object will be scanned for verification and let in if recognized. Otherwise,
the system will ask for an identity and a permission from the management
in order to open the gate. In the event of false attempt, the incident will be
reported to police.

Event context diagrams may be useful for discovering functional
requirements and business rules in developing management information
systems. For example, many systems periodically send invoices or state-
ments to customers. When a payment is overdue, it sends an automatic
reminder email or phone call. These use cases are executed in response to
timing events. As another example, some manufacturers actively monitor
the inventory status of their products in retail locations and automatically
create replenishment orders when the level is low. Thus, the use case “cre-
ate orders” is triggered by inventory status rather than being executed by
any actor.

Gate Control System

light

time

weather

operate gate

report incident

operate light

object ID

Figure 3.   Event context diagram for a gate control system.

b3881_Ch12.indd 285 05-10-2020 16:35:45

b3881   Requirements Modeling and Coding� 6"×9"

286  Requirements Modeling and Coding

The last type of context diagrams, focusing on the dependencies
between the system and external agents, shows the system as one agent
and its connections to external agents as dependencies. It is a simplified
version of the so-called strategic dependency model based on the i* tech-
niques proposed by Eric Yu (1995). The basic idea is that all agents in
the context have intentional properties such as goals, and they depend on
each other to fulfill their goals. A strategic dependency model consists of
a set of nodes for agents, including the system, and links among them.
Dependency links capture the motivation and the rationale of agents. The i*
technique distinguishes four types of dependencies: goal dependency (oval
shape), resource dependency (rectangle shape), task dependency (hexagon
shape), and soft goal dependency (cloud shape). In a goal dependency,
an agent depends on another to fulfill a goal. In resource dependency,
an agent depends on another agent to provide physical or informational
resources. In task dependency, an agent depends on another to carry out a
task. A soft goal dependency is like a goal dependency except that a soft
goal is not precisely defined and is often associated with non-functional
requirements.

Figure 4 shows a dependency context diagram for SmartCD order sys-
tem (Alencar et al., 2000) along with two external agents: Client and Store.
Client depends on Store to buy CDs (resource dependency) and wishes the
services to be of good quality (soft goal). Client depends on SmartCD to
take orders and receive notifications when the ordered CD arrives (task
dependencies). Client expects the access to SmartCD to be secure (soft
goal). Store relies on the system to process internet order (goal) and to
update inventories (task).

Client Store

SmartCD
System

CD

Order CD Update Stock

Notify Arrival

Quality
Service

Security

Online
Order

Figure 4.   Dependency context diagram for SmartCD.

b3881_Ch12.indd 286 05-10-2020 16:35:45

b3881   Requirements Modeling and Coding6"×9"�

Requirements Documentation  287

Four types of context diagrams represent four different views of a
system boundary. The utility of each may vary depending on the nature of
the system, and they may complement each other. A dependency context
diagram seems to include the first two types of context diagrams as special
cases, where a data flow is equivalent to information resource dependency
and interactions are equivalent to tasks. Since it also represents goal and
soft goal dependencies, it carries more information on requirements, both
functional and non-functional, than other types of context diagrams.

Major Features
Besides a scope statement of what is included and what is not, or one
or more context diagrams visualizing the relationships between the sys-
tem and its context, other important artifacts that may be included in
the business requirement document are major features and prioritization
plans. Major features are high-level system capability statements. Each
major feature is typically labeled with a unique ID such MF1, MF2, etc.
These features will be referenced throughout all requirement documents.
If incremental releases of the system are planned, major features may be
scheduled for incremental implementations at various stages with various
priorities. To this end, a prioritization plan may be documented as a table
detailing what major features are not to be implemented, partially imple-
mented, or fully implemented, in which release and which major feature
has low, medium, or high priority.

A major feature is derived from a vision or scope statement and may
be expressed as the “the system shall be capable of …” statement. All the
major features, if combined, must be in alignment with or in support of
the vision statement and must be within the system scope as described or
pictured. As an example, the following is a list of major features within the
scope of the system as pictured in Figure 2:

MF1: The system shall be capable of taking customer orders.
MF2: The system shall be capable of processing customer payments.
MF3: The system shall be capable of formatting and submitting kitchen orders.
MF4: The system shall be capable of printing sales report.
MF5: The system shall update inventory upon taking an order successfully.

Similarly, the following is a list of major features implied by the context
diagram in Figure 3:

b3881_Ch12.indd 287 05-10-2020 16:35:45

b3881   Requirements Modeling and Coding� 6"×9"

288  Requirements Modeling and Coding

MF1: �The system shall be capable of controlling the gate operation in response
to time changes, presence of vehicles, and the knowledge of vehicles.

MF2: �The system shall be capable of controlling the light in response to time
change, weather change, light change, and the presence of vehicles.

MF3: �The system shall be capable of reporting an incident in the event of
failure to recognize and validate a vehicle.

Business Use Cases
A business use case is an end-to-end business process that delivers an
observable result of value to a business or its stakeholders. It is called a
use case because it is a sequence of interactions. However, here, the inter-
actions are among business stakeholders, and some interactions may be of
physical nature, i.e., non-data activities, and may take an extended period
of time.

Before developing a business use case, stakeholder profiles may be
developed for reference. A stakeholder profile may be expressed as a table
detailing all business stakeholders involved in the project, their values or
benefits due to the project, their likely attitudes toward the project, their
interests to be considered, and their constraints to be accommodated.

A business use case is an end-to-end business process, and a software
project is often proposed to reengineer the whole process or automate one
or more activities in it. When developing a business use case, we need to
explicate whether it is a current business case or a future one. Lower-level
requirements will be derived from a future business use case.

The following is a business use case for a hospital. It details a sequence
of interactions among patients, doctors, receptionists, nurses, and insur-
ance companies. Each interaction involves one activity, data or non-data,
and engages one or more business workers, partners, and systems. The
whole sequence describes an end-to-end business process of handling
patient visits.

A patient arrives at the hospital for a treatment or a general checkup.
Irrespective of whether the patient is new or not, he has to fill out a patient
form with basic information, like name, SSN, allergies, reason for the
visit, etc. Once the form is completed, a receptionist pulls his file, veri-
fies the information, and hands the file over to a nurse. The nurse will
take initial tests and acquire preliminary medical information such as the
patient’s blood pressure, allergies, current medications, if any, etc. Once
done, a doctor sees the patient. The doctor will go through the initial

b3881_Ch12.indd 288 05-10-2020 16:35:45

b3881   Requirements Modeling and Coding6"×9"�

Requirements Documentation  289

results obtained by the nurse and also the patient’s file before conducting
formal diagnosis. The doctor may recommend additional tests. Once the
reports of all tests are reviewed, the doctor will prescribe medication. If
needed, the patient is admitted to the hospital for inpatient treatments, and
the doctor and nurses go for routine visits till the patient is discharged. For
any treatment, the bill will be sent to the patient if the patient does not have
a medical insurance. Otherwise, the bill will be sent to the insurance com-
pany, which will then deal with the patient henceforth for settling the bill.

Diagrams and/or structured descriptions may be used in lieu of an
unstructured textual description of a business use case. For example, we
may treat a business use case as a system use case and any stakeholder
as an actor and then model their interactions using a use case diagram.
Figure 5 shows a business use case diagram with three business use cases
where the “manage hospitalization” extends the “manage patient visit” use
case, and both the “manage patient visit” and “mange hospitalization” use
cases include the “mange payments” use case.

A business often has multiple ongoing processes, all or some of which
may be captured as business use cases. For example, a hospital may have
a process for employee hiring, a process for patient appointments, a pro-
cess for emergency response, a process for supply procurement, etc. The
business use cases to be captured and modeled must, of course, reflect the
vision and the scope of the system.

As for system use cases, after a use case diagram is created, a proce-
dure model may be produced. For example, for each business use case, we
may use a textual description or a graphical model to describe it.

ReceptionistActor

NurseActor

PatientActor

manage patient visit

manage hospitalization

«extend»

manage payments

«include»

«include»

InsuranceActor

Figure 5.   A business use case diagram for patient visits.

b3881_Ch12.indd 289 05-10-2020 16:35:45

b3881   Requirements Modeling and Coding� 6"×9"

290  Requirements Modeling and Coding

Business use case via examples: Relocation order

Figure 6 shows a business use case diagram for a moving company followed
by textual descriptions of two use cases. The company wants to develop an
information system capable of handling all moving-related activities, from
initial estimates, to packing and moving, and to the collection of payments.
However, due to the complexity in the initial stages of the process, the
company has an urgent need to create a system that is capable of handling
packing household goods and initial customer payments. Therefore, we
show two business use cases: one for packing household goods and one
for handling payments.

The following are textual descriptions of the two business use cases
in Figure 6. The format of describing a business use case follows that of
a system use case, but with a less rigorous structure. First, alternate or
exceptional flows may be embedded into the basic flow wherever hiccups
occur. Second, longer and more complex unstructured sentences may be

pack household
goods

collect payments

SalesmanActor

PackerActor

DispatcherActor

CustomerActor

AccountManagerActor

WarehouseActor

AccountingSystemActor

Figure 6.   A business use case diagram for a moving company.

b3881_Ch12.indd 290 05-10-2020 16:35:45

b3881   Requirements Modeling and Coding6"×9"�

Requirements Documentation  291

used to describe each event. The end result is a semi-structured description
that outlines the logical flow of interactions among stakeholders.

Business Use Case: Pack Household Goods (HHG) for Relocation

Precondition: A mover is ready to take relocation orders.

Postconditions on success: The customer’s household has been packed
by the mover and is ready for relocation, or the customer has purchased
packing material to perform self-packing service.

Flow:
  1.	 A customer calls the moving company and schedules a time for a sales-

man to go to his home and give him a cost estimate for HHG relocation.
  2.	 A dispatcher schedules the time and date of the estimate and a salesman

on the job.
  3.	 The salesman completes an in-house quote when that day arrives.
  4.	 After the salesman gives the quote, he collects the customer’s informa-

tion, creates a quote number, and gives the number to the customer.
  5.	 The salesman also gives a hard copy of the estimate to the dispatcher.
  6.	 When the customer decides that he wants to use the mover, he contacts

the salesman and gives him the relocation date as well as other origin and
destination information.
6.1.	If the customer chooses not to schedule the packing job, the esti-

mate is disposed after one year.
  7.	 The dispatcher receives customer orders from each salesman and sched-

ules packing services.
7.1.	If the customer wants to perform self-packing service, the dis-

patcher creates the material order and sends it to the warehouse for
fulfillment and shipping. Customer pays at the time of delivery.

7.2.	If the customer wants the mover to perform the packing service,
the dispatcher enters the customer’s name and packing date into the
schedule book and collects the quoted amount in advance.

  8.	 One day prior to the packing date, the dispatcher assigns one or more
packers who will perform the packing service. Then he notifies the cus-
tomer of the estimated time that the crew will arrive.

  9.	 On the day of the packing job, the crew obtains the needed material from
the warehouse and proceeds to the customer’s home.

10.	 Once the packers complete the service, they return to the office with the
signed paperwork that indicates that the service has been completed.
The form also specifies how many cartons have been packed and what
the sizes those cartons are. Warehouseman restocks unused cartons.

b3881_Ch12.indd 291 05-10-2020 16:35:45

b3881   Requirements Modeling and Coding� 6"×9"

292  Requirements Modeling and Coding

Business Use Case: Collect Payment

Precondition: A sale for packing material and/or services has been
completed.

Postconditions on success: A payment has been made to the company
and to the salesperson involved. Revenue and expense accounts have
been updated.

Flow:
1. � The dispatcher sends a copy of the completed packing forms to the

accounting department. The accounting manager verifies the actual
amount of the sale against the estimated amount that was collected in
advance.
1.1.	If the amount collected is more than the actual amount, the account

manager refunds the customer via check or by credit issued to their
card.

1.2.	If the amount collected is less than the actual amount of the service,
then the accounting manager charges the balance due to the custom-
er’s credit card or he contacts the customer to obtain a cashier’s check
for the balance.

2. � Account manager enters payment, revenue, and expense information into
the existing accounting information system. (The existing accounting
information system will be used to record payments to the proper accounts,
pay refunds, maintain collections, and pay commissions to the sales staff
and to record payroll expenses that are related to the sales commission).

Business Rules
A business rule defines or regulates certain aspect of a business. It includes
corporate policies, laws, principles, conventions, standards, etc. Like
business use cases, business rules are of high-level requirements or their
determinants. They may be included in a business requirement document
and should be cross-referenced in other requirements when applicable.
For systems analysis, business rules are incorporated into conceptual or
business models. They may also form the constraints or references that
all business use cases need to observe and are thus included in use case
descriptions. For systems development, business rules are incorporated
into logical class diagrams and the procedural descriptions of object oper-
ations. Since business rules reflect the domain knowledge of a business,

b3881_Ch12.indd 292 05-10-2020 16:35:45

b3881   Requirements Modeling and Coding6"×9"�

Requirements Documentation  293

their utility as references or constraints are often beyond one or two proj-
ects. Thus, organizations may develop central rule repositories for storing,
organizing, and managing business rules so that multiple software projects
can access and share a common set of rules.

A business rule, depending on what it may impact on, may be clas-
sified into three broad categories: structural rules, algorithmic rules, and
behavioral rules.

Structural rules

A structural rule defines or regulates objects, object attributes, and object
relationships. Its direct impact is on the development of object models
such as class diagrams. For example, a structural rule defines or regulates
how objects are composed and related. Here, an object includes not only
a conceptual one like a business entity but also a logical one like a user
interface or control object. The following are some examples of structural
rules:

SR1: � A customer address is the physical location where a customer primarily
resides.

SR2: � An airline has one or more planes.
SR3: � A course is an educational product that delivers knowledge of specific

breadth and depth to a receiver upon its completion.
SR4: � Each lab order includes a unique identifier, the date the order was created,

the date the test was done, and the physician who performs the test.
SR5: � All correspondence regarding an order shall disclose the last four digits

of a credit number while hiding the rest of the digits.

Implicitly, a structured rule specifies what object operations are
needed in support of its definition or regulation and how objects shall
be in collaboration to realize a use case. Therefore, a structural rule
may constrain one or more interactions in use cases. For example, rule
SR5 specifies a functional requirement in performing activities related to
creating customer correspondence.

Algorithmic rules

An algorithmic rule defines, regulates, or derives possible computational
results under certain conditions. The simplest manifestation is a formula or

b3881_Ch12.indd 293 05-10-2020 16:35:45

b3881   Requirements Modeling and Coding� 6"×9"

294  Requirements Modeling and Coding

logic for arriving at a result. A generalized manifestation is a constraint that
delimits a possible set of results. In any case, its impact is on object states,
attribute values, and computational results. When impacting object states
or attribute values, an algorithmic rule implies actions to reset an object
state or attribute or restrain the choices of the state or attribute. When
impacting computational results, it determines how certain activities in a
use case are executed and results calculated or selected. The following are
a few examples of algorithmic rules:

AR1: � A section with the number of students less than its cap is considered
open.

AR2: � If a payment is not received within 30 days after the due date, the
account will be delinquent.

AR3:  A customer who made 2 orders in the last five years is considered active.
AR4: � An order quantity of an item is no larger than the quantity-on-hand of the

item.
AR5: � A customer must be 18 years or older to purchase alcohol products.
AR6: � A professor can check out a reference book for 6 months.
AR7: � A grade takes on five possible values including A, B, C, D, and F.
AR8: � The discount rate is determined by order amount as follows: 5% for

order of $500 or more, 8% for orders of $1,000 or more, and 15% for
orders of $2,000 or more.

AR9: � The amount payable is computed based on the formula: amount = (price
* quantity) (1 − discount rate) + tax + shipping and handling.

An algorithm rule is typically stated as a reference in use case
descriptions. However, if an algorithmic rule specifies possible results
with no conditions, like AR7, the rule may be expressed as an object
attribute or state and is captured in an object model. Otherwise, the
rule is better expressed as a decision table, decision tree, formula, or
algorithm and included into a use case or operational description. For
example, AR8 may be expressed as a contingency or decision table as
in Table 2.

Table 2.   Discount rates.

Sales Amount Discount

$500.00–$999.99 5%

$1,000.00–$1,999.99 8%

Over $2,000 15%

b3881_Ch12.indd 294 05-10-2020 16:35:45

b3881   Requirements Modeling and Coding6"×9"�

Requirements Documentation  295

Behavioral rules

A behavioral rule prescribes or regulates actions or activities in response
to certain conditions. Like an algorithmic rule, it may be expressed as a
decision table or tree. However, it leads to actions instead of object states,
attribute values, or computational results. Like some algorithmic rules that
act as a mechanism to trigger the change of object states or attribute val-
ues, a behavioral rule acts as the mechanism to trigger actions or activities.
The following are a few examples of behavioral rules:

BR1: � Each order must be verified and acknowledged within 2 business days of
receiving it from a customer.

BR2: � At the end of each month, generate a billing statement if an account
balance is greater than $1.00.

BR3: � If the number of students enrolled in a section is 80% full within one
week of opening, notify the department of the enrollment status.

BR4: � If the card reader detects a card, verify the validity of the card.
BR5: � When an object is detected, the sight is dark, and it is during working

hours, turn on the light.
BR6: � If a debit card is inserted, display all choices that a customer may choose.

Otherwise, display “withdraw money” choice only.

A behavioral rule may be captured in various requirements. If the
resulting actions or activities are interaction steps of a use case or opera-
tion (e.g., BR3, BR4, and BR6), it may be documented in the user require-
ment document, for example, in use case or operation descriptions. If the
resulting activities are use cases (e.g., BR1, BR2, and BR5), the rule may
be captured in the business requirement document.

Behavioral rules can be alternatively expressed using decision trees
and contingency/decision tables in lieu of verbal statements. Figure 7
shows a decision tree that describes the decision to turn on or off light
in response to three interrelated factors: time, presence of an object, and
light condition (see BR5). In a decision tree, we use a circle to represent a
condition variable and a rectangle to represent a decision. We use a branch
out of a condition variable to represent one possible value of the condition
variable.

A decision tree may be equivalently represented as a decision table.
To develop a multidimensional decision table, we first need to decide on
the number of possible value combinations of the conditional variables.
A decision table shows the responses under each of these possible com-
binations. In our current example, there are three condition variables, and

b3881_Ch12.indd 295 05-10-2020 16:35:45

b3881   Requirements Modeling and Coding� 6"×9"

296  Requirements Modeling and Coding

each takes on two values. Thus, there are eight possible combinations. We
create a table with 8 + 1 columns (one extra column for the names of the
variables), and with all condition variables, one variable in each row in
the top portion of the table, and the decision variables, one in each row in
the bottom part of the table (see Table 3).

If a behavioral rule implies the capability of the system in respond-
ing to conditions or events, it may be captured as a major feature in the
business requirement document or a functional requirement in the soft-
ware requirement document. For example, the major feature “The sys-
tem shall be capable of controlling the light in response to time change,
weather change, light change, and the presence of vehicles” reflects BR5.
For another example, BR3 may be translated into a functional requirement

time

object

light

light on

light off

light off

light offnon-working hours

working hours

not detected

detected

dark

bright

Figure 7.   Decision tree for light control.

Table 3.   Decision table for light control.

1 2 3 4 5 6 7 8

Time W W W W NW NW NW NW

Vehicle P P NP NP P P NP NP

Light B D B D B D B D

Light Control Off On Off Off Off Off Off Off

Note: W: working hours; NW: non-working hours; P: presence; NP: non-presence; B: bright; D: dim.

b3881_Ch12.indd 296 05-10-2020 16:35:45

b3881   Requirements Modeling and Coding6"×9"�

Requirements Documentation  297

as “The system shall verify the validity of the card when its reader detects
a card.”

Functional Software Requirements
Software requirements are derived from and must be in support of busi-
ness and user requirements. They can be classified into two categories:
functional and non-functional.

A functional requirement, like a major feature, may be expressed as
“the system shall be capable of …” statement. The difference is that a
major feature states a high-level system capability that may have to be
realized via one or more system use cases, whereas a functional require-
ment states the system capability at the interaction level. For example,
a major feature of the food ordering system may be stated as “The food
ordering system shall be capable of taking customer orders.” In contrast,
a functional software requirement at a detailed level may be stated as
“The system shall confirm that an order has been successfully submitted.”

Like any other requirements, functional requirements are uniquely
labeled. Since these requirements are often hierarchical in nature, we typi-
cally label them as sections, paragraphs, sentences, etc. There are many
ways in which one can group functional requirements into hierarchies.
The choices include grouping by major features, grouping by use cases,
grouping by operational mode, grouping by actors, grouping by objects,
and grouping by events or responses. Different templates may be adopted
depending on the choice of the strategy. For example, if one chooses
grouping by major features, the following sample section of requirements
is related to the major feature of taking order and may serve as a template:

1.1: �The system shall let a service person who is logged in to the food
ordering system create an order of one or more meals for a customer
1.1.1: �The system shall confirm that the service person is logged in a

service person
1.1.1.1: �If the service person is not logged in, the system shall

give him or her option to login and continue to create an
order

1.1.1.2: �If the service person is logged in not as a service person,
the system shall give him or her choice to log out

1.1.2: �The system shall display the list of all meals and their availability

b3881_Ch12.indd 297 05-10-2020 16:35:45

b3881   Requirements Modeling and Coding� 6"×9"

298  Requirements Modeling and Coding

1.1.2.1: �The system shall allow the service person to filter the list
using a full or partial category name or meal name

1.1.2.2: �The system shall allow the service person to select or dese-
lect a meal in the list by placing or removing a check mark
at the beginning of each meal

1.1.2.3: �If the service person checks a meal that is unavailable, the
system shall display a message “the selected food is not
available”

If requirements are organized by use cases, one may label each require-
ment by referring to the use case ID and flow step ID. The following text
presents a sample section of a use case and the corresponding functional
requirements:

Use Case (UC1): Withdraw cash

Basic Flow:
1.	 Card Holder inserts a card
2.	 ATM validates the card
3.	 ATM asks for a pin
4.	 Card Holder enters a pin
	 ….

Functional Requirements:
UC1.1:  When it is idle, the system shall let a card holder insert a card

	 .a: �The system shall display the welcome screen (UI1.2)
	 .b: �The card reader shall be empty

UC1.2:  The system shall be capable of validating a card if detected
	 .a: �The card reader shall be capable of scanning the magnetic

bar for account number
	 .b: �The card reader shall inform the system if card scan suc-

ceeds or not
	 .a: �The card reader shall reject the card if card scan fails
	 .b: �The card reader shall pass account number to the sys-

tem if card scan succeeds
	 .c: �The system shall confirm if the card scan fails

UC1.3: � If card scan succeeds, the system shall display “enter pin”
prompt for the user to enter a pin for 10 seconds or until the
user presses “enter” key (UI1.3)

	 .a: � If the user does not enter press “enter” key after
10 seconds, the system shall display “more time” prompt

b3881_Ch12.indd 298 05-10-2020 16:35:45

b3881   Requirements Modeling and Coding6"×9"�

Requirements Documentation  299

asking the user if he or she needs more time for 2 seconds
and indicate the choice by pressing Yes or No key (UI1.4)

	 .a: � If the user presses “Yes” key within 2 seconds, the
system dismisses the “more time” prompt and add 10
seconds to continue “enter pin” prompt

	 .b: � If the user presses “No” key within 2 seconds or
does not make a choice after 2 seconds, the system
dismisses “more time” prompt, dismisses “enter pin”
prompt, rejects the card, and displays “remove card”
prompt for 10 seconds (UI1.5)

		 .a: � If the card is removed within 10 seconds, the sys-
tem dismisses “remove card” prompt and enters
the idle state

		 .b: � If the card is not removed after 10 seconds, the
system dismisses “remove card” prompt, swallows
the card, and enters the idle state

In the above statements, labels like UI1.2, UI1.3, etc., are referring to
user interface prototypes, which may be in one section of the user require-
ment document for references.

If functional requirements are grouped by responsible objects, they may
be labeled as CardReader, CardReader.Scan, CardReader.
Scan.Fail, EnterPinScreen.Display, EnterPinScreen.
Display.TimeExceed, etc. The following are two example
statements:

EnterPinScreen.Display: If card scan succeeds, the system shall display “enter
pin” prompt for the user to enter a pin number for 10 seconds or until the user presses
“enter” key (UI1.3)

EnterPinScreen.Display.TimeExceed: If the user does not enter press “enter”
key after 10 seconds, the system shall display “more time” prompt asking the user if he
or she needs more time for 2 seconds and indicate the choice by pressing a Yes or No key
(UI1.3)

Like writing textual descriptions for use cases, functional require-
ments must also be written accurately and precisely. In particular, they
should be written using the active voice, complete sentences, consis-
tent terms, and simple grammatical structures. Try to avoid ambiguous
terms that are not measurable or verifiable such as fast, efficient, robust,
user-friendly, simple, easy, flexible, adequate, sufficient, state-of-art, etc.

b3881_Ch12.indd 299 05-10-2020 16:35:45

b3881   Requirements Modeling and Coding� 6"×9"

300  Requirements Modeling and Coding

Try to avoid non-specific quantities or options such as at least, at most,
including, not limited to, between, several, multiple, as much as pos-
sible, etc. Try to avoid words that are impossible to implement such
as instantaneously, immediately, seamlessly, transparent, etc. Try to
avoid words that do not pinpoint to specific actions or activities such
as enable, support, ensure process, etc. The following are a few bad
examples with explanations:

Upon a card being inserted, the system shall instantaneously validate
the card.

This is a bad statement since no system can perform activity with-
out taking time. Thus, this requirement cannot be implemented. It may be
changed to something verifiable like this: Upon a card being inserted, the
system shall validate the card in less than 0.1 second.

If card scan succeeds, the system shall display “enter pin” prompt for at
least 10 seconds.

This is a bad statement because it is confusing on several levels. First,
it doesn’t say what happens if the user finishes the pin entry in less than 10
seconds. Second, it doesn’t say what the system should do if the user does
not enter a pin after 10 seconds. Does it stay on forever?

If possible, the system shall still enable a customer to withdraw cash
even though the system cannot print a receipt.

This is a bad example. First, what does it mean by “if possible”? Does
it mean that the system shall allow a user to withdraw cash regardless of
whether the bank authorizes it or not. Second, the word “enable” is con-
fusing. How can the system enable a customer? What the statement really
means, if revised, is that the system shall still allow a bank customer to
withdraw money in the event the machine cannot print a receipt.

Non-Functional Software Requirements
Non-functional requirements are anything but functional. Clearly, they
form a broad category. Note that a non-functional requirement is by no
means a secondary or unimportant requirement. In fact, within this category

b3881_Ch12.indd 300 05-10-2020 16:35:45

b3881   Requirements Modeling and Coding6"×9"�

Requirements Documentation  301

are two sub-categories of requirements that are essential to any project:
interface requirements and informational requirements. Particularly for
management information systems, interface and information requirements
are equally or probably more important than functional requirements. As
has been mentioned earlier, information requirements are captured by con-
ceptual object models, which can be converted into logical data models for
database implementation.

Interface requirements describe the logical characteristics of all
interfaces to ensure proper communications between the system and
externals. There are four types of interfaces: user interface, hardware
interface, software interface, and communication interface. Therefore,
there will be four sub-categories of interface requirements. Among them,
user interfaces are probably the most critical because they ensure the
usability and acceptability of the system. User interface requirements
specify the common characteristics of all user interface designs such as
corporate GUI standard for fonts, labels, buttons, images, color schemes,
layouts, menus, hot keys, and message displays. Note that user inter-
face prototypes are the references for use case descriptions and artifacts
to discover user requirements. They are different from user interface
requirements and should not be included in the software requirements
document.

Besides information and interface requirements, other non-functional
requirements include specifications on system performance, security,
accessibility, control, scalability, currency, economy, efficiency, integrity,
and other software quality attributes. The following are a few examples:

Security:
ATM shall hide a pin when the user enters it into the system
�ATM screen shall not be visible from 3 feet distance or 45-degree
angled view

Performance:
ATM screen response time shall not exceed 2 seconds
Each transaction shall not exceed 2 minutes

Availability:
ATM shall be accessible 24/7
�A lack of paper for printing receipts shall not prevent a card holder
from using the system

Integrity:
�ATM shall be sturdy to avoid vandalism by any impact force less than
3000 Foot/CBs

b3881_Ch12.indd 301 05-10-2020 16:35:45

b3881   Requirements Modeling and Coding� 6"×9"

302  Requirements Modeling and Coding

Review Questions
1.	 Compare the utilities of four types of context diagrams in developing

business, user, and functional requirements.
2.	 What elements should be included in business requirements? Create a

template of the business requirements document based on your under-
standing of the elements.

3.	 What requirements are cross-referenced in all requirements?
4.	 Develop a list of major features based on the context diagram in

Figure 3.
5.	 What are non-functional requirements? Give an example statement in

each sub-category.
6.	 What is wrong with the functional requirement “The system shall

attempt to get all necessary information to validate a user”? Please
revise the statement into a good functional requirement.

7.	 Think of a business process, describe its background, and develop
business objectives. Then write a vision statement to summarize the
business requirements.

8.	 What are the strategies one may choose to organize functional
requirements?

9.	 How are business rules captured in business requirements, user
requirements, and software requirements?

Exercises
1.	 Develop a business use case and write all business rules based on

the following description of an end-to-end business process. In the
purchasing department, each purchase request is assigned to a case-
worker within the department. This caseworker follows the purchase
request through the entire purchasing process and acts as the sole
contact person with the person or unit buying the goods or services.
The department refers to its fellow employees buying goods and ser-
vices as “customers.” The purchasing process is such that purchase
requests over 1,500 must be sent out for bid to vendors and the asso-
ciated request for bids for these large requests must be approved by
the department. If the purchase is under 1,500, the product or service
can simply be bought from any approved vendor, but the purchase
request must still be approved by the department and they must issue
a purchase order.

b3881_Ch12.indd 302 05-10-2020 16:35:45

b3881   Requirements Modeling and Coding6"×9"�

Requirements Documentation  303

2.	 Create a context diagram and list major features for a point-of-sale
system. Here is the business use case description. A customer arrives
at the checkout counter to pay for her selected items. The cashier scans
each item’s bar code and records quantity if greater than one. The cash
register displays the price of each item, its description, and quantity.
When all the items are entered, the cashier indicates the end of sale.
The cash register displays the total cost of the purchase, including tax.
Occasionally, a customer may have tax exempt status, so the cashier
must check the certificate and remove the sales tax. Very often, a cus-
tomer may come with a special coupon that the cashier may need to
scan or record in order to apply discounts. The customer may select
one of three methods to pay for the transaction:

a.	 Cash: the cashier takes the money from the customer and
puts it into the cash register, the cash register indicates how
much change is due to the customer.

b.	 Check: the cashier verifies that the customer is in good
standing by sending a request to an authorization center via
the cash register.

c.	 Credit card: the customer slides her credit card and the cash
register sends a request for authorization to an authorization
center.

�After the payment, the cash register records the sale and prints a
receipt, which the cashier gives to the customer.

3.	 Develop a decision tree and a decision table to represent how the gate
control system in Figure 3 will control the gate in response to external
conditions.

4.	 Develop functional requirements for the use case “validate a user
via user ID and password” using the template provided in this
chapter.

5.	 Suppose your company wants to develop a database to store and man-
age all its business rules. Please help design the database structure
using any logical data model.

6.	 Create a business use case diagram for BizbyOrder Books. Here are
some of its business processes. BizbyOrder Books is specialized in
ordering books for two types of customers: individuals and businesses
in lower Manhattan. This is how these two customers are different.
When an individual customer orders books, he or she has to pay a
20% down payment. A business customer can establish a credit line

b3881_Ch12.indd 303 05-10-2020 16:35:45

b3881   Requirements Modeling and Coding� 6"×9"

304  Requirements Modeling and Coding

with BizbyOrder and pays 50% down payment if and only if the order
amount exceeds its credit limit. The bookstore orders its books through
five national distributors. Because of various special agreements in the
book industry, each publisher sells its books exclusively to one dis-
tributor. This is how the bookstore runs its daily business. Each time a
customer comes in to buy a book, the bookstore uses its database sys-
tem to find the title and locate the distributor that sells the book. Then
the customer will leave contact information and make a down payment
(if needed) for BizbyOrder to send the order to a distributor. When an
ordered book comes in, the customer will be contacted to pick up and
pay the rest of the balance.

