
Robot Operating
System (ROS) for
Absolute Beginners

Robotics Programming Made Easy
—
Second Edition
—
Lentin Joseph
Aleena Johny

Robot Operating
System (ROS) for

Absolute Beginners
Robotics Programming

Made Easy

Second Edition

Lentin Joseph
Aleena Johny

Robot Operating System (ROS) for Absolute Beginners: Robotics

Programming Made Easy

ISBN-13 (pbk): 978-1-4842-7749-2		 ISBN-13 (electronic): 978-1-4842-7750-8
https://doi.org/10.1007/978-1-4842-7750-8

Copyright © 2022 by Lentin Joseph and Aleena Johny

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Aaron Black
Development Editor: James Markham
Coordinating Editor: Jessica Vakili

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233
Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub: https://github.com/Apress/Robot-Operating-System-Abs-Begs.
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Lentin Joseph
Aluva, Kerala, India

Aleena Johny
Ernakulam District, Kerala, India

https://doi.org/10.1007/978-1-4842-7750-8

iii

Chapter 1: ��Getting Started with Ubuntu Linux for Robotics�������������������1

Getting Started with GNU/Linux���1

What Is Ubuntu?���2

Why Ubuntu for Robotics?��3

Installing Ubuntu��3

Minimum PC Requirements���4

Downloading Ubuntu��4

Installing VirtualBox���5

Creating a VirtualBox Machine���6

Step 1: Adding a New Virtual Machine��6

Step 2: Naming the Guest Operating System���7

Step 3: Allocating RAM for the Guest OS��7

Step 4: Creating a Virtual Hard Disk���8

Step 5: Configuring the Type of Virtual Disk���10

Step 6: Choosing Ubuntu DVD Image��12

Step 7: Starting Virtual Machine���16

Installing Ubuntu on VirtualBox��17

Installing Ubuntu on a PC���28

Playing with the Ubuntu Graphical User Interface���30

Table of Contents

About the Authors���xi

About the Technical Reviewer��xiii

iv

The Ubuntu File System���31

Useful Ubuntu Applications��33

Getting Started with Shell Commands���34

Terminal Commands Cheat Sheet��36

man: Manual Pages for Shell Commands���36

ls: List Directory Content��36

cd: Change Directory��37

pwd: Current Terminal Path��37

mkdir: Create a Folder��38

rm: Delete a File���38

rmdir: Delete a Folder���39

mv: Move a File from One Place to Another��40

cp: Copy a File from One Path to Another���41

dmesg: Display a Kernel Message��41

lspci: List of PCI Devices in the System��42

lsusb: List of USB Devices in the System���43

sudo: Run a Command in Administrative Mode��43

ps: List the Running Process��44

kill: Kill a Process���45

apt-get: Install a Package in Ubuntu��45

dpkg -i: Install a Package in Ubuntu���48

reboot: Reboot the System���49

poweroff: Switch Off the System��49

htop: Terminal Process View���50

nano: Text Editor in Terminal���51

Summary���52

Table of Contents

v

Chapter 2: ��Fundamentals of C++ for Robotics Programming�������������53

Getting Started with C++���54

Timeline: The C++ Language���54

C/C++ in Ubuntu Linux��54

Introduction to GCC and G++ Compilers��55

Installing C/C++ Compiler��55

Verifying Installation���56

Introduction to GNU Project Debugger (GDB)���57

Installing GDB in Ubuntu Linux���57

Verifying Installation���58

Writing Your First Code��59

Explaining Code��61

Compiling Your Code���61

Debugging Your Code���63

Learning OOP Concepts from Examples��66

The Differences Between Classes and Structs���67

C++ Classes and Objects���70

Class Access Modifier��72

C++ Inheritance���73

C++ Files and Streams��78

Namespaces in C++���80

C++ Exception Handling���82

C++ Standard Template Libraries��84

Building a C++ Project���84

Creating a Linux Makefile��85

Creating a CMake File��88

Summary���90

Table of Contents

vi

Chapter 3: ��Fundamentals of Python for Robotics Programming���������93

Getting Started with Python���94

Timeline: The Python Language���94

Python in Ubuntu Linux��95

Introduction to Python Interpreter��95

Setting Python 3 on Ubuntu 20.04 LTS���95

Verifying Python Installation���96

Writing Your First Code��97

Running Python Code���99

Understanding Python Basics��100

What’s New in Python?��101

Static and Dynamic Typing���101

Code Indentation��102

Semicolons���102

Python Variables���102

Python Input and Conditional Statement��104

Python: Loops���106

Python: Functions���108

Python: Handling Exception��110

Python: Classes��111

Python: Files���114

Python: Modules���115

Python: Handling Serial Ports���117

Installing PySerial in Ubuntu 20.04��118

Python: Scientific Computing and Visualization���120

Python: Machine Learning and Deep Learning���121

Python: Computer Vision���122

Table of Contents

vii

Python: Robotics���122

Python: IDEs��122

Summary���123

Chapter 4: ��Kick-Starting Robot Programming Using ROS�����������������125

What Is Robot Programming?��125

Why Robot Programming Is Different���127

Getting Started with ROS���130

The ROS Equation���133

Robot Programming Before and After ROS���133

The History of ROS���134

Before and After ROS���137

Why Use ROS?���137

Installing ROS���138

Robots and Sensors Supporting ROS���146

Popular ROS Computing Platforms��149

ROS Architecture and Concepts���150

The ROS File System��153

ROS Computation Concepts���155

The ROS Community��156

ROS Command Tools��156

ROS Demo: Hello World Example���161

ROS Demo: turtlesim��163

Moving the Turtle��166

Moving the Turtle in a Square��168

ROS GUI Tools: Rviz and Rqt���169

Summary���171

Table of Contents

viii

Chapter 5: ��Programming with ROS��173

Programming Using ROS��173

Creating a ROS Workspace and Package���174

ROS Build System��178

ROS Catkin Workspace���179

src Folder���179

build Folder���179

devel Folder��179

install Folder���180

Creating a ROS Package��180

Using ROS Client Libraries���182

roscpp and rospy���183

Header Files and ROS Modules��183

Initializing a ROS Node���185

Printing Messages in a ROS Node��186

Creating a Node Handle���186

Creating a ROS Message Definition���187

Publishing a Topic in ROS Node���187

Subscribing a Topic in ROS Node���188

Writing the Callback Function in ROS Node���189

The ROS Spin Function in ROS Node��190

The ROS Sleep Function in ROS Node��190

Setting and Getting a ROS Parameter��191

The Hello World Example Using ROS��192

Creating a hello_world Package���192

Creating a ROS C++ Node��194

Table of Contents

ix

Editing the CMakeLists.txt File���196

Building C++ Nodes���197

Executing C++ Nodes���198

Creating Python Nodes���201

Executing Python Nodes���202

Creating Launch Files���203

Visualizing a Computing Graph��205

Programming turtlesim Using rospy��206

Moving turtlesim���207

Printing the Robot’s Position��212

Moving the Robot with Position Feedback���217

Reset and Change the Background Color��219

Programming TurtleBot Simulation Using rospy��224

Installing TurtleBot 3 Packages��224

Launching the TurtleBot Simulation���225

Gazebo Simulation��226

Moving a Fixed Distance Using a Python Node��227

Finding Obstacles��229

Programming Embedded Boards Using ROS���230

Interfacing Arduino with ROS���230

Installing ROS on a Raspberry Pi���237

Burning an Ubuntu Mate Image to a Micro SD Card��239

Booting to Ubuntu��239

Installing ROS on a Raspberry Pi���240

Summary���240

Table of Contents

x

Chapter 6: ��Robotics Project Using ROS���241

Getting Started with Wheeled Robots��241

Differential Drive Robot Kinematics���242

Building Robot Hardware���246

Buying Robot Components���247

Robot Chassis���247

Additional Motors and Wheels��248

Motor Driver���248

Optical Encoder��249

Microcontroller Board���251

Bluetooth Breakout���251

Sharp IR Range Sensor���252

Block Diagram of the Robot��253

Assembling Robot Hardware��255

Creating a 3D ROS Model Using URDF���255

Working with Robot Firmware���261

Programming Robot Using ROS���264

The Teleop Node���268

The Twist Message to Motor Velocity Node��269

The Diff to TF Node��269

The Dead-Reckoning Node��270

Final Run��271

Summary���274

Index��275

Table of Contents

xi

About the Authors

Lentin Joseph is an author, roboticist, and robotics entrepreneur from

India. He runs a robotics software company called Qbotics Labs in

Kochi/Kerala. He has ten years of experience in the robotics domain

primarily in the Robot Operating System, OpenCV, and PCL.

He has authored eight books on ROS, namely, Learning Robotics

Using Python, first and second editions; Mastering ROS for Robotics

Programming, first and second editions; ROS Robotics Projects, first and

second editions; ROS Programming: Building Powerful Robots; and Robot

Operating System (ROS) for Absolute Beginners. He is also co-editor of

the book: Autonomous Driving and Advanced Driver-Assistance Systems

(ADAS): Applications, Development, Legal Issues, and Testing.

He obtained his masters in robotics and automation from India and

has also worked at the Robotics Institute, CMU, USA. He is a TEDx speaker.

Aleena Johny is a robotics software engineer currently working at Qbotics

Labs from India. She completed her M.Tech and B.Tech from Rajagiri

School of Engineering and Technology (RSET), Kerala. After her post

graduation, she worked as an Assistant Professor in computer science

for one year. After that, she started working in Qbotics Labs. She has

experience with robotics software platforms such as the Robot Operating

System (ROS), OpenCV, and Gazebo. She has published a research paper

in the International Journal of Scientific Research in Science, Engineering

and Technology and presented a paper at the National Conference on

Advanced Computing and Communication.

xiii

About the Technical Reviewer

Massimo Nardone has more than 22 years

of experience in security, web/mobile

development, and cloud and IT architecture.

His true IT passions are security and Android.

He has been programming and teaching

how to program with Android, Perl, PHP, Java,

VB, Python, C/C++, and MySQL for more than

20 years.

He holds a Master of Science degree in

Computing Science from the University of

Salerno, Italy.

He has worked as a project manager, software engineer, research

engineer, chief security architect, information security manager,

PCI/SCADA auditor, and senior lead IT security/cloud/SCADA architect

for many years.

1© Lentin Joseph and Aleena Johny 2022
L. Joseph and A. Johny, Robot Operating System (ROS) for Absolute Beginners,
https://doi.org/10.1007/978-1-4842-7750-8_1

CHAPTER 1

Getting Started with
Ubuntu Linux for
Robotics
Let’s start our journey of programming robots by using the Robot

Operating System (ROS). In order to get started with ROS, there are

some prerequisites to be satisfied. The prerequisites are to have a good

understanding of Linux, especially Ubuntu, a good understanding of Linux

shell commands, and Python and C++ programming knowledge.

This book discusses all the prerequisite technologies required for

robot programming using ROS. This first chapter introduces the Ubuntu

operating system, installation, important shell commands, and the

important tools for programming robots. If you already work with Ubuntu,

you should still go through this chapter. It will refresh your existing

understanding of Ubuntu Linux.

�Getting Started with GNU/Linux
Linux is an operating system like Windows 10 or macOS. Similar to

other operating systems, it has capabilities such as communicating and

receiving instructions from users, reading/writing data to the disk drive,

https://doi.org/10.1007/978-1-4842-7750-8_1#DOI

2

and executing software applications. The important part of any operating

system is the kernel. In GNU/Linux system, Linux (www.linux.org) is the

kernel component. The rest of the components are applications developed

by the GNU Project (www.gnu.org/home.en.html).

The Linux-based OS is inspired from the Unix operating system. The

Linux kernel is capable of multitasking in multiuser systems. The good

thing is that GNU/Linux is free to use and open source. Users have full

control on the operating system, which makes Linux ideal for computer

hackers and geeks. Linux is vastly used in servers. The popular Android

operating system runs in a Linux kernel. There are many distributions,

or flavors, of Linux, which basically uses the Linux kernel as the core

component; there are differences in the graphical interface. Some of the

most popular Linux distributions are Ubuntu, Debian, and Fedora (see

Figure 1-1). The Linux-based operating systems are among the most

popular in the world.

Figure 1-1.  Logos of various popular Linux distributions

�What Is Ubuntu?
Ubuntu (www.ubuntu.com) is a popular Linux distribution based on

the Debian architecture (https://en.wikipedia.org/wiki/Debian).

It is freely available for use, and it is open source, so it can be modified

according to your application. Ubuntu comes with more than 1,000

pieces of software, including the Linux kernel, a GNOME/KDE desktop

Chapter 1 Getting Started with Ubuntu Linux for Robotics

http://www.linux.org
http://www.gnu.org/home.en.html
http://www.ubuntu.com
https://en.wikipedia.org/wiki/Debian

3

environment, and standard desktop applications (Word processing, a web

browser, spreadsheets, a web server, programming languages, integrated

development environment [IDE], and several PC games). Ubuntu can

run on desktops and servers. It supports architectures such as Intel x86,

AMD64, ARMv7, and ARMv8 (ARM64). Ubuntu is backed by Canonical

Ltd. (www.canonical.com), a UK-based company.

�Why Ubuntu for Robotics?
The software is the heart of any robot. A robot application can be run on

an operating system that provides functionalities to communicate with

robot actuators and sensors. A Linux-based operating system can provide

great flexibility to interact with low-level hardware and has provision to

customize the operating system according to the robot application. The

advantages of Ubuntu in this context are its responsiveness, lightweight

nature, and high degree of security. Beyond these factors, Ubuntu has great

community support, and there are frequent releases, which makes Ubuntu

an updated operating system. Ubuntu also has long-term support (LTS)

releases, which provides user support for up to five years. These factors

have led the ROS developers to stick to Ubuntu, and it is the only operating

system that is fully supported by ROS.

The Ubuntu–ROS combination is an ideal choice for

programming robots.

�Installing Ubuntu
This section discusses how to install Ubuntu 20.04 LTS. The procedure for

installing any Ubuntu version is almost the same. Like any other operating

system, a PC should have the recommended system requirements to

install Ubuntu. Here are the recommended requirements needed for your

PC. After that, you can see the detailed procedure of Ubuntu installation.

Chapter 1 Getting Started with Ubuntu Linux for Robotics

http://www.canonical.com

4

Minimum PC Requirements
•	 2GHz dual core processor or better

•	 4GB system memory

•	 35GB of free hard drive space

•	 A DVD drive or a USB port for the installer media

•	 Internet access is helpful

�Downloading Ubuntu
The first step is to download the DVD/CD ISO image. To download an

Ubuntu image, go to www.ubuntu.com/download/desktop.

You can take a look at all Ubuntu releases at http://releases.

ubuntu.com.

The DVD image is less than 1GB. It is named ubuntu-20.04.X-desktop-

amd64.iso. By default, the ISO image is 64-bit architecture; if your PC RAM

size is less than 4GB, you can use 32-bit architecture.

After downloading the desired Ubuntu image, there are two options for

installing Ubuntu:

•	 Install on a real PC. This can be done using one of two

methods. You can burn the image to a DVD or to a USB drive.

•	 Install in VirtualBox (www.virtualbox.org) or VMWare

Workstation (https://www.vmware.com/in/products/

workstation-player/workstation-player-evaluation

.html). With this method, you have to first install

VirtualBox software and then install Ubuntu OS on the

top of it. In this book, we prefer this method because it is

safe to work with VirtualBox. Installing on a real PC may

cause data loss if you don’t do it properly. As a beginner,

you can experiment with Ubuntu inside VirtualBox.

Chapter 1 Getting Started with Ubuntu Linux for Robotics

http://www.ubuntu.com/download/desktop
http://releases.ubuntu.com
http://releases.ubuntu.com
http://www.virtualbox.org
https://www.vmware.com/in/products/workstation-player/workstation-player-evaluation.html
https://www.vmware.com/in/products/workstation-player/workstation-player-evaluation.html
https://www.vmware.com/in/products/workstation-player/workstation-player-evaluation.html

5

�Installing VirtualBox
VirtualBox (www.virtualbox.org) is a virtualization software that allows

an unmodified operating system (with all of its installed software) to run

in a special environment on top of your existing operating system. This

environment, called a virtual machine, is created by the virtualization

software by intercepting access to certain hardware components and

certain features. The physical computer is called the host, and the virtual

machine is called the guest. The guest can run on the host computer, which

thinks that it’s running on a real machine.

You can install VirtualBox on a host PC running Windows, Linux, OS X,

or Solaris (www.virtualbox.org/wiki/Downloads). In this chapter, we

install it on a Windows PC. You can choose the Windows platform from

a list and install it on your Windows PC (see Figure 1-2). The installation

of VirtualBox is easy; you may not have any confusing issues. During

installation, you are asked to install virtual drivers. You can accept the

driver installation.

Figure 1-2.  Downloading the virtual box for Windows host

Chapter 1 Getting Started with Ubuntu Linux for Robotics

http://www.virtualbox.org
http://www.virtualbox.org/wiki/Downloads

6

If you are working in OS X or Linux, choose the platform accordingly.

The installation instructions can be found at www.virtualbox.org/

manual/ch02.html.

�Creating a VirtualBox Machine
The first step in installing Ubuntu in VirtualBox is to create a new virtual

machine. If you already installed VirtualBox on your system, you can create

the virtual machine by going through the following steps.

�Step 1: Adding a New Virtual Machine
After installing VirtualBox on your PC, open it. You see the window shown

in Figure 1-3.

Figure 1-3.  Adding a new virtual machine in virtual box

You can click the New button to create a new virtual machine.

Chapter 1 Getting Started with Ubuntu Linux for Robotics

http://www.virtualbox.org/manual/ch02.html
http://www.virtualbox.org/manual/ch02.html

7

�Step 2: Naming the Guest Operating System
After adding the virtual machine, the next step is to name the guest

operating system that we are going to create. As shown in Figure 1-4, you

can name it Ubuntu, set the type as Linux, and the version as 32/64 bit. The

naming is just for the information; it is not associated with any settings.

After entering the name, click the Next button to continue to the next step.

Figure 1-4.  Naming the guest operating system

�Step 3: Allocating RAM for the Guest OS
In this step, we allocate the RAM for the guest OS (see Figure 1-5). This step

is important because if the RAM allocation is too low, the guest OS may

take a lot of time to boot, and if the allocation is too high, the RAM for the

Chapter 1 Getting Started with Ubuntu Linux for Robotics

8

host OS will also allocate for the guest OS, which may slow down the host

OS. So, the RAM allocation should be optimized so that both operating

systems get better performance. Based on the RAM size of your host PC,

the wizard will show the safety limits of RAM size for the virtual OS in

green. The RAM allocation of the guest should be within the safety limits.

