Robot OPera
System (ROS) for
Absolute Beginners

Robotics Programming Made Easy
Second Edition

Lentin Joseph
Aleena Johny

ApreSS®

Robot Operating
System (ROS) for
Absolute Beginners

Lentin Joseph
Aleena Johny

Apress’

Robot Operating System (ROS) for Absolute Beginners: Robotics

Programming Made Easy

Lentin Joseph Aleena Johny

Aluva, Kerala, India Ernakulam District, Kerala, India
ISBN-13 (pbk): 978-1-4842-7749-2 ISBN-13 (electronic): 978-1-4842-7750-8

https://doi.org/10.1007/978-1-4842-7750-8

Copyright © 2022 by Lentin Joseph and Aleena Johny

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Aaron Black

Development Editor: James Markham

Coordinating Editor: Jessica Vakili

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233
Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub: https://github.com/Apress/Robot-Operating-System-Abs-Begs.
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-7750-8

Table of Contents

About the AUthOrS.........cccccmmmsmmmmssnsmmsssssmsssssssssss s ssnnssssnnnnns xi
About the Technical REVIEWETccccsmssemmmssansssssnsssssnsssssnsssssasssssnnss xiii
Chapter 1: Getting Started with Ubuntu Linux for Robotics..........ccseu. 1
Getting Started With GNU/LINUXc.ccvvveririerenesersesesessssesessesssssssessessessssessessees 1
WHaL IS UDUNTU? ... 2
Why Ubuntu for RODOTCS?......coerircrrrr st 3
INSEAIlING UDUNTU ... 3
Minimum PC ReqUIrEMENTSccucreriinriniene e s e e ssssessessesnes 4
Downloading UDUNTU.......ccccvverininsiriene s s se s sse e snes 4
INSTAllNG VIRUAIBOXceveereereererserere e ses s sseses e sse s sse e ssessesassessesnesassessessesnes 5
Creating a VirtualBoX Machine...........cccvverrerierevensenseriese s senesessssessessessesessessesaees 6
Step 1: Adding a New Virtual Maching........c..cccooovvvirninnnnenssnsessesessssensennens 6

Step 2: Naming the Guest Operating Systemcccovcrrvnriesrrnscrnscsenenens 7

Step 3: Allocating RAM for the GUESt 0Sccvvcenesereserr e 7

Step 4: Creating a Virtual Hard Diskccccvvrrnvennenennsenssesesesese e 8

Step 5: Configuring the Type of Virtual DisK.........ccovvvverierenensensenenesensensenens 10

Step 6: Choosing Ubuntu DVD IMAQE.......ccevrerrerierrnrensereresessesessessesessessessens 12

Step 7: Starting Virtual Maching..........ccoovcvrevrnvnnncnnisscrs s 16
Installing Ubuntu on VirtualBoX ..o s sessesnens 17
Installing Ubuntu on @ PC........ooiieerecrecere s 28
Playing with the Ubuntu Graphical User Interfacecccecvvevvvninienennseniennens 30

iii

TABLE OF CONTENTS

The Ubuntu File SYSTEMcccvivierirrirrrere s s e sssssssessessessssessesseees 31
Useful Ubuntu Applications ..o sessesnens 33
Getting Started with Shell Commands...........ccovvnininnnninnr e 34
Terminal Commands Cheat Sheet..........c.coooreirncrnnenereere e 36
man: Manual Pages for Shell Commands...........cccuvvvnrenrnenennsesnsesssesesennes 36
Is: List Directory Contentcccvvevnvniniennnnsense s sessesaesaes 36
(oo B 1 P LT T D (0] S 37
pwd: Current Terminal Path..........cccoccvvrirnnnsnnene s sese e ssssessesse s 37
mKdir: Create @ FOIART ... s 38
FM: DEIETE @ Fle .. s 38
rmdir: Delete @ FOIAEr ... 39
mv: Move a File from One Place to Another..........cccccovreeviecnncnnnesenesennnne, 40
cp: Copy a File from One Path to Another.........cccovvrvnininnsncne e 4
dmesg: Display a Kernel MeSSage.........ccuvvvrrerinnenneniensenssnsesessessssssessensens 41
Ispci: List of PCI Devices in the System........ccoccvvvvnecriecnncrnccsece e, 42
Isush: List of USB Devices in the SyStemccoveerrenrnenernscrnsenesenesennes 43
sudo: Run a Command in Administrative Mode..........c.cooeervrnnnenerenerensenenns 43
ps: List the RUNNING PrOCESSccoovvererenernerenesessse s s s s sesessnnes 44
Kill: Kill @ ProCESScocvviviiiirisisssssessssss s s ssssssssssesssssnans 45
apt-get: Install a Package in UbUNtUccvcveerienevensenie e senennens 45
dpkg -i: Install a Package in UDUntu.........ccccoevrvrvnneniencenree e 48
reboot: Reboot the System........cccvviv s 49
poweroff: Switch Off the System.........ccovvvrrcnriesr e 49
htop: Terminal ProCess VIEW......c..covcrvrernninninienesissessesse s s sessessessssessesse s 50
nano: Text Editor in Terminal.........c.ccccoverninnnnennns s 51
1] 4= 52

iv

TABLE OF CONTENTS

Chapter 2: Fundamentals of C++ for Robotics Programming............. 53
Getting Started With C++....occueeercr e 54
Timeline: The C++ LangUAQgec.covcvvrerennsnneness s ses e sse s 54
C/C++ in UDUNTU LINUX ..o se s s nenns 54
Introduction to GCC and G++ COMPIIErS.......ccocvvrvvierienninsenene e sesesaens 55

Installing C/C++ COMPUIENccccerevirririerere e sr e 55
Verifying INStallation........c..covvvvniennnnrre e e 56
Introduction to GNU Project Debugger (GDB)cceerererrerserersesessersersessssensensens 57
Installing GDB in Ubuntu LiNUXcccovvninnnninnnesn s sessese s sessesse s 57
Verifying InStallation............ccccoeernennenrs s 58
Writing YOUr FirSt COUE.......ccvnirerierrnse s 59
EXPIAINING COUE......ccvrrierrrerirerirese s 61
ComPiling YOUF COUE.......coivrerrererrerersererersesessessessessssessessesssssssessessesssssssessees 61
Debugging YOUF COUEcvvvvrrvererrersnrerersessssessessessesessessessessssessessessssessessesaes 63
Learning OOP Concepts from EXamples.........ccccvevevrvernenennncnnsesensesesesesessenenns 66
The Differences Between Classes and Structs.........c.ccccovevveenerencrnscnenienens 67
C++ Classes and ODJECTScvveererrerererereserenese e ssenes 70
Class ACCESS MOMIfIEr........cururerreserrnsererreserese s s srs e s sr e ssanes 72
C++ INNEITANCE ... s 73
C++ Files and STreams.........cocovcevnnnnnsns s 78
NaAMESPACES IN G+ .uvrereerrererrererresseserersessessssessessesssssssessessesessessesassessessesaes 80
C++ Exception HaNdIing.........cccovvrininininsnsncsess s sessesse s 82
C++ Standard Template LiDrariesc.ccoevvvnvnieninsnnnnenesnsensesessssessessenns 84
Building @ C++ ProjECL........ccoveeereceree s 84
Creating a Linux MaKEFilecccvererrererninrnenerese s se e sesse e 85
Creating @ CMAKE Fileccvcvverirerrenienere s sesesesss s ssesessesse e ssssessesne s 88
13104 7 90

TABLE OF CONTENTS

Chapter 3: Fundamentals of Python for Robotics Programming........ 93
Getting Started with Python...........ooevrcrrcrcrr e 94
Timeline: The Python Language ..o sessessesse s 94
Python in UDUNTU LiNUX ..o 95

Introduction to Python Interpreter ... 95
Setting Python 3 on Ubuntu 20.04 LTSccovcrininnnvenenesssenseseseesessessensens 95
Verifying Python INStallation..........c.ccovvvierernsnsensens s sesessesessessessens 96
WIting YOUF FirSt COE........vvvriervererirrenreresesessesesse e sessessessesssssssessessesssessessees 97
Running Python Code.........ccoirinininnsnsne s ssessssessesnens 99
Understanding Python BasiCsccuorrenrnsnnnenesese s 100
What’s New in PYENONT ... sessssessenens 101
Static and Dynamic TYPINGcccceeverernnennreneresessse s ssenes 101
Code INentation ... 102
B3 TE] 1111610 (0] LR 102
Python Variables.........cccueiiininiennsinsine s s ssssessesnens 102
Python Input and Conditional Statement.............cccooeernennrerncesrnccrereens 104
PYEhON: LOOPScveeeeriecrereesie s s senssnens 106
Python: FUNCLIONSc..cccvicrcse e 108
Python: Handling EXCEPLION.......c.cccovvrvriererirsenere s sesse e sessesaesnens 110
PYLNON: CIASSESvevveererrerrrrerersessesessessessessssessessessssessessesssssssessessessessssessens 111
110 1L 114
PYthon: MOGUIESccvcereccirerer s nnens 115
Python: Handling Serial POScocoocorenernncnnenessse s sessesesnenens 117
Installing PySerial in Ubuntu 20.04cocovvirnvennenesesess s 118
Python: Scientific Computing and Visualizationccccccvnrenneneninsenenesennnne. 120
Python: Machine Learning and Deep Learning.........ccoeeveereverserseresessensensens 121
Python: COmPULEr VISION.......ccccvrerererserieressssenessessssessessessesessessessessssensessens 122

TABLE OF CONTENTS

Python: RODOLICS......cocvviererirircr e 122
PYLhON: IDES.......ccoieiicircre st n s sr s snn 122
SUMMAIY....citiiiire e e s e e s s b e e s b b e e e nne s 123
Chapter 4: Kick-Starting Robot Programming Using ROS 125
What Is Robot Programming?cccueeeeeenernsesessesesesssssssessesessssssssssesssssssenens 125
Why Robot Programming IS Different..........couccemvenninninsennsensnesenssesessessnseens 127
Getting Started With ROS ... saens 130
The ROS EQUALIONevverererereesesseresessesessessessesssssssessessessssessessesssssssessessens 133
Robot Programming Before and After ROS..........cccovvnnvnniennnnserinsenenenens 133
The History 0f ROS..........coocicrr e 134
Before and After ROS ... s 137
Why USE ROS......ceceeiccesss st s 137
INSEAllNG ROS.......coeeicrcr e s 138
Robots and Sensors Supporting ROS.........cccvvvrvniernnensnsene s sessese s sessessenes 146
Popular ROS Computing PIatfOrmscccveerrervrnseriernsensersesessssesessessssessessenes 149
ROS Architecture and ConCeptSccovcrrriennnnine s 150
The ROS File SYSIBM......ccveeerrecrrerereser s 153
ROS Computation CONCEPLSccccrieririrrieniernsinse s 155
The ROS COMMUNITYceeeeereireeie e sessesnssenens 156
ROS CommaNd TOOIScorurmrmmmnereressssssese s e sesssssssas 156
ROS Demo: Hello World EXamPIEcovvvevcervererennensereseesessessessesessessessessssessensenes 161
ROS Demo: tUILIESIMcovovieecccriri e 163
Moving the TURIE ..o 166
Moving the Turtle in @ SQUANEcoveeererrrerree s 168
ROS GUI Tools: Rviz and RQt.........cccrrernrniniennnnsene s sesesse s sessesse s 169
R 1T 4114 OO 171

vii

TABLE OF CONTENTS

Chapter 5: Programming with ROS...........ccccinnnemmmnnsssnnnmnssssssnmnssnn 173
Programming Using ROS.........cccoirrnnrscrrrerre et se s ssenes 173
Creating a ROS Workspace and Package..........c.cccvernnnvnennsnsensesessssensensens 174
ROS BUIIA SYSTEBM ..o 178

ROS Catkin WOrKSPACEccvveruerierinsereresissesesessssessessessesessessesssssssessessens 179
SIC FOIR ...ttt 179
DUIL FOIART ...t 179
EVEI FOIUEN ... s 179
INSTAIL FOIAR ... 180
Creating @ ROS PACKAQEccoveerermeerrrcreree s nenns 180
Using ROS Client LIDrariesccvveevnrenmmenerssesnesesese s sessesessssessnnes 182
FOSCPP AN FOSPY wevveverrererrerresensesessesessessessessssessessessesessnssesssssssssssssssssssnsessenes 183
Header Files and ROS MOdUIES...........coccuernernninsssinssssese s 183
Initializing @ ROS NOGE......ccccevrererrererererrerere s sesse e ses e ssessssessessesssssssessees 185
Printing Messages in @ ROS NOGE..........ccceerrierrienenesernserese e sesessesessesessenes 186
Creating @ Node Handle ..o 186
Creating a ROS Message Definitionc.cccoveernsnnennescss e 187
Publishing @ Topic in ROS NOEccceervenmrnsennnesere e 187
Subscribing a Topic in ROS NOGE.........cccvverernnerreriene s sersere s sesse e sessessessens 188
Writing the Callback Function in ROS NOdEccccevevvververernvenserserereesesensennes 189
The ROS Spin Function in ROS NOGE.......c.ccoevverreriererensensersesesessessessessssessensenees 190
The ROS Sleep Function in ROS Node........cccccvvnirinnininc e 190
Setting and Getting a ROS Parameter...........cccooverrinnennnencrnscseseses e 191
The Hello World Example USing ROS..........ccouevnnnnenernsesenesesesessesesessesessenens 192
Creating a hello_world Package........c.c.ccvvererrenerrnsesensesssssessssesessesessssessnnes 192
Creating @ ROS C++ NOGE.....ccoceveververiererreserserese s s e ssessesassessesaesnes 194

viii

TABLE OF CONTENTS

Editing the CMaKeLiStS.IXt Fil€ccvvvrererenierierennsesserese s sessessesessensensens 196
BUIlAING CH+ NOUEScovreeirercrirce st ses et sesneens 197
Executing C++ NOUES.......covcririerirrsre s s snens 198
Creating Python NOUESccoverererernncrresere s 201
Executing Python NOGES........ccccvvvrnenncsersse s sessenens 202
Creating Launch FileSccvvvernnninieness s sss s s sesse e ssssessessesnes 203
Visualizing @ Computing Graphc..coevvrververennsensenensssessesessssessesessesessessenses 205
Programming turtlesim USING FOSPYc.cecervereriersenneesesiersesseeseesessesseessessessens 206
MoVing tUrLIESIM........ccocrrecr 207
Printing the RobOt'S POSItiON.......c..ccvviierccrrccrrese e 212
Moving the Robot with Position Feedback..........c.ccccvveerninnienresennsesenesernene 217
Reset and Change the Background COIOFcccuceeerecerncenenesenese e 219
Programming TurtleBot Simulation USiNg roSPYccevvvvrverierensersesesessessensenns 224
Installing TurtleBot 3 PACKagES........ccccererverienneniriersis e serses e se s s ssesaeas 224
Launching the TurtleBot Simulation.............ccovvvreirecrncnnerre e 225
Gazebo SIMUIALION...........cceeeeeeere e s 226
Moving a Fixed Distance Using a Python Node...........ccoovenrienrrenrnnenencnennnnes 227
FiNding ODSTACIESccoveererererreerisse s 229
Programming Embedded Boards Using ROSccccoevvvvnininnnnsenenssensensenns 230
Interfacing Arduino With ROS ... 230
Installing ROS on @ RASPDEITY Picovevevceriererrrerrerereesessesessesessessessesessessessenes 237
Burning an Ubuntu Mate Image to a Micro SD Cardcccocevvinvniennceniennenn 239
B0OtiNG 10 UDUNTU ... s 239
Installing ROS on @ Raspherry Pi.......ccccvverncnnenenese s sessesesseseseenes 240
SUMMANY....ctirierinesisese s r e e nr e 240

ix

TABLE OF CONTENTS

Chapter 6: Robotics Project Using ROSccocccmmrmsssnnnsnssssssnsssssnnns 241
Getting Started with Wheeled RODOLScccccvvvrnicvnccrccrrcccrc e 241
Differential Drive Robot Kinematics.............coveerenerescrncerereser e 242
Building Robot Hardwareccovevnenerencrnscsseses s 246
Buying Robot COMPONENtS.........ccoveevnenmninerssesrsese s ssanes 247

RODOE CHASSIS....civiuiiiissrisissssess s s s 247
Additional Motors and WHEelS..........ccerrnenmneninmnnsnssesesssssssssesesssssssssesens 248
Lo (0 g 1T S 248
Optical ENCOUET ..o 249
Microcontroller BOArd...........ccocoerenererererssnernsesesesesssesessesessesessesesessesessenens 251
Bluetooth BreakoUt.........cucceevreeerennerenenessesessseseseses s sessesessesessssesensessssenens 251
Sharp IR RaNge SENSOF.........ccuvererenernsenineserese s se s ssnnes 252
Block Diagram of the Robot.........cccovvvinienninc e 253
Assembling Robot HAardware............cccvcvvrinnenninsin s ssesenns 255
Creating a 3D ROS Model Using URDFccccormienmeneresernseseseses e sesensesens 255
Working with RODOt FIrmMWare ..o 261
Programming Robot USing ROS ... 264
The Teleop NOGE.......coccv e e 268
The Twist Message to Motor Velocity NOdE........cccevevevrerreriernnensensersensesessesenes 269
The Diff 10 TF NOUEcccoveeeiieiessrssnisesi s sssssssnas 269
The Dead-Reckoning NOUEccccvverveeneririenre e s e s saenns 270
FINAL RUN ... 271
10T 111 T 274
INA@X . ciiiisssnnnnnnnnnnnsssssssssnnnnnnnnsssssssssnnnnnnnnessssssssnnnnnnnnnssssssnsnnnnnnnnnsssssnnn 275

About the Authors

Lentin Joseph is an author, roboticist, and robotics entrepreneur from
India. He runs a robotics software company called Qbotics Labs in
Kochi/Kerala. He has ten years of experience in the robotics domain
primarily in the Robot Operating System, OpenCV, and PCL.

He has authored eight books on ROS, namely, Learning Robotics
Using Python, first and second editions; Mastering ROS for Robotics
Programming, first and second editions; ROS Robotics Projects, first and
second editions; ROS Programming: Building Powerful Robots; and Robot
Operating System (ROS) for Absolute Beginners. He is also co-editor of
the book: Autonomous Driving and Advanced Driver-Assistance Systems
(ADAS): Applications, Development, Legal Issues, and Testing.

He obtained his masters in robotics and automation from India and
has also worked at the Robotics Institute, CMU, USA. He is a TEDx speaker.

Aleena Johny is a robotics software engineer currently working at Qbotics
Labs from India. She completed her M.Tech and B.Tech from Rajagiri
School of Engineering and Technology (RSET), Kerala. After her post
graduation, she worked as an Assistant Professor in computer science

for one year. After that, she started working in Qbotics Labs. She has
experience with robotics software platforms such as the Robot Operating
System (ROS), OpenCV, and Gazebo. She has published a research paper
in the International Journal of Scientific Research in Science, Engineering
and Technology and presented a paper at the National Conference on
Advanced Computing and Communication.

About the Technical Reviewer

Massimo Nardone has more than 22 years
of experience in security, web/mobile
development, and cloud and IT architecture.
His true IT passions are security and Android.
He has been programming and teaching
how to program with Android, Perl, PHP, Java,
VB, Python, C/C++, and MySQL for more than
20 years.

He holds a Master of Science degree in
Computing Science from the University of
Salerno, Italy.

He has worked as a project manager, software engineer, research
engineer, chief security architect, information security manager,
PCI/SCADA auditor, and senior lead IT security/cloud/SCADA architect

for many years.

xiii

CHAPTER 1

Getting Started with
Ubuntu Linux for
Robotics

Let’s start our journey of programming robots by using the Robot
Operating System (ROS). In order to get started with ROS, there are

some prerequisites to be satisfied. The prerequisites are to have a good
understanding of Linux, especially Ubuntu, a good understanding of Linux
shell commands, and Python and C++ programming knowledge.

This book discusses all the prerequisite technologies required for
robot programming using ROS. This first chapter introduces the Ubuntu
operating system, installation, important shell commands, and the
important tools for programming robots. If you already work with Ubuntu,
you should still go through this chapter. It will refresh your existing
understanding of Ubuntu Linux.

Getting Started with GNU/Linux

Linux is an operating system like Windows 10 or macOS. Similar to
other operating systems, it has capabilities such as communicating and
receiving instructions from users, reading/writing data to the disk drive,

© Lentin Joseph and Aleena Johny 2022 1
L. Joseph and A. Johny, Robot Operating System (ROS) for Absolute Beginners,
https://doi.org/10.1007/978-1-4842-7750-8_1

https://doi.org/10.1007/978-1-4842-7750-8_1#DOI

CHAPTER 1 GETTING STARTED WITH UBUNTU LINUX FOR ROBOTICS

and executing software applications. The important part of any operating
system is the kernel. In GNU/Linux system, Linux (www. 1inux.org) is the
kernel component. The rest of the components are applications developed
by the GNU Project (www.gnu.org/home.en.html).

The Linux-based OS is inspired from the Unix operating system. The
Linux kernel is capable of multitasking in multiuser systems. The good
thing is that GNU/Linux is free to use and open source. Users have full
control on the operating system, which makes Linux ideal for computer
hackers and geeks. Linux is vastly used in servers. The popular Android
operating system runs in a Linux kernel. There are many distributions,
or flavors, of Linux, which basically uses the Linux kernel as the core
component; there are differences in the graphical interface. Some of the
most popular Linux distributions are Ubuntu, Debian, and Fedora (see
Figure 1-1). The Linux-based operating systems are among the most
popular in the world.

ub?itu debian fedQJ

Figure 1-1. Logos of various popular Linux distributions

What Is Ubuntu?

Ubuntu (www. ubuntu.com) is a popular Linux distribution based on
the Debian architecture (https://en.wikipedia.org/wiki/Debian).
It is freely available for use, and it is open source, so it can be modified
according to your application. Ubuntu comes with more than 1,000
pieces of software, including the Linux kernel, a GNOME/KDE desktop

http://www.linux.org
http://www.gnu.org/home.en.html
http://www.ubuntu.com
https://en.wikipedia.org/wiki/Debian

CHAPTER 1 GETTING STARTED WITH UBUNTU LINUX FOR ROBOTICS

environment, and standard desktop applications (Word processing, a web
browser, spreadsheets, a web server, programming languages, integrated
development environment [IDE], and several PC games). Ubuntu can

run on desktops and servers. It supports architectures such as Intel x86,
AMDG64, ARMv7, and ARMv8 (ARM64). Ubuntu is backed by Canonical
Ltd. (www. canonical.com), a UK-based company.

Why Ubuntu for Robotics?

The software is the heart of any robot. A robot application can be run on
an operating system that provides functionalities to communicate with
robot actuators and sensors. A Linux-based operating system can provide
great flexibility to interact with low-level hardware and has provision to
customize the operating system according to the robot application. The
advantages of Ubuntu in this context are its responsiveness, lightweight
nature, and high degree of security. Beyond these factors, Ubuntu has great
community support, and there are frequent releases, which makes Ubuntu
an updated operating system. Ubuntu also has long-term support (LTS)
releases, which provides user support for up to five years. These factors
have led the ROS developers to stick to Ubuntu, and it is the only operating
system that is fully supported by ROS.

The Ubuntu-ROS combination is an ideal choice for
programming robots.

Installing Ubuntu

This section discusses how to install Ubuntu 20.04 LTS. The procedure for
installing any Ubuntu version is almost the same. Like any other operating
system, a PC should have the recommended system requirements to
install Ubuntu. Here are the recommended requirements needed for your
PC. After that, you can see the detailed procedure of Ubuntu installation.

http://www.canonical.com

CHAPTER 1 GETTING STARTED WITH UBUNTU LINUX FOR ROBOTICS

Minimum PC Requirements

e 2GHz dual core processor or better

e 4GB system memory

e 35GB of free hard drive space

e A DVD drive or a USB port for the installer media

o Internet access is helpful

Downloading Ubuntu

The first step is to download the DVD/CD ISO image. To download an
Ubuntu image, go to www.ubuntu.com/download/desktop.

You can take a look at all Ubuntu releases at http://releases.
ubuntu.com.

The DVD image is less than 1GB. It is named ubuntu-20.04.X-desktop-
amd64.iso. By default, the ISO image is 64-bit architecture; if your PC RAM
size is less than 4GB, you can use 32-bit architecture.

After downloading the desired Ubuntu image, there are two options for

installing Ubuntu:

o Install on areal PC. This can be done using one of two
methods. You can burn the image to a DVD or to a USB drive.

o Install in VirtualBox (www.virtualbox.org) or VMWare
Workstation (https://www.vmware.com/in/products/
workstation-player/workstation-player-evaluation
.html). With this method, you have to first install
VirtualBox software and then install Ubuntu OS on the
top of it. In this book, we prefer this method because it is
safe to work with VirtualBox. Installing on a real PC may
cause data loss if you don’t do it properly. As a beginner,
you can experiment with Ubuntu inside VirtualBox.

http://www.ubuntu.com/download/desktop
http://releases.ubuntu.com
http://releases.ubuntu.com
http://www.virtualbox.org
https://www.vmware.com/in/products/workstation-player/workstation-player-evaluation.html
https://www.vmware.com/in/products/workstation-player/workstation-player-evaluation.html
https://www.vmware.com/in/products/workstation-player/workstation-player-evaluation.html

CHAPTER 1 GETTING STARTED WITH UBUNTU LINUX FOR ROBOTICS

Installing VirtualBox

VirtualBox (www.virtualbox.org) is a virtualization software that allows
an unmodified operating system (with all of its installed software) to run
in a special environment on top of your existing operating system. This
environment, called a virtual machine, is created by the virtualization
software by intercepting access to certain hardware components and
certain features. The physical computer is called the host, and the virtual
machine is called the guest. The guest can run on the host computer, which
thinks that it’s running on a real machine.

You can install VirtualBox on a host PC running Windows, Linux, OS X,
or Solaris (www.virtualbox.org/wiki/Downloads). In this chapter, we
install it on a Windows PC. You can choose the Windows platform from
a list and install it on your Windows PC (see Figure 1-2). The installation
of VirtualBox is easy; you may not have any confusing issues. During
installation, you are asked to install virtual drivers. You can accept the

driver installation.

- B M e i uaban o ek Do i o -@ rmoe o

Download VirtualBox

ot s el i B Vit an Binaries ard €3 BT cofe

VirtualBox binaries

St 4o B 2.8 o USS 30 v, Vimes e RDR. ok encryption, Wvle and PEE Ibsok for Wolel Cards. S D Ehaptes i The s 14
™ Latnse (PUAL - o

v e o vtrisbuttion 1 s Extension Rata. The Extension Racd birassts
woe rebeaped ueder the vitesBies Peronal A 8 ponr iataliod verion of VetusBas

I pkaget e, 8 Faseress, ootk ac e smatu 7ou sk bt £ e

Figure 1-2. Downloading the virtual box for Windows host

http://www.virtualbox.org
http://www.virtualbox.org/wiki/Downloads

CHAPTER 1 GETTING STARTED WITH UBUNTU LINUX FOR ROBOTICS

If you are working in OS X or Linux, choose the platform accordingly.
The installation instructions can be found at www.virtualbox.org/
manual/cho2.html.

Creating a VirtualBox Machine

The first step in installing Ubuntu in VirtualBox is to create a new virtual
machine. If you already installed VirtualBox on your system, you can create
the virtual machine by going through the following steps.

Step 1: Adding a New Virtual Machine

After installing VirtualBox on your PC, open it. You see the window shown
in Figure 1-3.

¥ Oracle VM VirtualBox Manager - O x

File Machine Help

¢ AR BeP

Preferences Import BExport HNew Add

Welcome to VirtualBox!

The left part of application window contains global tools and lists all
wvirtual machines and virtual machine groups on your computer. You
can import, add and create new VMs using corresponding toclbar
buttens. You can popup a tools of currently selected element using
corresponding element button.

You can press the F1 key to get instant help, or visit
wowwe virtualbox.org for more Infermation and latest news.

Figure 1-3. Adding a new virtual machine in virtual box

You can click the New button to create a new virtual machine.

http://www.virtualbox.org/manual/ch02.html
http://www.virtualbox.org/manual/ch02.html

CHAPTER 1 GETTING STARTED WITH UBUNTU LINUX FOR ROBOTICS

Step 2: Naming the Guest Operating System

After adding the virtual machine, the next step is to name the guest
operating system that we are going to create. As shown in Figure 1-4, you
can name it Ubuntu, set the type as Linux, and the version as 32/64 bit. The
naming is just for the information; it is not associated with any settings.
After entering the name, click the Next button to continue to the next step.

? X

Create Virtual Machine

Name and operating system

Please choose a descriptive name and destination folder for the new
virtual machine and select the type of operating system you intend to
install on it. The name you choose will be used throughout VirtualBox to
identify this machine.

Name: [Ubuntu 20.04]]

Machine Folder: [C:\Users\91989\VirtualBox VMs V‘

Type: |Linux | E
Version: |Ubuntu (64-bit) h

Expert Mode Cancel

Figure 1-4. Naming the guest operating system

Step 3: Allocating RAM for the Guest 0S

In this step, we allocate the RAM for the guest OS (see Figure 1-5). This step
is important because if the RAM allocation is too low, the guest OS may
take a lot of time to boot, and if the allocation is too high, the RAM for the

CHAPTER 1 GETTING STARTED WITH UBUNTU LINUX FOR ROBOTICS

host OS will also allocate for the guest OS, which may slow down the host
OS. So, the RAM allocation should be optimized so that both operating
systems get better performance. Based on the RAM size of your host PC,
the wizard will show the safety limits of RAM size for the virtual OS in
green. The RAM allocation of the guest should be within the safety limits.

? X

! & C(Create Virtual Machine

Memory size

Select the amount of memory (RAM) in megabytes to be allocated to the
virtual machine.
The recommended memory size is 1024 MB.

U : 4858 [2] M8

4 MB 8192 MB

Figure 1-5. Allocating RAM for the guest OS

Step 4: Creating a Virtual Hard Disk

After allocating the RAM, the next step is to create a virtual hard disk for
the guest OS. In this step, you can use an existing virtual hard disk file or
create a new one. These virtual hard disk files are portable, so you can copy
the virtual hard disk to any PC and set up the same virtual machine on

that PC.

CHAPTER 1 GETTING STARTED WITH UBUNTU LINUX FOR ROBOTICS

In this step, you can select the type of virtual hard disk that you want
to create (see Figure 1-6). The default option is VDI (VirtualBox disk
image), which is the native virtual hard disk of VirtualBox. VHD (virtual
hard disk) is developed by VMWare, which is also supported in VirtualBox.
The third option is VMDK (virtual machine disk), which is the Microsoft
Virtual PC virtual hard disk type. You can get more information from www.
virtualbox.org/manual/cho5.html. In this chapter, we are selecting the
native hard disk format, or VDI.

? X

Create Virtual Hard Disk

Hard disk file type

Please choose the type of file that you would like to use for the new virtual hard
disk. If you do not need to use it with other virtualization software you can leave
this setting unchanged.

(@ VDI (VirtualBox Disk Image)
(O VHD (virtual Hard Disk)
(O VMDK (virtual Machine Disk)

Expert Mode Cancel

Figure 1-6. Choosing the type of hard disk for the virtual machine

http://www.virtualbox.org/manual/ch05.html
http://www.virtualbox.org/manual/ch05.html

CHAPTER 1 GETTING STARTED WITH UBUNTU LINUX FOR ROBOTICS

Step 5: Configuring the Type of Virtual Disk

In this step, we have to configure the mode of storage. There are two
modes: dynamically allocated and fixed size (see Figure 1-7). If we select
fixed size, a virtual hard disk is created with a fixed size. That size can be
set in the next step. After creating this virtual hard disk, it will consume that
much physical disk size. With a dynamically allocated disk, you can use the
maximum hard disk size, and it will only use the physical hard disk space
when it fills up. The time taken to create a fixed hard disk is higher than
dynamically allocated, but once it is created, it can perform much better
than a dynamically allocated mode. In this chapter, we are going to use a
fixed size with a maximum size of 20GB.

€ C(Create Virtual Hard Disk

Storage on physical hard disk

Please choose whether the new virtual hard disk file should grow as it is used
(dynamically allocated) or if it should be created at its maximum size (fixed size).

A dynamically allocated hard disk file will only use space on your physical hard
disk as it fills up (up to a maximum fixed size), although it will not shrink again
automatically when space on it is freed.

A fixed size hard disk file may take longer to create on some systems but is often
faster to use.

() Dynamically allocated
@ Fixed size

Cance

Figure 1-7. Choosing the mode of storage in the virtual hard disk

10

CHAPTER 1 GETTING STARTED WITH UBUNTU LINUX FOR ROBOTICS

You can also browse the location to save the virtual hard disk file.
When you finish the virtual disk configuration, it will take some time to
build those configurations (see Figure 1-8).

& Oracle VM VirtualBox Manager

€ Create Virtual Hard Disk

File location and size

Please type the name of the new virtual hard disk file into the box below or click
on the folder icon to select a different folder to create the file in.

&9 Create Virtual Hard Disk: Creating fixed medium storage unit ‘C:\Users\91989\VirtualBox VMs\U...

7~ N\| Cresting fixed medium storage unit 'C.) buntu 20.04\Ubuntu 20,044 ...

® X
! 16 seconds remaining

Create Cancel

Figure 1-8. Creating the fixed-size virtual hard disk

After creating the virtual hard disk, you can see the newly created
virtual machine. But where do we put the Ubuntu image in the virtual
machine? Well, that is the next step that we are going to do.

11

CHAPTER 1 GETTING STARTED WITH UBUNTU LINUX FOR ROBOTICS

Step 6: Choosing Ubuntu DVD Image

Figure 1-9 shows the newly created virtual machine. We have to select the
Settings button to configure the virtual machine.

¥ Oracle VM VirtualBox Manager = a x

File Machine Snapshot Help

e BB @D

ey Take Delete Restore Properties Clone Settings Discard Start

T
o iz 4 Name aken
’) = @) current State

Figure 1-9. Configuring the virtual machine

In the Settings window, navigate to the Storage option on the left (see
Figure 1-10).

12

CHAPTER 1

{2) Ubuntu 20.04 - Settings

! General
EI System
- Display
Storage 1

£ use

D Shared Folders

H User Interface

Storage

Storage Devices

@ Controller: IDE

° ubuntu-20.04.2.0-desktop...
& controller: SATA
2] ubuntu 20.04.vdi

@\

=

Attributes

Optical Drive:

Information -

Type:

Size:
Location:
Attached to:

D
o T

GETTING STARTED WITH UBUNTU LINUX FOR ROBOTICS

? X

IDE Secondary Devic v | (&)
[] uive co/ovD 2
Image
2.68 GB

C:\Users\91989\Desktopiu...
ubuntu 20.04

Cancel

Figure 1-10. Inserting Ubuntu DVD image in the optical drive

After inserting the Ubuntu image, configure the video configuration.

In this setting, you can allocate the video memory of the guest OS (see

Figure 1-11).

13

CHAPTER 1 GETTING STARTED WITH UBUNTU LINUX FOR ROBOTICS

{2} Ubuntu 20.04 - Settings ? b
-__ General ‘ Display

B | System Screen Remote Display Recording 2

! Display ..I Video Memory: W i28ms 2
2 0 mB 128 MB

ﬂ Storage

Monitor Count: [; : . _ . = [1_5]
(UJ Audio 1 8

Scale Factor: i v a

-ﬂ Rk cale Factor: |All Monitors 2] _
- Min Max

& Serial Ports Graphics Controller: VMSVGA -

Acceleration: [_] Enable 3D Acceleration

& uss

ol Shared Folders
IE_: User Interface

3
o]l oo

Figure 1-11. Display settings of the guest OS

After configuring the Display settings, we have to configure the System
settings. In the System settings, you can allocate the number of CPUs for
the guest OS. Figure 1-12 shows the safest settings for CPU allocation.

14

CHAPTER 1 GETTING STARTED WITH UBUNTU LINUX FOR ROBOTICS

{2} Ubuntu 20.04 - Settings ? X
Bl General System

m System 1 Motherboard Processor Acceleration

B Display Processor(s): , § 2 ; B

1CPU 8 CPUS

ii Storage Execution Cap: ' 100% -::I
B Audio 1% 100%

q Extended Features: |:| Enable PAE/NX

! Network Enable Nested VT-x/AMD-V

S Serial Ports

& use

|_—l Shared Folders

E User Interface

3

Cancel

Figure 1-12. The System settings for the guest OS

The Shared Folders settings may be useful when working with Ubuntu
(see Figure 1-13). Using this option, you can share the host operating
system folder inside the guest operating system. This option is useful for
accessing files and folders from the host operating system.

15

CHAPTER 1

{:') Ubuntu 20.04 - Settings

- General

\ﬂ System

- Display

E.IJ Storage

;(DJ Audio

ﬂ Network
f_}\s Serial Ports
| uss

m Shared Folders

1d] User Interface

Shared Folders

Shared Folders

GETTING STARTED WITH UBUNTU LINUX FOR ROBOTICS

Name Path

v Machine Folders
De..p C\Users\91989\Desktop

Figure 1-13. The Shared Folders settings

Access Auto Mount At

Full

Yes

B E) Bing |

3

Cancel

After completing these settings, you can start the virtual machine.

Step 7: Starting Virtual Machine

As shown in Figure 1-14, you can launch the virtual machine by clicking

the Start button. This will boot the virtual machine and bring you to the

Ubuntu live desktop.

16

CHAPTER 1 GETTING STARTED WITH UBUNTU LINUX FOR ROBOTICS

§F Oracle VM VirtualBox Manager -) X
File Machine Snapshot Help
e 6 — Ay o
L L Tools @ &R_::! '..# CL.:_,J _(@> -
gud Take Delete Restore Properties Clone Seftings Discard ['S.ta:‘ 1
> Taker

Name
@ current State

Figure 1-14. Launching the virtual machine

On the live desktop, you can explore the Ubuntu features without
installing it. You also have the option to install Ubuntu in the live mode. In
the next section, we will see how to install Ubuntu in VirtualBox. The steps
are the same if you install it on a real PC.

Installing Ubuntu on VirtualBox

When the virtual machine boots up, you get the window shown in
Figure 1-15, which asks you to Try Ubuntu or Install Ubuntu. If you want
to use Ubuntu before installing it, select Try Ubuntu, but if you want to
directly install Ubuntu, select Install Ubuntu. Here, we choose the Install

Ubuntu option.

17

CHAPTER 1 GETTING STARTED WITH UBUNTU LINUX FOR ROBOTICS

Welcome

[English |

Espaniol .
Esperanto

Euskara

Frangais

Gaeilge

Galego

Hrvatski e

islenska

italiano Try Ubuntu Install Ubuntu
Kurdi

Latviski

’ SRSt You can try Ubuntu without making any changes to your computer, directly from
Lietuviskai ¥ gany 9 y P Y

this CD.
Magyar
Nederlands Or if you're ready, you caninstall Ubuntu alongside (or instead of) your current

L operating system. This shouldn't take too long.
No localization (UTF-8)

MNorsk bokmal
Marek nunarck You may wish to read the release notes.

B @b o 0= & G @ @Rt an

Figure 1-15. The first window after booting from Ubuntu
DVD image

After selecting the Install Ubuntu option, the next step is to set the

keyboard layout (see Figure 1-16). Use the default keyboard layout (i.e.,
English (US)).