7.	 Develop a list of business rules based on the following text. Insure-
A-Person Inc. provides health insurance services to employees and
their family members across America. Due to the need to promote
its customer relations, the company has decided to open up a web-
based system for clinics and individual customers to be able to file
claims on the Internet 24 hours a day and 7 days a week. The company
has approached you to design a relational database for this purpose.
According to the company, this is how the web-based system is sup-
posed to work. Within 60 days of seeking treatments for himself or any
of his family members, a customer needs to log on to the system and
file a claim. First, you specify the name of a patient, the date and the
place the service was provided, and the primary doctor providing the
service. Then, you detail the procedures performed by the doctor. In
the medical industry, all procedures have been standardized with fixed
identification numbers and short descriptions. The insurance company
will pay for the service based on all the procedures performed by the
service.

b3881_Ch12.indd 304 05-10-2020 16:35:45

305

b3881   Requirements Modeling and Coding6"×9"�

Chapter 13

Requirements Elicitation and Validation

Introduction
In this chapter, we consider the initial and final steps of requirement devel-
opment, i.e., requirements elicitation and validation. In particular, we will
learn the techniques of requirements elicitation, including where to look
for information and how to discover requirements from the sources, and
approaches to requirements validation, with emphasis on requirements
inspection and requirements-based tests.

Elicitation means to identify and discover unknown requirements, and
validation means to check and test requirements for errors, omissions,
and ambiguities. These two steps are pooled together because activities
and participants involved in the steps are almost identical. Between these
two steps is requirements documentation, which was discussed in the pre-
vious chapter. Validation occurs only after requirements are identified and
documented; one cannot validate an unknown or implicit requirement.

Requirements Elicitation
To elicit requirements, a business analyst should possess the knowledge
of: (1) what requirements are to be discovered, (2) where the requirements
are discovered, and (3) through which channels or techniques the require-
ments may be discovered. These three elements — abbreviated as WWW
that stands for what, where, and which — are the key components in a
requirements elicitation plan or strategy.

b3881_Ch13.indd 305 05-10-2020 16:36:02

b3881   Requirements Modeling and Coding� 6"×9"

306  Requirements Modeling and Coding

In Chapter 12, we classified requirements into three levels — business
(blue sky), user (sea level), and software (deep ocean) — and into two
categories — functional and non-functional. For example, as functional
business requirements, vision, scope, and major features are the key arti-
facts, and as non-functional business requirements, business rules are the
key component. At the sea level, system use cases, information or entity
objects, and user interfaces or system prototypes are the key functional
and non-functional requirements. Table 1 of Chapter 12 provides an over-
view of the classification.

Chapters 3–11 essentially provide us with the knowledge for acquir-
ing the “what” element of requirements elicitation. Chapters 5 and 8 cover
concepts and techniques of how to identify business objects and how to
represent business rules. Chapters 9–11 cover the techniques of how to
identify use cases, how to describe use cases, and how to optimize use
cases. Chapter 12 provides a general overview of how to develop require-
ments documents. All these chapters contribute to our understanding of
what requirements are to be captured and how they are represented and
documented.

Where are the requirements discovered? Some are inside people’s
mind, some are embodied in business practice, some are coded in computer
programs, and some are written in business documents. The sources may
vary from organization to organization and from project to project. Thus,
the first step to form an elicitation strategy is to create a road map that
pinpoints each type of requirements to its potential information sources.

Table 1 provides a general road map that suggests the most likely
sources of information for each type of business requirements, including
project rationale and vision, business problems, opportunities, threats,
business risks, scope, main features, and business use cases. For example,
the table suggests that business analysts should look for corporate strate-
gic and marketing surveys or ideas from a few key visionaries for project
rationale and vision.

Business rules are cross-board assets and may be treated separately
from other business requirements. Thus, a separate table is included here
to suggest possible sources for eliciting business rules (see Table 2). The
table follows the classification system proposed in the previous chap-
ter and treats the three types of business rules differently. The likely
sources are different for different types of rules. For example, struc-
tured rules are typically coded into a legacy system’s data structures
and user interfaces, whereas algorithmic and behavioral rules are coded

b3881_Ch13.indd 306 05-10-2020 16:36:02

b3881   Requirements Modeling and Coding6"×9"�

Requirements Elicitation and Validation  307

Table 1.   The sources of information for business requirements.

Requirements Source Sub-class Format

Vision People Visionaries Ideas

Documents Mission
Strategic plan
Marketing surveys

Publications

Business objectives
Business problems
Opportunities
Threats
Business risks

Documents Strategic plan
Departmental objectives
Marketing surveys
Operational analysis reports
Decision analysis reports
Risk analysis reports
Industrial reviews
Accreditation criteria
Interoffice memoranda
Complaints
Suggestion box notes
Meeting minutes

Publications

Written or digital
recordings

People Business stakeholders Attitudes
Beliefs

Business use cases Processes Human interactions
Organizational interactions

Behavior

People Processor engineers
Operations managers

Cognitive knowledge
of workflows

Documents Workflow charts
Employee handbooks
Professional books
Bill of responsibilities
Operating procedures
Job outlines
Task instructions

Publications

Scope
Main features

People Business stakeholders Ideas
Attitudes
Beliefs

Documents Meeting minutes
Strategic plan
Decisions and referendums
Process reengineering requests
Problem diagnosis
Decision analysis reports
Marketing surveys

Written or digital
recordings

Publications

b3881_Ch13.indd 307 05-10-2020 16:36:02

b3881   Requirements Modeling and Coding� 6"×9"

308  Requirements Modeling and Coding

Table 2.   The sources of information for business rules.

Requirements Source Sub-class Format

Structural rules Systems Data(base) structures
User interfaces (screens/reports)

Codes
Views

Documents Business forms
Business statements
Accounting records
Performance reviews

Publications

People Employees Cognitive knowledge
of entities and
relationships

Algorithmic
rules

Systems Algorithms Codes

Documents Professional books
Policy manuals
Contracts and agreements
Laws and regulations
Notices and announcements

Publications

People Administrative assistants
Professional workers
Operations managers

Cognitive knowledge
of constraints and
procedures

Behavioral
rules

Systems Algorithms Codes

Documents Workflow charts
Employee handbooks
Professional codes
Bill of responsibilities
Operating procedures
Action scripts
Employee contracts
Customer agreements
Vendor agreements

Publications

People Business stakeholders Cognitive knowledge
and psychomotor
knowledge of
event–response
patterns

Processes Human interactions
Organizational interactions

Behavior

into invisible algorithms. Their documentary sources are also different.
Structural rules can often be discovered from business forms and state-
ments. Algorithmic rules are found in professional books, legal documents,

b3881_Ch13.indd 308 05-10-2020 16:36:02

b3881   Requirements Modeling and Coding6"×9"�

Requirements Elicitation and Validation  309

and corporate announcements. Behavioral rules can be found in workflow
charts, employee handbooks, professional codes, and business agreements.

User requirements include user goals, resources, and tasks as repre-
sented as system use cases, information models, and interface prototypes.
User requirements are derived from business requirements and business
rules. Thus, the sources for discovering user requirements should include
the business requirement document, business rules repository, and related
artifacts. Additional user goals and resources must be identified from
users, their interactions, or legacy systems. For example, business forms,
statements, and workflow charts are important for identifying system use
cases. In fact, each business form or statement, if computerized, prob-
ably suggests a system use case. For another example, users’ knowledge
of functional requirements provides an additional source of information
for identifying user tasks, user’s knowledge of usability and usefulness
is an important source of information for identifying interface require-
ments, and business stakeholders’ knowledge of data requirements adds
extra value to the discovery of information models. Table 3 suggests the
likely sources for eliciting use cases, information models, and interface
prototypes.

The third element of an elicitation strategy is the channels or tech-
niques through which requirements may be discovered from the respec-
tive sources. As a rule of thumb, requirements coded in legacy systems
may be recovered through reverse engineering, ideas and cognitive knowl-
edge may be elicited trough individual interviews and workshops, atti-
tudes and beliefs may be elicited through questionnaire surveys and joint
applications development, business documents and user interfaces may be
sampled, and psychomotor knowledge and organizational behaviors may
be discovered through observations and structured walkthroughs. Table 4
documents the various techniques along with their definitions, applicable
source formats, benefits, and disadvantages.

Requirement Validation
“Software development is like sex; if you make a mistake, you have to
support it for life.” This is a joke, but it carries enough truth. Software
errors are introduced in all stages of the development process. Among
all, the most harmful ones are due to incomplete, ambiguous, and errone-
ous requirements. Erroneous requirements can lead developers to create
a donkey although a customer wants a horse. In the face of incomplete

b3881_Ch13.indd 309 05-10-2020 16:36:02

b3881   Requirements Modeling and Coding� 6"×9"

310  Requirements Modeling and Coding

Table 3.   The sources of information for user requirements.

Requirements Source Sub-class Format

System use cases Documents Vision statements
Major features
Scope
Business use cases
Workflow charts
Action scripts
Business forms
Business statements
Algorithmic rules
Behavioral rules
Operating procedures
Job outlines
Task instructions

Publications

People Users Ideas
Beliefs
Cognitive knowledge

of functional
requirements

Systems Algorithms
User interfaces (screens/reports)

Codes
Views

Processes Human interactions Behavior

Information
Models

Documents Structural rules
Business forms
Business statements
Accounting records
Performance reviews
Work measure reviews
Business use cases
System use cases
Algorithmic rules
Behavioral rules

Publications

Systems Data(base) structures
User interfaces (screens/reports)

Codes
Views

People All business stakeholders Cognitive knowledge
of data requirements

Interface
Prototypes

Documents Systems use cases
Business forms
Business statements
Business communications

Publications

b3881_Ch13.indd 310 05-10-2020 16:36:02

b3881   Requirements Modeling and Coding6"×9"�

Requirements Elicitation and Validation  311

Table 3.   (Continued )

Requirements Source Sub-class Format

People Users Ideas
Beliefs
Cognitive knowledge

of usability and
usefulness

Systems User interface (screens/reports)
Systems interfaces (API/OS)

Views
Codes

or ambiguous requirements, developers, under time pressure, often make
their own interpretations, which may be incorrect.

Requirement defects are better found and corrected in the early stages
of the development process. Studies (Booch et al., 1999) have documented
that, compared to the cost of fixing a defect during requirements discov-
ery, it takes ten times more to correct it in the design stage and a hundred
times more in the implementation stage.

Requirements validation is a process to discover and correct require-
ments defects. The major activities are conducted to achieve the three fol-
lowing objectives:

1.	 User requirements are in alignment with business requirements, and
software requirements can be traced to user requirements.

2.	 All software requirements are complete, correct, feasible, necessary,
unambiguous, and verifiable.

3.	 All user and business requirements are complete, correct, prioritized,
consistent, unambiguous, and traceable.

The techniques for requirements validation include peer reviews,
inspections, and requirement-based tests. Peer review is the easiest among
the three approaches. It can be as simple as cross-checking by a colleague,
which can happen whenever a use case is described or when a portion of
the requirements document is developed. It can be a slightly more for-
mal request for comments, where the requirements document is passed
around to a few team members for comments and suggestions. A very
formal review process is the structured walkthrough in which the author
presents the requirements document to a group of team members to solicit
their comments and suggestions.

b3881_Ch13.indd 311 05-10-2020 16:36:02

b3881  R
equirem

ents M
odeling and C

oding
�

6"×9"

312 
R

equirem
ents M

odeling and C
oding

Table 4.   Elicitation techniques.

Techniques Definition
Applicable

Sources Advantages Disadvantages

Document
sampling

Randomly or systematically
collect related documents

Publications,
written/digital
recordings

Accurate information, less
demand on customers, flexible
elicitation scheduling

Time consuming for
information filtering and
comprehension

Questionnaires Mass-produce and distribute
questions to many
respondents

Attitudes,
beliefs

Less demand on customers,
uniform response formats,
allow response anonymity

Low response rate, inflexible
format, allows false or
ambiguous responses

Interviews Solicit responses from
direct, face-to-face
interactions

Cognitive
knowledge

Flexible and open-ended
questions to probe for in-depth
knowledge, opportunity to
observe sign language

Time and resource
consuming, inflexible in
elicitation planning

Day-in-the-life Analysts observe the users
or be an intern at work

Psychomotor
knowledge,
behavior

More accurate and reliable than
verbal responses on workflows
and behavioral responses, be
able to identify problems with
the current process, inexpensive
and flexible to plan

May not expose all alternate
or exceptional scenarios,
users may not feel
comfortable on being
observed, errors may be
recorded with no correction

Reverse
engineering

Recover a data or procedural
model from working
applications

Codes Fast and accurate information,
directly useful for requirements
modeling, not involving
customers

Requires expensive CASE
tools, may be illegal or
infeasible

b3881_C
h13.indd 312

05-10-2020 16:36:02

b3881  R
equirem

ents M
odeling and C

oding
6"×9"�

R
equirem

ents E
licitation and Validation 

313

Prototyping Build a small working model
of the user’s requirements

Implicit
knowledge,
attitudes,
beliefs, ideas

Allow users to recognize implicit
knowledge through visual
feel-and-look and expose
requirements that are not well
understood or difficult to
articulate, risk reduction, serves
as a training mechanism, allow
the development of test cases

Analysts may need to be
trained in developing
prototypes, users may get
unrealistic expectations,
increases development
costs

Joint
requirements
planning (e.g.,
brainstorming)

Structured group meetings
involving users and
managers, organized
by a sponsor in top
management, chaired
by a facilitator, recorded
by scribes (BAs), and
attended by IT staff, to
generate ideas, identify
problems, and define
systems requirements

Ideas, attitudes,
beliefs,
cognitive
knowledge

Obtain group consensus on
problems, objectives, and
requirements, good for solving
unstructured problems,
identifying unconventional and
multiperspective responses,
generate new ideas through
brainstorming

Time and resource
consuming, difficult to
schedule, opinionists may
dominate, minor details
may be sidetracked

b3881_C
h13.indd 313

05-10-2020 16:36:02

b3881   Requirements Modeling and Coding� 6"×9"

314  Requirements Modeling and Coding

Requirements inspection is probably the most formal approach to
ensure the quality of requirements. It was originally developed at IBM
(Fagan, 1976) and has now been adopted as the best business practice.
It is a multistage process involving various participants (Wiegers, 2003),
including the author of the requirements document, the author of any pre-
decessor work product for the item being inspected, people who will do
work based on the item being inspected (such as developers), and people
responsible for the systems that interface with the item being inspected.
To ensure efficiency, the rule of seven is recommended to be followed,
i.e., the inspection team should not exceed more than seven participants.
All participants, including the author, look for defects and improvement
opportunities. Some play special roles, as follows:

•	 Author: The author plays the passive role of listening to comments and
responding to questions.

•	 Moderator: The moderator coordinates the inspection with the author,
facilitates the inspection meeting, follows up on the corrections with
the author, and reports inspection results to the management.

•	 Reader: One participant who is less familiar with the item being
inspected can be assigned to the role of reader, who paraphrases one
requirement at a time.

•	 Scribe: The scribe uses standard forms to document the issues raised
and defects found during the inspection meeting. He or she should
read what is written to confirm its accuracy.

The inspection process starts with the requirements document that has
been well developed in the sense that the document conforms to the stan-
dard template, is formatted neatly, has been checked for spelling and gram-
mar errors, and all reference materials are available. As a rule of thumb,
if the moderator cannot find more than three major errors in a ten-minute
examination, the document may be ready for inspection.

After the author and the moderator agree that it is ready for inspection,
they jointly plan for inspection. This includes the selection of inspectors
and the schedule of the inspection meeting. The length of the meeting shall
consider the size of the item being inspected. A rate of 2~4 pages per hour
is reasonable for deciding the length of the meeting.

Before the inspection meeting, there should be a period for all inspec-
tors to read and examine the document for possible defects and issues.
Studies have (Humphrey, 1989) found that 75% of errors were actually

b3881_Ch13.indd 314 05-10-2020 16:36:02

b3881   Requirements Modeling and Coding6"×9"�

Requirements Elicitation and Validation  315

discovered during this period. To improve the efficiency, a standard check-
list may be used. Table 5 shows a simple checklist for inspecting system
use cases. Organizations may develop their own custom checklists for use
cases and other business, user, and software requirements based on their
desired quality attributes.

During the inspection meeting, the reader reads the requirements one
at a time in his or her own words. Other inspectors identify possible errors
and raise issues. The scribe will capture and confirm the errors and issues.
The inspection meeting may be held in multiple sessions. In the end, the
group must collectively decide whether to accept the document as is, with
minor revisions, or with major revisions. If a major revision is needed, the

Table 5.   Defect checklist for use case documents.

 Is the use case uniquely labeled and correctly named?

 Do the pre- and postconditions properly frame the use case?

 Does the summary state succinctly what the use case is and the
value it brings to the primary actor?

 Does the document contain the version number, creation and
modification dates, and person in charge?

 Are all supporting actors sufficient and necessary for the use case?

 Are all alternate flows documented?

 Are all exceptional flows documented?

 Are steps to execute an inclusion use case, if any, documented?

 Are extension points documented if extension use cases exist?

 Are all referenced prompts, messages, and prototypes included?

 Is each interaction statement clear, complete, and unambiguous?

 Is each interaction uniquely labeled?

 Is each interaction free from design and implementation details?

 Is the condition that leads to an alternate or exceptional flow
possible and verifiable?

 All repeated interactions clearly indicated?

 Are all other related artifacts, if referenced, accessible for review?

 Is there any sub-sequence of interactions that can be split into a
separate use case?

 Can this use case extend to another one?

 Is this use case kind of similar to another use case?

b3881_Ch13.indd 315 05-10-2020 16:36:03

b3881   Requirements Modeling and Coding� 6"×9"

316  Requirements Modeling and Coding

group may also decide how to correct the problems and whether another
inspection meeting is needed after rework. Otherwise, the author shall cor-
rect all minor errors and issues and follow-up with the moderator to report
how he or she has addressed the problems.

Process-Oriented Requirements Validation
Most validation techniques focus on the final requirements document.
This section proposes a process-oriented approach to validation and qual-
ity measurement and a delta approach to analyzing process errors. In the
process-oriented approach, defects are the manifestation of a defective
process, and quality is the responsibility of all stakeholders involved in
the requirements development process. Improving quality asks for improv-
ing the process. In contrast, in the document-based approach, defects are
considered to be the source of other problems such as customer complaints,
developers’ frustrations, etc. Quality is considered to be the responsibility
of the author who creates the requirements document. Improving quality
simply means information scrap and rework.

Requirements development consists of two essential steps: elicitation
(or collection) and documentation (or presentation). After requirements
are discovered, requirements must be developed or documented to be val-
idated. This is called presentation. The process-oriented approach shall
focus on each of these steps.

We use fishbone diagrams, an analysis tool invented by Japanese
quality control statistician Kaoru Ishikawa, to systematically examine the
causes that contribute to good or bad quality. Note that the design of a fish-
bone diagram looks much like the skeleton of a fish. The head of fish shows
the problem to be studied. Each bone of the fish labels a cause that leads to
the problem. In addition, the tool suggests that one looks for causes from
typical categories signified as the 4 M’s — Methods, Machines, Materials,
Manpower — the 4 P’s — Place, Procedure, People, Policies — and the
4 S’s — Surroundings, Suppliers, Systems, Skills.

Requirements elicitation

During requirements collection or elicitation, the most frequent quality
problems come from instruments, people, and procedures. The problems
include observation biases, missing observations, measurement errors,

b3881_Ch13.indd 316 05-10-2020 16:36:03

b3881   Requirements Modeling and Coding6"×9"�

Requirements Elicitation and Validation  317

instrument deficiencies, and intentional falsification. Figure 1 shows the
fishbone diagram for elicitation quality.

When selecting a sample process to observe or example user to inter-
view, it is imperative that the sample be representative of a population
under study. Otherwise, the collected data will lack objectivity. A typical
example of observation biases is to interview a most technically capable
user; the usability requirement for this user is biased because it does not
reflect the skills of majority regular users.

Missing observations occur when there are objects that are supposed
to be observed but not observed or when there are properties of an object
that are supposed to be measured but not measured. Examples include
cases when a user group is not represented or an important class of docu-
ments is not sampled.

Measurement errors are not avoidable since instruments have limited
capacity (Deming, 1986). Measurement errors can also occur due to unin-
tentional human mistakes. In either case, they reduce the accuracy of col-
lected requirements.

Instrument deficiencies refer to the problem that an instrument is
defective, i.e., it has no capacity and can produce statistically unstable
observations.

Falsification refers to the behavior of making up false data. It includes
the creation of data that does not correspond to genuine requirements and
intentional distortion of observations. Both instrument deficiencies and
falsification reduce the reliability of observed data.

According the common sources of errors during requirements collec-
tion, we propose four attributes to measure collection quality: objectivity,
completeness, accuracy, and reliability, and Table 6 lists their definitions.
Obviously, objectivity and completeness are semantically distinct from

Collection
quality

Instrument

Deficiency
Precision

limit

Cognitive
limit

Falsification
Collector

Process Selection
biases

Missing
observations

Materials

Figure 1.   A fishbone diagram for collection quality.

b3881_Ch13.indd 317 05-10-2020 16:36:03

b3881   Requirements Modeling and Coding� 6"×9"

318  Requirements Modeling and Coding

each other and from accuracy and reliability. In a sense, both accuracy
and reliability measure the extent to which captured requirements are free
from measurement errors. However, accuracy assesses the errors in terms
of how capable the collection process is if the collection process is stable
and has a statistical capability. It may be measured by the six-sigma of
the variation of the collection process. In contrast, reliability assesses the
extent to which the collection process is statistically stable and has a capa-
bility. It may be measured in terms of the probability that instruments are
not defective and data falsification does not occur. Therefore, accuracy and
reliability are conceptually distinct. In addition, the four attributes cover
the content domain of collection quality: if data collection is unbiased and
complete and collected data are reliable and accurate, then it is sufficient
to infer that data collection process is free of errors and has high quality.

Requirements documentation

During requirements documentation or presentation, the most frequent
causes of quality problems come from people, presentation designs (frame-
works or templates), and presentation devices. The problems include
typical human errors (e.g., typographical errors, grammatical errors, and
computational errors), interpretation errors, information selection biases,
sequence errors, lack of flow controls, layout design deficiency, device
deficiency, and approximation errors. Figure 2 shows a fishbone diagram
for identifying documentation quality issues.

Table 6.   Quality dimensions for requirements elicitation.

Attribute Associated Errors Definition

Accuracy Limited capability of instruments,
limited capability of data
collectors

The extent to which collected data
are free of measurement errors

Objectivity Observation biases The extent to which the sample
selected for observation is
representative of a population

Reliability Defective instruments,
falsification

The extent to which collected data
are free of falsifications and
defective readings

Completeness Missing observations All values that are supposed to be
collected are collected

b3881_Ch13.indd 318 05-10-2020 16:36:03

b3881   Requirements Modeling and Coding6"×9"�

Requirements Elicitation and Validation  319

Human errors will present incorrect information. Selection biases
prevent one from presenting data objectively and neutrally. They include
hiding data that have conflicts of interest and highlighting data that favor
certain opinions. Interpretation errors occur when there are language or
tool deficiencies, when data are difficult to understand, or when original
data have ambiguity in meaning. For example, the same term may have
different definitions, formats, and measurement units. In order to present
related requirements in a unified view, interpretations and reinterpretations
of certain data are needed, and errors may not be avoidable. Interpretation
errors influence the faithfulness of a presentation to its original source.
Sequence errors, a lack of flow controls, and inappropriate layout affect
not only the appearance but also the comprehension of a requirements
document. Finally, device deficiencies and approximation errors will dis-
tort the original information and affect the precision of presented data.

According to these sources of errors for documentation, we propose
three dimensions of documentation quality: Preciseness, Faithfulness,
and Formality. Table 7 summarizes their definitions and associated qual-
ity problems. Preciseness measures how much presented requirements
are free from mechanical errors such as typographical errors, syntactical
errors, computational errors, approximation errors, and problems due to
defective presentation devices. Conceptually, it covers correctness, i.e., no
typographical and grammatical errors, and precision, i.e., little approxi-
mation errors. Although correctness and precision are frequently cited in
existing studies, they are semantically overlapping. In addition, correctness
is more applicable to texts whereas precision is more applicable to mul-
timedia data. Therefore, we choose preciseness to cover both correctness
and precision. Faithfulness measures how much presented data are free of

Presentation
quality

People

Machinery
Design

Materials

Errors (typo, syntac,
computation)

Interpretation
errors

Sequencing
errors

Inappropriate
layout

Device
deficiency

Output
approximation

errors

Selection
biases

Lack of flow
control

Figure 2.   A fishbone diagram for presentation quality.

b3881_Ch13.indd 319 05-10-2020 16:36:03

b3881   Requirements Modeling and Coding� 6"×9"

320  Requirements Modeling and Coding

subjective opinions and views. Conceptually, it dictates that requirements
are faithful to the truth and semantically identical to its origin. Formality
measures how much data are presented concisely, consistently, and attrac-
tively. It is an attribute that calls for concise content, consistent layout, and
attractive visual and audio appeals. From these definitions, it is easy to see
that the three dimensions are semantically distinct. Preciseness and faith-
fulness measure the content aspect of presentation quality, respectively,
from the perspectives of objective and subjective errors, whereas formality
measures the appearance aspect of presentation quality. Furthermore, the
three dimensions semantically cover the domain of presentation quality.
Requirements are well presented if and only if they are free of mechanical
errors, free of subjective biases, and are laid out nicely.

Requirements-Based Tests
Requirements-based tests aim to check whether the software behaves
as the requirements specify. Unlike the white-box tests that check inter-
nal program codes, requirements-based tests are “black-box” in nature.
Requirements-based tests can be done only after the system is developed.
However, test cases can be developed in the early stage upon the require-
ments are developed.

Developing test cases is a very important technique for requirements
validation. In a sense, developing test cases is a process of “coding” the
high-level system behavior using plain English instead of a programming

Table 7.   Quality dimensions for requirements documentation.

Attribute Associated Errors Definition

Preciseness Typographical errors, grammatical
errors, computation errors,
approximation errors, device
deficiencies

The extent to which presented data
are free of mechanical errors

Faithfulness Interpretation errors, selection biases The extent to which presented data
are free of interpretation and
presentation biases

Formality Sequencing errors, inappropriate
layout, lack of flow controls

The extent to which data
are presented concisely,
consistently, and attractively

b3881_Ch13.indd 320 05-10-2020 16:36:03

b3881   Requirements Modeling and Coding6"×9"�

Requirements Elicitation and Validation  321

language. Thus, it can help pinpoint problematic requirements. In fact, if
the requirements are complete, accurate, and clear, the process of deriv-
ing the test cases is straightforward. If the requirements are not in good
shape, the attempt to derive test cases will expose problems. For example,
suppose we want to design a test case to see how the system responds to
a request to withdraw cash if the withdrawal limit is not exceeded. We
need to specify a test withdrawal limit, a test credit line, and a test with-
drawal amount. Theoretically, any positive number can be a test number.
What about $0.1 as a withdraw limit? That cannot be tested because an
ATM does not handle coin transactions. However, according to a use case
description like the one we saw earlier, such a withdrawal limit still allows
the basic flow of the use case to be executed. The exposed problem will
help clarify the specification of when the withdrawal limit is said to be
exceeded.

Test cases may be described as a list of data inputs and user actions,
system conditions, and expected results. They may be formally docu-
mented using templates. The following are a few test case examples:

•	 Test Case 1: The cashier scans an item, and the item information
exists. Expected result: The screen displays item title, unit price, sub-
total, and grand total.

•	 Test Case 2: The cashier scans an item, item information is found, the
screen displays the item title, unit price, sub-total, and grand total, and
the cashier chooses to remove the item. Expected result: The line item
is removed from the screen and the grand total resets to zero.

•	 Test Case 3: The cashier scans an item, and item information does not
exist. Expected result: Display message “Item is not found. Please ask
a supervisor for assistance.”

Test cases are derived from use cases. Yet they are by no means equiv-
alent. A use case typically has basic flow of events as well as alternate
and exceptional flows. In theory, each test case should be developed for
each combination of conditions that lead to a unique path of interactions
or system states. For example, for the “withdraw cash” use case, we need
at least one test case to cover all possible combinations of values for the
following event variables: card validity, pin validity, number of invalid
pin entries, whether an account is on hold, whether a withdrawal limit is
exceeded, whether a receipt is requested, whether a card is removed on

b3881_Ch13.indd 321 05-10-2020 16:36:03

b3881   Requirements Modeling and Coding� 6"×9"

322  Requirements Modeling and Coding

time, and whether money is removed on time. If each event variable takes
on two values, one would need 28 = 256 test cases to cover distinct sce-
narios or flows of events. Clearly, the number of test cases exponentially
explodes with the number of events/conditions.

In practice, it is not necessary to develop test cases that follow an
entire use case. When events/conditions are not interrelated, they can be
split into different test cases. This is how the explosive number of test
cases may be reduced. For example, if we separate card validity condition
out into its own independent test cases, the number of test cases will be
reduced to 128 + 2.

•	 Test Case 4: User inserts a card, and the card is valid. Expected result:
Display message “Enter Your Pin Number.”

•	 Test Case 5: User inserts a card, and the card is invalid. Expected
result: the card is ejected and display message “Invalid Card” for two
seconds.

Of course, conditions of whether the card holder requests a receipt,
whether one removes cash, and whether one removes a card can be also
tested independently of other conditions. With two test cases to cover each
condition, we will need 6 test cases. The following are a few examples:

•	 Test Case 6: User chooses to have a receipt, ATM dispenses and holds
cash for 5 seconds, but user does not remove cash. Expected result:
ATM takes cash back and the Display message is “Your transaction is
voided.”

•	 Test Case 7: User chooses to have a receipt, ATM dispenses and holds
cash for 5 seconds, and user removes cash. Expected result: ATM
prints a receipt, ejects the card, and displays the message “Thanks for
using ABC Bank. Please remove your card.”

•	 Test Case 8: ATM ejects and holds a card for 5 seconds, but user does
not remove the card within 5 seconds. Expected result: ATM swallows
the card and displays the message “Sorry your card is taken by ABC
Bank.”

•	 Test Case 9: ATM rejects and holds a card for 5 seconds, and user
takes the card within 4 seconds. Expected result: Display message
“Thanks for using ABC Bank.”

b3881_Ch13.indd 322 05-10-2020 16:36:03

b3881   Requirements Modeling and Coding6"×9"�

Requirements Elicitation and Validation  323

Assume the remaining four conditions are tested jointly. We will need
16 + 2 + 6 = 24 cases, a dramatic reduction from 256 test cases.

When two or more conditions are interrelated, test cases may be devel-
oped with the aid of a decision table that describes the expected result or
system response under each of the possible combinations of the condi-
tions. For example, Table 8 shows a decision table for deriving test cases
considering jointly the conditions of pin validity and number of invalid
pin entries. Since each event variable takes on two values, there are in total
four combinations.

If a decision table exists, a rule of thumb is that one test case is devel-
oped for each column in the table. Of course, the rule does not have to
be followed blindly. For example, in Table 8, one test case is needed for
the last two columns because, when the pin is valid, the number of pin
entries is irrelevant to system response; the ATM will then not ask for a
re-entry. For this type of asymmetric events, a decision tree may be a better
device for designing test cases. For example, using the decision tree given
in Figure 7 in the previous chapter, four test cases may be developed to
cover all possible combinations of three event variables: time, presence of
an object, and light condition (assume work hours are 8:00 AM–5:00 PM
on M–F):

•	 Test Case 10: Time is 5:01 PM on Friday. Expected result: Light is off.
•	 Test case 11: Time is 8:01 AM on Monday, an object is present, light

is bright. Expected result: Light is off.
•	 Test Case 12: Time is 4:59 PM on Friday, an object is not present.

Expected result: Light is off.
•	 Test Case 13: Time is 4:49 PM on Friday, an object is present, light is

dim. Expected result: Light is on.

Table 8.   Invalid pin entries and ATM responses.

1 2 3 4

C Invalid pin entry Y Y N N

Number of pin entries 1~2 3 1~2 3

D Ask for pin reentry Y N N N

Ask for withdrawal amount N N Y Y

b3881_Ch13.indd 323 05-10-2020 16:36:03

b3881   Requirements Modeling and Coding� 6"×9"

324  Requirements Modeling and Coding

Note that a decision table or tree may prescribe multiple valid input
data for a test but does not tell exactly which one is to be used for the test.
For example, in Table 8, the first and third columns allow 1 or 2 as a valid
number of pin entries. Similarly, for the decision tree in Figure 7 shown in
Chapter 12, the valid values for work hours include 8:00 AM–5:00 PM on
Monday through Friday by assumption.

Which value should be used for a test? In fact, multiple tests should be
designed. The tests include both positive ones, where inputs are within the
valid range of values, and negative ones, where inputs are outside the valid
range. Boundary value analysis provides general principles for determin-
ing test data. Depending on whether values are ordered or not, it suggests
different strategies, as described in the following.