Figure 1-5.  Allocating RAM for the guest OS

�Step 4: Creating a Virtual Hard Disk
After allocating the RAM, the next step is to create a virtual hard disk for

the guest OS. In this step, you can use an existing virtual hard disk file or

create a new one. These virtual hard disk files are portable, so you can copy

the virtual hard disk to any PC and set up the same virtual machine on

that PC.

Chapter 1 Getting Started with Ubuntu Linux for Robotics

9

In this step, you can select the type of virtual hard disk that you want

to create (see Figure 1-6). The default option is VDI (VirtualBox disk

image), which is the native virtual hard disk of VirtualBox. VHD (virtual

hard disk) is developed by VMWare, which is also supported in VirtualBox.

The third option is VMDK (virtual machine disk), which is the Microsoft

Virtual PC virtual hard disk type. You can get more information from www.

virtualbox.org/manual/ch05.html. In this chapter, we are selecting the

native hard disk format, or VDI.

Figure 1-6.  Choosing the type of hard disk for the virtual machine

Chapter 1 Getting Started with Ubuntu Linux for Robotics

http://www.virtualbox.org/manual/ch05.html
http://www.virtualbox.org/manual/ch05.html

10

�Step 5: Configuring the Type of Virtual Disk
In this step, we have to configure the mode of storage. There are two

modes: dynamically allocated and fixed size (see Figure 1-7). If we select

fixed size, a virtual hard disk is created with a fixed size. That size can be

set in the next step. After creating this virtual hard disk, it will consume that

much physical disk size. With a dynamically allocated disk, you can use the

maximum hard disk size, and it will only use the physical hard disk space

when it fills up. The time taken to create a fixed hard disk is higher than

dynamically allocated, but once it is created, it can perform much better

than a dynamically allocated mode. In this chapter, we are going to use a

fixed size with a maximum size of 20GB.

Figure 1-7.  Choosing the mode of storage in the virtual hard disk

Chapter 1 Getting Started with Ubuntu Linux for Robotics

11

You can also browse the location to save the virtual hard disk file.

When you finish the virtual disk configuration, it will take some time to

build those configurations (see Figure 1-8).

Figure 1-8.  Creating the fixed-size virtual hard disk

After creating the virtual hard disk, you can see the newly created

virtual machine. But where do we put the Ubuntu image in the virtual

machine? Well, that is the next step that we are going to do.

Chapter 1 Getting Started with Ubuntu Linux for Robotics

12

�Step 6: Choosing Ubuntu DVD Image
Figure 1-9 shows the newly created virtual machine. We have to select the

Settings button to configure the virtual machine.

Figure 1-9.  Configuring the virtual machine

In the Settings window, navigate to the Storage option on the left (see

Figure 1-10).

Chapter 1 Getting Started with Ubuntu Linux for Robotics

13

Figure 1-10.  Inserting Ubuntu DVD image in the optical drive

After inserting the Ubuntu image, configure the video configuration.

In this setting, you can allocate the video memory of the guest OS (see

Figure 1-11).

Chapter 1 Getting Started with Ubuntu Linux for Robotics

14

Figure 1-11.  Display settings of the guest OS

After configuring the Display settings, we have to configure the System

settings. In the System settings, you can allocate the number of CPUs for

the guest OS. Figure 1-12 shows the safest settings for CPU allocation.

Chapter 1 Getting Started with Ubuntu Linux for Robotics

15

Figure 1-12.  The System settings for the guest OS

The Shared Folders settings may be useful when working with Ubuntu

(see Figure 1-13). Using this option, you can share the host operating

system folder inside the guest operating system. This option is useful for

accessing files and folders from the host operating system.

Chapter 1 Getting Started with Ubuntu Linux for Robotics

16

Figure 1-13.  The Shared Folders settings

After completing these settings, you can start the virtual machine.

�Step 7: Starting Virtual Machine
As shown in Figure 1-14, you can launch the virtual machine by clicking

the Start button. This will boot the virtual machine and bring you to the

Ubuntu live desktop.

Chapter 1 Getting Started with Ubuntu Linux for Robotics

17

Figure 1-14.  Launching the virtual machine

On the live desktop, you can explore the Ubuntu features without

installing it. You also have the option to install Ubuntu in the live mode. In

the next section, we will see how to install Ubuntu in VirtualBox. The steps

are the same if you install it on a real PC.

�Installing Ubuntu on VirtualBox
When the virtual machine boots up, you get the window shown in

Figure 1-15, which asks you to Try Ubuntu or Install Ubuntu. If you want

to use Ubuntu before installing it, select Try Ubuntu, but if you want to

directly install Ubuntu, select Install Ubuntu. Here, we choose the Install

Ubuntu option.

Chapter 1 Getting Started with Ubuntu Linux for Robotics

18

Figure 1-15.  The first window after booting from Ubuntu
DVD image

After selecting the Install Ubuntu option, the next step is to set the

keyboard layout (see Figure 1-16). Use the default keyboard layout (i.e.,

English (US)).

Chapter 1 Getting Started with Ubuntu Linux for Robotics

19

Figure 1-16.  Setting the keyboard layout

The next window (see Figure 1-17) allows you to select options such as

updating Ubuntu during installation and updating third-party applications

and drivers. If you are working in VirtualBox, you can ignore this, but if

you are installing on a real PC that has graphics cards like NVIDIA or ATi

Radeon, you can select these options. It can search for an appropriate

graphics driver and install it during the Ubuntu installation; otherwise, you

may need to manually install it. However, there is no guarantee that we will

get a proper drive for our graphics card.

Chapter 1 Getting Started with Ubuntu Linux for Robotics

20

Figure 1-17.  Updating Ubuntu and installing third-party software

After configuring, click Continue to move onto the next step. This step

is very important because we are going to partition the hard disk to install

Ubuntu on it (see Figure 1-18). You have to be careful when selecting the

partition option. The first option, Erase disk and install Ubuntu, erases all

the drives on the hard disk and installs Ubuntu. If you are willing to do this,

you can proceed with that option. If you installed Ubuntu in VirtualBox,

this option will be fine, but if you are planning to install Ubuntu along with

Windows, select the Something else option.

Chapter 1 Getting Started with Ubuntu Linux for Robotics

21

Figure 1-18.  Choosing the installation type

The Something else option gives us the option to format the desired

drive and install Ubuntu on it. If you are installing Ubuntu in VirtualBox,

you don’t need to worry much about this because there is only one hard

disk. If you are going to install on your real PC, you have to find a partition

for installing Ubuntu before booting into Ubuntu. In the partition manager,

you can identify the drive by checking the size of the partition. If the disk

is not formatted, you see the disk drive as /dev/sda. The first option is to

create a partition table, which you do by clicking the New Partition Table

button. After doing this, the disk drive shows free space, as shown in

Figure 1-19.

Chapter 1 Getting Started with Ubuntu Linux for Robotics

22

Figure 1-19.  Free space on the hard disk

You can modify the existing partition with the button on the left. There

are three buttons. The button with the + symbol is for creating a new

partition from a free space, the button with the – symbol is for deleting

an existing partition, and the Change button is for converting an existing

partition into another format or changing its size. Here, we are going to

create a new partition, so click the + button. You see another window (as

shown in Figure 1-20), which asks for information about the new partition.

Chapter 1 Getting Started with Ubuntu Linux for Robotics

23

Figure 1-20.  Creating a new root partition

Basically, to install Ubuntu, we need to set up two partitions. One is a

root partition and the other is a swap partition. The Ubuntu OS is installed

in the root partition. As shown in Figure 1-20, primary is the type for the

root partition, and the format of the file system is Ext4Journaling. You have

to set the mount point of root partition as /.

The swap partition is a special kind of partition that is used for

storing inactive pages when your physical memory (RAM) is approaching

maximum usage. If your RAM is large enough, let’s say greater than 4GB,

the swap partition can be ignored; otherwise, it is a good idea to have a

swap partition. You can allocate 1GB or 2GB to the swap partition (see

Figure 1-21).

Chapter 1 Getting Started with Ubuntu Linux for Robotics

24

Figure 1-21.  Creating a new swap partition

After creating both partitions, click the Install Now button, which

installs Ubuntu to the selected partition. During installation, you can

set the time zone, keyboard layout, and username and password (see

Figure 1-22).

Chapter 1 Getting Started with Ubuntu Linux for Robotics

25

Figure 1-22.  Setting the time zone

You can click your country to set the time zone. The country name will

be visible when you click the map.

Next, enter the Ubuntu login information (see Figure 1-23).

Chapter 1 Getting Started with Ubuntu Linux for Robotics

26

Figure 1-23.  Setting login information

In this step, we set the PC name, login name, and password. If you

don’t want to log in using a username and password, you can enable the

Log in automatically feature. This logs in directly to the Ubuntu screen

without prompting for a username and password.

After assigning the login information, the installation procedure is

almost over. After installing the files, you need to reboot (see Figure 1-24).

Click Reboot to restart the virtual machine/PC. During this time, you

can remove the DVD image from the VirtualBox menu. Select Devices ➤

Optical Drives ➤ Remove disk from the VirtualBox drop-down menu.

Chapter 1 Getting Started with Ubuntu Linux for Robotics

27

Figure 1-24.  Restarting Ubuntu

After rebooting, you see the Ubuntu desktop shown in Figure 1-25.

Figure 1-25.  Ubuntu desktop

Congratulations! You have successfully installed Ubuntu on VirtualBox.

After installation, install build-essential metapackage for compiling

software. They include gcc, g++, libc6-dev, make, dpkg-dev, etc.

Chapter 1 Getting Started with Ubuntu Linux for Robotics

28

Before you install metapackage named “build-essential,” we have to

run update first:

Step 1:

sudo apt update

Step 2:

sudo apt install build-essential

If you are planning to install it on a real PC, you may need to know the

following things to boot Ubuntu on a PC.

�Installing Ubuntu on a PC
Basically, there are two ways to boot Ubuntu on a PC. The first method

is direct: burn the DVD image you downloaded to a DVD, and then boot

it from the DVD. The other method is to boot from a USB drive, which is

easier and faster than a DVD installation.

A tool called UNetbootin burns the DVD image to a USB drive. It can

be downloaded from https://sourceforge.net/projects/unetbootin/.

You can browse the DVD image from this tool. Click OK to start the

copying process (see Figure 1-26).

Chapter 1 Getting Started with Ubuntu Linux for Robotics

https://sourceforge.net/projects/unetbootin/

29

Figure 1-26.  UNetbootin setup

You can select the Linux distribution and browse the DVD image. After

selecting the DVD image, select the type of drive, which is USB Drive. Next,

select the drive letter. Then, click the OK button. It takes time to copy the

DVD image to the drive. When it is complete, reboot the PC and set the

first boot device as USB drive. Now it will boot from the USB drive. You can

follow the installation procedures described earlier. More instructions are

at https://unetbootin.github.io/.

If you have any trouble installing the OS using UNetbootin, try Rufus

(https://rufus.akeo.ie/), which is another application for the same

purpose.

Chapter 1 Getting Started with Ubuntu Linux for Robotics

https://unetbootin.github.io/
https://rufus.akeo.ie/

30

�Playing with the Ubuntu Graphical
User Interface
On the Ubuntu desktop, there is a panel on the left of the screen called

Unity, which is a graphical shell built on the top of GNOME (www.gnome.

org), the default desktop environment of Ubuntu. It is a free, open source

application. The other desktop environments are KDE and LXDE.

Figure 1-27 shows the Unity Launcher, which helps to quickly launch

and search Ubuntu applications. Click each app to make it pop up. You

can also search by application name. These GUI tools can save your time

in finding an application. On the right side of the Unity panel, there are

options to adjust the volume and power off the system. The launcher

is called the Unity Launcher. The search utility in the launcher is called

the Dash. There is an indicator panel to show the network connection,

volume, and other notifications.

Figure 1-27.  The Unity Launcher panel

Chapter 1 Getting Started with Ubuntu Linux for Robotics

http://www.gnome.org
http://www.gnome.org

31

Similar to Windows and OS X, there are many options in Ubuntu for

customizing the desktop environment. If you are interested in configuring

your Ubuntu desktop, refer to the Compiz Settings Manager at https://

help.ubuntu.com/community/CompositeManager#Compiz.

To learn more about Ubuntu, download the PDF from https://

ubuntu-manual.org/downloads.

�The Ubuntu File System
Like the C drive in a Windows operating system, Linux has a special drive

for storing system files. It is called the root file system, which we created

during the installation of Ubuntu. We assigned / for the file system.

Figure 1-28 shows the Ubuntu file system architecture.

Figure 1-28.  Ubuntu file system structure

Chapter 1 Getting Started with Ubuntu Linux for Robotics

https://help.ubuntu.com/community/CompositeManager#Compiz
https://help.ubuntu.com/community/CompositeManager#Compiz
https://ubuntu-manual.org/downloads
https://ubuntu-manual.org/downloads

32

You can explore the file system by choosing File Manager from the

Unity Launcher, as shown in Figure 1-29.

Figure 1-29.  Ubuntu file system structure

The following describes the uses of each folder in the file system:

•	 /bin and /sbin: Contains system applications similar

to the C:\ Windows folder.

•	 /etc: Contains system configuration files.

•	 /home/yourusername: This is equivalent to the C:\Users

folder in Windows.

•	 /lib: Contains library files similar to .dll files in

Windows.

•	 /media: Removable media is mounted in the directory.

Chapter 1 Getting Started with Ubuntu Linux for Robotics

33

•	 /root: Contains root user files (not the root user file

system; root user is the administrator of the Linux

system).

•	 /usr: Pronounced user, it contains most of the program

files (equivalent to C:\Program Files in Microsoft

Windows).

•	 /var/log: Contains log files written by many

applications.

•	 /home/yourusername/Desktop: Contains Ubuntu

desktop files.

•	 /mnt: The mounted partitions are shown here.

•	 /boot: Contains the files required to boot.

•	 /dev: Contains Linux device files.

•	 /opt: The location for optionally installed programs

(ROS is installed to /opt).

•	 /sys: Holds the files containing information about

the system.

�Useful Ubuntu Applications
If you want to install a popular software application in Ubuntu, use Ubuntu

software (see Figure 1-30), which is available in the Unity Launcher. It is a

direct way to install applications in Ubuntu. In the coming sections, you

see how to install Ubuntu packages using command lines.

Chapter 1 Getting Started with Ubuntu Linux for Robotics

34

Figure 1-30.  The Ubuntu software center

�Getting Started with Shell Commands
The graphical tools in Ubuntu are very easy to use, but if you want to

perform advanced tasks in Linux, you may need to learn the Ubuntu

command-line interface (CLI). The command-line tools are faster and

used often in debugging the system. The command-line interface in Linux

can be compared to the disk operating system (DOS) in Windows.

We mainly use the command line when we work with ROS. Knowledge

of the Linux terminal commands is a prerequisite for working with ROS.

The Ubuntu command-line interface is in a tool called Terminal. Use

the Ubuntu Dash search to find the Terminal application. Figure 1-31

shows an example.

Chapter 1 Getting Started with Ubuntu Linux for Robotics

35

Figure 1-31.  Searching for the Terminal application

Click Terminal to open the application, which is shown in Figure 1-32.

Figure 1-32.  The Ubuntu terminal

Chapter 1 Getting Started with Ubuntu Linux for Robotics

36

�Terminal Commands Cheat Sheet
This section covers useful shell commands for working with robots and

ROS. The following are the popular commands that you want to explore.

�man: Manual Pages for Shell Commands
The man command stands for manual. This command provides the manual

page of a given command:

Usage: man <shell command>

Example: man ls

The preceding asks for the manual page of ls. Figure 1-33 shows the

output of man ls.

Figure 1-33.  The manual page of ls

�ls: List Directory Content
The ls command lists the content of files and folders in the current

directory:

Usage: ls

The output of ls is shown in Figure 1-34.

Chapter 1 Getting Started with Ubuntu Linux for Robotics

37

Figure 1-34.  List of files in the current path

�cd: Change Directory
The cd command switches from one folder to another (see Figure 1-35):

Usage: cd <Directory_path>

Example: cd Desktop

Figure 1-35.  Changing folders

�pwd: Current Terminal Path
The pwd command returns the current path of the terminal. This is useful

for getting the absolute path.

Usage: pwd

Figure 1-36 shows the output of the pwd command.

Chapter 1 Getting Started with Ubuntu Linux for Robotics

38

Figure 1-36.  Command to get current path

�mkdir: Create a Folder
The mkdir command creates an empty folder or directory:

Usage: mkdir <folder_name>

Example: mkdir robot

Figure 1-37 shows how to create and list folders.

Figure 1-37.  Creating a new folder

�rm: Delete a File
The rm command deletes a file:

Usage: rm <file_path>

Example: rm test.txt

An example is shown Figure 1-38. The files are listed before deletion

and after deletion to confirm that the files were actually deleted.

Chapter 1 Getting Started with Ubuntu Linux for Robotics

39

Figure 1-38.  Deleting a file

To delete a folder by recursively deleting its files, use the following

command:

$ rm -r <folder_name>

To delete a file inside the root (/) file system, use sudo before the rm

command:

$ sudo rm <file_name>

�rmdir: Delete a Folder
The rmdir command deletes an empty folder. You may need to delete files

before using this command.

Usage: rmdir <folder_name>

Example: rmdir robot

Figure 1-39 shows an example of this command.

Chapter 1 Getting Started with Ubuntu Linux for Robotics

40

Figure 1-39.  Deleting an empty folder

�mv: Move a File from One Place to Another
The mv command moves a file from one location to another and then

renames the file:

Usage: mv source_file destination/destination_file

Example: mv test.txt test_2.txt

In Figure 1-40, test.txt is moved into the same folder under a

different name (i.e., test_2.txt).

Figure 1-40.  Moving a file

It is moving the file by renaming the file.

Chapter 1 Getting Started with Ubuntu Linux for Robotics

41

�cp: Copy a File from One Path to Another
The cp command copies files from one location to another:

Usage: cp source_file destination_folder/destination_file

Example: cp test.txt test_2.txt

Figure 1-41 demonstrates this example.