18

CHAPTER 1 GETTING STARTED WITH UBUNTU LINUX FOR ROBOTICS

Install

Keyboard layout

Choose your keyboard layout:

Sl A Englishus) |
English (Australian) -
- English (US) - Cherokee
English (Cameroon) Pl tish (Colemak
English (Ghona Sight sl coersal}
PRt Engl!sh(S)-Engll'sh:l)vorak} It. inkL
English (South Africa) g !s R)-Fng !s o ,.a £ _')
English (UK) English (US) - English (Dvorak, intl., with dead keys)
T 5= (/9 -£0ish (Ovorak, fthanded
4 =70 English (US) - English (Dvorak, right-handed)
Type here to test your keyboard

Detect Keyboard Layout

L N NONONONONS

Quit Back Continue

Gl @ b i o 17 =1 P 1 (2 [#] right

Figure 1-16. Setting the keyboard layout

The next window (see Figure 1-17) allows you to select options such as

updating Ubuntu during installation and updating third-party applications

and drivers. If you are working in VirtualBox, you can ignore this, but if

you are installing on a real PC that has graphics cards like NVIDIA or ATi

Radeon, you can select these options. It can search for an appropriate

graphics driver and install it during the Ubuntu installation; otherwise, you

may need to manually install it. However, there is no guarantee that we will

get a proper drive for our graphics card.

19

CHAPTER 1 GETTING STARTED WITH UBUNTU LINUX FOR ROBOTICS

Pa Ut

May 18 07:49

Install

Updates and other software

What apps would you like to install to start with?

© Normal installation
Web browser, utilities, office software, games, and media players.
Minimal installation

Web browser and basic utilities.
Other options

Download updates while installing Ubuntu

This saves time after installation.

Install third-party software for graphics and Wi-Fi hardware and additional media formats

This software is subject to license terms included with its documentation. Some is proprietary.

Quit Back Continue

(N N N NONON®
(3] oy P o 5 17 [l o 20 A (8] it o4l

Figure 1-17. Updating Ubuntu and installing third-party software

After configuring, click Continue to move onto the next step. This step
is very important because we are going to partition the hard disk to install
Ubuntu on it (see Figure 1-18). You have to be careful when selecting the
partition option. The first option, Erase disk and install Ubuntu, erases all
the drives on the hard disk and installs Ubuntu. If you are willing to do this,
you can proceed with that option. If you installed Ubuntu in VirtualBox,
this option will be fine, but if you are planning to install Ubuntu along with
Windows, select the Something else option.

20

CHAPTER 1 GETTING STARTED WITH UBUNTU LINUX FOR ROBOTICS

Installation type

This computer currently has no detected operating systems. What would you like to do?

Erase disk and install Ubuntu
Warning: This will delete all your programs, documents, photos, music, and any other files in all operating systems.

MNone selected

© something else
You can create or resize partitions yourself, or choose multiple partitions For Ubuntu.

Quit Back Continue

[N N N N NON®
Gl @ bl o 10 =1 i 81 @ % right e

Figure 1-18. Choosing the installation type

The Something else option gives us the option to format the desired
drive and install Ubuntu on it. If you are installing Ubuntu in VirtualBox,
you don’t need to worry much about this because there is only one hard
disk. If you are going to install on your real PC, you have to find a partition
for installing Ubuntu before booting into Ubuntu. In the partition manager,
you can identify the drive by checking the size of the partition. If the disk
is not formatted, you see the disk drive as /dev/sda. The first option is to
create a partition table, which you do by clicking the New Partition Table
button. After doing this, the disk drive shows free space, as shown in
Figure 1-19.

21

CHAPTER 1 GETTING STARTED WITH UBUNTU LINUX FOR ROBOTICS

¥

May 18 07:56

Install

Installation type

[] free space

Device Type Mount point Format? Size Used System

/devfsda

free space o 21523 MB

< . a MNew Partit T Revert

Device for boot loader installation:

/dev/sda ATA VBOX HARDDISK (21.5 GB) -

Quit Back Install Now

Gl @ 05 il o 17 =1 i £ B (%] right ant

Figure 1-19. Free space on the hard disk

You can modify the existing partition with the button on the left. There
are three buttons. The button with the + symbol is for creating a new
partition from a free space, the button with the - symbol is for deleting
an existing partition, and the Change button is for converting an existing
partition into another format or changing its size. Here, we are going to
create a new partition, so click the + button. You see another window (as
shown in Figure 1-20), which asks for information about the new partition.

22

CHAPTER 1 GETTING STARTED WITH UBUNTU LINUX FOR ROBOTICS

Create partition X

Size: 9737 - 4+ MB
Type for the new partition: @ Primary
Logical
Location for the new partition: @ Beginning of this space

End of this space

Use as: Ext4journaling file system -
Mount point: / v

Cancel OK

Figure 1-20. Creating a new root partition

Basically, to install Ubuntu, we need to set up two partitions. One is a
root partition and the other is a swap partition. The Ubuntu OS is installed
in the root partition. As shown in Figure 1-20, primary is the type for the
root partition, and the format of the file system is Ext4Journaling. You have
to set the mount point of root partition as /.

The swap partition is a special kind of partition that is used for
storing inactive pages when your physical memory (RAM) is approaching
maximum usage. If your RAM is large enough, let’s say greater than 4GB,
the swap partition can be ignored; otherwise, it is a good idea to have a
swap partition. You can allocate 1GB or 2GB to the swap partition (see
Figure 1-21).

23

CHAPTER 1 GETTING STARTED WITH UBUNTU LINUX FOR ROBOTICS

Installation type

N T S S S —
sdat (extd4) [IF
‘ 1 size: 1000 — + MB|

Create partition x

Device Type | T For th titi =

e 'or the new parcicion: Primar
Jdev/sda x ’ e
Jdev/sda1 extd [O Logical

free space Location for the new partition: @) Beginning of this space _

End of this space

Use as: | swap area -

Cancel OK

Gl @ b il 2 17 =] 2 3 3 (%] riaht e
Figure 1-21. Creating a new swap partition
After creating both partitions, click the Install Now button, which
installs Ubuntu to the selected partition. During installation, you can

set the time zone, keyboard layout, and username and password (see
Figure 1-22).

24

CHAPTER 1 GETTING STARTED WITH UBUNTU LINUX FOR ROBOTICS

Install

Where are you?

kolkata|]

Back Continue

Gl @ 0o i o 171 =1 82 1 & [riht ol

Figure 1-22. Setting the time zone

You can click your country to set the time zone. The country name will
be visible when you click the map.
Next, enter the Ubuntu login information (see Figure 1-23).

25

CHAPTER 1 GETTING STARTED WITH UBUNTU LINUX FOR ROBOTICS

Install X

Who are you?

Your name: | ros (]

Your computer's name: | ros-pc (]

The name it uses when it talks to other computers.

Pick a username: | ros (]
Choose a password: @0® Short password
Confirm your password: = @@@)| (]

Login automatically
© Require my password to login

Continue

21 G b o 5 17 [l P {01 8 (%] Rt ctrt

Figure 1-23. Setting login information

In this step, we set the PC name, login name, and password. If you
don’t want to log in using a username and password, you can enable the
Log in automatically feature. This logs in directly to the Ubuntu screen
without prompting for a username and password.

After assigning the login information, the installation procedure is
almost over. After installing the files, you need to reboot (see Figure 1-24).
Click Reboot to restart the virtual machine/PC. During this time, you
can remove the DVD image from the VirtualBox menu. Select Devices »
Optical Drives » Remove disk from the VirtualBox drop-down menu.

26

CHAPTER 1 GETTING STARTED WITH UBUNTU LINUX FOR ROBOTICS

Installation Complete

o Installation is complete. You need to restart the computer in order to use the new installation.

Restart Now

Figure 1-24. Restarting Ubuntu

After rebooting, you see the Ubuntu desktop shown in Figure 1-25.

AR MED A N~

Figure 1-25. Ubuntu desktop

Congratulations! You have successfully installed Ubuntu on VirtualBox.
After installation, install build-essential metapackage for compiling
software. They include gcc, g++, libc6-dev, make, dpkg-dey, etc.

27

CHAPTER 1 GETTING STARTED WITH UBUNTU LINUX FOR ROBOTICS

Before you install metapackage named “build-essential,” we have to
run update first:

Step 1:

sudo apt update

Step 2:

sudo apt install build-essential

If you are planning to install it on a real PC, you may need to know the
following things to boot Ubuntu on a PC.

Installing Ubuntu on a PC

Basically, there are two ways to boot Ubuntu on a PC. The first method
is direct: burn the DVD image you downloaded to a DVD, and then boot
it from the DVD. The other method is to boot from a USB drive, which is
easier and faster than a DVD installation.

A tool called UNetbootin burns the DVD image to a USB drive. It can
be downloaded from https://sourceforge.net/projects/unetbootin/.
You can browse the DVD image from this tool. Click OK to start the
copying process (see Figure 1-26).

28

https://sourceforge.net/projects/unetbootin/

CHAPTER 1 GETTING STARTED WITH UBUNTU LINUX FOR ROBOTICS

UNetbootin
O Distribution Ubuntu v | 16.04_Uve x4 -
Homepage: hitp://wvew ubyunty.com 1

Description: Ubuntu is a user-friendly Debian-based datribution. It i currently the most popular Linux desktop
distribution

Install Notes: The Live version allows for booting in Live mode, from which the installer can optionally be
launched. The Netinstal version allows for installation cver FTR and can install Kubuntu and cther offical
Ubuntu derivatives. If you would Tke to use a pre-downloaded alternate (not deskiop) install so, use the
HdMedia option, and then place the aternate instal iso file on the root directory of your hard drive or USS
drive

2
@ ODiskimage 150w | Fi\Disc_Images\ubuntu-16.04.3-desktop-amdid.so
Space usad to preserve fles across reboots (Ubuntu only): lo s 3 e
Type: |USS Drive 3 | Drive: H:) 4 oK Cancel

Figure 1-26. UNetbootin setup

You can select the Linux distribution and browse the DVD image. After
selecting the DVD image, select the type of drive, which is USB Drive. Next,
select the drive letter. Then, click the OK button. It takes time to copy the
DVD image to the drive. When it is complete, reboot the PC and set the
first boot device as USB drive. Now it will boot from the USB drive. You can
follow the installation procedures described earlier. More instructions are
athttps://unetbootin.github.io/.

If you have any trouble installing the OS using UNetbootin, try Rufus
(https://rufus.akeo.ie/), which is another application for the same
purpose.

29

https://unetbootin.github.io/
https://rufus.akeo.ie/

CHAPTER 1 GETTING STARTED WITH UBUNTU LINUX FOR ROBOTICS

Playing with the Ubuntu Graphical
User Interface

On the Ubuntu desktop, there is a panel on the left of the screen called
Unity, which is a graphical shell built on the top of GNOME (www . gnome.
org), the default desktop environment of Ubuntu. It is a free, open source
application. The other desktop environments are KDE and LXDE.

Figure 1-27 shows the Unity Launcher, which helps to quickly launch
and search Ubuntu applications. Click each app to make it pop up. You
can also search by application name. These GUI tools can save your time
in finding an application. On the right side of the Unity panel, there are
options to adjust the volume and power off the system. The launcher
is called the Unity Launcher. The search utility in the launcher is called
the Dash. There is an indicator panel to show the network connection,
volume, and other notifications.

=
)
B
A
®
%
el
>

Figure 1-27. The Unity Launcher panel

30

http://www.gnome.org
http://www.gnome.org

CHAPTER 1 GETTING STARTED WITH UBUNTU LINUX FOR ROBOTICS

Similar to Windows and OS X, there are many options in Ubuntu for
customizing the desktop environment. If you are interested in configuring
your Ubuntu desktop, refer to the Compiz Settings Manager at https://
help.ubuntu.com/community/CompositeManager#Compiz.

To learn more about Ubuntu, download the PDF from https://
ubuntu-manual.org/downloads.

The Ubuntu File System

Like the C drive in a Windows operating system, Linux has a special drive
for storing system files. It is called the root file system, which we created
during the installation of Ubuntu. We assigned / for the file system.
Figure 1-28 shows the Ubuntu file system architecture.

- - el el -
media Qe usr var home
ol

|
- aaE -

l . W] W -

ipod pendrive Documents Music Pictures

Figure 1-28. Ubuntu file system structure

31

https://help.ubuntu.com/community/CompositeManager#Compiz
https://help.ubuntu.com/community/CompositeManager#Compiz
https://ubuntu-manual.org/downloads
https://ubuntu-manual.org/downloads

CHAPTER 1 GETTING STARTED WITH UBUNTU LINUX FOR ROBOTICS

You can explore the file system by choosing File Manager from the
Unity Launcher, as shown in Figure 1-29.

]
]

& Network root.

< ® =
© Recent
@ Home ‘ ‘ ‘ ‘
B Deskiop bin boot cdrem dev
D Documents ‘ d ‘
v Downloads ete home lib libéa
48 Music =
B Pictures ‘ J ‘ a
- \Videas media mnt opt proc
& Trash ‘5 ‘ ‘
sbin
el

B cennectto Server ‘

"
|
<
v
k-
~
3
°
e
]

0
ER

<
2

var initrd.img

~

Figure 1-29. Ubuntu file system structure

The following describes the uses of each folder in the file system:

e /binand /sbin: Contains system applications similar
to the C:\ Windows folder.

o /etc: Contains system configuration files.

o /home/yourusername: This is equivalent to the C:\Users
folder in Windows.

o /1ib: Contains library files similar to .d11 files in
Windows.

e /media: Removable media is mounted in the directory.

32

CHAPTER 1 GETTING STARTED WITH UBUNTU LINUX FOR ROBOTICS

/root: Contains root user files (not the root user file
system; root user is the administrator of the Linux
system).

/ust: Pronounced user, it contains most of the program
files (equivalent to C:\Program Files in Microsoft
Windows).

/var/log: Contains log files written by many
applications.

/home/yourusername/Desktop: Contains Ubuntu
desktop files.

/mnt: The mounted partitions are shown here.
/boot: Contains the files required to boot.
/dev: Contains Linux device files.

/opt: The location for optionally installed programs
(ROS is installed to /opt).

/sys: Holds the files containing information about
the system.

Useful Ubuntu Applications

If you want to install a popular software application in Ubuntu, use Ubuntu

software (see Figure 1-30), which is available in the Unity Launcher. It is a

direct way to install applications in Ubuntu. In the coming sections, you

see how to install Ubuntu packages using command lines.

33

CHAPTER 1 GETTING STARTED WITH UBUNTU LINUX FOR ROBOTICS

(=)

Featured Application

Editor's Picks

a & 0

Terminal Tranurikslon WSO

SREPPDP O

CPauted

nccape stom

Ccategories

Ando Deselopment Tock

Srahis BLarnet

Sylen Utiities

Ccdacat on

Qice

Video

Games

sdente

Figure 1-30. The Ubuntu software center

Getting Started with Shell Commands

The graphical tools in Ubuntu are very easy to use, but if you want to

perform advanced tasks in Linux, you may need to learn the Ubuntu
command-line interface (CLI). The command-line tools are faster and
used often in debugging the system. The command-line interface in Linux
can be compared to the disk operating system (DOS) in Windows.

We mainly use the command line when we work with ROS. Knowledge

of the Linux terminal commands is a prerequisite for working with ROS.
The Ubuntu command-line interface is in a tool called Terminal. Use
the Ubuntu Dash search to find the Terminal application. Figure 1-31

shows an example.

34

CHAPTER 1 GETTING STARTED WITH UBUNTU LINUX FOR ROBOTICS

@ ® terminal

A Applications

Figure 1-31. Searching for the Terminal application

Click Terminal to open the application, which is shown in Figure 1-32.

To run a command as administrator (user "root"™), use "sudo <command>".
See "man sudo_root" for details.

ros@ros-pc:~5 |}

Figure 1-32. The Ubuntu terminal

35

CHAPTER 1 GETTING STARTED WITH UBUNTU LINUX FOR ROBOTICS

Terminal Commands Cheat Sheet

This section covers useful shell commands for working with robots and
ROS. The following are the popular commands that you want to explore.

man: Manual Pages for Shell Commands

The man command stands for manual. This command provides the manual
page of a given command:

Usage: man <shell command>

Example: man 1s

The preceding asks for the manual page of 1s. Figure 1-33 shows the
output of man 1s.

0 ros@ros-pc: ~
LS(1) User Commands LS(1)
|NAME
1s - list directory contents
SYNOPSIS
1s [OPTION])... [EILE].-.
DESCRIPTION

List 1information about the FILES (the current directory by
default). Sort entries alphabetically if none of -cftuvSUX nor
-=sort is specified.

Figure 1-33. The manual page of ls

Is: List Directory Content

The 1s command lists the content of files and folders in the current
directory:

Usage: 1s

The output of 1s is shown in Figure 1-34.

36

CHAPTER 1 GETTING STARTED WITH UBUNTU LINUX FOR ROBOTICS

ros@ros-pc: ~

ros@ros-pc:~5 s
Desktop Downloads Music Public Videos

Documents examples.desktop Pictures Templates
ros@ros-pc:~$

Figure 1-34. List of files in the current path

cd: Change Directory

The cd command switches from one folder to another (see Figure 1-35):
Usage: cd <Directory path>
Example: cd Desktop

ros@ros-pc: ~/Desktop

ros@ros-pc:~S cd Desktop/
ros@ros-pc:~/Desktop$

Figure 1-35. Changing folders

pwd: Current Terminal Path

The pwd command returns the current path of the terminal. This is useful
for getting the absolute path.

Usage: pwd

Figure 1-36 shows the output of the pwd command.

37

CHAPTER 1 GETTING STARTED WITH UBUNTU LINUX FOR ROBOTICS

ros@ros-pc:~$ pwd
/home/ros
ros@ros-pc:~$ [

Figure 1-36. Command to get current path

mkdir: Create a Folder

The mkdir command creates an empty folder or directory:
Usage: mkdir <folder name>
Example: mkdir robot

Figure 1-37 shows how to create and list folders.

ros@ros-pc:~$ mkdir robot
ros@ros-pc:~$ ls
Desktop Downloads Music Public Templates

Documents examples.desktop Pictures Videos
ros@ros-pc:~$

Figure 1-37. Creating a new folder

rm: Delete a File

The rm command deletes a file:

Usage: rm <file path>

Example: rm test.txt

An example is shown Figure 1-38. The files are listed before deletion
and after deletion to confirm that the files were actually deleted.

38

CHAPTER 1 GETTING STARTED WITH UBUNTU LINUX FOR ROBOTICS

rosros-pc: ~
ros@ros-pc:~$ s
Desktop Downloads Music Public Templates Videos
Documents examples.desktop Pictures robot &

ros@ros-pc:~$ rm test.txt

ros@ros-pc:~$ s

Desktop Downloads Music Public Templates
Documents examples.desktop Pictures robot Videos
ros@ros-pc:~$

Figure 1-38. Deleting a file

To delete a folder by recursively deleting its files, use the following
command:

$ rm -r <folder name>

To delete a file inside the root (/) file system, use sudo before the rm
command:

$ sudo rm <file name>

rmdir: Delete a Folder

The rmdir command deletes an empty folder. You may need to delete files
before using this command.

Usage: tmdir <folder name>

Example: rmdir robot

Figure 1-39 shows an example of this command.

39

CHAPTER 1 GETTING STARTED WITH UBUNTU LINUX FOR ROBOTICS

ros@ros-pc:~$ ls

Desktop Downloads Music Public Templates
Documents examples.desktop Pictures robot Videos
ros@ros-pc:~$ rmdir robot

ros@ros-pc:~$ 1s

Desktop Downloads Music Public Videos
Documents examples.desktop Pictures Templates
ros@ros-pc:~$

Figure 1-39. Deleting an empty folder

mv: Move a File from One Place to Another

The mv command moves a file from one location to another and then
renames the file:

Usage:mv source file destination/destination_file

Example:mv test.txt test 2.txt

In Figure 1-40, test.txt is moved into the same folder under a
different name (i.e., test_2.txt).

ros@ros-pc: ~

|ros@ros-pc:~$ s

Desktop Downloads Music Public test. txt
[Documents examples.desktop Pictures Templates Videos
ros@ros-pc:~$ mv test.txt test 2.txt

ros@ros-pc:~$ s

Desktop Downloads Music Public test 2.txt
Documents examples.desktop Pictures Templates Videos
{ros@ros-pc:~$ [}

Figure 1-40. Moving a file

It is moving the file by renaming the file.

40

CHAPTER 1 GETTING STARTED WITH UBUNTU LINUX FOR ROBOTICS

cp: Copy a File from One Path to Another

The cp command copies files from one location to another:
Usage: cp source file destination folder/destination file
Example: cp test.txt test 2.txt
Figure 1-41 demonstrates this example.

ros@ros-pc:~$ ls

Desktop Downloads Music Public test.txt

Documents examples.desktop Pictures Templates Videos

ros@ros-pc:~$ cp test.txt test 2.txt
ros@ros-pc:~$ s

Desktop Downloads Music Public
Documents examples.desktop Pictures Templates test.txt
ros@ros-pc:~$

Videos

Figure 1-41. Copying a file

dmesg: Display a Kernel Message

The dmesg command is very useful for debugging the system. It displays
the kernel logs (see Figure 1-42). From these logs, you can debug the
problem.

Usage: dmesg

41

CHAPTER 1 GETTING STARTED WITH UBUNTU LINUX FOR ROBOTICS

ros@ros-pc:-S [dmesg |
I 0.000000) [Inux version 4.10.0-28-generic (buildd@lgwel-12) (gcc version 5.
4.0 20160609 (Ubuntu 5.4.0-6ubuntul~16.64.4)) #32~16.04.2-Ubuntu SMP Thu Jul 20
16:19:48 UTC 2617 (Ubuntu 4.16.08-28.32~16.84.2-generic 4.10.17)
I 0.000000] Command Lline: BOOT IMAGE=/boot/vmlinuz-4.10.0-28-generic root=UUI
D=fa3aabcb 2976-4252-ac26-db79f83f21be ro quiet splash
0.006000] KERNEL supported cpus:
0.0 | Intel Genuinelntel l
0.0
(3]

[
[
[AMD AuthenticAMD

[Centaur CentaurHauls

[: sseemem=====| cut here J-----ccecn--

[0.000000] WARNING: CPU: © PID: 0 at /build/linux-hwe-vH8Hlo/linux-hwe-4.10.
8/arch/x86/kernel/fpu/xstate.c:595 fpu__init_system xstate+0x36d/0x9%
[

[

[

0.000060] XSAVE consistency problem, dumping leaves

0.000000] Modules linked in:

0.000000,) CPU: © PID: 0 Comm: swapper Not tainted 4.10.0-28-generic #32-~16.
04.2-Ubuntu

Figure 1-42. Checking the kernel logs

Ispci: List of PCI Devices in the System

The 1spci command also debugs the PC. This command lists the PCI
devices in the PC (see Figure 1-43).

Usage: 1spci

ros@ros-pc: -$ Lspci

©0:00.6 Host bridge: Intel Corporation 446FX - 82441FX PMC [Natomal (rev 02)
00:01.0 ISA bridge: Intel Corporation 82371SB PIIX3 ISA [Natoma/Triton II)
080:01.1 IDE interface: Intel Corporation 82371AB/EB/MB FIIX4 IDE (rev 61)
93:9{2159 VGA compatible controller: InnoTek Systemberatung GmbH VirtualBox Graphi
cs Adapter

00:03.0 Etl)lernet controller: Intel Corporation 82540EM Gigabit Ethernet Controll
er (rev 02

00:04.0 System peripheral: InnoTek Systemberatung GmbH VirtualBox Guest Service
00:65.6 Multimedia audio controller: Intel Corporation 82861AA AC'97 Audio Contr
oller (rev 01)

00:06.0 USB controller: Apple Inc. KeylLargo/Intrepid USB

©0:07.0 Bridge: Intel Corporation 82371AB/EB/MB PIIX4 ACPI (rev @8)

00:0d.6 SATA controller: Intel Corporation 82801HM/HEM (ICH8M/ICHB8M-E) SATA Cont
roller [AHCI mode] (rev 82)

ros@ros-pc:~$ |

Figure 1-43. Listing the PCI devices

42

CHAPTER 1 GETTING STARTED WITH UBUNTU LINUX FOR ROBOTICS

Isush: List of USB Devices in the System

The 1susb command lists all USB devices (see Figure 1-44):
Usage: 1susb

ros@ros-pc: ~

|ros@ros-pc:~$ Llsusb

[Bus 001 Device ©02: ID 80ee:0021 VirtualBox USB Tablet

[Bus 801 Device €01: ID 1d6b:0061 Linux Foundation 1.1 root hub
|ros@ros-pc:~$

Figure 1-44. Listing the USB devices

sudo: Run a Command in Administrative Mode

The sudo command is one of the most important. We use it regularly. It
runs a command with administrative privileges (see Figure 1-45). We can
also completely switch to root (administrator) mode using this command.

Usage: sudo <parameter> <command>

Example: sudo -1

This example command switches to root mode.

. root@ros-pc: ~

ros@ros-pc:~$ sudo -i
[sudo] password for ros:
root@ros-pc:~# |}

Figure 1-45. Switching to administrator mode

Figure 1-46 shows the results of executing a command in root mode.

43

CHAPTER 1 GETTING STARTED WITH UBUNTU LINUX FOR ROBOTICS

ros@ros-pc:~% sudo dmesg I

[sudo] password for ros:

[0.000000) Linux version 4.10.0-28-generic (buildd@lgwol-12) (gcc version 5.
4.0 20160609 (Ubuntu 5.4.0-6ubuntul~16.64.4)) #32~16.04.2-Ubuntu SMP Thu Jul 20
10:19:48 UTC 2017 (Ubuntu 4.16.0-28.32~16.04.2-generic 4.10.17)

[0.000006] Command line: BOOT IMAGE=/boot/vmlinuz-4.10.0-28-generic root=UUI
D= faBBabcb 2976-4252-ac26-db79f83f21be ro quiet splash

[06 KERNEL supported cpus:

[80 Intel Genuinelntel

| | AMD AuthenticAMD

[0.000000] Centaur CentaurHauls

Figure 1-46. Running a command with administrative privilege

ps: List the Running Process

The ps command lists the running process in your system:

Usage: ps <command arguments>

Example: ps -A

When we execute the ps command, it lists the process in the current
terminal. If we run ps -A, it lists all the processes running in the system.
Both results are shown in Figure 1-47. PID is the process ID, which
identifies the running process. TTY is the terminal type.

ros@ros-pc:~$ ps

PID TTY TIME CMD

2572 pts/2 ©0:60:00 bash

2586 pts/2 €0:00:00 ps
ros@ros- pc ~$ ps -A

PID TTY TIME CMD
00:00:02 systemd
€0:60:00 kthreadd
©0:00:00 kworker/9:6H
00 ksoftirqd/e
80 rcu_sched
:80 rcu bh

:00 migration/o
:00 lru-add-drain

sAA Lt ohdan in

4 DW OB
J“\J*\l‘\.l'\l‘\)'\l'\l'\l

el

Figure 1-47. Listing the processes running on the system

44

CHAPTER 1 GETTING STARTED WITH UBUNTU LINUX FOR ROBOTICS

kill: Kill a Process

To end a process running in the system, use the kill command:

Usage: kill <PID>

Usage: kill 2573

To kill a process, we have to identify the PID of process and provide it
with the command. The results of the command are shown in Figure 1-48.

ros@ros-pc:~$ ps

PID TTY TIME CMD
pts/2 ©0:00:00 bash
2599 pts/2 00:00:00 ps
ros@ros-pc:~$ kill 2572}

Figure 1-48. Killing a process

apt-get: Install a Package in Ubuntu

The apt-get command is important and very useful when working with
Ubuntu and ROS. It installs an Ubuntu package that is either in the Ubuntu
repositories or on the local system. The packages are called Debian
packages, which have .deb extensions. Installing a package requires root
permission, so we have to use sudo before the command. We can also
update the list of packages in the repositories using this command.

Usage: $ sudo apt-get <command_argument> <package name>

Example:$ sudo apt-get update

Example: $ sudo apt-get install htop

Example: $ sudo apt-get remove htop

Figure 1-49 shows the Ubuntu package update using sudo apt-get
update. This command updates the package download location in the
local system.

45

CHAPTER 1 GETTING STARTED WITH UBUNTU LINUX FOR ROBOTICS

|ros@ros-pc:-$ sudo apt-get update

|[sudo] password for ros:

Hit:1 http://in.archive.ubuntu.com/ubuntu xenial InRelease

[Get:2 http://security.ubuntu.com/ubuntu xenial-security InRelease [102 kB]
Get:3 http://in.archive.ubuntu.com/ubuntu xenial-updates InRelease [102 kB]
Get:4 http://in.archive.ubuntu.com/ubuntu xenial-backports InRelease [102 kB]
|[Fetched 306 kB in 3s (80.5 kB/s)

Reading package lists... Done

i'ros@ros-pc:-s

Figure 1-49. Updating the Ubuntu software repository

Figure 1-50 shows how to install a package. We are installing a tool
called htop. It is a terminal process viewer.

ros@ros-pc:~$ sudo apt-get install htop
Reading package lists... Done
Building dependency tree
Reading state information... Done
Th; following NEW packages will be installed:
top
® upgraded, 1 newly installed, © to remove and 149 not upgraded.
Need to get 76.4 kB of archives.
After this operation, 215 kB of additional disk space will be used.
Get:1 http://in.archive.ubuntu.com/ubuntu xenial-updates/universe amd64 htop amd
64 2.0.1-1ubuntul [76.4 kB]
Fetched 76.4 kB in 2s (36.1 kB/s)
Selecting previously unselected package htop.
(Reading database ... 175107 files and directories currently installed.)
Preparing to unpack .../htop 2.0.1-1lubuntul _amdé4.deb ...
Unpacking htop (2.6.1-lubuntul) ...
Processing triggers for gnome-menus (3.13.3-6ubuntu3.l) ...
Processing triggers for desktop-file-utils (0.22-1lubuntu5.1) ...
Processing triggers for bamfdaemon (0.5.3~bzr8+16.084.20160824-0ubuntul) ...
Rebuilding /usr/sharesapplications/bamf-2.index...
Processing triggers for mime-support (3.5%ubuntul) ...
Processing triggers for man-db (2.7.5-1) ...
Setting up htop (2.0.1-lubuntul) ...
ros@ros-pc:~ oﬁ

Figure 1-50. Installing a package on Ubuntu

The sudo apt-get remove htop command in Figure 1-51 shows how
to remove a package. We have to use the remove argument to delete it.

46

CHAPTER 1 GETTING STARTED WITH UBUNTU LINUX FOR ROBOTICS

ros@ros-pc:~$ sudo apt-get remove htop
Reading package lists... Done

Building dependency tree

IReading state information... Done

he following packages will be REMOVED:

htop

D upgraded, @ newly installed, 1 to remove and 149 not upgraded.

After this operation, 215 kB disk space will be freed.

you want to continue? [Y/n] y

{Reading database ... 175115 files and directories currently installed.)
oving htop (2.6.1-1lubuntul) .

Processing triggers for man-db (2 rict=t) oo

Processing triggers for gnome-menus (3.13.3-6ubuntu3.l) ...

Processing triggers for desktop-file-utils (0.22-1lubuntu5.1) ...
Processing triggers for bamfdaemon (0.5.3~bzr0+16.04.20160824-6ubuntul) ...
Rebuilding /usr/share/applications/bamf-2.index...

Processing triggers for mime-support (3.5%9ubuntul) ...

ros@ros-pc:-$

Figure 1-51. Removing a package from Ubuntu

Figure 1-52 shows how to install a local Debian package using the apt-
get command. The local file is on the same path of the terminal, and the
name of the Debian file is htop.deb, so we can use the following:

$ sudo apt-get install ./htop.deb

47

CHAPTER 1 GETTING STARTED WITH UBUNTU LINUX FOR ROBOTICS

ros@ros-pc: ~/Desk

Note, selecting htop mstr:ad of './htop.deb’
The follwing NEW packages will be installed:
htop

0 upgraded, 1 newly installed, @ to remove and 149 not upgraded.

Need to get 6 B/76.4 kB of archives.

After this operation, 215 kB of additional disk space will be used.
Selecting previously unselected package htop.

(Reading database ... 175167 files and directories currently installed.)
Preparing to unpack .../htop 2.6.1-lubuntul amd64.deb .

Unpacking htop (2.6.1-1lubuntul) ...

Processing triggers for gnome-menus (3.13.3-6ubuntu3.1) ...

Processing triggers for desktop-file-utils (8.22-1ubuntu5.1) ...
Processing triggers for bamfdaemon (©.5.3~bzre+16.64.20160824-0ubuntul) ...
Rebuilding /usr/share/applications/bamf-2.index..

Processing triggers for mime-support (3.59uhuntu1} e

ros@ros-pc:-/Desktop$

Figure 1-52. Installing a Debian package in Ubuntu

dpkg -i: Install a Package in Ubuntu

The dpkg command is another way to install a Debian package:
Usage: dpkg <command_arguments> debian file name
Example: dpkg -1 htop.deb
Figure 1-53 shows the results of the dpkg command.

48

CHAPTER 1 GETTING STARTED WITH UBUNTU LINUX FOR ROBOTICS

htop.deb

ros@ros-pc: ~/Desktop

ros@ros-pc:~/Desktop$ sudo dpkg -1 htop.deb
Selecting previously unselected package htop.

(Reading database ... 175107 files and directories currently installed.)
Preparing to unpack htop.deb ...

Unpacking htop (2.€.1-lubuntul) ...

Setting up htop (2.0.1-1lubuntul) ...

triggers for gnome-menus (3.13.3-6ubuntu3.1) ...

triggers for desktop-file-utils (0.22-lubuntu5.1) ...

triggers for bamfdaemon (0.5.3~bzr€+16.04.20160824-6ubuntul) ...
Jusr/share/applications/bamf-2.index. ..

triggers for mime-support (3.59ubuntul) ...

triggers for man-db (2.7.5-1) ...

:~/Desktops I

Figure 1-53. Installing a Debian package in Ubuntu

reboot: Reboot the System

We can restart the system using the reboot command (see Figure 1-54):
Usage: sudo reboot

This instantly reboots the system.

' ros@ros-pc: ~
ros@ros-pc:~$ sudo reboot

Figure 1-54. Rebooting PC

poweroff: Switch Off the System

If you want to instantly shut down the system, use the poweroff command
(see Figure 1-55):
Usage: $ sudo poweroff

49

CHAPTER 1 GETTING STARTED WITH UBUNTU LINUX FOR ROBOTICS

ros@ros-pc:~$ sudo power'of!

Figure 1-55. Shutting down the PC

htop: Terminal Process View

The htop is a process viewer in Linux (see Figure 1-56). It is not installed in
the system by default. You have to install it using apt-get. This command
is very useful for managing process.

Usage: htop
W | 0.7%] Tasks: 101, 227 thr; 1 running
2 I 3.9%] Load average: 0.08 0.22 0.25
3 [0.7%] Uptime: 80:25:00
Mem[| 1111110010 746M/5.436]
Swpl 0K/952M]
1 SHR S CPU% MEM% TIME+ Command
e 3192 R 2.6 0.1 6:60.67 htop
1 root 20 © 181M 6176 4028 S 0.0 0.1 ©:02.86 /sbin/init splash
235 root 20 @ 34320 3736 3368 S 0.0 0.1 0:00.26 /Lib/systemd/syst
263 root 20 0 46156 5200 3144 S 0.9 0.1 0:60.36 /lib/systemd/syst
406 systemd-t 20 © 994 2576 2356 S 0.0 0.0 0:00.00 /lib/systend/syst
379 systemd-t 20 6 994 2576 2356 S 0.0 0.6 0:00.65 /lib/systemd/syst
697 root 20 O 25624 5212 2832 S 0.0 0.1 0:00.06 /lib/systemd/syst
701 root 20 © 4400 1240 1144 S 0.0 0.0 0:00.14 /usr/sbin/acpid
T4 macsunaha 0 A A4AA0 E28A AR € A a4 a1 a-a6 &0 fuerfhin/dhiecdaa

Figure 1-56. Terminal process viewer

50

CHAPTER 1 GETTING STARTED WITH UBUNTU LINUX FOR ROBOTICS

nano: Text Editor in Terminal

There is a useful text editor that you can use while working in the terminal.
You can create code inside the terminal (see Figure 1-57).

Usage: $ nano file name

Example: $ nano test.txt

ros@ros-pc: ~
ros@ros-pc:~$ nano test.txt

Figure 1-57. Text editor in the terminal

Figure 1-58 shows the resulting screen. In this editor, you can enter
your code.

-~

ros@ros-pc: ~
GNU nano 2.5.3 File: test.txt

Get Help gV Write Out g Where Is @g§ Cut Text g8 Justify
Exit ai Read File g\ Replace @V Uncut Textgd] To Spell

Figure 1-58. Nano text editor in terminal

51

CHAPTER 1 GETTING STARTED WITH UBUNTU LINUX FOR ROBOTICS

After completing the code, press Ctrl+O to save the file. You are asked
to enter the file name. You can enter a new file name or use an existing
name. Press Enter to save (see Figure 1-59).

O 5@ ros@ros-pc:~

GNU nano 2.5.3 File: test.txt

File Name to Write:
gt Get Help

test.txt
¥B» DOS Formag®d Append

Figure 1-59. Saving a file in the nano text editor in the terminal

Press Ctrl+X to exit from the editor. To open the file again, use nano
file name.

Summary

This chapter discussed the fundamentals of the Ubuntu operating system,
its installation, and the important shell commands that we need for
working with robots. This chapter is important because, before working
with ROS-based applications, you should have a basic understanding

of Linux and its commands. Understanding the Linux environment and

its commands is one of the prerequisites for learning ROS. This book
discusses all the prerequisites needed for learning ROS. This chapter is the
first step in learning ROS.

52

CHAPTER 2

Fundamentals of
C++ for Robotics
Programming

In the last chapter, we went through detailed procedures to install
Ubuntu on VirtualBox and on a real PC. We also practiced important
shell commands that we are going to use while building a robot. The
next important requirement for working with a robot is to learn a few
programming languages. By using these languages, we can program
the robot for different application. Some of the popular programming
languages used for creating robotics applications are C++ and Python. This
doesn’t mean that we won'’t use other languages. Programming languages
like Java and C# are also used in robotics, but the most common languages
are C++ and Python.

This chapter discusses some fundamental concepts of C++ and
its compilation process. These concepts will definitely help you when
you start working with ROS. The fundamentals include mainly object-
oriented programming (OOP) concepts and compiling code using Make
and CMake tools. This chapter assumes that you have some fundamental
understanding of C programming languages. So let’s get started with C++
fundamental.

© Lentin Joseph and Aleena Johny 2022 53
L. Joseph and A. Johny, Robot Operating System (ROS) for Absolute Beginners,
https://doi.org/10.1007/978-1-4842-7750-8_2

https://doi.org/10.1007/978-1-4842-7750-8_2#DOI

CHAPTER 2 FUNDAMENTALS OF C++ FOR ROBOTICS PROGRAMMING

Getting Started with C++

We can define C++ as a superset of the C programming language, or we
can say “C with Classes.” The C++ programming language project, initially
called C with Classes, was started in 1979 by computer programmer Bjarne
Stroustrup. His main work was adding object-oriented programming into
the C language by maintaining its portability without sacrificing speed

or low-level functionality. Like C, C++ is a compiled language. It needs a
compiler to convert the source code into executable code.

Timeline: The C++ Language

In 1983, the C with Classes project changed to C++. The ++ operator is used
for incrementing a variable, so C++ means it is the C language with new
features. In 1990, Borland’s Turbo C++ compiler was released as a commercial
product. In 1998, C++ standards were published as C++ ISO/IEC 14882:1992
or C++98. In 2005, the C++ standards committee released a report of new
features added to the latest C++ standard. In 2011, the C++11 was released.

In 2017, the C++17 was released. The most recent version of C++ is C++20.
The Boost libraries (www. boost.org) made a considerable impact on the new
standards. Boost C++ libraries is a set of libraries for the C++ programming
that provides support for tasks and structures, such as linear algebra,
multithreading, image processing, regular expressions, and unit testing.