If values are ordered and valid values are in non-consecutive intervals
(like [500, 800], [801, 1,000], etc.) or ranges (like 1~3, 4, 5~8, etc.), then
for each interval or range, create two positive tests, one at either end of
the interval or range, and create two negative tests, one just beyond the
interval or range at the low end and the other just beyond the high end. For
example, for the decision tree shown in Figure 7 of Chapter 12, the two
positive test values for working hours are 8:00 AM and 5:00 PM and the
two negative test values are 7:59 AM and 5:01 PM.

If values are ordered and valid values are in consecutive intervals or
ranges, then for each interval range, create two positive tests for each end
of the interval or range. Then for all intervals or ranges create two negative
tests, one is below the smallest acceptable value and one is above the larg-
est acceptable value. For example, the positive numbers of pin entries are
1, 2, and 3, whereas the negative test values are 0 and 4 (see Table 8). For
another example, suppose the discount rate is determined by order amount
as follows: 5% for order of $500 or more, 8% for orders of $1,000 or more,
and 15% for orders of $2,000 or more (see Table 2 of Chapter 12). The
positive test values are, respectively, 500, 999.99, 1,000, 1,999.99, and
2,000. Because there is no maximum for invalid values, the only negative
test value is 499.99.

If values are not ordered and valid values are in sets of one or more
elements, then for each set, create one positive test using any value in
the set and one negative test with any value outside the set. For example,
suppose you offer free shipping to customers in OH, MI, PA, NJ, and NY.
Then create a positive test using any of these states and one negative test
using any of the other states.

b3881_Ch13.indd 324 05-10-2020 16:36:03

b3881   Requirements Modeling and Coding6"×9"�

Requirements Elicitation and Validation  325

Review Questions
  1.	 What are the three elements in a requirement elicitation strategy?
  2.	 Which sources will you be after to discover business use cases?
  3.	 What requirements may be elicited by using a day-in-the-life

technique?
  4.	 What is structural walkthrough? How is executed?
  5.	 Explain how affective knowledge such as attitudes and beliefs may be

elicited differently from cognitive knowledge.
  6.	 What techniques are effective if there are multiple conflicting objec-

tives to be reconciled?
  7.	 Describe the process of requirements inspections. What role does a

moderator play in the process?
  8.	 What is a test case? Is a test case the same as a use case?
  9.	 What is boundary value analysis?
10.	 What is the philosophy of the process-oriented requirements

validation?
11.	 What is a fishbone diagram? What are the typical sources that we look

for causes to a problem?
12.	 What is Joint Requirements Planning? What role does the author play

in the process?

Exercises
1.	 Develop a checklist for evaluating the quality of vision statements.
2.	 Develop test cases for the use case “validate a user via user ID and

password.”
3.	 Develop a fishbone diagram to document causes that affect the quality

of the requirements inspection process.
4.	 If group discount is determined by the number of passengers in the

group and valid ranges are, respectively, 1–3, 4–10, and 11–20. What
test values are to be used?

5.	 If shipping costs is determined by the US regions, each of which con-
sists of specific states, how would you determine test values?

6.	 Use decision tables to represent algorithmic or behavioral rules con-
tained in the following text. Then develop test cases based on the
tables. In the purchasing department, each purchase request is assigned
to a caseworker within the department. This caseworker follows the

b3881_Ch13.indd 325 05-10-2020 16:36:03

b3881   Requirements Modeling and Coding� 6"×9"

326  Requirements Modeling and Coding

purchase request through the entire purchasing process and acts as the
sole contact person with the person or unit buying the goods or ser-
vices. The department refers to its fellow employees buying goods and
services as “customers.” The purchasing process is such that purchase
requests over 1,500 must be out for bid to vendors, and the associ-
ated request for bids for these large requests must be approved by the
department. If the purchase is under 1,500, the product or service can
simply be bought from any approved vendor, but the purchase request
must still be approved by the department and they must issue a pur-
chase order.

7.	 Identify all business rules embodied in the following descrip-
tion. Develop decision tables on how to handle down payments for
BizbyOrder Books. Then develop test cases accordingly. Here are some
of its business processes. BizbyOrder Books is specialized in ordering
books for two types of customers: individuals and businesses in lower
Manhattan. This is how these two different customers are different.
When an individual customer orders books, he or she must pay 20%
down payment. A business customer can establish a credit line with
BizbyOrder and pays 50% down if only if the order amount exceeds its
credit limit. The bookstore orders its books through five national dis-
tributors. Because of various special agreements in the book industry,
each publisher sells its books exclusively to one distributor. This is how
the bookstore runs its daily business. Each time a customer comes in
to buy a book, the bookstore uses its database system to find the title
and locate the distributor that sells the book. Then the customer will
leave contact information and make a down payment (if needed) for
BizbyOrder to send the order to a distributor. When an ordered book
comes in, the customer will be contacted to pick it up and pay the rest
of the balance.

b3881_Ch13.indd 326 05-10-2020 16:36:03

327

b3881   Requirements Modeling and Coding6"×9"�

Chapter 14

Collaboration

Introduction
In Chapters 9–11, we learned use case diagramming to capture functional
requirements and use case storyboarding to describe each use case as a
sequence of interactions between the user and the system. Remember that
the system is a collection of classes in the static view or a collection of
running objects in the dynamic view, and thus each action or activity per-
formed by the system will have to be performed by one or more of the
objects in collaboration.

In Chapters 5–8, we learned how to allocate operations into objects
based on the data flow reduction principle. An operation allocated to a
object does not have to be performed entirely by the object; the whole
or a part of it can be delegated to other more capable objects. This is the
essence of collaboration. In this chapter, we will first introduce a few heu-
ristics or principles on how to achieve collaboration. Then we will carry
out a few examples from earlier chapters further to illustrate the concept
of collaboration.

Heuristics for Achieving Collaboration
When allocating tasks to objects, just think about a team of co-workers
and who should do what in a collaborative endeavor. For example, assume
you are a student pursuing a higher learning degree. Of course, in this
endeavor, you are a hero. Yet you cannot do it alone; you need help from
others. You may need parents to finance your pursuit, a college to offer a

b3881_Ch14.indd 327 05-10-2020 17:11:55

b3881   Requirements Modeling and Coding� 6"×9"

328  Requirements Modeling and Coding

program of courses, and professors to teach the courses, etc. In this col-
laborative endeavor, you as a student have capability to study and pur-
sue a degree. Your parents have capabilities to provide financial resources
to assist you. Your school has capabilities to offer programs and courses
and award degrees. Your professors have capabilities to teach the courses.
Thus, it is clear who should do what in the collaboration. If we are to allo-
cate the actions (operations) to the stakeholders, you should be assigned
the tasks to study and to get a degree; your parents to offer financial assis-
tance; your college to offer programs, offer courses, and award degrees;
and your professor to teach courses.

Heuristics are the summary of experience in terms of simple guide-
lines and principles. They are often followed by experts and may be used
to distinguish bad designs from good ones.

Heuristics 1: Operations symbolize object capabilities

In the real world, each object has its own unique capabilities. What does
an airplane do? It flies. Thus “fly” is the unique operation that an air-
plane object should have that distinguishes an airplane from other types
of objects. Similarly, in computer programming, objects are created or
abstracted for their unique capabilities. These capabilities should be oper-
ations of the objects. For example, what does a card reader in an ATM do?
It reads, verifies, and ejects a card, and thus it should have three opera-
tions for doing those. For another example, what does a transaction object
do? It performs transactions such as obtaining and/or adjusting transaction
details.

Sometimes it may not be immediately clear which object should
house a capability or an operation that needs to be captured. For exam-
ple, to model the fact that books are put on shelves, we have Book and
Shelf classes and need to allocate an operation so that books can be put
on shelves. Which objects should carry out the responsibility? Do books
locate themselves on shelves or do shelves shelf books? The common
sense is that a book does not have the capability to locate itself; a book’s
responsibility is to house written texts or pictures, and it will be too much
to do for a book to know how to locate itself. By the way, a book can be
placed on desks too. Does it mean that the books should also have the
knowledge of a desk to locate themselves? In contrast, a shelf has a capa-
bility of housing books; it is exactly what a bookshelf does. Thus, a shelf
shall fulfill the responsibility (see Figure 1).

b3881_Ch14.indd 328 05-10-2020 17:11:55

b3881   Requirements Modeling and Coding6"×9"�

Collaboration  329

A similar conundrum is seen in other examples. For example, in an
object-oriented dairy farm, should an object-oriented cow possess the
operation to milk itself, or should an object-oriented milk to un-cow itself?

Heuristics 2: Operations fulfill responsibilities

Objects live in the community of other objects, and each supports the com-
munity by contributing its own service, i.e., performing its operations.

As we stated before, objects are assumed to be small, encapsulated,
and smart objects. They are small because each has limited functionalities
(operations) and limited knowledge (attributes) that have one focus. They
are encapsulated because each has its own body with a clear boundary
from its surroundings. They are smart because each owns capabilities of
using their own knowledge to process their own data or to provide ser-
vices based on their own data. Now we are adding the fourth adjective to
the objects: collaborative. Objects are collaborative because each has the
responsibilities to perform actions that it is capable of.

This heuristic is employed by a well-known technique called CRC
cards for identifying and allocating operations. Class responsibility col-
laborator (CRC) cards are standard index cards, which record and play
the role of objects and engage in phantom communications. They can be
used for identifying object collaborations via their responsibilities (Beck
and Cunningham, 1989; Wilkinson 1995; Ambler 1995). Each index card
records one class. Vertically divide a card into two sections. The top 4/5 of
the card is used to write the name and the attributes. The bottom 1/5 of the
card is to list the role of the class. Each role is described by one verb, two
numbers, and the name of another class. For example, “take (0, 6) courses”
may be a good description of the role of a student. It indicates that a stu-
dent may take at least 0 and at most 6 courses.

Book Shelf

House():void

1*

Figure 1.   Books and shelves.

b3881_Ch14.indd 329 05-10-2020 17:11:56

b3881   Requirements Modeling and Coding� 6"×9"

330  Requirements Modeling and Coding

The CRC card method is also very useful for effective communication
among a group of analysts and users. Suppose one person holds a card and
reads aloud to others as follows, “I am a student. I need to take courses.”
Another person holding the card for the course realizes a role “enroll (6,
35) students.” A third person holding the dorm card reads aloud, “I am a
dorm. I house students.” Then the first person holding the student card
realizes that he missed the role “stays in (0, 1) dorm.” A fourth person
reads aloud, “I am a student club. I need to recruit students.” The first
person then adds another role “join in (0, 1) club” to his card. This com-
munication continues until all the roles are identified.

Keep everything about one object in one card. If there are too many
attributes that you do not have enough space to write them all, it may
indicate that the objects have too many attributes. Some of them may be
unnecessary. Some of them may be redundant. And still some may be bet-
ter re-allocated into another object. Similarly, if an object has too many
roles to play, it may be too general, playing the role of an amalgamation of
two or more objects that should be separated. Ask yourself whether each
role is played by the entire set of objects or by only a sub-group of objects.
If it is the latter case, splitting the class into sub-classes can reduce the
number of roles each class plays.

Heuristics 3: A hero delegates but does not relay

After we identify a hero to house an operation based on capabilities or
responsibilities, the hero object can delegate some portions of the job to
other objects. This heuristic encourages delegations but discourages sim-
ple relays when it comes to decide where to house an operation. It means
that each object shall do what it is capable of and delegates what it is not
to other objects that are more capable. Of course, when an object can do
nothing but relay the whole task, the object should not be made a hero to
house the operation.

Let us consider a simple example. Suppose employees go to work by
driving. Here, there are two types of objects involved: Employee and Car.
Their relationships are easy to perceive: Each employee has one or more
cars while each car belongs to one employee, and so we have associations
between Employee and Car classes as in Figure 2. The question is what
operations should be allocated to each object. Apparently, the major func-
tionality is GoToWork(), and it is the responsibility or capability of the
Employee class and so should be housed in there. However, to implement

b3881_Ch14.indd 330 05-10-2020 17:11:56

b3881   Requirements Modeling and Coding6"×9"�

Collaboration  331

the functionality, employees would need to pick a car and drive the car to
the workplace. Does an employee have the full knowledge to move a car,
including how to push gas into cylinder, how to burn the gas, and how
to turn the wheels? As an alternative, the Employee class can delegate
the task to an expert. Who is it? Using CRC cards, the person holding the
Employee class can announce “I am an employee and need to go to work,
for which I need a car to take me there.” The person holding the Car class
shall realizes the responsibilities: start car, move car, stop car, etc. The Car
class has full knowledge of doing so. Since a car already has the capability
to move, why do not we just send a message to a car after it is picked and
have the car to carry an employee to work? Thus, the Employee class
should delegate the sub-tasks to the Car class, and GoToWork() opera-
tion may be described without operation DriveCar(). The following is
a code segment to implement the idea:

GotoWork()
{
        Car myCar = PickCar();
        myCar.Start();
        myCar.Move();
        myCar.Stop();
}

Collaboration via Examples: Compute
Order Amount
For complex operations described in a use case description, the three
heuristics are often applied jointly. We should first apply heuristics of

Car

Move():void
Start():void
Stop():void

Employee

GoToWork():void
PickCar():Car

1..*

Figure 2.   Who should carry the operation of Drive?

b3881_Ch14.indd 331 05-10-2020 17:11:56

b3881   Requirements Modeling and Coding� 6"×9"

332  Requirements Modeling and Coding

capabilities or the principle of data flow reduction to determine where the
operation should be allocated. Then we apply the delegation heuristics to
delegate some or all parts of the job to capable objects.

In this section, let us use a familiar example to learn how to apply
the heuristics. Figure 3 shows a class diagram of domain objects:
Organization, Customer, Order, LineItem, and Product.
Which one of this classes should house the operation to compute the total
amount ordered by a customer? It is not immediately clear because no
objects have the information readily available. First let us see which object
is most capable or has all or most of the information to compute the total
amount. To answer this question, let us implement the class diagram using
the following C# code:

public class Customer
{
   protected int cid;
   protected string cname;
   protected List<Order> orders;
}

public class Organization: Customer
{
    private double creditLine;
}

Customer

cid:int
cname:string

Order

odate:DateTime
oid:int

1 *

Product

color:string
desc:string
qty:double
sku:string
unitcost:double

Lineitem
* 1..*

Organization

creditLine:double

Lineitem

discountRate:double
qty:double

Figure 3.   A class diagram for customer orders.

b3881_Ch14.indd 332 05-10-2020 17:11:56

b3881   Requirements Modeling and Coding6"×9"�

Collaboration  333

public class Order
{
   private int oid;
   private DateTime odate;
   private Customer madeBy;
   private List<Product> orderedItems;
   private Dictionary<Product, LineItem> orderLines;
}

public class Product
{
   private string sku, color, desc;
   private double qty, unitcost;
}

public class LineItem
{
   private double qty, discountRate;
   private Order;
   private Product item;
}

Which object has all the information it needs to compute the total
amount ordered by a customer? A Product object only knows its own
unit cost, and each LineItem object knows the quantity and discount
rate for each item ordered. The following C# code implements these
capabilities:

public class Product
{
   private string sku, color, desc;
   private double qty, unitcost;

   public double GetPrice()
   {
      return unitcost;
   }
}

public class LineItem
{
   private double qty, discountRate;
   private Order;
   private Product item;

b3881_Ch14.indd 333 05-10-2020 17:11:56

b3881   Requirements Modeling and Coding� 6"×9"

334  Requirements Modeling and Coding

   public double GetQty()
   {
       return qty;
   }

   public double GetDiscountRate()
   {
       return discountRate;
   }
}

However, to compute the total amount, we would need to know all the
items and their quantities ordered. What about Order objects? According
to the code, each Order object knows what items and order lines it con-
tains, and so it should be able to compute its own total amount, as imple-
mented by the following C# code:

public class Order
{
   private int oid;
   private DateTime odate;
   private Customer madeBy;
   private List<Product> orderedItems;
   private Dictionary<Product, LineItem> orderLines;

   public double GetOderAmount()
   {
       double amount = 0d;
       double price, qty, rate;
       foreach (Product p in orderedItems)
       {
          price = p.GetPrice();
          qty = orderLines[p].GetQty();
          rate = orderLines[p].GetDiscountRate();
          amount += price * qty * (1 - rate);
       }
       return amount;
   }
}

Note that in the above code, the Order class delegates the jobs of getting
price to Product and getting quantity and discount rate to LineItem class.
Now what does an Order object, myOrder, as shown on page 335, do?

b3881_Ch14.indd 334 07-10-2020 10:56:38

b3881   Requirements Modeling and Coding6"×9"�

Collaboration  335

Order myOrder = new Order();

Well, it can compute the total amount of its own by calling the function

myOrder.GetOderAmount()

as programmed inside the Order class. However, an Order object does
not know the items and order lines contained by other orders. To house
the operation inside the Order class, we would have to tell the operations
what other orders, beside the order object in question, were also placed by
a customer.

Who knows all the orders placed by a customer? Of course, it is the
Customer object, as we can see from the C# code above. Thus, it is the
best choice to place the operation inside the Customer class. Indeed, as
shown in the following C# code, we can implement the computation inside
the Customer class easily:

public class Customer
{
   protected int cid;
   protected string cname;
   protected List<Order> orders;

   public double GetOrderTotal()
   {
      double total = 0d;
      foreach (Order o in orders)
      {
         total += o.GetOderAmount();
      }
      return total;
   }
}

Note that the Customer class delegates the job of finding the order
amount by each order to the Order class.

In sum, we made the Customer a hero to house the operation
GetOrderTotal(), but the customer object does not and cannot do
it by itself. It delegated the job of computing an order amount for each
order to the Order class, which in turn delegated the job of getting prices,
quantities, and discount rates to Product and LineItem classes.

b3881_Ch14.indd 335 05-10-2020 17:11:56

b3881   Requirements Modeling and Coding� 6"×9"

336  Requirements Modeling and Coding

It is correct to allocate GetOrderTotal() into the Customer
class according to information needs or the data flow reduction prin-
ciple. However, we should be aware that knowledge or information is
necessary but not sufficient for deciding a hero, and we may still need
to make a judgmental call on what an object is supposed to be capable
of and, based on the judgment, to allocate operations. For example, in
the current example, does an Order object have enough knowledge to
compute the total? Yes, it does. It has necessary information because
each order knows who made the order, and so it can delegate the job
to the customer. For example, we could implement the operation as
follows:

public class Order
{
   private int oid;
   private DateTime odate;
   private Customer madeBy;
   private List<Product> orderedItems;
   private Dictionary<Product, LineItem> orderLines;

   public double GetTotalbyEachCustomer()
   {
       return madeBy.GetOrderTotal();
   }
}

However, there are at least two problems in doing so. First, an Order
object makes no contribution by its own. It simply relays the whole task to
another object. An object that does nothing but relay a task should not be
made a hero to host the task. Second, it is problematic to send a message to
an order object to find the total amount made by a customer. Which object
can we send the message to? Each order knows its owner, but the owner
may not be the customer that we intend to send the message to. Thus, we
will have to send the message to all order objects and ask each one if its
owner matches the customer we intend to send to.

Of course, the function GetTotalbyEachCustomer()can be
still useful to an Order object. For example, when making a new order
and deciding whether we should discount the order amount, we may need
to find out the total amount made by the owner. However, in this case, the
order object delegates the job to the customer object and shall not claim to
be the hero of the capability.

b3881_Ch14.indd 336 05-10-2020 17:11:56

b3881   Requirements Modeling and Coding6"×9"�

Collaboration  337

Collaboration via Examples: Compute Grade
Point Average
Now let us carry the student registration example from earlier chapters
further and try to model and implement additional operations by following
the heuristics.

Figure 4 shows a familiar class diagram that we have seen earlier in
Chapter 7. Now we need to code one more operation: Compute grade point
average (GPA). We programmed the operation as an isolated function in
Chapter 4, but now we will program it via collaboration of related objects.

First, let us implement the Course class along with recursive asso-
ciation for prerequisites. The two operations are merely data getters:

public class Course
{
   private string cno;
   private double credits;
   private List<Course> prerequisites;

   public double GetCreditHours()
   {
       return credits;
   }

   public List<Course> GetPrerequisites()
   {
       return prerequisites;
   }
}

Course

cno:string
credits:double
title:string
desc:string

GetCreditHours():double
FindPrerequisites(cno:string):List<Course>
GetPrerequisites():List<Course>

requires

*

*

CourseOffering

cap:int
section:string

Drop(s:Student):void
Enroll(s:Student):void
PostGrade(s:Student,g:string):void

1

Student

sid:int
lastName:string
firstName:string
admitDate:DateTime

AddClass(c:CourseOffering):void
DropClass(c:CourseOffering):void
IsEnrolled(c:CourseOffering):bool

Enrollment
**

Enrollment

grade:string
status:bool

ChangeGrade(newGrade:string):void
UpdateStatus(newStatus:bool):void

Figure 4.   Class diagram for student registration system.

b3881_Ch14.indd 337 05-10-2020 17:11:57

b3881   Requirements Modeling and Coding� 6"×9"

338  Requirements Modeling and Coding

The following is the code snippet from Chapter 7 with one extra
instance variable crsUnder in the CourseOffering class to
reflect its unidirectional association with Course (see the boldfaced
code).

public class CourseOffering
{
   private string section;
   private int cap;
   private Course crsUnder;
   private List<Student> enrollees;
   private Dictionary<int, Enrollment> roster;

}

public class Enrollment
{
   private bool status;
   private string grade;
   private Student student;
   private CourseOffering section;

}

public class Student
{
   private DateTime admitDate;
   private int sid;
   private string firstName, lastName;
   private List<CourseOffering> enrolledSections;
   Dictionary<CourseOffering, Enrollment> transcript;
}

To compute GPA, we will need to know all the courses that a student
has finished. Since the Student class has a list of past enrollment records
or transcripts, it should be enough to do the calculation. Thus, the GetGPA
operation should be located inside the Student class. Does a Student
object do everything? Let us look at the operational logic (may be modeled
by an activity diagram here): GPA = total points / total credits. Each course
grade is translated into points as follows: A → 4, B → 3, C → 2, D → 1,
and F → 0. Multiplying the course point by the course credit leads one to
arrive at the grade points for each course. Adding the grade points of all

b3881_Ch14.indd 338 05-10-2020 17:11:57

b3881   Requirements Modeling and Coding6"×9"�

Collaboration  339

courses results in the total points. According to this analysis, we identi-
fied some sub-tasks: get credit hours for each course, get grade for each
finished course, and convert grades to points.

Let us contemplate a CRC session. The person holding the Student
class announces, “I am a student and needs to compute GPA, for
which I need to know credit hours of each course I took and the grade
I got.” “I have grades for each of your course,” the person holding the
Enrollment class answers. The person holding the Course class also
answers, “I know credit hours.”

Because Enrollment objects know grades and Course objects
know credits, Student objects should delegate GetCreditHours
to Course and GetGrade to Enrollment. What about convert-
ing grades to points? We can put it anywhere, or even as a utility class.
However, it would be the best to put it in the Enrollment class; doing
so will remove the need for the input parameter “grade” and we do
not even need the GetGrade() method. In the next section, we will
find that there is another added benefit of doing so; we will be able
to tell if grade A is better than B, which in turn is better than C, etc.,
simply by comparing the points in checking prerequisites. Otherwise,
we will have to find a way to tell if a student has a C or better grade.
GetCreditHours() is already implemented in the code above, and
GetPoints() method is implemented below in the Enrollment
class (see the boldfaced code):

public class Enrollment
{
   private bool status;
   private string grade;
   private Student student;
   private CourseOffering section;

   public double GetPoints()
   {
      double points = 0;
      switch(grade)
      {
         case “A”:
            points = 4;
            break;
         case “B”:

b3881_Ch14.indd 339 05-10-2020 17:11:57

b3881   Requirements Modeling and Coding� 6"×9"

340  Requirements Modeling and Coding

            points = 3;
            break;
         case “C”:
            points = 2;
            break;
         case “D”:
            points = 1;
            break;
         case “F”:
            points = 0;
            break;
      }
      return points;
   }

}

The Student class has a list of enrolled course offerings but does
not know courses directly according to the class diagram in Figure 4.
So, in order for the Student class to call GetCreditHours()
method, it has to do it indirectly through the CourseOffering class,
which of course can delegate (or relay) the actual job to the Course
class, which is the real hero for housing GetCreditHours()
option (see the boldfaced code). Besides getting credit hours for a
course, we also add a helper method to get the course object from
CourseOffering, which may be an alternate method in lieu of
GetCreditHours().

public class CourseOffering
{
   private string section;
   private int cap;
   private Course crsUnder;
   private List<Student> enrollees;
   private Dictionary<int, Enrollment> roster;

   public double GetCreditHours()
   {
       return crsUnder.GetCreditHours();
   }

   public Course GetCourse()
   {
       return crsUnder;

b3881_Ch14.indd 340 05-10-2020 17:11:57

b3881   Requirements Modeling and Coding6"×9"�

Collaboration  341

   }

}

With the above two helper functions, we can now implement the
GetGPA() method in the Student class as follows (see the boldfaced
code). The code simply goes through each enrolled section for a credit
hour and the corresponding transcript entry, or enrollment object, for a
point. Along with GetGPA(), we also include a similar method to com-
pute total credit hours.

public class Student
{
   private DateTime admitDate;
   private int sid;
   private string firstName, lastName;
   private List<CourseOffering> enrolledSections;
   Dictionary<CourseOffering, Enrollment> transcript;

   public double ComputeGPA()
   {
      double totalCredits = 0;
      double totalPoints = 0;
      foreach (CourseOffering s in enrolledSections)
      {
         �totalCredits = totalCredits +

   s.GetCreditHours();
         �totalPoints = totalPoints + s.GetCreditHours()

   * transcript[s].GetPoints();
      }
      return totalPoints / totalCredits;
   }

   public double GetTotalCredits()
   {
      double result = 0;
      foreach (CourseOffering s in enrolledSections)
      {
         if (transcript[s].GetPoints() >= 1)
             result += s.GetCreditHours();
      }
      return result;
   }

}

b3881_Ch14.indd 341 05-10-2020 17:11:57

b3881   Requirements Modeling and Coding� 6"×9"

342  Requirements Modeling and Coding

Collaboration via Examples: Check Prerequisites
In this section, we continue the student registration example (see Figure 4)
and add a function to check if a student has fulfilled the prerequisites.
The function can improve the existing operations: AddClass() in the
Student class and Enroll() in the CourseOffering class, by
adding a precondition.

To check prerequisites, we need a list of courses that are designated
as prerequisites and a list of courses that a student has finished. No object
has data on both lists, so where should the operation be allocated? The
Course class has a list of designated prerequisites. However, it cannot
obtain a list of finished courses from a Student object because it cannot
send messages to the Student object according to unidirectional naviga-
bility. The CourseOffering class is a possible choice because it can ask
the Course class for the list of prerequisites and ask a Student object
for a list of finished classes. The only parameter needed is a Student
object or a student ID. The reader may consider this choice as a homework
exercise. The second choice is the Student class because it has a list of
finished courses, and it can also ask CourseOffering for help to get a
list of prerequisites. Now let us implement the second choice.

First, the Student class needs the CourseOffering class
to help get a list of prerequisites. This can be done easily because
CourseOffering can delegate the actual job to the Course class:

public class CourseOffering
{
   private string section;
   private int cap;
   private Course crsUnder;
   private List<Student> enrollees;
   private Dictionary<int, Enrollment> roster;

   public List<Course> GetPrerequisites()
   {
       return crsUnder.GetPrerequisites();
   }

   public double GetCreditHours()
   {
       return crsUnder.GetCreditHours();
   }

}

b3881_Ch14.indd 342 05-10-2020 17:11:57

b3881   Requirements Modeling and Coding6"×9"�

Collaboration  343

Next, let us create a helper method in the Student class to check if
a student has successfully finished a given course, assuming the passing
grade is C or better. Note that we are able to use GetPoints() to tell if
a student has a passing score.

public bool IsFinished (Course c)
{
   foreach (CourseOffering s in enrolledSections)
   {
       �if (transcript[s].GetPoints()>=2 &&

   s.GetCourse() == c)
       {
           return true;
       }
   }
   return false;
}

With these helper methods, we can now implement CheckPrerequ
isites(CourseOffering c) as follows by checking each course in
the list of the prerequisites to see if a student has passed the prerequisites
(see the boldfaced code). The code tests each prerequisite, and if anyone
has not finished the course successfully, the student is deemed as not meet-
ing the prerequisites.

public class Student
{
   private DateTime admitDate;
   private int sid;
   private string firstName, lastName;
   private List<CourseOffering> enrolledSections;
   Dictionary<CourseOffering, Enrollment> transcript;

   public bool IsFinished (Course c)
   {
      foreach (CourseOffering s in enrolledSections)
      {
         �if (transcript[s].GetPoints()>=2 &&

   s.GetCourse() == c)
         {
             return true;
         }
   }
   return false;
   }

b3881_Ch14.indd 343 05-10-2020 17:11:57

b3881   Requirements Modeling and Coding� 6"×9"

344  Requirements Modeling and Coding

   public bool CheckPrerequisites(Course c)
   {
      List<Course> prereqs = c.GetPrerequisites();
      foreach (Course crs in prereqs)
      {
         if (this.IsFinished(crs) == false)
            return false;
      }
      return true;
   }

   public double ComputeGPA()
   {
      double totalCredits = 0;
      double totalPoints = 0;
      foreach (CourseOffering s in enrolledSections)
      {
         �totalCredits = totalCredits +

   s.GetCreditHours();
         �totalPoints = totalPoints + s.GetCreditHours()

   * transcript[s].GetPoints();
      }
      return totalPoints / totalCredits;
   }

   public double GetTotalCredits()
   {
      double result = 0;
      foreach (CourseOffering s in enrolledSections)
      {
         if (transcript[s].GetPoints() >= 1)
             result += s.GetCreditHours();
      }
      return result;
   }

}

Collaboration via Examples: Check Time Conflicts
Besides checking prerequisites, we must also make sure the time for the
course in which one is to be enrolled is not conflicting with ones that a
student has already registered. To check for time conflicts, we need to
know what courses a student has registered for as well as the meeting

b3881_Ch14.indd 344 05-10-2020 17:11:57

b3881   Requirements Modeling and Coding6"×9"�

Collaboration  345

times for each individual one. Thus, the best class to house the operation
is the Student class.

Now let us analyze the logic of the operation. First, we need each
course offering to tell its meeting times. Then we need to compare the
meeting times of the course in which one wishes to be enrolled with that
of each of registered courses to see if there is any overlap.

This sounds easy but is actually a complex job, partially because
the time for course offerings are typically stated like Mondays and
Wednesdays between 1:30 PM and 2:55 PM during a period between
January 15, 2020 and May 5, 2020. Currently, we use a text field to record
the class time; it is difficult to be quantified for the implementation of the
CheckTimeConflicts operation. Built-in types such as Date in Java
or DateTime in C# will not serve the purpose; Date and DateTime
objects are absolute points in time, and since the time for a class meeting
is like 1:30 PM–2:55 PM every Monday between January 15, 2020 and
May 10, 2020, for example, this will not suit.

To better model meeting times, we first need to have the Period
class with attributes beginDate and endDate to represent values like
“between January 18, 2020 and May 10, 2020.” Then we need a data type
for a point in time during a day. It is a relative time, i.e., time without
year, month, and day values. Thus, the new Time class has data members
hour, minute, and second only. Then we can use the Time class to
create TimeSlot class with data members: day (for week day 1, 2, 3,
etc.), beginTime, and endTime. The latter two are of the Time type.
Then the class time for each course will be specified by a time period
like between January 15, 2012 and May 10, 2020, and one or more time
slots like Monday 1:30 PM–2:55 PM, Wednesday 1:30 PM–2:55 PM, etc.
With these helper classes, we now update the class diagram accordingly
(Figure 5).

In order to check if two class times are overlapping, we can del-
egate the task to CourseOffering, and so we create a method
Overlap(CourseOffering c) in there. But in order to check if one
course offering has time conflicts with another, we need to check if two
periods are overlapping and if two times slots are overlapping. So, the
CourseOffering class is going to delegate the sub-tasks to Period and
TimeSlot classes; thus, we create helper operations accordingly in there.