Figure 1-41.  Copying a file

�dmesg: Display a Kernel Message
The dmesg command is very useful for debugging the system. It displays

the kernel logs (see Figure 1-42). From these logs, you can debug the

problem.

Usage: dmesg

Chapter 1 Getting Started with Ubuntu Linux for Robotics

42

Figure 1-42.  Checking the kernel logs

�lspci: List of PCI Devices in the System
The lspci command also debugs the PC. This command lists the PCI

devices in the PC (see Figure 1-43).

Usage: lspci

Figure 1-43.  Listing the PCI devices

Chapter 1 Getting Started with Ubuntu Linux for Robotics

43

�lsusb: List of USB Devices in the System
The lsusb command lists all USB devices (see Figure 1-44):

Usage: lsusb

Figure 1-44.  Listing the USB devices

�sudo: Run a Command in Administrative Mode
The sudo command is one of the most important. We use it regularly. It

runs a command with administrative privileges (see Figure 1-45). We can

also completely switch to root (administrator) mode using this command.

Usage: sudo <parameter> <command>

Example: sudo -i

This example command switches to root mode.

Figure 1-45.  Switching to administrator mode

Figure 1-46 shows the results of executing a command in root mode.

Chapter 1 Getting Started with Ubuntu Linux for Robotics

44

Figure 1-46.  Running a command with administrative privilege

�ps: List the Running Process
The ps command lists the running process in your system:

Usage: ps <command arguments>

Example: ps -A

When we execute the ps command, it lists the process in the current

terminal. If we run ps -A, it lists all the processes running in the system.

Both results are shown in Figure 1-47. PID is the process ID, which

identifies the running process. TTY is the terminal type.

Figure 1-47.  Listing the processes running on the system

Chapter 1 Getting Started with Ubuntu Linux for Robotics

45

�kill: Kill a Process
To end a process running in the system, use the kill command:

Usage: kill <PID>

Usage: kill 2573

To kill a process, we have to identify the PID of process and provide it

with the command. The results of the command are shown in Figure 1-48.

Figure 1-48.  Killing a process

�apt-get: Install a Package in Ubuntu
The apt-get command is important and very useful when working with

Ubuntu and ROS. It installs an Ubuntu package that is either in the Ubuntu

repositories or on the local system. The packages are called Debian

packages, which have .deb extensions. Installing a package requires root

permission, so we have to use sudo before the command. We can also

update the list of packages in the repositories using this command.

Usage: $ sudo apt-get <command_argument> <package_name>

Example: $ sudo apt-get update

Example: $ sudo apt-get install htop

Example: $ sudo apt-get remove htop

Figure 1-49 shows the Ubuntu package update using sudo apt-get

update. This command updates the package download location in the

local system.

Chapter 1 Getting Started with Ubuntu Linux for Robotics

46

Figure 1-49.  Updating the Ubuntu software repository

Figure 1-50 shows how to install a package. We are installing a tool

called htop. It is a terminal process viewer.

Figure 1-50.  Installing a package on Ubuntu

The sudo apt-get remove htop command in Figure 1-51 shows how

to remove a package. We have to use the remove argument to delete it.

Chapter 1 Getting Started with Ubuntu Linux for Robotics

47

Figure 1-51.  Removing a package from Ubuntu

Figure 1-52 shows how to install a local Debian package using the apt-

get command. The local file is on the same path of the terminal, and the

name of the Debian file is htop.deb, so we can use the following:

$ sudo apt-get install ./htop.deb

Chapter 1 Getting Started with Ubuntu Linux for Robotics

48

Figure 1-52.  Installing a Debian package in Ubuntu

�dpkg -i: Install a Package in Ubuntu
The dpkg command is another way to install a Debian package:

Usage: dpkg <command_arguments> debian file name

Example: dpkg -i htop.deb

Figure 1-53 shows the results of the dpkg command.

Chapter 1 Getting Started with Ubuntu Linux for Robotics

49

Figure 1-53.  Installing a Debian package in Ubuntu

�reboot: Reboot the System
We can restart the system using the reboot command (see Figure 1-54):

Usage: sudo reboot

This instantly reboots the system.

Figure 1-54.  Rebooting PC

�poweroff: Switch Off the System
If you want to instantly shut down the system, use the poweroff command

(see Figure 1-55):

Usage: $ sudo poweroff

Chapter 1 Getting Started with Ubuntu Linux for Robotics

50

Figure 1-55.  Shutting down the PC

�htop: Terminal Process View
The htop is a process viewer in Linux (see Figure 1-56). It is not installed in

the system by default. You have to install it using apt-get. This command

is very useful for managing process.

Usage: htop

Figure 1-56.  Terminal process viewer

Chapter 1 Getting Started with Ubuntu Linux for Robotics

51

�nano: Text Editor in Terminal
There is a useful text editor that you can use while working in the terminal.

You can create code inside the terminal (see Figure 1-57).

Usage: $ nano file_name

Example: $ nano test.txt

Figure 1-57.  Text editor in the terminal

Figure 1-58 shows the resulting screen. In this editor, you can enter

your code.

Figure 1-58.  Nano text editor in terminal

Chapter 1 Getting Started with Ubuntu Linux for Robotics

52

After completing the code, press Ctrl+O to save the file. You are asked

to enter the file name. You can enter a new file name or use an existing

name. Press Enter to save (see Figure 1-59).

Figure 1-59.  Saving a file in the nano text editor in the terminal

Press Ctrl+X to exit from the editor. To open the file again, use nano

file_name.

�Summary
This chapter discussed the fundamentals of the Ubuntu operating system,

its installation, and the important shell commands that we need for

working with robots. This chapter is important because, before working

with ROS-based applications, you should have a basic understanding

of Linux and its commands. Understanding the Linux environment and

its commands is one of the prerequisites for learning ROS. This book

discusses all the prerequisites needed for learning ROS. This chapter is the

first step in learning ROS.

Chapter 1 Getting Started with Ubuntu Linux for Robotics

53© Lentin Joseph and Aleena Johny 2022
L. Joseph and A. Johny, Robot Operating System (ROS) for Absolute Beginners,
https://doi.org/10.1007/978-1-4842-7750-8_2

CHAPTER 2

Fundamentals of
C++ for Robotics
Programming
In the last chapter, we went through detailed procedures to install

Ubuntu on VirtualBox and on a real PC. We also practiced important

shell commands that we are going to use while building a robot. The

next important requirement for working with a robot is to learn a few

programming languages. By using these languages, we can program

the robot for different application. Some of the popular programming

languages used for creating robotics applications are C++ and Python. This

doesn’t mean that we won’t use other languages. Programming languages

like Java and C# are also used in robotics, but the most common languages

are C++ and Python.

This chapter discusses some fundamental concepts of C++ and

its compilation process. These concepts will definitely help you when

you start working with ROS. The fundamentals include mainly object-

oriented programming (OOP) concepts and compiling code using Make

and CMake tools. This chapter assumes that you have some fundamental

understanding of C programming languages. So let’s get started with C++

fundamental.

https://doi.org/10.1007/978-1-4842-7750-8_2#DOI

54

�Getting Started with C++
We can define C++ as a superset of the C programming language, or we

can say “C with Classes.” The C++ programming language project, initially

called C with Classes, was started in 1979 by computer programmer Bjarne

Stroustrup. His main work was adding object-oriented programming into

the C language by maintaining its portability without sacrificing speed

or low-level functionality. Like C, C++ is a compiled language. It needs a

compiler to convert the source code into executable code.

�Timeline: The C++ Language
In 1983, the C with Classes project changed to C++. The ++ operator is used

for incrementing a variable, so C++ means it is the C language with new

features. In 1990, Borland’s Turbo C++ compiler was released as a commercial

product. In 1998, C++ standards were published as C++ ISO/IEC 14882:1992

or C++98. In 2005, the C++ standards committee released a report of new

features added to the latest C++ standard. In 2011, the C++11 was released.

In 2017, the C++17 was released. The most recent version of C++ is C++20.

The Boost libraries (www.boost.org) made a considerable impact on the new

standards. Boost C++ libraries is a set of libraries for the C++ programming

that provides support for tasks and structures, such as linear algebra,

multithreading, image processing, regular expressions, and unit testing.

�C/C++ in Ubuntu Linux
Ubuntu Linux comes with an in-built C/C++ compiler called GCC/G++.

GCC stands for GNU Compiler Collection. It includes compilers for C, C++,

Objective-C, Fortran, Ada, and Go, as well as libraries for these languages.

GCC was written for the GNU Project (www.gnu.org/gnu/thegnuproject.

html) by Richard Stallman.

Chapter 2 Fundamentals of C++ for Robotics Programming

http://www.boost.org
http://www.gnu.org/gnu/thegnuproject.html
http://www.gnu.org/gnu/thegnuproject.html

55

�Introduction to GCC and G++ Compilers
Let’s start with GCC/G++ compilers. The latest Ubuntu Linux comes

with preinstalled C and C++ compilers. The C compiler in Linux is GCC,

and the C++ compiler is G++; the gcc and g++ are shell commands of

these compilers. You can type this command in the terminal to see what

happens (see Figure 2-1).

Figure 2-1.  Testing gcc and g++ commands in the terminal

If you are not getting the message shown in Figure 2-1, then you

confirm that these compilers are not preinstalled in your system. No

worries! You can install these compilers using apt-get command.

�Installing C/C++ Compiler
First, you may need to update the list of Ubuntu packages from the

repository with the following command:

$ sudo apt-get update

Now install the packages for getting the compilers:

$ sudo apt-get install build-essential

Chapter 2 Fundamentals of C++ for Robotics Programming

56

The build-essential package is associated with numerous packages

for developing software in Ubuntu Linux.

�Verifying Installation
After installing the preceding package, you can verify whether the

installation is correct by using the following commands:

$ whereis gcc

$ whereis g++

These commands locate the path of the gcc/g++ command and the

manual page of the same command.

The following commands print the GCC compiler that we are going to

use and display the path of the command:

$ which gcc

$ which g++

The following commands print the current version of GCC that we are

going to use:

$ gcc --version

$ g++ --version

Figure 2-2 shows the output of the preceding commands.

Chapter 2 Fundamentals of C++ for Robotics Programming

57

Figure 2-2.  Testing gcc and g++ commands in the terminal

�Introduction to GNU Project Debugger (GDB)
Let’s have a look at debugger tools for C/C++. So, what is a debugger? A

debugger is a program that runs and controls another program, examining

each line of code to detect problems or bugs.

The Ubuntu Linux comes with a debugger called GNU Debugger,

which is also called GDB (www.gnu.org/software/gdb/). It is one of the

popular C and C++ program debuggers for the Linux system.

�Installing GDB in Ubuntu Linux
Here is the command to install GDB in Ubuntu. It’s already installed on the

latest version of Ubuntu. If you are using other versions, you can use the

following command to install it:

$ sudo apt-get install -y gdb-source

Chapter 2 Fundamentals of C++ for Robotics Programming

http://www.gnu.org/software/gdb/

58

�Verifying Installation
To check whether GDB is installed properly on your PC, use the following

command. Once you type gdb in your terminal, the message in Figure 2-3

is shown.

$ gdb

Figure 2-3.  Testing the gdb command

You can verify the gdb version by using the following command:

$ gdb --version

The version also shows when you enter the gdb command.

In the next section, we are going to write our first C++ code in Ubuntu.

We will compile it and debug it to find bugs in the code.

Chapter 2 Fundamentals of C++ for Robotics Programming

59

�Writing Your First Code
Let’s start writing the first program in Ubuntu Linux. To write the code,

you can use a text editor in Ubuntu. You can choose either the gedit or

nano terminal text editor. gedit is a popular GUI text editor in Ubuntu. We

already worked with nano in the first chapter, so now let’s check out gedit.

In Ubuntu, search for gedit (see Figure 2-4) and select from the search

results.

Figure 2-4.  Searching for the gedit text editor in Ubuntu search

Once you click the text editor, you see the window shown in Figure 2-5.

Chapter 2 Fundamentals of C++ for Robotics Programming

60

Figure 2-5.  The gedit text editor

This editor is very similar to Notepad or WordPad in Windows. You can

write your first C++ code in this text editor.

Figure 2-6 shows the first C++ code that we are going to compile in

the Linux.

Figure 2-6.  The gedit text editor

Write the code in the text editor and save it as hello_world.cpp.

Chapter 2 Fundamentals of C++ for Robotics Programming

61

�Explaining Code
The hello_world.cpp code is going to print the message, “Hello Ubuntu

Linux”. #include <iostream> is a C++ header file for input/output

functions, such as taking input from a keyboard or printing a message. In

this program, we are only using the print function to print messages, so

iostream will be enough. The next line is using namespace std.

The namespace (www.geeksforgeeks.org/namespace-in-c/) is a

special feature in C++ to group a set of entities. The std namespace is

used in the iostream library. When we are using namespace std, we can

access the functions or other entities included in the std namespace, such

as functions like cout and cin. If we are not using this line of code, you

have to mention std:: for accessing functions inside that namespace, for

example, std::cout is a function to print a message.

After discussing the header file and other lines of code, we can discuss

what is included in the main function. We are using cout<<"Hello Ubuntu

Linux"<<endl to print that message. The endl adds a new line after

printing the message. After printing the message, the function returns 0

and exits the program.

�Compiling Your Code
After saving your code, the next step is to compile the code. The following

procedure will help you to compile the code.

You can take a new terminal and switch the terminal path to the

folder where the code is saved. In this case, we have saved the code to

/home/<user>/Desktop folder. To change the terminal path to the Desktop

folder, you have to use the “cd” command as shown here:

$ cd Desktop

If you have saved your code in the home directory, you don’t need to

run this command.

Chapter 2 Fundamentals of C++ for Robotics Programming

http://www.geeksforgeeks.org/namespace-in-c/

62

After switching to the Desktop folder, type ls to list the files in it (see

Figure 2-7):

$ ls

Figure 2-7.  Listing the files in the Desktop folder

If your code is in the folder, you can do the compilation by using the

following command:

$ g++ hello_world.cpp

The G++ compiler checks the code, and if there is no error, it creates an

executable named a.out. You can execute this file by using the following

command (see Figure 2-8):

$./a.out

Figure 2-8.  Running the output executable

It shows the output as

Hello Ubuntu Linux

Chapter 2 Fundamentals of C++ for Robotics Programming

63

Congratulations! You have successfully compiled and executed your

first C++ code. Now let’s check some of the g++ options. This will be useful

in the upcoming sections.

If you want to create an executable with a particular name, you can use

the following command:

$ g++ hello_world.cpp -o hello_world

The -o argument points out the output executable name. So, the

preceding command creates an executable named hello_world. You can

execute it by using the following command:

$./hello_world

The output of the preceding commands is shown in Figure 2-9.

Figure 2-9.  Running the hello_world output executable

�Debugging Your Code
Using the debugger tool, we can go through each line of code and inspect

the values of each variable. Figure 2-10 shows C++ code to compute the

sum of two variables. Let’s save this code as sum.cpp.

Chapter 2 Fundamentals of C++ for Robotics Programming

64

Figure 2-10.  C++ code for summing two numbers

To debug/inspect each line of code, you have to compile the sum.cpp

using g++ with the -g option. This builds the code with debugging symbols

and enables it to work with GDB.

The following command helps to compile the code with debug

symbols:

$ g++ -g sum.cpp -o sum

After compiling, you can execute it by running the following

command:

$. /sum

For debugging, use GDB. The output of the preceding set of commands

is shown in Figure 2-11.

Figure 2-11.  Compiling sum.cpp

Chapter 2 Fundamentals of C++ for Robotics Programming

65

After creating the executable, you can debug the executable by using

the following command:

$ gdb sum

sum is the name of the executable. After entering the command, you

have to use the GDB commands to proceed with debugging. The following

are important GDB commands that you need to remember:

•	 b line_numer: Creates a break point in the given line

number. While debugging, the debugger stops at this

break point.

•	 n: Executes the next line of code.

•	 r: Runs the program until the break point.

•	 p variable_name: Prints the value of a variable.

•	 q: Exits the debugger.

Let’s try these commands. The output of each command is shown in

Figure 2-12.

Chapter 2 Fundamentals of C++ for Robotics Programming

66

Figure 2-12.  Debugging sum application

Now that you’ve learned the basics of compiling and debugging, let’s

start learning the basics of OPP concepts in C++. The following section

discusses some of the important concepts that are required knowledge in

the upcoming chapters.

�Learning OOP Concepts from Examples
If you already know C structures, then learning about OOP concepts will

not take much time. In C structures, we can group different data types—

such as integer, float, and string—into a single, user-defined data type.

Similar to structures, C++ has an enhanced version of structs that has a

provision to define functions. This enhanced struct version is called the

C++ class. Each instance of the C++ class is called an object. An object is

simply a copy of the actual class. There are several properties associated

Chapter 2 Fundamentals of C++ for Robotics Programming

67

with objects, which are called object-oriented programming concepts. The

main OOP concepts are explained with C++ code next.

�The Differences Between Classes and Structs
Before going through the OOP concepts, let’s look at the basic differences

between a struct and a class. Listing 2-1 helps differentiate them.

Listing 2-1.  Example Code to Demonstrate C++ Class and Struct

#include <iostream>

#include <string>

using namespace std;

struct Robot_Struct

{

 int id;

 int no_wheels;

 string robot_name;

};

class Robot_Class

{

public:

 int id;

 int no_wheels;

 string robot_name;

 void move_robot();

 void stop_robot();

};

void Robot_Class::move_robot()

{

 cout<<"Moving Robot"<<endl;

}

Chapter 2 Fundamentals of C++ for Robotics Programming

68

void Robot_Class::stop_robot()

{

 cout<<"Stopping Robot"<<endl;

}

int main()

{

 Robot_Struct robot_1;

 Robot_Class robot_2;

 robot_1.id = 2;

 robot_1.robot_name = "Mobile robot";

 robot_2.id = 3;

 robot_2.robot_name = "Humanoid robot";

 �cout<<"ID="<<robot_1.id<<"\t"<<"Robot

Name"<<robot_1.robot_name<<endl;

 �cout<<"ID="<<robot_2.id<<"\t"<<"Robot Name"<<robot_2.

robot_name<<endl;

 robot_2.move_robot();

 robot_2.stop_robot();

 return 0;

}

This code defines a struct and a class. The struct name is Robot_Struct,

and the class name is Robot_Class.