C/C++ in Ubuntu Linux

Ubuntu Linux comes with an in-built C/C++ compiler called GCC/G++.
GCC stands for GNU Compiler Collection. It includes compilers for C, C++,
Objective-C, Fortran, Ada, and Go, as well as libraries for these languages.
GCC was written for the GNU Project (www.gnu.org/gnu/thegnuproject.
html) by Richard Stallman.

54

http://www.boost.org
http://www.gnu.org/gnu/thegnuproject.html
http://www.gnu.org/gnu/thegnuproject.html

CHAPTER 2 FUNDAMENTALS OF C++ FOR ROBOTICS PROGRAMMING

Introduction to GCC and G++ Compilers

Let’s start with GCC/G++ compilers. The latest Ubuntu Linux comes
with preinstalled C and C++ compilers. The C compiler in Linux is GCC,
and the C++ compiler is G++; the gcc and g++ are shell commands of
these compilers. You can type this command in the terminal to see what
happens (see Figure 2-1).

0 ros@ros-pc: ~

ros@ros-pc:~$ gcc

gcc: fatal error: no input files
compilation terminated.
ros@ros-pc:~$ g++

g++: fatal error: no input files
compilation terminated.
ros@ros-pc:~$

Figure 2-1. Testing gcc and g++ commands in the terminal

If you are not getting the message shown in Figure 2-1, then you
confirm that these compilers are not preinstalled in your system. No
worries! You can install these compilers using apt-get command.

Installing C/C++ Compiler

First, you may need to update the list of Ubuntu packages from the
repository with the following command:

$ sudo apt-get update
Now install the packages for getting the compilers:

$ sudo apt-get install build-essential

55

CHAPTER 2 FUNDAMENTALS OF C++ FOR ROBOTICS PROGRAMMING

The build-essential package is associated with numerous packages
for developing software in Ubuntu Linux.

Verifying Installation

After installing the preceding package, you can verify whether the
installation is correct by using the following commands:

$ whereis gcc
$ whereis g++

These commands locate the path of the gcc/g++ command and the
manual page of the same command.

The following commands print the GCC compiler that we are going to
use and display the path of the command:

$ which gcc
$ which g++

The following commands print the current version of GCC that we are
going to use:

$ gcc --version
$ g++ --version

Figure 2-2 shows the output of the preceding commands.

56

CHAPTER 2 FUNDAMENTALS OF C++ FOR ROBOTICS PROGRAMMING

[+l ros@ros-pc ~

:~% whereis gcc
gcc: fusr/bin/gcc fusr/lib/gcc fusr/share/man/manl/gcc.1.gz
:~% which gcc
Jusr/binfgcc
:~% gcc --version
gcc (Ubuntu 9.3.0-17ubuntul~20.04) 9.3.0
Copyright (C) 2019 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

:~$ whereis g++
g++: fusrfbin/g++ fusr/share/man/manl/g++.1.g9z
:~$ which g++
fusr/bin/g++
:~% g++ --version
g++ (Ubuntu 9.3.0-17ubuntul-~20.04) 9.3.0
Copyright (C) 2019 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

:~S D

Figure 2-2. Testing gcc and g++ commands in the terminal

Introduction to GNU Project Debugger (GDB)

Let’s have a look at debugger tools for C/C++. So, what is a debugger? A
debugger is a program that runs and controls another program, examining
each line of code to detect problems or bugs.

The Ubuntu Linux comes with a debugger called GNU Debugger,
which is also called GDB (www.gnu.org/software/gdb/). Itis one of the
popular C and C++ program debuggers for the Linux system.

Installing GDB in Ubuntu Linux

Here is the command to install GDB in Ubuntu. It’s already installed on the
latest version of Ubuntu. If you are using other versions, you can use the
following command to install it:

$ sudo apt-get install -y gdb-source

57

http://www.gnu.org/software/gdb/

CHAPTER 2 FUNDAMENTALS OF C++ FOR ROBOTICS PROGRAMMING

Verifying Installation

To check whether GDB is installed properly on your PC, use the following
command. Once you type gdb in your terminal, the message in Figure 2-3
is shown.

$ gdb

ros@ros-pc: ~
:~5 gdb

Copyright (C) 2020 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>

This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law.

Type "show copying” and "show warranty"” for details.

This GDB was configured as "x86_64-linux-gnu".

Type "show configuration" for configuration details.

For bug reporting instructions, please see:

<http://www.gnu.org/software/gdb/bugs/=>.

Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/=.

For help, type "help”.
Type "apropos word” to search for commands related to "word”.

(gdb)

Figure 2-3. Testing the gdb command

You can verify the gdb version by using the following command:
$ gdb --version

The version also shows when you enter the gdb command.
In the next section, we are going to write our first C++ code in Ubuntu.
We will compile it and debug it to find bugs in the code.

58

CHAPTER 2 FUNDAMENTALS OF C++ FOR ROBOTICS PROGRAMMING

Writing Your First Code

Let’s start writing the first program in Ubuntu Linux. To write the code,
you can use a text editor in Ubuntu. You can choose either the gedit or
nano terminal text editor. gedit is a popular GUI text editor in Ubuntu. We
already worked with nano in the first chapter, so now let’s check out gedit.

In Ubuntuy, search for gedit (see Figure 2-4) and select from the search
results.

Text Editor

K
»

Figure 2-4. Searching for the gedit text editor in Ubuntu search

Once you click the text editor, you see the window shown in Figure 2-5.

59

CHAPTER 2 FUNDAMENTALS OF C++ FOR ROBOTICS PROGRAMMING

uUntitled Document 1 - gedit

PlainText * Tabwidth:8 ~ Ln1,Col1 - INS

Figure 2-5. The gedit text editor

This editor is very similar to Notepad or WordPad in Windows. You can
write your first C++ code in this text editor.
Figure 2-6 shows the first C++ code that we are going to compile in
the Linux.
1 #include <iostream=>
2 using namespace std;

2!
4 int main()

cout<<"Hello Ubuntu Linux"<<endl;

return 0;

[BT I e e Y, |

Figure 2-6. The gedlit text editor

Write the code in the text editor and save it as hello world.cpp.

60

CHAPTER 2 FUNDAMENTALS OF C++ FOR ROBOTICS PROGRAMMING

Explaining Code

The hello world.cpp code is going to print the message, “Hello Ubuntu
Linux” #include <iostream> is a C++ header file for input/output
functions, such as taking input from a keyboard or printing a message. In
this program, we are only using the print function to print messages, so
iostreamwill be enough. The next line is using namespace std.

The namespace (www.geeksforgeeks.org/namespace-in-c/)isa
special feature in C++ to group a set of entities. The std namespace is
used in the iostreamlibrary. When we are using namespace std, we can
access the functions or other entities included in the std namespace, such
as functions like cout and cin. If we are not using this line of code, you
have to mention std: : for accessing functions inside that namespace, for
example, std: : cout is a function to print a message.

After discussing the header file and other lines of code, we can discuss
what is included in the main function. We are using cout<<"Hello Ubuntu
Linux"<<endl to print that message. The endl adds a new line after
printing the message. After printing the message, the function returns 0
and exits the program.

Compiling Your Code

After saving your code, the next step is to compile the code. The following
procedure will help you to compile the code.

You can take a new terminal and switch the terminal path to the
folder where the code is saved. In this case, we have saved the code to
/home/<user>/Desktop folder. To change the terminal path to the Desktop
folder, you have to use the “cd” command as shown here:

$ cd Desktop

If you have saved your code in the home directory, you don’t need to
run this command.

61

http://www.geeksforgeeks.org/namespace-in-c/

CHAPTER 2 FUNDAMENTALS OF C++ FOR ROBOTICS PROGRAMMING

After switching to the Desktop folder, type 1s to list the files in it (see
Figure 2-7):

$ 1s

S ls

s [

hello world.cpp

Figure 2-7. Listing the files in the Desktop folder

If your code is in the folder, you can do the compilation by using the
following command:

$ g++ hello world.cpp

The G++ compiler checks the code, and if there is no error, it creates an
executable named a.out. You can execute this file by using the following
command (see Figure 2-8):

$./a.out

S 1s

hello_world.cpp

$ g++ hello_world.cpp
S ./a.out

s

Hello Ubuntu Linux

Figure 2-8. Running the output executable

It shows the output as

Hello Ubuntu Linux

62

CHAPTER 2 FUNDAMENTALS OF C++ FOR ROBOTICS PROGRAMMING

Congratulations! You have successfully compiled and executed your
first C++ code. Now let’s check some of the g++ options. This will be useful
in the upcoming sections.

If you want to create an executable with a particular name, you can use
the following command:

$ g++ hello world.cpp -o hello world

The -0 argument points out the output executable name. So, the
preceding command creates an executable named hello world. You can
execute it by using the following command:

$./hello world

The output of the preceding commands is shown in Figure 2-9.

hello_world.cpp
s

>
$./hello_world

s

Hello Ubuntu Linux

Figure 2-9. Running the hello_world output executable

Debugging Your Code

Using the debugger tool, we can go through each line of code and inspect
the values of each variable. Figure 2-10 shows C++ code to compute the
sum of two variables. Let’s save this code as sum. cpp.

63

CHAPTER 2 FUNDAMENTALS OF C++ FOR ROBOTICS PROGRAMMING

1 #include - 2am:>

2 using namespace std;

3

4 int main()

5

6 int num_1=3;

7 int num_2=4;

8

9 int sum= num_1+num_2;
10 cout<<"The sum 1 << sum;
11

12 return 0;

13 (]

Figure 2-10. C++ code for summing two numbers

To debug/inspect each line of code, you have to compile the sum. cpp
using g++ with the -g option. This builds the code with debugging symbols
and enables it to work with GDB.

The following command helps to compile the code with debug

symbols:
$ g++ -g sum.cpp -0 sum

After compiling, you can execute it by running the following
command:

$. /sum

For debugging, use GDB. The output of the preceding set of commands
is shown in Figure 2-11.

ros@ros-pc: ~fDesktop

:~S cd Desktop
- S g++ sum.cpp -0 sum

s [J

S .fsum

The sum is =7

Figure 2-11. Compiling sum.cpp

64

CHAPTER 2 FUNDAMENTALS OF C++ FOR ROBOTICS PROGRAMMING

After creating the executable, you can debug the executable by using

the following command:

$ gdb sum

sum is the name of the executable. After entering the command, you

have to use the GDB commands to proceed with debugging. The following

are important GDB commands that you need to remember:

b line_numer: Creates a break point in the given line
number. While debugging, the debugger stops at this
break point.

n: Executes the next line of code.
1: Runs the program until the break point.
p variable name: Prints the value of a variable.

q: Exits the debugger.

Let’s try these commands. The output of each command is shown in
Figure 2-12.

65

CHAPTER 2 FUNDAMENTALS OF C++ FOR ROBOTICS PROGRAMMING

1 ros@ros-pc: ~/Desktop

For bug reporting instructions, please see:

<http://www.gnu.org/software/gdb/bugs/>.

Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/=.

For help, type "help".
Type "apropos word" to search for commands related to
Reading symbols from

: file , Line 5.

int num_1=3;
int num_2=4;
int sum= num_1+num_2;

cout<<"The sum is ="<< sum;

Figure 2-12. Debugging sum application

Now that you've learned the basics of compiling and debugging, let’s
start learning the basics of OPP concepts in C++. The following section
discusses some of the important concepts that are required knowledge in
the upcoming chapters.

Learning 00P Concepts from Examples

If you already know C structures, then learning about OOP concepts will
not take much time. In C structures, we can group different data types—
such as integer, float, and string—into a single, user-defined data type.
Similar to structures, C++ has an enhanced version of structs that has a
provision to define functions. This enhanced struct version is called the
C++ class. Each instance of the C++ class is called an object. An object is
simply a copy of the actual class. There are several properties associated

66

CHAPTER 2 FUNDAMENTALS OF C++ FOR ROBOTICS PROGRAMMING

with objects, which are called object-oriented programming concepts. The
main OOP concepts are explained with C++ code next.

The Differences Between Classes and Structs

Before going through the OOP concepts, let’s look at the basic differences
between a struct and a class. Listing 2-1 helps differentiate them.

Listing 2-1. Example Code to Demonstrate C++ Class and Struct

#include <iostream>
#include <string>

using namespace std;
struct Robot Struct

{
int id;
int no_wheels;
string robot_name;
b
class Robot_Class
{
public:
int id;
int no_wheels;
string robot_name;
void move robot();
void stop robot();
b
void Robot Class::move robot()
{
cout<<"Moving Robot"<<endl;
}

67

CHAPTER 2 FUNDAMENTALS OF C++ FOR ROBOTICS PROGRAMMING

void Robot Class::stop robot()

{
cout<<"Stopping Robot"<<endl;

}

int main()

{
Robot_Struct robot 1;
Robot Class robot 2;
robot 1.id = 2;
robot_1.robot name
robot 2.id = 3;
robot 2.robot name = "Humanoid robot";
cout<<"ID="<<robot 1.id<<"\t"<<"Robot
Name"<<robot 1.robot name<<endl;
cout<<"ID="<<robot_2.id<<"\t"<<"Robot Name"<<robot 2.
robot _name<<endl;
robot_2.move_robot();
robot 2.stop robot();
return O;

"Mobile robot";

This code defines a struct and a class. The struct name is Robot_Struct,
and the class name is Robot_Class.

Figure 2-13 shows how to define a structure. It defines a struct with
variables such as id, name, and the number of wheels.

68

CHAPTER 2 FUNDAMENTALS OF C++ FOR ROBOTICS PROGRAMMING

struct Robot Struct
{ ,
int id;
int no wheels;
string robot name;
}:

Figure 2-13. Defining a structure in C++

As you know, a struct has a name, and the declaration of all the
variables is inside it. Let’s check the definition of a class (see Figure 2-14).

class Robot Class

{

public:
int id;
int no_wheels;
string robot name;
void move_robot();
void stop robot();

}:

Figure 2-14. Defining a class in C++

So, what is the difference between the two? A struct can only define
different variables, but a class can define different variables and declare
functions too. The class shown in Figure 2-14 declares two functions
along with the variables. So where is the definition of each function? We
can either define the function inside the class or outside the class. The
standard practice is to keep the definition external to the class definition to
keep the class definition short.

69

CHAPTER 2 FUNDAMENTALS OF C++ FOR ROBOTICS PROGRAMMING

Figure 2-15 shows the definitions of functions mentioned inside

the class.
void Robot Class::move robot()
{
cout<<"Moving Robot"<<endl;
}
vold Robot Class::stop robot()
{
cout<<"Stopping Robot"<<endl;
}

Figure 2-15. External definition of function inside the class

In the function definition, the first term is the return data type,
followed by the class name, and then the function name followed by : :,
which states that the function is inside the class. Inside the function
definition, we can add our code. This particular code prints a message.

You have seen the function definition inside a class. The next step is to
learn how to read/write to variables and functions.

C++ Classes and Objects

This section explains how to read/write to structs and classes. Figure 2-16
shows lines of code that do the job.

70

CHAPTER 2 FUNDAMENTALS OF C++ FOR ROBOTICS PROGRAMMING

Robot_Struct robot_1;
Robot Class robot 2;

robot 1.id = 2;
robot_1.robot_name = “Mobile robot”;

robot 2.id = 3;
robot_2.robot_name = "Humanoid robot”;

Figure 2-16. Creating struct and class instances

Similar to the struct instance, we can create an instance of a class, and
that is called an object.

Let’s look at Robot_Class robot 2; here, robot 2 is an object, and
robot_1is an instance of the structure. Using this instance or object, we
can access each variable and function. We can use the . operator to access
each variable. The struct and class variables are accessed by using the .
operator. If you use struct or class pointers, you have to use the -> operator
to access each variable. Listing 2-2 is an example.

Listing 2-2. Creating a C++ Object and Accessing Object by
Reference

Robot_Class *robot 2;

robot_2 = new Robot_Class;
robot_2->id - 2;

robot_2->name = "Humanoid Robot";

The new operator allocates memory for the C++ object. We can access
the functions inside the class and print all values by using the . operator.
Figure 2-17 shows how to do that.

71

CHAPTER 2 FUNDAMENTALS OF C++ FOR ROBOTICS PROGRAMMING

cout<<"ID="<<robot 1.id<<"\t"<<"Robot Name"<<robot 1.robot name<<endl;
cout<<' ID="<<robot 2.id<<"\t"<<"Hobot Name“"<<robot 2.robot name<<endl;

robot_2.move_robot();
robot 2.stop robot();

Figure 2-17. Printing values and calling functions

We can save the code as class_struct.cpp and compile it by using the
following command:

$ g++ class struct.cpp -o class struct
$. /class_struct

Figure 2-18 shows the output of the code.

$ g++ class_struct.cpp -o class_struct
: $./class_struct
ID=2 Robot NameMobile robot
ID=3 Robot NameHumanoid robot
Moving Robot
Stopping Robot

s [

Figure 2-18. Output of the program

For further reference, go to www.tutorialspoint.com/cplusplus/
cpp_classes objects.htm.

Class Access Modifier

Inside the class, you may have seen a keyword called public:. Itis called
an access modifier. Figure 2-19 is a code snippet of the access modifier
used in Listing 2-1.

72

http://www.tutorialspoint.com/cplusplus/cpp_classes_objects.htm
http://www.tutorialspoint.com/cplusplus/cpp_classes_objects.htm

CHAPTER 2 FUNDAMENTALS OF C++ FOR ROBOTICS PROGRAMMING

class Robot Class

{

public:

int id;
int no wheels;

Figure 2-19. Public access keyword usage

This feature is also called data hiding. By setting the access modifier,

we can limit the usage of functions defined inside it. There are three types

of access modifiers in a class:

public: A public member can access from anywhere
outside the class within a program. We can directly
access the public variable without even writing
functions.

private: Variables or functions cannot be accessed or
even viewed from outside the class. Only the class and
friend functions can access private members.

protected: Access is very similar to private members,
but the difference is the child class can access the
members. The concepts of child class/derived class are
discussed in the upcoming section.

Access modifiers help you group variables, which you can keep visible

or hidden in the class.

C++ Inheritance

Inheritance is another important concept in OOP. If you have two or more

classes, and you want to have the functions inside those classes in a new

class, you can use the inheritance property. By using the inheritance

73

CHAPTER 2 FUNDAMENTALS OF C++ FOR ROBOTICS PROGRAMMING

property, you can reuse the function inside the existing classes in a new
class. The new class that is going to inherit an existing class is called a
derived class. The existing class is called a base class.

A class can be inherited through public, protected, or private
inheritance. The following explains each type of inheritance:

e Public inheritance: When we derive a class from a
public base class, the public members of the base class
become public members of the derived class, and
protected members of the base class become protected
members of the derived class. The private members
of the base class can never be accessed in the derived
class. It can access through calls to the public and
protected members of the base class.

o Protected inheritance: When we inherit using the
protected base class, the public and protected
members of the base class become protected members
of the derived class.

e Private inheritance: When deriving from a private base
class, public and protected members of the base class
become private members of the derived class.

Listing 2-3 gives a simple example of public inheritance.

Listing 2-3. Example of C++ Public Inheritance

#include <iostream>
#include <string>
using namespace std;
class Robot Class

{

74

CHAPTER 2 FUNDAMENTALS OF C++ FOR ROBOTICS PROGRAMMING

public:
int id;
int no_wheels;
string robot_name;
void move robot();
void stop robot();

}s
class Robot Class Derived: public Robot Class
{
public:
void turn_ left();
void turn_right();
}s
void Robot Class::move robot()
{
cout<<"Moving Robot"<<endl;
}
void Robot Class::stop robot()
{
cout<<"Stopping Robot"<<endl;
}
void Robot Class Derived::turn_left()
{
cout<<"Robot Turn left"<<endl;
}
void Robot Class Derived::turn_right()
{
cout<<"Robot Turn Right"<<endl;
}

75

CHAPTER 2 FUNDAMENTALS OF C++ FOR ROBOTICS PROGRAMMING

int main()

{
Robot Class Derived robot;
robot.id = 2;
robot.robot name = "Mobile robot";
cout<<"Robot ID="<<robot.id<<endl;
cout<<"Robot Name="<<robot.robot name<<endl;
robot.move robot();
robot.stop robot();
robot.turn left();
robot.turn_right();
return 0O;

So in this example, we are creating a new class called Robot_Class_
Derived, which is derived from a base class called Robot _Class. The
public inheritance is done using a public keyword followed by the base
class name (see Figure 2-20). There should be a : after the derived class
name, followed by a public keyword and a base class name.

class Robot_Class_Derived: public Robot_Class
{

public:
void turn_left();

void turn right();
}i
Figure 2-20. Code snippet of public inheritance

If you chose public inheritance, you can access the public and
protected variables and functions of the base class, in this case
Robot_Class.

76

CHAPTER 2 FUNDAMENTALS OF C++ FOR ROBOTICS PROGRAMMING

We are using the same class that we used in the first example. The
definition of each function in the derived class is given in Figure 2-21.

lvoid Robot Class Derived::turn_left()

{

cout<<"Robot Turn left"<<endl;
}
void Robot Class Derived::turn right()
{

cout<<"Robot Turn Right"<<endl;
}

Figure 2-21. Function definition inside a derived class

Now let’s look at how to access the functions inside the derived class
(see Figure 2-22).

Robot Class Derived robot;

robot.id = .;
robot.robot_name = "Hobile robot*;

cout<<"Robot ID="<<robot.id<<endl;
cout<<"Robot Names"<<robot.robot_name<<endl;

robot.move_robot();
robot.stop robot();

robot.turn left();
robot.turn_right();

Figure 2-22. Accessing the derived class object

Here, we are creating an object of “Robot_Class Derived” called
“robot” If you go through the code, you can understand that we didn’t
declare id and robot_name variables in the Robot_Class_Derived, but it
was defined in the Robot_Class. Using inheritance property, we can access
the variable of Robot_Class inside its derived class.

77

CHAPTER 2 FUNDAMENTALS OF C++ FOR ROBOTICS PROGRAMMING

Let’s look at the output of the code. We can save this code as class_
inherit.cpp and compile it by using the following command:

$ g++ class_inherit.cpp -o class inherit
./class_inherit

This gives you the output shown in Figure 2-23, without showing any
errors. This means that the public inheritance is working fine.

§ g++ class_inherit.cpp -o class_inherit
2 $./class_inherit
Robot ID=2
Robot Name=Mobile robot

obot Turn Right

s

Figure 2-23. Output of a derived class program

If you look at the output, we are getting all the messages from
functions, defined in the base class and the derived class. We can also
access the base class variables and set the values.

We have covered some important OOP concepts. To explore more
concepts, refer to waw. tutorialspoint.com/cplusplus.

C++ Files and Streams

Let’s discuss file operation in C++ and how to read/write data to a file. We
have already discussed the iostream header for doing file operations. We
need another standard C++ library called fstream. The following three
data types are inside fstream:

o ofstream: Stands for output file stream. It is used to
create a file and to write data into it.

78

http://www.tutorialspoint.com/cplusplus

CHAPTER 2 FUNDAMENTALS OF C++ FOR ROBOTICS PROGRAMMING

e ifstream: Represents an input file stream. It is used to
read data from files.

e fstream: Has both read and write capabilities.

Listing 2-4 demonstrates writing and reading a file using C++
functions.

Listing 2-4. Example C++ Code to Read/Write from a File

#include <iostream>

#include <fstream>

#include <string>

using namespace std;

int main()

{
ofstream out file;
string data = "Robot_ID=0";
cout<<"Write data:"<<data<<endl;
out_file.open("Config.txt");
out_file <«data<<endl;
out file.close();
ifstream in file;
in file.open("Config.txt");
in_file »> data;
cout<<"Read data:"<<data<<endl;
in file.close();
return 0;

We have to include the fstream header to get the read/write data type
in C++. We have created an ofstream class object, and in that object, there
is a function called open () to open a file. After opening the file, we can
write to it by using the << operator. After writing the data, we close the

79

CHAPTER 2 FUNDAMENTALS OF C++ FOR ROBOTICS PROGRAMMING

file for a reading operation. For reading, we are using the ifstream class
object in C++ and opening the file with the open("file name") function
inside the ifstream class. After opening the file, we can read from the file
by using the >> operator. After reading, it is printed on the terminal. The
file name that we are going to write is Config.txt, and the data is a robot
parameter. Figure 2-24 shows the output if we compile the code and run it.

Config.txt

ros@ros-pc: ~/Desktop

:~$ cd Desktop
3 S g++ file.cpp -o read_write_file

a $.J/read_write_file

Write data:Robot_ID=0

Read data:Robot_ID=0
3 S D

Figure 2-24. File read/write program

You can see that Config.txt has been created in the Desktop folder.
For further information, visit waw. tutorialspoint.com/cplusplus/
cpp_files streams.htm.

Namespaces in C++

The namespace concept was mentioned earlier with the Hello World
code. In this section, you learn how to create, where to use, and how to
access a namespace. Listing 2-5 provides an example of creating and using
two namespaces.

80

http://www.tutorialspoint.com/cplusplus/cpp_files_streams.htm
http://www.tutorialspoint.com/cplusplus/cpp_files_streams.htm

CHAPTER 2 FUNDAMENTALS OF C++ FOR ROBOTICS PROGRAMMING

Listing 2-5. Example Code for C++ Namespaces

#include <iostream>
using namespace std;
namespace robot {
void process(void)
{

cout<<"Processing by Robot"<<endl;

}

namespace machine {
void process(void)

{
cout<<"Processing by Machine"<<endl;
}
}
int main()
{
robot: :process();
machine: :process();
}

To create a namespace, use the namespace keyword followed by name
of the namespace. In Listing 2-5, we are defining two namespaces. If you
go through the code, you see that the same function is defined inside
each namespace. The namespaces are used to group a set of functions or
classes that perform a unique action. We can access the members inside
the namespace using the name of the namespace followed by : : and
the function name. In this code, we are calling two functions inside the
namespace, called robot and machine.

Figure 2-25 shows the output of the code in Listing 2-5. The code is
saved as namespace.cpp.

81

CHAPTER 2 FUNDAMENTALS OF C++ FOR ROBOTICS PROGRAMMING

S g++ namespace.cpp -0 namespace
: S ./namespace
Processing by Robot

Processing by Machine
s S D

Figure 2-25. Output of the namespace code

For additional reference, visit www. tutorialspoint.com/cplusplus/
cpp_exceptions_handling.htm.

C++ Exception Handling

Exception handling in C++ is a new method for handling circumstances

in which there is an unexpected output in response to user input. The
exception can happen during runtime. Listing 2-6 is an example of the C++
exception handling feature.

Listing 2-6. Example of C++ Exception Handling

#include <iostream>
using namespace std;

int main()
{
try
{
int no 1 = 1;
int no_2 = 0;
if(no 2 == 0)
{
throw no_1;
}
}

82

http://www.tutorialspoint.com/cplusplus/cpp_exceptions_handling.htm
http://www.tutorialspoint.com/cplusplus/cpp_exceptions_handling.htm

CHAPTER 2 FUNDAMENTALS OF C++ FOR ROBOTICS PROGRAMMING

catch(int e)
{

cout<<"Exception found:"<<e<<endl;

To handle an exception, we mainly use three keywords:

o try:Inside the try block, we can write our code, which
may raise an exception.

e catch: If the try block raises an exception, the catch
block catches the exception. We can decide what to do
with that exception.

o throw: We can throw an exception from the try
block when the problem starts to show. If the throw
statement is executed, it raises an exception and is
caught by the catch block.

Listing 2-7 shows the general structure.

Listing 2-7. General Structure for Exception Handling

try
{
//0ur code snippets
}
catch (Exception name)
{
//Exception handling block
}

The code in Listing 2-6 is checking whether num_2is 0. If num_2 is 0, an
exception is raised by using the throw keyword with num_1, so the catch
block can receive the num_1 value for inspecting.

83

CHAPTER 2 FUNDAMENTALS OF C++ FOR ROBOTICS PROGRAMMING

Figure 2-26 shows the output of Listing 2-6.

S g++ exception.cpp -o exception
$./exception

s [

Exception found:1

Figure 2-26. Output of the exception code

Inside the catch block, we print the exception value (i.e., the value of
num_1, whichis 1).

Exception handling is widely used for easily debugging a program.

For further reference, visit www.geeksforgeeks.org/exception-
handling-c/.

C++ Standard Template Libraries

If you want to work with data structures such as list, stacks, arrays, and

so forth, it is best to look at the Standard Template Library (STL). STL
provides the implementation of various standard algorithms in computer
science, such as sorting and searching, and data structures like vectors,
lists, and queue. This is an advanced C++ concept. It is a good idea to
review the information at www.geeksforgeeks.org/the-c-standard-
template-library-stl/.

Building a C++ Project

Now that you've learned some important OOP concepts, let’s have a look at
how to build a C++ project. Just imagine, you have hundreds or thousands
of lines of source code, and you need to compile and link it. How do you do
that? This section discusses that.

If you are working with more than one source code, it is a good idea to
review and use the following tools to compile and build your project.

84

http://www.geeksforgeeks.org/exception-handling-c/
http://www.geeksforgeeks.org/exception-handling-c/
http://www.geeksforgeeks.org/the-c-standard-template-library-stl/
http://www.geeksforgeeks.org/the-c-standard-template-library-stl/

CHAPTER 2 FUNDAMENTALS OF C++ FOR ROBOTICS PROGRAMMING

Creating a Linux Makefile

A Linux makefile is a tool to compile one or more sources in a single
command and build the executable. Let’s discuss a simple project to
demonstrate the makefile capabilities.

We are going to write code for adding two numbers. For the addition,
we first create a class. While working with the C++ classes, we write the
declaration and definition of the class in the main source code. Another
approach is to declare and define the class in a header and .cpp file and
then include this header in the main code for getting that class. This
approach is helpful in modularizing the entire project. So, our project has
three files:

e main.cpp: The main code that we are going to build.

e add.h: The header file of the add class. It has a
declaration of the class.

e add.cpp: This file has the entire definition of the
add class.

It is a good idea to use the class name as the name of the header and
.cpp file. Here, we create the add class so that the name of the header is
add.h and add. cpp.

Listings 2-8 to 2-10 provide the code for each file.

Listing 2-8. add.h

#include <iostream>
class add

{
public:
int compute(int no_1,int no 2);

b

85

CHAPTER 2 FUNDAMENTALS OF C++ FOR ROBOTICS PROGRAMMING

Listing 2-9. add.cpp

#include "add.h"
int add::compute(int a, int b)
{

return(a+b);

}

Listing 2-10. main.cpp

#include "add.h"

using namespace std;

int main()

{
add obj;
int result = obj.compute(43,34);
cout<<"The Result:="<<result<<endl;
return 0;

In the main.cpp (see Listing 2-10), we include the add. h header file to
access the add class. We create an object of the add class, pass two numbers
to the compute function, and print the result.

We can compile and execute the code in Listing 2-10 using the
following command:

$ g++ add.cpp main.cpp -o main
$./main

The g++ command is easy to use for compiling a single source code,
but if we want to compile several source codes, the g++ command is
inconvenient. A Linux makefile is one way to compile multiple source
codes in a single command. Listing 2-10 shows how to write a makefile for
compiling the code.

86

CHAPTER 2 FUNDAMENTALS OF C++ FOR ROBOTICS PROGRAMMING

The code in Listing 2-11 needs to be saved as the makefile.

Listing 2-11. A Linux Makefile

CC = g++
CFLAGS = -c
SOURCES = main.cpp add.cpp
OBJECTS = $(SOURCES:.cpp=.0)
EXECUTABLE = main
all: $(OBJECTS) $(EXECUTABLE)
$(EXECUTABLE) : $(OBJECTS)
$(CC) $(OBIECTS) -0 $@

.cpp.o: *.h

$(CC) $(CFLAGS) $< -0 %@
clean :

-rm -f $(OBIECTS) $(EXECUTABLE)
.PHONY: all clean

After saving the code in Listing 2-11 as a makefile, you have to execute
the following command to build it:

$ make

This builds the source code, as shown in Figure 2-27.

=1 ros@ros-pc: ~/Desktop/add_project

- S s
.cpp add.h main.cpp Makefile

x S make
-¢ main.cpp -0 main.o
-c add.cpp -o add.o

main.o add.o -o main

s

Figure 2-27. Output of make command

87

CHAPTER 2 FUNDAMENTALS OF C++ FOR ROBOTICS PROGRAMMING

After building using the make command, you can execute the program
by using the following command. The results are shown in Figure 2-28.

$. /main

+1 ros@ros-pc: ~/Desktop/add_project

-pc: S 1s
add.cpp add.h main.cpp Makefile
= S make
g++ -c main.cpp -o main.o
g++ -c add.cpp -0 add.o
main.o add.o -o main
- $./main

s [

Result:=77

Figure 2-28. Output of main code

You can learn more about makefiles at www. bogotobogo.com/
cplusplus/gnumake.php.

Creating a CMake File

CMake (cmake.org) is another approach to building a C++ project. CMake
stands for cross-platform makefile. It is an open source tool to build, test,
and package software across multiple OS platforms.

Install CMake by using the following command:

$ sudo apt-get install cmake

After installing, you can save Listing 2-12 as CMakeLists.txt.

88

http://www.bogotobogo.com/cplusplus/gnumake.php
http://www.bogotobogo.com/cplusplus/gnumake.php
https://cmake.org/

CHAPTER 2 FUNDAMENTALS OF C++ FOR ROBOTICS PROGRAMMING

Listing 2-12. The CMakelLists.txt File

cmake_minimum_required(VERSION 3.0)
set(CMAKE_BUILD TYPE Release)
set (CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=c++14")
project(main)
add_executable(

main

add.cpp

main.cpp

The code is self-explanatory. It basically sets the C++ flags and creates
an executable named main from the source code: add.cpp and main.cpp.
The list of CMake commands is available at cmake.org/documentation/.

After saving the preceding commands as CMakelLists.txt, we have to
create a folder for building the project. You can choose any name for the
folder. Here, we use build for that folder:

$ mkdir build

After building the folder, switch to the build folder and open the
terminal from the build folder.
Execute the following command from the build folder path:

$ cmake ..

This command parses CMakeLists.txt in the project path. The cmake
command can convert CMakelLists.txt to a makefile, and we can build the
makefile after that. Basically, it automates the process of making the Linux
makefile.

If everything is successful after executing the cmake .. command, you
should get the message shown in Figure 2-29.

89

https://cmake.org/documentation/

CHAPTER 2 FUNDAMENTALS OF C++ FOR ROBOTICS PROGRAMMING

~1 ros{@ros-pc: ~/Desktopfadd_projects/build Q =

- The C compiler identification is GNU 9.3.@
The CXX compiler identification is GNU 9.3.0
- Check for working C compiler: fusr/bin/cc
- Check for working C compiler: fusr/bin/cc -- works
- Detecting C compiler ABI info
- Detecting C compiler ABI info - done
- Detecting C compile features
Detecting C compile features - done
- Check for working CXX compiler: fusr/binjc++
- Check for working CXX compiler: fusr/bin/c++ -- works
- Detecting CXX compiler ABI info
- Detecting CXX compiler ABI info - done
- Detecting CXX compile features
Detecting CXX compile features - done
- Configuring done
- Generating done
- Build files have been written to: /home/ros/Desktop/add_projects/build

Figure 2-29. Output of cmake command

After this, you can make the project by entering the make command
($ make).

If successful, you can execute the project executable ($. /main).
Figure 2-30 shows the output of the make command and executable.

[3
[6
[10
[10

0%] Built target main

-pc: S 1s

CMakeCache.txt cmake_1install.cmake Makefile
. S ./main

The Result:=77

Figure 2-30. Output of the make command and executable

Summary

This chapter discussed the fundamentals of the C++ programming
language and how to program in the C++ language in Ubuntu Linux.
Knowledge of C++ is a prerequisite for working with ROS. The chapter

90

CHAPTER 2 FUNDAMENTALS OF C++ FOR ROBOTICS PROGRAMMING

started by discussing the C++ compiler in Ubuntu and how to compile a
C++ file using the compiler. After seeing a compilation, we covered object-
oriented concepts in C++. We discussed the basic difference between
C++ classes and structs in C and important object-oriented programming
concepts, such as access modifiers and inheritance. We also saw examples
of these concepts. Then we covered file operations, namespaces, exception
handling, and the Standard Template Library in C++. The end of the
chapter covered how to compile C++ source code using Linux makefiles
and CMakelLists.txt files.

In the next chapter, we see how to work with Python in Ubuntu Linux.

91

CHAPTER 3

Fundamentals of
Python for Robotics
Programming

The last chapter discussed the fundamental concepts of C++ and the
object-oriented programming concepts used to program robots. In this
chapter, we look at the basics of the Python programming language, which
can be used to program robots.

C++ and Python are the common languages used in robotics
programming. If your preference is performance, then you should use C++,
but if the priority is easiness in programming, you should go with Python.
For example, if you are planning to work with a robotic vision application,
C++is a good choice because it can execute the application faster by using
less computing resources. At the same time, that application can quickly
prototype using Python, but it may take more computing resources.
Basically, choosing a programming language for the robotics application is
a trade-off between performance and development time.

© Lentin Joseph and Aleena Johny 2022 93
L. Joseph and A. Johny, Robot Operating System (ROS) for Absolute Beginners,
https://doi.org/10.1007/978-1-4842-7750-8_3

https://doi.org/10.1007/978-1-4842-7750-8_3#DOI

CHAPTER 3 FUNDAMENTALS OF PYTHON FOR ROBOTICS PROGRAMMING

Getting Started with Python

The Python programming language is a commonly used, general-purpose,
high-level, object-oriented programming language popular for writing
scripts. When compared with C++, Python is an interpreted language that
executes code by line by line. Python was created by Guido van Rossum
who started development from 1989, and first internal release was in 1990.
It is an open source software managed by the non-profit Python Software
Foundation (www.python.org/psf/).

The main design philosophy of Python is the readability of code and
syntax, which allows programmers to express their concepts in much fewer
lines of code.

In robotics applications, Python is commonly preferred where less
computation is required, such as writing data to a device using serial
communication protocols, logging data from a sensor, creating a user
interface, and so forth.

Timeline: The Python Language

Here are the major milestones in the Python programming language:
e The project started in 1989.
o The first version was released in 1994.
e The second version was released in 2000.
e Apopular version of Python, 2.7, was released in 2010.
e The third version was released in 2008.

e The latest version of Python, 3.9, was released in 2020.

94

http://www.python.org/psf/

CHAPTER 3 FUNDAMENTALS OF PYTHON FOR ROBOTICS PROGRAMMING

Python in Ubuntu Linux
Introduction to Python Interpreter

Let’s start programming Python in Ubuntu Linux. Like the GNU C/C++
compiler, Python interpreter is preinstalled in Ubuntu. The command
shown in Figure 3-1 opens the default Python version interpreter.

$ python

[+ ros@ros-pc: ~

:~S python
Python 3.8.5 (default, May 27 2021, 13:30:53)

[GCC 9.3.08] on linux
Type "help", "copyright", "credits” or "license" for more information.

>

Figure 3-1. Python interpreter in the terminal

The default Python version is 3.8.5. If you are getting error in the above
command, please check the next section to setup Python 3 as default
version. You will also get a list of the installed Python version by pressing
the Tab key twice after entering the Python command. The list of Python
versions available in Ubuntu is shown in Figure 3-2.

0 ros@ros-pc: ~

:~% python
python python3 python3-pasteurize

python2 python3.8
python2.7 ython3-futurize
% pythorﬁ

Figure 3-2. List of Python versions installed on Ubuntu

Setting Python 3 on Ubuntu 20.04 LTS

As discussed, Python is preinstalled on Ubuntu, but the following
command will set python 3 as the default python interpreter.