It is easy to compare if two periods are overlapping by simply com-
paring the beginDate of one period with the endDate of the second
period.

b3881_Ch14.indd 345 05-10-2020 17:11:57

b3881   Requirements Modeling and Coding� 6"×9"

346  Requirements Modeling and Coding

public class Period
{
   private DateTime beginDate;
   private DateTime endDate;

   public bool NotOverlap(Period p)
   {
      �if (this.endDate < p.beginDate || p.endDate <

    this.beginDate)
          return true;
      else
          return false;
   }

   public bool IsOverlap(Period p)
   {
      �if(this.endDate >= p.beginDate && p.endDate >=

   this.beginDate)
         return true;
      else
         return false;
   }
}

In order to tell if one time slot is overlapping with another time slot,
we need to have a way to compare two times to see which is earlier and

Course

cno:string
credits:double
title:string
desc:string

GetCreditHours():double
FindPrerequisites(cno:string):List<Course>
GetPrerequisites():List<Course>

requires

*

*

CourseOffering

cap:int
section:string

Drop(s:Student):void
Enroll(s:Student):void
PostGrade(s:Student,g:string):void
GetCourse():Course
GetPrerequisites():Dictionary<C...
IsOverlap(co:CourseOffering):bool
GetCreditHours():double

1

Student

sid:int
lastName:string
firstName:string
admitDate:DateTime

AddClass(c:CourseOffering):void
DropClass(c:CourseOffering):void
IsEnrolled(c:CourseOffering):bool
CheckPrerequisiites(c:CourseO...
CheckTimeConflicts(c:CourseOf...
GetGPA():double
GetTotalCredits():double
IsFinished(c:Course):bool

Enrollment
**

Enrollment

grade:string
status:bool

ChangeGrade(newGrade:string):void
GetPoints():double
UpdateStatus(newStatus:bool):void

Period

beginDate:DateTime
endDate:DateTime

GetDays():int
Overlap(p:Period):bool

1

1

Timeslot

day:int

Overlap(ts:TimeSlot):bool

1

*
Time

hour:int
minute:int
second:int

Greater(a:Time,b:Time):bool
Less(a:Time,b:Time):bool

1 2

Figure 5.   Revised class diagram for student registration system.

b3881_Ch14.indd 346 05-10-2020 17:11:57

b3881   Requirements Modeling and Coding6"×9"�

Collaboration  347

which is later. For that purpose, we delegate the job to the Time class
and create an operator < there so that we can compare if time a is less
than time b by using the operator a < b. The following code shows the
implementation of the Time class with the operator <. The basic idea is
to count the total number of seconds from 00:00:00 of a day to see which
time is smaller.

public class Time
{
   int hour, minute, second;
   public static bool operator <(Time t1, Time t2)
   {
      if (t1.hour * 3600 + t1.minute * 60 + t1.second
                �< t2.hour * 3600 + t2.minute * 60 +

   t2.second)
          return true;
      else
          return false;
   }

   public static bool operator >(Time t1, Time t2)
   {
      if (t1.hour * 3600 + t1.minute * 60 + t1.second
               �> t2.hour * 3600 + t2.minute * 60 +

   t2.second)
          return true;
      else
          return false;
   }
}

To implement the TimeSlot class, we need a data type for week-
days. Note that since a weekday takes values 0, 1, 2, …, 6, so we can create
an enum type Day for it.

public enum Day
{
   Sunday,
   Monday,
   Tuesday,
   Wednesday,
   Thursday,
   Friday,
   Saturday
}

b3881_Ch14.indd 347 05-10-2020 17:11:57

b3881   Requirements Modeling and Coding� 6"×9"

348  Requirements Modeling and Coding

If two time slots are on different weekdays, they will not be overlap-
ping. If they are on the same weekday, we check if the end time of one slot
is smaller than the begin time of another time slot.

public class TimeSlot
{
   Day d;
   Time beginTime;
   Time endTime;

   public bool NotOverlap(TimeSlot ts)
   {
      if (this.d != ts.d)
          return true;
      else
      {
          �if (this.endTime < ts.beginTime ||

   ts.endTime < this.beginTime)
              return true;
          else
      return false;
      }
   }
}

Now we can check if one course offering has overlapping time with
another. First check if they have overlapping periods. If they do, check for
all possible overlapping time slots; two courses are deemed to have time
conflicts if any two time slots overlap (see the boldfaced code).

public class CourseOffering
{
   private string section;
   private int cap;
   private Course crsUnder;
   private List<Student> enrollees;
   private Dictionary<int, Enrollment> roster;
   private Period term;
   private List<TimeSlot> meetingTimes;

   public bool HasConflict(CourseOffering s)
   {
      if (this.term.NotOverlap(s.term))

b3881_Ch14.indd 348 05-10-2020 17:11:57

b3881   Requirements Modeling and Coding6"×9"�

Collaboration  349

          return false;
      else
      {
         foreach (TimeSlot ts1 in this.meetingTimes)
         {
            foreach (TimeSlot ts2 in s.meetingTimes)
            {
                if (ts1.NotOverlap(ts2) == false)
                    return true;
            }
         }
         return false;
      }
   }

   public Course GetCourse()
   {
   return crsUnder;
   }

   public double GetCreditHours()
   {
   return crsUnder.GetCreditHours();
   }

}

Finally, let us implement CheckTimeConflicts(CourseOffe
ring c) in the Student class. The Student class is a hero here; it
does the most important jobs in the registration system. Yet, see how little
it does. It delegates most of the job to other classes. The hero becomes a
hero with a lot of helpers.

public class Student
{
   private DateTime admitDate;
   private int sid;
   private string firstName, lastName;
   private List<CourseOffering> enrolledSections;
   Dictionary<CourseOffering, Enrollment> transcript;

   public bool CheckTimeConflict(CourseOffering s)
   {
      foreach (CourseOffering enS in enrolledSections)

b3881_Ch14.indd 349 05-10-2020 17:11:57

b3881   Requirements Modeling and Coding� 6"×9"

350  Requirements Modeling and Coding

      {
         if (enS.HasConflict(s))
             return true;
      }
      return false;
   }

   public bool HasFinished (Course c)
   {
      foreach (CourseOffering s in enrolledSections)
      {
         �if (transcript[s].GetPoints()>=2 &&

   s.GetCourse() == c)
         {
             return true;
         }
      }
      return false;
   }

   public bool CheckPrerequisites(Course c)
   {
      List<Course> prereqs = c.GetPrerequisites();
      foreach (Course crs in prereqs)
      {
         if (this.HasFinished(crs) == false)
             return false;
      }
      return true;
   }

   public double ComputeGPA()
  {
      double totalCredits = 0;
      double totalPoints = 0;
      foreach (CourseOffering s in enrolledSections)
      {
         �totalCredits = totalCredits +

   s.GetCreditHours();
         �totalPoints = totalPoints + s.GetCreditHours()

   * transcript[s].GetPoints();
      }
      return totalPoints / totalCredits;
   }

}

b3881_Ch14.indd 350 05-10-2020 17:11:57

b3881   Requirements Modeling and Coding6"×9"�

Collaboration  351

We must not forget to call the newly added CheckPrerquisistes
and CheckTimeConflicts methods before we enroll students. So,
we change AddClass(CourseOffering c) in the Student class
and Enroll(Student s) in the CourseOffering class coded in
Chapter 7 (see the boldfaced code). To be perfect, we also add a method
in the CourseOffering class to check if the offering is currently
available.

public class CourseOffering
{
   private int sectionNo;
   private bool status;
   private Course crsUnder;
   private List<Student> enrollees;
   private Dictionary<int, Enrollment> roster;
   private Period term;
   private List<TimeSlot> meetingTimes;

   public bool HasConflict(CourseOffering s)
   {
      if (this.term.NotOverlap(s.term))
          return false;
      else
      {
          foreach (TimeSlot ts1 in this.meetingTimes)
          {
             foreach (TimeSlot ts2 in s.meetingTimes)
             {
                if (ts1.NotOverlap(ts2) == false)
                    return true;
             }
          }
          return false;
      }
   }

   public bool IsOpen()
   {
      return status;
   }

   public Course GetCourse()
   {
      return crsUnder;
   }

b3881_Ch14.indd 351 05-10-2020 17:11:57

b3881   Requirements Modeling and Coding� 6"×9"

352  Requirements Modeling and Coding

   public double GetCreditHours()
   {
      return crsUnder.GetCreditHours();
   }

   public void Enroll(Student stu)
   {
      if (stu.CheckPrerequisites(crsUnder)
                �&& !stu.CheckTimeConflict(this) &&

this.IsOpen())
      {
          enrollees.Add(stu);
          Enrollment e = new Enrollment(stu, this);
          roster.Add(stu.SID, e);
          stu.Sync(“add”, this, e);
      }
      else
      {
          throw new Exception(“Can’t enroll”);
      }
   }

   public void Drop(Student stu)
   {
      enrollees.Remove(stu);
      roster.Remove(stu.SID);
      stu.Sync(“drop”, this);
   }

   �public void Sync(string type, Student s,
   Enrollment e = null)

   {
      if (type == “add”)
      {
          enrollees.Add(s);
          roster.Add(s.SID, e);
      }
      else if (type == “drop”)
      {
          enrollees.Remove(s);
          roster.Remove(s.SID);
      }
   }

   public void PostGrade(Student stu, string g)
   {

b3881_Ch14.indd 352 05-10-2020 17:11:57

b3881   Requirements Modeling and Coding6"×9"�

Collaboration  353

      roster[stu.SID].ChangeGrade(g);
   }

   public List<Course> GetPrerequisites()
   {
      return crsUnder.GetPrerequisites();
   }

   }

   public class Student
   {
      private DateTime admitDate;
      private int sid;
      private string firstName, lastName;
      private List<CourseOffering> enrolledSections;
      �Dictionary<CourseOffering, Enrollment>

   transcript;

      public bool CheckTimeConflict(CourseOffering s)
      {
         �foreach (CourseOffering enS in

   enrolledSections)
         {
             if (enS.HasConflict(s))
                 return true;
         }
         return false;
      }

      public bool HasFinished (Course c)
      {
         �foreach (CourseOffering s in

   enrolledSections)
         {
            �if (transcript[s].GetPoints()>=2 &&

   s.GetCourse() == c)
            {
                return true;
            }
         }
         return false;
      }

      public bool CheckPrerequisites(Course c)
      {

b3881_Ch14.indd 353 05-10-2020 17:11:57

b3881   Requirements Modeling and Coding� 6"×9"

354  Requirements Modeling and Coding

         List<Course> prereqs = c.GetPrerequisites();
         foreach (Course crs in prereqs)
         {
             if (this.HasFinished(crs) == false)
                 return false;
         }
         return true;
      }

      public double ComputeGPA()
      {
         double totalCredits = 0;
         double totalPoints = 0;
         foreach (CourseOffering s in enrolledSections)
         {
            �totalCredits = totalCredits +

   s.GetCreditHours();
            �totalPoints = totalPoints +

   s.GetCreditHours() * transcript[s].
   GetPoints();

         }
         return totalPoints / totalCredits;
      }

      public double GetTotalCredits()
      {
         double result = 0;
         foreach (CourseOffering s in enrolledSections)
         {
            if (transcript[s].GetPoints() >= 1)
                result += s.GetCreditHours();
         }
         return result;
      }

      public int SID
      {
         get {return sid;}
         set {sid = value;}
      }

      public bool IsEnrolled(CourseOffering sec)
      {
         return enrolledSections.Contains(sec);
      }

b3881_Ch14.indd 354 05-10-2020 17:11:58

b3881   Requirements Modeling and Coding6"×9"�

Collaboration  355

      public void AddClass(CourseOffering sec)
      {
         if (this.CheckPrerequisites(sec.GetCourse())
             �&& !this.CheckTimeConflict(sec) && sec.

IsOpen())
       {
             enrolledSections.Add(sec);
             Enrollment e = new Enrollment(this, sec);
             transcript.Add(sec, e);
             sec.Sync(“add”, this, e);
      }
      else
      {
            throw new Exception(“Can’t enroll”);
      }
   }

   public void DropClass(CourseOffering sec)
   {
      enrolledSections.Remove(sec);
      transcript.Remove(sec);
      sec.Sync(“drop”, this);
   }

   �public void Sync(string type, CourseOffering sec,
   Enrollment e = null)

   {
      if (type == “add”)
      {
          enrolledSections.Add(sec);
          transcript.Add(sec, e);
      }
      else if (type == “drop”)
      {
          enrolledSections.Remove(sec);
          transcript.Remove(sec);
      }
   }
}

Exercises
1.	 Think of a strategy of applying all guidelines or heuristics for modeling

objects and then write an essay to discuss your strategy.

b3881_Ch14.indd 355 05-10-2020 17:11:58

b3881   Requirements Modeling and Coding� 6"×9"

356  Requirements Modeling and Coding

2.	 Implement the operations “bool CheckPrerequisites
(Student s)” in the CourseOffering class to check if stu-
dent s has passed all the courses designated as prerequisites. Implement
the operation “bool CheckTimeConflicts(Student s)” in
the CourseOffering class to check if a student has time conflicts
if taking the current course offering. Update AddClass(Course
Offering c) in the Student class and AddStudent(Student s)
in the CourseOffering class accordingly.

3.	 To create a new order, the necessary sub-tasks include add items, update
inventory, compute totals, and compute tax. The classes involved
include Customer, Order, Product, and OrderLine. Program
the MakeOrder() operation along with all the helper methods in
collaborating classes. Then draw the class diagram accordingly.

4.	 To receive a shipment, an inventory manager has to check each received
item, quantity, and quality against the original order and package list.
She has to note the differences, update the order lines and orders, and
update the inventory level. Create a graphical user interface for the
manager to do the job. Then create the class diagram with appropriate
data members and operations.

5.	 A professor makes various assignments throughout the course for stu-
dents. Each assignment will carry a certain maximum score. Students’
submissions are graded, and each is awarded with a certain point at or
below of the maximum score. Program the method to compute the total
points earned by each student throughout the course. Program another
method to find the average student grade for each assignment. Draw the
class diagram accordingly.

6.	 Airlines often announce flights for a fixed period of one or two years in
their catalogs. For example, Flight 1023 flies from New York to Beijing
every Sunday at 12:00 AM for Year 2013 and every Wednesday and
Sunday at 11:30 PM for Year 2014. Some flights have multiple stop-
over airports on the way to the final destination. Airlines then schedule
flights according to the above catalogs. For example, a flight a passen-
ger actually flies is Flight 1023 from New York to Beijing from July 30,
11:30 PM to July 31, 2:00 PM. When a customer books flights, he or
she can do it for one or more passengers, such as family members or
company employees. For each booking, the airlines require each pas-
senger name and birth date to be recorded. Create a class diagram for
the airline booking system and make sure you have appropriate date
types for flight schedules.

b3881_Ch14.indd 356 05-10-2020 17:11:58

b3881   Requirements Modeling and Coding6"×9"�

Collaboration  357

7.	 Hospitals offer various types of tests such as X-rays, autopsy, choles-
terol counts, etc. When performing actual tests for a patient, they need
to track the physician who ordered the test, and the physician who read
the test results, and the physician or employee who performed the test.
The test results can be varied. Sometimes, it is a simple value for an
attribute such as blood count. Sometimes it has multiple values as the
result. Sometimes it contains one or more image or sound files along
with experts’ reading comments and diagnosis. Create a class diagram
for a medical record system to handle tests and test results.

8.	 Implement the following class diagram (Figure 6) for a clinic appoint-
ment system. The key functionality is to make or take appointments
for patients with doctors. Of course, each new appointment must be
during the working hours for the doctor the patient wants to see and
must not conflict with other existing appointments. Assume each
new appointment will last for at least 15 minutes each. Each appoint-
ment has a specific begin time and end time. But the trouble is the
doctor’s working hours are recorded text, and a typical example will
read like this: between January and June of 2014, Dr. Johnson works at
Boston Women’s Hospital on Tuesdays and Fridays from 8:00 AM to
4:00 PM, and Cambridge College Office on Mondays and Thursdays
from 9:00 AM to 2:00 PM. Determine where to house the operations
MakeAppointment and CheckTimeConflict. Then implement the oper-
ations and create a helper classes and methods if needed. Submit the
final class diagram and class code.

b3881_Ch14.indd 357 05-10-2020 17:11:58

b3881   Requirements Modeling and Coding� 6"×9"

358  Requirements Modeling and Coding

Figure 6.   Class diagram for clinic appointment system.

Clinic

cName:string
location:string

Doctor

field:string
dName:string

AddAppointment(p:Patient,t:DateTime,r:string)):void
CancelAppointment(p:Patient,t:DateTime):void
FindAppointments(d:DateTime):List<Appointment>

Assignment

*

1..*

Patient

pid:int
pname:string

FindAppointment(d:DateTime):List<Appointment>
MakeAppointment(d:Doctor,t:DateTime,r:string):void
CancelAppointment(d:Doctor,t:DateTime):void

Appointment

*

*

Assignment

workHours:string

Appointment

beginTime:DateTime
endTime:DateTime
reason:string

b3881_Ch14.indd 358 05-10-2020 17:11:58

359

b3881   Requirements Modeling and Coding6"×9"�

Chapter 15

Collaboration Modeling

Introduction
A use case is a sequence of interactions, and each interaction is in the form
of either user requesting the system to perform a service, or the system
performing the service, providing feedback, or asking the user to provide
additional inputs.

What is the system? In earlier chapters, we understood the system
as a collection of objects. Thus, after all, all the services and requests by
the system must be performed by one or more objects that constitute the
system.

Collaboration modeling graphically depicts which objects perform
the services or display the information on behalf of the system and how
these objects collaborate with each other to perform a use case. In a sense,
a collaboration model is a graphical representation of the use case story
with one important distinction: Each interaction involving the system must
be allocated to one or more constituent objects. In this way, collaboration
modeling bridges classes and use cases and becomes the formal method
for identifying and capturing operations in class diagramming.

Collaborating objects, including actors and the constituent objects of
the system, interact with each other by sending messages. A collabora-
tion model represents the messages either spatially using communication
diagrams or chronologically using sequence diagrams. These two models
are almost equivalent and can be converted to each other mechanically.
The difference is that communication diagrams emphasize communication
links, while sequence diagrams emphasize the lifelines of objects.

b3881_Ch15.indd 359 05-10-2020 16:36:35

b3881   Requirements Modeling and Coding� 6"×9"

360  Requirements Modeling and Coding

Communication Diagrams
Objects collaborate by sending messages to each other. A message is a
function call; that object A sends a message to object B simply means that
A calls or invokes a function owned by object B. We discussed functional
calls in Chapter 4. The exception here is that objects are the owners/con-
tainers of functions, and to call a function, we need to send a message to
its container object. For example, an order system contains Order and
Item objects. When computing the order amount, an order object may
ask an Item object to get item information. This may be expressed as the
GetItemInfo() message (see Figure 1).

In collaboration models, the objects are named in the following
format: “object name:class name”. For example, we may name
a pilot object as james:Pilot and an airplane object as spitfire:
Airplane, etc. Objects can be anonymous, i.e., with names omitted,
such as :Order and :Item in Figure 1.

A communication diagram connects participating objects, and even
actors, using communication links and depicts messages over the links. A link,
drawn as an undirected line, is an instance of associations and corresponds to
the association relationship in a class diagram. One or more messages may
be communicated through a link, and each message has a name indicating
the message content, a number indicating the message sequence order, and
an arrow indicating the direction of the message (see Figure 1).

To create a communication diagram using Rhapsody, right click on a
package and select Add New  Diagrams  Communication Diagram
menu. A dialog will prompt for a diagram name. After dismissing the
dialog, a blank canvas along with the diagram tools will be displayed
(see Figure 2).

There are two ways to create object nodes using Rhapsody. We can
drag an existing class from the model browser to a communication dia-
gram. To create an object of an association class, we will need to make
an object from the association by first right clicking on the association in

:Order :Item
1. GetItemInfo()

Figure 1.   Sending message between objects.

b3881_Ch15.indd 360 05-10-2020 16:36:36

b3881   Requirements Modeling and Coding6"×9"�

Collaboration Modeling  361

the model browser and selecting the Make an Object menu item and then
dragging the created object from the model browser to the diagram. We
can also create a new object by using the Object tool from the Diagram
Tools (see Figure 2 for a snapshot of the toolbox). In this second approach,
a new class may be created for model synchronization: upon naming a new
object, Rhapsody will ask whether we want to create the class if it does
not exist yet.

To create a message, we will initially make a communication link and
later attach the message to the link by first selecting the Link Message
tool and then clicking on the link line. Each message will be automatically
labeled with a sequence number, which may be changed if we need to.

Collaboration usually involves many objects sending many messages
to each other to perform a whole use case. Putting all these messages in a
spatial order, we have a communication diagram. Figure 3 shows a com-
munication diagram to carry out the use case “Post Grades” performed
by the Professor actor: When a course is finished, a professor will post
grades to the registration system, and the system will update the object
data accordingly, including grades, earned credits, grade point average
(GPA), and enrollment status. Assume a professor uses a user interface,
called PostGradeForm, to post grades. The system needs the collabo-
ration of the user interface object and four domain objects to perform the
use case: Student, Enrollment, Course, and CourseOffering.

As we learned earlier, updating enrollment status and changing grades
are best done by an Enrollment object, retrieving credit hours can be

Figure 2.   Communication diagram tools.

b3881_Ch15.indd 361 05-10-2020 16:36:36

b3881   Requirements Modeling and Coding� 6"×9"

362  Requirements Modeling and Coding

done by a Course object, and updating total credits and GPA can be done
by a Student object. The collaboration can be designed as follows. First,
a professor enters grades into the user interface PostGradeForm, which
can then send the message ChangeGrade to an Enrollment object.
The Enrollment object may act as a coordinator, delegating some parts
of the job in updating credits and updating GPA to other objects. To retrieve
credit hours, the Enrollment object sends the GetCreditHours()
request to the CourseOffering object, which in turn sends the request
to the Course object. Then the Enrollment object can send a message
to the Student object to update the total credit and GPA.

Communication links

Note in Figure 3 that the Enrollment object does not send the mes-
sage GetCreditHours() directly to the Course object, rather it does
so indirectly through the CourseOffering object. This is because the
Enrollment object is not associated with the Course object and does
not know the Course object directly in the class diagram (see Figure 4).

Two objects can send messages to each other directly only if there
is a communication link between them, or equivalently if they have an
association relationship in the class diagram. In addition, if navigability is
unidirectional, messages are permitted to go in one direction. For example,
an order is associated with one or more items, and the association is one-
way from Order to Item, and so an order can send GetItemInfo()
or other messages to an item. However, due to unidirectional navigability
(see Figure 5), an item object cannot send any message to an order object.

:ProfessorActor

1. EnterGrade() :PostGradeForm

2. ValidateGrade()

:CourseOffering :Course5. GetCreditHours()

:Student:Enrollment3. ChangeGrade()
6. UpdateCredit()

4. GetCreditHours()

7. UpdateStatus()

Figure 3.   Communication diagram for posting grades.

b3881_Ch15.indd 362 05-10-2020 16:36:36

b3881   Requirements Modeling and Coding6"×9"�

Collaboration Modeling  363

A collaboration model links to class diagramming in two important
ways. First, messages suggest object operations. For example, according
to Figure 3, the message UpdateCredit() implies that its receiver, the
Student class, must have an operation to update credits. Incorporating
all the messages in Figure 3, the class diagram in Figure 4 will be enriched
into the one in Figure 6 with the added operations.

Second, a communication link implies the existence of an association.
If a collaboration diagram shows the need for collaboration between two
objects but they are not associated with each other, it may indicate that the
class diagram has deficiency and requires a structural change to reflect the
need for collaboration.

Course
cno:string
credits:double
title:string
desc:string

requires

*

*

CourseOffering

cap:int
section:string

1

Student

sid:int
lastName:string
firstName:string
admitDate:DateTime
credits:double
gpa:double

Enrollment **

Enrollment
grade:string
status:bool

Figure 4.   Business objects in collaboration to perform the “Post Grades” use case.

Order

odate:DateTime
oid:int
promiseDate:DateTime

Item

color:string
description:string
price:double
sku:string

GetItemInfo():string

Lineitem
1..*

Lineitem

qty:double

Figure 5.   One-way navigable associations.

b3881_Ch15.indd 363 05-10-2020 16:36:36

b3881   Requirements Modeling and Coding� 6"×9"

364  Requirements Modeling and Coding

Therefore, after drawing a collaboration model, we need not only
enrich a class diagram by capturing required operations but also must
make structural changes to the class diagram. After all, the most important
deliverable is the class diagram. It is the classes that constitute the business
application to be developed.

It is also worth noting in Figure 3 that collaboration to perform a use
case involves not only business or domain objects such as Student,
Course, CourseOffering, etc., but also non-domain objects such as
user interfaces and external agents such as actors.

With regard to class diagramming, thus far in this book, we have
focused on domain objects and their relationships. When modeling object
collaboration to perform a use case, we may have to include non-domain
objects since a typical system consists of not only domain objects but also
interface objects such as forms and reports as well as control objects that
are responsible for transaction coordination. As a rule of thumb, whenever
there is a message from an actor to the system or a message from the sys-
tem to the actor, there will be a need of a user interface. Similarly, when-
ever there is a complex task that requires multiple objects to collaborate,
a control object may be needed.

In Figure 3, the Enrollment object plays the role of a coordinator
in interacting with and delegating jobs to two or more domain objects
and coordinating their operations. This role is usually played by a con-
trol object. Unlike user interfaces, control objects embody business logics.
Unlike domain objects, control objects carry no business data members.
We may imagine a control object as a command center that can send mes-
sages to domain objects, sequence or coordinate their operations, integrate
their results, or orchestra collaboration of the objects.

Course

cno:string
credits:double
title:string
desc:string

GetCreditHours():double

Requirement

*

*

CourseOffering

cap:int
section:string

GetCreditHours():double 1

Student

sid:int
lastName:string
firstName:string
admitDate:DateTime
credits:double
gpa:double

UpdateCredit(grade:string,credit:double):void

Enrollment **

Enrollment

grade:string
status:bool

UpdateStatus(newStatus:bool):void
ChangeGrade(newGrade:string):void

Figure 6.   Enriched version of class diagram in Figure 4.

b3881_Ch15.indd 364 05-10-2020 16:36:36

b3881   Requirements Modeling and Coding6"×9"�

Collaboration Modeling  365

Due to a lack of object-oriented database systems, object data are
often persisted into and populated by relational databases. As such, there
may be a need for special data access objects to which other objects may
delegate data persistence-related operations, including building connec-
tions to a database and retrieving data from or saving data to a database.

A final type of non-domain class consists of universal helpers, called
utility classes. Utility classes help all other classes; they hold useful func-
tions that can be called for help in tasks like converting dates into different
formats, looking up tax rates, checking input errors, doing mathematical cal-
culations, etc. Since their functions are universal, utility classes do not really
belong to a system, and they can be packed as a library to be imported to
any system. Therefore, we do not need to model messages to utility classes.

In sum, collaboration modeling involves communications among four
different types of objects: domain objects, user interfaces, control objects,
and data access objects. Then, how do we determine their communica-
tion links in communication diagrams (or equivalently the associations of
these objects in class diagrams)? An overarching criterion is reusability:
A class is less reusable if it has more associations with other classes.
Just imagine a scenario in which a domain object can send messages to
a user interface, or equivalently a domain class has an association with a
user interface class. Such a domain class will not be reusable because it
has the user interface as a data member, and so it is always reused along
with the user interface together. This situation is rare. A system has many
different use cases, and an organization may have different systems for
different areas or at different times. Different use cases or systems usually
have dramatically different user interfaces and control logics, but they are
all based on the same domain objects. Therefore, a simple heuristic is to
make domain classes more reusable than control classes, which in turn
are more reusable than user interfaces. A step-and-skip model reflects this
heuristic (see Figure 7): rank four categories of classes in order, an object
at a higher rank can send messages to any object at a lower rank. These
four categories from high to low ranks are, respectively, user interface
objects, control objects, domain objects, and data access objects. Thus,
a user interface object can send messages to control objects, domain
objects, and data access objects, but not vice versa. Similarly, a control
object may send messages to domain and data access objects. Data access
objects are of the lowest rank; all other objects can execute the function-
alities of data access objects to persist data into a database.

The step-and-skip model is a general guideline, and its implementa-
tion is dependent on the context. For example, the model suggests that

b3881_Ch15.indd 365 05-10-2020 16:36:36

b3881   Requirements Modeling and Coding� 6"×9"

366  Requirements Modeling and Coding

domain objects can send messages to data access objects. This would
imply that domain classes are reusable with data access classes together
as a bundle. This makes sense sometimes, and the practice has been fol-
lowed by some formal technologies such as the entity framework. After
all, domain objects are data containers, and binding them with data access
classes will free us from plumbing jobs related to the persistence of the
object data and the CRUD activities on the object data.

However, reusing domain and data access classes together may not
be an optimal solution in situations with potential future changes in data
sources and/or data access techniques. For example, an organization may
switch its database system down the road from Oracle to MySQL or from
a relational DBMS to a non-relational one. A better solution in these situ-
ations is perhaps to make domain objects independent of data sources and
techniques of accessing the data sources. In doing so, the resulting domain
classes will be more reusable over time.

By the same token, user interface classes can achieve a higher level of
independence if restricted them from sending messages to other objects
except for control ones. Interface classes should focus on how to present
data and how to respond to user actions. All data to be presented should be
fed by control objects, and all user actions should be delegated to control
objects as well.

Therefore, a less questionable alternative to the step-and-skip model
is the VCM (View–Control–Model) model considering the above argu-
ments. The VCM model suggests that control objects can send messages
to both domain objects and data access objects, while user interfaces can
send messages to control objects only (see Figure 8). The VCM model
reduces coding flexibilities because of reduced communication links, but
it improves code reusability because a change in data access classes would
not affect domain classes and user interfaces, and a change in domain
classes would not affect user interfaces.

User Interface Classes Control Classes Business Classes Data Access Classes

Figure 7.   The step-and-skip model for communication links.

b3881_Ch15.indd 366 05-10-2020 16:36:37

b3881   Requirements Modeling and Coding6"×9"�

Collaboration Modeling  367

Communication diagramming via examples: Enroll classes

Let us model the collaborations to perform the “enroll classes” use case.
Assume Student is the primary actor, and Student uses a login form for
authentication and a registration form (see Figure 9) to search for and
sign up to courses. Assume the login form merely collects user credentials
and passes account data to UserControl, a control class, for account
validation. RegistrationForm displays a list of course offerings
that meet the search criteria and whether each one is available for sign-
ing up and whether the student meets the prerequisites or has time con-
flicts. The Student class performs the tasks of checking prerequisites
and time conflicts (see Chapter 14 for more details). Per the VCM model,
we create a control class, called RegistrationManager, to act as
a middleman between RegistrationForm and the domain classes.
RegistrationForm delegates the job of searching for course offer-
ings as well as registering classes to the control object, which will, in turn,
notify Student, CourseOffering, and Enrollment objects to
execute the actions, e.g., add a student to a course offering’s roster, add a
class to a student’s transcripts, etc.

Figure 10 depicts an extended class diagram of the student registra-
tion system with non-domain classes, LoginForm, UserControl,
RegistrationForm, and RegistrationManager included. Note
that in the diagram is a dependence relationship between classes,
and here it means that RegistrationManager depends on

InterfaceClass ControlClass

DomainClass

DataAccess

Figure 8.   The VCM model for communication links.

b3881_Ch15.indd 367 05-10-2020 16:36:37

b3881   Requirements Modeling and Coding� 6"×9"

368  Requirements Modeling and Coding

ScheduleAlgorithm; if the latter changes, then Registration
Manager changes accordingly.

To create a communication diagram for a use case, we need to fol-
low the sequence of events in the use case’s description. Each step in the
description is represented by one or more messages in the communica-
tion diagram. A request by an actor to the system or by the system to
an actor is done through a user interface object, which merely displays

Figure 9.   Registration form.

RegistrationForm RegistrationManager
1

ScheduleAlgorithm

Course

cno:string
credits:double
title:string
desc:string

requires

*

*

*

CourseOffering

cap:int
section:string 1

*

Student

sid:int
lastName:string
firstName:string
admitDate:DateTime
credits:double
gpa:double Enrollment

**

* Enrollment

grade:string
status:bool

*

DataAccess

1

Instructor

* 1

LoginForm UserControl
1 1

*

Figure 10.   An extended class diagram of a student registration system.

b3881_Ch15.indd 368 05-10-2020 16:36:37

b3881   Requirements Modeling and Coding6"×9"�

Collaboration Modeling  369

information and/or collects user inputs but delegates the main functions
such as obtaining or processing data to a control object. An activity per-
formed by the system is done through collaboration between one or more
domain, control, and/or data access objects.

Figure 11 shows a communication diagram for performing the “enroll
classes” use case, whose basic flow is listed in the following. Here, UI1,
which is LoginForm, is omitted, and UI2 (RegistrationForm) is
shown in Figure 9.