Figure 2-13 shows how to define a structure. It defines a struct with

variables such as id, name, and the number of wheels.

Chapter 2 Fundamentals of C++ for Robotics Programming

69

Figure 2-13.  Defining a structure in C++

As you know, a struct has a name, and the declaration of all the

variables is inside it. Let’s check the definition of a class (see Figure 2-14).

Figure 2-14.  Defining a class in C++

So, what is the difference between the two? A struct can only define

different variables, but a class can define different variables and declare

functions too. The class shown in Figure 2-14 declares two functions

along with the variables. So where is the definition of each function? We

can either define the function inside the class or outside the class. The

standard practice is to keep the definition external to the class definition to

keep the class definition short.

Chapter 2 Fundamentals of C++ for Robotics Programming

70

Figure 2-15 shows the definitions of functions mentioned inside

the class.

Figure 2-15.  External definition of function inside the class

In the function definition, the first term is the return data type,

followed by the class name, and then the function name followed by ::,

which states that the function is inside the class. Inside the function

definition, we can add our code. This particular code prints a message.

You have seen the function definition inside a class. The next step is to

learn how to read/write to variables and functions.

�C++ Classes and Objects
This section explains how to read/write to structs and classes. Figure 2-16

shows lines of code that do the job.

Chapter 2 Fundamentals of C++ for Robotics Programming

71

Figure 2-16.  Creating struct and class instances

Similar to the struct instance, we can create an instance of a class, and

that is called an object.

Let’s look at Robot_Class robot_2; here, robot_2 is an object, and

robot_1 is an instance of the structure. Using this instance or object, we

can access each variable and function. We can use the . operator to access

each variable. The struct and class variables are accessed by using the .

operator. If you use struct or class pointers, you have to use the -> operator

to access each variable. Listing 2-2 is an example.

Listing 2-2.  Creating a C++ Object and Accessing Object by

Reference

Robot_Class *robot_2;

robot_2 = new Robot_Class;

robot_2->id - 2;

robot_2->name = "Humanoid Robot";

The new operator allocates memory for the C++ object. We can access

the functions inside the class and print all values by using the . operator.

Figure 2-17 shows how to do that.

Chapter 2 Fundamentals of C++ for Robotics Programming

72

Figure 2-17.  Printing values and calling functions

We can save the code as class_struct.cpp and compile it by using the

following command:

$ g++ class_struct.cpp -o class_struct

$. /class_struct

Figure 2-18 shows the output of the code.

Figure 2-18.  Output of the program

For further reference, go to www.tutorialspoint.com/cplusplus/

cpp_classes_objects.htm.

�Class Access Modifier
Inside the class, you may have seen a keyword called public:. It is called

an access modifier. Figure 2-19 is a code snippet of the access modifier

used in Listing 2-1.

Chapter 2 Fundamentals of C++ for Robotics Programming

http://www.tutorialspoint.com/cplusplus/cpp_classes_objects.htm
http://www.tutorialspoint.com/cplusplus/cpp_classes_objects.htm

73

Figure 2-19.  Public access keyword usage

This feature is also called data hiding. By setting the access modifier,

we can limit the usage of functions defined inside it. There are three types

of access modifiers in a class:

•	 public: A public member can access from anywhere

outside the class within a program. We can directly

access the public variable without even writing

functions.

•	 private: Variables or functions cannot be accessed or

even viewed from outside the class. Only the class and

friend functions can access private members.

•	 protected: Access is very similar to private members,

but the difference is the child class can access the

members. The concepts of child class/derived class are

discussed in the upcoming section.

Access modifiers help you group variables, which you can keep visible

or hidden in the class.

�C++ Inheritance
Inheritance is another important concept in OOP. If you have two or more

classes, and you want to have the functions inside those classes in a new

class, you can use the inheritance property. By using the inheritance

Chapter 2 Fundamentals of C++ for Robotics Programming

74

property, you can reuse the function inside the existing classes in a new

class. The new class that is going to inherit an existing class is called a

derived class. The existing class is called a base class.

A class can be inherited through public, protected, or private

inheritance. The following explains each type of inheritance:

•	 Public inheritance: When we derive a class from a

public base class, the public members of the base class

become public members of the derived class, and

protected members of the base class become protected

members of the derived class. The private members

of the base class can never be accessed in the derived

class. It can access through calls to the public and

protected members of the base class.

•	 Protected inheritance: When we inherit using the

protected base class, the public and protected

members of the base class become protected members

of the derived class.

•	 Private inheritance: When deriving from a private base

class, public and protected members of the base class

become private members of the derived class.

Listing 2-3 gives a simple example of public inheritance.

Listing 2-3.  Example of C++ Public Inheritance

#include <iostream>

#include <string>

using namespace std;

class Robot_Class

{

Chapter 2 Fundamentals of C++ for Robotics Programming

75

public:

 int id;

 int no_wheels;

 string robot_name;

 void move_robot();

 void stop_robot();

};

class Robot_Class_Derived: public Robot_Class

{

public:

 void turn_left();

 void turn_right();

};

void Robot_Class::move_robot()

{

 cout<<"Moving Robot"<<endl;

}

void Robot_Class::stop_robot()

{

 cout<<"Stopping Robot"<<endl;

}

void Robot_Class_Derived::turn_left()

{

 cout<<"Robot Turn left"<<endl;

}

void Robot_Class_Derived::turn_right()

{

 cout<<"Robot Turn Right"<<endl;

}

Chapter 2 Fundamentals of C++ for Robotics Programming

76

int main()

{

 Robot_Class_Derived robot;

 robot.id = 2;

 robot.robot_name = "Mobile robot";

 cout<<"Robot ID="<<robot.id<<endl;

 cout<<"Robot Name="<<robot.robot_name<<endl;

 robot.move_robot();

 robot.stop_robot();

 robot.turn_left();

 robot.turn_right();

 return 0;

}

So in this example, we are creating a new class called Robot_Class_

Derived, which is derived from a base class called Robot_Class. The

public inheritance is done using a public keyword followed by the base

class name (see Figure 2-20). There should be a : after the derived class

name, followed by a public keyword and a base class name.

Figure 2-20.  Code snippet of public inheritance

If you chose public inheritance, you can access the public and

protected variables and functions of the base class, in this case

Robot_Class.

Chapter 2 Fundamentals of C++ for Robotics Programming

77

We are using the same class that we used in the first example. The

definition of each function in the derived class is given in Figure 2-21.

Figure 2-21.  Function definition inside a derived class

Now let’s look at how to access the functions inside the derived class

(see Figure 2-22).

Figure 2-22.  Accessing the derived class object

Here, we are creating an object of “Robot_Class_Derived” called

“robot”. If you go through the code, you can understand that we didn’t

declare id and robot_name variables in the Robot_Class_Derived, but it

was defined in the Robot_Class. Using inheritance property, we can access

the variable of Robot_Class inside its derived class.

Chapter 2 Fundamentals of C++ for Robotics Programming

78

Let’s look at the output of the code. We can save this code as class_

inherit.cpp and compile it by using the following command:

$ g++ class_inherit.cpp -o class_inherit

./class_inherit

This gives you the output shown in Figure 2-23, without showing any

errors. This means that the public inheritance is working fine.

Figure 2-23.  Output of a derived class program

If you look at the output, we are getting all the messages from

functions, defined in the base class and the derived class. We can also

access the base class variables and set the values.

We have covered some important OOP concepts. To explore more

concepts, refer to www.tutorialspoint.com/cplusplus.

�C++ Files and Streams
Let’s discuss file operation in C++ and how to read/write data to a file. We

have already discussed the iostream header for doing file operations. We

need another standard C++ library called fstream. The following three

data types are inside fstream:

•	 ofstream: Stands for output file stream. It is used to

create a file and to write data into it.

Chapter 2 Fundamentals of C++ for Robotics Programming

http://www.tutorialspoint.com/cplusplus

79

•	 ifstream: Represents an input file stream. It is used to

read data from files.

•	 fstream: Has both read and write capabilities.

Listing 2-4 demonstrates writing and reading a file using C++

functions.

Listing 2-4.  Example C++ Code to Read/Write from a File

#include <iostream>

#include <fstream>

#include <string>

using namespace std;

int main()

{

 ofstream out_file;

 string data = "Robot_ID=0";

 cout<<"Write data:"<<data<<endl;

 out_file.open("Config.txt");

 out_file <<data<<endl;

 out_file.close();

 ifstream in_file;

 in_file.open("Config.txt");

 in_file >> data;

 cout<<"Read data:"<<data<<endl;

 in_file.close();

 return 0;

}

We have to include the fstream header to get the read/write data type

in C++. We have created an ofstream class object, and in that object, there

is a function called open () to open a file. After opening the file, we can

write to it by using the << operator. After writing the data, we close the

Chapter 2 Fundamentals of C++ for Robotics Programming

80

file for a reading operation. For reading, we are using the ifstream class

object in C++ and opening the file with the open("file_name") function

inside the ifstream class. After opening the file, we can read from the file

by using the >> operator. After reading, it is printed on the terminal. The

file name that we are going to write is Config.txt, and the data is a robot

parameter. Figure 2-24 shows the output if we compile the code and run it.

Figure 2-24.  File read/write program

You can see that Config.txt has been created in the Desktop folder.

For further information, visit www.tutorialspoint.com/cplusplus/

cpp_files_streams.htm.

�Namespaces in C++
The namespace concept was mentioned earlier with the Hello World

code. In this section, you learn how to create, where to use, and how to

access a namespace. Listing 2-5 provides an example of creating and using

two namespaces.

Chapter 2 Fundamentals of C++ for Robotics Programming

http://www.tutorialspoint.com/cplusplus/cpp_files_streams.htm
http://www.tutorialspoint.com/cplusplus/cpp_files_streams.htm

81

Listing 2-5.  Example Code for C++ Namespaces

#include <iostream>

using namespace std;

namespace robot {

 void process(void)

 {

 cout<<"Processing by Robot"<<endl;

 }

}

namespace machine {

 void process(void)

 {

 cout<<"Processing by Machine"<<endl;

 }

}

int main()

{

 robot::process();

 machine::process();

}

To create a namespace, use the namespace keyword followed by name

of the namespace. In Listing 2-5, we are defining two namespaces. If you

go through the code, you see that the same function is defined inside

each namespace. The namespaces are used to group a set of functions or

classes that perform a unique action. We can access the members inside

the namespace using the name of the namespace followed by :: and

the function name. In this code, we are calling two functions inside the

namespace, called robot and machine.

Figure 2-25 shows the output of the code in Listing 2-5. The code is

saved as namespace.cpp.

Chapter 2 Fundamentals of C++ for Robotics Programming

82

Figure 2-25.  Output of the namespace code

For additional reference, visit www.tutorialspoint.com/cplusplus/

cpp_exceptions_handling.htm.

�C++ Exception Handling
Exception handling in C++ is a new method for handling circumstances

in which there is an unexpected output in response to user input. The

exception can happen during runtime. Listing 2-6 is an example of the C++

exception handling feature.

Listing 2-6.  Example of C++ Exception Handling

#include <iostream>

using namespace std;

int main()

{

 try

 {

 int no_1 = 1;

 int no_2 = 0;

 if(no_2 == 0)

 {

 throw no_1;

 }

 }

Chapter 2 Fundamentals of C++ for Robotics Programming

http://www.tutorialspoint.com/cplusplus/cpp_exceptions_handling.htm
http://www.tutorialspoint.com/cplusplus/cpp_exceptions_handling.htm

83

 catch(int e)

 {

 cout<<"Exception found:"<<e<<endl;

 }

}

To handle an exception, we mainly use three keywords:

•	 try: Inside the try block, we can write our code, which

may raise an exception.

•	 catch: If the try block raises an exception, the catch

block catches the exception. We can decide what to do

with that exception.

•	 throw: We can throw an exception from the try

block when the problem starts to show. If the throw

statement is executed, it raises an exception and is

caught by the catch block.

Listing 2-7 shows the general structure.

Listing 2-7.  General Structure for Exception Handling

try

{

 //Our code snippets

}

catch (Exception name)

{

 //Exception handling block

}

The code in Listing 2-6 is checking whether num_2 is 0. If num_2 is 0, an

exception is raised by using the throw keyword with num_1, so the catch

block can receive the num_1 value for inspecting.

Chapter 2 Fundamentals of C++ for Robotics Programming

84

Figure 2-26 shows the output of Listing 2-6.

Figure 2-26.  Output of the exception code

Inside the catch block, we print the exception value (i.e., the value of

num_1, which is 1).

Exception handling is widely used for easily debugging a program.

For further reference, visit www.geeksforgeeks.org/exception-

handling-c/.

�C++ Standard Template Libraries
If you want to work with data structures such as list, stacks, arrays, and

so forth, it is best to look at the Standard Template Library (STL). STL

provides the implementation of various standard algorithms in computer

science, such as sorting and searching, and data structures like vectors,

lists, and queue. This is an advanced C++ concept. It is a good idea to

review the information at www.geeksforgeeks.org/the-c-standard-

template-library-stl/.

�Building a C++ Project
Now that you’ve learned some important OOP concepts, let’s have a look at

how to build a C++ project. Just imagine, you have hundreds or thousands

of lines of source code, and you need to compile and link it. How do you do

that? This section discusses that.

If you are working with more than one source code, it is a good idea to

review and use the following tools to compile and build your project.

Chapter 2 Fundamentals of C++ for Robotics Programming

http://www.geeksforgeeks.org/exception-handling-c/
http://www.geeksforgeeks.org/exception-handling-c/
http://www.geeksforgeeks.org/the-c-standard-template-library-stl/
http://www.geeksforgeeks.org/the-c-standard-template-library-stl/

85

�Creating a Linux Makefile
A Linux makefile is a tool to compile one or more sources in a single

command and build the executable. Let’s discuss a simple project to

demonstrate the makefile capabilities.

We are going to write code for adding two numbers. For the addition,

we first create a class. While working with the C++ classes, we write the

declaration and definition of the class in the main source code. Another

approach is to declare and define the class in a header and .cpp file and

then include this header in the main code for getting that class. This

approach is helpful in modularizing the entire project. So, our project has

three files:

•	 main.cpp: The main code that we are going to build.

•	 add.h: The header file of the add class. It has a

declaration of the class.

•	 add.cpp: This file has the entire definition of the

add class.

It is a good idea to use the class name as the name of the header and

.cpp file. Here, we create the add class so that the name of the header is

add.h and add.cpp.

Listings 2-8 to 2-10 provide the code for each file.

Listing 2-8.  add.h

#include <iostream>

class add

{

public:

 int compute(int no_1,int no_2);

};

Chapter 2 Fundamentals of C++ for Robotics Programming

86

Listing 2-9.  add.cpp

#include "add.h"

int add::compute(int a, int b)

{

 return(a+b);

}

Listing 2-10.  main.cpp

#include "add.h"

using namespace std;

int main()

{

 add obj;

 int result = obj.compute(43,34);

 cout<<"The Result:="<<result<<endl;

 return 0;

}

In the main.cpp (see Listing 2-10), we include the add.h header file to

access the add class. We create an object of the add class, pass two numbers

to the compute function, and print the result.

We can compile and execute the code in Listing 2-10 using the

following command:

$ g++ add.cpp main.cpp -o main

$./main

The g++ command is easy to use for compiling a single source code,

but if we want to compile several source codes, the g++ command is

inconvenient. A Linux makefile is one way to compile multiple source

codes in a single command. Listing 2-10 shows how to write a makefile for

compiling the code.

Chapter 2 Fundamentals of C++ for Robotics Programming

87

The code in Listing 2-11 needs to be saved as the makefile.

Listing 2-11.  A Linux Makefile

CC = g++

CFLAGS = -c

SOURCES = main.cpp add.cpp

OBJECTS = $(SOURCES:.cpp=.o)

EXECUTABLE = main

all: $(OBJECTS) $(EXECUTABLE)

$(EXECUTABLE) : $(OBJECTS)

 $(CC) $(OBJECTS) -o $@

.cpp.o: *.h

 $(CC) $(CFLAGS) $< -o $@

clean :

 -rm -f $(OBJECTS) $(EXECUTABLE)

.PHONY: all clean

After saving the code in Listing 2-11 as a makefile, you have to execute

the following command to build it:

$ make

This builds the source code, as shown in Figure 2-27.

Figure 2-27.  Output of make command

Chapter 2 Fundamentals of C++ for Robotics Programming

88

After building using the make command, you can execute the program

by using the following command. The results are shown in Figure 2-28.

$. /main

Figure 2-28.  Output of main code

You can learn more about makefiles at www.bogotobogo.com/

cplusplus/gnumake.php.

�Creating a CMake File
CMake (cmake.org) is another approach to building a C++ project. CMake

stands for cross-platform makefile. It is an open source tool to build, test,

and package software across multiple OS platforms.

Install CMake by using the following command:

$ sudo apt-get install cmake

After installing, you can save Listing 2-12 as CMakeLists.txt.

Chapter 2 Fundamentals of C++ for Robotics Programming

http://www.bogotobogo.com/cplusplus/gnumake.php
http://www.bogotobogo.com/cplusplus/gnumake.php
https://cmake.org/

89

Listing 2-12.  The CMakeLists.txt File

cmake_minimum_required(VERSION 3.0)

set(CMAKE_BUILD_TYPE Release)

set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=c++14")

project(main)

add_executable(

 main

 add.cpp

 main.cpp

)

The code is self-explanatory. It basically sets the C++ flags and creates

an executable named main from the source code: add.cpp and main.cpp.

The list of CMake commands is available at cmake.org/documentation/.

After saving the preceding commands as CMakeLists.txt, we have to

create a folder for building the project. You can choose any name for the

folder. Here, we use build for that folder:

$ mkdir build

After building the folder, switch to the build folder and open the

terminal from the build folder.

Execute the following command from the build folder path:

$ cmake ..

This command parses CMakeLists.txt in the project path. The cmake

command can convert CMakeLists.txt to a makefile, and we can build the

makefile after that. Basically, it automates the process of making the Linux

makefile.

If everything is successful after executing the cmake .. command, you

should get the message shown in Figure 2-29.

Chapter 2 Fundamentals of C++ for Robotics Programming

https://cmake.org/documentation/

90

Figure 2-29.  Output of cmake command

After this, you can make the project by entering the make command

($ make).

If successful, you can execute the project executable ($. /main).

Figure 2-30 shows the output of the make command and executable.