$ sudo apt install python-is-python3
95

CHAPTER 3 FUNDAMENTALS OF PYTHON FOR ROBOTICS PROGRAMMING

Verifying Python Installation

This section shows how to check the Python executable path and version.
The following checks the current path of the python and python3
commands (also see Figure 3-3):

$ which python
$ which python3.8

+ ros@ros-pc: ~

:~% which python
fusr /bin/python

:~% which python3.8
Jusr/bin/python3.8
=5

Figure 3-3. Location of Python interpreter

If you want to see the location of Python binaries, sources, and
documentation, use the following command (also see Figure 3-4):

$ whereis python
$ whereis python3.8

[+ ros@ros-pc ~ Q =

:~§ whereis python
python: fusr/bin/python3.8 /fusr/bin/python2.7 fusr/bin/python fusr/lib/python3.9
fusr/lib/python3.8 fusr/lib/python2.7 /etc/python3.8 /fetc/python2.7 fusr/local/
lib/python3.8 Jusr/local/lib/python2.7 fusr/include/python3.8 fusr/share/python

:~% whereis python3.8
python3: fusr/bin/python3.8 fusr/bin/python3 fusr/lib/python3.9 fusr/lib/python3
.8 fusr/lib/python3 [etc/python3.8 fetc/python3 jusr/local/lib/python3.8 fusr/in
clude/python3.8 fusr/share/python3 fusr/share/man/manl/python3.1.gz

L

Figure 3-4. Location of Python interpreter, sources, and documentation

96

CHAPTER 3 FUNDAMENTALS OF PYTHON FOR ROBOTICS PROGRAMMING

Writing Your First Code

Our first program will be printing a Hello World message. Let’s see how we
can achieve it using Python. Before going into the programming, let’s look
at the two ways in which we can program in Python:

o Programming directly inside Python interpreter
e Writing Python scripts and running using interpreter

These two methods work in the same way. The first method executes
line by line inside the interpreter. The scripting method writes all the code
in a file and executes using the same interpreter.

The standard practice is to use Python scripting. We may use the
Python interpreter shell for testing a few commands.

Let’s print the ‘hello world’ message in a Python interpreter shell (see
Figure 3-5).

1 ros@ros-pc: ~

:~$ python
Python 3.8.5 (default, May 27 2021, 13:30:53)
[GCC 9.3.0] on linux

Type "help”, "copyright", "credits" or "license" for more information.
>>> print ('hello world')
hello world

>

Figure 3-5. Running Hello World in Python 3.8

Figure 3-5 shows that it’s very easy to print a message in Python3.8.
Simply use the print statement along with your message inside round
brackets and single quotes, and press Enter.

»»> print ('hello world')

Let’s start scripting using Python. With scripting, we write the code into
a file with a . py extension.

97

CHAPTER 3 FUNDAMENTALS OF PYTHON FOR ROBOTICS PROGRAMMING

The standard way to write Python code is explained at www. python.
org/dev/peps/pep-0008/.

We are going to create a file called hello_world.py and write the code
in the file (see Figure 3-6). You can use the gedit editor or any text editor
for this.

hello_world.py

Open = M~ Save = = o b

1 #! fusr/bin/env python
2# -*- coding: utf-8 -=*-

3
4
5
6
7
8 __author__ = "Lentin Josepl
9
10 __copyright__ = "Copyright 2621, The Hellc
11 _ credits__= ["apress”]
12
13 __license__ =
14
15 __version__ ="0.0.1
16
17 __malntainer__ = "Lentin Joseph
18
19 __email__ = "gbo
20
21 __status__ =
22
23 print ('Hello World')
24

Figure 3-6. The hello_world.py script

You may be wondering about the purpose of the extra lines in the
script when compared to a print statement. There are certain standards to
keep in the Python script in order to make it more readable, maintainable,
and have all the information about the software that we made.

The first line (#!/usr/bin/env) in Python is called Shebang. If we
execute the Python code, the program loader parses this line and executes
the reset of the code using that environment. Here, we are setting Python
as the environment, so the rest of the code will execute in the Python

interpreter.

98

http://www.python.org/dev/peps/pep-0008/
http://www.python.org/dev/peps/pep-0008/

CHAPTER 3 FUNDAMENTALS OF PYTHON FOR ROBOTICS PROGRAMMING

There are coding styles suggested by Google at https://google.
github.io/styleguide/pyguide.html.
Let’s look at how to execute the preceding code.

Running Python Code

You can save the hello_world.py in your home folder or in your Desktop
folder. If you are in Desktop, you have to switch the path to Desktop.
Figure 3-7 shows the execution of the hello _world.py code.

1 ros@ros-pc: ~

:~$ python hello_world.py

Hello World
:~5 [:|

Figure 3-7. Executing the hello_world.py script

Currently, the code is in the home folder, and you can execute the code
by using the following command:

$ python hello_world.py

If your code does not have any errors, it shows output like that shown
in Figure 3-8.

There is another way to execute the Python file. Use the following
command:

$ chmod a+x hello_world.py

By using the chmod command, you are giving executable permission to
the given Python code.

You can further explore the chmod command at www.tutorialspoint.
com/unix_commands/chmod.htm.

99

https://google.github.io/styleguide/pyguide.html
https://google.github.io/styleguide/pyguide.html
http://www.tutorialspoint.com/unix_commands/chmod.htm
http://www.tutorialspoint.com/unix_commands/chmod.htm

CHAPTER 3 FUNDAMENTALS OF PYTHON FOR ROBOTICS PROGRAMMING

And after giving permission, you can simply execute the Python code
using the following command:

$./hello_world.py

Figure 3-8 shows how to execute the C++ executables too.

ros@ros-pc ~

:~5 chmod +x hello_world.py
Hot
~5
:~5 ./hello_world.py

Hello World
Hat D

Figure 3-8. Executing the hello_world.py script

So you have seen how to write a Python script and execute it. Next, we
discuss the basics of Python. This is actually a big topic, but we can discuss
each aspect of Python by using examples to accelerate learning.

Understanding Python Basics

The popularity of the Python language is mainly due to its easiness in
getting started. The code is short, and we can prototype an algorithm more
quickly in Python than in other languages. Because of its popularity, there
are a vast number of Python tutorials online. There are active communities
to support you. There are extensive libraries to implement your
application. The availability of the Python library is one reason to choose
this language over others. With a library, you can reduce development time
by using existing functions.

Python is a cross-platform language that is widely used in research,
networks, graphics, games, machine learning, data science, and robotics.
Many companies use this language for automating tasks, so it is relatively
easy to get a job in Python.

100

CHAPTER 3 FUNDAMENTALS OF PYTHON FOR ROBOTICS PROGRAMMING

So how difficult is to learn this language? If you can write pseudo
code for a task, then you can code in Python, because it is very similar to
pseudo code.

What’s New in Python?

If you know C++, it is easy to learn Python, but you have to be aware of a
few things while writing Python code.

Static and Dynamic Typing

Python is a dynamic typing language, which means that we don’t need
to provide the data type of a variable during programming; it takes each
variable as an object. We can assign any kind of data type to a name. In
C++, we have to first assign a variable with a data type, and then we can
only assign that type of data to that variable.

C++ is a static typing language; for example, in C++, we can assign
like this:

int number;
number = 10; //This will work
number = "10" // This will not work

But in Python, we can assign like this:

#No need mention the datatype
number = 10 #This will work
number = "10" #This will also work

So currently, the value of the number is "10".

101

CHAPTER 3 FUNDAMENTALS OF PYTHON FOR ROBOTICS PROGRAMMING

Code Indentation

Indentation is simply the tab or whitespace prior to a line of code. In C++,
we may use indentation to group a block of code, but it is not mandatory.
The C++ code compiles even if we are not keeping any indentation, but it is
different in Python. We should keep the block of code in the same indent;
otherwise, it shows an indentation error. When indentation is mandatory,

the code looks neat and readable.

Semicolons

In C/C++, semicolons at the end of each statement are mandatory, but in
Python, they are not. You can use a semicolon in Python as a separator but
not as a terminator; for example, if you want to write a set of code in a line,
you can write it by separating semicolons. This can be done in C++ too.

Python Variables

You have already seen how Python handles variables. Figure 3-9 shows
assigning and printing primitive data types, such as int, float, and string.
These examples are tested in Python version 3.8

+1 ros@ros-pc: ~

:~% python
Python 3.8.5 (default, May 27 2821, 13:30:53)
[ccC 9.3.8] on linux
Type "help", "copyright", "credits" or "license" for more information.
=>> number=10
>>> number_float=19.04

>>> name="Aleena Lentin"
>>> number

10

>>> number_float

19.04

>>> name

'Aleena Lentin'

222>

Figure 3-9. Primitive variable handling in Python

102

CHAPTER 3 FUNDAMENTALS OF PYTHON FOR ROBOTICS PROGRAMMING

Similar to an array in C/C++, Python provides lists and fuples. The
values inside a list can be accessed through a list index using square
brackets ([]); for example, the first element in a list can be accessed by a
[0] subscript, which is similar to an array in C/C++.

Figures 3-10 and 3-11 show Python lists and tuples.

" ros@ros-pc: ~

:~S python

Python 3.8.5 (default, May 27 2021, 13:30:53)
[GCC 9.3.08] on linux
Type "help”, "copyright", "credits" or "license" for more information.
=»>> number_list = [1,2,3,4,5]
>>> number_list

2,03 0 405]

number_1list[3]

number_list[0]

Figure 3-10. Handling lists in Python

Figure 3-11 shows how we can work with Python tuples.

+1 ros@ros-pc ~

:~$ python
Python 3.8.5 (default, May 27 2021, 13:36:
[GcC 9.3.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
»>> number = ("one”, "two", "three", "four")
>>> number

('one', 'two', 'three', 'four')
>>> number[@]
'one'

>>> number[3]

'four'

>>> number[1:]

('two', 'three', 'four')

EEES

Figure 3-11. Handling tuples in Python

103

CHAPTER 3 FUNDAMENTALS OF PYTHON FOR ROBOTICS PROGRAMMING

Tuples work similar to lists, but a tuple is enclosed in parenthesis (())
and a list is enclosed in square brackets ([]). A tuple is a read-only list
because its value can’t update once it is initialized, but in a list, we can
update the value.

The next in-built data type Python provides is a dictionary. Similar
to an actual dictionary, there is a key and a value associated with it. For
example, in our dictionary, there is a word and the corresponding meaning
of it. The word here is the key, and value is its meaning.

Figure 3-12 shows the workings of a Python dictionary.

+1 ros@ros-pc ~

:~5 python
Python 3.8.5 (default, May 27 2021, 13:30:53)
[GCC 9.3.8] on linux
Type "help", "copyright”, "credits” or "license" for more information.
»>> dict={ "one":1, "two":2, "three":3 }

>>> dict

{'one': 1, "two': 2, 'three': 3}
>>> dict.keys()

dict_keys(['one', 'two', 'three'])
=>> dict.values()

dict_values([1, 2, 3])

23>

Figure 3-12. Handling a dictionary in Python

If we give the key in the dictionary, it returns the value associated with
the key.
In the next section, we look at the Python condition statement.

Python Input and Conditional Statement

Similar to C++, Python also has if/else statements to check a condition.
In the following example, you see how Python handles user input and
makes a decision based on it.

104

CHAPTER 3 FUNDAMENTALS OF PYTHON FOR ROBOTICS PROGRAMMING

The logic of the program is simple. The program asks the user to
enter a command to move a robot. If the user enters a valid command,
such asmove_left, move right, move forward, ormove backward, the
program prints that it is moving; otherwise, it prints Invalid command (see
Figure 3-13).

1 #! fusr/binfenv python
2

3 robot_command =input("Ent
4 if (robot_command ==

5 print ("Robot 1

6 elif(robot_command ==

7 print ("Robot i

8 elif(robot_command o

9 print ("Robot is r

10 elif(robot_command == "mo\

11 print ("Robot 1

12 else:

13 print ("Invalid command")

Figure 3-13. Handling input and the conditional statement
in Python

To take input from a user in Python, we can use the input() function.
The input() function accepts any kind of data type. Here is the syntax of
the input() functions:

var = input("Input message")

After storing the user input, we compare the input to a list of
commands. Here is the syntax for the if/else statement:

if expressioni:
statement(s1)

elif expression2:
statement(s2)

else:
statement(s3)

105

CHAPTER 3 FUNDAMENTALS OF PYTHON FOR ROBOTICS PROGRAMMING

A colon ends each expression, after which you have to use indentation
for writing the statement. If you don’t use indentation, you will get an error.

Python: Loops

Python has while and for loops, but not do while loops, by default.
Figure 3-14 showcases the usage of the while loop and the for loop in
Python. In this example, the robot position in the x and y direction is
incremented, and if it is reached in a particular position, the program

terminates after printing a message.

1 #! fusr/bin/env python

7

3 robot_x= 0.1

4 robot_y = 0.1

5

6 while (robot_x < 2 and robot_y < 2):
7 robot_x += 0.1

8 robot_y += 0.1

9

10 print ("Current Position ", robot_x, robot_y)
11

12 print ("Reached destination”)

13

Figure 3-14. Usage of the while loop in Python

The following shows the syntax of a while loop:

while expression:
statement(s)

In the preceding example, the expression is (robot_x < 2 and
robot_y < 2).

There are two conditions inside the expression. We are performing
AND logic between two conditions. In Python, “and” and “or” are logic
AND and logic OR.

106

CHAPTER 3 FUNDAMENTALS OF PYTHON FOR ROBOTICS PROGRAMMING

If the condition is true, the inside statements are executed. As
discussed earlier, we have to use proper indents on this block. When, the
expression is false, it quits the loop and prints the message “Destination
is reached”

If we run this code, we get the output shown in Figure 3-15.

ros@ros-pc ~

:~S chmod +x while_program.py

:~$./while_program.py
Current Position 2.0000000000000004 2.0000000000000004
Reached destination

:~5 []

Figure 3-15. Output of the while loop Python code

We can implement the same application using the for loop in Python.
Figure 3-16 shows the workings of the for loop.

1#!fusr/bin/env python
2

3 robot_x =

4 robot_y =

5

6 for i in range(o,100) :

7 robot_x +=

8 robot_y +=

] print ([iti ,robot_x, robot_y)
10

11 if(robot_x > 2 and robot_y > 2):

12 print (> i i)
13 break

Figure 3-16. Python for loop code

In the preceding code, the for loop executes 0 to 100, increments
robot_xand robot_y, and checks if the robot’s position is within limits.
If the limit is exceeded, it prints the message and breaks the for loop.

The following shows the for loop syntax in Python:

for iterating var in sequence:
statements(s)

107

CHAPTER 3 FUNDAMENTALS OF PYTHON FOR ROBOTICS PROGRAMMING

Figure 3-17 is the output of the preceding code.

Current Position
Current Position
Current Position
Current Position
Current Position
Current Position
Current Position
Current Position
Current Position
Current Position
Current Position
Current Position
Current Position
Current Position
Current Position
Current Position

0000000000000004 ©.30000000000000004

200COQ
[V, [S I N]

- O

e e B= LT I S PV N]
@

1=}

99999999999999 0.7999999999999999
8999999999999999 0.8999999999999999
.9999999999999999 ©.9999999999999999
.0999999999999999 1.0999999999999999
.2 1.2

-8 loE)

.4000000000000001 1.4000000000000001
.5000000000000002 1.5000000000000002
.6000000000000003 1.6000000000000003
.7000000000000004 1.7000000000000004
Current Position .8000000000000005 1.8000000000000005
Current Position .9000000000000006 1.9000000000000006
Current Position 2.0000000000000004 2.0000000000000004
Reached destination

o

0.
0.
8.
0.
0.
0.
C]
]
)
il
il
1
il
1
1
il
il
1
=

!

Figure 3-17. Output of Python for loop code

Python: Functions

As you know, if you want to repeat a block of code with different data, you
can write it as a function. Most programming languages have a feature to
define a function.

The following is the format to define a function in Python:

def function name(parameter):
"function docstring"
function_code_block
return [expression]

The order of a function definition in Python is important. The function
call should be after the function definition. The docstring function is
basically a comment with a description of the function and an example of

108

CHAPTER 3 FUNDAMENTALS OF PYTHON FOR ROBOTICS PROGRAMMING

the function’s usage. Comments in Python use # on a single line, but if the
comment is in a block of code or a docstring, use the following style:

<Block of code>

Figure 3-18 shows an example of a function in Python.

1 #!fusr/binfenv python
2 def forward():

3 print ("Robot moving forward")
4 def backward():
5 print ("Robot moving backward")
6 def left():
7 print ("Robot moving left")
8 def right():
9 print ("Robot moving right")
10 def main():
11 e
12 This is the main function
13 Y
14
15 robot_command = input("Enter the command:> ")
16 if(robot_command == "move left"):
17 left()
18
19 elif(robot_command == “move_right"):
20 right ()
21
22 elif(robot_command == "move forward"):
23 forward()
24
25 elif(robot_command == ove_backward"):
26 backward ()
27
28 else:
29 print ("Invalid commpnd”)
30
31if __name__ == "__main__":
32 while True:
33 main()

Figure 3-18. Example Python code for function

In Figure 3-18, you can see how to define a function in Python and how to
call it. You may be confused with the usage of if __name_ == " main_".
It’s basically a common practice, like using int main() in C++. The program

also works without this line.

109

CHAPTER 3 FUNDAMENTALS OF PYTHON FOR ROBOTICS PROGRAMMING

If you enter any of the commands, it calls the appropriate function.
The functions are defined at the top of the code. Also note the indentation
in each block of code. The function defined in Figure 3-19 does not have
any arguments, but you can pass an argument to a function if you want.

Enter the command:> move left
Robot moving left

Enter the command:> move forward
Robot moving forward

Enter the command:> move
Invalid command
Enter the command:> [

Figure 3-19. Output of Python function

Python: Handling Exception

An exception is an event that disrupts the normal flow of a program’s
instruction. When Python encounters a problem, it raises an exception. If
we caught an exception, it means the program encountered an error. If the
code raises an exception, it can either handle the exception or terminate
the program. In this section, we see how to handle an exception in Python.

A simple example of a try-except statement is division by zero.
Figure 3-20 shows sample code for try-except.

1#!fusrf/binfenv python
2 def divide(a, b):

3 try:

4

5 result = af/ b

6 print(" ", result)
T except ZeroDivisionError:

8 print(" ¥ iv ze)
9

|10 # Look at parameters and note the working of Program
|11 divide(3, ©)

Figure 3-20. Example Python try-except

110

CHAPTER 3 FUNDAMENTALS OF PYTHON FOR ROBOTICS PROGRAMMING

Whenever the user input for value b is zero, an exception is raised
due to division by zero, and that exception is handling statements
inside except.

Python: Classes

This section shows how to write a class in Python. As discussed, Python
is an object-oriented programming language like C++. The OOP concepts
are the same in both languages. The following is the syntax for a class

definition:

class ClassName:
'Optional class documentation string'
class suite

Here, the docstring is an optional component, and class_suite has
the class members, data attributes, and functions. Class in Python is a vast
concept. Let’s look at Figure 3-21 as a basic example to get started with
classes.

111

CHAPTER 3 FUNDAMENTALS OF PYTHON FOR ROBOTICS PROGRAMMING

1#!fusr/bin/env python

2 class Robot:

3 def __init__ (self):

4 print ("Started robot")

5 def move_forward(self, distance) :

6 print ("Robot moving forward: "+str(distance)+'m")
7 def move backward(self, distance) :

8 print ("Robot moving backward: "+str(distance)+"'m")
9 def move_left (self,distance) :

10 print ("Robot moving left: "+str(distance)+"'nm")
11 def move_right (self, distance):

12 print ("Robot moving right: "+str(distance)+'m")
13 def __del_ _ (self):

14 print ("Robot stopped")

15

16

17

18

19

20 def main():

21

22 obj= Robot()

23 obj.move_forward(2)

24 obj.move_backward(2)

25 obj.move_left (2)

26 obj.move_right (2)

27if __name__ == "__main__":

28

29 main()

I/

Figure 3-21. Python class example

Figure 3-21 shows an example of moving a robot forward, left, right,
and backward. The program simply prints a message; it does not actually
move a robot. Let’s analyze each part of the program.

The following code is the constructor of the Python class. Whenever
we create an object of this class, it executes first. self refers to the
current object.

def init (self):
print ("Started Robot")

112

CHAPTER 3 FUNDAMENTALS OF PYTHON FOR ROBOTICS PROGRAMMING

The following function is the destructor of the class. Whenever an
object is destroyed, the destructor is called.

def del (self):
print ("Robot stopped")

We can define methods inside the class, which is how we define it. In
all methods, the first argument should be self, which makes the function
inside the class. We can pass arguments in a function; in the following
example, distance is the argument:

def move forward(self,distance):
print ("Robot moving forward: "+str(distance)+"m")

In this function, there are functions to move back, right, and left.
Now let’s see how to create an object of the class. The following line creates
the object. When an object is created, the constructor of the class is called.

obj = Robot()

After initializing, we can call each function inside the class by using the
following method:

obj.move forward(2)
obj.move backward(2)
obj.move left(2)
obj.move right(2)

When the program terminates, the object calls the destructor.

113

CHAPTER 3 FUNDAMENTALS OF PYTHON FOR ROBOTICS PROGRAMMING
Figure 3-22 shows the output of the preceding example.

Started robot

Robot moving forward: 2m
Robot moving backward: 2m
Robot moving left: 2m

Robot moving right: 2m
Robot stopped
1~S

Figure 3-22. Output of Python class example

In the next section, we learn how to handle files in Python.

Python: Files

Writing and reading from a file are important in a robotics application.
You may have to log data from a sensor or write a configuration file. This
section provides an example program to write and read text to a file in
Python(see Figure 3-23).

1 #!/usr/bin/env python

2 text = input("Ente text:> ")
3 file_obj = open("t LEXt", "w+")
4 file_obj.write(text)

5 file_obj.close()

6 file_obj = open("t)
7 text = file obJ readltne()
8 print ('F xt: ",text)

Figure 3-23. Python file 1/0 example

When we run the code, it asks to enter text. The text data saves to a file,
and later, it reads and prints on the screen. The explanation of Python code
is given in the following.

The following command creates the file handler in reading and writing
mode. Like C/C++, there are several file operation modes, such as reading,

114

CHAPTER 3 FUNDAMENTALS OF PYTHON FOR ROBOTICS PROGRAMMING

writing, and appending. In this case, we are using w+ mode, in which we

can read/write to a file. If there is an existing file, it is overwritten.

file obj = open("test.txt","w+")

To write to a file, we can use the following command. It writes text into
the file.

file obj.write(text)
To close the file, we can use the following statement:
file obj.close()
To read the file again, we can use 'r' mode, like in the following statement:
file obj = open("test.txt",'r")
To read a line from a file, we can use the readline() function:
text = file obj.readline()

Figure 3-24 shows the output of the preceding example.

Enter the text:> Hello robot
Read text: Hello robot

=

Figure 3-24. Python file 1/0 output

Python: Modules

C++ uses header files to include a new class or a set of classes. In Python,
instead of header files, we use modules. A module may contain a class, a
function, or variables. We can include the module in our code using the
import command. The following is the syntax of the import statement:

import <module_name>
Example: import os; import sys

115

CHAPTER 3 FUNDAMENTALS OF PYTHON FOR ROBOTICS PROGRAMMING

These are the standard modules in Python.
If there is a list of classes in a module, and we want only a specific class,
we can use the following line of code:

from <module_name> import <class_name>
Example: from os import system

A module is Python code, but we can create our own modules too.
Figure 3-25 shows a test module, which can be imported to our code and
execute the function inside it.

1 #!fusrfbin/env python

3 class Test:
def __init__(self):
print (»)

def execute(self, text):
print (t text ,text)

DWVWO G L

1

Figure 3-25. Custom Python test module

The test.py file has a function called execute() that prints the text
passing as a function argument.

Aline of code in Python interpreter shows how to use the test module
(see Figure 3-26).

:~% python
Python 3.8.5 (default, May 27 2621, 13:308:53)
[GcC 9.3.08] on linux
Type "help”, "copyright", "credits" or "license" for more information.
>>> import test

>>> obj=test.Test()
Object created

>>> obj.execute("Hello")
Input text:> Hello

>2>

Figure 3-26. Python test module

116

CHAPTER 3 FUNDAMENTALS OF PYTHON FOR ROBOTICS PROGRAMMING

It should be noted that the test. py file should be in the same path as
the program or in the Python shell; for example, if test.py is in the Home
folder, the current path of the shell should also be in the same folder.

When testing, we import the test module by using the import
statement.

We create an object called obj by using the following statement:

obj = test.Test()

This accesses the Test () class inside the test module. After creating
the object, we can access the execute() function.

Simple Python tutorials are available at www. tutorialspoint.com/
python/.

Python: Handling Serial Ports

When we build robots, we may have to interface various sensors or
microcontroller boards to a laptop or to single-board computers such
as the Raspberry Pi. Most of the interfacing is through USB or UART
communication (https://learn.sparkfun.com/tutorials/serial-
communication). Using Python, we can read/write to a serial port on the
PC. This helps with reading data from sensors/actuators and writing
control commands to the actuators.

Python has a module called PySerial to communicate with the serial
port/com port on a PC (https://pythonhosted.org/pyserial/). This
module is very easy to use. Let’s look at how to read/write to a serial port in
Ubuntu using Python.

117

http://www.tutorialspoint.com/python/
http://www.tutorialspoint.com/python/
https://learn.sparkfun.com/tutorials/serial-communication
https://learn.sparkfun.com/tutorials/serial-communication
https://pythonhosted.org/pyserial/

CHAPTER 3 FUNDAMENTALS OF PYTHON FOR ROBOTICS PROGRAMMING

Installing PySerial in Ubuntu 20.04

Installing PySerial is a very easy task in Ubuntu.
Method 1:

$ sudo apt update
$ sudo apt install python3-serial

Method 2:
First, install pip for Python 3 on Ubuntu 20.04, and then install
PySerial. Just follow these commands to install it:

$ sudo apt update
$ sudo apt install python3-pip
$ sudo python -m pip install pyserial

After installing the module, plug in your serial device; it can be a
USB-to-serial device or an actual serial device. The USB-to-serial device
converts the USB protocol to UART protocol. The following are the two
most popular USB-to-serial chips available on the market:

e FTDI: www.ftdichip.com
e Prolific: www.prolific.com.tw/US/company.aspx?id=1

When you plug in the devices with these chips in the Linux-based
system, it automatically loads the device driver and creates a serial device.
The FTDI and Prolific device drivers are available in the Linux kernel.

You get the serial device name by executing the dmesg command. This
command shows the kernel message (also see Figure 3-27):

$ dmesg

118

http://www.ftdichip.com
http://www.prolific.com.tw/US/company.aspx?id=1

CHAPTER 3 FUNDAMENTALS OF PYTHON FOR ROBOTICS PROGRAMMING

3: USB disconnect, device number 5
new full-speed USB device number 6 using xhci hcd
New USB device found, idVendor=2341, idProduct=0043, bc
Device= 0.01

3: New USB device strings: Mfr=1, Product=2, SerialNumber=:

20
Manufacturer: Arduino (www.arduino.cc)
SerialNumber: 95632313234351E05112
3:1.0: ttyACM1: USB ACM device

Figure 3-27. Output of dmesg shows the serial device name

When you plug the serial device to the PC and execute dmesg, you see
the serial device name. In this case, it is /dev/ttyACM1.

To communicate with the device, you may have to change the device
permission. You can either use chmod to change the permission or you
can add the current user to the dialout group, which gives access to the
serial port.

Change the permission of the serial device:

$ sudo chmod 777 /dev/ttyACM1
Add a user to the dialout group:
$ sudo adduser $USER dialout

After doing this, use the code shown in Figure 3-28 to access the
serial port.

:~% sudo chmod 777 /dev/ttyACM1
[sudo] password for aleena:

:~% python
Python 3.8.10 (default, Jun 2 2021, 10:49:15)
[GCC 9.4.0] on linux

L('/dev/ttyACM]1' ,h9600)
yde('hello'))

Figure 3-28. Python example code of writing to a serial port

119

CHAPTER 3 FUNDAMENTALS OF PYTHON FOR ROBOTICS PROGRAMMING

In the preceding code, you can see the importing serial module by
using the following code:

import serial

The following is the command to open the serial port with the given
baud rate:

ser = serial.Serial('/dev/ttyACM1',9600)

The following is the command to write to the serial port:
ser.write(str.encode('Hello"))

The following is the function to read from the serial port:
text = ser.readline()

You could also use the following command:

text
text

ser.read() #This will read 1 byte of data
ser.read(10) # read 10 bytes of serial data

The preceding code can interact with Arduino, Raspberry Pi, and other
serial sensor devices. You can learn more about Python serial programming
athttp://pyserial.readthedocs.io/en/latest/shortintro.html.

Python: Scientific Computing and Visualization

In this section, you learn about some of the popular Python libraries for

scientific computing and visualization:

o Numpy (www.numpy.org): The fundamental package for
scientific computing

o Scipy (Wwww.scipy.org): An open source software for
mathematics, science, and engineering

120

http://pyserial.readthedocs.io/en/latest/shortintro.html
http://www.numpy.org
http://www.scipy.org

CHAPTER 3 FUNDAMENTALS OF PYTHON FOR ROBOTICS PROGRAMMING

Matplotlib (http://matplotlib.org): A Python
2D plotting library that produces publication-
quality figures

Python: Machine Learning and Deep Learning

Python is very famous for implementing machine learning and deep

learning. The following are the popular libraries in Python:

TensorFlow (www.tensorflow.org): An open source
library for numerical computation using data
flow graphs

Keras (https://keras.io/): A high-level, neural
networks API that is capable of using TensorFlow or
Theano as a back end

Caffe (http://caffe.berkeleyvision.org): A deep
learning framework developed by Berkeley Al Research
and community contributors

Theano (http://deeplearning.net/software/
theano/): A Python library that allows you to efficiently
define, optimize, and evaluate mathematical
expressions involving multidimensional arrays

Scikit-learn (http://scikit-learn.org/): A simple
machine learning library in Python

121

http://matplotlib.org
http://www.tensorflow.org
https://keras.io/
http://caffe.berkeleyvision.org
http://deeplearning.net/software/theano/
http://deeplearning.net/software/theano/
http://scikit-learn.org/

CHAPTER 3 FUNDAMENTALS OF PYTHON FOR ROBOTICS PROGRAMMING

Python: Computer Vision

There are two popular computer vision libraries compatible with Python:

e OpenCV (https://opencv.org): Open Source
Computer Vision is free for academic and commercial
use. It has C++, C, Python, and Java interfaces and
supports Windows, Linux, macOS, i0S, and Android.

e PIL (www.pythonware.com/products/pil/): Python
Imaging Library adds image processing capabilities to

your Python interpreter.

Python: Robotics

Python has a good interface for robotics programming using ROS. You can
explore more about the capabilities of Python using ROS at http://wiki.
r0s.org/rospy.

Python: IDEs

There are some popular IDEs (integrated development environments)
that make development and debugging faster. The following are three

common IDEs.
o PyCharm:www.jetbrains.com/pycharm/
o Geany:www.geany.org

o Spyder: https://github.com/spyder-ide

122

https://opencv.org/
http://www.pythonware.com/products/pil/
http://wiki.ros.org/rospy
http://wiki.ros.org/rospy
http://www.jetbrains.com/pycharm/
http://www.geany.org
https://github.com/spyder-ide

CHAPTER 3 FUNDAMENTALS OF PYTHON FOR ROBOTICS PROGRAMMING

Summary

This chapter discussed the fundamentals of Python programming in
Ubuntu Linux. Knowledge of Python programming is a prerequisite for
working with ROS. We started with the Python interpreter in Ubuntu
and saw how to work with it. After working with the interpreter, we saw
how to create a Python script and run it on Ubuntu. Then we discussed
the fundamentals of Python, such as handling input, output, Python
loops, functions, and class operations. After these topics, we saw how to
communicate with a serial device using a Python module. At the end of
the chapter, we covered Python libraries for scientific computing, machine
learning, deep learning, and robotics.

The next chapter discusses the basics of the Robot Operating System
and its important technical terms.

123

CHAPTER 4

Kick-Starting Robot
Programming
Using ROS

The last three chapters discussed the prerequisites for programming

a robot using the Robot Operating System (ROS). We discussed the

basics of Ubuntu Linux, bash commands, the basic concepts of C++
programming, and the basics of Python programming. In this chapter, we
start working with ROS. Before discussing ROS concepts, let’s discuss robot
programming and how we do it. After this, we learn more about ROS, how
to install ROS, and its architecture.

After this, we look at ROS concepts, ROS command tools, and ROS
examples to demonstrate ROS capabilities. After that, we discuss the basics
of ROS GUI tools and the Gazebo simulator. In the end, we learn how to set
up a TurtleBot 3 simulator in ROS.

What Is Robot Programming?

As you know, a robot is a machine with sensors, actuators (motors), and
a computing unit that behaves based on user controls, or it can make its
own decisions based on sensor inputs. We can say the brain of the robot is

© Lentin Joseph and Aleena Johny 2022 125
L. Joseph and A. Johny, Robot Operating System (ROS) for Absolute Beginners,
https://doi.org/10.1007/978-1-4842-7750-8_4

https://doi.org/10.1007/978-1-4842-7750-8_4#DOI

CHAPTER 4 KICK-STARTING ROBOT PROGRAMMING USING ROS

a computing unit. It can be a microcontroller or a PC. The decision making
and actions of the robot completely depend on the program running the
robot’s brain. This program can be firmware running on a microcontroller
or C/C++ or Python code running on a PC or a single-board computer, like
the Raspberry Pi. Robot programming is the process of making the robot
work from writing a program for the robot’s brain (i.e., the processing unit).

Figure 4-1 shows a general block diagram of a robot, including the part
where it programs.

o~ B

Power Supply/ F—— E
| > W \
I/ ACTUATOR 2
Motor B

RJASANI-FI Touch Screen R I —

ACTUATOR n
PC/SBC

SENSCR 1

Microcentroller SENSCR 2
feLc .

Figure 4-1. General block diagram of a robot

The main components of any robot are the actuators and the sensors.
Actuators move a robot’s joints, providing rotary or linear motion. Servo,
Stepper, and DC gear motors are actuator brands. Sensors provide the
robot’s state and environment. Examples of robot sensors include wheel
encoders, ultrasonic sensors, and cameras.

Actuators are controlled by motor controllers and interface with a
microcontroller/PLC (programmable logic controller). Some actuators
are directly controlled through a PC’s USB. Sensors also interface with a
microcontroller or PC. Ultrasonic sensors and infrared sensor interface
with a microcontroller. High-end sensors like cameras and laser scanners

126

CHAPTER 4 KICK-STARTING ROBOT PROGRAMMING USING ROS

can interface directly with the PC. There is a power supply/battery to
power all the robotic components. There is an emergency stop push
button to stop/reset the robot’s operation. The two major parts in which
to program inside a robot are a PC and a microcontroller/PLC. PLCs are
mainly used in industrial robots.

In short, we can say robot programming is programming the PC/SBC
and microcontroller/PCL inside robot for performing a specific application
using actuators and feedback from various sensors. The robot applications
include pick and place of objects, moving the robot from A to B. A variety
of programming languages can program robots. C/C++, Python, Java, C #,
and so forth are used with PCs. Microcontrollers use Embedded C, the
Wiring language (based on C++), which is used in Arduino, and Mbed
programming (https://os.mbed.com). Industrial robot applications use
SCADA or vendors’ proprietary programming languages, such as ABB
and KUKA. This programming is done from the industrial robot’s teach
pendant. RAPID is the programming language used in ABB industrial
robots to automate robotics applications.

Robotic programming creates intelligence in the robot for self-decision
making, implementing controllers like PID to move joints, automating
repeated tasks, and creating robotic vision applications.

Why Robot Programming Is Different

Robot programming is a subset of computer programming. Most robots
have a “brain” that can make decisions. It can be a microcontroller or

a PC. The differences between robot programming and conventional
programming are the input and output devices. The input devices include
robot sensors, teach pendants, and touch screens, and the output devices
include LCD displays and actuators.

127

https://os.mbed.com/

CHAPTER 4 KICK-STARTING ROBOT PROGRAMMING USING ROS

Any of the programming languages can program robots, but good
community support, performance, and prototyping time make C++ and
Python the most commonly used.

The following are some of the features needed for programming
arobot:

o Threading: As seen in the robot block diagram, there
are a number of sensors and actuators in a robot. We
may need a multithreaded compatible programming
language in order to work with different sensors
and actuators in different threads. This is called
multitasking. Each thread can communicate with each
other to exchange data.

e High-level object-oriented programming: As you already
know, object-oriented programming languages are
more modular and code can be easily reused. The code
maintenance is also easy compared to non-object-
oriented programming languages. These qualities
create better software for robots.

o Low-level device control: The high-level programming
languages can also access low-level devices such as
GPIO (general-purpose input/output) pins, serial
ports, parallel ports, USB, SPI, and I12C. Programming
languages like C/C++ and Python can work with
low-level devices, which is why these languages
prefer single-board computers like the Raspberry Pi
and Odroid.

e Ease of prototyping: The easiness in prototyping a
robot algorithm is definitely a choice in the selection
of programming language. Python is a good choice in
prototyping robot algorithms quickly.

128

CHAPTER 4 KICK-STARTING ROBOT PROGRAMMING USING ROS

Interprocess communication: A robot has lot of sensors
and actuators. We can use multithreading architecture
or write an independent program for doing each

task; for example, one program takes images from a
camera and detects a face, and another program sends
data to an embedded board. These two programs

can communicate with each other to exchange data.
This feature creates multiple programs instead of a
multithreading system. The multithreading system is
more complicated than running multiple programs

in parallel. Socket programming is an example of
interprocess communication.

Performance: If we work with high-bandwidth sensors,
such as depth cameras and laser scanners, the
computing resources needed to process the data are
obviously high. A good programming language can
only allocate appropriate computing resource without
loading the computing resource. The C++ language is a
good choice to handle these kinds of scenarios.

Community support: When choosing any programming
language for robot programming, make sure that

there is enough community support for that language,
including forums and blogs.

Availability of third-party libraries: The availability of
third-party libraries can make our development easy;
for example, if we want to do image processing, we
can use libraries like OpenCV. If your programming
language has OpenCV support, it is easier to do image
processing applications.

129

CHAPTER 4 KICK-STARTING ROBOT PROGRAMMING USING ROS

o Existing robotics software framework support: There
are existing robotics software frameworks such as ROS
to program robots. If your programming language
has ROS support, it is easier to prototype a robot
application.

Getting Started with ROS

So far, we have discussed robot programming and how it is different from
other computer programming. In this section, we look at a unique software
platform for programming robots: the Robot Operating System, or ROS
(www.T0S.018).

ROS is a free and open source robotics software framework that is
used in both commercial and research applications. The ROS framework
provides the following robot-programming capabilities:

e Message passing interface between processes: ROS
provides a message passing interface to communicate
between two programs or processes. For example, a
camera processes an image and finds coordinates in
the image, and then these coordinates are sent to a
tracker process. The tracker process does the tracking
of the image by using motors. As mentioned, this is one
of the features needed to program a robot. It is called
interprocess communication because two processes are
communicating with each other.

e Operating system-like features: As the name says,
ROS is not a real operating system. It is a meta-
operating system that provides some operating
system functionalities. These functionalities include
multithreading, low-level device control, package

130

http://www.ros.org

CHAPTER 4 KICK-STARTING ROBOT PROGRAMMING USING ROS

management, and hardware abstraction. The hardware
abstraction layer enables programmers to program a
device. The advantage is that we can write code for a
sensor that works the same way with different vendors.
So, we don’t need to rewrite the code when we use a
new sensor. Package management helps users organize
software in units called packages. Each package has
source code, configuration files, or data files for a
specific task. These packages can be distributed and
installed on other computers.

High-level programming language support and tools:
The advantage of ROS is that it supports popular
programming languages used in robot programming,
including C++, Python, and Lisp. There is experimental
support for languages such as C #, Java, Node.js, and
so forth. The complete list is at http://wiki.ros.org/
Client%20Libraries. ROS provides client libraries

for these languages, meaning the programmer can

get ROS functionalities in the languages mentioned.
For example, if a user wants to implement an Android
application that is using ROS functionality, the rosjava
client library can be used. ROS also provides tools

to build robotics applications. With these tools, we
can build many packages with a single command.
This flexibility helps programmers spend less time in
creating build systems for their applications.