Basic Flow:

  1.	 Student enters user name and password (UI1)
  2.	 The system verifies the account
	 [do steps 3–14 for each class]

  3.	 Student searches for a class (UI2)
  4.	 The system checks for the availability of the class
  5.	 The system requests for the prerequisites of the class
  6.	 The system retrieves the student’s finished courses
  7.	 The system checks for satisfaction of prerequisites
  8.	 The system requests active enrolled courses
  9.	 The system checks for time conflicts
10.	 The system confirms no time conflicts
11.	 The system displays the search results (UI2)
12.	 Student requests to add a class to the shopping basket (UI2)
13.	 The system adds the class into the shopping basket
14.	 The student clicks Submit button (UI2)
15.	 The system creates new enrollment records
16.	 The system notifies the accounting system of updated credit hours
17.	 The system displays the confirmation message (PM1)

The messages are roughly grouped into three categories: messages 1–4
validate login, messages 5–13 search for course offerings, and the remain-
ing messages register for a course offering.

First, to validate login, the user enters login credentials into the login
form, which delegates the actual job to UserControl, which will in turn
load all user data and send a message to each Student object to see if the
credentials match.

Second, to search for course offerings, the user enters search crite-
ria into RegistrationForm, which then delegates the actual query

b3881_Ch15.indd 369 05-10-2020 16:36:37

b3881   Requirements Modeling and Coding� 6"×9"

370  Requirements Modeling and Coding

to RegistrationManager. The control object will in turn ask the
data access class to load and initiate Course and CourseOffering
objects that meet the search criteria. It will ask each Course and
CourseOffering object to get detailed information on each retrieved
offering. It will also ask the Student object to check for prerequisites
and possible time conflicts so that RegistrationForm can inform the
user of feasible choices.

Finally, when the user selects a course to enroll in, Registration
Form will first update its display to show the added course in the basket
and then send a message to RegisgrationManager to actually per-
form the registration, which is translated into four messages: create a
new enrollment record, add the record to the student’s transcripts, add the
record to the course offering’s roster, and save the data to the database.

Sequence Diagrams
The basic elements of a sequence diagram include participants, life-
lines, and messages (see Figure 12). The participants, including actors
and constituent objects, are shown on the top of the diagram. Each par-
ticipant has a corresponding lifeline running down the page. A lifeline
simply indicates that the participant exists at that point in the sequence
considering that an object can be created and/or deleted during a
sequence.

Interactions are in the form of sending and/or receiving messages.
Messages on a sequence diagram are specified using an arrow from the
sender to the receiver. Messages can flow in whatever direction makes

:StudentActor:StudentActor

1. EnterLogin()

6. EnterSearchCriteria()

14. AddClass()

:LoginForm :UserControl
2. ValidateLogin()

:RegistrationManager
:RegistrationForm

5. Open()

7. SearchCourseOfferings() 16. AddClass()

13. DisplaySearchResult()

15. UpdateDisplay()

:DataAccess

3. LoadUsers()

8. LoadCourseOfferings()
20. Save()

:Course

9. GetCourseInfo()

:CourseOffering

10. GetOfferingInfo()19. UpdateRoster()

:Student

4. ValidateLogin()

11. CheckPrerequisites()

12. CheckTimeConflicts()
18. UpdateTranscripts()

:Enrollment

17. CreateEnrollment()

Figure 11.   Collaboration diagram for “Register Courses” use case.

b3881_Ch15.indd 370 05-10-2020 16:36:37

b3881   Requirements Modeling and Coding6"×9"�

Collaboration Modeling  371

sense for the required interaction — from left to right, right to left, or even
back to the sender itself.

When sending or receiving a message, an activation bar can be shown
on the sending and receiving ends of a message (see Figure 12). An acti-
vation bar indicates that the sending participant is busy while it sends the
message and that the receiving participant is busy while the message is
received.

Messages are sent or received in chronological order from the top of
the lifelines to the bottom. All the messages are labeled with a sequence
number indicating the order of messages in the overall sequence. Note that
the time on a sequence diagram is all about ordering, not duration.

Sequence diagramming in Rhapsody

To create a sequence diagram using Rhapsody, right click with the mouse
on a package and select Add New  Diagrams  Sequence Diagram
menu. A dialog will prompt for a diagram name and choice of Analysis
or Design as the operation mode. In the design mode, messages will be
automatically captured as operations and class diagrams are synchronized.
In the analysis mode, the synchronization is not automatic, but the user
can choose to capture a message as an operation later by right clicking on

:B:A

DoSomething()

participants

message

lifeline

activation bara

Figure 12.   Elements of a sequence diagram.

b3881_Ch15.indd 371 05-10-2020 16:36:38

b3881   Requirements Modeling and Coding� 6"×9"

372  Requirements Modeling and Coding

the message and selecting the Auto Realize menu item. After dismissing
the dialog, a blank canvas along with the diagram tools will be displayed
(see Figure 13).

To create participants and their lifelines, we can drag Instance Line
from the diagram tools. Upon naming the participant, if the diagram is in
the design mode and the name is not that of an existing object, a dialog will
appear asking whether we want to create a class, of which the participant is
an instance. We can also simply drag an actor, a class, or an object from the
model browser to the canvas, and a lifeline will be created automatically.
Note that if the participant is an association object, we will first need to
create the object by right clicking on the association in the model browser
and selecting the Make an Object menu item.

To create a message, select Message from the diagram toolbox, and
first click on the sender’s lifeline and then on the receiver’s lifeline. We
can add activation bars by right clicking on the message and selecting Add
Execution Occurrences menu item.

By default, a diagram may not show the sequence numbers of the mes-
sages. We can turn on sequence numbers by resetting the diagram prop-
erty: right click anywhere in the diagram, select Features menu, and go to
the Properties tab. We can also set the Auto Create Execution Occurrences
property in the same place.

Figure 13.   Sequence diagramming tools in Rhapsody.

b3881_Ch15.indd 372 05-10-2020 16:36:38

b3881   Requirements Modeling and Coding6"×9"�

Collaboration Modeling  373

Representing a use case story

Sequence diagramming starts with a use case story from which we first
identify participants, including actors and user interfaces. We can use class
diagrams to identify additional participants such as domain or control
objects. The system may also include hardware components as partici-
pants. For example, an ATM consists of a card reader, a cash dispenser, a
printer, a keypad, a screen, a modem, a cash holder, a paper holder, and a
controller that coordinates other devices.

Then we follow the use case story to model each interaction between
the user and the system as one or more messages between participants,
from the user to an object, from one object to another object, or from an
object to the user. The following are a list of examples of how interactions
are translated into messages for the “withdraw cash” use case:

·	 “Card Holder inserts a card” will be modeled as a message from the
card holder to the card reader.

·	 “ATM validates the card” will be modeled as a message that the card
reader sends to itself to validate the card.

·	 “ATM asks for a pin” will be turned into a message on the screen to the
card holder.

·	 “Card Holder enters a pin” will be a message from the card holder to
the keypad.

·	 “ATM validates the pin” will be modeled as several messages from the
controller to the modem and then to Card Network.

·	 “ATM asks for a withdrawal amount” will be a message on the screen
to the user, and “Card Holder enters a withdrawal amount” will be a
message from the user to the keypad.

·	 “ATM dispenses cash” is a message from the controller to the cash
dispenser.

·	 “ATM prints a receipt” is a message from the controller to the printer.

In sum, if an interaction is that the user uses the system, it must be
translated into a message that the user sends to a user interface of the
system. If the system performs a function, the function must be performed
by an object or a group of objects through collaboration, i.e., sending mes-
sages among the participating objects.

Note that sequence and communication diagrams are not expres-
sive in describing alternate and exceptional flows or showing advanced

b3881_Ch15.indd 373 05-10-2020 16:36:38

b3881   Requirements Modeling and Coding� 6"×9"

374  Requirements Modeling and Coding

optimization concepts such as extension points. If desirable, one may
attach separate notes to the message calls.

Sequence diagramming via examples: Food order system

Figure 14 shows the use cases for the food order system of a typical sit-
in restaurant. One of the most important use cases for the system is to
take customer orders. By describing the use case, it will become clear that
this use case requires collaboration among the following objects — user
interfaces OrderScreen, LoginScreen, and KitchenOrder —
along with domain classes Employee, Order, Table, Food, and
OrderLine.

Figure 15 demonstrates the preliminary class diagram that shows
how the objects are structurally related. Here, the OrderItem object is

WaiterActor

take order

CustomerActor

CashierActor

collect payment

CookActor

process order

Manageractor

check inventory

InvSystem
generate revenue

report

Figure 14.   Use case diagram for a food order system.

b3881_Ch15.indd 374 05-10-2020 16:36:38

b3881   Requirements Modeling and Coding6"×9"�

Collaboration Modeling  375

used to represent the need that a customer may order the same food in
multiple quantities and/or add a specification to a food. OrderItem
is an association class, but it is represented here as an equivalent
ordinary class. Each food is made of one or more supplies, and the
Ingredient object models the quantity of each supply in making
the food. Ingredient is an association object but equivalently repre-
sented as an ordinary object.

The order screen (see Figure 16) uses a combo box to show a list of
available tables and a graphical panel or combo box to show all the foods
and drinks. The basic flow of the “take order” use case is listed here. In the
following, instead of showing an entire sequence diagram, we show the
messages segment by segment.

Basic Flow:

  1.	 Waiter swipes Employee ID
  2.	 The system validates the ID
  3.	 The system loads Food Order Screen (UI1)
	 [Steps 4–9 repeat for each order item]

  4.	 Waiter selects a table (UI1)
  5.	 The system updates table status
  6.	 Waiter selects a seat (UI1)
  7.	 Waiter selects a food and adds cooking instructions (UI1)

Employee

hiredate:DateTime

name:string

job:string

Order

odate:DateTime

oid:int

1 *

User

id:string

password:string

role:string

uid:string

UserControl

loginUser:User

users:List<User>

Food

description:string

picture:string

price:double

title:string

* 1..*

OrderItem

qty:int

1

1..* *

1

OrderScreen
LoginForm

Supply

desc:string

maxLevel:double

minLevel:double

qty:double* 1..*

Table

Location:string

tableNo:int

*

*
Ingredient

qty:double

1

1..*

1

*

Figure 15.   The class diagram for a food order system.

b3881_Ch15.indd 375 05-10-2020 16:36:38

b3881   Requirements Modeling and Coding� 6"×9"

376  Requirements Modeling and Coding

  8.	 Waiter presses Add button
  9.	 The system displays the order items
10.	 Waiter presses Save button (UI1)
11.	 The system changes order status
12.	 The systems updates inventory
13.	 Waiter logs out
14.	 The system goes idle

Steps 1–2 deal with user authentication. There are many ways to do
this. For example, in real life, you will probably send user account infor-
mation to an authentication gateway to check if the account is valid. Here,
a more object-oriented approach is taken, which is free from a relational
database, and assumes that all data are held by objects. So, a control class,
UserControl, is contemplated that holds a list of all user objects as
coded in the following:

public class UserControl {
       private List<User> users;
       private User loginUser;
       //
}

To validate an account, UserControl will load data to initialize all
the user objects, and then use a loop to ask each user object to see if the

Figure 16.   Food order screen prototype.

b3881_Ch15.indd 376 05-10-2020 16:36:38

b3881   Requirements Modeling and Coding6"×9"�

Collaboration Modeling  377

account information matches it. If it does match one of them (that is what
the basic flow assumes anyway), then UserControl will set the login
user object for the entire transaction session and ask the object to obtain
user details such as employee name, job, and ID to be shown on the order
screen. This segment of the sequence is shown in Figure 17, and the code
is illustrated below.

public class LoginForm
{
       Public void Swipe()
       {
              //
       }
}
public class User
{
       private string uid, role;
       public bool VerifyUser(string id) { //}
       public string GetUserInfo() { //}

}
public class UserControl {
       private List<User> users;
       private User LoginUser;

:User:UserControl

LoadUsers()

VerifyUser(id)

GetUserInfo()

:LoginForm

ValidateID(id:string)

:WaiterActor

Swipe()

Figure 17.   Sequence diagram for user authentication.

b3881_Ch15.indd 377 05-10-2020 16:36:39

b3881   Requirements Modeling and Coding� 6"×9"

378  Requirements Modeling and Coding

       public void loadUsers()
       {
              users = new List<User>();
              //code to initialize users
       }
       public void ValidateUser(string id)
       {
              loginUser = null;
              foreach (User u in users)
              {
                     if (u.Verify(id))
                     loginUser = u;
                     break;
              }
     }
}

As we can see, a sequence diagram re-expresses a use case story as
interactions between the user and the system, but the system does not
appear in a sequence diagram as a participant. Rather it is expanded into
and replaced with its constituent objects so that an interaction between the
user and the system is replaced by one between the user and the objects
that constitute the system. Operations performed by the system are trans-
formed into one or more intra-system requests and responses.

Figure 18 shows the updated classes involved in the collaboration
with the messages captured as operations. In order to help the reader
understand the sequence diagram, the skeleton code for these classes is
listed above.

Step 3 is to load the order screen if the user login is authenticated. This
involves several collaborating objects to act in coordination: (1) log-
inFrom is closed and OrderScreen is displayed, (2) a new order is

User

id:string
name:string

VerifyUser(id:string):bool
GetUserInfo():string

UserControl

users:List<User>
loginUser:User

LoadUsers():void
ValidateID(id:string):void

LoginForm

Swipe():void

Figure 18.   Updated classes reflecting the sequence diagram in Figure 17.

b3881_Ch15.indd 378 05-10-2020 16:36:39

b3881   Requirements Modeling and Coding6"×9"�

Collaboration Modeling  379

created, (3) all tables, if available, are loaded into the combo box, (4) all
food and drink items, if available, are loaded into an imaged combo box.
The sequence diagram is shown in Figure 19.

Steps 4–5 deal with selecting a table for the order (see Figure 20). Of
course, the system needs to check if the table is still available because the
other waiters may have assigned it to another customer after the current
order screen was loaded. If available, then the system needs to add the
table to the current order and update the table status.

Steps 6–9 are mostly about adding order items, including seat selec-
tion, food selection, and cooking instruction; all are user actions performed
using the order screen with exceptions to re-check for food availability and
add an order item to the order object (see Figure 21).

Steps 10–12 are about saving the order. These include updating order
status from Pending to Sent to Kitchen and updating the inventory of
ingredients used. The latter must be done via the collaboration of many
participating objects. First, each food item can get the quantity of each
ingredient used to make the food from the Ingredient object. Using
this quantity, a Food object can send a message to each Supply object
to change the inventory quantity. Second, an Order object can get the
quantity of each food ordered from each OrderItem object and can then

:Food:Table:Order:OrderScreen

Create()

LoadTables()

GetTableDetails()

DisplayAvailableTables()

LoadFoods()

GetFoodDetails()
ShowAvailableFoods()

:LoginForm

Open()

Destroy()

Figure 19.   Sequence diagram for loading order screen.

b3881_Ch15.indd 379 05-10-2020 16:36:39

b3881   Requirements Modeling and Coding� 6"×9"

380  Requirements Modeling and Coding

send this quantity to each Food object to update the inventory, which in
turn calls each Supply object to update the inventory used. The following
implementation shows the collaboration of the related objects as depicted
in Figure 22:

Public class Supply {
       private double qty;
       public void UpdateInventory(double qtyChange)
       { qty += qtyChange;}

:Order:Table:OrderScreen

CheckAvailability()

AddTable(t:Table)

UpdateStatus()

:WaiterActor

SelectTable()

Figure 20.   Sequence diagram for adding table to food order.

:OrderItem:Order:Food:OrderScreen

CheckAvailability()

Create()

AddItem(item:OrderItem)

:WaiterActor

SelectSeat()

SelectFood()

AddCookNote()

AddItem()

Figure 21.   Sequence diagram for adding food to order.

b3881_Ch15.indd 380 05-10-2020 16:36:39

b3881   Requirements Modeling and Coding6"×9"�

Collaboration Modeling  381

}
public class Ingredient {
       private Supply supply;
       private Food food;
       Private double qty;
       Public double GetQTY() { return qty;}
       Public Supply GetSupply() { return supply;}
}

public class Food {
       Private List<Supply> itemsUsed;
       �Private Dictionary<Supply, Ingredient>

   ingredient;
       Public void UpdateInventory(double q) {
              foreach (Supply s in itemsUsed) {
                     �double qty = ingredient[s].

   GetQTY();
                     s.UpdateInventory(-q*qty);
              }
       }
}

public class OrderItem {
       private Order order;
       private Food food;
       Private double qty;
       Public double GetQTY() { return qty;}
}

:Ingredient:Supply:Food

GetQTY()
UpdateInventory(qty:double)

:OrderItem:Order

GetQTY()

UpdateInentory(qty:double)

:OrderScreen

UpdateOrderStatus()

UpdateInventory()

:WaiterActor

SaveOrder()

Figure 22.   Sequence diagram for saving orders.

b3881_Ch15.indd 381 05-10-2020 16:36:40

b3881   Requirements Modeling and Coding� 6"×9"

382  Requirements Modeling and Coding

public class Order {
       private List<Food> foods;
       private Dictionary<Food, OrderItem> orderLiness;
       public void UpdateInventory(){
              double q;
              foreach (Food f in foods) {
                       q = orderliness[f].GetQTY();
                       f.UpdateInventory(q);
              }
       }
}

The last step is that the user logs out of the system. This can be performed
by the UserControl object with the operation Logout(), which can
be implemented by one command:

   public class UserControl {
   private List<User> users;
   private User LoginUser;
   …
   Public void Logout()
   { loginUser = null; }
}

Employee

hiredate:DateTime
name:string
job:string

Order

odate:DateTime
oid:int

AddItem(oi:OrderItem):void
UpdateInventory():void
UpdateOrderStatus(s:string):void
AddTable(t:Table):void

1 *

User

id:string
password:string
role:string
uid:string

GetUserInfo():string
VerifyUser(id:string):bool

UserControl

loginUser:User
users:List<User>

LoadUsers():void
ValidateID(id:string):void

Food

description:string
picture:string
price:double
title:string

CheckAvailability():bool
GetFoodDetails():string
UpdateInventory(q:double):void

* 1..*

OrderItem

qty:int

GetQTY():int

1

1..* *

1

OrderScreen

AddCookNote():void
AddItem():void
DisplayAvailableTables():void
LoadFoods():void
LoadTables():void
Open():void
SaveOrder():void
SelectFood():void
SelectSeat():void
ShowAvailableFoods():void

LoginForm

Swipe():void

Supply

desc:string
maxLevel:double
minLevel:double
qty:double

UpdateInventory(q:double):void

* 1..*

Table

Location:string
tableNo:int

GetTableDetails():string

*

*
Ingredient

qty:double

GetQTY():double

1

1..*

1

*

Figure 23.   The expanded class diagram for a food ordering system.

b3881_Ch15.indd 382 05-10-2020 16:36:40

b3881   Requirements Modeling and Coding6"×9"�

Collaboration Modeling  383

Summarizing the interactions in all the sequence diagrams, the Employee
object must be capable of authenticating a user. Order objects must be
able to create a new order, assign a table to the order, add food item(s) to
the order, update order status, and update inventory used for making the
foods in the order. Food objects shall be able to get item information
and update inventory for the ingredients used to cook the food. Finally,
OrderItem shall be able to get the item quantity of each order. By cap-
turing these operations into the class diagram in Figure 15, we obtain the
expanded class diagram shown in Figure 23.

An afterthought

Collaboration modeling is indispensable in object-oriented development.
Beginners in object modeling tend to find it easy to come up with a list of
attributes for objects. Capturing functions or operations, on the other hand,
is always a difficult task. However, thanks to use case storyboarding and
collaboration modeling, the object-oriented method has made it possible
for there to be no lack of operations to be captured. Everything comes
together with ease because the skill for storyboarding seems to be easy to
grasp, and the idea of collaboration is not hard to comprehend.

Like use case stories and activity diagrams, collaboration models are
procedural ones. Each of these models has a niche in software develop-
ment. A collaboration model may not be as expressive as other alterna-
tives. For example, a collaboration model cannot express alternate and
exceptional flows as well as a use case story can and cannot represent
loop and decision controls as well as an activity diagram can. However,
collaboration modeling offers benefits that use case storyboarding and
activity diagramming cannot. A collaboration diagram visually shows the
chronological or spatial order of interactions as a sequence of messages.
It is more concise than a use case story. Collaboration modeling bridges
objects with use cases; if the objects are designed in such a way that they
are capable of performing interactions on behalf of the system, the use
case can be realized. Thus, a collaboration diagram elaborates the respon-
sibilities of the objects for realizing a use case. A collaboration model
is useful for the model-driven software engineering approach to require-
ments specification, i.e., code generation from a model. For example, the
messages are realized into the operations of the receiving object. Thus, one
may trace back to a class diagram to find missing operations.

b3881_Ch15.indd 383 05-10-2020 16:36:40

b3881   Requirements Modeling and Coding� 6"×9"

384  Requirements Modeling and Coding

Exercises
1.	 Consider the ATM as a collection of collaborating objects: Card

Reader, Cash Dispenser, Printer, Screen, Keyboard, etc. Then draw a
sequence diagram such that all the services done by the ATM must be
reallocated to the correct object.

2.	 Each of following is a subsequence of interactions involving a few
objects. Please draw the class diagram of the involved objects and a
sequence diagram showing the interaction. Then add the appropriate
operation to the related classes.
a.	 In the POS, the cashier scans an item, then the system retrieves

and displays the item information on screen.
b.	 In the student registration system, Student enters login informa-

tion, and the system validates the account.
c.	 In the inventory system, Manager checks the discrepancy box for

an ordered item, and the system displays another popup screen
to allow the manager to enter details on the discrepancy such as
defects, incorrect quantity, etc.

d.	 In the food order system, waiter selects a table from the list, and
the system validates the availability status of the table.

3.	 In a library circulation system, two of the most important use cases are
checkout and return. The business objects important to the system are
borrowers, checkouts, returns, books, copies, etc.
a.	 Create a class diagram to represent the business objects.
b.	 Design graphical user interfaces for checkout and return.
c.	 Create sequence diagrams for the following segments of use case

descriptions:
i.	 Return: The circulation desk employee scans a book, the sys-

tem retrieves the rental record, the employee marks the return
condition, the system updates the rental record, and the sys-
tem update the inventory.

ii.	 Checkout: The circulation desk employee scans the borrower
ID, the system retrieves and displays the borrower record, the
system checks overdue records, the system displays checkout
screen, the employee scans a book copy, the system retrieves
the book copy record, the employee confirms the book copy
condition, the employee verifies the due date with the bor-
rower, the employee affirms checkout, the system updates the

b3881_Ch15.indd 384 05-10-2020 16:36:40

b3881   Requirements Modeling and Coding6"×9"�

Collaboration Modeling  385

inventory, the system creates a rental record, and the system
prints a due date notice.

4.	 (Student Registration System): For the use case “schedule course
offerings”, write a use case story and then create a sequence diagram.
Finally, expand the relevant classes by including the required func-
tions shown in the sequence diagram.

5.	 (Restaurant): Taking food orders is the most important use case that
involves many computer screens such as Food Order Form and busi-
ness objects Food, Customer, Order, etc. List and define these
screen and business objects and then create a sequence diagram that
shows their collaboration in performing the use case. Finally, expand
the relevant classes by including the captured functions shown in the
sequence diagram.

6.	 (Point of Sale System): Checking out is a use case for any point of
sale system for retail stores. From its story, we know that many objects
will be involved in performing each use case such as checkout screen,
payment screen, receipt, etc., and business objects such as Item,
Transaction, Employee, etc. Create a list of these screens and
business objects and then create a sequence diagram to show the col-
laboration among them to achieve this use case. Finally, expand the
relevant classes by including the captured functions shown in the
sequence diagram.

7.	 (Inventory System): Receiving new shipments is a typical use case in
the inventory management system. It will update inventory, notify the
vendor of discrepancies, update order status, and record unshipped
items, etc.
a.	 Create a class diagram to model the business objects involved.
b.	 Create flow of events for this use case.
c.	 List participating screen, report, and business objects that will

perform the use case.
d.	 Create a sequence diagram to show the collaboration in perform-

ing the use case.
e.	 Expand the relevant classes by including the captured functions

shown in the sequence diagram.

b3881_Ch15.indd 385 05-10-2020 16:36:40

b2530   International Strategic Relations and China’s National Security: World at the Crossroads

b2530_FM.indd 6 01-Sep-16 11:03:06 AM

This page intentionally left blankThis page intentionally left blankThis page intentionally left blankThis page intentionally left blank

387

b3881   Requirements Modeling and Coding6"×9"�

Chapter 16

A Complete Use Case Implementation

Introduction
This chapter will put class diagrams, use case diagrams, use case story-
boarding, and collaboration modeling and programming together into a
workable mini system. In order to limit the project size and at the same
time illustrate all aspects of modeling and coding, we will continue the
registration system project we developed in prior chapters, in particular,
Chapter 7 on coding association classes and Chapters 14 and 15 on col-
laboration modeling, where we have developed a class diagram and its
implementation with many useful functions. In this chapter, we will base
on the class diagram and the code and create additional artifacts to realize
a simple use case, “Post Grade”, performed by professors. This chapter
involves a lot of nitty-gritty details, and so the reader is advised to read and
follow it as a hands-on project.

Use Case and Storyboarding
The following (Figure 1) is a simple use diagram that shows the function-
alities that we will develop. It assumes that we factor out the interactions
for user login into a separate inclusion use case.

The use cases are described as follows using the template provided in
Chapter 10 as follows:

b3881_Ch16.indd 387 05-10-2020 16:37:20

b3881   Requirements Modeling and Coding� 6"×9"

388  Requirements Modeling and Coding

Use Case: Login
Type: Inclusion use case

Flow of Events:

Basic Flow:
1.	 The system display login screen (UI1)
2.	 User enters username, password, and role (UI1)
3.	 The system validates login

Alternate Flows:
3a.  incorrect login:

.1  The system counts the number of errors

.2  The system checks login error limit

.3  Go to step 1
Exceptional Flows:

3a.2a.  too many login errors:
.1  The system displays “too many login errors” message

(PM1)
.2  The system freezes for 10 minutes

Use Case: Post Grade
Type: Base use case

Flow of Events:

Basic Flow:
  1.	 Include (login)
  2.	 The system displays Post Grade Form (UI2)
  3.	 The system retrieves all classes
  4.	 The system displays the classes in Post Grade Form (UI2)
  5.	 The professor selects a class (UI2)
  6.	 The system displays the grade sheet of the selected class

(UI2)
  7.	 The professor enters grades (UI2)
  8.	 The professor saves the grades (UI2)
  9.	 The system saves the grades
10.	 The system displays “Grade Saved” confirmation
11.	 The professor logs out

ProfessorActor

Post Grade Login
«include»

Figure 1.   “Post Grade” use case.

b3881_Ch16.indd 388 05-10-2020 16:37:21

b3881   Requirements Modeling and Coding6"×9"�

A Complete Use Case Implementation  389

Alternate Flows:
9a. invalid grade:

.1  The system displays “Invalid Grade” message (PM2)

.2  Go to 7
Exception Flows:

3a. no class retrieved:
.1  The system displays “no class available” in class list (UI2)
.2  The system disables Load button (UI2)
.3  The professor logs out

Prompts and Messages:
1.	 Too many logon errors: You have tried too many times. Your

account is locked, please contact us at 800-908-1234 for
assistance.

2.	 Invalid grade: An invalid grade is entered.

User Interfaces:
1.	 Login Screen

2.	 Post Grade Form

b3881_Ch16.indd 389 05-10-2020 16:37:21

b3881   Requirements Modeling and Coding� 6"×9"

390  Requirements Modeling and Coding

Collaboration Modeling
The mini registration system consists of domain classes, user interfaces,
control classes, and data access classes. We design one data access class,
FileAccess, to be responsible for retrieving data from a data source
such as data files and writing data to the sources. Domain classes such as
Student, Instructor, and CourseOffering are data holders and
processors. The “Post Grade” use case is mostly about retrieving and sav-
ing data. It does not have much need for domain objects to process data,
but it heavily relies on object persistence for initializing and saving the
domain objects.

User interfaces present data to the user and take in user inputs.
Two graphical user interfaces involved in the “Post Grade” use case are
LoginForm and PostGradeForm, as shown in the use case story above.

Control classes are responsible for coordinating tasks among multiple
domain objects and data access objects. Typically, each use case requires at
least one control class. We create two control classes: UserControl class
for loading, finding, and verifying users; and InstructorControl
class to load and manage all course offerings (or sections) taught by an
instructor.

In collaboration modeling, we usually ignore operations related to
object persistence. Thus, we will just model collaboration among user
interface objects and control objects for the “Post Grade” use case. The
sequence diagram for the use case is shown in Figure 2.

From this sequence diagram, we captured eight functions to be
required by the two control classes and two user interface classes as shown
the class diagram in Figure 3. These classes will be explained in detail
and implemented in later sections of this chapter. The two domain classes
involved in the collaboration acquired one simple operation each, which
will be implemented in the following section.

Domain Classes
Since we need data on instructors and the course offerings (or sections)
they teach, the class diagram completed by Chapter 14 is slightly extended
to include the Instructor class. Also, we want both students and
instructors to login to the system, and so we generalize Instructor and
Student into User class with common attributes userid, password,

b3881_Ch16.indd 390 05-10-2020 16:37:21

b3881   Requirements Modeling and Coding6"×9"�

A Complete Use Case Implementation  391

:CourseOffering:InstructorControl

GetCourse()

:PostGradeForm

LoadSections(i)

SaveGrade(c)

:User:UserControl

Verify(u, p, r)

LoadUser()

FindUser(id)

:LoginForm

VerifyUser(uid, pwd, role)

Create()

Destroy()

:ProfessorActor

Create()

Account Data

btnLogin_Click()

btnLoad_Click()

grades

btnSave_Click()

Figure 2.   The sequence diagram for “Post Grade” use case.

UserControl

loginUser:User
users:List<User>

FindUser(id:string):User
LoadUser():void
VerifyUser(uid:string,pwd:string,role:string):bool

InstructorControl

sections:List<CourseOffering>

LoadSections(i:Instructor):void
SaveGrade(c:CourseOffering):void

LoginForm

btnLogin_Click()

PostGradeForm

btnLoad_Click()
btnSave_Click()

Figure 3.   User interfaces and control classes for the “Post Grade” use case.

b3881_Ch16.indd 391 05-10-2020 16:37:21

b3881   Requirements Modeling and Coding� 6"×9"

392  Requirements Modeling and Coding

role, id, and name. Here, id is either student ID or employee ID issued
by a university. Also, we now allow different minimum scores for different
prerequisites, and so we use the association class Requisite to capture
the new requirement. The extended class diagram is shown in Figure 4.

Except for the new classes and resulting changes in functions, all the
code will be the same as what we developed in Chapters 7 and 14. The fol-
lowing shows only the changes due to the new classes.

User Class

       public class User
        {
            protected string u;
            protected string p;
            protected string r;

Student

major:string
admitDate:DateTime

AddClass(c:CourseOffering):void
ChangeMajor(nMajor:string):void
CheckPrerequisiites(c:CourseOffering):bool
CheckTimeConflicts(c:CourseOffering):bool
DropClass(c:CourseOffering):void
GetActiveDays():int
GetGPA():double
GetTotalCredits():double
IsEnrolled(c:CourseOffering):bool
IsFinished(c:Course):bool

Period

beginDate:DateTime
endDate:DateTime

GetDays():int
Overlap(p:Period):bool

User

id:string
name:string
password:string
role:string
uid:string

Verify(u:string,p:string,r:string):bool

Instructor

job:string

Course

cno:string
credits:double
title:string

GetCredits():double
GetMinGrade(prereq:Course):string
GetPrerequisites():Dictionary<Course,string>

Requisite

*

*

Requisite

minGrade:string

CourseOffering

cap:int
section:string

Drop(s:Student):void
Enroll(s:Student):void
GetClourse():Course
GetPrerequisites():Dictionary<Course,string>
IsAvailable():bool
IsOverlap(co:CourseOffering):bool
PostGrade(s:Student,g:string):void

1

1

Enrollment

*

*

1

*

1

Enrollment

grade:string
status:bool

ChangeGrade(g:string):void
UpdateStatus(s:bool):voiid

Time

hour:int
minute:int
second:int

Greater(a:Time,b:Time):bool
Less(a:Time,b:Time):bool

Timeslot

day:int

Overlap(ts:TimeSlot):bool1
2

1

*

Figure 4.   Domain classes.

b3881_Ch16.indd 392 05-10-2020 16:37:21

b3881   Requirements Modeling and Coding6"×9"�

A Complete Use Case Implementation  393

            protected string id;
            protected string name;

            public string ID
            {
                get {return id;}
                set {id = value;}
            }

            public string Name
            {
                get {return name;}
                set {name = value;}
            }

            public string Role
            {
                get {return id;}
                set {id = value;}
            }

            �public bool Verify(string uid, string
pwd, string role)

            {
                �if (uid == u && p == pwd && r ==

role)
                    return true;
                 else
                    return false;
            }

            public User()
            {
                u = “”;
                p = “”;
                r = “”;
                id = “”;
                name = “”;
            }

            �public User(string userid, string
password,

                   �string workid, string workrole,
string fullName)

            {
                u = userid;

b3881_Ch16.indd 393 05-10-2020 16:37:21

b3881   Requirements Modeling and Coding� 6"×9"

394  Requirements Modeling and Coding

                p = password;
                id = workid;
                r = workrole;
                name = fullName;
            }
      }

Requisite Class

  public class Requisite
  {
      private string minGrade;
      private Course crs;
      private Course prerequisite;

      public string GetMinimumGrade()
      {
          return minGrade;
      }

      public Requisite()
      {
          crs = new Course();
          prerequisite = new Course();
          minGrade = “C”;
      }

      �public Requisite(string minG, Course c, Course
   preq)

      {
          crs = c;
          prerequisite = prerequisite;
          minGrade = minG;
      }
  }

The following shows the classes and operations that have been changed
from Chapters 7 and 14. Note that the snippet only shows the attributes
and operations that have been changed.