Figure 2-30.  Output of the make command and executable

�Summary
This chapter discussed the fundamentals of the C++ programming

language and how to program in the C++ language in Ubuntu Linux.

Knowledge of C++ is a prerequisite for working with ROS. The chapter

Chapter 2 Fundamentals of C++ for Robotics Programming

91

started by discussing the C++ compiler in Ubuntu and how to compile a

C++ file using the compiler. After seeing a compilation, we covered object-

oriented concepts in C++. We discussed the basic difference between

C++ classes and structs in C and important object-oriented programming

concepts, such as access modifiers and inheritance. We also saw examples

of these concepts. Then we covered file operations, namespaces, exception

handling, and the Standard Template Library in C++. The end of the

chapter covered how to compile C++ source code using Linux makefiles

and CMakeLists.txt files.

In the next chapter, we see how to work with Python in Ubuntu Linux.

Chapter 2 Fundamentals of C++ for Robotics Programming

93© Lentin Joseph and Aleena Johny 2022
L. Joseph and A. Johny, Robot Operating System (ROS) for Absolute Beginners,
https://doi.org/10.1007/978-1-4842-7750-8_3

CHAPTER 3

Fundamentals of
Python for Robotics
Programming
The last chapter discussed the fundamental concepts of C++ and the

object-oriented programming concepts used to program robots. In this

chapter, we look at the basics of the Python programming language, which

can be used to program robots.

C++ and Python are the common languages used in robotics

programming. If your preference is performance, then you should use C++,

but if the priority is easiness in programming, you should go with Python.

For example, if you are planning to work with a robotic vision application,

C++ is a good choice because it can execute the application faster by using

less computing resources. At the same time, that application can quickly

prototype using Python, but it may take more computing resources.

Basically, choosing a programming language for the robotics application is

a trade-off between performance and development time.

https://doi.org/10.1007/978-1-4842-7750-8_3#DOI

94

�Getting Started with Python
The Python programming language is a commonly used, general-purpose,

high-level, object-oriented programming language popular for writing

scripts. When compared with C++, Python is an interpreted language that

executes code by line by line. Python was created by Guido van Rossum

who started development from 1989, and first internal release was in 1990.

It is an open source software managed by the non-profit Python Software

Foundation (www.python.org/psf/).

The main design philosophy of Python is the readability of code and

syntax, which allows programmers to express their concepts in much fewer

lines of code.

In robotics applications, Python is commonly preferred where less

computation is required, such as writing data to a device using serial

communication protocols, logging data from a sensor, creating a user

interface, and so forth.

�Timeline: The Python Language
Here are the major milestones in the Python programming language:

•	 The project started in 1989.

•	 The first version was released in 1994.

•	 The second version was released in 2000.

•	 A popular version of Python, 2.7, was released in 2010.

•	 The third version was released in 2008.

•	 The latest version of Python, 3.9, was released in 2020.

Chapter 3 Fundamentals of Python for Robotics Programming

http://www.python.org/psf/

95

�Python in Ubuntu Linux
�Introduction to Python Interpreter
Let’s start programming Python in Ubuntu Linux. Like the GNU C/C++

compiler, Python interpreter is preinstalled in Ubuntu. The command

shown in Figure 3-1 opens the default Python version interpreter.

$ python

Figure 3-1.  Python interpreter in the terminal

The default Python version is 3.8.5. If you are getting error in the above

command, please check the next section to setup Python 3 as default

version. You will also get a list of the installed Python version by pressing

the Tab key twice after entering the Python command. The list of Python

versions available in Ubuntu is shown in Figure 3-2.

Figure 3-2.  List of Python versions installed on Ubuntu

�Setting Python 3 on Ubuntu 20.04 LTS
As discussed, Python is preinstalled on Ubuntu, but the following

command will set python 3 as the default python interpreter.

$ sudo apt install python-is-python3

Chapter 3 Fundamentals of Python for Robotics Programming

96

�Verifying Python Installation
This section shows how to check the Python executable path and version.

The following checks the current path of the python and python3

commands (also see Figure 3-3):

$ which python

$ which python3.8

Figure 3-3.  Location of Python interpreter

If you want to see the location of Python binaries, sources, and

documentation, use the following command (also see Figure 3-4):

$ whereis python

$ whereis python3.8

Figure 3-4.  Location of Python interpreter, sources, and documentation

Chapter 3 Fundamentals of Python for Robotics Programming

97

�Writing Your First Code
Our first program will be printing a Hello World message. Let’s see how we

can achieve it using Python. Before going into the programming, let’s look

at the two ways in which we can program in Python:

•	 Programming directly inside Python interpreter

•	 Writing Python scripts and running using interpreter

These two methods work in the same way. The first method executes

line by line inside the interpreter. The scripting method writes all the code

in a file and executes using the same interpreter.

The standard practice is to use Python scripting. We may use the

Python interpreter shell for testing a few commands.

Let’s print the ‘hello world’ message in a Python interpreter shell (see

Figure 3-5).

Figure 3-5.  Running Hello World in Python 3.8

Figure 3-5 shows that it’s very easy to print a message in Python3.8.

Simply use the print statement along with your message inside round

brackets and single quotes, and press Enter.

>>> print ('hello world')

Let’s start scripting using Python. With scripting, we write the code into

a file with a .py extension.

Chapter 3 Fundamentals of Python for Robotics Programming

98

The standard way to write Python code is explained at www.python.

org/dev/peps/pep-0008/.

We are going to create a file called hello_world.py and write the code

in the file (see Figure 3-6). You can use the gedit editor or any text editor

for this.

You may be wondering about the purpose of the extra lines in the

script when compared to a print statement. There are certain standards to

keep in the Python script in order to make it more readable, maintainable,

and have all the information about the software that we made.

The first line (#!/usr/bin/env) in Python is called Shebang. If we

execute the Python code, the program loader parses this line and executes

the reset of the code using that environment. Here, we are setting Python

as the environment, so the rest of the code will execute in the Python

interpreter.

Figure 3-6.  The hello_world.py script

Chapter 3 Fundamentals of Python for Robotics Programming

http://www.python.org/dev/peps/pep-0008/
http://www.python.org/dev/peps/pep-0008/

99

There are coding styles suggested by Google at https://google.

github.io/styleguide/pyguide.html.

Let’s look at how to execute the preceding code.

�Running Python Code
You can save the hello_world.py in your home folder or in your Desktop

folder. If you are in Desktop, you have to switch the path to Desktop.

Figure 3-7 shows the execution of the hello_world.py code.

Figure 3-7.  Executing the hello_world.py script

Currently, the code is in the home folder, and you can execute the code

by using the following command:

$ python hello_world.py

If your code does not have any errors, it shows output like that shown

in Figure 3-8.

There is another way to execute the Python file. Use the following

command:

$ chmod a+x hello_world.py

By using the chmod command, you are giving executable permission to

the given Python code.

You can further explore the chmod command at www.tutorialspoint.

com/unix_commands/chmod.htm.

Chapter 3 Fundamentals of Python for Robotics Programming

https://google.github.io/styleguide/pyguide.html
https://google.github.io/styleguide/pyguide.html
http://www.tutorialspoint.com/unix_commands/chmod.htm
http://www.tutorialspoint.com/unix_commands/chmod.htm

100

And after giving permission, you can simply execute the Python code

using the following command:

$./hello_world.py

Figure 3-8 shows how to execute the C++ executables too.

Figure 3-8.  Executing the hello_world.py script

So you have seen how to write a Python script and execute it. Next, we

discuss the basics of Python. This is actually a big topic, but we can discuss

each aspect of Python by using examples to accelerate learning.

�Understanding Python Basics
The popularity of the Python language is mainly due to its easiness in

getting started. The code is short, and we can prototype an algorithm more

quickly in Python than in other languages. Because of its popularity, there

are a vast number of Python tutorials online. There are active communities

to support you. There are extensive libraries to implement your

application. The availability of the Python library is one reason to choose

this language over others. With a library, you can reduce development time

by using existing functions.

Python is a cross-platform language that is widely used in research,

networks, graphics, games, machine learning, data science, and robotics.

Many companies use this language for automating tasks, so it is relatively

easy to get a job in Python.

Chapter 3 Fundamentals of Python for Robotics Programming

101

So how difficult is to learn this language? If you can write pseudo

code for a task, then you can code in Python, because it is very similar to

pseudo code.

�What’s New in Python?
If you know C++, it is easy to learn Python, but you have to be aware of a

few things while writing Python code.

�Static and Dynamic Typing
Python is a dynamic typing language, which means that we don’t need

to provide the data type of a variable during programming; it takes each

variable as an object. We can assign any kind of data type to a name. In

C++, we have to first assign a variable with a data type, and then we can

only assign that type of data to that variable.

C++ is a static typing language; for example, in C++, we can assign

like this:

int number;

number = 10; //This will work

number = "10" // This will not work

But in Python, we can assign like this:

#No need mention the datatype

number = 10 #This will work

number = "10" #This will also work

So currently, the value of the number is "10".

Chapter 3 Fundamentals of Python for Robotics Programming

102

�Code Indentation
Indentation is simply the tab or whitespace prior to a line of code. In C++,

we may use indentation to group a block of code, but it is not mandatory.

The C++ code compiles even if we are not keeping any indentation, but it is

different in Python. We should keep the block of code in the same indent;

otherwise, it shows an indentation error. When indentation is mandatory,

the code looks neat and readable.

�Semicolons
In C/C++, semicolons at the end of each statement are mandatory, but in

Python, they are not. You can use a semicolon in Python as a separator but

not as a terminator; for example, if you want to write a set of code in a line,

you can write it by separating semicolons. This can be done in C++ too.

�Python Variables
You have already seen how Python handles variables. Figure 3-9 shows

assigning and printing primitive data types, such as int, float, and string.

These examples are tested in Python version 3.8

Figure 3-9.  Primitive variable handling in Python

Chapter 3 Fundamentals of Python for Robotics Programming

103

Similar to an array in C/C++, Python provides lists and tuples. The

values inside a list can be accessed through a list index using square

brackets ([]); for example, the first element in a list can be accessed by a

[0] subscript, which is similar to an array in C/C++.

Figures 3-10 and 3-11 show Python lists and tuples.

Figure 3-10.  Handling lists in Python

Figure 3-11 shows how we can work with Python tuples.

Figure 3-11.  Handling tuples in Python

Chapter 3 Fundamentals of Python for Robotics Programming

104

Tuples work similar to lists, but a tuple is enclosed in parenthesis (())

and a list is enclosed in square brackets ([]). A tuple is a read-only list

because its value can’t update once it is initialized, but in a list, we can

update the value.

The next in-built data type Python provides is a dictionary. Similar

to an actual dictionary, there is a key and a value associated with it. For

example, in our dictionary, there is a word and the corresponding meaning

of it. The word here is the key, and value is its meaning.

Figure 3-12 shows the workings of a Python dictionary.

Figure 3-12.  Handling a dictionary in Python

If we give the key in the dictionary, it returns the value associated with

the key.

In the next section, we look at the Python condition statement.

�Python Input and Conditional Statement
Similar to C++, Python also has if/else statements to check a condition.

In the following example, you see how Python handles user input and

makes a decision based on it.

Chapter 3 Fundamentals of Python for Robotics Programming

105

The logic of the program is simple. The program asks the user to

enter a command to move a robot. If the user enters a valid command,

such as move_left, move_right, move_forward, or move_backward, the

program prints that it is moving; otherwise, it prints Invalid command (see

Figure 3-13).

Figure 3-13.  Handling input and the conditional statement
in Python

To take input from a user in Python, we can use the input() function.

The input() function accepts any kind of data type. Here is the syntax of

the input() functions:

var = input("Input message")

After storing the user input, we compare the input to a list of

commands. Here is the syntax for the if/else statement:

if expression1:

 statement(s1)

elif expression2:

 statement(s2)

else:

 statement(s3)

Chapter 3 Fundamentals of Python for Robotics Programming

106

A colon ends each expression, after which you have to use indentation

for writing the statement. If you don’t use indentation, you will get an error.

�Python: Loops
Python has while and for loops, but not do while loops, by default.

Figure 3-14 showcases the usage of the while loop and the for loop in

Python. In this example, the robot position in the x and y direction is

incremented, and if it is reached in a particular position, the program

terminates after printing a message.

Figure 3-14.  Usage of the while loop in Python

The following shows the syntax of a while loop:

while expression:

 statement(s)

In the preceding example, the expression is (robot_x < 2 and

robot_y < 2).

There are two conditions inside the expression. We are performing

AND logic between two conditions. In Python, “and” and “or” are logic

AND and logic OR.

Chapter 3 Fundamentals of Python for Robotics Programming

107

If the condition is true, the inside statements are executed. As

discussed earlier, we have to use proper indents on this block. When, the

expression is false, it quits the loop and prints the message “Destination

is reached.”

If we run this code, we get the output shown in Figure 3-15.

Figure 3-15.  Output of the while loop Python code

We can implement the same application using the for loop in Python.

Figure 3-16 shows the workings of the for loop.

Figure 3-16.  Python for loop code

In the preceding code, the for loop executes 0 to 100, increments

robot_x and robot_y, and checks if the robot’s position is within limits.

If the limit is exceeded, it prints the message and breaks the for loop.

The following shows the for loop syntax in Python:

for iterating_var in sequence:

 statements(s)

Chapter 3 Fundamentals of Python for Robotics Programming

108

Figure 3-17 is the output of the preceding code.

Figure 3-17.  Output of Python for loop code

�Python: Functions
As you know, if you want to repeat a block of code with different data, you

can write it as a function. Most programming languages have a feature to

define a function.

The following is the format to define a function in Python:

def function_name(parameter):

 "function_docstring"

 function_code_block

 return [expression]

The order of a function definition in Python is important. The function

call should be after the function definition. The docstring function is

basically a comment with a description of the function and an example of

Chapter 3 Fundamentals of Python for Robotics Programming

109

the function’s usage. Comments in Python use # on a single line, but if the

comment is in a block of code or a docstring, use the following style:

'''

<Block of code>

'''

Figure 3-18 shows an example of a function in Python.

Figure 3-18.  Example Python code for function

In Figure 3-18, you can see how to define a function in Python and how to

call it. You may be confused with the usage of if __name__ == "__main__".

It’s basically a common practice, like using int main() in C++. The program

also works without this line.

Chapter 3 Fundamentals of Python for Robotics Programming

110

If you enter any of the commands, it calls the appropriate function.

The functions are defined at the top of the code. Also note the indentation

in each block of code. The function defined in Figure 3-19 does not have

any arguments, but you can pass an argument to a function if you want.

Figure 3-19.  Output of Python function

�Python: Handling Exception
An exception is an event that disrupts the normal flow of a program’s

instruction. When Python encounters a problem, it raises an exception. If

we caught an exception, it means the program encountered an error. If the

code raises an exception, it can either handle the exception or terminate

the program. In this section, we see how to handle an exception in Python.

A simple example of a try-except statement is division by zero.

Figure 3-20 shows sample code for try-except.

Figure 3-20.  Example Python try-except

Chapter 3 Fundamentals of Python for Robotics Programming

111

Whenever the user input for value b is zero, an exception is raised

due to division by zero, and that exception is handling statements

inside except.

�Python: Classes
This section shows how to write a class in Python. As discussed, Python

is an object-oriented programming language like C++. The OOP concepts

are the same in both languages. The following is the syntax for a class

definition:

class ClassName:

 'Optional class documentation string'

 class_suite

Here, the docstring is an optional component, and class_suite has

the class members, data attributes, and functions. Class in Python is a vast

concept. Let’s look at Figure 3-21 as a basic example to get started with

classes.

Chapter 3 Fundamentals of Python for Robotics Programming

112

Figure 3-21.  Python class example

Figure 3-21 shows an example of moving a robot forward, left, right,

and backward. The program simply prints a message; it does not actually

move a robot. Let’s analyze each part of the program.

The following code is the constructor of the Python class. Whenever

we create an object of this class, it executes first. self refers to the

current object.

def __init__(self):

 print ("Started Robot")

Chapter 3 Fundamentals of Python for Robotics Programming

113

The following function is the destructor of the class. Whenever an

object is destroyed, the destructor is called.

def __del__(self):

 print ("Robot stopped")

We can define methods inside the class, which is how we define it. In

all methods, the first argument should be self, which makes the function

inside the class. We can pass arguments in a function; in the following

example, distance is the argument:

def move_forward(self,distance):

 print ("Robot moving forward: "+str(distance)+"m")

In this function, there are functions to move back, right, and left.

Now let’s see how to create an object of the class. The following line creates

the object. When an object is created, the constructor of the class is called.

obj = Robot()

After initializing, we can call each function inside the class by using the

following method:

obj.move_forward(2)

obj.move_backward(2)

obj.move_left(2)

obj.move_right(2)

When the program terminates, the object calls the destructor.

Chapter 3 Fundamentals of Python for Robotics Programming

114

Figure 3-22 shows the output of the preceding example.

Figure 3-22.  Output of Python class example

In the next section, we learn how to handle files in Python.

�Python: Files
Writing and reading from a file are important in a robotics application.

You may have to log data from a sensor or write a configuration file. This

section provides an example program to write and read text to a file in

Python(see Figure 3-23).

Figure 3-23.  Python file I/O example

When we run the code, it asks to enter text. The text data saves to a file,

and later, it reads and prints on the screen. The explanation of Python code

is given in the following.

The following command creates the file handler in reading and writing

mode. Like C/C++, there are several file operation modes, such as reading,

Chapter 3 Fundamentals of Python for Robotics Programming

115

writing, and appending. In this case, we are using w+ mode, in which we

can read/write to a file. If there is an existing file, it is overwritten.

file_obj = open("test.txt","w+")

To write to a file, we can use the following command. It writes text into

the file.

file_obj.write(text)

To close the file, we can use the following statement:

file_obj.close()

To read the file again, we can use 'r' mode, like in the following statement:

file_obj = open("test.txt",'r')

To read a line from a file, we can use the readline() function:

text = file_obj.readline()

Figure 3-24 shows the output of the preceding example.

Figure 3-24.  Python file I/O output

�Python: Modules
C++ uses header files to include a new class or a set of classes. In Python,

instead of header files, we use modules. A module may contain a class, a

function, or variables. We can include the module in our code using the

import command. The following is the syntax of the import statement:

import <module_name>

Example: import os; import sys

Chapter 3 Fundamentals of Python for Robotics Programming

116

These are the standard modules in Python.