Availability of third-party libraries: The ROS framework
is integrated with most popular third-party libraries; for
example, OpenCV (https://opencv.org) is integrated
for robotic vision, and PCL (http://pointclouds.org)
is integrated for 3D robot perception. These libraries

131

http://wiki.ros.org/Client Libraries
http://wiki.ros.org/Client Libraries
https://opencv.org/
http://pointclouds.org

CHAPTER 4 KICK-STARTING ROBOT PROGRAMMING USING ROS

132

make ROS stronger, and the programmer can build
powerful applications on top of it.

Off-the-shelf algorithms: This is a useful feature. ROS
has implemented popular robotics algorithms such as
PID (http://wiki.ros.org/pid), SLAM (simultaneous
localization and mapping) (http://wiki.ros.org/
gmapping), and path planners such as A*, Dijkstra
(http://wiki.ros.org/global planner), and AMCL
(adaptive Monte Carlo localization) (http://wiki.
ros.org/amcl). The list of algorithm implementations
in ROS continues. The off-the-shelf algorithms reduce
development time for prototyping a robot.

Ease in prototyping: One advantage of ROS is off-the-
shelf algorithms. Along with that, ROS has packages
that can be easily reused with any robot; for example,
we can easily prototype our own mobile robot by
customizing an existing mobile robot package
available in the ROS repository. We can easily reuse
the ROS repository because most of the packages

are open source and reusable for commercial and
research purposes. So, this can reduce robot software
development time.

Ecosystem/commupnity support: The main reason for
the popularity and development of ROS is community
support. ROS developers are all over the world. They
actively develop and maintain ROS packages. The

big community support includes developers asking
questions related to ROS. ROS Answers is a platform
for ROS-related queries (https://answers.ros.org/
questions/). ROS Discourse is an online forum in

http://wiki.ros.org/pid
http://wiki.ros.org/gmapping
http://wiki.ros.org/gmapping
http://wiki.ros.org/global_planner
http://wiki.ros.org/amcl
http://wiki.ros.org/amcl
https://answers.ros.org/questions/
https://answers.ros.org/questions/

CHAPTER 4 KICK-STARTING ROBOT PROGRAMMING USING ROS

which ROS users discuss various topics and publish
news related to ROS (https://discourse.ros.org).

o Extensive tools and simulators: ROS is built with many
command-line and GUI tools to debug, visualize,
and simulate robotics applications. These tools are
very useful for working with a robot. For example, the
Rviz (http://wiki.ros.org/rviz) tool is used for
visualization with cameras, laser scanners, inertial
measurement units, and so forth. For working with
robot simulations, there are simulators such as Gazebo
(http://gazebosim.org).

The ROS Equation

The ROS project can be defined in a single equation, as shown in
Figure 4-2.

Plumbing Tools Capabilities Ecosystem

Figure 4-2. The ROS equation

The plumbing is the same as the message passing interface.
ROS has many other capabilities, which we explore in upcoming
sections.

Robot Programming Before and After ROS

Let’s look at the changes to the robotics programming community since
the ROS project began.

133

https://discourse.ros.org/
http://wiki.ros.org/rviz
http://gazebosim.org

CHAPTER 4 KICK-STARTING ROBOT PROGRAMMING USING ROS

The History of ROS

The following are some historic milestones of the ROS project:

134

The ROS project started at Stanford University in 2007,
led by roboticist Morgan Quigly (http://people.
osrfoundation.org/morgan/). In the beginning, it was
a group of software developed for robots at Stanford.

Later in 2007, a robotics research startup called Willow
Garage (www.willowgarage.com/) took over the project
and coined the name ROS, which stands for Robot
Operating System.

In 2009, ROS 0.4 was released, and a working ROS robot
called PR2 was developed.

In 2010, ROS 1.0 was released. Many of its features are
still in use.

In 2010, ROS C Turtle was released.

In 2011, ROS Diamondback was released.

In 2011, ROS Electric Emys was released.

In 2012, ROS Fuerte was released.

In 2012, ROS Groovy Galapagos was released.

In 2012, the Open Source Robotics Foundation (OSRF)
took over the ROS project.

In 2013, ROS Hydro Medusa was released.

In 2014, ROS Indigo Igloo was released; this was the
first long-term support (LTS) release, meaning updates
and support were provided for a long period of time
(typically five years).

http://people.osrfoundation.org/morgan/
http://people.osrfoundation.org/morgan/
http://www.willowgarage.com/

CHAPTER 4 KICK-STARTING ROBOT PROGRAMMING USING ROS

In 2015, ROS Jade Turtle was released.

In 2016, ROS Kinetic Kame was released. It is the
second LTS version of ROS.

In 2017, ROS Lunar Loggerhead was released.

In May 2018, the 12th version of ROS, Melodic Morenia,
was released.

In May 2020, ROS Noetic Ninjemys was released.

The timeline of the ROS project and a more detailed history are

available at www.r0s.org/history/.

Each version of ROS is called a ROS distribution. You may be aware of

the Linux distribution, such as Ubuntu, Debian, Fedora, and so forth.

Figure 4-3 shows the complete list of ROS distribution releases
(http://wiki.ros.org/Distributions).

135

http://www.ros.org/history/
http://wiki.ros.org/Distributions

CHAPTER 4 KICK-STARTING ROBOT PROGRAMMING USING ROS

Distro Release date Poster Tuturtle, turtle in tutorial EOL date

JADE

TURTLE

Figure 4-3. ROS distributions

If you are looking for the latest ROS features, you can choose new
distributions, and if you are looking for stable packages, you can choose
LTS. In Figure 4-3, the recommended distribution is ROS Noetic Ninjemys.
In this book, the examples use Noetic Ninjemys.

ROS is now developed and maintained by the Open Robotics,
previously known as the Open Source Robotics Foundation (www.
osrfoundation.org).

136

http://www.osrfoundation.org
http://www.osrfoundation.org

CHAPTER 4 KICK-STARTING ROBOT PROGRAMMING USING ROS

Before and After ROS

There was active development in robotics before the ROS project, but
there was no common platform and community for developing robotics
applications. Each developer created software for their own robot, which,
in most cases, couldn’t be reused for any other robot. Developers had to
rewrite code from scratch for each robot, which takes a lot of time. Also,
most of the code was not actively maintained, so there was no support for
the software. Also, developers needed to implement standard algorithms
on their own, which took more time to prototype the robot.

After the ROS project, things changed. Now there is a common
platform for developing robotics applications. It is free and open source for
commercial and research purposes. Off-the-shelf algorithms are readily
available, so there is no longer a need to code. There is big community
support, which makes development easier. In short, the ROS project
changed the face of robotics programming.

Why Use ROS?

This is common question that developers ask when looking for a platform
to program ROS. Although ROS has many features, there are still areas

in which ROS can’t be used or is not recommended to use. In the case of

a self-driving car, for example, we can use ROS to make a prototype, but
developers do not recommend ROS to make the actual product. This is due
to various issues, such as security, real-time processing, and so forth. ROS
may not be a good fit in some areas, but in other areas, ROS is an absolute
fit. In corporate robotics research centers and at universities, ROS is an
ideal choice for prototyping. And ROS is used in some robotics products
after a lot of fine-tuning (but not self-driving cars).

137

CHAPTER 4 KICK-STARTING ROBOT PROGRAMMING USING ROS

A project called ROS 2.0 is developing a much better version of the
existing ROS in terms of security and real-time processing (https://
github.com/ros2/ros2/wiki). ROS 2.0 may become a good choice for
robotics products in the future.

Installing ROS

This is an important step in ROS development. Installing ROS on your PC
is a straightforward process. Before installing, you should be aware of the
various platforms that support ROS.

Figure 4-4 shows various operating systems on which you can install
ROS. As discussed, ROS is not an operating system, but it needs a host
operating system to work.

Select Your Platform

Supported:

-
‘ ® Ubuntu Focal amd64 ammhf amG4

@
@ Debian Buster amd64 arm64
Source installation
Experimental:

A_ ArchLinux Any amd64 1686 arfm armv6h armv7h aarch64
arch

Windows 10 amdG4

Figure 4-4. Operating systems that support ROS

138

https://github.com/ros2/ros2/wiki
https://github.com/ros2/ros2/wiki

CHAPTER 4 KICK-STARTING ROBOT PROGRAMMING USING ROS

Ubuntu Linux is the most preferred OS for installing ROS. As you can
see in Figure 4-4, ROS supports Ubuntu 32 and 64 bit and ARM 32 and
64 bit. This means ROS can run on PC/desktops and on single-board
computers like Raspberry Pi (http://raspberrypi.org), Odroid (www.
hardkernel.com/main/main.php), and NVIDIA TX1/TX2 (www.nvidia.
com/en-us/autonomous-machines/embedded-systems/). Debian Linux
(www.debian.org) has good ROS support.

In OS X and other operating systems, ROS is still in the experimental
phase, which means that ROS functionalities are not yet available.

Let’s move on to installation. If you are using a PC or an ARM board
running Ubuntu armhf or arm64, you can follow the procedures at http://
wiki.ros.org/R0S/Installation.

When you go to this wiki, it asks which ROS version you need to install.
Figure 4-5 is a typical website screenshot.

139

http://raspberrypi.org
http://www.hardkernel.com/main/main.php
http://www.hardkernel.com/main/main.php
http://www.nvidia.com/en-us/autonomous-machines/embedded-systems/
http://www.nvidia.com/en-us/autonomous-machines/embedded-systems/
http://www.debian.org
http://wiki.ros.org/ROS/Installation
http://wiki.ros.org/ROS/Installation

CHAPTER 4 KICK-STARTING ROBOT PROGRAMMING USING ROS

Figure 4-5. Choosing a ROS distribution

As mentioned, we are choosing ROS Noetic Ninjemys because it is the
latest LTS and stable.

After you click the distribution that you want, you get the list of
operating systems that support that distribution. The list of ROS Noetic
operating systems is shown in Figure 4-4.

140

CHAPTER 4 KICK-STARTING ROBOT PROGRAMMING USING ROS

Choose the Ubuntu 20.04 operating system. When you select the
operating system, you get a set of instructions. The wiki at http://wiki.
ros.org/noetic/Installation provides direct access to instructions for
setting ROS in Ubuntu.

We can install ROS in two ways: through a binary installation or by
source compilation. The first method is easy and less time consuming.
Binary installation lets you directly install ROS from prebuilt binaries. With
source compilation, you create an executable by compiling ROS source
code. This takes more time and is based on your PC’s specifications.

In this book, we are doing a binary installation.

The following describes the installation steps:

1) Configure the Ubuntu repositories: An Ubuntu
repository is where the Ubuntu software is
organized, typically on servers in which users can
access and install the application. The following are
repositories in Ubuntu:

a) Main: Ubuntu officially supported free and open source
software.

b) Universe: Community maintained free and open source

software.
c) Restricted: This has proprietary device drivers.
d) Multiverse: Software restricted by copyright and legal issues.

To install ROS, we have to enable access to the entire repository so that
Ubuntu can retrieve packages from these repositories. Figure 4-6 shows
how to do this. Just search in Ubuntu for “Software & Updates.”

141

http://wiki.ros.org/noetic/Installation
http://wiki.ros.org/noetic/Installation

CHAPTER 4 KICK-STARTING ROBOT PROGRAMMING USING ROS

Additional Driv... Livepatch Synaptic

B Hebrewpunct

- Samaritan Punctuation Sof Mashfaat

Figure 4-6. Searching for the Software & Updates application
in Ubuntu

Figure 4-7 shows that you can enable the access of each repository. You
can also select the server location. You can either use a server from your

country or the Ubuntu main server.

Software & Updates - 0 @

Ubuntu Software

Downloadable from the Internet
Canonical-supported free and open-scurce software (main)
Community-maintained free and open-source software (universe)
Proprietary drivers for devices (restricted)
Software restricted by copyright or legal issues (multiverse)

Source code

Download from: Server for United States >

Installable from CD-ROM/DVD

Cdrom with Ubuntu 20.04 'Focal Fossa"
Officially supported
Restricted copyright

Close

Figure 4-7. The Software & Updates application in Ubuntu

142

CHAPTER 4 KICK-STARTING ROBOT PROGRAMMING USING ROS
OK, you are done with the first step.

2) Set up your sources.list: This is an important step
in ROS installation. It adds the ROS repository
information where the binaries are stored. Ubuntu
can fetch the packages after this step is completed.
The following is the command used for this:

sudo sh -c 'echo "deb http://packages.ros.org/ros/
ubuntu $(1sb_release -sc) main" > /etc/apt/sources.
list.d/ros-latest.list’

Note Execute the preceding command in a terminal.

This command creates a new file called /etc/apt/sources.list.d/
ros-latest.list and adds the following line to it:

deb http://packages.ros.org/ros/ubuntu xenial main

If we create this file in the sources.list folder and add this line, then
only the Ubuntu package manager can fetch the package list.

Note If you execute $ 1sb release -scina terminal, you get
the output “xenial”.

3) Installing curl: The curl (cURL-client URL) is a
command-line tool for transfer data to and from the
server. We need this command to setup keys for installing
ROS debian packages.

sudo apt install curl

143

CHAPTER 4 KICK-STARTING ROBOT PROGRAMMING USING ROS

4)

5)

6)

Add the keys: In Ubuntu, if we want to download a
binary or a package, we have to add a secure key

in our system to authenticate the downloading
process. The package that authenticates using these
keys is trusted. The following is the command to add
the keys:

curl-s https://raw.githubusercontent.com/ros/rosdistro/
master/ros.asc | sudo apt-key add -

Update the Ubuntu package list: When we update
the list, the packages from the ROS repositories also
list. We use the following command to update the
Ubuntu repository:

$ sudo apt-get update

Install ROS Noetic packages: After getting the list,
we download and install the package using the
following command:

sudo apt install ros-noetic-desktop-full

This command installs all the necessary packages in ROS, including

tools, simulators, and essential robot algorithms. It takes time to download

and install all these packages.

144

7)

Initialize rosdep: After installing all packages, we
need to install a tool called rosdep, which is useful
for installing the dependent packages of a ROS
package. For example, a typical ROS package may
have a few dependent packages to work properly.
rosdep checks whether the dependent packages are
available, and if not, it automatically installs them.

CHAPTER 4 KICK-STARTING ROBOT PROGRAMMING USING ROS
The following command installs the rosdep tool:

$ sudo rosdep init
$ rosdep update

8) Set the ROS environment: This is an important step
after installing ROS. As discussed earlier, ROS comes
with tools and libraries. To access these command-
line tools and packages, we have to set up the ROS
environment to access these commands, even
though its installed on our system. The following
command adds a line in the .bashrc file in your
home folder, which sets the ROS environment in
every new terminal:

$ echo "source /opt/ros/noetic/setup.bash" >> ~/.bashrc
Next, enter the following command to add the environment in the current
terminal.

$ source ~/.bashrc

Yes, you are almost done. A small step remains.

9) Set up dependencies for building the package: The
use of this step can be explained using an example.
Imagine that you are working with a robot with
more than 100 packages. If you want to set up those
packages in a computer, it is difficult to manage all
the dependencies needed to install those packages. In
that situation, tools like rosinstall are useful. This tool
installs all the packages in a single command. In this
step, we are literally installing those kinds of tools.

$ sudo apt install python3-rosdep python3-rosinstall
python3-rosinstall-generator python3-wstool build-
essential

145

CHAPTER 4 KICK-STARTING ROBOT PROGRAMMING USING ROS

Congratulations, you are done with installation. You can verify that
your installation is correct by using the following command:

$ rosversion -d

If you are getting “noetic” as the output, you are all set with the
installation.

Robots and Sensors Supporting ROS

Figure 4-8 shows some of the popular robots that use ROS. A complete list
of robots working in ROS is at http://robots.ros.org.

' by @)

Figure 4-8. Robots that work in ROS

146

http://robots.ros.org

CHAPTER 4 KICK-STARTING ROBOT PROGRAMMING USING ROS

The following are the robots shown in Figure 4-8:

a) Pepper (www.ald.softbankrobotics.com/en/
robots/pepper): A service robot used for assisting
people in a variety of ways

b) REEM-C (http://pal-robotics.com/en/
products/reem-c/): A full-size humanoid robot that
is mainly used for research purposes

c) TurtleBot2 (www.turtlebot.com/turtlebot2/):
A simple mobile robot platform that is mainly used
for research and educational purposes

d) Robonaut2 (https://robonaut.jsc.nasa.gov/R2/):
A NASA robot designed to automate various tasks on
the International Space Station

e) Universal Robot arm (www.universal-robots.com/
products/ur5-robot): One of the popular semi-
industrial robots widely used for automating various

tasks in manufacturing

There are also sensors supported by ROS. A complete list of these
sensors is available at http://wiki.ros.org/Sensors (see Figure 4-9).

147

http://www.ald.softbankrobotics.com/en/robots/pepper
http://www.ald.softbankrobotics.com/en/robots/pepper
http://pal-robotics.com/en/products/reem-c/
http://pal-robotics.com/en/products/reem-c/
http://www.turtlebot.com/turtlebot2/
https://robonaut.jsc.nasa.gov/R2/
http://www.universal-robots.com/products/ur5-robot
http://www.universal-robots.com/products/ur5-robot
http://wiki.ros.org/Sensors

CHAPTER 4 KICK-STARTING ROBOT PROGRAMMING USING ROS

(a) (b)

(d) (e) if

Figure 4-9. Popular sensors that support ROS

The following describes each sensor shown in Figure 4-9:

a) Velodyne (http://velodynelidar.com): Popular
LIDARs mainly used in self-driving cars

b) ZED Camera (Wwww.stereolabs.com): A popular
stereo depth camera

c) TeraRanger (www.terabee.com): A new sensor for
depth sensing in 2D and 3D

d) Xsense MTiIMU (www.xsens.com/products/):
An accurate IMU solution

e) Hokuyo Laser (www.hokuyo-aut.jp/): A popular
laser scanner

f) Intel RealSense (https://realsense.intel.com):
A 3D depth sensor for robot navigation and mapping

148

http://velodynelidar.com
http://www.stereolabs.com
http://www.terabee.com
http://www.xsens.com/products/
http://www.hokuyo-aut.jp/
https://realsense.intel.com/

CHAPTER 4 KICK-STARTING ROBOT PROGRAMMING USING ROS

Popular ROS Computing Platforms

Figure 4-10 shows a few commonly used ROS-compatible computing
platforms.

(c)

(d)

Figure 4-10. Popular computing units that run ROS

a) NVIDIA TX1/TX2 (www.nvidia.com/en-us/
autonomous-machines/embedded-systems-
dev-kits-modules/): Capable of running deep
learning applications and computational intensive
applications. The board has an ARM-based 64-bit
processor that can run Ubuntu. This platform is
very popular in autonomous robotics applications,
especially drones.

149

http://www.nvidia.com/en-us/autonomous-machines/embedded-systems-dev-kits-modules/
http://www.nvidia.com/en-us/autonomous-machines/embedded-systems-dev-kits-modules/
http://www.nvidia.com/en-us/autonomous-machines/embedded-systems-dev-kits-modules/

CHAPTER 4 KICK-STARTING ROBOT PROGRAMMING USING ROS

b) Raspberry Pi 3 (www.raspberrypi.org/products/
raspberry-pi-3-model-b/): Very popular single-
board computers for education and research.
Robotics is a key area.

c) Intel NUC (www.intel.com/content/www/us/en/
products/boards-kits/nuc.html): Based on a
x86_64 platform, which is basically a miniature
version of a desktop computer.

d) Odroid XU4 (www.hardkernel.com/main/main.php):
The Odroid series boards are similar to Raspberry
Pi, but it has better configuration and performance.
Itis based on the ARM architecture.

ROS Architecture and Concepts

We have discussed ROS, its features, and how to install it. In this section,
we go deep into ROS architecture and its important concepts. Basically,
ROS is a framework to communicate between two programs or processes.
For example, if program A wants to send data to program B, and B wants
to send data to program A, we can easily implement it using ROS. So the
question is whether we implement it using socket programming directly.
Yes, we can, but if we build more and more programs, it gets complex, so
ROS is a good choice for interprocess communication.

Do we really need interprocess communication in a robot? Can we
program a robot without it? The answer to the first question is explained in
Figure 4-11.

150

http://www.raspberrypi.org/products/raspberry-pi-3-model-b/
http://www.raspberrypi.org/products/raspberry-pi-3-model-b/
http://www.intel.com/content/www/us/en/products/boards-kits/nuc.html
http://www.intel.com/content/www/us/en/products/boards-kits/nuc.html
http://www.hardkernel.com/main/main.php

CHAPTER 4 KICK-STARTING ROBOT PROGRAMMING USING ROS

Computing Unit

Figure 4-11. A typical robot block with actuators and sensors

A robot may have many sensors and actuators, as well as a computing
unit. How can we control many actuators and process so much sensor
data? Can we do it in a single program? Yes, but that is not a good way of
doing it. The better way is we can write independent programs to handle
sensor data and controlling actuators, and often, we may need to exchange
data between these programs. This is the situation where we use ROS.

So can we program a robot without ROS? Yes, but the complexity of
software increases according to the number of actuators and sensors.

Let’s see how the communication is happening between two programs
in ROS. Figure 4-12 illustrates a basic block diagram of ROS.

151

CHAPTER 4 KICK-STARTING ROBOT PROGRAMMING USING ROS

Updating details of Node 2
in ROS Master

- ROS Master -

Updating details of Nede 1
in ROS Master

AN ()

Service Name

Client

Service Message data
Node 1

Topic Name

Topic Message data

Publish Subscribe

Figure 4-12. ROS Communication block diagram

Figure 4-12 shows two programs marked as node 1 and node 2. When
any of the programs start, a node communicates to a ROS program called
the ROS master. The node sends all its information to the ROS master,
including the type of data it sends or receives. The nodes that are sending
a data are called publisher nodes, and the nodes that are receiving data
are called subscriber nodes. The ROS master has all the publisher and
subscriber information running on computers. If node 1 sends particular
data called “A” and the same data is required by node 2, then the ROS
master sends the information to the nodes so that they can communicate
with each other.

The ROS nodes can send different types of data to each other, which
includes primitive data types such as integer, float, string, and so forth.
The different data types being sent are called ROS messages. With ROS
messages, we can send data with a single data type or multiple data with
different data types. These messages are sent through a message bus or
path called ROS topics. Each topic has a name; for example, a topic named

“chatter” sends a string message.

152

CHAPTER 4 KICK-STARTING ROBOT PROGRAMMING USING ROS

When a ROS node publishes a topic, it sends a ROS topic with a ROS
message, and it has data with the message type.

In Figure 4-12, the ROS topic is publishing and subscribing node 1
and node 2. This process starts when the ROS master exchanges the node
details to each other.

Next, let’s go through some important concepts and terms that are
used when working with ROS. They can be classified as three categories:
the ROS file system, ROS computation concepts, and the ROS community.

The ROS File System

The ROS file system includes packages, metapackages, package manifests,
repositories, message types, and service types.

ROS packages are the individual units, or the atomic units, of ROS
software. All source code, data files, build files, dependencies, and other
files are organized in packages. A ROS metapackage groups a set of similar
packages for a specific application. A ROS metapackage does not have any
source files or data files. It has the dependencies of similar packages. A
ROS metapackage organizes a set of packages.

A package manifest is an XML file placed inside a ROS package. It
has all the primary information of a ROS package, including the name of
the package, description, author, dependencies, and so forth. A typical
package.xml is shown next:

<?xml version="1.0"?>
<package>
<name>test_pkg</name>
<version>0.0.1</version>
<description>The test package</description>
<maintainer email="gboticslabs@gmail.com">robot</maintainer>
<license>BSD</license>

153

CHAPTER 4 KICK-STARTING ROBOT PROGRAMMING USING ROS

<buildtool depend>catkin</buildtool_depend>

</package>

A ROS repository is a collection of ROS packages that share a common
version control system.

A message type description is the definition of a new ROS message type.
There are existing data types available in ROS that can be directly used for
our application, but if we want to create a new ROS message, we can. A
new message type can be defined and stored inside the msg folder inside
the package.

Similar to message type, a service type definition contains our own
service definitions. It is stored in the srv folder.

Figure 4-13 shows a typical ROS package folder.

kin ws src hello_world

config include launch

scripts SrC Srv CMakelLists.txt
f
package.xml

Figure 4-13. A typical ROS package structure

154

CHAPTER 4 KICK-STARTING ROBOT PROGRAMMING USING ROS

ROS Computation Concepts

These are the terms associated with ROS computation concepts:

ROS nodes: Process that uses ROS APIs to perform
computations.

ROS master: An intermediate program that connects
ROS nodes.

ROS parameter server: A program that normally runs
along with the ROS master. The user can store various
parameters or values on this server, and all the nodes
can access it. The user can set privacy of the parameter
too. If it is a public parameter, all the nodes have
access; if it is private, only a specific node can access
the parameter.

ROS topics: Named buses in which ROS nodes can
send a message. A node can publish or subscribe any
number of topics.

ROS message: The messages are basically going
through the topic. There are existing messages based
on primitive data types, and users can write their own
messages.

ROS service: We have already seen ROS topics, which is
having a publishing and subscribing mechanism. The
ROS service has a request/reply mechanism. A service
call is a function, which can call whenever a client node
sends a request. The node that creates a service call is
called server node and that calls the service is called
client node.

155

CHAPTER 4 KICK-STARTING ROBOT PROGRAMMING USING ROS

e ROS bags: A useful method to save and play back ROS
topics. Also useful for logging the data from a robot to
process it later.

The ROS Community

The following are terms used to exchange ROS software and knowledge:

o The ROS distribution is a collection of versioned
packages.

e The ROS wiki has tutorials on how to set up and
program ROS.

e ROS Answers (https://answers.ros.org/questions/)
has ROS queries and solutions, similar to Stack
Overflow.

e ROS Discourse (https://discourse.ros.org)is a
forum in which developers can share news and ask
queries related to ROS.

If you want to learn more about ROS concepts, visit http://wiki.ros.
org/R0OS/Concepts.

ROS Command Tools

This section discusses ROS command-line tools. What are these tools
for? The tools can make our lives easier. There are different ROS tools that
we can use to explore various aspects of ROS. We can implement almost
all the capabilities of ROS using these tools. The command-line tools are
executed in the Linux terminal; like the other commands in Linux, we get
the ROS command tools too.

156

https://answers.ros.org/questions/
https://discourse.ros.org/
http://wiki.ros.org/ROS/Concepts
http://wiki.ros.org/ROS/Concepts

CHAPTER 4 KICK-STARTING ROBOT PROGRAMMING USING ROS

The roscore command is a very important tool in ROS. When we run
this command in the terminal, it starts the ROS master, the parameter
server, and a logging node. We can run any other ROS program/node after
running this command. So run roscore on one terminal window, and use
another terminal window to enter the next command to run a ROS node.
If you run roscore in a terminal, you may get messages like the ones shown
in Figure 4-14.

afge-dbab6ed15f56/roeslaunch-ros-VirtualBox-287160.log
a while.

ri nterrupt
checking log file disk usage. Usage is <1GB.

started roslaunch server http:/fros-VirtualBox:35387/
ros_comm version 1.15.11

auto-starting new master
process[master]: started with pid [28720]
ROS_MASTER_URI=http://ros-VirtualBox:11311/

setting /run_id to ffec7682-ec9f-11eb-afBe-0bab60d15f56
process[rosout-1]: started with pid [28730]
started core service t]

Figure 4-14. roscore messages

You can see messages in the terminal about starting the ROS master.
You also see the ROS master address.

The rosnode command explores all the aspects of a ROS node. For
example, we can list the number of ROS nodes running on our system. If
you type any of the commands, you get complete help for the tool.

The following is a common usage of rosnode:
$ rosnode list

Figure 4-15 shows the list of nodes running on the system. It is a typical
output of rosnode list.

157

CHAPTER 4 KICK-STARTING ROBOT PROGRAMMING USING ROS

Figure 4-15. Output of a rosnode list command

The rostopic command provides information about the topics
publishing/subscribing in the system. This command is very useful for
listing topics, printing topic data, and publishing data.

$ rostopic list

If there is a topic called /chatter, we can print/echo the topic data
using the following command:

$ rostopic echo /chatter

If we want to publish a topic with data, we can easily do so using this
command:

$ rostopic pub topic_name msg type data
The following is an example:
$ rostopic pub /hello std msgs/String "Hello"

You can echo the same topic after publishing too. Note that if you run
these commands in one terminal, roscore should be running.
Figure 4-16 is a screenshot of rostopic echo and publish.

158

CHAPTER 4 KICK-STARTING ROBOT PROGRAMMING USING ROS

roscore hitp:/fros-VirtualBoc 11311/ 1340

Fos@bios-\irtualBor: ~ E5x9 0 ros@ VirtualBox: ~ §Tx9

Figure 4-16. Output of rostopic echo and publish

Figure 4-16 is the Terminator (https://launchpad.net/terminator)
application in which the screen is split into separate terminal sessions.
One session is running roscore. A second session is publishing a topic. A
third session is echoing the same topic.

The rosversion command checks your ROS version.

The following command retrieves the current ROS version:

$ rosversion -d
Output: noetic

The rosparam command gives a list of parameters loaded in the
parameter server.

You can use the following command to list the parameters in
the system:

$ rosparam list

Figure 4-17 shows how to set and get a parameter.

159

https://launchpad.net/terminator

CHAPTER 4 KICK-STARTING ROBOT PROGRAMMING USING ROS

roscore http:/fros-VirtualBenc11311/ 78x11 . ros@ros-VirtualBox -~ 80x11

Figure 4-17. Output of rosservice set and get

You can get the command here:

Setting parameter
$ rosparam set parameter name value

Eg. $ rosparam set hello "Hello"
Getting a parameter

$ rosparam get parameter name

$ rosparam get hello

Output: "Hello"

The roslaunch command is also useful in ROS. If you want to run more
than ten ROS nodes at time, it is very difficult to launch them one by one.
In this situation, we can use roslaunch files to avoid this difficulty. ROS
launch files are XML files in which you can insert each node that you want
to run. Another advantage of the roslaunch command is that the roscore
command executes with it, so we don’t need to run an additional roscore
command for running the nodes.

The following is the syntax for running a roslaunch file. The
“roslaunch” is the command to run a launch file, along with that we have
to mention package name and name of launch file.

$ roslaunch ros_pkg name launch_file name

160

CHAPTER 4 KICK-STARTING ROBOT PROGRAMMING USING ROS

roslaunch roscpp tutorials talker listener.launchisan
example.

To run a ROS node, you have to use the rosrun node. Its usage is
very simple.

$ rosrun ros_pkg name node name

rosrun roscpp_tutorials talker is an example.

ROS Demo: Hello World Example

This section demonstrates a basic ROS example. The example is already
installed in ROS.

There are two nodes: talker and listener. The talker node publishes
a string message. The listener node subscribes it. In this example of the
process, the talker publishes a Hello World message and the listener
subscribes it and prints it.

Figure 4-18 shows a diagram of the two nodes. As discussed earlier,
both nodes need to communicate with the ROS master to get the
information from the other node.

161

CHAPTER 4 KICK-STARTING ROBOT PROGRAMMING USING ROS

%;fac'%
C_’\)6 %ﬂ a‘s:'o
S g
S S 8y,
R o g, Ve
& o &® e ROS Master M, o
S R
A S

(2)

ftalker

“Hello World"

Figure 4-18. Communication between talker and listener nodes

Let’s start the example by using the following command.
The first step in starting any node in ROS is roscore.

$ roscore

Start the talker node by using the following command in another
terminal:

$ rosrun roscpp_tutorials talker

Now you see the messages printing on the terminal screen. If you list
the topic by using the following command, you see a new topic called
/chatter:

$ rostopic list
Output: /chatter

Now start the listener node by using the following command:

$ rosrun roscpp tutorials listener

162

CHAPTER 4 KICK-STARTING ROBOT PROGRAMMING USING ROS

The subscribing begins between the two nodes (see Figure 4-19).

ras@ros-VirtualBosx: ~ 144x10

Figure 4-19. talker-listener example

If you want to run two of the nodes together, use the roslaunch
command:

$ roslaunch roscpp tutorials talker listener.launch

roscpp_tutorials is an existing package in ROS and talker
listener.launch.

ROS Demo: turtlesim

This section demonstrates an interesting application for learning ROS
concepts. The application is called turtlesim, which is a 2D simulator with
a turtle in it. You can move the turtle, read the turtle’s current position,

163

CHAPTER 4 KICK-STARTING ROBOT PROGRAMMING USING ROS

change the turtle’s pattern, and so forth using ROS topics, ROS services,
and parameters. When working with turtlesim, you get a better idea of how
to control a robot using ROS.

The turtlesim application is already installed on ROS. You can start this
application by using the following commands:

Starting roscore

$ roscore

Starting Turtlesim application

$ rosrun turtlesim turtlesim node

A screen like the one shown in Figure 4-20 means that everything is
working fine.

Figure 4-20. Turtlesim

Now you can open a new terminal and list the topics by publishing the
turtlesim node:

$ rostopic list

You see the topics shown in Figure 4-21.

164

CHAPTER 4 KICK-STARTING ROBOT PROGRAMMING USING ROS

S rostopic list

Jturtlel/pose

ros-VirtualBox:~$ |1

Figure 4-21. Turtlesim topics

Figure 4-22 lists the services created by the turtlesim node. You can list
the services by using the following command:

$ rosservice list

Figure 4-22. List of ROS services

165

CHAPTER 4 KICK-STARTING ROBOT PROGRAMMING USING ROS

List the ROS parameters by using the following command (see
Figure 4-23):

$ rosparam list

Figure 4-23. List of ROS parameters

Moving the Turtle

If you want to move the turtle, start another ROS node by using the
following command. This command has to start in another terminal.

$ rosrun turtlesim turtle teleop key

You can control the robot using your keyboard’s arrow keys. When
you press an arrow key, it publishes velocity to /turtle1/cmd vel, which
makes the turtle move (see Figure 4-24).

166

CHAPTER 4 KICK-STARTING ROBOT PROGRAMMING USING ROS

TurtleSim

Figure 4-24. The path that the turtle covers

If you want to see the back end of these nodes, check the diagram in
Figure 4-25. It shows the topic data going to turtlesim.

turtlesim

teleop_turtle

Figure 4-25. Turtlesim and teleop node back ends

167

CHAPTER 4 KICK-STARTING ROBOT PROGRAMMING USING ROS

Moving the Turtle in a Square

This section shows how to move the turtle along a square path. Close all
the running nodes by pressing Ctrl+C, and start a new turtlesim session
using the following command (see Figure 4-26):

Starting roscore

$ roscore

Starting turtlesim node

$ rosrun turtlesim turtlesim node
Starting the node for drawing square
$ rosrun turtlesim draw_square

TurtleSim

Figure 4-26. The draw square in turtlesim

If we want to clear the turtlesim, we can call a service called /reset:

$ rosservice call /reset

168

CHAPTER 4 KICK-STARTING ROBOT PROGRAMMING USING ROS

This resets the turtle’s position.
In the next section, we look at ROS GUI tools.

ROS GUI Tools: Rviz and Rqt

Along with command-line tools, ROS has GUI tools to visualize sensor
data. A popular GUI tool is Rviz (see Figure 4-27). Using Rviz, we can
visualize image data, 3D point clouds, and robot models, as well as
transform data and so forth. This section explores the basics of the Rviz
tool, which comes with the ROS installation.

View Panel

Display Panel

Plasd Pramme

Feae bEwal

[er-yriviey
44

O T

RO Tew. BININA 2 L= el T T IITIIOOCT 22 vl Elgoed. IMLY TI'T'IE pane' Eaor dewntal
[s

Figure 4-27. Rviz

Start Rviz using the following command:

Start roscore

$ roscore

Start rviz

$ rosrun rviz rviz

169

CHAPTER 4 KICK-STARTING ROBOT PROGRAMMING USING ROS

The following describes the sections in Rviz:

e 3D viewport: The area to visualize the 3D data from
sensors, robot transform data, 3D model data, and
other kinds of 3D information.

e Display panel: Displays various kinds of sensor data.

o View panel: Options to view the 3D view port according
to the application.

o Toolbar: Options for interacting with the 3D viewport,
measuring robot position, setting the robot navigation
goal, and changing camera view.

o Time panel: Features information about the ROS time
and elapsed time. This time stamping may be useful for
processing the sensor data.

e Rgqt: Features options to visualize 2D data, logging
topics, publishing topics, calling services, and more.

This is how to start the Rqt GUT:

Start roscore

$ roscore

Start rqt_gui

$ rosrun rqt gui rqt gui

You get an empty GUI with some menus. You can add your own
plug-ins from the drop-down menu. Figure 4-28 is a screenshot of rqt_gui
loaded with a plug-in.

170

CHAPTER 4 KICK-STARTING ROBOT PROGRAMMING USING ROS

1 © Default - rqt

ErMatplot 0 L@ - oX Robotsteering oC@ -ox
Topic|/ - & autoscroll | [l | ™ Jemd vel stop

200 +v RV 2

10

o8
0 - 0.0m/s

0.6

04

" -1.00
02

00 < 0 >
3.00 . 0.0 rad/s -3.00

Figure 4-28. The Rqt GUI

Summary

This chapter discussed the fundamentals of the Robot Operating System.
It started with robot programming and explained why it is different from
other software applications. Next, we looked at the different operating
system platforms that can install ROS and covered the detailed installation
instructions for Ubuntu. We saw different robots and sensors compatible
with ROS, and we discussed the ROS architecture. We also looked at
important ROS concepts and a simulator called turtlesim. In the end, we
became familiar with ROS GUI tools such as Rqt and Rviz.

In the next chapter, we see how to program using ROS and how to
create ROS applications using C++ and Python.

171

CHAPTER 5

Programming with ROS

The previous chapter discussed the basics of the Robot Operating System,
and in this chapter, you are going to program using ROS. The main
programming languages that we are going to use are C++ and Python. We
already discussed the basics of C++ and Python in Chapters 2 and 3. Those
fundamental concepts can be applied here to start working with ROS. You
will see examples in Python and in C++, so you get a fundamental idea
about both languages.

The chapter covers creating a ROS workspace, ROS package, and ROS
nodes. After creating the package and basic ROS nodes, you will see how
to program the turtlesim simulator from the previous chapter. Next, you
are introduced to the Gazebo simulator and TurtleBot robot simulation,
creating basic ROS nodes to move the TurtleBot in the simulation.
Afterward, you learn how to interface and program an Arduino and Tiva-C
Launchpad using ROS. These tutorials are very useful for when we create
our own robot. At the end of the chapter, you see how to set up ROS and
program it in the Raspberry Pi 3.

Programming Using ROS

We have already covered basic programming using C++ and Python. What
does programming with ROS mean? It means that ROS provides some
built-in functions to implement ROS capabilities. For example, if we want
to implement a new ROS topic, or a new ROS message, or a ROS service,

© Lentin Joseph and Aleena Johny 2022 173
L. Joseph and A. Johny, Robot Operating System (ROS) for Absolute Beginners,
https://doi.org/10.1007/978-1-4842-7750-8_5

https://doi.org/10.1007/978-1-4842-7750-8_5#DOI
http://dx.doi.org/10.1007/978-1-4842-3405-1_2
http://dx.doi.org/10.1007/978-1-4842-3405-1_3

CHAPTER5 PROGRAMMING WITH ROS

we can simply call these ROS built-in functions to create it. We don’t need
to implement ROS features from scratch. The programs that use ROS built-
in functions/APIs (application program interface) are called ROS nodes.