Course Class

   public class Course
   {

b3881_Ch16.indd 394 05-10-2020 16:37:21

b3881   Requirements Modeling and Coding6"×9"�

A Complete Use Case Implementation  395

       private string cno;
       private string title;
       private double credits;
       �private Dictionary<Course, string>

   prerequisites;

       public string CNO
       {
           get {return cno;}
           set {cno = value;}
       }

       public string Title
       {
           get {return title;}
           set {title = value;}
       }

       public double Credits
       {
           get {return credits;}
           set {credits = value;}
       }

       public Course()
       {
           //
       }
       public Course(string cnumber)
       {
           cno = cnumber;
           title = “”;
           credits = 0;
       }

       �public Dictionary<Course, string>
   GetPrerequisites()

       {
           return prerequisites;
       }

       public string GetMinGrade(Course prereq)
       {
           return prerequisites[prereq];
       }
   }

b3881_Ch16.indd 395 05-10-2020 16:37:21

b3881   Requirements Modeling and Coding� 6"×9"

396  Requirements Modeling and Coding

CourseOffering Class

   public class CourseOffering
   {
       private string section;
       private Course courseUnder;
       private int cap;
       private Dictionary<string, Student> roster;
       �private Dictionary<Student, Enrollment>

   gradeBook;
       private TimeSlot[] timeslots;
       private Period period;

       public int Cap
       {
           get {return cap;}
           set {cap = value;}
       }

       public string Section
       {
           get {return section;}
           set {section = value;}
       }

       public Course CourseUnder
       {
           get {return courseUnder;}
           set {courseUnder = value;}
      }

      public Dictionary<string, Student> Roster
      {
          get {return roster;}
          set {roster = value;}
      }

      �public Dictionary<Student, Enrollment>
   Gradebook

      {
          get {return gradeBook;}
          set {gradeBook = value;}
      }

b3881_Ch16.indd 396 05-10-2020 16:37:21

b3881   Requirements Modeling and Coding6"×9"�

A Complete Use Case Implementation  397

      public CourseOffering()
      {
          //
      }

      �public CourseOffering(string cnumber, string
   snumber)

      {
          courseUnder = new Course(cnumber);
          section = snumber;
          cap = 0;
      }

      �public Dictionary<Course,string>
   GetPrerequisites()

      {
          return courseUnder.GetPrerequisites();
      }

      public bool IsAvailable()
      {
          return (cap > roster.Count);
      }
   }

Instructor Class

   public class Instructor : User
   {
       private string job;
       private List<CourseOffering> sections;

       public string Job
       {
           get {return job;}
           set {job = value;}
       }

       public List<CourseOffering> Sections
       {
           get {return sections;}
           set {sections = value;}
       }
   }

b3881_Ch16.indd 397 05-10-2020 16:37:21

b3881   Requirements Modeling and Coding� 6"×9"

398  Requirements Modeling and Coding

Student Class
	
   public class Student:User
   {
       private string major;
       private DateTime admitDate;
       private List<CourseOffering> classes;
       �private Dictionary<CourseOffering,

   Enrollment> transcript;

       public Student():base()
       {
           major = “”;
           admitDate = DateTime.Now;
       }

       public Student(string id)
       {
           base.id = id;
       }

       public double GetTotalCredits()
       {
           double result = 0;
           foreach (CourseOffering co in classes)
           {
               �if (RegisterTool.

   GetPoint(transcript[co].Grade) >= 1)
               �        �result += co.GetCourse().

   Credits;
           }
           return result;
       }

       public bool CheckPrerequisite(CourseOffering co)
       {
           bool result = true;
           �foreach (KeyValuePair<Course,string> p in

   co.GetPrerequisites())
           {
               if (IsFinished(p.Key) == false ||
                   �RegisterTool.

GetPoint(transcript[co].Grade) <
                   RegisterTool.GetPoint(p.Value))
               {
                   result = false;

b3881_Ch16.indd 398 05-10-2020 16:37:22

b3881   Requirements Modeling and Coding6"×9"�

A Complete Use Case Implementation  399

                   break;
               }
           }
           return result;
       }
   }

Note that RegisterTool is a utility class with one static function “int
GetPoint(string grade)”, which converts a letter grade into
numerical points as the one in Enrollment class in Chapter 14.

Note also that because of new minimum score requirements for pre-
requisites, the function CheckPrerequisite() will now not only
check if a student has finished a course but also if the student has earned a
minimum score as specified by a Requisite object (see the boldfaced
code in the function).

Object Persistence
Objects are created, modified, and destroyed in transient memory, and their
data will be lost after the system is closed. Therefore, there is a need to save
object data, or persist domain objects, for future runs of the system. There are
a few frameworks such as Entity Framework and Hibernate that are widely
used for object persistence using relational databases. This book will not
explore these frameworks due to scope limitation. In this chapter, we assume
the reader is not familiar with database concepts, models, and languages,
and so we choose to use a plain data file to save object data. For readers who
are familiar with XML, they may slightly modify the FileAccess class to
persist objects using XML files. Both techniques for object persistence are
simple but help to understand the issues of object persistence.

To make domain objects more reusable and maintainable, we follow
a persistence strategy that makes domain objects free from the concerns
of how and where their data are saved. In other words, domain objects are
made such that they do not know objects that do inputs and outputs with
files or databases. This strategy may be achieved in many ways. For exam-
ple, the entity framework uses the technique of partial classes to separate
each domain class into two or more partial classes: one holds domain data
and the other handles inputs and outputs. The strategy here is to allow
domain objects to pass out and take in a generic data structure such as a
table row, or an XML node, or a comma-separated text, and then, based
on the data structure, create two generic functions Serialize() and
Deserialize() in each domain class, where Serialize() packs

b3881_Ch16.indd 399 05-10-2020 16:37:22

b3881   Requirements Modeling and Coding� 6"×9"

400  Requirements Modeling and Coding

object data into the data structure, and Deserialize()extracts values
from the data structure to recover objects.

In this chapter, I will use comma-separated strings to pass in
and out object data. In the following, I will show each domain class’s
Serialize() and Deserialize() functions along with the corre-
sponding data files.

Since both Instructor and Student objects are kinds of User
objects, we will just create the “users.txt” file as follows to persist both
types of objects:

Student, lisa, hello, 009911, Lisa Johnson, Business,
      12/2/2015

Instructor, liu, hello, 120911, Liping Liu,
      Professor

…

In the User class, we have five attributes common to both Student
and Instructor objects. So, its Serialize() function will use the
common data to create strings made of the first five values of each row in
the “users.txt” file. We make Serialize() virtual so that each child class
can modify it or, in this case, add additional attribute values specific to each
child. Since each row in the “users.txt” file can create either one Student
or one Instructor object and each user is either a student or an instruc-
tor, there is no need for a function to create separate User objects. However,
we want both Instructor and Student to have the same contract for
deserialization to take advantage of polymorphism. Therefore, we create an
abstract Deserialize() function in the User class.

 public abstract class User
 {
     protected string u;
     protected string p;
     protected string r;
     protected string id;
     protected string name;
     public abstract void Deserialize(string data);
     public virtual string Serialize()
     {
         �return Role + “,” + u + “,” + p + “,” + id +

   “,” + name;
     }
 }

b3881_Ch16.indd 400 05-10-2020 16:37:22

b3881   Requirements Modeling and Coding6"×9"�

A Complete Use Case Implementation  401

Now we override these two functions inside Student and Instructor
classes. For Serialize(), we merely attach the additional attributes
to the result of the Serialize() function in the parent class using
base.Serialize(). For Deserialize(string data), we split
the comma-separated parameter “data” into individual values and use the
values to initialize object attributes.

   public class Student:User
   {
       private string major;
       private DateTime admitDate;
       private List<CourseOffering> classes;
       �private Dictionary<CourseOffering, Enrollment>

   transcript;

       public override void Deserialize(string data)
       {
           string[] values = data.Split(‘,’);
           base.r = values[0].Trim();
           base.u = values[1].Trim();
           base.p = values[2].Trim();
           base.id = values[3].Trim();
           base.name = values[4].Trim();
           major = values[5].Trim();
           �admitDate = Convert.ToDateTime(values[6].

   Trim());
       }

       public override string Serialize()
       {
           �return base.Serialize() + “,” + name + “,”

   + admitDate.ToShortDateString();
       }
   }

We can serialize and deserialize Instructor object in the same
way as Student objects. Since there is no separate associa-
tion class handling the persistence of the relationship data between
Instructor and CourseOffering, we create two more functions,
SerializeTeaching() and DeserializeTeaching(string[]
data), to persist the relationship data. Note that each instructor may teach
multiple sections, so the DeserializeTeaching() function will need

b3881_Ch16.indd 401 05-10-2020 16:37:22

b3881   Requirements Modeling and Coding� 6"×9"

402  Requirements Modeling and Coding

a list of comma-separated strings, one from each row of the “teaching.txt”
file as follows:

   325, 001, 120911
   324, 801, 120911
   ...

The updated code for Instructor class is as follows:

   public class Instructor:User
   {

   private string job;
   private List<CourseOffering> sections;

   public override void Deserialize(string data)
   {
       string[] values = data.Split(‘,’);
       base.r = values[0].Trim();
       base.u = values[1].Trim();
       base.p = values[2].Trim();
       base.id = values[3].Trim();
       base.name = values[4].Trim();
       job = values[5].Trim();
   }

   public override string Serialize()
   {
       return base.Serialize() + “,” + job;
   }

   public string[] SerializeTeaching()
   {
       int count = sections.Count;
       string[] results = new string[count];
       for (int i=0; i<= count-1; i++)
       {
            results[i] = sections[i].CourseUnder.CNO
                  �+ “,” + sections[i].Section + “,” +

   base.id;
       }
       return results;
   }

   public void DeserializeTeaching(string[] data)
   {

b3881_Ch16.indd 402 05-10-2020 16:37:22

b3881   Requirements Modeling and Coding6"×9"�

A Complete Use Case Implementation  403

       sections = new List<CourseOffering>();
       string[] values;
       CourseOffering co;
       foreach (string s in data)
       {
           values = s.Split(‘,’);
           �co = new CourseOffering(values[0].Trim(),

   values[1].Trim());
           sections.Add(co);
       }
   }
}

The Serialize() and Deserialize() functions for other objects
are straightforward, and so I will simply list them below without further
elaboration:

Course Class

Data File “courses.txt”:

    325, Systems Analysis and Design, 3
    324, Database Management, 3
    …

Function Code:

  public class Course
  {
      private string cno;
      private string title;
      private double credits;
      //private List<Course> prerequisites;
      private Dictionary<Course, string> prerequisites;

      public string Serialize()
      {
          return cno + “,” + title + “,” + credits;
      }
      public void Deserialize(string data)
      {
          string[] values = data.Split(‘,’);
          cno = values[0].Trim();
          title = values[1].Trim();
          credits = Convert.ToDouble(values[2].Trim());
      }
  }

b3881_Ch16.indd 403 05-10-2020 16:37:22

b3881   Requirements Modeling and Coding� 6"×9"

404  Requirements Modeling and Coding

CourseOffering Class

Data File “sections.txt”:
 325, 001, 30
 324, 801, 30
 325, 801, 30
 …

Function Code:

 public class CourseOffering
 {
     private string section;
     private Course courseUnder;
     private int cap;
     private Dictionary<string, Student> roster;
     private Dictionary<Student, Enrollment> gradeBook;
     private TimeSlot[] timeslots;
     private Period period;

     public string Serialize()
     {
         �return courseUnder.CNO + “,” + section + “,”

+ cap;
     }

     public void Deserialize(string data)
     {
         string[] values = data.Split(‘,’);
         courseUnder = new Course(values[0].Trim());
         section = values[1].Trim();
         cap = Convert.ToInt32(values[2].Trim());
     }
 }

Enrollment Class

Data File “enrollment.txt”:

 325,001,009911,True,A
 325,001,101911,False,N
 …

b3881_Ch16.indd 404 05-10-2020 16:37:22

b3881   Requirements Modeling and Coding6"×9"�

A Complete Use Case Implementation  405

Function Code:

  public class Enrollment
  {
      private string grade;
      private bool status;
      private Student student;
      private CourseOffering courseOffering;

      public string Serialize()
      {
          return courseOffering.CourseUnder.CNO + “,” +
             courseOffering.Section + “,” +
             student.ID + “,” +
             status + “,” + grade;
      }

      public void Deserialize(string data)
      {
          string[] values = data.Split(‘,’);
          �courseOffering = new

   CourseOffering(values[0].Trim(),
   values[1].Trim());

          student = new Student();
          student.ID = values[2].Trim();
          �status = Convert.ToBoolean(values[3].

   Trim());
          grade = values[4].Trim();

      }
  }

Requisite Class

Data File “prerequisites.txt”:

  325, 324, C
  643, 641, B
  …

Function Code:

 public class Requisite
 {
     private string minGrade;
     private Course crs;

b3881_Ch16.indd 405 05-10-2020 16:37:22

b3881   Requirements Modeling and Coding� 6"×9"

406  Requirements Modeling and Coding

     private Course prerequisite;

     public string Serialize()
     {
         �return crs.CNO + “,” + prerequisite.CNO +

   “,” + minGrade;
     }

     public void Deserialize(string data)
     {
         string[] values = data.Split(‘,’);
         crs = new Course(values[0].Trim());
         prerequisite = new Course(values[1].Trim());
         minGrade = values[2].Trim();
     }
 }

Data Access and Control Objects
Note that we show data files to help understand Serialize() and
Deserialize() functions. In fact, all domain classes are free from
how and where data are saved. For example, we may store all data in
a relational database or XML file if we have objects that can format
data from those sources into a comma-separated text value or save a
comma-separated text value into those sources. Therefore, all our
domain classes are still reusable after adding functions dealing with
object persistence.

Then what objects do we need to connect data sources and domain
objects? Here, we design two different objects to fill in the void.

The first is data access objects, which are responsible for read-
ing data from and writing data to data sources. In our case, since we
are dealing with plain text files, we will create FileAccess class
and utilize StreamReader and StreamWriter objects inside the
System.IO package to read and write data. The basic functionalities
for FileAccess objects are to read data from a specific file, return
the data as an array of comma-separated strings, and write an array of
strings into a specific file. We can add other more advanced read func-
tions, such as the following, to read a subset of lines from a text file by
using a specific column value:

�public static string[] ReadData(string fileName, int
   filterColumn, string filterValue)

b3881_Ch16.indd 406 05-10-2020 16:37:22

b3881   Requirements Modeling and Coding6"×9"�

A Complete Use Case Implementation  407

This function can be further extended to include a list of columns, a list of
filter values, and a list of comparison operations so that we can filter the
text lines by using multiple criteria such as, for example, the first column
value is equal to a certain filter value and the third column value is less
than a certain filter value. We may also add advanced write functions, for
example, ChangeLine(), to substitute one line of text with another.

using System.IO;
namespace Registration
{

 public class FileAccess
 {
     public static string[] ReadData(string fileName)
     {
         List<string> results = new List<string>();
         �StreamReader myReader =

   File.OpenText(fileName);
         string line = myReader.ReadLine();
         while (line != null)
         {
             results.Add(line);
             line = myReader.ReadLine();
         }
         myReader.Close();
         return results.ToArray() ;
     }

     �public static void WriteData(string fileName,
   string[] data)

     {
         �StreamWriter myWriter = new

   StreamWriter(fileName);
         foreach (string s in data)
         {
             myWriter.WriteLine(s);
         }
         myWriter.Close();
     }

     �public static string[] ReadData(string fileName,
   int filterColumn, string filterValue)

     {
         List<string> results = new List<string>();
         �StreamReader myReader = File.

   OpenText(fileName);

b3881_Ch16.indd 407 05-10-2020 16:37:22

b3881   Requirements Modeling and Coding� 6"×9"

408  Requirements Modeling and Coding

         string line = myReader.ReadLine();
         string[] values;
         while (line != null)
         {
             values = line.Split(‘,’);
             �if (values[filterColumn].Trim() ==

   filterValue)
                 results.Add(line);
             line = myReader.ReadLine();
         }
         myReader.Close();
         return results.ToArray();
     }

     �public static void ChangeLine(string fileName,
   string oldLineText, string newLineText)

     {
         string[] data = ReadData(fileName);
         for (int i = 0; i< data.Length; i++)
              if (data[i] == oldLineText)
                  data[i] = newLineText;
         WriteData(fileName, data);
     }

     �public static void ChangeLine(string fileName,
   int lineNumber, string newLineText)

     {
         string[] data = ReadData(fileName);
         for (int i = 0; i < data.Length; i++)
              if (i == lineNumber-1)
                  data[i] = newLineText;
         WriteData(fileName, data);
     }
 }

}

The second is control objects, which in general play roles of coordinat-
ing and sequencing operations of multiple objects and, by the step-and-
step model (see Chapter 15), have access to both data access objects and
domain objects. Thus, controls objects can be rightly used to persist object
data and initialize objects for the system.

To perform the “Post Grade” use case, professors first need to login.
To do so, we need to get a list of users, including all students and instruc-
tors. For this purpose, it makes sense to create a UserControl class that

b3881_Ch16.indd 408 05-10-2020 16:37:22

b3881   Requirements Modeling and Coding6"×9"�

A Complete Use Case Implementation  409

can load all users, find users, and verify users. Remember that users are
either students or instructors. So, after we load the “users.txt” file, we can
use each row to initialize either a Student object or an Instructor
object, depending on whether the first value, i.e., role, value, in the line.
Actual initialization is done by using the Deserialize() function.
Besides initializing User objects, we want the UserControl object
to verify a user login and keep the login User object for future refer-
ence. So, the UserControl class has two static data members: a list of
users and a logon user. Since the “Post Grade” use case needs to access
Student objects later, instead of recreating those student objects, we
want UserControl objects to maintain the user list and, when neces-
sary, find a user object using the id attribute.

 public class UserControl
 {
     private static List<User> users;
     private static User loginUser;

     public static User LoginUser
     {
         get { return loginUser; }
         set { loginUser = value; }
     }

     �public static bool VerifyUser(string uid, string
   pwd, string role)

     {
         bool result = false;
         foreach (User u in users)
         {
             if (u.Verify(uid, pwd, role))
             {
                 loginUser = u;
                 result = true;
                 break;
             }
         }
         return result;
     }

     public static void LoadUsers()
     {
         users = new List<User>();

b3881_Ch16.indd 409 05-10-2020 16:37:22

b3881   Requirements Modeling and Coding� 6"×9"

410  Requirements Modeling and Coding

         string[] values;
         User user;
         �string[] userData = FileAccess.

   ReadData(“users.txt”);
         foreach (string s in userData)
         {
             values = s.Split(‘,’);
             if (values[0].Trim()==”Student”)
             {
                 user = new Student();
                 user.Deserialize(s);
                 users.Add(user);
             }
             else if (values[0].Trim()==”Instructor”)
             {
                 user = new Instructor();
                 user.Deserialize(s);
                 users.Add(user);
             }
         }
     }

     public static User FindUser(string id)
     {
         User user = null;

         foreach (User u in users)
         {
             if (u.ID == id)
             {
                 return u;
             }
         }
         return user;
     }
 }

To perform the “Post Grade” use case, a professor needs to have
access to all his or her sections, each of which includes a list of students
and a grade book. Therefore, we create an InstructorControl
class to load or initialize all those objects that belong to the professor.
InstructorControl will maintain all the CourseOffering
objects that belong to the login user.

b3881_Ch16.indd 410 05-10-2020 16:37:22

b3881   Requirements Modeling and Coding6"×9"�

A Complete Use Case Implementation  411

The LoadInstructor() function will first load the “teaching.
txt” file to find all the sections that belong to the instructor and call the
DeserializeTeaching() function to create the list of sections for
the Instructor object.

string[] values;
string[] data = FileAccess.ReadData(“teachings.txt”,

2, theInstructor.ID);
theInstructor.DeserializeTeaching(data);

Note that all CourseOffering objects in the list have not been initial-
ized with actual data at this point. We need to continue to use the “sections.
txt” file to initialize each section object. For each CourseOffering
object co in the sections list, we load its data by searching for the line in
the “sections.txt” file and use the line to deserialize co:

data = FileAccess.ReadData(“sections.txt”);
foreach (string s in data)
{
    values = s.Split(‘,’);
    �if (values[0].Trim() == co.CourseUnder.CNO &&

   values[1].Trim() == co.Section)
        co.Deserialize(s);
}

In order to access course titles and credits, we also need to use the
“courses.txt” file to initialize each associated course object inside a
CourseOffering object:

data = FileAccess.ReadData(“courses.txt”);
foreach (string s in data)
{
    values = s.Split(‘,’);
    if (values[0].Trim() == co.CourseUnder.CNO)
        co.CourseUnder.Deserialize(s);
}

Note that since we do not have functions to read one line at a time, we will
have to read the entire file and then use a loop to find the right line from
the “sections.txt” and “courses.txt” files. If we were going to get data from
a relational database, the search may be unnecessary.

b3881_Ch16.indd 411 05-10-2020 16:37:22

b3881   Requirements Modeling and Coding� 6"×9"

412  Requirements Modeling and Coding

Finally, we need to initialize a roster, a list of students in each section,
a grade book, and a list of enrollment records. Both lists are dictionaries,
and we will load the “enrollment.txt” file.

co.Roster = new Dictionary<string, Student>();
co.Gradebook = new Dictionary<Student, Enrollment>();
data = FileAccess.ReadData(“enrollment.txt”);

Then, using and splitting each line of the “enrollment.txt” file, we
can find a student ID, a course number, and a section number. Using the
student ID, we can ask UserControl class to find the corresponding
Student object in its users list and add the object to the roster list:

Student stu;
if (values[0].Trim() == co.CourseUnder.CNO &&

   values[1].Trim() == co.Section)
{
    stu = (Student) UserControl.FindUser(values[2].

   Trim());
    co.Roster.Add(values[2].Trim(), stu);
}

Using the rest of the line, we can call the Deserialize() function
to initialize an Enrollment object and add it to the gradebook list.

Enrollment e;
Student stu;
if (values[0].Trim() == co.CourseUnder.CNO &&

   values[1].Trim() == co.Section)
{
    stu = (Student) UserControl.FindUser(values[2].

   Trim());
    co.Roster.Add(values[2].Trim(), stu);
    e = new Enrollment(stu, co);
    e.Deserialize(s);
    co.Gradebook.Add(stu, e);
}

The other function is to save Enrollment object data to the
“enrollment.txt” file. When a professor changes grades for a section,
Enrollment objects will be changed. Since we cannot write a specific
row into a file, we will have to load all the current “enrollment.txt” files

b3881_Ch16.indd 412 05-10-2020 16:37:22

b3881   Requirements Modeling and Coding6"×9"�

A Complete Use Case Implementation  413

into a list of strings; match each row using course number, section number,
and student id; and substitute a matching row by the corresponding object
data. After finishing the substitution of all matching rows, we write the list
of strings back to the “enrollment.txt” file. The complete Instructor
class is reproduced in what follows:

public class InstructorControl
{
    private static List<CourseOffering> sections;
    public static List<CourseOffering> Sections
    {
            get { return sections; }
            set { sections = value; }
    }

    public void SaveGrade(CourseOffering section)
    {
        �string[] data = FileAccess.

   ReadData(“enrollment.txt”);
        string[] values;

        for (int i = 0; i < data.Length; i++)
        {
             values = data[i].Split(‘,’);
             �foreach (KeyValuePair<Student,

   Enrollment> p in section.Gradebook)
             {
                �if (values[0].Trim() == section.

   CourseUnder.CNO
                      �&& values[1].Trim() == section.

   Section
                      && values[2].Trim() == p.Key.ID)
                    data[i] = p.Value.Serialize();
             }
    }
    FileAccess.WriteData(“enrollment.txt”, data);
}

public static void LoadInstructor(Instructor
theInstructor)

{
     string[] values;
     �string[] data = FileAccess.ReadData(“teachings.

   txt”, 2, theInstructor.ID);

b3881_Ch16.indd 413 05-10-2020 16:37:22

b3881   Requirements Modeling and Coding� 6"×9"

414  Requirements Modeling and Coding

     theInstructor.DeserializeTeaching(data);
     sections = theInstructor.Sections;
     �foreach (CourseOffering co in theInstructor.

   Sections)
     {
         data = FileAccess.ReadData(“sections.txt”);
         foreach (string s in data)
         {
             values = s.Split(‘,’);
             if (values[0].Trim() == co.CourseUnder.CNO
                   && values[1].Trim() == co.Section)
                 co.Deserialize(s);
         }
         data = FileAccess.ReadData(“courses.txt”);
         foreach (string s in data)
         {
             values = s.Split(‘,’);
             if (values[0].Trim() == co.CourseUnder.CNO)
                 co.CourseUnder.Deserialize(s);
         }
         co.Roster = new Dictionary<string, Student>();
         �co.Gradebook = new Dictionary<Student,

   Enrollment>();
         data = FileAccess.ReadData(“enrollment.txt”);
         foreach (string s in data)
         {
             values = s.Split(‘,’);
             Enrollment e;
             Student stu;
             if (values[0].Trim() == co.CourseUnder.CNO
                 && values[1].Trim() == co.Section)
             {
                 �stu = (Student) UserControl.

   FindUser(values[2].Trim());
                 co.Roster.Add(values[2].Trim(), stu);
                 e = new Enrollment(stu, co);
                 e.Deserialize(s);
                 co.Gradebook.Add(stu, e);
             }
         }
     }
   }
}

b3881_Ch16.indd 414 05-10-2020 16:37:22

b3881   Requirements Modeling and Coding6"×9"�

A Complete Use Case Implementation  415

Interface Classes
We follow the VCM model to implement the two user interfaces:
LoginForm and PostGradeForm. The login form will use
UserControl to verify user accounts.

public partial class LoginForm:Form
{
    �private void btnLogin_Click(object sender,

   EventArgs e)
    {
        string txtRole;

        if (rbInstructor.Checked == true)
            txtRole = “Instructor”;
        else
            txtRole = “Student”;
        UserControl.LoadUsers();
        �if (UserControl.VerifyUser(txtUID.Text,

   txtPWD.Text, txtRole))
        {
            PostGradeForm myPostGradeFrom =
                  �new PostGradeForm((Instructor)

   UserControl.LoginUser);
            this.Hide();
            myPostGradeFrom.Show();
        }
        else
        {
            �lblMessage.Text = “Incorrect Login. Try

   again!”;
        }
    }
}

The PostGrade form needs to have a list of sections that belong to
an instructor and, for each section, a list of students and a list of grades.
All these objects can be delivered by the InstructorControl
class. For example, all the sections, including course number, section
number, and course title, to be displayed in the combo box come from
InstructorControl.

b3881_Ch16.indd 415 05-10-2020 16:37:22

b3881   Requirements Modeling and Coding� 6"×9"

416  Requirements Modeling and Coding

InstructorControl.LoadInstructor(i);
foreach (CourseOffering co in InstructorControl.

Sections)
{
    cboSections.Items.Add(co.CourseUnder.CNO + “-”
          + co.Section + “:” + co.CourseUnder.Title);
}

The main difficulty with the PostGradeForm is about how to pres-
ent the data. Since each section may have a different number of students,
we will need to programmatically create text boxes based on the number
of the students in the section. Also, we want the form to be repainted if
a different section is loaded. To this end, we will paint all the labels for
student ID and name and text boxes for grades into a panel so that we can
remove the panel and reload a new one when changing classes. The size of
the panel is determined by the number of students in the section.

Dictionary<Student, Enrollment> d =
InstructorControl.Sections[cboSections.

SelectedIndex].Gradebook;
int count = d.Count;
foreach (Control c in this.Controls)
    if (c.Name==”pan”) { this.Controls.Remove(c);
Panel panel = new Panel();
panel.Name = “pan”;
panel.Location = new Point(150, 100);
panel.Size = new Size(450, 100 + 25 * count);
panel.BorderStyle = BorderStyle.Fixed3D;
this.Controls.Add(panel);

Then we create three column heads using Label controls on the panel.
Note the location is relative to the panel; the top left corner of the panel
has (0,0) coordinate.

lbl = new Label();
lbl.Text = “Student ID”;
lbl.Location = new Point(30, 20);
lbl.Font = new Font(lbl.Font, FontStyle.Bold);
panel.Controls.Add(lbl);

lbl = new Label();
lbl.Text = “Full Name”;
lbl.Location = new Point(130, 20);

b3881_Ch16.indd 416 05-10-2020 16:37:22

b3881   Requirements Modeling and Coding6"×9"�

A Complete Use Case Implementation  417

lbl.Font = new Font(lbl.Font, FontStyle.Bold);
panel.Controls.Add(lbl);

lbl = new Label();
lbl.Text = “Grade”;
lbl.Location = new Point(280, 20);
lbl.Font = new Font(lbl.Font, FontStyle.Bold);
panel.Controls.Add(lbl);

Then we can use a loop to create a list of text boxes. We will need to
refer to those textboxes by their indices, rather than names, and so we will
keep them in a list called grades.

List<TextBox> grades = new List<TextBox>();
int i = 0;
foreach (KeyValuePair<Student, Enrollment> p in d)
{
    lbl = new Label();
    lbl.Text = p.Key.ID;
    lbl.Location = new Point(30, 50 + 25 * i);
    panel.Controls.Add(lbl);

    lbl = new Label();
    lbl.Text = p.Key.Name;
    lbl.Location = new Point(130, 50 + 25 * i);
    panel.Controls.Add(lbl);

    t = new TextBox();
    t.Text = p.Value.Grade;
    grades.Add(t);
    grades[i].Location = new System.Drawing.

   Point(280, 50 + (i * 25));
    panel.Controls.Add(grades[i]);
    i++;
}

Note that the textbox list must be a global variable for PostGradeForm
because we need to refer to these boxes when pressing the save button,
which we can also programmatically put on the panel.

Button btnSave = new Button();
btnSave.Text = “Save”;
btnSave.Location = new Point(150, 60 + 25 * i);
panel.Controls.Add(btnSave);

b3881_Ch16.indd 417 05-10-2020 16:37:22

b3881   Requirements Modeling and Coding� 6"×9"

418  Requirements Modeling and Coding

To create an event handler for the button btnSave, we will add the
following code and create a function called btnSave_Click(object
sender, EventArgs e)to respond to the event btnSave_Click:

btnSave.Click += new EventHandler(btnSave_Click);

The following code is used to respond to btnLoad_Click event after a
section is selected:

private void btnLoad_Click(object sender, EventArgs e)
{
    if (cboSections.SelectedIndex >= 0)
    {
        grades = new List<TextBox>();
        Label lbl;
        TextBox t;
        Dictionary<Student, Enrollment> d =
              �InstructorControl.Sections[cboSections.

   SelectedIndex].Gradebook;
        int count = d.Count;

        //remove the panel to redraw for a new section
        foreach (Control c in this.Controls)
            �if (c.Name==”pan”) { this.Controls.