If there is a list of classes in a module, and we want only a specific class,

we can use the following line of code:

from <module_name> import <class_name>

Example: from os import system

A module is Python code, but we can create our own modules too.

Figure 3-25 shows a test module, which can be imported to our code and

execute the function inside it.

Figure 3-25.  Custom Python test module

The test.py file has a function called execute() that prints the text

passing as a function argument.

A line of code in Python interpreter shows how to use the test module

(see Figure 3-26).

Figure 3-26.  Python test module

Chapter 3 Fundamentals of Python for Robotics Programming

117

It should be noted that the test.py file should be in the same path as

the program or in the Python shell; for example, if test.py is in the Home

folder, the current path of the shell should also be in the same folder.

When testing, we import the test module by using the import

statement.

We create an object called obj by using the following statement:

obj = test.Test()

This accesses the Test() class inside the test module. After creating

the object, we can access the execute() function.

Simple Python tutorials are available at www.tutorialspoint.com/

python/.

�Python: Handling Serial Ports
When we build robots, we may have to interface various sensors or

microcontroller boards to a laptop or to single-board computers such

as the Raspberry Pi. Most of the interfacing is through USB or UART

communication (https://learn.sparkfun.com/tutorials/serial-

communication). Using Python, we can read/write to a serial port on the

PC. This helps with reading data from sensors/actuators and writing

control commands to the actuators.

Python has a module called PySerial to communicate with the serial

port/com port on a PC (https://pythonhosted.org/pyserial/). This

module is very easy to use. Let’s look at how to read/write to a serial port in

Ubuntu using Python.

Chapter 3 Fundamentals of Python for Robotics Programming

http://www.tutorialspoint.com/python/
http://www.tutorialspoint.com/python/
https://learn.sparkfun.com/tutorials/serial-communication
https://learn.sparkfun.com/tutorials/serial-communication
https://pythonhosted.org/pyserial/

118

�Installing PySerial in Ubuntu 20.04
Installing PySerial is a very easy task in Ubuntu.

Method 1:

 $ sudo apt update

 $ sudo apt install python3-serial

Method 2:

First, install pip for Python 3 on Ubuntu 20.04, and then install

PySerial. Just follow these commands to install it:

 $ sudo apt update

 $ sudo apt install python3-pip

 $ sudo python -m pip install pyserial

After installing the module, plug in your serial device; it can be a

USB-to-serial device or an actual serial device. The USB-to-serial device

converts the USB protocol to UART protocol. The following are the two

most popular USB-to-serial chips available on the market:

•	 FTDI: www.ftdichip.com

•	 Prolific: www.prolific.com.tw/US/company.aspx?id=1

When you plug in the devices with these chips in the Linux-based

system, it automatically loads the device driver and creates a serial device.

The FTDI and Prolific device drivers are available in the Linux kernel.

You get the serial device name by executing the dmesg command. This

command shows the kernel message (also see Figure 3-27):

$ dmesg

Chapter 3 Fundamentals of Python for Robotics Programming

http://www.ftdichip.com
http://www.prolific.com.tw/US/company.aspx?id=1

119

Figure 3-27.  Output of dmesg shows the serial device name

When you plug the serial device to the PC and execute dmesg, you see

the serial device name. In this case, it is /dev/ttyACM1.

To communicate with the device, you may have to change the device

permission. You can either use chmod to change the permission or you

can add the current user to the dialout group, which gives access to the

serial port.

Change the permission of the serial device:

$ sudo chmod 777 /dev/ttyACM1

Add a user to the dialout group:

$ sudo adduser $USER dialout

After doing this, use the code shown in Figure 3-28 to access the

serial port.

Figure 3-28.  Python example code of writing to a serial port

Chapter 3 Fundamentals of Python for Robotics Programming

120

In the preceding code, you can see the importing serial module by

using the following code:

import serial

The following is the command to open the serial port with the given

baud rate:

ser = serial.Serial('/dev/ttyACM1',9600)

The following is the command to write to the serial port:

ser.write(str.encode('Hello'))

The following is the function to read from the serial port:

text = ser.readline()

You could also use the following command:

text = ser.read() #This will read 1 byte of data

text = ser.read(10) # read 10 bytes of serial data

The preceding code can interact with Arduino, Raspberry Pi, and other

serial sensor devices. You can learn more about Python serial programming

at http://pyserial.readthedocs.io/en/latest/shortintro.html.

�Python: Scientific Computing and Visualization
In this section, you learn about some of the popular Python libraries for

scientific computing and visualization:

•	 Numpy (www.numpy.org): The fundamental package for

scientific computing

•	 Scipy (www.scipy.org): An open source software for

mathematics, science, and engineering

Chapter 3 Fundamentals of Python for Robotics Programming

http://pyserial.readthedocs.io/en/latest/shortintro.html
http://www.numpy.org
http://www.scipy.org

121

•	 Matplotlib (http://matplotlib.org): A Python

2D plotting library that produces publication-

quality figures

�Python: Machine Learning and Deep Learning
Python is very famous for implementing machine learning and deep

learning. The following are the popular libraries in Python:

•	 TensorFlow (www.tensorflow.org): An open source

library for numerical computation using data

flow graphs

•	 Keras (https://keras.io/): A high-level, neural

networks API that is capable of using TensorFlow or

Theano as a back end

•	 Caffe (http://caffe.berkeleyvision.org): A deep

learning framework developed by Berkeley AI Research

and community contributors

•	 Theano (http://deeplearning.net/software/

theano/): A Python library that allows you to efficiently

define, optimize, and evaluate mathematical

expressions involving multidimensional arrays

•	 Scikit-learn (http://scikit-learn.org/): A simple

machine learning library in Python

Chapter 3 Fundamentals of Python for Robotics Programming

http://matplotlib.org
http://www.tensorflow.org
https://keras.io/
http://caffe.berkeleyvision.org
http://deeplearning.net/software/theano/
http://deeplearning.net/software/theano/
http://scikit-learn.org/

122

�Python: Computer Vision
There are two popular computer vision libraries compatible with Python:

•	 OpenCV (https://opencv.org): Open Source

Computer Vision is free for academic and commercial

use. It has C++, C, Python, and Java interfaces and

supports Windows, Linux, macOS, iOS, and Android.

•	 PIL (www.pythonware.com/products/pil/): Python

Imaging Library adds image processing capabilities to

your Python interpreter.

�Python: Robotics
Python has a good interface for robotics programming using ROS. You can

explore more about the capabilities of Python using ROS at http://wiki.

ros.org/rospy.

�Python: IDEs
There are some popular IDEs (integrated development environments)

that make development and debugging faster. The following are three

common IDEs.

•	 PyCharm: www.jetbrains.com/pycharm/

•	 Geany: www.geany.org

•	 Spyder: https://github.com/spyder-ide

Chapter 3 Fundamentals of Python for Robotics Programming

https://opencv.org/
http://www.pythonware.com/products/pil/
http://wiki.ros.org/rospy
http://wiki.ros.org/rospy
http://www.jetbrains.com/pycharm/
http://www.geany.org
https://github.com/spyder-ide

123

�Summary
This chapter discussed the fundamentals of Python programming in

Ubuntu Linux. Knowledge of Python programming is a prerequisite for

working with ROS. We started with the Python interpreter in Ubuntu

and saw how to work with it. After working with the interpreter, we saw

how to create a Python script and run it on Ubuntu. Then we discussed

the fundamentals of Python, such as handling input, output, Python

loops, functions, and class operations. After these topics, we saw how to

communicate with a serial device using a Python module. At the end of

the chapter, we covered Python libraries for scientific computing, machine

learning, deep learning, and robotics.

The next chapter discusses the basics of the Robot Operating System

and its important technical terms.

Chapter 3 Fundamentals of Python for Robotics Programming

125© Lentin Joseph and Aleena Johny 2022
L. Joseph and A. Johny, Robot Operating System (ROS) for Absolute Beginners,
https://doi.org/10.1007/978-1-4842-7750-8_4

CHAPTER 4

Kick-Starting Robot
Programming
Using ROS
The last three chapters discussed the prerequisites for programming

a robot using the Robot Operating System (ROS). We discussed the

basics of Ubuntu Linux, bash commands, the basic concepts of C++

programming, and the basics of Python programming. In this chapter, we

start working with ROS. Before discussing ROS concepts, let’s discuss robot

programming and how we do it. After this, we learn more about ROS, how

to install ROS, and its architecture.

After this, we look at ROS concepts, ROS command tools, and ROS

examples to demonstrate ROS capabilities. After that, we discuss the basics

of ROS GUI tools and the Gazebo simulator. In the end, we learn how to set

up a TurtleBot 3 simulator in ROS.

�What Is Robot Programming?
As you know, a robot is a machine with sensors, actuators (motors), and

a computing unit that behaves based on user controls, or it can make its

own decisions based on sensor inputs. We can say the brain of the robot is

https://doi.org/10.1007/978-1-4842-7750-8_4#DOI

126

a computing unit. It can be a microcontroller or a PC. The decision making

and actions of the robot completely depend on the program running the

robot’s brain. This program can be firmware running on a microcontroller

or C/C++ or Python code running on a PC or a single-board computer, like

the Raspberry Pi. Robot programming is the process of making the robot

work from writing a program for the robot’s brain (i.e., the processing unit).

Figure 4-1 shows a general block diagram of a robot, including the part

where it programs.

Figure 4-1.  General block diagram of a robot

The main components of any robot are the actuators and the sensors.

Actuators move a robot’s joints, providing rotary or linear motion. Servo,

Stepper, and DC gear motors are actuator brands. Sensors provide the

robot’s state and environment. Examples of robot sensors include wheel

encoders, ultrasonic sensors, and cameras.

Actuators are controlled by motor controllers and interface with a

microcontroller/PLC (programmable logic controller). Some actuators

are directly controlled through a PC’s USB. Sensors also interface with a

microcontroller or PC. Ultrasonic sensors and infrared sensor interface

with a microcontroller. High-end sensors like cameras and laser scanners

Chapter 4 Kick-Starting Robot Programming Using ROS

127

can interface directly with the PC. There is a power supply/battery to

power all the robotic components. There is an emergency stop push

button to stop/reset the robot’s operation. The two major parts in which

to program inside a robot are a PC and a microcontroller/PLC. PLCs are

mainly used in industrial robots.

In short, we can say robot programming is programming the PC/SBC

and microcontroller/PCL inside robot for performing a specific application

using actuators and feedback from various sensors. The robot applications

include pick and place of objects, moving the robot from A to B. A variety

of programming languages can program robots. C/C++, Python, Java, C #,

and so forth are used with PCs. Microcontrollers use Embedded C, the

Wiring language (based on C++), which is used in Arduino, and Mbed

programming (https://os.mbed.com). Industrial robot applications use

SCADA or vendors’ proprietary programming languages, such as ABB

and KUKA. This programming is done from the industrial robot’s teach

pendant. RAPID is the programming language used in ABB industrial

robots to automate robotics applications.

Robotic programming creates intelligence in the robot for self-decision

making, implementing controllers like PID to move joints, automating

repeated tasks, and creating robotic vision applications.

�Why Robot Programming Is Different
Robot programming is a subset of computer programming. Most robots

have a “brain” that can make decisions. It can be a microcontroller or

a PC. The differences between robot programming and conventional

programming are the input and output devices. The input devices include

robot sensors, teach pendants, and touch screens, and the output devices

include LCD displays and actuators.

Chapter 4 Kick-Starting Robot Programming Using ROS

https://os.mbed.com/

128

Any of the programming languages can program robots, but good

community support, performance, and prototyping time make C++ and

Python the most commonly used.

The following are some of the features needed for programming

a robot:

•	 Threading: As seen in the robot block diagram, there

are a number of sensors and actuators in a robot. We

may need a multithreaded compatible programming

language in order to work with different sensors

and actuators in different threads. This is called

multitasking. Each thread can communicate with each

other to exchange data.

•	 High-level object-oriented programming: As you already

know, object-oriented programming languages are

more modular and code can be easily reused. The code

maintenance is also easy compared to non-object-

oriented programming languages. These qualities

create better software for robots.

•	 Low-level device control: The high-level programming

languages can also access low-level devices such as

GPIO (general-purpose input/output) pins, serial

ports, parallel ports, USB, SPI, and I2C. Programming

languages like C/C++ and Python can work with

low-level devices, which is why these languages

prefer single-board computers like the Raspberry Pi

and Odroid.

•	 Ease of prototyping: The easiness in prototyping a

robot algorithm is definitely a choice in the selection

of programming language. Python is a good choice in

prototyping robot algorithms quickly.

Chapter 4 Kick-Starting Robot Programming Using ROS

129

•	 Interprocess communication: A robot has lot of sensors

and actuators. We can use multithreading architecture

or write an independent program for doing each

task; for example, one program takes images from a

camera and detects a face, and another program sends

data to an embedded board. These two programs

can communicate with each other to exchange data.

This feature creates multiple programs instead of a

multithreading system. The multithreading system is

more complicated than running multiple programs

in parallel. Socket programming is an example of

interprocess communication.

•	 Performance: If we work with high-bandwidth sensors,

such as depth cameras and laser scanners, the

computing resources needed to process the data are

obviously high. A good programming language can

only allocate appropriate computing resource without

loading the computing resource. The C++ language is a

good choice to handle these kinds of scenarios.

•	 Community support: When choosing any programming

language for robot programming, make sure that

there is enough community support for that language,

including forums and blogs.

•	 Availability of third-party libraries: The availability of

third-party libraries can make our development easy;

for example, if we want to do image processing, we

can use libraries like OpenCV. If your programming

language has OpenCV support, it is easier to do image

processing applications.

Chapter 4 Kick-Starting Robot Programming Using ROS

130

•	 Existing robotics software framework support: There

are existing robotics software frameworks such as ROS

to program robots. If your programming language

has ROS support, it is easier to prototype a robot

application.

�Getting Started with ROS
So far, we have discussed robot programming and how it is different from

other computer programming. In this section, we look at a unique software

platform for programming robots: the Robot Operating System, or ROS

(www.ros.org).

ROS is a free and open source robotics software framework that is

used in both commercial and research applications. The ROS framework

provides the following robot-programming capabilities:

•	 Message passing interface between processes: ROS

provides a message passing interface to communicate

between two programs or processes. For example, a

camera processes an image and finds coordinates in

the image, and then these coordinates are sent to a

tracker process. The tracker process does the tracking

of the image by using motors. As mentioned, this is one

of the features needed to program a robot. It is called

interprocess communication because two processes are

communicating with each other.

•	 Operating system–like features: As the name says,

ROS is not a real operating system. It is a meta-

operating system that provides some operating

system functionalities. These functionalities include

multithreading, low-level device control, package

Chapter 4 Kick-Starting Robot Programming Using ROS

http://www.ros.org

131

management, and hardware abstraction. The hardware

abstraction layer enables programmers to program a

device. The advantage is that we can write code for a

sensor that works the same way with different vendors.

So, we don’t need to rewrite the code when we use a

new sensor. Package management helps users organize

software in units called packages. Each package has

source code, configuration files, or data files for a

specific task. These packages can be distributed and

installed on other computers.

•	 High-level programming language support and tools:

The advantage of ROS is that it supports popular

programming languages used in robot programming,

including C++, Python, and Lisp. There is experimental

support for languages such as C #, Java, Node.js, and

so forth. The complete list is at http://wiki.ros.org/

Client%20Libraries. ROS provides client libraries

for these languages, meaning the programmer can

get ROS functionalities in the languages mentioned.

For example, if a user wants to implement an Android

application that is using ROS functionality, the rosjava

client library can be used. ROS also provides tools

to build robotics applications. With these tools, we

can build many packages with a single command.

This flexibility helps programmers spend less time in

creating build systems for their applications.

•	 Availability of third-party libraries: The ROS framework

is integrated with most popular third-party libraries; for

example, OpenCV (https://opencv.org) is integrated

for robotic vision, and PCL (http://pointclouds.org)

is integrated for 3D robot perception. These libraries

Chapter 4 Kick-Starting Robot Programming Using ROS

http://wiki.ros.org/Client Libraries
http://wiki.ros.org/Client Libraries
https://opencv.org/
http://pointclouds.org

132

make ROS stronger, and the programmer can build

powerful applications on top of it.

•	 Off-the-shelf algorithms: This is a useful feature. ROS

has implemented popular robotics algorithms such as

PID (http://wiki.ros.org/pid), SLAM (simultaneous

localization and mapping) (http://wiki.ros.org/

gmapping), and path planners such as A*, Dijkstra

(http://wiki.ros.org/global_planner), and AMCL

(adaptive Monte Carlo localization) (http://wiki.

ros.org/amcl). The list of algorithm implementations

in ROS continues. The off-the-shelf algorithms reduce

development time for prototyping a robot.

•	 Ease in prototyping: One advantage of ROS is off-the-

shelf algorithms. Along with that, ROS has packages

that can be easily reused with any robot; for example,

we can easily prototype our own mobile robot by

customizing an existing mobile robot package

available in the ROS repository. We can easily reuse

the ROS repository because most of the packages

are open source and reusable for commercial and

research purposes. So, this can reduce robot software

development time.

•	 Ecosystem/community support: The main reason for

the popularity and development of ROS is community

support. ROS developers are all over the world. They

actively develop and maintain ROS packages. The

big community support includes developers asking

questions related to ROS. ROS Answers is a platform

for ROS-related queries (https://answers.ros.org/

questions/). ROS Discourse is an online forum in

Chapter 4 Kick-Starting Robot Programming Using ROS

http://wiki.ros.org/pid
http://wiki.ros.org/gmapping
http://wiki.ros.org/gmapping
http://wiki.ros.org/global_planner
http://wiki.ros.org/amcl
http://wiki.ros.org/amcl
https://answers.ros.org/questions/
https://answers.ros.org/questions/

133

which ROS users discuss various topics and publish

news related to ROS (https://discourse.ros.org).

•	 Extensive tools and simulators: ROS is built with many

command-line and GUI tools to debug, visualize,

and simulate robotics applications. These tools are

very useful for working with a robot. For example, the

Rviz (http://wiki.ros.org/rviz) tool is used for

visualization with cameras, laser scanners, inertial

measurement units, and so forth. For working with

robot simulations, there are simulators such as Gazebo

(http://gazebosim.org).

�The ROS Equation
The ROS project can be defined in a single equation, as shown in

Figure 4-2.