In this chapter, we create ROS nodes for different applications. The
ROS wiki provides extensive documentation on creating ROS nodes. As a
beginner, it may be difficult to understand most of the topics mentioned
on the ROS wiki. This chapter gives you a brief look at them to get started
with ROS programming.

There are some steps that we need to take before proceeding to ROS
programming. The first step is to create a ROS workspace. The next section
discusses the ROS workspace and how to create it.

Creating a ROS Workspace and Package

The first step in ROS development is the creation of the ROS workspace,
which is where ROS packages are kept. We can create new packages, install
existing packages, and build and create new executables.

You must first create a ROS workspace folder. You can give it any name,
and you can create it in any location. Normally, this is in the Ubuntu
home folder.

At a new terminal, enter the following command. This creates a folder
called catkin_ws, inside of which is another folder called src. The ROS
workspace is also called the catkin workspace. You see more of catkin in
the next section.

$ mkdir -p ~/catkin_ws/src

The name of the src folder shouldn’t be changed. You can change the
workspace folder name, however.
After entering the command, switch to the src folder by using the cd

command:

$ cd catkin_ws/src

174

CHAPTER5 PROGRAMMING WITH ROS

The following command initializes a new ROS workspace. If you are
not initializing a workspace, you cannot create and build the packages

properly.
$ catkin_init workspace

After this command, you should see the message in Figure 5-1 on your

terminal.

ros@ros-VirtuaslBox: ~/catkin_ws/src

Figure 5-1. The output of catkin_init_workspace

There is a CMakeLists.txt inside the src folder.

After initializing the catkin workspace, you can build the workspace.
You can able it to build the workspace without any packages. To build the
workspace, switch from the catkin_ws/src folder to the catkin_ws folder.

$ ~/catkin_ws/src$ cd ..
The command to build the catkin workspace is catkin_make:

$ ~/catkin_ws$ catkin_make

175

CHAPTER5 PROGRAMMING WITH ROS

You get the output shown in Figure 5-2 after entering this command.

ros@ros-VirtualBoo: ~fcatkin_ws

- works

n required is

on
Jbin/pyt
t

written to

Figure 5-2. The catkin_make output

Now you can see a few folders in addition to the sxc folder (see
Figure 5-3).

Gt Home catkin_ws

Starred build devel (src]

Home

0y
L

0 = »*

Desktop

Documents

@

+ Downloads

Music

(-

Pictures

o

Videos

Figure 5-3. The catkin_ws folder after catkin_make command

176

CHAPTER5 PROGRAMMING WITH ROS

More information about the building process is in the next section.

The src folder is where our packages are kept. If you want to create or
build a package, you have to copy those packages to the sxrc folder.

After creating the workspace, it is an important thing to add the
workspace environment. This means you have to set the workspace path
so that the packages inside the workspace become accessible and visible.
To do this, you have to do the following steps.

Open the .bashrc file in the home folder, and add the following line at
the end of the file.

At a terminal, switch to the home folder and select the .bashrc file:

$ gedit .bashrc
Add the following line at the end of .bashrc (see Figure 5-4):

source ~/catkin_ws/devel/setup.bash

*bashrec

B8 #export GCC_COLORS='error=81;31:warning=081;35:note=01;36:caret=01;32:locus=01:quote=01"
B9

90 # some more ls aliases

51 alias 11="1 LF

92 alias la='1s

93 alias 1="1

954

95 # Add an "alert” alias for long running commands. Use like so:

96 # sleep 10; alert

97 alias alert='notify-send --urgency=low -i "$([$?] && echo terminal
98

99 # Alias definitions.

180 # You may want to put all your additions into a separate file like

101 # ~/.bash_aliases, instead of adding them here directly.

102 # See fusr/fsharefdoc/bash-doc/fexamples in the bash-doc package.

1e3

104 if [-f ~/.bash_aliases]; then
165 . ~=f.bash_aliases

106 fi

1e7

108 # enable programmable completion features (you don't need to enable
109 # this, if it's already enabled in fetc/bash.bashrc and jetc/profile
110 # sources fetc/bash.bashrc).

111 if ! shopt -oq posix; then

112 Af [-f fusr/share/bash-completion/bash_completion]; then

113 . fusr/share/bash-completion/bash_completion
114 elif [-f fetc/bash_completion]; then

115 . fetc/bash_completion

116 fi

117 fi

118 source jopt/ros/noetic/setup.bash
e)

126

121

Figure 5-4. Adding catkin_ws to .bashrc file

177

CHAPTER5 PROGRAMMING WITH ROS

Asyou already know, the .bashrc script in the home folder executes
when a new terminal session starts. So, the command inserted in the
.bashzrc file also executes.

setup.bash in the following command has variables to add to the
Linux environment:

source ~/catkin_ws/devel/setup.bash

When we source this file, the workspace path is added in the current
terminal session. Now when we use any terminal, we can access the
packages inside this workspace.

Before discussing the creation of packages, we need to discuss the
catkin build system in ROS. You get a better idea about the building
process when you are aware of the catkin build system.

ROS Build System

Chapters 2 and 3 discussed the build system, which is nothing but tools
to compile a set of source code and create target executables from it. The
target can be an executable or a library. In ROS, there is a build system for
compiling ROS packages. The name of the build system that we are using
is catkin (http://wiki.ros.org/catkin). catkin is a custom build system
made from the CMake build system and Python scripting. So why not
directly use CMake? The answer is simple: building a set of ROS packages
is complicated. The complexity increases with the number of packages
and package dependencies. The catkin build system takes care of all
these things.

You can read more about the catkin build system at http://wiki.ros.
org/catkin/conceptual overview.

178

http://dx.doi.org/10.1007/978-1-4842-3405-1_2
http://dx.doi.org/10.1007/978-1-4842-3405-1_3
http://wiki.ros.org/catkin
http://wiki.ros.org/catkin/conceptual_overview
http://wiki.ros.org/catkin/conceptual_overview

CHAPTER5 PROGRAMMING WITH ROS

ROS Catkin Workspace

We have created a catkin workspace, but didn’t discuss how it works. The
workspace has several folders. Let’s look at the function of each folder.

src Folder

The src folder inside the catkin workspace folder is the place where you
can create, or clone, new packages from repositories. ROS packages only
build and create an executable when it is in the src folder. When we
execute the catkin_make command from the workspace folder, it checks
inside the sxc folder and builds each package.

build Folder

When we run the catkin_make command from the ROS workspace, the
catkin tool creates some build files and intermediate cache CMake files
inside the build folder. These cache files help prevent from rebuilding all
the packages when running the catkin_make command; for example, if
you build five packages and then add a new package to the src folder, only
the new package builds during the next catkin_make command. This is
because of those cache files inside the build folder. If you delete the build
folder, all the packages build again.

devel Folder

When we run the catkin_make command, each package is built, and if the
build process is successful, the target executable is created. The executable
is stored inside the devel folder, which has shell script files to add the
current workspace to the ROS workspace path. We can access the current

179

CHAPTER5 PROGRAMMING WITH ROS

workspace packages only if we run this script. Generally, the following
command is used to do this:

source ~/<workspace_name>/devel/setup.bash

We are adding this command in the .bashzc file, so that we can access
the workspace packages in all terminal sessions. If you go through the
procedures to set up the catkin workspace, you see these steps.

install Folder

After building the target executable locally, run the following command to
install the executable:

$ catkin_make install

It has to execute from the ROS workspace folder. If you do this, you see
the install folder in the workspace. This folder keeps the install target
files. When we run the executable, it executes from the install folder.

There is more information about the catkin workspace at http://
wiki.ros.org/catkin/workspaces#Catkin_Workspaces.

Creating a ROS Package

We are done creating the ROS workspace. Next, let’s look at how to create
a ROS package. The ROS package is where ROS nodes are organized—
libraries and so forth. We can create a catkin ROS package by using the

following command:

Synatx:
$ catkin_create pkg ros package name package dependencies

The command that we use to create the package is catkin_create_
pkg. The first parameter for this command is the package name, and the

180

http://wiki.ros.org/catkin/workspaces#Catkin_Workspaces
http://wiki.ros.org/catkin/workspaces#Catkin_Workspaces

CHAPTER5 PROGRAMMING WITH ROS

dependencies of the package follow it; for example, we are going to create
a package called hello world with dependencies. We discuss more about
the dependencies in the next section.

You have to execute the command from the src folder in the catkin
workspace:

$ /catkin_ws/src$ catkin_create pkg hello world roscpp rospy
std_msgs

The output of this command is shown in Figure 5-5. This is how we
create ROS packages.

S catkin_create_pkg hello_world rospy

catkin_ws/srcfhello_world. Please adjust the values in package.xnml.

Figure 5-5. Output of catkin_create_pkg command

The structure of a ROS package is shown in Figure 5-6.

t: -> fopt/ros/noeticfsharefcatkin/cmake/toplevel.cnake
CHakeLists. txt

L
package.xml

., 3 files

Figure 5-6. Output of catkin_create_pkg command
Inside the package are the src folder, package.xml, CMakeLists.txt,
and the include folder:

o (Makelists.txt: This file has all the commands to
build the ROS source code inside the package and
create the executable.

181

CHAPTER5 PROGRAMMING WITH ROS

o package.xml: This is basically an XML file. It mainly
contains the package dependencies, information, and
so forth.

e src: The source code of ROS packages is kept in this
folder. Normally, C++ files are kept in the src folder.
If you want to keep Python scripts, you can create
another folder called scripts inside the package folder.

o include: This folder contains the package header files.
It can be automatically generated, or third-party library
files go in it.

The next section discusses ROS client libraries, which are used to
create ROS nodes.

Using ROS Client Libraries

We have covered various ROS concepts like topics, services, messages, and
so forth. How do we implement these concepts? The answer is by using
ROS client libraries. The ROS client libraries are a collection of code with
functions to implement ROS concepts. We can simply include these library
functions in our code to make it a ROS node. The client library saves
development time because it provides the built-in functions to make a ROS
application.

We can write ROS nodes in any programming language. If there is any
ROS client for that programming language, it is easier to create ROS nodes;
otherwise, we may need to implement our own ROS concepts.

The following are the main ROS client libraries:

o roscpp: This is the ROS client library for C++. It is widely
used for developing ROS applications because of its
high performance.

182

CHAPTER5 PROGRAMMING WITH ROS

o rospy: This is the ROS client library for Python
(http://wiki.ros.org/rospy). Its advantage is saving
development time. We can create a ROS node in less
time than with roscpp. It is ideal for quick prototyping
applications, but performance is weaker than with
roscpp. Most of the command-line tools in ROS are
coded using rospy such as roslaunch, roscore, and
so forth.

o roslisp: This is the ROS client library of the Lisp
language. It is mainly used in motion planning libraries
on ROS, but it is not as popular as roscpp and rospy.

There are also experimental client libraries, including rosjava,
rosnodejs, and roslua. The complete list of ROS client libraries is at
http://wiki.ros.org/Client%20Libraries.

We will mainly work with roscpp and rospy. The next section shows a
basic example of ROS nodes created using roscpp and rospy.

roscpp and rospy

This section discusses the various aspects of writing a node using client
libraries such as roscpp and rospy. This includes the header files and
modules used in ROS nodes, initializing a ROS node, publishing and

subscribing a topic, and so forth.

Header Files and ROS Modules

When you write code in C++, the first section includes the header files.
Similarly, when you write Python code, the first section imports Python
modules. In this section, we look at the important header files and
modules that we need to import into a ROS node.

183

http://wiki.ros.org/rospy
http://wiki.ros.org/Client Libraries

CHAPTER5 PROGRAMMING WITH ROS

To create a ROS C++ node, we have to include the following
header files:

#include "ros/ros.h"

The ros.h has all the headers required to implement ROS
functionalities. We can’t create a ROS node without including this
header file.

The next type of header file used in ROS nodes is a ROS message
header. If we want to use a specific message type in our node, we have to
include the message header file. ROS has some built-in message definition,
and the user can also create a new message definition. There is a built-in
message package in ROS called std_msgs that has a message definition of
standard data types, such as int, float, string, and so forth. For example, if
we want to include a string message in our code, we can use the following

line of code:
#include "std_msgs/String.h"

Here, the first part is the package name and the next part is the
message type name. If there is a custom message type, we can call it with
the following syntax:

include "msg pkg name/message name.h"
The following are some of the messages in the std_msgs package:

include "std msgs/Int32.h"
include "std _msgs/Int64.h"

The complete list of message types inside the std_msgs package is at
http://wiki.ros.org/std _msgs.

184

http://wiki.ros.org/std_msgs

CHAPTER5 PROGRAMMING WITH ROS

In Python, we have to import modules to create a ROS node. The ROS
module that we need to import is

import rospy

rospy has all the important ROS functions. To import a message type, we
have to import the specific modules, like we did in C++.

The following is an example of importing a string message type
in Python:

from std _msgs.msg import String

We have to use package name.msg and import the required
message type.

Initializing a ROS Node

Before starting any ROS node, the first function called initializes the node.
This is a mandatory step in any ROS node.
In C++, we initialize using the following line of code:

int main(int argc, char **argv)
{
ros::init(argc, argv, "name_of node")

After the int main() function, we have to include ros: :init(), which
initializes the ROS node. We can pass the argc, argv command-line
arguments to the init() function and the name of the node. This is the
ROS node name, and we can retrieve its list by using rosnode 1list.

In Python, we use the following line of code:

rospy.init node('name_of node', anonymous=True);

185

CHAPTER5 PROGRAMMING WITH ROS

The first argument is the name of the node, and the second argument
is anonymous=True, which means the node can run on multiple instances.

Printing Messages in a ROS Node

ROS provides APIs to log messages. These messages are readable string
that convey the status of the node.
In C++, the following functions log the node’s messages:

ROS_INFO(string msg,args): Logging the information of node
ROS_WARN(string msg,args): Logging warning of the node
ROS_DEBUG(string msg ,args): Logging debug messages
ROS_ERROR(string msg ,args): Logging error messages
ROS_FATAL(string msg ,args): Logging Fatal messages

Eg: ROS_DEBUG("Hello %s","World");

In Python, there are different functions for the logging operations:

rospy.logdebug(msg, *args)
rospy.logerr(msg, *args)

rospy.logfatal(msg, *args)
rospy.loginfo(msg, *args)
rospy.logwarn(msg, *args)

Creating a Node Handle

After initializing the node, we have to create a NodeHandle instance that
starts the ROS node and other operations, like publishing/subscribing
a topic. We are using the ros: :NodeHandle instance to create those
operations.

In C++, the following shows how to create an instance of ros: :NodeHandle:

ros: :NodeHandle nh;

186

CHAPTER5 PROGRAMMING WITH ROS

The rest of the operations in the node use the nh instance. In Python,
we don’t need to create a handle; the rospy module internally handles it.

Creating a ROS Message Definition

Before publishing a topic, we have to create a ROS message definition. The
message definition is created by using the following methods.

In C++, we can create an instance of a ROS message with the following line
of code; for example, this is how we create an instance of std_msgs/String:

std_msgs::String msg;

After creating the instance of the ROS message, we can add the data by
using the following line of code:

msg.data = "String data"

In Python, we use the following line of code to add data to the string
message:

msg = String()
msg.data = "string data"

Publishing a Topic in ROS Node

This section shows how to publish a topic in a ROS node.
In C++, we use the following syntax:

ros::Publisher publisher object = node_handle.advertise<ROS
message type >("topic_name",1000)

187

CHAPTER5 PROGRAMMING WITH ROS

After creating the publisher object, the publish() command sends
the ROS message through the topic:

publisher object.publish(message)

Example:

ros::Publisher chatter pub = nh.advertise<std
msgs::String>("chatter”, 1000);

chatter pub.publish(msg);

In this example, chatter pub is the ROS publisher instance, and it is
going to publish a topic with message type std_msgs/String and chatter
as the topic name. The queue size is 1000.

In Python, the publishing syntax is as follows:

Syntax:

publisher instance = rospy.Publisher('topic_name', message
type, queue size)

Example:

pub = rospy.Publisher('chatter', String, queue size=10)
pub.publish(hello str)

This example publishes a topic called chatter with a std_msgs/String
message type and a queue_size of 10.

Subscribing a Topic in ROS Node

When publishing a topic, we have to create a message type and need to
send through the topic. When subscribing a topic, the message is received
from the topic.

In C++, the following is the syntax of subscribing a topic:

ros::Subscriber subscriber obj = nodehandle.subscribe("topic
name", 1000, callback function)

188

CHAPTER5 PROGRAMMING WITH ROS

When subscribing a topic, we don’t need to mention the topic message
type, but we do need to mention the topic name and a callback function.
The callback function is a user-defined function that executes once a ROS
message is received over the topic. Inside the callback, we can manipulate
the ROS message—print it or make a decision based on the message data.
(Callback is discussed in the next section.)

The following is a subscription example of the "chatter" topic with
the "chatterCallback" callback function:

ros::Subscriber sub = n.subscribe("chatter", 1000,
chatterCallback);

The following shows how to subscribe a topic in Python:
rospy.Subscriber("topic_name",message type,callback funtion name")

The following shows how to subscribe the "chatter" topic with the
message type as string and a callback function. In Python, we have to
mention the message type along with the Subscriber () function.

rospy.Subscriber("chatter", String, callback)

Writing the Callback Function in ROS Node

When we subscribe a ROS topic and a message arrives in that topic, the
callback function is triggered. You may have seen the mention of a callback
function in the subscriber function. The following is the syntax and an
example of callback function in C++:

void callback name(const ros message const pointer &pointer)

{
// Access data

pointer->data

}

189

CHAPTER5 PROGRAMMING WITH ROS

The following shows how to handle a ROS string message and print
the data:

void chatterCallback(const std msgs::String::ConstPtr& msg)

{
ROS _INFO("I heard: [%s]", msg->data.c_str());

}

The following shows how to write a callback in Python. It’s very similar
to a Python function, which has an argument that holds the message data.

def callback(data):
rospy.loginfo(rospy.get caller id() + "I heard %s",
data.data)

The ROS Spin Function in ROS Node

After starting the subscription or publishing, we may have to call a
function to process the request to subscribe and publish. In a C++ node,
the ros: :spinOnce() function should be called after publishing a topic,
and the ros: :spin() function should be called if you are only subscribing
a topic. If you are doing both, use the spinOnce() function.

In Python, there is no spin() function, but you can use the rospy.
sleep() function after publishing or the rospy.spin() function if there is
only subscription of the topic.

The ROS Sleep Function in ROS Node

If we want to make a constant rate inside a loop that is inside a node, we
can use ros: :Rate. We can create an instance of ros: :Rate and mention
the desired rate that we want. After creating the instance, we have to call
the sleep() function inside it to get the rate in effect.

190

CHAPTER5 PROGRAMMING WITH ROS
The following is an example of getting 10Hz in C++:

ros::Rate r(10); // 10 hz
r.sleep();

The following is how to do it in Python:

rate = rospy.Rate(10) # 10hz
rate.sleep()

Setting and Getting a ROS Parameter

In C++, we use the following line of code to access a parameter in our code.
Basically, we have to declare a variable and use the getParam() function
inside the node_handle to access the desired parameter.

std::string global_name;
if (nh.getParam("/global name", global name))

{

The following shows how to set a ROS parameter. The name and the
value should be mentioned inside the setParam() function.

nh.setParam("/global param", 5);
In Python, we can do the same thing using the following line of code:

global name = rospy.get param("/global name")
rospy.set param('~private int', '2")

191

CHAPTER5 PROGRAMMING WITH ROS

The Hello World Example Using ROS

In this section, you are going to create a basic package called hello_world
and a publisher node and a subscriber node to send a “Hello World” string
message. You also learn how to write a node in C++ and Python.

Creating a hello_world Package

In ROS, the programs organized as packages. So we have to create a ROS
package before writing any program.

To create a ROS package, we have to give a name of the package and
then the dependent packages which help to compile the programs inside
the package. For example, if your package has a C++ program, you have to
add “roscpp” as dependency, and if it is Python, you have to add “rospy”
as dependency.

Before creating the package, first switch to the src folder:

$ catkin_ws/src$ catkin create pkg hello world roscpp rospy
std_msgs

Figure 5-7 shows the output when we execute this command.

ln_create_pkg hello_world rospy roscpp std_msgs

src/hello_world. Please adjust the values in pack:

Figure 5-7. The output of catkin_create_pkg

192

CHAPTER5 PROGRAMMING WITH ROS

Now we can explore the different files created. The first important file

is package.xml. As discussed, this file has information about the package

and its dependencies.

The package.xml file definition is shown in Figure 5-8. Actually, when

we create the package, it also has some commented code. All comments

have been removed here to make it cleaner.

1 <?xml version="1.0"2>
2 <package format="2">

oSN aWw

11
12
13
14
15
16
17

<name=hello_world</name=

<version=0.0.8</version>

<description>The hello_world package</description>
<buildtool_depend>catkin</buildtool_depend>
<build_depend>roscpp</build_depend-
<build_depend>rospy</build_depend=>
<build_depend>std_msgs</build_depend>
<build_export_depend>roscpp</build_export_depend>
<build_export_depend>rospy</build_export_depend>
<build_export_depend>std_msgs</build_export_depend>
<exec_depend>roscpp</exec_depend>
<exec_depend>rospy</exec_depend>
<exec_depend>std_msgs</exec_depend>

<fexport>

/package

Figure 5-8. The package.xml definition

You can edit this file and add dependencies, package information, and

other information to the package. You can learn more about package . xml

athttp://wiki.ros.org/catkin/package.xml.

193

http://wiki.ros.org/catkin/package.xml

CHAPTER5 PROGRAMMING WITH ROS
Figure 5-9 shows what the CMakeLists.txt file looks like.

cmake_minimum_required(VERSION 3.0.2)
project(hello_world)

find_package(catkin REQUIRED COMPONENTS
roscpp
rospy
std_msgs

)
catkin_package()

include_directories(

${catkin_INCLUDE_DIRS}
)

Figure 5-9. The CMakeLists.txt definition

In this file, the minimum version of CMake required to build the
package and the project name is at the top of the file.

The find_package() finds the necessary dependencies of this
package. If these packages are not available, we won’t be able to build this
package. The catkin_package() is a catkin-provide CMake macro used for
specifying catkin-specific information to the build system.

You can learn more about CMakelLists.txt athttp://wiki.ros.org/
catkin/CMakelists.txt.

A good reference for creating a ROS package is at http://wiki.ros.
org/ROS/Tutorials/catkin/CreatingPackage.

Creating a ROS C++ Node

After creating the package, the next step is to create the ROS nodes. The
C++ code is kept in the src folder.

194

http://wiki.ros.org/catkin/CMakeLists.txt
http://wiki.ros.org/catkin/CMakeLists.txt
http://wiki.ros.org/ROS/Tutorials/catkin/CreatingPackage
http://wiki.ros.org/ROS/Tutorials/catkin/CreatingPackage

CHAPTER5 PROGRAMMING WITH ROS

The following is the first ROS node. It’s a C++ node to publish a “Hello

World” string message. You can save it under src/talker.cpp

#include "ros/ros.h"

#include "std_msgs/String.h"
#include <sstream>

int main(int argc, char **argv)

{

}

ros::init(argc, argv, "talker");

r
I

os: :NodeHandle n;
os::Publisher chatter pub = n.advertise<std_

msgs::String>("chatter”, 1000);

I

os::Rate loop rate(10);

int count = 0;
while (ros::ok())

{

}

std _msgs::String msg;
std::stringstream ss;

ss << "hello world" << count;
msg.data = ss.str();
ROS_INFO("%s", msg.data.c_str());
chatter pub.publish(msg);
ros::spinOnce();

loop rate.sleep();

++count;

return 0;

The code is self-explanatory. Basically, it creates a new string message

instance and a publisher instance. After creating both, it adds data to the

string message along with a count. After adding the data, it publishes

the topic, "/chatter. You can also see the usage of the ros: : spinOnce()

function here. The code executes until you press Ctrl+C.

195

CHAPTER5 PROGRAMMING WITH ROS

Next, you see the listener.cpp, which subscribes the topic published by
talker.cpp. After getting data from the topic, it prints that message.

#include "ros/ros.h"
#include "std msgs/String.h"
void chatterCallback(const std msgs::String::ConstPtr& msg)
{
ROS _INFO("I heard: [%s]", msg->data.c_str());
}
int main(int argc, char **argv)
{
ros::init(argc, argv, "listener");
ros: :NodeHandle n;
ros::Subscriber sub = n.subscribe("chatter", 1000,
chatterCallback);
ros::spin();
return 0;

In listener.cpp, the "chatter" topic is subscribing and registering
a callback function for the topic, which is chatterCallback. The callback
is defined at the beginning of the code. Whenever a message comes to the
"chatter" topic, this callback is executed. Inside the callback, the data in
the message is printed.

ros::spin() executes the subscribe callbacks and helps the node
remain in a wait state, so it won’t quit until you press Ctrl+C.

Editing the CMakeLists.txt File

After saving the two files in the hello_world/src folder, the nodes need
to be compiled to create the executable. To do this, we have to edit the
CMakeLists.txt file, which is not too complicated. We need to add four
lines of code to CMakeLists.txt. Figure 5-10 shows the additional lines of
code to insert.

196

CHAPTER5 PROGRAMMING WITH ROS

include_directories(
${catkin_INCLUDE_DIRS}

add executable(talker src/talker.cpp)

target_link_libraries(talker
${catkin_LIBRARIES}

)

add_executable(listener src/listener.cpp)

target_link_libraries(listener
${catkin_LIBRARIES}

)

Figure 5-10. Adding building instructions inside CMakeLists.txt

You can see that we are adding add_executable() and target
link libraries() to CMakeLists.txt.add executable() creates the
executable from the source code. The first parameter is the executable
name, which links with the libraries. If these two processes are successful,
we get executable nodes.

Building C++ Nodes

After saving CMakelLists.txt, we can build the source code. The command
to build the nodes is catkin_make. Just switch to the workspace folder and
execute the catkin_make command.

To switch to the catkin_ws folder, assume that the workspace is in the
home folder:

$ cd ~/catkin ws
Executing the catkin_make command to build the nodes
$ catkin_make

197

CHAPTER5 PROGRAMMING WITH ROS

If everything is correct, you get a message saying that the build was
successful (see Figure 5-11).

1 ros@ros-VirtualBox: ~fcatkin_ws Q

- BUILD_SHARED_LIBS is on
-- BUILD_SHARED_LIBS is on

traversing 1 packages in topological order:

processing catkin package: '
add_subdirectory(hello_world)

- Configuring done

- Generating done

- Build files have been written to: /home/ros/catkin_ws/build

[188%] Built target talker
[188%] Built target listener

s [

Figure 5-11. Building messages in the terminal

So we have successfully built the nodes. Now what? We can execute
these nodes, right? That is covered in the next section.

Executing C++ Nodes

After building the nodes, the executables are generated inside the catkin
ws/devel/lib/hello world/ folder (see Figure 5-12).

198

CHAPTER5 PROGRAMMING WITH ROS

{ ;i Home catkin_ws devel lib hello_ world ~

) Recent

% Starred listener talker
{3} Home

[) Desktop

[E) pocuments

Figure 5-12. Generated executable

After creating the executable, we can run it on a Linux terminal.

Open three terminals, and execute each command one by one:

Starting roscore
$ roscore

The following command starts the talker node. We can use the rosrun
command to start the node.

$ rosrun hello world talker

The node prints messages on the terminal. Check the list of ROS topics
in the system by using the following command:

$ rostopic list
You see the following topics:

/chatter
/rosout
/rosout_agg

199

CHAPTER5 PROGRAMMING WITH ROS

/chatter is the topic published by the talker node. The /rosout
topics are for logging purposes. It starts publishing when we execute the
roscore command.

The listener node can start in another terminal:

$ rosrun hello world listener

Figure 5-13 shows the message data from the /chatter topic.

ros@ros-VirtualBox: ~ 144x9

ros@ros-VirtualBox: ~ 144x10

Figure 5-13. Output of talker and listener C++ nodes

You can close each terminal by pressing the Ctrl+C key combination.
Next, we look at the talker and listener nodes in Python.

200

CHAPTER5 PROGRAMMING WITH ROS

Creating Python Nodes

We can make a folder called script inside the package, and we can keep
the Python scripts inside this folder (scripts/talker.py). The first program
that we are going to discuss is talker.py.

import rospy
from std msgs.msg import String
def talker():
rospy.init_node('talker', anonymous=True)
pub = rospy.Publisher('chatter', String, queue size=10)
rate = rospy.Rate(10) # 10hz
while not rospy.is shutdown():
hello str = "hello world %s" % rospy.get time()
rospy.loginfo(hello str)
pub.publish(hello str)
rate.sleep()
if name_ ==" main_"':
try:
talker()
except rospy.ROSInterruptException:

pass

In the talker.py code, in the beginning, we can see we are importing
the rospy module and ros message modules. In the talker () function, we
can see the initialization of ROS node, the creation of a new ROS publisher.
After initializing the node, we are using a while loop to publish a string
message called “Hello World” to the /chatter topic. The working of this
node is the same as talker.cpp that we already discussed.

The subscribing node, called listener.py, should be kept inside scripts/
listener.py:

201

CHAPTER5 PROGRAMMING WITH ROS

import rospy
from std _msgs.msg import String
def callback(data):
rospy.loginfo(rospy.get caller id() + "I heard %s",
data.data)
def listener():
In ROS, nodes are uniquely named. If two nodes with
the same
node are launched, the previous one is kicked off. The
anonymous=True flag means that rospy will choose a unique
name for our 'talker' node so that multiple talkers can
run simultaneously.
rospy.init node('listener', anonymous=True)
rospy.Subscriber("chatter", String, callback)
spin() simply keeps python from exiting until this node
is stopped
rospy.spin()
if _name_ =="'
listener()

_main__ ':

The node is similar to listener.cpp. We are initializing the node and
creating a subscriber on the /chatter topic. After subscribing the topic,
it waits for ROS messages. The waiting is done with the rospy.spin()
function. Inside the callback() function, the message is printed.

Executing Python Nodes

In this section, we see how to execute the nodes. There is no need to
compile the Python nodes. We can just execute it using the following
commands. You can see the output of the commands from Figure 5-14.

Start the roscore
$ roscore

202

CHAPTER5 PROGRAMMING WITH ROS

Start the talker.py

$ rosrun hello world talker.py
Start the listener.py

$ rosrun hello world listener.py

Figure 5-14. Output of talker and listener Python nodes

Creating Launch Files

This section discusses how to write launch files for C++ and Python nodes.
The advantage of ROS launch files is that we can run any number of nodes
in a single command.

We can create a folder called launch inside the package and keep the
launch files in that folder.

The following is talker listener.launch, which can run C++ executables:

<launch>
<node name="listener_node" pkg="hello world" type="listener"
output="screen"/>
<node name="talker node" pkg="hello world" type="talker"
output="screen"/>

</launch>

203

CHAPTER5 PROGRAMMING WITH ROS

This launch file can run the talker and listener nodes in one shot.
The package name of the node is in the pkg= field, and the name of the
executable is in the type= field. You can assign any name to the node. It is
better if it is similar to the executable name.

After saving the launch file inside the launch folder, you may have to
change the permission of the executable.

The following shows how to do that:

$ hello world/launch$ sudo chmod +x talker_listener.launch

The following is the command to execute this launch file. We can
execute it from any terminal path.

$ roslaunch hello world talker listener.launch

After the roslaunch command, use the package name and then the
launch file name.

Figure 5-15 shows the output.

] ros@ros-VirtualBox: ~ 116x24

Figure 5-15. Output of talker_listener.launch file

To launch the Python nodes, use the following launch file. You can save
itas launch/talker listener python.launch.

204

CHAPTER5 PROGRAMMING WITH ROS

<launch>
<node name="listener node" pkg="hello world" type="listener.
py" output="screen"/>
<node name="talker node" pkg="hello world" type="talker.py"
output="screen"/>

</launch>

After saving it, change the permissions of the file too:

$ hello_world/launch$ sudo chmod +x talker listener_
python.launch

Then execute the launch file using the roslaunch command:
$ roslaunch hello world talker listener python.launch

The output is the same as with the C++ nodes. We can stop the launch
file by pressing Ctrl+C in the terminal in which the launch file is running.

Visualizing a Computing Graph

Do you want to see what'’s happening when the launch files are executing?
The rqt_graph GUI tool visualizes the ROS computation graph.
Use any of the launch files that we created in the previous section:

$ roslaunch hello world talker listener.launch
And in another terminal, run the following:

$ rqt_graph

205

CHAPTER5 PROGRAMMING WITH ROS

Figure 5-16 shows the output of this GUI tool.

rqt_graph__RosGraph - rgt o &

D Node Graph D@ -1

& | Modes only -/ / SEE
Group: |2 = Namespaces v Actions ¥ tf v Images | ¥ Highlight v Fit | o

Hide: | Dead sinks Leaf topics Debug « tf v Unreachable v Params

Figure 5-16. Output of rqt_graph tool

In the graph, you see talker node, which is the name given to talker
in the launch file. 1istener node is the name of the listener node.
/chatter is the topic published by the talker node. It is subscribed by the
listener node.

All the debug messages from these two nodes are going to /rosout.
The debug messages are message that we printed using ROS debug
functions (http://wiki.ros.org/roscpp/Overview/Logging). We have
already discussed those functions. The /rqt_gui node is also sending
debug statements to /rosout.

This is how the ROS computation graph works.

Programming turtlesim Using rospy

We are done with the “Hello World” ROS example in C++ and Python. In
this section, we use a more interesting application. We saw the turtlesim

206

http://wiki.ros.org/roscpp/Overview/Logging

CHAPTER5 PROGRAMMING WITH ROS

application in ROS. Now we look at how to program turtlesim using rospy
Py. We are using rospy for the demo because it is very simple to prototype.
In turtlesim, there is a turtle that we can move around the workspace.

Moving turtlesim

This section discusses how to program turtlesim to move around its
workspace.
You already know how to start the turtlesim application. The following

is the list of commands to run:

Starting roscore

$ roscore

Running turtlesim node in another terminal
$ rosrun turtlesim turtlesim node

Here is the list of topics which is publishing by
turtlesim node

$ rostopic list

/rosout

/rosout_agg

/turtle1/cmd_vel

/turtlei/color_sensor

/turtlei/pose

To move the turtle inside the turtlesim application, publish the linear
and angular velocity to the /turtlei/cmd_vel topic.

Check the type of the /turtle1/cmd_vel topic by using the following
command:

$ rostopic type /turtleil/cmd vel
geometry msgs/Twist

207

CHAPTER5 PROGRAMMING WITH ROS

This means that the /cmd_vel topic has the geometry msgs/Twist
message type, so we have to publish the same message type to this topic to
move the robot.

To see the geometry msgs/Twist definition, use the following
command:

$ rosmsg show geometry msgs/Twist

The output of the command is shown in Figure 5-17.

Figure 5-17. Definition of geometry_msgs/Twist message

The twist message has two subsections: linear velocity and angular
velocity.

If we set the robot’s linear velocity component, it moves forward or
backward. In turtlesim, we can only set the linear.x component because it
can move only in x direction; there is no motion along y and z. Also, we can
set angular.z components to rotate the robot on its axis. There is no effect
to other components.

More information about this message is at http://docs.ros.org/api/
geometry msgs/html/msg/Twist.html.

208

http://docs.ros.org/api/geometry_msgs/html/msg/Twist.html
http://docs.ros.org/api/geometry_msgs/html/msg/Twist.html

CHAPTER5 PROGRAMMING WITH ROS

How can we move the topic through the command line? By using
rostopic. The following command publishes the linear.x = 0.1 velocity to
the turtlesim node:

$ rostopic pub /turtlei/cmd vel geometry msgs/Twist "linear:
x:0.1
y:0
z:0
angular:
x:0
y:0
z:0"

Note You don’t need to enter the complete command. Use the Tab
key to autocomplete the command. Just type rostopic pub /turtle1/
cmd_vel, and use the Tab key to autocomplete other fields.

How do we move the turtle in a Python node?

We are going to create a new node called move_turtle and publish a
twist message to the turtlesim node. Figure 5-18 shows the communication
between the two nodes.

Figure 5-18. Computation graph of move_turtle node and
turtlesim node

209

CHAPTER5 PROGRAMMING WITH ROS

The following is the code for the move_turtle.py node. You can read the
comments in the code to get a better idea about each line of code.

#!/usr/bin/env python
import rospy
#Importing Twist message: Used to send velocity to Turtlesim
from geometry msgs.msg import Twist
#Handling command line arguments
import sys
#Function to move turtle: Linear and angular velocities are
arguments
def move turtle(lin vel,ang vel):
rospy.init _node('move turtle', anonymous=False)
#The /turtlei/cmd vel is the topic in which we have to
send Twist messages
pub = rospy.Publisher('/turtle1i/cmd vel', Twist, queue_
size=10)
rate = rospy.Rate(10) # 10hz
#Creating Twist message instance
vel = Twist()
while not rospy.is_shutdown():
#Adding linear and an gular velocity to
the message

vel.linear.x = lin vel
vel.linear.y = 0
vel.linear.z = 0
vel.angular.x = 0
vel.angular.y = 0

vel.angular.z = ang_vel
rospy.loginfo("Linear Vel = %f: Angular
Vel = %f",lin _vel,ang vel)

#Publishing Twist message

210

CHAPTER5 PROGRAMMING WITH ROS

pub.publish(vel)
rate.sleep()

if name_ ==" main_"':

#Providing linear and angular velocity through

command line

move_turtle(float(sys.argv[1]),float(sys.argv[2]))
except rospy.ROSInterruptException:

pass

This code takes the linear and the angular velocity through a command
line. We can use the Python sys module to get the command-line
arguments inside our code. Once it has the linear velocity and the angular
velocity, it calls the move turtle() function, which inserts both velocities
into a twist message and publishes it.

You can save the code as move_turtle.py and change the permission to
executable.

The following shows how to run it:

Start roscore

$ roscore

Start the turtlesim node

$ rosrun turtlesim turtlesim node

Run the move_turtle.py node along with the command-line
arguments, which are 0.2 and 0.1. That is, linear velocity = 0.2 m/s and
angular velocity = 0.1 rad/s.

$ rosrun hello world move turtle.py 0.2 0.1

You get the output shown in Figure 5-19 if you run this code. It creates
a circle.

211

CHAPTER5 PROGRAMMING WITH ROS

Turtlesim

Figure 5-19. Output of move_turtle.py

Printing the Robot’s Position

You have seen how to publish the turtle’s velocity. Now you are going to

learn how to get the turtle’s current position from the /turtlei/pose topic.
Restart turtlesim_node and close move_turtle.py. Echo the /turtle1/

pose topic using rostopic. The turtle’s current position is shown in

Figure 5-20.

$ rostopic echo /turtlel/pose

212

CHAPTER5 PROGRAMMING WITH ROS

Figure 5-20. Turtle pose from topic /turtlel/pose

You see the current (x,y,theta) value of the robot and the turtle’s
current linear and angular velocities.

If you want to get this position in a Python node, you have to subscribe
the called /turtle1/pose topic. To do that and get the data from the
message, you have to know the ROS message type. The following finds the
message type:

$ rostopic type /turtlel/pose
turtlsim/Pose

If you want to know the message definition, use the following
command:

$ rosmsg show turtlesim/Pose

As shown in Figure 5-21, there are five terms inside the message: x, y,
theta, linear velocity, and angular velocity.

213

CHAPTER5 PROGRAMMING WITH ROS

iow turtlesim/Pose

Figure 5-21. ROS message definition of turtlesim/Pose

To learn more about this message, refer to http://docs.ros.org/api/
turtlesim/html/msg/Pose.html.

Let’s modify the existing move_turtle.py and add the option to
subscribe the /turtlel/pose topic. Save this code as move_turtle_get_
pose.py.

Figure 5-22 shows how the program works. It is feeding velocity and
subscribing the position from the turtlesim node at the same time.