   Remove(c); }

        Panel panel = new Panel();
        panel.Name = “pan”;
        panel.Location = new Point(150, 100);
        panel.Size = new Size(450, 100 + 25 * count);
        panel.BorderStyle = BorderStyle.Fixed3D;
        //panel.SendToBack();
        this.Controls.Add(panel);

        panel.Controls.Clear();

        lbl = new Label();
        lbl.Text = “Student ID”;
        lbl.Location = new Point(30, 20);
        lbl.Font = new Font(lbl.Font, FontStyle.Bold);
        panel.Controls.Add(lbl);

        lbl = new Label();
        lbl.Text = “Full Name”;

b3881_Ch16.indd 418 05-10-2020 16:37:22

b3881   Requirements Modeling and Coding6"×9"�

A Complete Use Case Implementation  419

        lbl.Location = new Point(130, 20);
        lbl.Font = new Font(lbl.Font, FontStyle.Bold);
        panel.Controls.Add(lbl);

        lbl = new Label();
        lbl.Text = “Grade”;
        lbl.Location = new Point(280, 20);
        lbl.Font = new Font(lbl.Font, FontStyle.Bold);
        panel.Controls.Add(lbl);

        int i = 0;
             foreach (KeyValuePair<Student, Enrollment> p in d)
        {
        lbl = new Label();
        lbl.Text = p.Key.ID;
        lbl.Location = new Point(30, 50 + 25 * i);
         panel.Controls.Add(lbl);

        lbl = new Label();
        lbl.Text = p.Key.Name;
        lbl.Location = new Point(130, 50 + 25 * i);
         panel.Controls.Add(lbl);

        t = new TextBox();
        t.Text = p.Value.Grade;
        grades.Add(t);
        �grades[i].Location = new System.Drawing.

   Point(280, 50 + (i * 25));
         panel.Controls.Add(grades[i]);
        i++;
        }

        Button btnSave = new Button();
         btnSave.Text = “Save”;
           btnSave.Location = new Point(150, 60 + 25 * i);
             btnSave.Click += new EventHandler(btnSave_Click);
         panel.Controls.Add(btnSave);
  }
}

Grades are saved into the “enrollment.txt” file, and data saving is handled
by the InstructorControl class:

private void btnSave_Click(object sender, EventArgs e)
{

b3881_Ch16.indd 419 05-10-2020 16:37:22

b3881   Requirements Modeling and Coding� 6"×9"

420  Requirements Modeling and Coding

       int i = 0;
       foreach (KeyValuePair<Student, Enrollment> p in
                      �InstructorControl.

   Sections[cboSections.
   SelectedIndex].Gradebook)

      {
            p.Value.Grade = grades[i].Text;
            p.Value.Status = true;
            i++;
      }
      �InstructorControl.SaveGrade(InstructorControl.

   Sections[cboSections.SelectedIndex]);
      MessageBox.Show(“All Grades have been saved!”)
}

Putting all the above classes together, we shall now have a working
code for professors to post grades. Domain classes have many useful oper-
ations coded for enrolling classes by students. Thus, it will be a similar
exercise to program the “Enroll Classes” use case, which will also involve
reading and writing data to the “enrollment.txt” file. Also, additional use
cases such “create offerings,” “update course catalog,” and “admit stu-
dents” can be envisioned to add more functionalities to the registration
system. Those use cases will involve reading and writing data to other data
files.

Exercises
1.	 Compare the VCM model with the step-and-skip model. What advan-

tages and disadvantages does each model have?
2.	 Give a scenario which shows clear benefits when domain classes do not

know data access classes.
3.	 What is object persistence? Do a little research to compare the two

most popular object persistence technologies.
4.	 Model and code “Enroll Classes” use case performed by the student

actor.

b3881_Ch16.indd 420 05-10-2020 16:37:22

421

b3881   Requirements Modeling and Coding6"×9"�

Chapter 17

From Structured to Object-Oriented
Development

Introduction
The first chapter charted two courses of systems development, respectively,
via structured and object-oriented approaches and the models to be devel-
oped along the way. This last chapter provides a brief comparison of key
models. It is meant for those readers who have prior knowledge in struc-
tured development to take advantage of the knowledge, or their old way of
thinking may hinder their learning of a new approach to modeling and cod-
ing. The readers who do not have such knowledge may skip this chapter;
they will not have disadvantages or confusions caused by the knowledge.

Structured development approaches were developed in the early 1970s.
Early structured approaches were largely process-oriented (e.g., using data
flow diagrams or program flow charts), while the latest are more data-
oriented (e.g., using entity–relationship diagrams). In general, a compre-
hensive structured approach consists of both data modeling to represent
business objects and process modeling to represent business processes. In
the late 1980s, object-oriented techniques were proposed as an alternative
approach. There have been more than 19 different object-oriented tech-
niques proposed since 1988 (Wieringa 1998).

When compared with structured development, the proponents of object-
oriented techniques claim that object-oriented development improves
the communication between users and analysts, enhances reusability of
code, increases productivity and reliability, and reduces the load of code
maintenance (Booch 1991; Eaton and Gatian 1996; Garceau et al., 1993;

b3881_Ch17.indd 421 05-10-2020 16:38:23

b3881   Requirements Modeling and Coding� 6"×9"

422  Requirements Modeling and Coding

Johnson 2000; Yourdon 1994). Additionally, object-oriented development
supports abstraction at the object level and encourages good programming
techniques. It allows a seamless transition among different phases of soft-
ware development by using the same language for analysis, design, and
programming (Graham 1994).

Due to the above-proclaimed benefits, in the last two decades, there
was a phenomenal growth of interest in object-orientation. Many authors
believed that it is critical to migrate to object-oriented development to
develop bigger applications (Liberty 1997) in support of e-business and
business process integration. Many organizations also concluded that such
a migration is necessary, and its potential benefits can be realized (Levine
and Rossmoore 1993).

However, the nature of the migration from structured to object-
oriented development is seldom understood. On one hand, due to many
conceptual as well as historic connections, one tends to believe that object-
orientation represents an evolutionary advancement from structured devel-
opment. On the other hand, the proponents of object-oriented development
tend to emphasize the differences of the approaches and claim that object-
orientation is a revolutionary new methodology. For example, Booch
(1991) and Korson and McGregor (1990) stated that object-oriented
approaches require a different way of thinking about decomposition. Lee
and Pennington (1994) called object-orientation a new “paradigm” for
software development. In the same vein, Fichman and Kemerer (1992)
claim that the shift to object-oriented development represents a radical
change from previous approaches to software development.

Morris et al. (1999) state that understanding the nature of the migra-
tion has important ramifications for systems analysts and the management
of systems development projects. As they argued, if the migration is evolu-
tionary, then system analysts currently trained in procedural methods (data
flow and entity–relationship modeling) should be able to learn and effec-
tively apply object-oriented development. On the other hand, if the migra-
tion is indeed revolutionary, prior experience in procedure methods might
hinder an effective migration and a different mindset would be required to
approach the object-oriented model.

Unfortunately, existing studies along this line have been not only lim-
ited but also inconclusive. For example, Vessey and Conger (1994) found
that object-oriented methods were more difficult to learn and apply than
process-oriented methods in a group of novices. In contrast, Lee and
Pennington (1994) found that object-oriented design is easier and faster

b3881_Ch17.indd 422 05-10-2020 16:38:23

b3881   Requirements Modeling and Coding6"×9"�

From Structured to Object-Oriented Development  423

to learn than procedural design. Boehm-Davis and Ross (1992) had a
balanced finding that object-oriented methods reduce the complexity and
design time while increasing the completeness of the solution.

Similarly, very little empirical research has been conducted to deter-
mine the influence of previous experience in traditional or procedural
approaches on the application of object-oriented development. Agarwal
et al. (1996) studied the effects of prior experience in procedural model-
ing and task characteristics on performance in applying object-oriented
development. Morris et al. (1999) examined whether prior experience in
procedural modeling helps or hinders the performance of applying object-
oriented development and compared procedural and object-oriented
methods on the subjective mental workload (SMW). It is not a surprise
that the results of these studies are also uncertain. For example, consid-
ering solution quality as a measure of performance, Morris et al. (1999)
found that procedurally experienced individuals generate higher quality
solutions using procedural methods than using object-oriented methods.
Agarwal et al. (1996), however, did not support the same hypothesis.
Moreover, Agarwal et al. (1996) found that the procedurally experienced
group performed significantly better than the inexperienced group when
solving an object-oriented problem, while Morris et al. (1999) found the
opposite.

The purpose of this chapter is to understand the nature of migration
from the perspective of the conceptual as well as cognitive connections
between two approaches. We compare three typical systems analysis
models, namely, entity–relationship diagrams, data flow diagrams, and
class diagrams. We show their conceptual connections and disconnec-
tions and how they are different in terms of cognitive tasks. Finally, we
present accumulated empirical evidence related to the debate.

In addition, this chapter attempts to shed some light on further empiri-
cal studies on the nature of the methodology migration. First, any rea-
sonable model of performance in any domain ought to relate to accepted
standards of good practice in that domain (Jeffries et al. 1980). This chap-
ter will provide a basis on how to evaluate the performance of applying
object-oriented development. Second, formalized approaches were writ-
ten by experts in the area, trying to convey to others the procedures they
use to perform the task. Most expert designers are familiar with them and
may incorporate facets of them into their designs. Therefore, information-
processing theories (Newell and Simon 1972) dictate that an analysis of
the approaches is necessary to develop any research model that theorizes

b3881_Ch17.indd 423 05-10-2020 16:38:23

b3881   Requirements Modeling and Coding� 6"×9"

424  Requirements Modeling and Coding

the impact of prior design experience on actual or perceived performance
of applying the approaches. As a matter of fact, this chapter provides a
theoretical foundation for two other empirical studies, respectively, on
how prior design experience affects the performance of applying object-
oriented development (Grandon and Liu 2001) and how prior experience
affects the system analysts’ perception of ease of use and self-efficacy of
object-oriented development (Liu and Grandon 2002).

Here, we do not attempt to provide a survey of design approaches,
like Wieringa (1998), or a tutorial on the approaches. Instead, we restrict
our attention to three models that characterize both structured and object-
oriented development and focus on the analysis of their conceptual as well
as cognitive similarities and differences. However, besides revealing the
nature of the migration from structured to object-oriented development,
this chapter provides a template for both structured and object-oriented
modeling. The nature of systems analysis is to break a complex business
into simple units such as objects and processes, which allow detailed mod-
eling, programmable specifications, and modular management. Following
the same spirit, the chapter breaks the task of business modeling into man-
ageable sub-tasks, such as discovering and representing entities and their
inter-relationships, and processes and their collaborations. Each sub-task
has a well-defined template, and certain sub-tasks have a well-defined
modeling goal. Such an analytical view of system design models fills in
the many voids in the existing methodology literature. For example, there
have been some guidelines and tools (e.g., identifying nouns in use cases)
to help with the identification of objects (Rosenberg 1999). However,
there do not exist any defined processes or tools, for example, in the
Unified Process (Jacobson et al., 1999), to explicitly and systematically
assist in eliciting relationships or to document them in class diagrams or
entity–relationship diagrams. This chapter fills in the gap by specifying
the nature and goal of relationships modeling that assist the systems ana-
lyst in discovering what relationships exist among objects and processes,
thus greatly enhancing their modeling performance.

Requirement Models
In this section, we review data flow diagrams and entity–relationship
diagrams as the representation of structured development and class dia-
grams as the representation of object-oriented development (Booch et al.,
1999).

b3881_Ch17.indd 424 05-10-2020 16:38:23

b3881   Requirements Modeling and Coding6"×9"�

From Structured to Object-Oriented Development  425

Data flow diagrams

A data flow diagram depicts business processes and the flow of data
among them. The elements of a data flow diagram include functions, data
stores, and external entities. The elements are connected by data flows. A
function represents a data activity to be performed. A data store represents
data at rest. External entities are the sources and/or sinks of data, which
are logically outside the system but communicate data with the system.
There are two different kinds of relationships to connect diagramming ele-
ments together. First, data flows are used to represent informational col-
laboration among functions. To perform a function, as its name suggests,
a function must have enough input flows provided by other functions, data
stores, and/or external sources. It must also generate reasonable output
flows to serve the information needs of other functions and/or external
entities. Second, there is a whole-part relationship between functions and
their sub-functions. The functional decomposition represents the delega-
tion of responsibilities in the sense that the sum of sub-functions supports
a high-level function, and the sum of all functions supports the mission of
the entire system. Correspondingly, data flow diagrams are usually orga-
nized into a hierarchy of nested diagrams, where a function at a higher
level maps to a decomposed diagram detailing sub-functions at the next
lower level.

The goal of data flow diagramming is to ensure that all the responsi-
bilities of a system are captured and allocated to functions. As stated by
Fichman and Kemerer (1992), the goal of structured analysis and design is
to develop a top-down decomposition of the functions to be performed by
the system. There are some other additional criteria to be followed in pro-
cess modeling. For example, functions are cohesive and loosely coupled
to achieve reusability (see Gibson and Hughes 1994; Hoffer et al., 1999;
Whitten et al., 2001 for further details).

Entity–relationship diagrams

An entity–relationship diagram graphically represents business objects
and their relationships. The basic diagramming elements include entities
(objects) and attributes (data). An entity is anything that can be distinctly
identified. For instance, customers, events, or accounts are all entities. An
attribute is a property or characteristic of an entity. Entities are grouped
into entity types (or classes). Entities are connected by relationships like

b3881_Ch17.indd 425 05-10-2020 16:38:23

b3881   Requirements Modeling and Coding� 6"×9"

426  Requirements Modeling and Coding

associations and generalizations. The eventual goal of entity–relationship
modeling is to capture data requirements and organize the data efficiently.

The entity relationship model incorporates some of the important
semantic information about the real world (Chen 1977). Entities are any
business objects that have data, and conceptually they are the same objects
in object-oriented analysis. The difference is that the objects have not
only data but also capabilities of performing functions. The relationships
in entity–relationship models have multiple semantics. First, they can be
physical or logical associations between entities. For example, relation-
ships between customers and accounts might represent who owns which
account. As another example, relationships between dogs and animals
represent the logical connection that dogs are a special kind of animal.
Second, a relationship represents a data connection or an information navi-
gation channel through which one can travel from the data about one entity
to the data about another entity. For instance, a relationship between a cus-
tomer and an account provides a navigational channel for one to look up
the account given the customer details or vice versa. (For a more detailed
description of entity–relationship modeling, see Chen 1977; Rob and
Coronel 2000; Hoffer et al., 1999.)

Class diagrams

Objects are the most important construct in object-oriented techniques.
In object-oriented programming, an object is a self-contained program
module that encapsulates both data and functions. A software system is
then simply a collection of discrete classes that can be easily replaced,
modified, or reused. In object-oriented analysis, an object often corre-
sponds to a real-world object, like an airplane, an account, or a customer.
It can be tangible or intangible. Different from an entity in entity–rela-
tionship models, an object has data as well as functionalities. As Rob and
Coronel (2000) put it in a simple manner, an object is an abstract represen-
tation of a real-world entity that has a unique identity, embedded proper-
ties, and the ability to interact with other objects and itself.

A class diagram graphically depicts the static design view of a system:
classes, collaborations, and their relationships. The basic diagramming
elements include classes, attributes, and operations. A class is conceptually
equivalent to an entity type or an entity set in entity–relationship models.
It is a set of objects that share common attributes and functionalities. For
example, we can group all customer objects to form the Customer class

b3881_Ch17.indd 426 05-10-2020 16:38:23

b3881   Requirements Modeling and Coding6"×9"�

From Structured to Object-Oriented Development  427

and all account objects to form the Account class. Objects are connected
by relationships like association (including aggregation) and generaliza-
tion (or inheritance). Like those in an entity–relationship model, asso-
ciation represents a physical or conceptual connection between two or
more objects. Generalization represents the IS-A-KIND-OF relationships
between related objects. Aggregation represents the IS-A-PART-OF rela-
tionships between objects. An entity–relationship model represents aggre-
gation using associations between weak entities and the strong entities
on which the weak entities depend, whereas a class diagram represents it
using a special type of association, called containment.

There are two specific goals to be achieved in class diagramming.
The first one is the same as that for an entity–relationship model. That
is, a class diagram must capture both object data and their navigational
relationships. The second goal is to capture object functions and their col-
laborative relationships. In addition, to ensure the highest level of code
reusability and maintainability, data (knowledge) and functionalities
(responsibilities) must be distributed to all objects evenly and coherently
such that each object has the best knowledge to perform its own functions
and no object has all the data or does everything (Coad and Nicola 1993;
Liberty 1997).

Conceptual Connections
Even though both entity–relationship diagrams and class diagrams use
similar concepts such as objects (entities), classes (entity type), and data
members (attributes), and both represent a static structure of objects using
relationships like associations and generalizations, they have some differ-
ences. For example, besides capturing data requirements, a class diagram
also represents what functions the objects can perform and how the objects
collaborate with each other to achieve overall system responsibilities. It is
often tempting to say that an entity–relationship diagram is a class diagram
without functionality specifications. In addition, an entity–relationship
diagram has limitations in representing certain type of relationships such
as aggregation and composition (Silberschatz et al., 1999).

In structured development, a software system is viewed as a col-
lection of programs (or functions) and a separate collection of data.
As Wirth (1975) defined it in his book that is interestingly titled
Algorithms + Data Structures = Programs, a software system is a set of
mechanisms for performing certain action on certain data. Compared

b3881_Ch17.indd 427 05-10-2020 16:38:23

b3881   Requirements Modeling and Coding� 6"×9"

428  Requirements Modeling and Coding

with object-oriented techniques, the structured ones have the following
four overall features:

•	 Data and functions are separated. This dictates that we use two differ-
ent models to capture data requirements and functional requirements.
Specifically, the entity–relationship model and the data flow model
are the two main vehicles used in structured development.

•	 Functions are the basic programming units that are callable by other
functions and reusable by other software.

•	 Functions are participants in collaborations. The functionalities of a
whole system are realized by the collaboration of functions, which is
documented by data flow diagrams and structured charts as well.

•	 A record is the basic unit of data storage. Each record represents the
attributes of one entity (object). Records are interlinked by naviga-
tional relationships, which are documented by entity–relationship
diagrams.

In object-oriented techniques, on the other hand, a software system
is viewed as a collection of objects that encapsulate both attributes (data)
and methods (or functions). Compared with the structured techniques, the
object-oriented ones have the following distinctive features:

•	 Data and functions are no longer isolated. Instead, they are both con-
tained by high-level abstractions — objects. The integration of data
and functions dictates that we use one model to capture data require-
ments and functional requirements. Specifically, the class diagram is
the main vehicle used in object-oriented development.

•	 Classes are the basic programming units that are callable by other
classes and reusable by other software.

•	 Objects are participants in collaborations. The functionalities of a
whole system are realized by the collaboration of objects, which is
documented by class diagrams and collaboration diagrams as well.

•	 Objects are the basic unit of data storage. Each object represents a
real-world entity (object). Objects are interlinked by navigational rela-
tionships, which are documented by class diagrams.

The entity–relationship and the data flow models reasonably repre-
sent structured development while the class model represents object-
oriented development. Table 1 compares the basic mechanics of the three

b3881_Ch17.indd 428 05-10-2020 16:38:23

b3881   Requirements Modeling and Coding6"×9"�

From Structured to Object-Oriented Development  429

models as well as the criteria for successful applications of the models.
Specifically, structured and object-oriented models have both conceptual
and semantic connections and disconnections. With respect to basic ele-
ments, class diagrams have strong conceptual and semantic linkage with
both the entity–relationship model and the data flow model. The notion of
entity types in the entity–relationship model is the same as that of classes
in the class model. Entities are the same as objects except that objects have
behavior while entities do not. Attributes in the entity–relationship model
are the same as that in class diagrams. The concept of functions in the
data flow model is the same as, or at least closely related to, the concept
of methods (or behaviors, functions, responsibilities) in class diagrams.

Table 1.   A comparison of requirement models.

Elements Relationships Modeling Goals

Entity–relationship
diagrams

•	 Entities
•	 Attributes
•	 Entity types

•	 Association
•	 Generalization

•	 Data requirements are captured
by entities and attributes

•	 Data navigations are captured
by relationships

•	 Data are organized for efficient
storage and processing

Data flow
diagrams

•	 Functions
•	 Data stores
•	 External

entities

•	 Data flow
•	 Decomposition

•	 System responsibilities are
captured by functions

•	 The collaboration of functions
is captured by data flows

•	 Complex functions are
decomposed into simple low-
level sub-functions

•	 Functions are cohesive and
loosely coupled to achieve
reusability

Class diagrams •	 Objects
•	 Attributes
•	 Methods
•	 Classes

•	 Association
•	 Generalization
•	 Aggregation

•	 Data requirements are captured
by objects and attributes

•	 System responsibilities are
captured by objects and
methods

•	 The collaboration of objects is
captured by relationships

•	 Classes are cohesive and
loosely coupled to achieve
reusability

b3881_Ch17.indd 429 05-10-2020 16:38:23

b3881   Requirements Modeling and Coding� 6"×9"

430  Requirements Modeling and Coding

Therefore, the understanding of the structured models will improve the
understanding of class diagrams, at least conceptually.

With respect to relationships, class diagrams have strong conceptual
and semantic linkage with the entity–relationship model. Both the entity–
relationship and class diagrams use the same concept of association and
generalization. They also use association and generalization in the same
way to represent relationships among entities (objects). Due to the need
for data normalization, the entity–relationship model does not have the
concept of aggregation (or composition) (Silberschatz et al., 1999) as in
class diagrams. However, it often represents aggregation (composition) as
associations between strong and weak entities. In other words, it has the
concept implicitly and represents a domain construct in the same way as
in class diagrams.

With respect to relationships, class diagrams have no conceptual link-
age with the data flow model. The data flow model uses data flows to
connect functions, data stores, and external entities and functional decom-
positions to connect functions at different levels. A data flow represents
either an input to be processed by a function or an output produced by
a function. A functional decomposition represents the delegation of the
responsibilities of a high-level function to a low-level one. A class diagram
uses the concept of association, generalization, and aggregation to repre-
sent physical or logical connections between objects. Therefore, the con-
cepts and the semantics of the relationships used in the data flow model
and class diagrams are very different.

Regarding modeling goals, class diagrams overlap with but differ
from both the entity–relationship and the data flow models. The goal of
capturing data requirements in the entity–relationship model is the same
as that in class diagrams. The goal of capturing functional requirements
in the data flow model is the same as that of class diagrams. In both
entity–relationship and class diagrams, we need to capture the relation-
ships between entities or objects. However, their goals are different. In
the entity–relationship model, the goal is to capture data navigation, i.e.,
tracing the data for one entity to the data for a related entity. In class
diagramming, the goal is to capture the collaboration of objects, i.e., the
methods (functions) of one object support the methods (functions) of
other objects.

The data flow model captures the informational collaboration of
functions by using data flows. It shows how functions work together by
receiving and sending inputs and outputs to realize some cooperative

b3881_Ch17.indd 430 05-10-2020 16:38:23

b3881   Requirements Modeling and Coding6"×9"�

From Structured to Object-Oriented Development  431

functionality that is bigger than the sum of all its parts. In contrast,
collaboration in object-oriented techniques is defined as a society of
objects that work together to provide a cooperative behavior. It has two
aspects: A structural part that specifies the classes that work together to
carry out the named collaboration, and a behavioral part that specifies
the dynamics of how objects interact (Booch et al., 1999). A class dia-
gram captures the structural part of collaboration using relationships like
association, generalization, and aggregation. The collaboration model
(sequence diagrams or communication diagrams) captures the behavioral
part of collaboration as messages passed among objects. A message is
like a data flow except that messages between objects represent function
calls while data flows represent data inputs and outputs between func-
tions. Therefore, capturing collaboration requirements in the data flow
model is like capturing the behavioral part of collaboration in object-
oriented development. It is different from capturing the structure part of
collaboration in class diagrams. Of course, the behavioral part of collabo-
ration is conditioned on the structural part of collaboration; two objects
can send messages to each other only when their hosting classes are con-
nected in a class diagram.

The data flow model has a second legacy. The highest data flow dia-
gram, called the context diagram, is a close relative to the use case diagram
in the object-oriented analysis (Whitten et al., 2001).

Besides the goal of capturing data and functional requirements, the
application of each model has some additional goals or criteria, which can
be used to judge the quality of modeling tasks. In the entity–relationship
model, the most important criterion is the efficiency of data storage and
data processing. The fewer the missing values and the less the redundancy,
the better an entity–relationship diagram. In data flow modeling, the addi-
tional goals include cohesion and loose coupling of functions (Gibson and
Hughes 1994). Cohesion measures how much the functions that are con-
nected to each other support a central purpose. A cohesive section of func-
tions does not rely on other sections of functions for help. Coupling, on
the other hand, measures the interdependence of the functions that are con-
nected. Since program modules must be as independent as possible to be
reusable, functions should be loosely coupled to each other. Interestingly,
the notion of cohesion and coupling also applies to class diagrams
(Bahrami 1999; Liberty 1997). Here, coupling measures the strength of
association between objects (Bahrami 1999). A class is cohesive if all its
attributes and operations relate to the same area of concern (Liberty 1997).

b3881_Ch17.indd 431 05-10-2020 16:38:23

b3881   Requirements Modeling and Coding� 6"×9"

432  Requirements Modeling and Coding

Coupling deals with interactions among objects, while cohesion deals with
interactions within a single object. One goal in class diagramming is to
maximize object cohesiveness in order to improve coupling, because only
a minimal amount of essential information needs to be passed between
objects (Bahrami 1999).

Even though both models use a similar concept of cohesion and cou-
pling, end results can be very different. A class diagram requires spread-
ing knowledge (attributes and methods) horizontally among all classes,
with each class specializing in one area of concern. Any other class that
must accomplish a related task will then delegate the task to the class
most responsible (Liberty 1997). In contrast, the data flow model advo-
cates spreading knowledge vertically so that responsibility is centralized
in one or two manager functions, and they delegate partial responsibili-
ties to a rabble of worker functions. If this design philosophy is taken in
class diagramming, it is often a natural inclination that one creates a small
number of omniscient manager classes and a rabble of worker classes that
are deeply coupled to the manager classes. As a matter of fact, those C++
programmers who are experienced in a procedural language like C tend
to create global manager classes that are essentially global functions in
class clothing (Liberty 1997). The data flow modeling philosophy under-
mines the delegation of responsibility essential to clean and robust object-
oriented design. Due to the deep coupling, whenever a manager class is
redesigned, the effects ripple uncontrollably and destructively throughout
worker classes. The manager classes tend to become large and unwieldy,
and it is difficult to reuse them or even derive from them as they bring so
much baggage and overhead (Liberty 1997).

Liberty (1997) uses Adam Smith’s division of labor as a metaphor
to illustrate the principle of delegation in object-orientation. A company
might have a lawyer, a developer, and a graphic artist. Each one has a nar-
row, cohesive set of responsibilities and expertise. The company encom-
passes a lot of expertise, but it is spread evenly across the people involved.
When one adds a new responsibility, one assigns it to the person with the
most knowledge. If we were adding the responsibility of ensuring that
we have not violated a copyright, we might assign it to a lawyer who is
the most knowledgeable about the law. If the lawyer needs to determine
which algorithm is to be used in a part of the project, he might delegate
that responsibility to the developer, who, again, has the most knowledge
in the area. If the lawyer needs to determine the authenticity of a graphic
work, he might delegate the responsibility to the graphic artist.

b3881_Ch17.indd 432 05-10-2020 16:38:23

b3881   Requirements Modeling and Coding6"×9"�

From Structured to Object-Oriented Development  433

In sum, the three models have conceptual and semantic connections
and disconnections. From structured to object-oriented models, some
concepts are evolutionary while some are revolutionary. Class diagrams
extend the concepts of entities, entity types, and attributes in the entity–
relationship model and the concept of functions in the data flow model.
The structure of a class diagram is like that of an entity–relationship dia-
gram. Their concepts of relationships are also very similar. However, a
relationship in the entity–relationship model represents data navigation
while in a class diagram it is the delegation of responsibilities or the struc-
ture of collaboration. The structure of a class diagram is different from
that of a data flow diagram. However, they both represent collaboration.
The difference is that a data flow diagram represents the behavioral part
of collaboration while a class diagram represents the structural part of col-
laboration. Another revolutionary difference between class diagrams and
data flow diagrams is in how one uses the notion of cohesion and coupling.
The concepts are the same in both models. However, they underline two
different systems design philosophies.

Cognitive Connections
In entity–relationship modeling, the cognitive tasks include identifying
entities and attributes from data requirements, grouping entities into entity
types, and discerning relationships based on the data navigation require-
ments as follows:

•	 Data → Entities: This activity identifies entities. There are two differ-
ent approaches to such an identification. First, entities are the business
objects that one needs to keep data for. Therefore, the identification of
entities boils down to the search for business objects such as custom-
ers, employees, accounts, orders, etc. This approach is often referred
to as the top-down one. In contrast, the second approach is a bottom-up
one. Here, one is given the data to be recorded (e.g., customer name,
order date, order quantity, discount, etc.), and the cognitive task is to
discern the corresponding data carriers or containers (entities) holding
the data.

•	 Data → Attributes: This activity identifies common attributes for a
group of entities. There are also two different approaches. First, one
can identify attributes by exhaustively searching for the properties of
the entities. Second, one can identify attributes based on the presence

b3881_Ch17.indd 433 05-10-2020 16:38:23

b3881   Requirements Modeling and Coding� 6"×9"

434  Requirements Modeling and Coding

of certain data items to be recorded, such as order quantity and order
date.

•	 Entity Grouping or Classification: This task groups entities that
share common properties and relationships into an entity type. It also
includes factorizing common attributes and relationships in order to
identify sub-entity types.

•	 Data → Relationships: If an attribute simultaneously depends on
two or more entities, one can recognize the existence of relation-
ships between the objects. This task identifies them along with a
special entity type called gerund based on the presence of such an
attribute.

•	 Data Navigation → Relationships: The key to data modeling is to
ensure data navigation (National Research Council 1999). Given an
entity, if there is a need to trace a related entity, then there must be a
relationship between the two entities.

The data flow modeling involves the cognitive tasks of identifying
functions from a system’s responsibilities, identifying data flows based on
information collaboration requirements, and progressively decomposing
high-level functions into more detailed sub-functions as follows:

•	 Data Activity → Functions: This task identifies the functions to be
performed by the system. We can do so by following a top-down
approach, where the responsibilities of the entire system are identified
first and then a set of functions are created to assume the responsi-
bilities. We can also do so by following a bottom-up approach, where
data to be managed are identified first and then the data actions to be
performed are inferred.

•	 Information Collaboration → Data Flows: This task identifies the
input and output data flows for a function. For any function to perform
its action, it must have enough input data. Due to the separation of
data and functions, a function must get data from other functions, data
stores, and/or external entities. Similarly, a function cannot absorb its
output data. It must send them to other functions, data stores, and/or
external entities.

•	 Functional Decomposition: This task vertically decomposes a func-
tion into a set of collaborative sub-functions such that the sum of the
sub-functions is equal to the parent function. This process was called
progressive refinement by Fertuck (1995), and in this one uses a zoom

b3881_Ch17.indd 434 05-10-2020 16:38:23

b3881   Requirements Modeling and Coding6"×9"�

From Structured to Object-Oriented Development  435

lens to reveal details of a function that are not visible initially. It is
viewed as the delegation of responsibilities, where the parent function
plays the role of a manager that calls and coordinates its sub functions
to perform their tasks (Gibson and Hughes 1994). It can be viewed as
a logical aggregation process, where the parent function is comprised
of and therefore is decomposed into two or more logically different
data activities (Hoffer et al., 1999). Regardless of which perspective
a systems analyst may take, cognitively, functional decomposition
involves solving a logical puzzle or an under-determined equation. It
involves solving a hierarchical set-covering problem, where a set is
covered by two or more subsets, which in turn can be further covered
by finer subsets. There is infinite number of solutions. However, the
goal is to come up with a solution in which sub functions are coherent
and loosely coupled to achieve reusability and the functions are effi-
cient so as to support the mission of the system.

In class diagramming, one needs to identify objects, attributes, and
methods based on data and functional requirements, group objects into
classes, and discern object relationships based on functional collaboration
requirements as follows:

•	 Data → Objects: This activity identifies domain objects in object-
oriented analysis. As in entity–relationship modeling, there are two
different approaches to such identification. First, one searches for the
business objects such as customers, employees, accounts, orders, etc.
that he or she needs to keep data for. Second, given the data to be
recorded (e.g., customer name, order date, order quantity, or discount),
one can also discern the corresponding data carriers or containers
behind the data. Such as a carrier or container is an object.

•	 Functions → Objects: In class diagramming, all functions are embed-
ded inside classes. Like the abstraction from data to objects, the task
here is to discern the performer of a function given the requirement to
capture the function.