Figure 4-2.  The ROS equation

The plumbing is the same as the message passing interface.

ROS has many other capabilities, which we explore in upcoming

sections.

�Robot Programming Before and After ROS
Let’s look at the changes to the robotics programming community since

the ROS project began.

Chapter 4 Kick-Starting Robot Programming Using ROS

https://discourse.ros.org/
http://wiki.ros.org/rviz
http://gazebosim.org

134

�The History of ROS
The following are some historic milestones of the ROS project:

•	 The ROS project started at Stanford University in 2007,

led by roboticist Morgan Quigly (http://people.

osrfoundation.org/morgan/). In the beginning, it was

a group of software developed for robots at Stanford.

•	 Later in 2007, a robotics research startup called Willow

Garage (www.willowgarage.com/) took over the project

and coined the name ROS, which stands for Robot

Operating System.

•	 In 2009, ROS 0.4 was released, and a working ROS robot

called PR2 was developed.

•	 In 2010, ROS 1.0 was released. Many of its features are

still in use.

•	 In 2010, ROS C Turtle was released.

•	 In 2011, ROS Diamondback was released.

•	 In 2011, ROS Electric Emys was released.

•	 In 2012, ROS Fuerte was released.

•	 In 2012, ROS Groovy Galapagos was released.

•	 In 2012, the Open Source Robotics Foundation (OSRF)

took over the ROS project.

•	 In 2013, ROS Hydro Medusa was released.

•	 In 2014, ROS Indigo Igloo was released; this was the

first long-term support (LTS) release, meaning updates

and support were provided for a long period of time

(typically five years).

Chapter 4 Kick-Starting Robot Programming Using ROS

http://people.osrfoundation.org/morgan/
http://people.osrfoundation.org/morgan/
http://www.willowgarage.com/

135

•	 In 2015, ROS Jade Turtle was released.

•	 In 2016, ROS Kinetic Kame was released. It is the

second LTS version of ROS.

•	 In 2017, ROS Lunar Loggerhead was released.

•	 In May 2018, the 12th version of ROS, Melodic Morenia,

was released.

•	 In May 2020, ROS Noetic Ninjemys was released.

The timeline of the ROS project and a more detailed history are

available at www.ros.org/history/.

Each version of ROS is called a ROS distribution. You may be aware of

the Linux distribution, such as Ubuntu, Debian, Fedora, and so forth.

Figure 4-3 shows the complete list of ROS distribution releases

(http://wiki.ros.org/Distributions).

Chapter 4 Kick-Starting Robot Programming Using ROS

http://www.ros.org/history/
http://wiki.ros.org/Distributions

136

Figure 4-3.  ROS distributions

If you are looking for the latest ROS features, you can choose new

distributions, and if you are looking for stable packages, you can choose

LTS. In Figure 4-3, the recommended distribution is ROS Noetic Ninjemys.

In this book, the examples use Noetic Ninjemys.

ROS is now developed and maintained by the Open Robotics,

previously known as the Open Source Robotics Foundation (www.

osrfoundation.org).

Chapter 4 Kick-Starting Robot Programming Using ROS

http://www.osrfoundation.org
http://www.osrfoundation.org

137

�Before and After ROS
There was active development in robotics before the ROS project, but

there was no common platform and community for developing robotics

applications. Each developer created software for their own robot, which,

in most cases, couldn’t be reused for any other robot. Developers had to

rewrite code from scratch for each robot, which takes a lot of time. Also,

most of the code was not actively maintained, so there was no support for

the software. Also, developers needed to implement standard algorithms

on their own, which took more time to prototype the robot.

After the ROS project, things changed. Now there is a common

platform for developing robotics applications. It is free and open source for

commercial and research purposes. Off-the-shelf algorithms are readily

available, so there is no longer a need to code. There is big community

support, which makes development easier. In short, the ROS project

changed the face of robotics programming.

�Why Use ROS?
This is common question that developers ask when looking for a platform

to program ROS. Although ROS has many features, there are still areas

in which ROS can’t be used or is not recommended to use. In the case of

a self-driving car, for example, we can use ROS to make a prototype, but

developers do not recommend ROS to make the actual product. This is due

to various issues, such as security, real-time processing, and so forth. ROS

may not be a good fit in some areas, but in other areas, ROS is an absolute

fit. In corporate robotics research centers and at universities, ROS is an

ideal choice for prototyping. And ROS is used in some robotics products

after a lot of fine-tuning (but not self-driving cars).

Chapter 4 Kick-Starting Robot Programming Using ROS

138

A project called ROS 2.0 is developing a much better version of the

existing ROS in terms of security and real-time processing (https://

github.com/ros2/ros2/wiki). ROS 2.0 may become a good choice for

robotics products in the future.

�Installing ROS
This is an important step in ROS development. Installing ROS on your PC

is a straightforward process. Before installing, you should be aware of the

various platforms that support ROS.

Figure 4-4 shows various operating systems on which you can install

ROS. As discussed, ROS is not an operating system, but it needs a host

operating system to work.

Figure 4-4.  Operating systems that support ROS

Chapter 4 Kick-Starting Robot Programming Using ROS

https://github.com/ros2/ros2/wiki
https://github.com/ros2/ros2/wiki

139

Ubuntu Linux is the most preferred OS for installing ROS. As you can

see in Figure 4-4, ROS supports Ubuntu 32 and 64 bit and ARM 32 and

64 bit. This means ROS can run on PC/desktops and on single-board

computers like Raspberry Pi (http://raspberrypi.org), Odroid (www.

hardkernel.com/main/main.php), and NVIDIA TX1/TX2 (www.nvidia.

com/en-us/autonomous-machines/embedded-systems/). Debian Linux

(www.debian.org) has good ROS support.

In OS X and other operating systems, ROS is still in the experimental

phase, which means that ROS functionalities are not yet available.

Let’s move on to installation. If you are using a PC or an ARM board

running Ubuntu armhf or arm64, you can follow the procedures at http://

wiki.ros.org/ROS/Installation.

When you go to this wiki, it asks which ROS version you need to install.

Figure 4-5 is a typical website screenshot.

Chapter 4 Kick-Starting Robot Programming Using ROS

http://raspberrypi.org
http://www.hardkernel.com/main/main.php
http://www.hardkernel.com/main/main.php
http://www.nvidia.com/en-us/autonomous-machines/embedded-systems/
http://www.nvidia.com/en-us/autonomous-machines/embedded-systems/
http://www.debian.org
http://wiki.ros.org/ROS/Installation
http://wiki.ros.org/ROS/Installation

140

Figure 4-5.  Choosing a ROS distribution

As mentioned, we are choosing ROS Noetic Ninjemys because it is the

latest LTS and stable.

After you click the distribution that you want, you get the list of

operating systems that support that distribution. The list of ROS Noetic

operating systems is shown in Figure 4-4.

Chapter 4 Kick-Starting Robot Programming Using ROS

141

Choose the Ubuntu 20.04 operating system. When you select the

operating system, you get a set of instructions. The wiki at http://wiki.

ros.org/noetic/Installation provides direct access to instructions for

setting ROS in Ubuntu.

We can install ROS in two ways: through a binary installation or by

source compilation. The first method is easy and less time consuming.

Binary installation lets you directly install ROS from prebuilt binaries. With

source compilation, you create an executable by compiling ROS source

code. This takes more time and is based on your PC’s specifications.

In this book, we are doing a binary installation.

The following describes the installation steps:

	 1)	 Configure the Ubuntu repositories: An Ubuntu

repository is where the Ubuntu software is

organized, typically on servers in which users can

access and install the application. The following are

repositories in Ubuntu:

	 a)	 Main: Ubuntu officially supported free and open source

software.

	 b)	 Universe: Community maintained free and open source

software.

	 c)	 Restricted: This has proprietary device drivers.

	 d)	 Multiverse: Software restricted by copyright and legal issues.

To install ROS, we have to enable access to the entire repository so that

Ubuntu can retrieve packages from these repositories. Figure 4-6 shows

how to do this. Just search in Ubuntu for “Software & Updates.”

Chapter 4 Kick-Starting Robot Programming Using ROS

http://wiki.ros.org/noetic/Installation
http://wiki.ros.org/noetic/Installation

142

Figure 4-6.  Searching for the Software & Updates application
in Ubuntu

Figure 4-7 shows that you can enable the access of each repository. You

can also select the server location. You can either use a server from your

country or the Ubuntu main server.

Figure 4-7.  The Software & Updates application in Ubuntu

Chapter 4 Kick-Starting Robot Programming Using ROS

143

OK, you are done with the first step.

	 2)	 Set up your sources.list: This is an important step

in ROS installation. It adds the ROS repository

information where the binaries are stored. Ubuntu

can fetch the packages after this step is completed.

The following is the command used for this:

sudo sh -c 'echo "deb http://packages.ros.org/ros/

ubuntu $(lsb_release -sc) main" > /etc/apt/sources.

list.d/ros-latest.list'

Note E xecute the preceding command in a terminal.

This command creates a new file called /etc/apt/sources.list.d/

ros-latest.list and adds the following line to it:

deb http://packages.ros.org/ros/ubuntu xenial main

If we create this file in the sources.list folder and add this line, then

only the Ubuntu package manager can fetch the package list.

Note I f you execute $ lsb_release -sc in a terminal, you get
the output “xenial”.

	 3)	 Installing curl: The curl (cURL-client URL) is a

command-line tool for transfer data to and from the

server. We need this command to setup keys for installing

ROS debian packages.

sudo apt install curl

Chapter 4 Kick-Starting Robot Programming Using ROS

144

	 4)	 Add the keys: In Ubuntu, if we want to download a

binary or a package, we have to add a secure key

in our system to authenticate the downloading

process. The package that authenticates using these

keys is trusted. The following is the command to add

the keys:

curl-s https://raw.githubusercontent.com/ros/rosdistro/

master/ros.asc | sudo apt-key add –

	 5)	 Update the Ubuntu package list: When we update

the list, the packages from the ROS repositories also

list. We use the following command to update the

Ubuntu repository:

$ sudo apt-get update

	 6)	 Install ROS Noetic packages: After getting the list,

we download and install the package using the

following command:

sudo apt install ros-noetic-desktop-full

This command installs all the necessary packages in ROS, including

tools, simulators, and essential robot algorithms. It takes time to download

and install all these packages.

	 7)	 Initialize rosdep: After installing all packages, we

need to install a tool called rosdep, which is useful

for installing the dependent packages of a ROS

package. For example, a typical ROS package may

have a few dependent packages to work properly.

rosdep checks whether the dependent packages are

available, and if not, it automatically installs them.

Chapter 4 Kick-Starting Robot Programming Using ROS

145

The following command installs the rosdep tool:

$ sudo rosdep init

$ rosdep update

	 8)	 Set the ROS environment: This is an important step

after installing ROS. As discussed earlier, ROS comes

with tools and libraries. To access these command-

line tools and packages, we have to set up the ROS

environment to access these commands, even

though its installed on our system. The following

command adds a line in the .bashrc file in your

home folder, which sets the ROS environment in

every new terminal:

$ echo "source /opt/ros/noetic/setup.bash" >> ~/.bashrc

Next, enter the following command to add the environment in the current

terminal.

$ source ~/.bashrc

Yes, you are almost done. A small step remains.

	 9)	 Set up dependencies for building the package: The

use of this step can be explained using an example.

Imagine that you are working with a robot with

more than 100 packages. If you want to set up those

packages in a computer, it is difficult to manage all

the dependencies needed to install those packages. In

that situation, tools like rosinstall are useful. This tool

installs all the packages in a single command. In this

step, we are literally installing those kinds of tools.

$ sudo apt install python3-rosdep python3-rosinstall

python3-rosinstall-generator python3-wstool build-

essential

Chapter 4 Kick-Starting Robot Programming Using ROS

146

Congratulations, you are done with installation. You can verify that

your installation is correct by using the following command:

$ rosversion -d

If you are getting “noetic” as the output, you are all set with the

installation.

�Robots and Sensors Supporting ROS
Figure 4-8 shows some of the popular robots that use ROS. A complete list

of robots working in ROS is at http://robots.ros.org.

Figure 4-8.  Robots that work in ROS

Chapter 4 Kick-Starting Robot Programming Using ROS

http://robots.ros.org

147

The following are the robots shown in Figure 4-8:

	 a)	 Pepper (www.ald.softbankrobotics.com/en/

robots/pepper): A service robot used for assisting

people in a variety of ways

	 b)	 REEM-C (http://pal-robotics.com/en/

products/reem-c/): A full-size humanoid robot that

is mainly used for research purposes

	 c)	 TurtleBot 2 (www.turtlebot.com/turtlebot2/):

A simple mobile robot platform that is mainly used

for research and educational purposes

	 d)	 Robonaut 2 (https://robonaut.jsc.nasa.gov/R2/):

A NASA robot designed to automate various tasks on

the International Space Station

	 e)	 Universal Robot arm (www.universal-robots.com/

products/ur5-robot): One of the popular semi-

industrial robots widely used for automating various

tasks in manufacturing

There are also sensors supported by ROS. A complete list of these

sensors is available at http://wiki.ros.org/Sensors (see Figure 4-9).

Chapter 4 Kick-Starting Robot Programming Using ROS

http://www.ald.softbankrobotics.com/en/robots/pepper
http://www.ald.softbankrobotics.com/en/robots/pepper
http://pal-robotics.com/en/products/reem-c/
http://pal-robotics.com/en/products/reem-c/
http://www.turtlebot.com/turtlebot2/
https://robonaut.jsc.nasa.gov/R2/
http://www.universal-robots.com/products/ur5-robot
http://www.universal-robots.com/products/ur5-robot
http://wiki.ros.org/Sensors

148

Figure 4-9.  Popular sensors that support ROS

The following describes each sensor shown in Figure 4-9:

	 a)	 Velodyne (http://velodynelidar.com): Popular

LIDARs mainly used in self-driving cars

	 b)	 ZED Camera (www.stereolabs.com): A popular

stereo depth camera

	 c)	 TeraRanger (www.terabee.com): A new sensor for

depth sensing in 2D and 3D

	 d)	 Xsense MTi IMU (www.xsens.com/products/):

An accurate IMU solution

	 e)	 Hokuyo Laser (www.hokuyo-aut.jp/): A popular

laser scanner

	 f)	 Intel RealSense (https://realsense.intel.com):

A 3D depth sensor for robot navigation and mapping

Chapter 4 Kick-Starting Robot Programming Using ROS

http://velodynelidar.com
http://www.stereolabs.com
http://www.terabee.com
http://www.xsens.com/products/
http://www.hokuyo-aut.jp/
https://realsense.intel.com/

149

�Popular ROS Computing Platforms
Figure 4-10 shows a few commonly used ROS-compatible computing

platforms.

Figure 4-10.  Popular computing units that run ROS

	 a)	 NVIDIA TX1/TX2 (www.nvidia.com/en-us/

autonomous-machines/embedded-systems-

dev-kits-modules/): Capable of running deep

learning applications and computational intensive

applications. The board has an ARM-based 64-bit

processor that can run Ubuntu. This platform is

very popular in autonomous robotics applications,

especially drones.

Chapter 4 Kick-Starting Robot Programming Using ROS

http://www.nvidia.com/en-us/autonomous-machines/embedded-systems-dev-kits-modules/
http://www.nvidia.com/en-us/autonomous-machines/embedded-systems-dev-kits-modules/
http://www.nvidia.com/en-us/autonomous-machines/embedded-systems-dev-kits-modules/

150

	 b)	 Raspberry Pi 3 (www.raspberrypi.org/products/

raspberry-pi-3-model-b/): Very popular single-

board computers for education and research.

Robotics is a key area.

	 c)	 Intel NUC (www.intel.com/content/www/us/en/

products/boards-kits/nuc.html): Based on a

x86_64 platform, which is basically a miniature

version of a desktop computer.

	 d)	 Odroid XU4 (www.hardkernel.com/main/main.php):

The Odroid series boards are similar to Raspberry

Pi, but it has better configuration and performance.

It is based on the ARM architecture.

�ROS Architecture and Concepts
We have discussed ROS, its features, and how to install it. In this section,

we go deep into ROS architecture and its important concepts. Basically,

ROS is a framework to communicate between two programs or processes.

For example, if program A wants to send data to program B, and B wants

to send data to program A, we can easily implement it using ROS. So the

question is whether we implement it using socket programming directly.

Yes, we can, but if we build more and more programs, it gets complex, so

ROS is a good choice for interprocess communication.

Do we really need interprocess communication in a robot? Can we

program a robot without it? The answer to the first question is explained in

Figure 4-11.

Chapter 4 Kick-Starting Robot Programming Using ROS

http://www.raspberrypi.org/products/raspberry-pi-3-model-b/
http://www.raspberrypi.org/products/raspberry-pi-3-model-b/
http://www.intel.com/content/www/us/en/products/boards-kits/nuc.html
http://www.intel.com/content/www/us/en/products/boards-kits/nuc.html
http://www.hardkernel.com/main/main.php

151

Figure 4-11.  A typical robot block with actuators and sensors

A robot may have many sensors and actuators, as well as a computing

unit. How can we control many actuators and process so much sensor

data? Can we do it in a single program? Yes, but that is not a good way of

doing it. The better way is we can write independent programs to handle

sensor data and controlling actuators, and often, we may need to exchange

data between these programs. This is the situation where we use ROS.

So can we program a robot without ROS? Yes, but the complexity of

software increases according to the number of actuators and sensors.

Let’s see how the communication is happening between two programs

in ROS. Figure 4-12 illustrates a basic block diagram of ROS.

Chapter 4 Kick-Starting Robot Programming Using ROS

152

Figure 4-12.  ROS Communication block diagram

Figure 4-12 shows two programs marked as node 1 and node 2. When

any of the programs start, a node communicates to a ROS program called

the ROS master. The node sends all its information to the ROS master,

including the type of data it sends or receives. The nodes that are sending

a data are called publisher nodes, and the nodes that are receiving data

are called subscriber nodes. The ROS master has all the publisher and

subscriber information running on computers. If node 1 sends particular

data called “A” and the same data is required by node 2, then the ROS

master sends the information to the nodes so that they can communicate

with each other.

The ROS nodes can send different types of data to each other, which

includes primitive data types such as integer, float, string, and so forth.

The different data types being sent are called ROS messages. With ROS

messages, we can send data with a single data type or multiple data with

different data types. These messages are sent through a message bus or

path called ROS topics. Each topic has a name; for example, a topic named

“chatter” sends a string message.