/move_turtle furtiel/cmd vel '——m

fturtiel/pose

Figure 5-22. move_turtle_get_pose.py code

#!/usx/bin/env python

import rospy

from geometry msgs.msg import Twist

from turtlesim.msg import Pose

import sys

#/turtle1/Pose topic callback

def pose callback(pose):
rospy.loginfo("Robot X = %f : Y=%f : Z=%f\n",
pose.x,pose.y,pose.theta)

214

http://docs.ros.org/api/turtlesim/html/msg/Pose.html
http://docs.ros.org/api/turtlesim/html/msg/Pose.html

CHAPTER5 PROGRAMMING WITH ROS

def move turtle(lin vel,ang vel):
rospy.init node('move turtle', anonymous=True)
pub = rospy.Publisher('/turtlei/cmd vel', Twist, queue_
size=10)
#Creating new subscriber: Topic name= /turtleil/pose:
Callback name: pose callback
rospy.Subscriber('/turtle1/pose’,Pose, pose callback)
rate = rospy.Rate(10) # 10hz
vel = Twist()
while not rospy.is shutdown():
vel.linear.x = lin vel
vel.linear.y = 0
vel.linear.z = 0
0
0
vel.angular.z = ang_vel

vel.angular.x

vel.angular.y

rospy.loginfo("Linear Vel = %f: Angular Vel = %f",lin_
vel,ang vel)
pub.publish(vel)
rate.sleep()
if name_ =="_ main_"':
try:
move_turtle(float(sys.argv[1]),float(sys.argv[2]))
except rospy.ROSInterruptException:
pass

This code is self-explanatory. You can see comments where the code
for subscribing the /turtlei1/pose topic is added.

Run the code by using the following commands. Figure 5-23 shows that
the code is printing the robot’s positon and velocity.

215

CHAPTER5 PROGRAMMING WITH ROS

Starting roscore

$ roscore

Restarting the turtlesim node

$ rosrun turtlesim turtlesim node

Running move turtle get pose.py code

$ rosrun hello world move turtle get pose.py 0.2 0.1

ros@ros-VirtualBox: ~ 51x11

TurtleSim

Figure 5-23. Output of move_turtle_get_pose.py code

If we are getting both position and velocity, we can simply command
the robot to move to a specific distance, right? The next example is moving
the robot with distance feedback.

The code is a modification of the move_turtle_get_pose.py code.

216

CHAPTER5 PROGRAMMING WITH ROS

Moving the Robot with Position Feedback

We can save this code as move_distance.py. The communication between
this node and turtlesim is shown in Figure 5-24.

fturtiel/cmd_vel

/move_turtle
[turtlel/pose

> fturtlesim

Figure 5-24. Communication of move_distance.py to turtlesim

This node is simple. We can give linear velocity, angular velocity, and
distance (global distance) to it as a command-line argument.

Along with publishing velocity to the turtle, it checks the distance
moved. When it reaches its destination, the turtle or robot stops. You can
read the comments inside the code to understand what's happening inside
the code.

#!/usr/bin/env python
import rospy
from geometry msgs.msg import Twist
from turtlesim.msg import Pose
import sys
robot x = 0
def pose callback(pose):
global robot x
rospy.loginfo("Robot X = %f\n",pose.x)
robot_x = pose.x
def move turtle(lin vel,ang vel,distance):
global robot x
rospy.init _node('move_turtle', anonymous=True)
pub = rospy.Publisher('/turtlel/cmd vel', Twist, queue size=10)
rospy.Subscriber('/turtle1/pose’,Pose, pose callback)
rate = rospy.Rate(10) # 10hz

217

CHAPTER5 PROGRAMMING WITH ROS

vel = Twist()
while not rospy.is_shutdown():

vel.linear.x = lin vel
vel.linear.y = 0
vel.linear.z = 0

vel.angular.x = 0
vel.angular.y = 0
vel.angular.z = ang_vel
#rospy.loginfo("Linear Vel = %f: Angular Vel = %f",lin_
vel,ang_vel)
#Checking the robot distance is greater than the
commanded distance
If it is greater, stop the node
if(robot x »>= distance):
rospy.loginfo("Robot Reached destination™)
rospy.logwarn("Stopping robot")
break
pub.publish(vel)
rate.sleep()
if _name__ == "' main_ "':
try:
move turtle(float(sys.argv[1]),float(sys.argv[2]),
float(sys.argv[3]))
except rospy.ROSInterruptException:
pass

We can run the code by using the following commands. You can see
the output in Figure 5-25.

Start roscore

$ roscore

Start turtlesim node

$ rosrun turtlesim turtlesim node

218

CHAPTER5 PROGRAMMING WITH ROS

Figure 5-25. Output of move_distance.py

We have played with lot of things in turtlesim using ROS topic. Now, we
can work with ROS service and a ROS parameter. The next example simply
resets the turtlesim workspace and randomly changes the background
color. The workspace reset is accomplished using ROS services, and the
color changing is done using ROS parameter. When the workspace resets,
the robot’s position resets to the home position and the turtle model
changes.

Run the move distance.py. Mention linear, angular velocity and
the global distance the robot should travel.
$ rosrun hello world move distance.py 0.2 0.0 8.0

Reset and Change the Background Color

This code shows how to call a service and a parameter from a Python code.
The following gets the list of services in the turtlesim node (see
Figure 5-26):

$ rosservice list

219

CHAPTER5 PROGRAMMING WITH ROS

Figure 5-26. List of turtlesim node services

There are several services, but we want the /reset service. When we call
this service, the workspace resets.
We can retrieve the type of service from the following topic:

$ rosservice type /reset
std_srvs/Empty

std_srvs/Empty is a built-in service from ROS. It has no fields.
The following command shows the field of the corresponding topic:

$ rossrv show std_srvs/Empty

We can also list the ROS parameters. You can see the turtlesim
background color in three parameters. If we change these parameters, we
change the color. After setting the color, we have to reset the workspace to
show the new color (see Figure 5-27).

$ rosparam list

220

CHAPTER 5 PROGRAMMING WITH ROS

S rosparam list

_ros_virtualbox_ 3

Figure 5-27. List of parameters from turtlesim node

The following gets the value from each parameter:

$ rosparam get /background b
255

The following topic publishes the background color (see Figure 5-28):

$ rostopic echo /turtlel/color_sensor

Figure 5-28. Topic publishing the color

221

CHAPTER5 PROGRAMMING WITH ROS

The following code sets the parameter for the background color and
resets the workspace by calling /reset service:

#!/usr/bin/env python

import rospy

import random

from std_srvs.srv import Empty

def change color():
rospy.init node('change color', anonymous=True)
#Setting random values from 0-255 in the color parameters
rospy.set_param('/turtlesim/background b",random.
randint(0,255))
rospy.set_param('/turtlesim/background g',random.
randint(0,255))
rospy.set_param('/turtlesim

/background r',random.randint(0,255))

#Waiting for service /reset

rospy.wait for service('/reset')

#Calling /reset service
try:

serv = rospy.ServiceProxy('/reset’,Empty)
resp = serv()
rospy.loginfo("Executed service")
except rospy.ServiceException as e:
rospy.loginfo("Service call failed: %s" %e)
rospy.spin()
if name_ =="_ main_"':
try:
change color()
except rospy.ROSInterruptException:

pass

222

CHAPTER5 PROGRAMMING WITH ROS

We can save the code as turtle_service_param.py. The following
commands start the ROS node (see Figure 5-29):

Starting roscore

$ roscore

Starting turtlesim node

$ rosrun turtlesim turtlesim node

Execute the turtle service param.py code

$ rosrun hello world turtle service param.py

Turtlesim x

ros@ios-VirtualBox - 41x11 risBros-VirtualBo: - 4811 ;

Figure 5-29. Resetting workspace and changing colors

You have successfully done the turtlesim exercise. The turtle is actually
arobot. You can do all of the operations that you did with the turtle with a
physical robot too. The next section explains how to do this operation with
an actual robot. It is only a simulation but uses the same procedure as with
real hardware.

223

CHAPTER5 PROGRAMMING WITH ROS

Programming TurtleBot Simulation
Using rospy

There are several robots available on the market that run completely on
ROS and Ubuntu. The TurtleBot series are a low-cost robots that are used
for education and research. You can learn more about the TurtleBot 3
robot at https://emanual.robotis.com/docs/en/platform/turtlebot3/
features/#specifications. If you want to check out the latest version

of a TurtleBot, go to http://emanual.robotis.com/docs/en/platform/
turtlebot3/overview/.

In this section, we program TurtleBot 3. We look at the installation of
TurtleBot 3 packages and how to start the simulation in Gazebo. The code
that we developed for turtlesim works on the TurtleBot 3 robots. The first
step is to install the TurtleBot 3 packages.

Installing TurtleBot 3 Packages

The TurtleBot packages are already available in the ROS repository, so we
just need to install them.

The first step is to update the list of packages by using the following
command:

$ sudo apt-get update
Installing TurtleBot simulation packages:

$ sudo apt install ros-noetic-turtlebot3
$ sudo apt install ros-noetic-turtlebot3-simulations

These packages install the TurtleBot simulation environment in
Ubuntu 20.04 LTS.

224

https://emanual.robotis.com/docs/en/platform/turtlebot3/features/#specifications
https://emanual.robotis.com/docs/en/platform/turtlebot3/features/#specifications
http://emanual.robotis.com/docs/en/platform/turtlebot3/overview/
http://emanual.robotis.com/docs/en/platform/turtlebot3/overview/

CHAPTER5 PROGRAMMING WITH ROS

Launching the TurtleBot Simulation

After installing the TurtleBot packages, launch the simulation of TurtleBot
3 by using the following command:

$ roslaunch turtlebot3 gazebo turtlebot3 world.launch

Note It may take time to load the environment in Gazebo. Initially,
the Gazebo window may be black because some 3D mesh files are
downloading. The time it takes to complete the download depends
on your Internet speed. If you feel that Gazebo is stuck, just cancel by
pressing Ctrl+C, and launch it again.

This command launches a ROS launch file from the turtlebot_gazebo
package. If the simulation loads successfully, you get a window like the one

shown in Figure 5-30.

Figure 5-30. TurtleBot 3

225

CHAPTER5 PROGRAMMING WITH ROS

Gazebo Simulation

If you want to move the robot around the environment, start a new

terminal and launch the following command:
$roslaunch turtlebot3_teleop turtlebot3_teleop key.launch

When you run this command, you get the following messages on the
terminal. Click the terminal using a mouse, and press the keys mentioned
on the terminal. You can move the robot using W and X keys. To move the
robot to the right and left, press keys A and D, respectively. To stop the
robot, press the S key (see Figure 5-31).

Control Your TurtleBot3!

Moving around:
W

a d

5
X

: increase/decrease linear velocity (Burger : ~ ©.22, Waffle and Waffle Pi
~ 8.26)
: increase/decrease angular velocity (Burger : ~ 2.84, Waffle and Waffle Pi
: ~ 1.82)

space key, s : force stop
CTRL-C to quit

currently: linear vel -08.22 angular vel 1.3
currently: linear vel -08.22 angular vel 1.4000000000000001
currently: linear vel -0.22 angular vel 1.5000000000000002
[turtlebot3_teleop_keyboard-1] process has finished cleanly

o s o . B eh-ag 2da 9b

Figure 5-31. TurtleBot 3 teleop application

If you want to stop the robot, press spacebar; if you want to stop the
simulation or teleoperation, just press Ctrl+C.

226

CHAPTER5 PROGRAMMING WITH ROS

Moving a Fixed Distance Using a
Python Node

In this section, we move the robot to a fixed distance using the node that
we used for turtlesim. We can modify the move_distance.py node.

For turtlebot the velocity Twist message topic is: /cmd_vel
mux/input/teleop: Message type: geometry msgs/Twist

Robot position feedback topic: /odom : Message type: nav_msgs/
Odometry

We get the definition of odometry from the following command:
$ rosmsg show nav_msgs/Odometry

It is a built-in message type in ROS.

We have to import the modules for these messages. The logic of
the robot movement is the same as in turtlesim. The distance is global
distance. The initial origin of the robot is 0,0,0.

#!/usr/bin/env python
import rospy
from geometry msgs.msg import Twist
from nav_msgs.msg import Odometry
import sys
robot x = 0
def pose callback(msg):
global robot x
#Reading x position from the Odometry message
robot_x = msg.pose.pose.position.x
rospy.loginfo("Robot X = %f\n",robot x)
def move turtle(lin vel,ang vel,distance):
global robot x
rospy.init _node('move_turtlebot', anonymous=False)

227

CHAPTER5 PROGRAMMING WITH ROS

#The Twist topic is /cmd_vel
pub = rospy.Publisher('/cmd_vel/teleop', Twist, queue_
size=10)
#Position topic is /odom
rospy.Subscriber('/odom',0dometry, pose callback)
rate = rospy.Rate(10) # 10hz
vel = Twist()
while not rospy.is_shutdown():
vel.linear.x = lin vel
vel.linear.y = 0
vel.linear.z = 0
vel.angular.x = 0
vel.angular.y = 0
vel.angular.z = ang_vel
#rospy.loginfo("Linear Vel = %f: Angular Vel = %f",lin_
vel,ang vel)
if(robot x »>= distance):
rospy.loginfo("Robot Reached destination™)
rospy.logwarn("Stopping robot")
vel.linear.x = 0

vel.linear.z = 0
break
pub.publish(vel)
rate.sleep()
if name_ ==" main_"':
try:
move_turtle(float(sys.argv[1]),float(sys.
argv[2]),float(sys.argv[3]))
except rospy.ROSInterruptException:
pass

228

CHAPTER 5 PROGRAMMING WITH ROS
We can run this code by using the following command:
$ roslaunch turtlebot3 gazebo turtlebot3 world.launch

Start the TurtleBot simulation. If you are launching a file, you don’t
need to start roscore because roslaunch already runs roscore.

Run the move distance node with command-line arguments (see
Figure 5-32):

$ rosrun hello world move turtlebot.py 0.2 0 1

Figure 5-32. TurtleBot 3 moving 1 meter from its origin

Finding Obstacles

Using the same logic, we can find obstacles around TurtleBot. You can
subscribe the laser scan topic from TurtleBot, which gives the obstacle
range around the robot.

Topic: /scan
Message Type: sensor_msgs/LaserScan

229

CHAPTER5 PROGRAMMING WITH ROS

Also, you get all the fields inside this message by using the following
command:

$ rosmsg show sensor msgs/LaserScan

A good exercise is to create an obstacle avoidance application in ROS.

Programming Embedded Boards Using ROS

You have seen how to program a robot in ROS, and you have seen robot
simulation. Now let’s discuss how to create robot hardware and program
using ROS.

One of the core ingredients of a robot is the microcontroller platform.
A microcontroller is basically a chip on which we can write our own code.
We can also configure the chip’s pins. Microcontrollers are used for various
applications. In robotics, controllers are used to interface sensors, such as
ultrasonic distance sensors, IR sensors, and so forth, and for adjusting the
speed of a robot’s motors. Microcontrollers can also communicate with a
PC via serial communication.

In this section, you look at some basic interfacing with popular
microcontroller platforms, such as the Arduino (www.arduino.cc) and the
Tiva-C Launchpad (www.ti.com/to0l/EK-TM4C123GXL), and with single-
board computers, such as Raspberry Pi 3 board (www.raspberrypi.org).

Let’s start with the Arduino board.

Interfacing Arduino with ROS

Arduino boards are on a microcontroller-based platform that program
using a C++-like programming language. There are a variety of Arduino
boards available (www.arduino.cc/en/Main/Products). We are going to
use the Arduino Mega, which is available at https://store.arduino.cc/
usa/arduino-mega-2560-rev3.

230

http://www.arduino.cc/
http://www.ti.com/tool/EK-TM4C123GXL
http://www.raspberrypi.org
http://www.arduino.cc/en/Main/Products
https://store.arduino.cc/usa/arduino-mega-2560-rev3
https://store.arduino.cc/usa/arduino-mega-2560-rev3

CHAPTER5 PROGRAMMING WITH ROS

Figure 5-33 shows the Arduino Mega 2560 Rev3 board.

Figure 5-33. Arduino Mega 2560 board

You can program the Arduino board by connecting to your PC. You can
download the Arduino IDE from www.arduino.cc/en/Main/Software.
When you launch the IDE, you first see the window shown in Figure 5-34.

File Edit Sketch Tools Help

sketch_aug09a

void setup() { ~
// put your setup code here, to run once:

}

void loop() [1’]
// put your main code here, to run repeatedly:

Figure 5-34. Arduino IDE

231

https://www.arduino.cc/en/Main/Software

CHAPTER5 PROGRAMMING WITH ROS

In the Arduino programming language, similar to C++, there are a lot
of libraries available for simplifying tasks. For example, there are libraries
for communicating with a PC, sending speed commands to motor drivers,
and so forth.

There is also a library for interfacing with ROS. Using this library,
the Arduino can send/receive messages to the PC. These messages
are converted to topics on the PC side. Arduino can publish data and
subscribe data, similar to a ROS node. Actually, Arduino acts like the ROS
hardware node.

First, let’s learn how to create an Arduino library for communicating
with the ROS system.

We have to install a ROS package to create this library. The following is
the command:

$ sudo apt install ros-noetic-rosserial-arduino

This installs the necessary packages to interface Arduino with ROS.
The next step is to open the Arduino IDE. Select File Menu »
Preference. You get the window shown in Figure 5-35.

232

CHAPTER5 PROGRAMMING WITH ROS

Preferences x

Settings Metwork
Sketchbook location:

/home/ros/snap/arduino/61/Arduing]

Browse
Editor language System Default ~ (requires restart of Arduino)
Editor Font size: 12
Interface scale Automatic | 100 0% (requires restart of Arduino)
Theme: Default theme v (requiresrestart of Arduing)
Show verbose output during: comgpilation upleoad
Compiler warnings: MNone v
| Display line numbers Enable Code Folding
Verify code after upload Use external editor
Check For updates on startup Save when verifying or uploading
| Use accessibility Features
Additional Boards Manager URLs m
eferences canbe edited directlyin the file
fhome/rosfsnap/arduino/é1/ arduinoi5/preferences.txt
(edit only when Arduine is not running)
QK Cancel

Figure 5-35. Arduino Preference window

Take a new terminal and switch to sketchbook folder path mentioned
in the Preference window. When you switch to this folder, you can find
another folder called libraries. You can then switch to the libraries
folder and execute the following command (see Figure 5-36):

$ rosrun rosserial arduino make_libraries.py .

233

CHAPTER5 PROGRAMMING WITH ROS

H serial_arduino
make_libraries.py .

Exporting to ./ros_1lib
Exporting actionlib

2 2edh q.
ctionGoal, ult T-?EtFFqUESt(..cul Iﬁtmtton [Pstf”tdt‘dcl'
eftﬁoal TwolntsAction,Tes u.ctionF‘:e.,ulf_

Exporting actionlib_msgs

Figure 5-36. Creating a ROS library for Arduino

When you run the preceding command, you can see messages print on
the terminal. This is actually creating the Arduino library for ROS.

After finishing the process, check the 1ibraries folder. The ros 1ib
folder is the Arduino library for ROS.

Close the Arduino IDE and restart. Then go to File » Examples » ros_
lib. You see a list of examples using Arduino and ROS. Let’s discuss a basic
example: Blink.

Blink is basically a Hello World example for the Arduino. When the
Arduino interfaces with ROS, we get a topic. When we publish to a topic, it
turns on, and when we publish again, its turns off. It is like LED toggling.

Figure 5-37 shows the Blink example.

234

CHAPTER5 PROGRAMMING WITH ROS

Blink | Arduine 1,815 o @

)

v nessagelbi const std_msgs::Empty% togpgle_msgl{
tel it i ILTINDY 2
1

ros: :Subscribercstd_megs: Enpty> subl“toggle led”, SnessageCt }:

nh.spinbncel) ;
! (1N

]

{

Figure 5-37. The Arduino Blink example

The workings of the code are self-explanatory. We create a node and
subscribe a topic called /toggle_led. When a message comes to the topic,
the LED turns on, and when the next data comes to the topic, the LED
turns off.

Let’s upload the code to Arduino. To do that, plug the Arduino to
a laptop.

Find the Arduino serial port by using the dmesg command (see
Figure 5-38):

$ dmesg

2: new full-speed USB device number 3 using ohci-pci
: New USB device found, idVendor=2341, idProduct=0043, bd

: New USB device strings: Mfr=1, Product=2, SerialNumber

2: Manufacturer: Arduino (www.arduino.cc)
: SerialNumber: 95632313234351E05112
: : ttyACM@: USB ACM device
: registered new interface driver cdc_acm
: USB Abstract Control Model driver for USB modems and IS

Figure 5-38. The output of dmesg command

235

CHAPTER5 PROGRAMMING WITH ROS

The Arduino serial device is /dev/ttyACMO.
Change the device’s permission by using the following command:

$ sudo chmod 777 /dev/ttyACMo
After that, select this serial device from the Arduino IDE:
Goto Tools->Port->ttyACMo

We can now compile this example and upload the code to the board.

After uploading the code, we have to execute the following commands
to see the topics from the Arduino. Execute each command in separate
terminals.

Starting roscore
$ roscore

Start the ROS serial server on the PC. The node does the conversion of
topics to and from the Arduino.

$ rosrun rosserial python serial node.py /dev/ttyACMoO
Publish a value to the /toggle_ led topic:
$ rostopic pub toggle led std msgs/Empty --once

This turns on the LED on the board. If we do it again, it turns off.

236

CHAPTER5 PROGRAMMING WITH ROS

Figure 5-39 shows the output.

LED ON LED OFF
Figure 5-39. The LED toggling command

There are more examples of ROS/Arduino interfacing at http://wiki.
ros.org/rosserial_arduino/Tutorials.

Installing ROS on a Raspberry Pi

The Raspberry Pi computer is a popular board for DIY projects and
robotics. The cost of the board is low, and its specifications are best for DIY
projects. The latest Raspberry Pi 4 board has the following specs:

e Name of SoC: Broadcom BCM2711B0 quad-core A72
(ARMv8-A) 64 bit at 1.5GHz

e GPU: Broadcom VideoCore VI

e Networking: 2.4GHz and 5GHz 802.11b/g/n/ac
wireless LAN

237

http://wiki.ros.org/rosserial_arduino/Tutorials
http://wiki.ros.org/rosserial_arduino/Tutorials

CHAPTER5 PROGRAMMING WITH ROS

e RAM: 1GB, 2GB, or 4GB LPDDR4 SDRAM

e Bluetooth: Bluetooth 5.0 and Bluetooth Low
Energy (BLE)

e GPIO: 40-pin GPIO header, populated
e Storage: microSD

e Ports: Two x micro-HDMI 2.0, 3.5 mm analogue audio-
video jack, Two x USB 2.0, Two x USB 3.0, Gigabit
Ethernet, Display Serial Interface (DSI), Camera Serial
Interface (CSI)

e Dimensions: 88 mm x 58 mm x 19.5mm, 46 g

The Raspberry Pi 4 is shown in Figure 5-40.

Figure 5-40. The Raspberry Pi 4 board

So how do you install an OS on this board and then install ROS onto it?
The next section explains the procedures for installing an operating
system and ROS.

238

CHAPTER5 PROGRAMMING WITH ROS

Burning an Ubuntu Mate Image
to a Micro SD Card

To install an OS on the Raspberry Pi 4, you need to buy a micro SD card
that is greater than 16GB. A micro SD card with class 10 is a great choice
for the Pi.

There is a micro SD card that you can buy at http://a.co/1HyY8qr.

You also need to buy a micro SD card reader or an SD card adapter to
plug into your laptop.

You can install the OS into the SD card using the following GUI tools:

o Balena Etcher (www.raspberrypi.org/software/)

o Raspberry Pi Imager (www.raspberrypi.org/
software/)

We are going to install Ubuntu Mate on the Raspberry Pi 4. You
can download Ubuntu Mate OS file from https://ubuntu-mate.org/
download/. Choose the Raspberry Pi option from the list. Download the
64-bit image file and open any of the preceding tools to write the download
file to you SD card.

After completing the writing process, you can unmount the SD card
from the PC and plug into the Raspberry Pi 4.

Booting to Ubuntu

After plugging in the SD card, plug a 5V, 3A supply to the Raspberry Pi 4,
and connect Pi to an HDMI monitor. Also, connect a keyboard and a
mouse via USB.

The system boots up, and you see the Ubuntu Mate desktop.

239

http://a.co/1HyY8qr
http://www.raspberrypi.org/software/
http://www.raspberrypi.org/software/
http://www.raspberrypi.org/software/
https://ubuntu-mate.org/download/
https://ubuntu-mate.org/download/

CHAPTER5 PROGRAMMING WITH ROS

Installing ROS on a Raspberry Pi

You can follow the ROS installation instructions at http://wiki.ros.org/
noetic/Installation/Ubuntu. These instructions are the same for the
armhf platform, so it works well in Raspberry Pi 4.

Summary

This chapter discussed programming with ROS. We started the chapter by
discussing creating a ROS workspace. We saw how to create a workspace
and how to create a ROS package. After creating a package, we saw how
to write ROS nodes using C++ and Python. We wrote a sample ROS node
using C++ and Python. We discussed ROS launch files and how to include
our nodes in a launch file. We created a set of examples to work with
turtlesim in ROS, and we worked with a Gazebo simulation of TurtleBot 3.
At the end of the chapter, we saw how to program embedded boards such
as the Arduino and the Raspberry Pi using ROS, which is very useful when
creating robots.

The next chapter discusses how to create wheeled robot hardware and
software using ROS.

240

http://wiki.ros.org/noetic/Installation/Ubuntu
http://wiki.ros.org/noetic/Installation/Ubuntu

CHAPTER 6

Robotics Project
Using ROS

The previous chapter discussed programming using ROS client libraries
such as rospy and roscpp. In this chapter, you see how to apply those
things to a real robot. You see how to make a low-cost, differential drive
robot that is compatible with ROS. You also see how to perform dead
reckoning in the robot using ROS. By doing this project, you get a clearer
understanding of ROS concepts and where to apply them.

You are going to apply things that you learned in previous chapters,
so you need to have a clear understanding of the last five chapters to do
this project. You see how to assemble the robot hardware, how to interface
sensors using Arduino, how to interface a ROS PC and a robot using a
Bluetooth interface, how to create a robot model in ROS, and, finally, how
to write nodes to move the robot and perform dead reckoning.

Getting Started with Wheeled Robots

Wheeled robots are a popular category of mobile robots. As the name
suggests, wheels are used for robot locomotion. The differential drive is the
most common and simple type of configuration used in wheeled robotics.
In this configuration, there are two active wheels that move the robot and
one or more passive wheels to support the active wheels. The active wheels

© Lentin Joseph and Aleena Johny 2022 241
L. Joseph and A. Johny, Robot Operating System (ROS) for Absolute Beginners,
https://doi.org/10.1007/978-1-4842-7750-8_6

https://doi.org/10.1007/978-1-4842-7750-8_6#DOI

CHAPTER6 ROBOTICS PROJECT USING ROS

have actuation, but passive wheels do not have any actuation. In this
chapter, you see how to build differential drive robot hardware and write
software to interface with ROS. From this chapter, you get a fundamental
idea about interfacing a robot to ROS.

Differential Drive Robot Kinematics

We are going to build a differential wheeled robot that looks like what’s
shown in Figure 6-1.

Figure 6-1. The differential drive configuration

In differential drive, there are two wheels on the robot connected in the
opposite direction. These wheels are attached to actuators that rotate the
wheels once powered. Adjusting the speed of the motor moves the robot in
different directions.

If the two motors are rotating in the same direction at the same speed,
the robot moves either forward or backward. If the left wheel is static and
the right wheel moves, the robot rotates around the left wheel and vice
versa. If the two wheels are moving at the same speed but in opposite

242

CHAPTER 6 ROBOTICS PROJECT USING ROS

directions, the robot spins about its axis. Adjusting the speed of the wheel
motors changes the position and orientation of the robot.

In this project, we are trying to move a differential robot from point A
to point B. How do we do that? To achieve this, we have to calculate the
exact position and orientation of the robot from the wheel speed. How
do we calculate the speed of the robot’s wheels? By using a sensor called
wheel encoders. The wheel encoders count each revolution of the wheel.
This count calculates the velocity and thereby the displacement and
orientation of the robot.

The position and orientation of a robot can be represented as (X, y, z)
and (roll, pitch, and yaw). The x, y, z represents the robot’s 3D coordinates.
Rollis the sidewise rotation of the robot, pitch is the forward and backward
rotation of the robot, and yaw is commonly called the heading of the robot.

Consider a robot on a 2D plane. We only need to take care of three
components to represent the robot position, that is, (x, y, 0), where 6(theta)
is the yaw, or heading, of the robot.

An illustration of x, y, and theta is shown in Figure 6-2.

Y

X

Figure 6-2. The robot’s position (x, y, 0) in a global coordinate system

243

CHAPTER6 ROBOTICS PROJECT USING ROS

To analyze the motion of the robot, such as calculating the current
position and orientation while the robot is moving, we have to solve the
robot’s kinematics equation. Robot kinematics is the study of a robot’s
motion without considering the cause of it. There are two types of
kinematics equations: forward and inverse. Kinematics equations vary by
the type of robot.

In a differential drive robot, the forward kinematics is defined as
follows: (x, y, 0) is the current position of the robot, and t is the current
time. The kinematics equation can find the next position of the robot
(xy,0’) in t+6t, having known values of V left and V right, where &t is the
small interval of time and V left and V right are the velocity of the left and
right wheels.

So how do we find (x,y’,6")? To find the future position of the robot, we
can analyze a differential drive robot model. Figure 6-3 shows the analysis
of a differential drive robot model.

IcC

vr

Figure 6-3. Analysis of differential drive configuration

Figure 6-3 shows some of the robot’s parameters. The two wheels are
separated by distance, 1. The velocities of the two wheels are Vr and V1.
There are three new terms: R, ICC (instantaneous center of rotation), and w.

244

CHAPTER 6 ROBOTICS PROJECT USING ROS

ICC is an imaginary center point of rotation for both wheels. R is the
distance from ICC to the center of the robot. w is the angular velocity
(2n/ 180) (rad/s).

Figure 6-4 is another illustration of a moving robot configuration. ®dt is
the angular displacement of the robot in a time step called dt.

X

ICCx

Figure 6-4. Analyzing the motion of a differential drive robot

Figure 6-5 shows the equation to compute (xy’,0’) and the equations
for R, odt, and ICC.

245

CHAPTER6 ROBOTICS PROJECT USING ROS

cos(wdf) - sin(wdt) -ICC, ICC,
= sm((oéir) CO\([D&?) y- ICC + |ICC,

©dt

where

R=112(n+n)!(n.-—nr)
wdt = (n,—ny) step /1
ICC =[x-R sinf, y+R cosf].

Figure 6-5. Forward differential kinematics equations

In the equation, n, and n, are encoder counts from each wheel. And
step is the value corresponding to the distance the wheel covered for each
tick of the encoder. So basically, we can compute the robot’s next position
from the robot’s current position, encoder ticks, and fixed measurements,
such as step distance and the distance between wheels.

You see how to implement these equations in ROS in upcoming
sections.

Building Robot Hardware

This section discusses the complete construction of a differential
drive robot.

We are not making a robot from scratch; instead, we can buy a low-cost
robotic platform and integrate all the sensors to make it work. We are using
the standard two-wheel drive (2WD) platform, as shown in Figure 6-6.

246

CHAPTER 6 ROBOTICS PROJECT USING ROS

Figure 6-6. 2WD robotic kit

Buying Robot Components

The following lists the complete robot kit components that you need to
purchase.

Robot Chassis

The 2WD kit consists of a plastic chassis, a pair of plastic gear motors, a
caster wheel (free wheel), an encoder disc, and the necessary nuts, bolts,
and screws.

Figure 6-7 shows the components in the kit.

247

CHAPTER6 ROBOTICS PROJECT USING ROS

Figure 6-7. Components of 2WD robotic kit

This is a common platform available at most online robotic websites,
including https://robu.in/product/transparent-robot-smart-cazr-
chassis/.

This robotic kit costs around $12.

Additional Motors and Wheels

We can either use the motors and wheels that come with the kit, or we can
select motors and wheels with a specific configuration. Here, we are using
a 100 RPM motor with a 6.5 cm wheel diameter.

The motor and wheels can be purchased at http://a.co/7XyvdKh.

Motor Driver

The motor driver is an electronic circuit board that adjusts the speed of the
motor by feeding a pulse-width modulated (PWM) signal as input. We are
using the motor driver shown in Figure 6-8 for this robot.

248

https://robu.in/product/transparent-robot-smart-car-chassis/
https://robu.in/product/transparent-robot-smart-car-chassis/
http://a.co/7XyvdKh

CHAPTER 6 ROBOTICS PROJECT USING ROS

Figure 6-8. L-298 motor driver

This motor driver board uses a L298N chip (www. sparkfun.com/
datasheets/Robotics/L298 H Bridge.pdf) with input voltage in the
range of 5 volts to 35 volts, and a maximum drive current is up to 2
amperes. One motor driver controls the speed of two motors, so we only
need a single-motor driver for this robot.

This board can be purchased at http://a.co/0a3dJR8. This board is
popular, so if the website does not work out, you can Google the board to
find another website.

Optical Encoder

An important sensor is needed to measure the distance that each of the
robot’s wheels traverses. There are different kinds of wheel encoders
available on the market. Optical encoders and quadrature encoders

are commonly used. In optical encoders, there is an IR LED to detect

the wheel rotation, but magnetic quadrature encoders use a Hall effect
sensor to detect the rotation. The quadrature encoder can detect the
forward and backward movement of wheels; for example, if the wheel is
moving forward, the count increments; if it is moving backward, the count

249

http://www.sparkfun.com/datasheets/Robotics/L298_H_Bridge.pdf
http://www.sparkfun.com/datasheets/Robotics/L298_H_Bridge.pdf
http://a.co/0a3dJR8

CHAPTER6 ROBOTICS PROJECT USING ROS

decrements. In most optical encoders, however, we have to use our logic to
detect wheel direction.

With this robot, we are using a simple optical encoder. We can use an
optical encoder and an encoder disk that can attach to the wheel shaft.
Figure 6-9 shows what the sensor looks like and how to connect the optical
disk to the motor shaft.

Figure 6-9. The optical encoder kit for a single wheel. Left: optical
encoder. Right: encoder disk

We are choosing a low-cost optical encoder kit for this project.
Figure 6-9 shows the encoder pack. It has an optical disk and an optical
encoder sensor for a single wheel. We need a pair of this for our project.

Figure 6-10 shows how to connect the wheel optical disk and the
encoder. Always check that the encoder disk is inside the encoder slot.
There is a provision to put the optical encoder in the magician robot kit.

250

CHAPTER6 ROBOTICS PROJECT USING ROS

Figure 6-10. Attaching the optical disk and sensor to the wheel shaft

The cost of the encoder pair is less than $10.

You can buy the kit at https://robokits.co.in/motors/bo-motor/
bo-motor-wheel-encoder-disc-encoder-sensor-combo.

The following website provides more information on types of
encoders: www.anaheimautomation.com/manuals/forms/encoder-guide.
php#sthash.6YmwLmvD.dpbs.

Microcontroller Board

We are using the Arduino Mega 2560 board to control the robot motors
and get sensor data. It is available at many online stores, including www.
robotshop.com/en/arduino-mega-2560-microcontroller-rev3.html.

Bluetooth Breakout

We are communicating with the robot using Bluetooth interface,
particularly with a popular low-cost module called HC-05 Bluelink 5V TTL
(see Figure 6-11). This module is directly compatible with Arduino. There
are other breakouts available on the market, but it is working on 3.3V level,
so you may need to use a level shifter to make it work.

251

https://robokits.co.in/motors/bo-motor/bo-motor-wheel-encoder-disc-encoder-sensor-combo
https://robokits.co.in/motors/bo-motor/bo-motor-wheel-encoder-disc-encoder-sensor-combo
http://www.anaheimautomation.com/manuals/forms/encoder-guide.php#sthash.6YmwLmvD.dpbs
http://www.anaheimautomation.com/manuals/forms/encoder-guide.php#sthash.6YmwLmvD.dpbs
http://www.robotshop.com/en/arduino-mega-2560-microcontroller-rev3.html
http://www.robotshop.com/en/arduino-mega-2560-microcontroller-rev3.html

CHAPTER6 ROBOTICS PROJECT USING ROS

Figure 6-11. The Bluelink Bluetooth module

You can order this module at waw.rhydolabz.com/wireless-
bluetooth-ble-c-130_132/hc05-bluelink-5v-ttl-p-1726.html.

Sharp IR Range Sensor

We are using a popular, low-cost sharp IR sensor (GP2Y0A41SKOF) with
arange of 4-30 cm for obstacle detection (see Figure 6-12) in robots. The
sensor gives output voltage proportional to the distance measured. The
voltage from the sensor can be converted to corresponding digital values
with the help of an ADC inside the microcontroller. The value can then
calibrate with distance and can use for detecting obstacle.

Figure 6-12. The sharp IR sensor (GP2Y0A41SKOF)

252

http://www.rhydolabz.com/wireless-bluetooth-ble-c-130_132/hc05-bluelink-5v-ttl-p-1726.html
http://www.rhydolabz.com/wireless-bluetooth-ble-c-130_132/hc05-bluelink-5v-ttl-p-1726.html

CHAPTER6 ROBOTICS PROJECT USING ROS

You can buy the sharp IR sensor from the following link: https://
robu.in/product/sharp-ir-distance-measuring-sensor-unit-4-30-
cm-cable/.

Block Diagram of the Robot

Figure 6-13 shows the block diagram of the robot that we are going
to build.

L-298

Battery 7V -9V

A - Bluetooth
TX1-18 Module
IN 2 X
Arduino
Mega 2560

H-Bridge
Motor Driver ENB
IN 3

IR Range finder

|y
Encoder Encoder 3%

Figure 6-13. Block diagram of mobile robot with pinout

The two motors are connected to an L-298 H-bridge (www.build-
electronic-circuits.com/h-bridge/). You can connect one motor
polarity opposite the other, because each motor is connected on opposite
ends of the robot.

253

https://robu.in/product/sharp-ir-distance-measuring-sensor-unit-4-30-cm-cable/
https://robu.in/product/sharp-ir-distance-measuring-sensor-unit-4-30-cm-cable/
https://robu.in/product/sharp-ir-distance-measuring-sensor-unit-4-30-cm-cable/
http://www.build-electronic-circuits.com/h-bridge/
http://www.build-electronic-circuits.com/h-bridge/

CHAPTER6 ROBOTICS PROJECT USING ROS

To control an H-bridge, several connections are needed between the
H-bridge and the Arduino. The main connections are the enable pin and
two input pins. The enable pin activates the current H-bridge, and two IN
pins determine the motor’s rotation direction. There are a total of six pins
controlling the two motors. The Arduino sends the proper signals to these
pins to control motor movement.

The wheel encoders are the next set of sensors to interface. There
are three pins in wheel encoders: VCC, GND, and output. VCC and GND
can be connected to the Arduino VCC and GND, and the output of both
encoders can be connected to the Arduino’s 3 and 2 pins.

The Bluetooth module has four pins: VCC, GND, TX, and RX. TX and
RX are the transmit and receive pins, respectively. You have to connect the
Bluetooth TX pin to the Arduino RX1 pin and the Bluetooth RX pin to the
Arduino TX1 pin. There are three serial connections in Arduino Mega; we
are using the second serial connection of Arduino. VCC and GND are 5
volts, similar to encoders.

The sharp range finder has three pins: VCC, GND and Vo. The Vo pin
will give the analogue voltage corresponding to the distance. The analogue
voltage can be converted to digital values using Arduino ADC.

Let’s discuss the voltage distribution for each component. The motors
operate between 5 and 9 volts, so the motor driver should power in in
this range. All other components work in 5 volts. So you should be able
to allocate your power in such a way that each component gets enough
power; the GND of all components should be common too. We can power
the robot through a battery or a 7 or a 9 volt DC adapter. The wired power
supply is good for testing the robot.