•	 Data → Attributes: This activity identifies common attributes for a
group of objects. This task is the same as its counterpart in entity–rela-
tionship modeling. First, one can identify attributes by exhaustively
searching for the properties of the objects. Second, one can identify
the attributes according to the presence of data items such as customer
name and order date.

b3881_Ch17.indd 435 05-10-2020 16:38:24

b3881   Requirements Modeling and Coding� 6"×9"

436  Requirements Modeling and Coding

•	 Responsibilities → Methods: This task abstracts real-world respon-
sibilities into object methods. To a certain extent, this task is like the
abstraction from data requirements to object attributes. However,
there are some differences. First, a typical high-level responsibility
must be carried out by two or more objects collaboratively. Due to
the need for data encapsulation, a method in Object A usually cannot
directly access the data in Object B. Object A must request the service
from Object B to execute one or more of its methods. Therefore, a
real-world functionality may have to be decomposed and abstracted
into multiple methods contained in multiple objects. Second, it is
not straightforward to decide which class should contain which func-
tion. Methodologists suggest that a function should be carried out
by the object that has the best knowledge or data (Coad and Nicola
1993; Liberty 1997). However, such a decision often requires a judg-
mental call.

•	 Data → Relationships: If an attribute simultaneously depends on or
describes two or more objects, one can recognize the existence of rela-
tionships between the objects. This task identifies them along with an
association object based on the presence of such data. It is cognitively
the same as a gerund in entity–relationship diagrams.

•	 Data Navigation → Relationships: Based on the belief that a class
diagram is an extension of an entity–relationship diagram, there have
been attempts to use class diagrams for database design (Post 1999).
In such applications, it is important to ensure data navigation by using
relationships (National Research Council 1999). That is, given an
object, if there is a need to trace a related object, then there must be
a relationship between the two objects. Note that such an application
of class diagrams still falls within the paradigm of structured design,
where data and functions are separated. In object-oriented techniques,
direct access to data in different objects is prohibited. Whenever an
object needs to get data from a related object, it calls the methods of
the other object by sending messages. The need for data navigation in
structured techniques is replaced by the functional delegation between
objects.

•	 Responsibilities → Relationships: This task identifies relationships
among objects to capture the structure of delegation among objects.
An important goal in class diagramming is to create cohesive and
loosely coupled classes so that each class is responsible for one area
of concern, and any other class that must accomplish a related task

b3881_Ch17.indd 436 05-10-2020 16:38:24

b3881   Requirements Modeling and Coding6"×9"�

From Structured to Object-Oriented Development  437

will then delegate to the class most responsible. This design criterion
states that a typical system responsibility must be carried out by one
or more objects in collaboration. The behavioral part of collaboration
is captured by function calls (or messages) on collaboration diagrams.
The structured part of collaboration is represented by relationships
among objects in a class diagram. The two parts of collaboration
are interwoven; a function call cannot happen between two objects
if they have no relationship in the class diagram. An effective class
modeling technique, called CRC Cards, is often employed to deter-
mine the fundamental associations among classes in object-oriented
design projects (Fowler and Scott 1997). A class-responsibility-
collaboration (CRC) card is nothing more than a 3 × 5 index card on
which one writes the name of each class, its responsibilities, and the
names of other classes with which it must collaborate to get its work
done. In this way, the relationships among collaborative classes are
identified.

•	 Entities Grouping: This task groups objects that share common
properties and relationships into a class. It also includes factor-
izing common attributes and relationships to identify super- and
subclasses.

Empirical Evidence
Empirical studies have been focused on whether existing experience in
structured development helps or hinders the migration to objection-
orientation, both in terms of performance and cognitive effort. Among
them, the primary independent variable is prior procedural modeling expe-
rience, except for Grandon and Liu’s study (2001) where both data model-
ing and process modeling experience were considered. Between the two
dependent variables that symbolize whether it is easy to achieve migra-
tion, performance is typically measured by design quality while cogni-
tive effort is measured variably from study to study. For example, Adelson
and Soloway (1985) studied dissimilarities in novice and expert cogni-
tive process in the context of software design. Vessey and Conger (1994)
applied process tracing and protocol analysis to qualitatively capture dif-
ferences in cognitive processing. Morris et al. (2000) used SMW, a hypo-
thetical construct that represents the cost incurred by a human operator to
achieve a level of performance (Hart and Staveland 1988). Grandon and
Liu (2001) employed both time to solution and perceived attention level,

b3881_Ch17.indd 437 05-10-2020 16:38:24

b3881   Requirements Modeling and Coding� 6"×9"

438  Requirements Modeling and Coding

which captures how much mental resource is devoted to a cognitive task
(Kanfer and Ackerman 1989; Kanfer et al., 1994).

Unfortunately, a general conclusion concerning whether previous
experience helps or hinders performance in the same or a new domain
cannot be derived from the existing literature of empirical studies since
their findings are inconclusive. For example, Boehm-Davis and Ross
(1992) found that previous experience was not the major contributor to
completion of the program design even when subjects had prior experi-
ence in the same domain. In their study, they compared the solution design
obtained from professional programmers with years of experience in a
specific methodology with less-experienced professional programmers in
the same methodology. There was no correlation between the percentage
of completion and years of programming experience.

Related studies that have considered the role of previous experience
in applying object-oriented approaches include those by Agarwal et al.
(1996), Morris et al. (1999), and Lee and Pennington (1994). The findings
of these studies are varied. For example, Agarwal et al. (1996) studied the
effects of previous experience and task characteristics on performance in
systems analysis and design. To explore this relationship, they conducted
an experiment in which two groups of subjects applied the object-oriented
methodology to two types of tasks: one process-oriented and the other
object-oriented. The experienced group had significant knowledge in
process-oriented approaches while the other group had no formal expe-
rience. The results showed that analysts experienced in process-oriented
approaches did not perform better than inexperienced modelers on the
process-oriented task. As opposed to what was expected, the experienced
group performed significantly better than the inexperienced group on the
object-oriented task.

Lee and Pennington (1994) examined differences in cognitive activi-
ties and final designs among object-oriented and procedure-oriented expert
designers using both object-oriented and procedural design approaches,
and among expert and novice object-oriented designers, when novices
had extensive procedural experience. When analyzing final designs, the
researchers found that object-oriented designers decomposed their design
into objects corresponding to the real-world domain entities while pro-
cedural designers decomposed their designs according to actions on data
structures.

Morris et al. (1999) examined whether experience in using procedural
methods helps or hinders performance using object-oriented analysis and

b3881_Ch17.indd 438 05-10-2020 16:38:24

b3881   Requirements Modeling and Coding6"×9"�

From Structured to Object-Oriented Development  439

compared procedure- and object-oriented analysis methods on the SMW
(subjective mental workload). To accomplish this, they conducted an
experiment using two groups of individuals: the first group was comprised
of procedurally experienced subjects and the other one was comprised of
novices. The measures of performance they used to assess the influence
of previous experience were SMW, solution quality, and time to solu-
tion. The results indicated that SMW was higher for those procedurally
experienced subjects using an object-oriented tool to solve the problem.
However, when those procedurally experienced subjects had to solve the
task using a procedural tool — data flow diagram — the SMW was con-
siderably lower. The quality of the solution, on the other hand, was lower
for the experienced group compared with the inexperienced group when
they solved the task using an object-oriented tool. The quality was higher
when the experienced group had to solve the task using a procedural tool.
In addition, it was hypothesized that time to solution should be less for
the experienced group when they had to solve a problem using data flow
diagram. However, the data obtained did not support this hypothesis.

Grandon and Liu (2001) explicitly consider two different types of
prior experience — data modeling and procedure modeling — and their
effect on performance and cognitive effort in class diagramming. They
conducted an experiment using four groups of subjects, with each group
having a different mixture of subjects of both experience types. They found
a very significant main effect of data-modeling experience in the sense that
subjects with data modeling experience performed much better than those
without. They also found a significant interaction effect between data
modeling and process modeling: for subjects with data modeling experi-
ence, their experience in procedure modeling positively influenced their
performance of class diagramming. However, for subjects without data
modeling experience, the impact of procedure modeling experience was
the opposite. Moreover, Grandon and Liu (2001) found mixed support for
their hypothesis that subjects with data modeling and/or procedure mod-
eling experience would need less effort than novices in using the object-
oriented method.

Summary Notes
Requirements modeling involves both data modeling and process mod-
eling. Data modeling is concerned with capturing end-user data require-
ments, which are eventually converted into database design specifications.

b3881_Ch17.indd 439 05-10-2020 16:38:24

b3881   Requirements Modeling and Coding� 6"×9"

440  Requirements Modeling and Coding

Process modeling is concerned with capturing business process require-
ments, which are eventually converted into application specifications. In
this sense, both data modeling and process modeling are two integral com-
ponents of any systems analysis and design task.

In structured development, data modeling and process modeling are
performed separately. In object-oriented development, however, both data
and processes are captured by a unified model, such as a class diagram.
Traditional data modeling and process modeling have many different con-
ceptual connections with class diagramming. As was observed, class dia-
gramming consists of abstract elements and relationships from both the
data model and the process model. A class diagram inherits constructs
like entities (objects), attributes (data members), entity types (classes), and
relationships such as association and generalization from a data model.
It inherits the concept of functions (methods) from a process model. In
terms of modeling goals, class diagramming needs to capture both data
requirements and navigations, and responsibility requirements and collab-
orations, which are, respectively, in the realms of data modeling and pro-
cess modeling. Therefore, prior experience in data modeling and process
modeling should help in improving the performance of object modeling.

Structured development and object-oriented development have signif-
icant differences. First, the concepts of objects that encapsulate both data
and responsibilities involve a higher level of abstraction than functions and
entities. Second, even though class diagramming inherits the concept of
relationships from data modeling, a relationship represents the collabora-
tion of objects in a class diagram while it is for data navigation in a data
model. Third, both class diagramming and process modeling involve the
concepts of collaboration, functional decomposition, cohesion, and cou-
pling. However, process modeling is concerned with the collaboration of
functions and a vertical decomposition of functions, while class diagram-
ming is concerned with the collaboration of objects and a horizontal dis-
tribution of responsibilities.

In terms of cognitive tasks, class diagramming involves tasks that
can be performed by knowledge in data modeling and process modeling
independently. Such tasks include identifying objects from data, attributes
from data, relationships from data navigations, methods from responsibili-
ties, and grouping objects into classes. It also performs tasks that integrate
concepts and skills across data modeling and process modeling. Such
tasks include identifying objects through functions, relationships though
functions, and methods through data.

b3881_Ch17.indd 440 05-10-2020 16:38:24

b3881   Requirements Modeling and Coding6"×9"�

From Structured to Object-Oriented Development  441

The migration from structured to object-oriented development involves
both evolutionary and revolutionary factors. It is the cognitive theories
along with empirical tests that may eventually judge whether the migra-
tion is revolutionary or evolutionary. The conceptual and cognitive analy-
sis detailed in this chapter would have shed light on how to apply cognitive
theories and conduct experimental studies.

In empirical studies, the impact of prior design experience is still a
paradox to be addressed. Research findings on the nature of the migra-
tion have been sparse and equivocal. One study found that the main and
interaction effects of data modeling and process modeling experience
can explain 61% of the variance of the performance of applying object-
oriented development (Grandon and Liu 2001). If this result can be further
replicated in other experimental settings, it may be tempting to conclude
that the migration from structured development to object-oriented devel-
opment is evolutionary.

b3881_Ch17.indd 441 05-10-2020 16:38:24

b2530   International Strategic Relations and China’s National Security: World at the Crossroads

b2530_FM.indd 6 01-Sep-16 11:03:06 AM

This page intentionally left blankThis page intentionally left blankThis page intentionally left blankThis page intentionally left blank

b3881   Requirements Modeling and Coding6"×9"�

443

Bibliography

Adelson, B. and Soloway, E. 1985. The role of domain experience in software
design. IEEE Transactions on Software Engineering. 11(11): 1351–1360.

Agarwal, R., Sinha, A. et al. 1996. The role of prior experience and task character-
istics in object-oriented modeling: An empirical study. International Journal
of Human and Computer Studies. 45: 639–667.

Alencar, F., Jaelson Castro, et al. 2000. From Early Requirements Modeled by the
i* Technique to Later Requirements Modeled in Precise UML. In Anais do III
Workshop em Engenharia de Requisitos. Rio de Janeiro, Brazil.

Bahrami, A. 1999. Object-Oriented Systems Development Using the Unified
Modeling Language. McGraw-Hill: Boston, MA.

Boehm-Davis, D. and Ross, L. 1992. Program design methodologies and the soft-
ware development process. International Journal of Man-Machine Studies.
36: 1–19.

Booch, G. 1991. Object Oriented Design with Applications. The Benjamin/
Cummings Publishing Company, Inc. San Francisco, CA.

Booch, G., Rumbaugh, J. et al. 1999. The Unified Modeling Language User
Guide. Addison-Wesley: Reading, MA.

Chen, P. 1977. The Entity-Relationship Approach to Logical Database Design.
Wellesley, MA, Q.E.D. Information Sciences, Inc.

Coad P. and Nicola J. 1993. Object-Oriented Programming. Yourdon Press:
Englewood Cliffs, NJ.

Deming, W. E. 1986. Out of the Crisis. Massachusetts Institute of Technology
Center for Advanced Engineering Study: Cambridge, MA.

Eaton, T. and Gatian, A. 1996. Organizational impacts of moving to object-
oriented technology. Journal of Systems Management. 47(2): 18–26.

Erich Gamma, Richard Helm, et al. 1995. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley: Reading, MA.

b3881_Bibliography.indd 443 05-10-2020 16:30:53

b3881   Requirements Modeling and Coding� 6"×9"

444  Bibliography

Fertuck L. 1995. Systems Analysis and Design with Modern Methods. McGraw-
Hill: Boston, MA.

Fichman, R. and Kemerer, C. 1992. Object-oriented and conventional analysis
and design methodologies. Computer. October, 22–39.

Fowler, M. and Scott, K. 1997. UML Distilled. Applying the Standard Object
Modeling Language. Addison-Wesley: Reading, MA.

Garceau, L., Jancura, E. et al. 1993. Object-oriented analysis and design: A new
approach to systems development. Journal of Systems Management. 44(1):
25–33.

Geoffrey A. Moore. 1991. Crossing the Chasm: Marketing and Selling High Tech
Products to Mainstream Customers, Harper Business: New York.

Gibson, M. and Hughes, C. 1994. System Analysis and Design. A Comprehensive
Methodology with Case. Boyd & Fraser: MA, San Francisco, CA.

Graham, I. 1994. Object Oriented Methods. Addison-Wesley: Reading, MA.
Grandon E. E. and Liu, L. 2001. An empirical study of how structured model-

ing experience affect the performance of applying object-oriented analy-
sis methodology. Technical Report. Department of Management, Southern
Illinois University, Carbondale, Illinois. A short version is also available in
M. Rungtusanatham (ed.), Proceedings of 2001 Decision Sciences Institute
Meeting. San Francisco, CA.

Hart, S. G. and Staveland, L. E. 1988. Development of NASA-TLX (Task Load
Index): Results of empirical and theoretical research. In O. A. Hancock and
N. Meshkati (eds.), Human Mental Workload. Amsterdam, North-Holland,
Elsevier.

Hay, D. 1996. Data Model Patterns: Conventions of Thought. Dorset House
Publishing, New York, NY.

Hoffer, J., George, J. et al. 1999. Modern Systems Analysis and Design. Addison-
Wesley: Reading, MA.

Howard Podeswa. 2005. UML for the IT Business Analyst. Thomson: Boston,
MA.

Jacobson I., Booch G. Booch, et al. 1999. The Unified Software Development
Process. Addison-Wesley: Reading, MA.

Jeffries, R., Turner A. A. et al. 1980. The processes involved in designing software.
In J. R. Anderson (ed.), Cognitive Skills and Their Acquisition. Lawrence
Erlbaum Associates: Hillsdale, NJ.

Johnson, R. 2000. The ups and downs of object-oriented systems development.
Association for Computing Machinery. Communications of the ACM. 43(10):
68–73.

Kanfer, R. and Ackerman, P. 1989. Motivation and cognitive abilities: An integra-
tive/aptitude-treatment interaction approach to skill acquisition. Journal of
Applied Psychology. 74(4): 657–690.

b3881_Bibliography.indd 444 05-10-2020 16:30:53

b3881   Requirements Modeling and Coding6"×9"�

Bibliography  445

Kanfer, R., Ackerman, P. et al. 1994. Goal setting, conditions of practice, and
task performance: A resource allocation perspective. Journal of Applied
Psychology. 79(6): 826–835.

Kent Beck and Cunningham. 1989. A laboratory for teaching object oriented
thinking, ACM SIGPLAN Notices.

Korson, T. and McGregor, J. D. 1990. Understanding object-oriented: A unifying
paradigm. Communications of the ACM. 33(9): 40–60.

Lee, A. and Pennington, N. 1994. The effects of paradigm on cognitive activities
in design. International Journal of Human Computer Studies. 40: 577–601.

Levine, H. G. and Rossmoore, D. 1993. Diagnosing the human threats to infor-
mation technology implementation: A missing factor in systems analysis
illustrated in a case study. Journal of Management Information Systems.
10(2): 55–73.

Liberty, J. 1997. Object-Oriented Analysis and Design with C++. Wrox Press Ltd:
Birmingham, UK.

Liu, L. and Grandon, E. E. 2002. Effects of Prior Design Experience on the
Perceived Ease of Use of Object-Oriented Analysis Methodology. Technical
Report. Department of Management, University of Akron: Akron, OH.

Michael E. Fagan. 1976. Design and code inspections to reduce errors in program
development. IBM Systems Journal. 15(3): 182–211.

Morris, M., Speier, C. et al. 1999. An examination of procedural and object-
oriented systems analysis methods: Does prior experience help or hinder
performance? Decision Sciences. 30(1): 107–135.

National Research Council. 1999. Funding A Revolution: Government Support
for Computing Research. National Academy Press: Washington, DC.

Newell, A. and Simon, H. 1972. Human Problem Solving. Prentice Hall: NJ,
Upper Saddle River, New Jersey.

Post, G. V. 1999. Database Management Systems: Designing and Building
Business Applications. McGraw-Hill: Boston, MA.

Rob, P. and Coronel, C. 2000. Database Systems Design, Implementation, and
Management. Course Technology. Thomson Learning: Cambridge, MA.

Rosenberg D. 1999. Use Case Driven Object Modeling with UML: A Practical
Approach. Addison-Wesley: Reading, MA.

Scott, W. 1995. Ambler, The Object Primer: The Application Developer’s Guide
to Object-Orientation (SIGS: Managing Object Technology), Cambridge
University Press, Cambridge, UK.

Silberschatz, A., Korth H. F. et al. 1999. Database System Concepts. WCB
McGraw-Hill: Boston, MA.

Vessey, I. and Conger, S. 1994. Requirements specifications: Learning object,
process, and data methodologies. Association for Computing Machinery.
Communications of the ACM. 37(5): 102–111.

b3881_Bibliography.indd 445 05-10-2020 16:30:53

b3881   Requirements Modeling and Coding� 6"×9"

446  Bibliography

Watts S. Humphrey. 1989. Managing the Software Process. Addison-Wesley:
Reading, MA.

Whitten, J., Bentley, L. et al. 2001. Systems Analysis and Design Methods.
McGraw-Hill: New York.

Wiegers, K. E. 2003. Software Requirements. Microsoft Press: Redmond, WA.
Wieringa, R. 1998. A survey of structured and object-oriented software specification

methods and techniques. ACM Computer Surveys. 30(4): 459–527.
Wilkinson, Nancy, M. 1995. Using CRC Cards: An Informal Approach to Object-

Oriented Development, SIGS Books, New York.
Wirth, N. 1975. Algorithms + Data Structure = Programs. Prentice-Hall:

Englewood Cliffs, NJ.
Yourdon, E. 1994. Object-Oriented Systems Design. An Integrated Approach.

Yourdon Press: NJ, Englewood Cliffs, NJ.
Yu, E. 1995. Modeling Strategic Relationships for Process Reengineering, PhD

Thesis, Department of Computer Science, University of Toronto: Canada.

b3881_Bibliography.indd 446 05-10-2020 16:30:53

447

b3881   Requirements Modeling and Coding6"×9"�

Index

A
abstract class, 128
abstract operations, 128
accessibility scope, 98, 126
activity diagrams, 10, 52
actors, 211
aesthetic characteristics, 240
aggregation, 153
agile development, 110
agile methodology, 7
algorithm, 59
algorithmic rules, 293
alternate flows, 228
alternate scenarios, 228
analysis mode, 371
analysis objects, 100
application prototypes, 10
ArrayList, 79, 131
arrays, 20
ASCII code, 33
assembly pattern, 192
association objects, 153
autonomous agents, 213

B
base use cases, 256
basic flow, 228

behavioral biases, 241
behavioral rules, 293
behavior member, 95
behavior performer, 100
BizbyOrder, 274
bottom-up approach, 434
boundary value analysis, 324
bubble sort, 63
built-in classes, 25
business applications, 3
business function, 41
business objects, 14
business process, 41
Business Requirement Document, 229
business requirements, 279
business rules, 14, 231, 279
business stakeholders, 281
business use case, 269, 279, 288

C
capturing operations, 359
cardinality, 119
central processing units (CPU), 2
changeability constraints, 179
CheckBox, 241
check for prerequisites, 49
check for time conflicts, 59

b3881_Index.indd 447 05-10-2020 16:38:56

b3881   Requirements Modeling and Coding� 6"×9"

448  Index

check prerequisites, 59
child actor, 215
child object, 119
class diagrams, 14
class responsibility collaborator

(CRC) cards, 329
code reuse, 43
cohesion, 431
collaboration diagram, 212
collaboration model, 102, 359
collection type, 20
ColorSelector, 244
ComboBox, 241
ComboBoxExtension, 244
communication devices, 2
communication diagram, 14, 359
communication links, 359
compilers, 4
composite pattern, 192
composition, 153
compound formula, 144
computer-aided software engineering

(CASE), 9
conceptual object, 100
conjoint associations, 179
conservation principle, 42
constrained associations, 179
constructor, 24, 96
containment relationships, 154
context diagram, 233, 284
control classes, 213
control flow, 53
controllers, 100
control objects, 364
custom types, 22

D
data access methods, 24
data accessor, 165
data action, 42
data activity, 42
data definition language, 9
data-flow context diagram, 284

data flow diagrams, 10, 46
data flow reduction, 76
DataGridView, 243
data holders, 100
database management systems

(DBMS), 5
data member, 95
data navigation, 433
data-oriented, 421
data store, 47, 434
day-in-the-life, 325
decision node, 54
delta approach, 316
dependence relationship, 367
dependency context diagram, 286
dependent relationships, 179
description redundancy, 270
design mode, 371
design objects, 100
design patterns, 189
design quality, 437
device deficiencies, 319
DevOps, 7
dictionary, 131
documentation quality, 318
document-based approach, 316

E
electronic medical record, 281
elicitation quality, 317
encapsulations, 98
entity framework, 399
entity–relationship diagrams, 9
entity set, 99
event context diagram, 285
exceptional flows, 228
exceptional scenarios, 228
exclusive relationships, 179
extension points, 260
extension relationship, 260
extension use case, 260
external entities, 434
external interfaces, 240

b3881_Index.indd 448 05-10-2020 16:38:56

b3881   Requirements Modeling and Coding6"×9"�

Index  449

F
feature-focused, 218
fishbone diagrams, 316
food order system, 44, 281
foreign key, 5
fork node, 56
for-loop, 32
functional delegation, 436
functional requirements, 227
function decomposition, 41

G
generalized class, 126
gerund, 434
global variable, 88
goal dependency, 286
grade point average (GPA), 339
guard condition, 54

H
hashsets, 60
HashTable, 131
Hibernate, 399
hierarchical set-covering problem,

435

I
IBM DB2, 9
if-else, 32
ImagedComboBox, 244
implicit cast, 29
inclusion relationship, 256
inclusion use case, 255
informational requirements, 301
information-processing theories,

423
inheritance, 98
in parameters, 80
input parameters, 74
integer division, 29
interaction context diagram, 283
interest rates, 135
interface, 128

interface objects, 364
interface requirements, 301
interpretation errors, 319
inventory system, 43
irrevocable action, 240

J
join nodes, 56
joint applications development

(JAD), 7
Joint Requirements Planning, 325

K
key-value pairs, 165

L
lifelines, 359
limited capacity, 317
limited cognitive capabilities, 240
list types, 20
logical aggregation, 435
logical data model, 5
logical operations, 32
loose coupling, 431

M
major features, 279, 287
major functions, 44
manageability, 99
manifestation pattern, 196
mathematical operations, 18
mean value, 59
memory block, 17
MenuStrip, 241
merge node, 54
message box, 18, 134
methodology migration, 423
Microsoft SQL Server, 9
model browser, 53
model complexity, 270
multi-dimensional arrays, 21
multiplicity, 119
multivalued attribute, 157

b3881_Index.indd 449 05-10-2020 16:38:56

b3881   Requirements Modeling and Coding� 6"×9"

450  Index

multiway association, 153, 177
MySQL, 9

N
namespace, 25
naming conventions, 19
navigability, 119
network database, 5
NoImplementation, 134
non-domain objects, 364

O
object-oriented development, 12
object-oriented farm, 104
object-oriented methods, 41
object persistence, 399
Oracle, 9
order constraint, 181
out parameters, 80
overloading, 81
override, 128

P
parameters, 73
parent actor, 215
parent object, 119
Parentheses, Exponents, Multiplication

(*), Division (/), Addition, and
Subtraction (PEMDAS), 26

party pattern, 193
peer reviews, 311
perceived attention level, 437
phraseology, 189
point of sale system, 49
polymorphism, 98, 130, 137
post-increment, 31
pre-increment, 31
primary key, 5
prime number, 35
primitive types, 20
prioritization plans, 287
procedural models, 10

procedure modeling, 41
process architect, 6
process decomposition, 41
process model, 9
process-oriented, 421
process-oriented approach, 316
process representation, 41
process tracing, 437
program flow charts, 10, 52
programming objects, 93
programming tip, 33
progressive refinement, 434
project scopes, 279
prompts and messages, 231
Properties Window, 241
protocol analysis, 437

R
RadioButton, 241
random access memory (RAM), 2
random number, 34
range notation, 121
rapid applications development

(RAD), 4
Rational Rhapsody, 53
real-world objects, 93
recursive associations, 174
reference contract, 227
reflexive association, 153
relational database, 5
representative pattern, 222
request for comments, 311
requirement-based tests, 305, 311
requirements development, 281
requirements documentation, 305
requirements elicitation, 305
requirements elicitation plan, 305
requirements engineers, 281
requirements inspection, 305, 314
requirements validation, 305
resource dependency, 286
reusability, 435

b3881_Index.indd 450 05-10-2020 16:38:56

b3881   Requirements Modeling and Coding6"×9"�

Index  451

reverse engineering, 309
ripple effect, 99
role map, 215
rule of seven, 314

S
selection biases, 319
sending messages, 359
sequence diagrams, 14, 359
signatures, 81
soft goal dependency, 286
software requirements, 279
stakeholder profiles, 288
static attribute, 108
static functions, 109
step-and-skip model, 365
stereotyped dependency, 256
strategic dependency model, 286
StreamReader, 406
StreamWriter, 406
structural rules, 293
structured charts, 10
structured development, 12, 41
structured English, 10, 227
structured query language (SQL), 5
structured walkthrough, 309, 311
student admission system, 45
student registration system, 44
subclass, 126
subtype, 126
superclass, 126
supertype, 126
switch controls, 32
system analyst, 1
systems development life cycle

(SDLC), 1, 6
system use case, 215, 269

T
task characteristics, 438
task dependency, 286
test cases, 322

TextBox, 241
thinking in objects, 100
timer object, 242
top-down approach, 434
transaction pattern, 189
transitive containment, 154

U
unidirectional association, 124
Unified Modeling Language (UML),

41
use case, 14, 198, 211
use case diagrams, 14, 211
use case storyboarding, 44, 211
user interface classes, 213
user interfaces, 100, 211, 231
user requirements, 279
utility classes, 365

V
validity principle, 50
value-focused, 218
value-focused thinking, 218
variable assignment, 18
variable declaration, 17
variable initialization, 19
variable manipulation, 18
variables, 2
View–Control–Model (VCM) model,

366
virtual, 128
virtual function, 143
vision statement, 269, 279
Visual Studio, 25

W
weak entities, 157
while-loop, 32

X
XML, 406

b3881_Index.indd 451 05-10-2020 16:38:57

	Contents
	Preface
	About the Author
	Chapter 1 Introduction
	Information Systems
	Business applications
	Databases

	Systems Analysts
	Structured Development Processes
	Requirements discovery
	Data path
	Function path

	Object-Oriented Development Processes
	Review Questions
	Exercises

	Chapter 2 A Review of Programming Principles
	Introduction
	Variable Declaration
	Primitive types
	Collection types
	Custom types

	Code Structure
	Operations
	Controls
	Exercises

	Chapter 3 Modeling Functions and Procedures
	Introduction
	Capturing Function Requirements
	Process Modeling
	Activity Diagrams
	Review Questions
	Exercises
	Appendix: Algorithms
	Programming exercises

	Chapter 4 Coding Functions and Procedures
	Introduction
	Operations and Methods
	Code Functions
	Execute Functions
	Review Questions
	Exercises
	Appendix: Text File Processing in C#
	Programming exercises

	Chapter 5 Objects and Classes
	Introduction
	Programming Objects
	Data flow reduction
	Accessibility scope

	Real-World Objects
	Conceptual Objects
	Capture attributes
	Capture functions
	Autonomous agent heuristics

	Representing Conceptual Objects
	Attributes
	Operations
	Static attributes and operations

	Implementing Conceptual Objects
	Review Questions
	Exercises

	Chapter 6 Class Diagrams
	Introduction
	Associations
	Cardinality
	Navigability

	Inheritance
	Implementation
	Review Questions
	Exercises

	Chapter 7 Advanced Associations
	Introduction
	Composition and Aggregation
	Multivalued attributes

	Association Class
	Implementation

	Recursive Associations
	Multiway Associations
	Constrained Associations
	Exclusive and conjoint associations
	Dependent associations
	Order and changeability constraints

	Exercises

	Chapter 8 Practical Class Diagramming
	Introduction
	Design Patterns
	Practical Skills for Identifying Objects and Relationships
	Discovering objects and relationships using phraseology

	Exercises

	Chapter 9 Use Case Modeling
	Introduction
	Connections
	Use Case Diagramming Elements
	Actors
	Use cases

	Use Case Diagrams
	Exercises

	Chapter 10 Use Case Storyboarding
	Introduction
	Concepts and Templates
	Flow of Events
	Storyboarding via examples: Withdraw cash
	Storyboarding via examples: Checkout items

	GUI Design
	Prototyping in Visual Studio

	Exercises
	Appendix: Combo Box Extensions in C#

	Chapter 11 Use Case Optimization
	Introduction
	Use Case Factorization
	Use Case Extension
	Use Case Generalization
	Practical Use Case Modeling
	Packaging Use Cases
	Review Questions
	Exercises

	Chapter 12 Requirements Documentation
	Introduction
	Requirements
	Vision Statements
	Scope
	Major Features
	Business Use Cases
	Business use case via examples: Relocation order

	Business Rules
	Structural rules
	Algorithmic rules
	Behavioral rules

	Functional Software Requirements
	Non-Functional Software Requirements
	Review Questions
	Exercises

	Chapter 13 Requirements Elicitation and Validation
	Introduction
	Requirements Elicitation
	Requirement Validation
	Process-Oriented Requirements Validation
	Requirements elicitation
	Requirements documentation

	Requirements-Based Tests
	Review Questions
	Exercises

	Chapter 14 Collaboration
	Introduction
	Heuristics for Achieving Collaboration
	Heuristics 1: Operations symbolize object capabilities
	Heuristics 2: Operations fulfill responsibilities
	Heuristics 3: A hero delegates but does not relay

	Collaboration via Examples: Compute Order Amount
	Collaboration via Examples: Compute Grade Point Average
	Collaboration via Examples: Check Prerequisites
	Collaboration via Examples: Check Time Conflicts
	Exercises

	Chapter 15 Collaboration Modeling
	Introduction
	Communication Diagrams
	Communication links
	Communication diagramming via examples: Enroll classes

	Sequence Diagrams
	Sequence diagramming in Rhapsody
	Representing a use case story
	Sequence diagramming via examples: Food order system
	An afterthought

	Exercises

	Chapter 16 A Complete Use Case Implementation
	Introduction
	Use Case and Storyboarding
	Collaboration Modeling
	Domain Classes
	Object Persistence
	Data Access and Control Objects
	Interface Classes
	Exercises

	Chapter 17 From Structured to Object-Oriented Development
	Introduction
	Requirement Models
	Data flow diagrams
	Entity–relationship diagrams
	Class diagrams

	Conceptual Connections
	Cognitive Connections
	Empirical Evidence
	Summary Notes

	Bibliography
	Index