254

CHAPTER6 ROBOTICS PROJECT USING ROS

Assembling Robot Hardware

The completely assembled robot is shown in Figure 6-14. The Arduino,
motor driver, Bluetooth, and IR range finder sensor are completely wired
and mounted on top of the robot. You can put the components together
according to your logic.

Figure 6-14. Assembled wheeled robot

Creating a 3D ROS Model Using URDF

We are done assembling the robot, so now we can start programming it.
The first step is to make the robot model in ROS, which is called URDF
(Unified Robot Description Format). URDF has all the information on
robot 3D models, robot joints, links, robot sensors, actuators, controllers,
and so forth.

We are going to create a URDF model for our robot, which has the 3D
representation of robot, a list of joints, and links.

255

CHAPTER6 ROBOTICS PROJECT USING ROS

The URDF is basically an XML file that has XML tags to represent a
jointand a link (http://wiki.ros.org/urdf). Another representation
of URDF is called Xacro (http://wiki.ros.org/xacro). In Xacro
representation, we can create a macro definition using URDE It can make
our URDF code shorter and reusable.

A list of URDF tutorials is available at the ROS wiki at http://wiki.
ros.org/urdf/Tutorials.

The following describes the basic usage of tags in URDEF:

<!-- Definition of Robot link -->
<link name="my link">
<inertial>
</inertial>
<visual>
</visual>
<collision>
</collision>
</link>
<!-- Definition of joint -->
<joint name="joint name" type="joint_ type">
<parent link="parent_link name"/>
<child link="child_link_name" />
</joint>

Inside the <1ink> </link> tag, we can define the properties of robot
link, which contains inertial parameters, collision parameters, and visual
representation. The shape of the robot link is mentioned in the visual tag.
The visual tag can have a primitive shape or a 3D mesh file.

The robot model created using URDF is usually kept on the ROS
package; it is named “robot_name_description”

256

http://wiki.ros.org/urdf
http://wiki.ros.org/xacro
http://wiki.ros.org/urdf/Tutorials
http://wiki.ros.org/urdf/Tutorials

CHAPTER 6 ROBOTICS PROJECT USING ROS

The mobile robot’s URDF package is kept in a package called “mobile
robot description” You can find this package in the Chapter 6 code
folder. The URDF file is atmobile_robot_description/urdf/robot_
model . xacro.

The following explains an important section in robot_model.xacro:

<?xml version="1.0" ?>
<robot name="mobile robot" xmlns:xacro="http://ros.org/
wiki/xacro">

</robot>

The URDF or Xacro are XML files, so the headers are the XML version,
which is shown in the preceding code snippet.

Now, we can define the robot model inside the <robot> </robot> tags.
The link and joint definition of the robot is inside this tag.

<link name="base_footprint"/»>

<joint name="base joint" type="fixed">
<origin xyz="0 0 0.0102" rpy="0 0 -${M_PI/2}" />
<parent link="base_footprint"/>
<child link="base_link" />

</joint>

In the preceding code, you can see the link definition of base_footprint
and the definition of a joint called base_joint. Normally, we create an
imaginary link called base_footprint, which is acting as a reference for
other links.

Following the “base_footprint link’, you can see the joint definition.
Ajoint is a linkage of two links. The two links are “base_footprint” and
“base_link” The definition of “base_link” is shown next.

257

http://dx.doi.org/10.1007/978-1-4842-3405-1_6

CHAPTER6 ROBOTICS PROJECT USING ROS

<link name="base link">
<visual>
<geometry>
<!-- new mesh -->
<mesh filename="package://mobile_robot_description/
meshes/body/chasis.dae"” scale="0.001 0.001 0.001"/>
</geometry>
<origin xyz="-0.07 -0.12 0" rpy="0 0 0"/>
</visual>
<collision>
<geometry>
<box size="0.14 0.23 0.1" />
</geometry>
<origin xyz="0.0 -0.02 0" rpy="0 0 0"/>
</collision>
<inertial>
<!-- COM experimentally determined -->
<origin xyz="-0.07 -0.12 0"/>
<mass value="2.4"/> <!-- 2.4/2.6 kg for small/big
battery pack -->
<inertia ixx="0.019995" ixy="0.0" ixz="0.0"
iyy="0.019995" iyz="0.0"
izz="0.03675" />
</inertial>
</link>

In the “base_link” definition, we can see the definition of the link’s
visual and collision parameters, as well as the inertial parameters. In
the “visual” definition, you can see that a mesh file is mentioned, which
means that it shows as a link. The origin and orientation of the link are
also mentioned. The mesh file is in our robot model. The mesh file in this
section is a robot chassis without wheels.

258

CHAPTER 6 ROBOTICS PROJECT USING ROS

The following code snippet shows how to define wheel joints. The
wheel joint is a rotary joint, but in this project, it is a fixed joint. The
following is only for visualization purposes.

<joint name="left wheel joint" type="fixed">

<origin xyz="-0.06 0 0" rpy="0 0 0"/>

<parent link="base_link"/>

<child link="left wheel link"/>

<axis xyz="1 0 0"/>

<limit effort="100" velocity="100"/>

<joint_properties damping="0.0" friction="0.0"/>
</joint>

The following code shows how to put a primitive shape in our model
as avisual. There are several primitive shapes available in ROS. One of the
models is a cylinder.

<visual>
<origin xyz="0 0 0" rpy="0 ${M _PI/2} 0" />
<geometry>
<cylinder radius="0.0325" length = "0.02"/>
</geometry>
<material name ="black" />
</visual>

The robot model can visualize in Rviz. To visualize the model, copy the
“mobile_robot_description” package to your catkin_ws/src folder, and use
catkin_make to build the packages.

Use the following command to view the robot model in Rviz:

$ roslaunch mobile robot description view robot.launch

259

CHAPTER6 ROBOTICS PROJECT USING ROS

Figure 6-15 shows the URDF model of the robot in Rviz. You can
change the camera view using a mouse in order to see the robot at
different angles.

dieteact | frMoveCamen [lselet b foouCamen ==Memure - 20Peselstmate - 0MwvGol @ PulshPort & =
B pisplays n
* @ Global Options
Fixed Frame odom
Background Color W48 48: 48
Frame Rate 30
* Global Status: Ok
+ Flued Frame oK
*® Grid &
» TF =
= th, RobotModel [
») Aoes
v # Pose &
* ¥ Status: Ok
Topic Jmeve_base_simplefgoal
Unrelisble
Shape Arrow
Color 255,250
Alpha 1
Shaft Length 1
shaft Radius 0.08
Head Length 0.3
Head Radius a1
Axes
Désplays an axis at the Target Frame's ocigin. More
Information.
Add Duplicate | | Remove Rename
(T Time
ROS Time: | 1493703586.54 | ROS Elapsed: |142.09 wall Time: 149270398657 | wall Elapsed: |142.03 Experimental
Reset | Laft-Click: Rotate. Middle-Click: Move X/'v. Right-Clicks: Move Z. SKIFC More aptions. Wips

Figure 6-15. Robot model in Rviz

We can also check the launch file to visualize the robot in Rviz. It is in
mobile_robot_description/launch/view_robot.launch

<launch>

<arg name="model" />

<!-- Parsing xacro and setting robot description parameter -->
<param name="robot description” command="$(find xacro)/xacro.
py --inorder $(find mobile robot description)/urdf/robot_model.
xacro"/>

<!-- Starting robot state publish which publish tf -->

<node name="robot state publisher" pkg="robot state publisher"
type="robot_state publisher"/>

<!-- Launch visualization in rviz -->

260

CHAPTER 6 ROBOTICS PROJECT USING ROS

<node name="rviz" pkg="rviz" type="rviz" args="-d $(find
mobile robot description)/config/robot.rviz" required="true"/>
</launch>

The first step in the launch file is to load the Xacro file load as a ROS
parameter named “robot_description”

The robot_state_publisher node publishes the joint state of the robot
model to /tf (http://wiki.ros.org/tf) topic. The /tf topic is useful for
doing higher-level processing.

The next line of code starts the Rviz with a saved configuration file
inside themobile robot description)/config folder.

Working with Robot Firmware

This section explains how to program Arduino Mega to read the data from
the robot sensors and control the motors. We already wired the sensors
and motors to the appropriate Arduino pins. We also connected the
Bluetooth breakout board in corresponding pins shown in Figure 6-13.
In Chapter 5, we have seen how to program Arduino Mega using rosserial
and publish/subscribe ROS topics. In this project, we are using rosserial to
publish the sensor data and subscribe to the motor speed.

The complete Arduino firmware is in the chapter_6/Arduino_
Firmware/final_code folder.

Let’s have a look at the Arduino firmware code. Figure 6-16 shows the

main logic in the firmware code.

261

http://wiki.ros.org/tf

CHAPTER6 ROBOTICS PROJECT USING ROS

Initialize ROS node(Serial port, baud rate)

Configure Motor and Encoder pins()

void setup()
Setup Publisher for encoders and sharp
distance
Set subscribers for left, right motors and
reset
Publish Encoder values()
void loop()

Publish IR Range values()

Update motor speed()

Figure 6-16. Arduino firmware code

The first section of Arduino code to discuss is the Arduino setup()
function. In setup(), we are actually initializing the ROS Arduino node
with serial port and baud rate.

Along with initializing ROS node, we have to set up the publishers and
subscribers. We also need to configure pins for motors and encoders. The
serial port pins interfaces to the Bluetooth module, so if any devices like a
PC or smartphone pair to this Bluetooth module, that device can read all
the data from the robot and can send commands to the Arduino. We are
using a PC for communicating with the Arduino in the robot.

The following code snippet shows how the setup() function looks like.
The default baud rate of the Bluetooth board is 9600. The baud rate of
the Bluetooth board can be changed using the following procedure
(www.rhydolabz.com/wiki/?p=8956). If you change the baud rate, then
you can change the baud from 9600 to 115200.

262

http://www.rhydolabz.com/wiki/?p=8956).

CHAPTER 6 ROBOTICS PROJECT USING ROS

void setup()
{
//Setting Seriali and Bluetooth as default serial port for
communication via Bluetooth
nh.getHardware()->setPort(&Seriall);
nh.getHardware()->setBaud(9600);
//Initialize ROS node
nh.initNode();

//Setup publisher

nh.advertise(1l enc_pub);
nh.advertise(r_enc_pub);
nh.advertise(sharp distance pub);

//Setup subscriber
nh.subscribe(left speed sub);
nh.subscribe(right speed sub);
nh.subscribe(reset sub);

In the void loop() function, Arduino publishes left and right encoder
values, publishes IR values, subscribes to motor velocity, and updates
signals to motor driver.

Here is the code snippet of loop() function; the Arduino will publish
the encoder and IR values in 10Hz and subscribe always to the left and the
right motor for updating the motor speed:

void loop()
{

unsigned long currentMillis = millis();
if (currentMillis - previousMillis »>= interval)

263

CHAPTER6 ROBOTICS PROJECT USING ROS

{

previousMillis = currentMillis;
1 encoder msg.data = pulsesi;
r_encoder_msg.data = pulses2;
1 enc_pub.publish(81 encoder msg);
r_enc_pub.publish(8r encoder msg);
update IR();

}

update Motor();

nh.spinOnce();

delay(20);

After compiling and uploading the robot firmware to the Arduino, we
can now connect the robot via Bluetooth in the PC. You can remove the
USB cable used to upload code to Arduino; instead, you can simply power
the Arduino using a DC power jack from the battery.

Programming Robot Using ROS

Once you have connected Arduino to the DC power jack and power all the
sensors of the robot, now it’s time for testing the robot.

The first step is connecting the robot Bluetooth to the PC. You can
easily do this by going to Ubuntu Settings » Bluetooth. Make sure the
Bluetooth in the PC is turned ON; then you can find the HC-05 device
which is the robot Bluetooth shown in Figure 6-17.

264

CHAPTER 6 ROBOTICS PROJECT USING ROS

Bluetooth

Visible as “robot-pc” and available for Bluetooth file transfers. Transferred files are
placed inthe folder.

Devices

Not Set Up

Figure 6-17. Robot Bluetooth

When you click the Bluetooth device, it will ask for the PIN. The default
pin is 1234. You can change this pin as well. You can change PIN during
changing the baud rate of the Bluetooth. Click the Confirm button to pair
with the robot Bluetooth as shown in Figure 6-18.

Confirm Bluetooth PIN Confirm

Confirm the Bluetooth PIN for “HC-05". This can
usually be found in the device's manual.

1234

Figure 6-18. Pairing to Bluetooth

After pairing, the HC-05 will show connected. Once it gets connected,
you can enter the following command to start the Bluetooth communication
via serial port. In order to start a serial port connection, we need to know the
MAC id of the Bluetooth; you can find it from the Bluetooth settings.

$ sudo rfcomm connect /dev/rfcomm0 '20:16:04:18:61:60"

265

CHAPTER6 ROBOTICS PROJECT USING ROS

Figure 6-19. Connecting to serial port

If the connection is proper, you will get what is shown in Figure 6-19.
If the connection is successful, we can start the rosserial Python node
which will connect the robot and PC via serial port /dev/rfcommo0.

Start roscore

$ roscore

Start rosserial node using the following command. You can mention
the Bluetooth serial and baud rate along with this command. The serial _
node.py is acting as the bridge node between ROS and Arduino (http://
wiki.ros.org/rosserial python).

$ rosrun rosserial python serial node.py _port:=/dev/rfcommo
_baud:=9600

Figure 6-20. Output of rosserial Python node

You can see the publisher and subscriber in Arduino when you start
the preceding command. You can find the output in Figure 6-20.

266

http://wiki.ros.org/rosserial_python
http://wiki.ros.org/rosserial_python

CHAPTER 6 ROBOTICS PROJECT USING ROS

After launching rosserial Python node, you can check the output of
rostopic using the following command:

$ rostopic list

$ rostopic list

Figure 6-21. Output of rostopic list

The Figure 6-20 shows the output of rostopic list command. The topic
subscribed by Arduino is left and right speed of the motor and the reset
command. The topic published by Arduino is robot encoder data and
range finder sensor data. The Figure 6-22 shows the ROS topics publish
and subscribe by the robot using rosserial node.

Subscribed topics Published topics

Iset_left_speed —— lleft_ticks

/set_right_speed —————— Iright_ticks

rosserial serial node

Ireset =————— —* /obstacle_distance

Figure 6-22. The ROS serial node publisher and subscriber list

267

CHAPTER 6 ROBOTICS PROJECT USING ROS
You can start the Bluetooth node by using the following instructions:

Starting roscore

$ roscore

Startin Bluetooth driver node

$rosrun rosserial python serial node.py port:=/dev/rfcommo
_baud:=9600

The Teleop Node

The purpose of the keyboard teleop node is to drive the robot using
keyboard keys. This is used to verify that the robot is working and moving
in the correct direction. It is similar to the teleop node used in turtlesim.

The keyboard teleop node is placed in chapter 6/ mobile robot
pkg/scripts/robot_teleop key. This is Python code, and the teleop node
is shown in Figure 6-23.

Topic name:/cmd_vel

Read Key press from Keyboard

Publish Twist Message

Figure 6-23. The teleop node

268

CHAPTER6 ROBOTICS PROJECT USING ROS

The Twist Message to Motor Velocity Node

The twist-to-motor velocity node subscribes the ROS twist message
(geometry_msgs/Twist) and publishes left and right motor speed
(std_msgs/Int32). You can find the code at chapter_6/mobile_robot pkg/
scripts/twist_to_motors.py.

Figure 6-24 shows the input and output of the node. This node
implements kinematics equations to convert ROS Twist message to
motor speed.

Subscribed topics Published topics

Iset_left_speed

Jemd_vel ——

Twist to Motor Convertor node

Iset_right_speed

Figure 6-24. The twist-to-motor velocity node

The Diff to TF Node

The odometry node is an important ROS node in a dead-reckoning project.
This node subscribes the left and right and encoder ticks and computes
the odometry data. The odometry data is the local position of the robot,
meaning the position of the robot in respect to its starting position. We

are going to use this odometry data to move the robot and rotate it in the
desired angle. The odometry node implements the kinematics equation

to compute the robot’s position, which is the odometry data we are getting
from the /odom topic (see Figure 6-25).

269

CHAPTER6 ROBOTICS PROJECT USING ROS

Subscribe Topics Publish Topics

lleft_ticks

/lodom

Diff to TF Node

Iright_ticks

Figure 6-25. The Diffto TF node

The left and right ticks are the std_msgs/Int32 message, and /odom
is the nav_msgs/Odometry message. You can find this node at mobile
robot_pkg/scripts/diff tf.py.

The Dead-Reckoning Node

Dead reckoning is the final node discussed in this project. The node
subscribes three topics: the odom to get the robot position, obstacle
detection to avoid robot collision, and the /move_base_simple/goal, which
is the destination of the robot.

Figure 6-26 shows the workings of the dead-reckoning node.

Subscribed topics Published topics
/move_base_simple/goal
—

lodom
. femd_vel

Dead reckoning node

lobstacle_distance
——

Figure 6-26. The dead-reckoning node

270

CHAPTER 6 ROBOTICS PROJECT USING ROS

After computing the distance to travel, this node sends the appropriate
command velocity to the robot to reach the position. The goal pose is
to get from the Rviz control panel. There is a dedicated button in Rviz to
command the goal position.

The working of the node is as follows. When this node gets to the
destination point as (x, y, and theta), it sends a twist message to rotate the
robot and align it to the destination point. The rotation is done by taking
feedback from the “odom” topic. After aligning with the destination robot, it
sends a linear velocity command to move the robot in a straight line, while
also taking feedback from the /odom topic to make sure that the destination
is reached. If the destination is reached, the robot stops.

Currently, we are adding some tolerance to the destination point. The
robot may not end up at the exact destination—there may be some drift, so
tolerance in the goal position is added during the operation.

If there is an obstacle in front of the robot, the node takes the
command velocity to zero so that the robot stops at that point.

Final Run

In this section, you see how to test the robot. Make sure that the Bluetooth
driver node is working well and getting the topic. If it is working, follow the
procedures to start working with the robot.

Pair the PC Bluetooth and the robot, and start the Bluetooth driver
to verify that the connection is OK. After that, quit the node and start the
following launch file to start all the nodes:

Starting the robot stand alone launch file in PC
$ roslaunch mobile robot pkg robot standalone.launch

This command starts running all the nodes and starts the Rviz using
the following command:

$ rosrun rviz rviz

271

CHAPTER6 ROBOTICS PROJECT USING ROS

Open the configuration file at mobile robot description/config
/robot.rviz. This shows the robot model, much like what’s shown in
Figure 6-27.

Sysene Mo Cmera [JSelet 4
D Displays
v @ clabsl Options
Fined Fra adom
Background Color W43 45: 48
Frame Rate 30
= Global Status: Ok
" Fixed Frame o
» = Grid =
» kTR =
» fh, RobotModel &
» A Aes
v Pose]
» o Status: Ok
Topic [move_base_simple/goal
Unreliable
Shape Adrow
Color 255250
Alpha 1
shaft Length 1
shaft Radius 0.05
Head Length 0.3
Head Radius at
Axes
Désplays an axks at the Target Frame's origin. Mare
Information.
Add Duplicate | | Remove Rename
) Time
ROS Time: | 1493701576.48 | ROS Elapsed: [132.03 wall Time: | 149270397651 | wall Elapsed: | 131,56 Experimental
Reset | Laft-Click: Rotate. Middle-Click: Move X/'v. Right-Clicks: Move 7. SKIFC More aptions. 30 fps

Figure 6-27. The Robot model visualization in Rviz

Now you can command the goal position of the robot in Rviz using the
2D Nav Goal button at the top of the Rviz panel (see Figure 6-28).

272

CHAPTER 6 ROBOTICS PROJECT USING ROS

fqmteract | B MoveCamers [JSolect dFocsCamera s Meatre L ZDFoseEstimate . ZDMavCodl § PublshPoilt f =,

) pisplays
* & Global Gptions
Fived Frame odom
Background Coler W48 48: 48
Frame Rate 10
* v Global status: Ok
¥ Fixed Frame O
» & Grid =
TR
* iy RobotModel L]
» L fces
v~ Pose [
* ¥ Status Ok
Topé [move_bate_simple goal
unreliable
Shape Arraw
color W 255250
Alpha 1
shaft Length 1
Shaft Radius 005
Head Length 03
Head Radius ol

Axes
Displays an axis at the Target Frame's origin. More
nformation.

Add Duplicate | | Remove Rename

(T Tima

Figure 6-28. Setting goal position in Rviz

The block diagram in Figure 6-29 shows the detailed interconnection

of nodes in the dead-reckoning project.

Jodom Rviz

fsimple_goal

Diff to TF Dead Reckoning
Node

fobstacle

fleft_ticks
- Teleop Node tomd vel

Iright_ticks

ir_range_value
—l
encoder

Iset_left_speed

Twist to Motors

ROS Serial Driver Node

fset_right_speed

Figure 6-29. Interconnection of nodes

If you want to simply run the robot, you can launch $ roslaunch
mobile robot pkg keyboard teleop.launch.

273

CHAPTER6 ROBOTICS PROJECT USING ROS

This launch file launches the Bluetooth driver, the twist to motor node,
and the keyboard teleop node, which moves the robot using a keyboard.

Summary

This chapter discussed a robotic project using ROS. The main aim of the
chapter was to get hands-on experience with ROS on a real robot. The
project was about creating a differential drive robot commanded from a
ROS interface.

The chapter started by discussing the hardware needed to build the
project. You saw the basic components to prototype the robot hardware.
All the hardware components are available on the market at low cost.
After properly connecting the robot’s components, you saw how to create
the ROS software for moving the robot. You saw how to create the robot’s
URDF model and how to write embedded code for controlling the robot.
After that, you wrote ROS nodes in Python to receive the values from the
embedded board and display in the Rviz tool. In the end, you saw how to
move the robot using Rviz.

274

Index

A

Access modifier, 72, 73, 91
Arduino Mega 2560 board,
231, 233, 235, 237, 251

B

Bluelink Bluetooth module, 251, 252
Bluetooth driver node
configuration file, 271-274
dead-reckoning node, 270, 271
interconnection, 273
odometry node, 269, 270
pairing node, 265
publisher and subscriber list, 267
rosserial node, 266
rosserial Python node, 266
serial port, 266
teleop node, 268
twist-to-motor velocity
node, 269

C

C++ language
Bjarne Stroustrup, 54
boost libraries, 54
CMake (cmake.org), 88-90

© Lentin Joseph and Aleena Johny 2022

GCC/G++ compilers, 55
GDB (see GNU Project
Debugger (GDB))
installation, 55
Linux makefile, 85, 86
main code, 88
make command, 87
OOP (see Object-oriented
programming (OOP))
Python, 53
source code, 85, 86
Ubuntu Linux, 54
verification, 56, 57
Client libraries
callback function, 189
concepts, 182
getParam() function, 191
header files and
modules, 183-185
Hello World
build C++ nodes, 197
CMakelLists.txt
definition, 194
computation graph, 205, 206
editing CMakeLists.txt file,
196, 197
launch files, 203-205
node execution, 198-200

275

L. Joseph and A. Johny, Robot Operating System (ROS) for Absolute Beginners,

https://doi.org/10.1007/978-1-4842-7750-8

https://doi.org/10.1007/978-1-4842-7750-8#DOI

INDEX

Client libraries (cont.)
package creation, 192-194
python node creation,
201, 202
Python nodes execution, 202
logging operations, 186
message definition, 187
NodeHandle creation, 186
nodes, 185
print messages, 186
publish() command, 187
roscpp and rospy, 182, 183
ROS CPP and ROS Py, sleep
function, 191
roslisp, 183
rospy, 183
setParam() function, 191
sleep() function, 190
spin() function, 190
subscription, 188
TurtleBot (see TurtleBot
simulation (ROSPy))
TurtleSim (see TurtleSim
programming (rospy))
Command-line interface (CLI), 34
Command-line tools, talker and
listener nodes, 163
Cross-platform makefile
(CMake), 88-90

D,E,F
Data hiding, 73
Debian packages, 45, 47, 48

276

Differential wheeled robot
analysis, 244
angular displacement, 245
configuration, 242
global coordinate system, 243
kinematics equations, 244, 246
parameters, 244
wheel encoders, 243

Disk operating system (DOS), 34

G

Gazebo simulator, 125, 133
GNU Project Debugger (GDB)
compilation process, 61-63
debugger tool, 63-66
gdb command, 58
gedit text editor, 59, 60
hello_world.cpp code, 61
Linux system, 57
namespace std, 61
Ubuntu Linux, 57
verification, 58

H

Hokuyo Laser, 148

1, J

Integrated development
environments (IDEs), 3, 122

Intel NUC, 150

Intel RealSense, 148

K

Kinematics equations,
244, 246, 269

L, M

Linux kernel, 2,118

Long-term support (LTS), 3, 134

N

NVDIA TX1/TX2, 149

O

Object-oriented
programming (OOP)
access modifier, 72, 73
classes/objects, 71-73
data types, 66
exception handling, 82-84
files/streams, 78
fstream header, 79
function definition, 70
inheritance
derived/base class, 74
derived class, 77, 78
public/protected/
private, 74, 75
source code, 76
inheritance (C++), public/
protected/private, 76
namespace concept, 80-82
object, 66

INDEX

read/write program, 80
STL, 84
structs/classes, 67-70
Odroid XU4, 150
Open Source Robotics Foundation,
134, 136

P,Q

Package creation, (ROS)
catkin_create_pkg, 180, 181
CMakelLists.txt, 181
package.xml, 182
src folder, 182

Programmable logic controller

(PLC), 126
Programming embedded boards
Arduino
blink command, 235
dmesg command, 235
IDE, 231
LED toggling command, 237
mega 2560 board, 231
preference window, 233
ROS library creation, 234
ROS package
installation, 232
Raspberry Pi 3
board, specs, 238
booting/Ubuntu, 239
ROS installation, 240
specs board, 237
Ubuntu mate image/micro
SD card, 239

277

INDEX

Pulse-width modulated R
(PWM), 248

Python programming language
classes, 111-114
code indentation, 102
computer vision, 122
cross-platform language, 100
execution, 99, 100
files, 114, 115
function definition, 108-110
fundamental concepts, 93
handling exception, 110, 111
handling serial ports, 117

Raspberry Pi 3 board, 150, 237
REEM-C, 147
Robonaut 2, 147
Robot application, 3
Robotics project
Bluetooth, 264-268
building hardware
assembling, 255
block diagram, 253, 254
bluetooth
breakout, 251, 252
magnetic quadrature

Hello World o o8 encoder, 249-251

. P;Zgram' , microcontroller board, 251
: s;/ . | motor driver, 248, 249
input/conditiona

motors/wheels, 248

robot chassis, 247, 248

sharp IR sensor, 252, 253

2WD robotic kit, 247
dead reckoning node, 270, 271
differential wheeled

robot, 242-246

3D ROS model (URDF), 255-261
firmware process, 261-264

statement, 104, 105
installation, 96
interpreter, 95
loops, 106-108
machine/deep learning, 121
modules, 115-117
overview, 94
PySerial installation, 118, 120
robotics, 122
scientific computing/
visualization, 120
scripting method, 97
semicolons, 102
static and dynamic

interconnection node, 273-275
keyboard teleop node, 268
loop() function, 263

odometry node, 269, 270
setup() function, 262, 263

ine 101 twist-to-motor velocity
yping node, 269
Ubuntu 16.04 LTS, 95

) wheeled robots, 241
variables, 102-104

278

Robot Operating System (ROS), see

also Robot programming
architecture, 150
actuators and sensors, 151
communication, 151, 152
interprocess
communication, 150
publisher/subscriber
nodes, 152
atomic units, 153
capabilities, 130
command-line
tools, 156-161
common platform/robotics
applications, 137
community, 156
computation
concepts, 155, 156
computing platforms, 149, 150
distribution, 135, 136
ecosystem/community
support, 132
equation, 133
extensive tools/simulators, 133
file system, 153, 154
hello world, talker/listener
nodes, 161-163
high-level programming
language, 131
installation
add keys, 143
ARM board, 139
binary installation, 141
distribution, 140

INDEX

environment, 145
Kinetic Kame, 140
Kinetic packages, 144
operating systems, 138
0SX, 139
package dependencies, 145
platforms, 138
rosdep, 144
single-board computers, 139
software/updates
application, 142
source.list, 143
Ubuntu/Linux, 139
Ubuntu repository, 141, 142
update package list, 144
version, 139
interprocess
communication, 130
message passing
interface, 130
message type
description, 154
off-the-shelf algorithms, 132
operating system, 130
package manifest, 153
packages, 131
project history, 134, 135
prototyping, 132
robots (see Sensors/
robots, ROS)
ROS 2.0, 138
roscore messages, 157
ROS repository, 154
Rviz/Rqt, 169-171

279

INDEX

Robot Operating System S
(RQ_S) (cont.) Sensors/robots, ROS
self—fir1V1ng car, 137 Hokuyo Laser, 148
service type Intel RealSense, 148
. deflnltlf)n, 1.54 Pepper, 147
thlrd—Party libraries, 1.31 popular, 147, 148
turtlesim (see TurtleSim) REEM-C, 147

Robot programming
actuators/sensors, 126
community support, 129
components, 126
C++/Python, 128
definition, 125
ease of prototyping, 128
general block diagram, 126
high-level object-oriented

programming, 128
industrial applications, 127
input devices, 127
interprocess

communication, 129
low-level device

control, 128
PC/SBC and microcontroller/

Robonaut 2, 147
TeraRanger, 148
TurtleBot 2, 147
Universal Robot arm, 147
Velodyne, 148
working process, 146
Xsense MTiIMU, 148
ZED Camera, 148

Shell commands
apt-get command, 45, 46, 48
cd command, 37
cp command, 41
dmesg command, 41
dpkg command, 48, 49
htop command, 50
kill command, 45
Is command, 36

PCL, 127 .
¢ 129 Ispci command, 42
pet orman.ce, Isusb command, 43
programming

manual page (1s), 36

languages, 127 mkdir command, 38

robotics software
frameworks, 130
self-decision making, 127
third-party libraries, 129
threading, 128
Rviz/Rqt, 169-171

mv command, 40

nano command, 51, 52
poweroff command, 49
ps command, 44

pwd command, 37, 38

280

reboot command, 49
rm command, 38
rmdir command, 39
sudo command, 43
terminal commands, 34, 35
Standard Template Library
(STL), 84, 91

T

TeraRanger, 148
TurtleBot 2, 147
TurtleBot simulation, ROSPy
education/research, 224
embedded boards, 230
launching process
command, 225
Gazebo simulation, 226
teleop application, 226
turtlebot_gazebo
package, 225
move_distance.py
node, 227-229
obstacle range, 229
TurtleBot 3 packages
installation, 224
TurtleSim
commands, 164
parameters list, 166
screen, 164
services list, 165
square path, 168, 169
teleop node, 167
topics, 164

INDEX

turtle moving, 166, 167
2D simulator, 163
TurtleSim programming (rospy)
background color, 219-223
move_distance.py, 217-219
move option
commands, 207
computation graph, 209
geometry_msgs/Twist
message, 208
nodes, 209
output window, 212
Python node, 209
source code, 210, 211
robot position
message definition, 213, 214
move_turtle_get_pose.py
code, 214, 215
printing option, 215, 216
Turtle pose, 213
turtlesim node services, 220
Two-wheel drive (2WD)
platform, 246

U

Ubuntu operating system
applications, 33, 34
Debian architecture, 2
downloading options, 4
file system, 31-33
GNU/Linux, 1, 2
graphical user

interface, 30, 31

281

INDEX

Ubuntu operating system (cont.)
installation, 3
PC requirements, 4
robotics, 3
shell commands (see Shell
commands)
UNetbootin setup, 28, 29
VirtualBox (see VirtualBox
machine)
Unified Robot Description Format
(URDF), 255-261
link definition, 257
link/joint definition, 257
robot_model.xacro, 257
Rviz, 260, 261
source code, 259
3D models, 255
tutorials, 256
visualization, 259
Xacro, 256
Unity Launcher, 30
Universal Robot arm, 147

\"

Velodyne, 148
VirtualBox disk image (VDI), 9
VirtualBox machine
adding option, 6
configurations, 11, 12
DVD image
configuration, 12
guest OS, 13, 14
optical drive, 12, 13

282

shared folders, 15, 16
system settings, 14, 15
dynamically allocated/fixed

size, 10
guest operating system, 7
installation, 5
RAM allocation, 7, 8
start button, 16, 17
Ubuntu installation
desktop, 27
free space/hard disk, 21, 22
keyboard layout, 18, 19
login information, 25, 26
options, 17, 18
restart option, 26, 27
root partition, 22, 23
something else option, 20, 21
swap partition, 23, 24
third-party software, 20
time zone setting, 24, 25
virtual hard disk, 8, 9
virtual machine/guest, 5
Windows host, 5
Virtual hard disk (VHD), 8-11
Virtual machine disk (VMDK), 9

W

Workspace/package (ROS)
bashrec file, 177
build file/folder, 179
build system, 178
catkin_init_workspace, 175, 176
catkin workspace, 174, 179

INDEX

catkin_ws, 174

devel folder, 179 X, Y
install folder, 180
make command, 176
package, 180-182 y4

src folder, 177, 179 ZED Camera, 148
Wheeled robots, 241, 242

Xsense MTi IMU, 148

283

	Table of Contents
	About the Authors
	About the Technical Reviewer
	Chapter 1: Getting Started with Ubuntu Linux for Robotics
	Getting Started with GNU/Linux
	What Is Ubuntu?
	Why Ubuntu for Robotics?
	Installing Ubuntu
	Minimum PC Requirements
	Downloading Ubuntu
	Installing VirtualBox
	Creating a VirtualBox Machine
	Step 1: Adding a New Virtual Machine
	Step 2: Naming the Guest Operating System
	Step 3: Allocating RAM for the Guest OS
	Step 4: Creating a Virtual Hard Disk
	Step 5: Configuring the Type of Virtual Disk
	Step 6: Choosing Ubuntu DVD Image
	Step 7: Starting Virtual Machine

	Installing Ubuntu on VirtualBox
	Installing Ubuntu on a PC
	Playing with the Ubuntu Graphical User Interface
	The Ubuntu File System
	Useful Ubuntu Applications
	Getting Started with Shell Commands
	Terminal Commands Cheat Sheet
	man: Manual Pages for Shell Commands
	ls: List Directory Content
	cd: Change Directory
	pwd: Current Terminal Path
	mkdir: Create a Folder
	rm: Delete a File
	rmdir: Delete a Folder
	mv: Move a File from One Place to Another
	cp: Copy a File from One Path to Another
	dmesg: Display a Kernel Message
	lspci: List of PCI Devices in the System
	lsusb: List of USB Devices in the System
	sudo: Run a Command in Administrative Mode
	ps: List the Running Process
	kill: Kill a Process
	apt-get: Install a Package in Ubuntu
	dpkg -i: Install a Package in Ubuntu
	reboot: Reboot the System
	poweroff: Switch Off the System
	htop: Terminal Process View
	nano: Text Editor in Terminal

	Summary

	Chapter 2: Fundamentals of C++ for Robotics Programming
	Getting Started with C++
	Timeline: The C++ Language
	C/C++ in Ubuntu Linux
	Introduction to GCC and G++ Compilers
	Installing C/C++ Compiler
	Verifying Installation

	Introduction to GNU Project Debugger (GDB)
	Installing GDB in Ubuntu Linux
	Verifying Installation

	Writing Your First Code
	Explaining Code
	Compiling Your Code
	Debugging Your Code

	Learning OOP Concepts from Examples
	The Differences Between Classes and Structs
	C++ Classes and Objects
	Class Access Modifier
	C++ Inheritance
	C++ Files and Streams
	Namespaces in C++
	C++ Exception Handling
	C++ Standard Template Libraries

	Building a C++ Project
	Creating a Linux Makefile
	Creating a CMake File

	Summary

	Chapter 3: Fundamentals of Python for Robotics Programming
	Getting Started with Python
	Timeline: The Python Language
	Python in Ubuntu Linux
	Introduction to Python Interpreter
	Setting Python 3 on Ubuntu 20.04 LTS
	Verifying Python Installation

	Writing Your First Code
	Running Python Code
	Understanding Python Basics
	What’s New in Python?
	Static and Dynamic Typing
	Code Indentation
	Semicolons
	Python Variables
	Python Input and Conditional Statement
	Python: Loops
	Python: Functions
	Python: Handling Exception
	Python: Classes
	Python: Files
	Python: Modules
	Python: Handling Serial Ports
	Installing PySerial in Ubuntu 20.04

	Python: Scientific Computing and Visualization
	Python: Machine Learning and Deep Learning
	Python: Computer Vision
	Python: Robotics
	Python: IDEs

	Summary

	Chapter 4: Kick-Starting Robot Programming Using ROS
	What Is Robot Programming?
	Why Robot Programming Is Different
	Getting Started with ROS
	The ROS Equation
	Robot Programming Before and After ROS
	The History of ROS

	Before and After ROS
	Why Use ROS?
	Installing ROS
	Robots and Sensors Supporting ROS
	Popular ROS Computing Platforms
	ROS Architecture and Concepts
	The ROS File System
	ROS Computation Concepts
	The ROS Community
	ROS Command Tools
	ROS Demo: Hello World Example
	ROS Demo: turtlesim
	Moving the Turtle

	Moving the Turtle in a Square
	ROS GUI Tools: Rviz and Rqt
	Summary

	Chapter 5: Programming with ROS
	Programming Using ROS
	Creating a ROS Workspace and Package
	ROS Build System
	ROS Catkin Workspace
	src Folder
	build Folder
	devel Folder
	install Folder

	Creating a ROS Package
	Using ROS Client Libraries
	roscpp and rospy
	Header Files and ROS Modules
	Initializing a ROS Node
	Printing Messages in a ROS Node
	Creating a Node Handle
	Creating a ROS Message Definition
	Publishing a Topic in ROS Node
	Subscribing a Topic in ROS Node
	Writing the Callback Function in ROS Node
	The ROS Spin Function in ROS Node
	The ROS Sleep Function in ROS Node
	Setting and Getting a ROS Parameter
	The Hello World Example Using ROS
	Creating a hello_world Package
	Creating a ROS C++ Node
	Editing the CMakeLists.txt File
	Building C++ Nodes
	Executing C++ Nodes
	Creating Python Nodes
	Executing Python Nodes
	Creating Launch Files

	Visualizing a Computing Graph
	Programming turtlesim Using rospy
	Moving turtlesim

	Printing the Robot’s Position
	Moving the Robot with Position Feedback
	Reset and Change the Background Color
	Programming TurtleBot Simulation Using rospy
	Installing TurtleBot 3 Packages
	Launching the TurtleBot Simulation
	Gazebo Simulation

	Moving a Fixed Distance Using a Python Node
	Finding Obstacles
	Programming Embedded Boards Using ROS
	Interfacing Arduino with ROS
	Installing ROS on a Raspberry Pi
	Burning an Ubuntu Mate Image to a Micro SD Card
	Booting to Ubuntu
	Installing ROS on a Raspberry Pi
	Summary

	Chapter 6: Robotics Project Using ROS
	Getting Started with Wheeled Robots
	Differential Drive Robot Kinematics
	Building Robot Hardware
	Buying Robot Components
	Robot Chassis
	Additional Motors and Wheels
	Motor Driver
	Optical Encoder
	Microcontroller Board
	Bluetooth Breakout
	Sharp IR Range Sensor
	Block Diagram of the Robot

	Assembling Robot Hardware
	Creating a 3D ROS Model Using URDF
	Working with Robot Firmware
	Programming Robot Using ROS
	The Teleop Node
	The Twist Message to Motor Velocity Node
	The Diff to TF Node
	The Dead-Reckoning Node
	Final Run
	Summary

	Index