Chapter 4 Kick-Starting Robot Programming Using ROS

153

When a ROS node publishes a topic, it sends a ROS topic with a ROS

message, and it has data with the message type.

In Figure 4-12, the ROS topic is publishing and subscribing node 1

and node 2. This process starts when the ROS master exchanges the node

details to each other.

Next, let’s go through some important concepts and terms that are

used when working with ROS. They can be classified as three categories:

the ROS file system, ROS computation concepts, and the ROS community.

�The ROS File System
The ROS file system includes packages, metapackages, package manifests,

repositories, message types, and service types.

ROS packages are the individual units, or the atomic units, of ROS

software. All source code, data files, build files, dependencies, and other

files are organized in packages. A ROS metapackage groups a set of similar

packages for a specific application. A ROS metapackage does not have any

source files or data files. It has the dependencies of similar packages. A

ROS metapackage organizes a set of packages.

A package manifest is an XML file placed inside a ROS package. It

has all the primary information of a ROS package, including the name of

the package, description, author, dependencies, and so forth. A typical

package.xml is shown next:

<?xml version="1.0"?>

<package>

 <name>test_pkg</name>

 <version>0.0.1</version>

 <description>The test package</description>

 <maintainer email="qboticslabs@gmail.com">robot</maintainer>

 <license>BSD</license>

Chapter 4 Kick-Starting Robot Programming Using ROS

154

 <buildtool_depend>catkin</buildtool_depend>

 <run_depend>catkin</run_depend>

</package>

A ROS repository is a collection of ROS packages that share a common

version control system.

A message type description is the definition of a new ROS message type.

There are existing data types available in ROS that can be directly used for

our application, but if we want to create a new ROS message, we can. A

new message type can be defined and stored inside the msg folder inside

the package.

Similar to message type, a service type definition contains our own

service definitions. It is stored in the srv folder.

Figure 4-13 shows a typical ROS package folder.

Figure 4-13.  A typical ROS package structure

Chapter 4 Kick-Starting Robot Programming Using ROS

155

�ROS Computation Concepts
These are the terms associated with ROS computation concepts:

•	 ROS nodes: Process that uses ROS APIs to perform

computations.

•	 ROS master: An intermediate program that connects

ROS nodes.

•	 ROS parameter server: A program that normally runs

along with the ROS master. The user can store various

parameters or values on this server, and all the nodes

can access it. The user can set privacy of the parameter

too. If it is a public parameter, all the nodes have

access; if it is private, only a specific node can access

the parameter.

•	 ROS topics: Named buses in which ROS nodes can

send a message. A node can publish or subscribe any

number of topics.

•	 ROS message: The messages are basically going

through the topic. There are existing messages based

on primitive data types, and users can write their own

messages.

•	 ROS service: We have already seen ROS topics, which is

having a publishing and subscribing mechanism. The

ROS service has a request/reply mechanism. A service

call is a function, which can call whenever a client node

sends a request. The node that creates a service call is

called server node and that calls the service is called

client node.

Chapter 4 Kick-Starting Robot Programming Using ROS

156

•	 ROS bags: A useful method to save and play back ROS

topics. Also useful for logging the data from a robot to

process it later.

�The ROS Community
The following are terms used to exchange ROS software and knowledge:

•	 The ROS distribution is a collection of versioned

packages.

•	 The ROS wiki has tutorials on how to set up and

program ROS.

•	 ROS Answers (https://answers.ros.org/questions/)

has ROS queries and solutions, similar to Stack

Overflow.

•	 ROS Discourse (https://discourse.ros.org) is a

forum in which developers can share news and ask

queries related to ROS.

If you want to learn more about ROS concepts, visit http://wiki.ros.

org/ROS/Concepts.

�ROS Command Tools
This section discusses ROS command-line tools. What are these tools

for? The tools can make our lives easier. There are different ROS tools that

we can use to explore various aspects of ROS. We can implement almost

all the capabilities of ROS using these tools. The command-line tools are

executed in the Linux terminal; like the other commands in Linux, we get

the ROS command tools too.

Chapter 4 Kick-Starting Robot Programming Using ROS

https://answers.ros.org/questions/
https://discourse.ros.org/
http://wiki.ros.org/ROS/Concepts
http://wiki.ros.org/ROS/Concepts

157

The roscore command is a very important tool in ROS. When we run

this command in the terminal, it starts the ROS master, the parameter

server, and a logging node. We can run any other ROS program/node after

running this command. So run roscore on one terminal window, and use

another terminal window to enter the next command to run a ROS node.

If you run roscore in a terminal, you may get messages like the ones shown

in Figure 4-14.

Figure 4-14.  roscore messages

You can see messages in the terminal about starting the ROS master.

You also see the ROS master address.

The rosnode command explores all the aspects of a ROS node. For

example, we can list the number of ROS nodes running on our system. If

you type any of the commands, you get complete help for the tool.

The following is a common usage of rosnode:

$ rosnode list

Figure 4-15 shows the list of nodes running on the system. It is a typical

output of rosnode list.

Chapter 4 Kick-Starting Robot Programming Using ROS

158

Figure 4-15.  Output of a rosnode list command

The rostopic command provides information about the topics

publishing/subscribing in the system. This command is very useful for

listing topics, printing topic data, and publishing data.

$ rostopic list

If there is a topic called /chatter, we can print/echo the topic data

using the following command:

$ rostopic echo /chatter

If we want to publish a topic with data, we can easily do so using this

command:

$ rostopic pub topic_name msg_type data

The following is an example:

$ rostopic pub /hello std_msgs/String "Hello"

You can echo the same topic after publishing too. Note that if you run

these commands in one terminal, roscore should be running.

Figure 4-16 is a screenshot of rostopic echo and publish.

Chapter 4 Kick-Starting Robot Programming Using ROS

159

Figure 4-16.  Output of rostopic echo and publish

Figure 4-16 is the Terminator (https://launchpad.net/terminator)

application in which the screen is split into separate terminal sessions.

One session is running roscore. A second session is publishing a topic. A

third session is echoing the same topic.

The rosversion command checks your ROS version.

The following command retrieves the current ROS version:

$ rosversion -d

Output: noetic

The rosparam command gives a list of parameters loaded in the

parameter server.

You can use the following command to list the parameters in

the system:

$ rosparam list

Figure 4-17 shows how to set and get a parameter.

Chapter 4 Kick-Starting Robot Programming Using ROS

https://launchpad.net/terminator

160

Figure 4-17.  Output of rosservice set and get

You can get the command here:

Setting parameter

$ rosparam set parameter_name value

Eg. $ rosparam set hello "Hello"

Getting a parameter

$ rosparam get parameter_name

$ rosparam get hello

Output: "Hello"

The roslaunch command is also useful in ROS. If you want to run more

than ten ROS nodes at time, it is very difficult to launch them one by one.

In this situation, we can use roslaunch files to avoid this difficulty. ROS

launch files are XML files in which you can insert each node that you want

to run. Another advantage of the roslaunch command is that the roscore

command executes with it, so we don’t need to run an additional roscore

command for running the nodes.

The following is the syntax for running a roslaunch file. The

“roslaunch” is the command to run a launch file, along with that we have

to mention package name and name of launch file.

$ roslaunch ros_pkg_name launch_file_name

Chapter 4 Kick-Starting Robot Programming Using ROS

161

roslaunch roscpp_tutorials talker_listener.launch is an

example.

To run a ROS node, you have to use the rosrun node. Its usage is

very simple.

$ rosrun ros_pkg_name node_name

rosrun roscpp_tutorials talker is an example.

�ROS Demo: Hello World Example
This section demonstrates a basic ROS example. The example is already

installed in ROS.

There are two nodes: talker and listener. The talker node publishes

a string message. The listener node subscribes it. In this example of the

process, the talker publishes a Hello World message and the listener

subscribes it and prints it.

Figure 4-18 shows a diagram of the two nodes. As discussed earlier,

both nodes need to communicate with the ROS master to get the

information from the other node.

Chapter 4 Kick-Starting Robot Programming Using ROS

162

Figure 4-18.  Communication between talker and listener nodes

Let’s start the example by using the following command.

The first step in starting any node in ROS is roscore.

$ roscore

Start the talker node by using the following command in another

terminal:

$ rosrun roscpp_tutorials talker

Now you see the messages printing on the terminal screen. If you list

the topic by using the following command, you see a new topic called

/chatter:

$ rostopic list

Output: /chatter

Now start the listener node by using the following command:

$ rosrun roscpp_tutorials listener

Chapter 4 Kick-Starting Robot Programming Using ROS

163

The subscribing begins between the two nodes (see Figure 4-19).

Figure 4-19.  talker-listener example

If you want to run two of the nodes together, use the roslaunch

command:

$ roslaunch roscpp_tutorials talker_listener.launch

roscpp_tutorials is an existing package in ROS and talker_

listener.launch.

�ROS Demo: turtlesim
This section demonstrates an interesting application for learning ROS

concepts. The application is called turtlesim, which is a 2D simulator with

a turtle in it. You can move the turtle, read the turtle’s current position,

Chapter 4 Kick-Starting Robot Programming Using ROS

164

change the turtle’s pattern, and so forth using ROS topics, ROS services,

and parameters. When working with turtlesim, you get a better idea of how

to control a robot using ROS.

The turtlesim application is already installed on ROS. You can start this

application by using the following commands:

Starting roscore

$ roscore

Starting Turtlesim application

$ rosrun turtlesim turtlesim_node

A screen like the one shown in Figure 4-20 means that everything is

working fine.

Figure 4-20.  Turtlesim

Now you can open a new terminal and list the topics by publishing the

turtlesim node:

$ rostopic list

You see the topics shown in Figure 4-21.

Chapter 4 Kick-Starting Robot Programming Using ROS

165

Figure 4-21.  Turtlesim topics

Figure 4-22 lists the services created by the turtlesim node. You can list

the services by using the following command:

$ rosservice list

Figure 4-22.  List of ROS services

Chapter 4 Kick-Starting Robot Programming Using ROS

166

List the ROS parameters by using the following command (see

Figure 4-23):

$ rosparam list

Figure 4-23.  List of ROS parameters

�Moving the Turtle
If you want to move the turtle, start another ROS node by using the

following command. This command has to start in another terminal.

$ rosrun turtlesim turtle_teleop_key

You can control the robot using your keyboard’s arrow keys. When

you press an arrow key, it publishes velocity to /turtle1/cmd_vel, which

makes the turtle move (see Figure 4-24).

Chapter 4 Kick-Starting Robot Programming Using ROS

167

Figure 4-24.  The path that the turtle covers

If you want to see the back end of these nodes, check the diagram in

Figure 4-25. It shows the topic data going to turtlesim.

Figure 4-25.  Turtlesim and teleop node back ends

Chapter 4 Kick-Starting Robot Programming Using ROS

168

�Moving the Turtle in a Square
This section shows how to move the turtle along a square path. Close all

the running nodes by pressing Ctrl+C, and start a new turtlesim session

using the following command (see Figure 4-26):

Starting roscore

$ roscore

Starting turtlesim node

$ rosrun turtlesim turtlesim_node

Starting the node for drawing square

$ rosrun turtlesim draw_square

Figure 4-26.  The draw square in turtlesim

If we want to clear the turtlesim, we can call a service called /reset:

$ rosservice call /reset

Chapter 4 Kick-Starting Robot Programming Using ROS

169

This resets the turtle’s position.

In the next section, we look at ROS GUI tools.

�ROS GUI Tools: Rviz and Rqt
Along with command-line tools, ROS has GUI tools to visualize sensor

data. A popular GUI tool is Rviz (see Figure 4-27). Using Rviz, we can

visualize image data, 3D point clouds, and robot models, as well as

transform data and so forth. This section explores the basics of the Rviz

tool, which comes with the ROS installation.

Figure 4-27.  Rviz

Start Rviz using the following command:

Start roscore

$ roscore

Start rviz

$ rosrun rviz rviz

Chapter 4 Kick-Starting Robot Programming Using ROS

170

The following describes the sections in Rviz:

•	 3D viewport: The area to visualize the 3D data from

sensors, robot transform data, 3D model data, and

other kinds of 3D information.

•	 Display panel: Displays various kinds of sensor data.

•	 View panel: Options to view the 3D view port according

to the application.

•	 Toolbar: Options for interacting with the 3D viewport,

measuring robot position, setting the robot navigation

goal, and changing camera view.

•	 Time panel: Features information about the ROS time

and elapsed time. This time stamping may be useful for

processing the sensor data.

•	 Rqt: Features options to visualize 2D data, logging

topics, publishing topics, calling services, and more.

This is how to start the Rqt GUI:

Start roscore

$ roscore

Start rqt_gui

$ rosrun rqt_gui rqt_gui

You get an empty GUI with some menus. You can add your own

plug-ins from the drop-down menu. Figure 4-28 is a screenshot of rqt_gui

loaded with a plug-in.

Chapter 4 Kick-Starting Robot Programming Using ROS

171

Figure 4-28.  The Rqt GUI

�Summary
This chapter discussed the fundamentals of the Robot Operating System.

It started with robot programming and explained why it is different from

other software applications. Next, we looked at the different operating

system platforms that can install ROS and covered the detailed installation

instructions for Ubuntu. We saw different robots and sensors compatible

with ROS, and we discussed the ROS architecture. We also looked at

important ROS concepts and a simulator called turtlesim. In the end, we

became familiar with ROS GUI tools such as Rqt and Rviz.

In the next chapter, we see how to program using ROS and how to

create ROS applications using C++ and Python.

Chapter 4 Kick-Starting Robot Programming Using ROS

173© Lentin Joseph and Aleena Johny 2022
L. Joseph and A. Johny, Robot Operating System (ROS) for Absolute Beginners,
https://doi.org/10.1007/978-1-4842-7750-8_5

CHAPTER 5

Programming with ROS
The previous chapter discussed the basics of the Robot Operating System,

and in this chapter, you are going to program using ROS. The main

programming languages that we are going to use are C++ and Python. We

already discussed the basics of C++ and Python in Chapters 2 and 3. Those

fundamental concepts can be applied here to start working with ROS. You

will see examples in Python and in C++, so you get a fundamental idea

about both languages.

The chapter covers creating a ROS workspace, ROS package, and ROS

nodes. After creating the package and basic ROS nodes, you will see how

to program the turtlesim simulator from the previous chapter. Next, you

are introduced to the Gazebo simulator and TurtleBot robot simulation,

creating basic ROS nodes to move the TurtleBot in the simulation.

Afterward, you learn how to interface and program an Arduino and Tiva-C

Launchpad using ROS. These tutorials are very useful for when we create

our own robot. At the end of the chapter, you see how to set up ROS and

program it in the Raspberry Pi 3.

�Programming Using ROS
We have already covered basic programming using C++ and Python. What

does programming with ROS mean? It means that ROS provides some

built-in functions to implement ROS capabilities. For example, if we want

to implement a new ROS topic, or a new ROS message, or a ROS service,

https://doi.org/10.1007/978-1-4842-7750-8_5#DOI
http://dx.doi.org/10.1007/978-1-4842-3405-1_2
http://dx.doi.org/10.1007/978-1-4842-3405-1_3

174

we can simply call these ROS built-in functions to create it. We don’t need

to implement ROS features from scratch. The programs that use ROS built-

in functions/APIs (application program interface) are called ROS nodes.

In this chapter, we create ROS nodes for different applications. The

ROS wiki provides extensive documentation on creating ROS nodes. As a

beginner, it may be difficult to understand most of the topics mentioned

on the ROS wiki. This chapter gives you a brief look at them to get started

with ROS programming.

There are some steps that we need to take before proceeding to ROS

programming. The first step is to create a ROS workspace. The next section

discusses the ROS workspace and how to create it.

�Creating a ROS Workspace and Package
The first step in ROS development is the creation of the ROS workspace,

which is where ROS packages are kept. We can create new packages, install

existing packages, and build and create new executables.

You must first create a ROS workspace folder. You can give it any name,

and you can create it in any location. Normally, this is in the Ubuntu

home folder.

At a new terminal, enter the following command. This creates a folder

called catkin_ws, inside of which is another folder called src. The ROS

workspace is also called the catkin workspace. You see more of catkin in

the next section.

$ mkdir -p ~/catkin_ws/src

The name of the src folder shouldn’t be changed. You can change the

workspace folder name, however.

After entering the command, switch to the src folder by using the cd

command:

$ cd catkin_ws/src

Chapter 5 Programming with ROS

175

The following command initializes a new ROS workspace. If you are

not initializing a workspace, you cannot create and build the packages

properly.

$ catkin_init_workspace

After this command, you should see the message in Figure 5-1 on your

terminal.

Figure 5-1.  The output of catkin_init_workspace

There is a CMakeLists.txt inside the src folder.

After initializing the catkin workspace, you can build the workspace.

You can able it to build the workspace without any packages. To build the

workspace, switch from the catkin_ws/src folder to the catkin_ws folder.

$ ~/catkin_ws/src$ cd ..

The command to build the catkin workspace is catkin_make:

$ ~/catkin_ws$ catkin_make

Chapter 5 Programming with ROS

176

You get the output shown in Figure 5-2 after entering this command.

Figure 5-2.  The catkin_make output

Now you can see a few folders in addition to the src folder (see

Figure 5-3).

Figure 5-3.  The catkin_ws folder after catkin_make command

Chapter 5 Programming with ROS

177

More information about the building process is in the next section.

The src folder is where our packages are kept. If you want to create or

build a package, you have to copy those packages to the src folder.

After creating the workspace, it is an important thing to add the

workspace environment. This means you have to set the workspace path

so that the packages inside the workspace become accessible and visible.

To do this, you have to do the following steps.

Open the .bashrc file in the home folder, and add the following line at

the end of the file.

At a terminal, switch to the home folder and select the .bashrc file:

$ gedit .bashrc

Add the following line at the end of .bashrc (see Figure 5-4):

source ~/catkin_ws/devel/setup.bash

Figure 5-4.  Adding catkin_ws to .bashrc file

Chapter 5 Programming with ROS

178

As you already know, the .bashrc script in the home folder executes

when a new terminal session starts. So, the command inserted in the

.bashrc file also executes.

setup.bash in the following command has variables to add to the

Linux environment:

source ~/catkin_ws/devel/setup.bash

When we source this file, the workspace path is added in the current

terminal session. Now when we use any terminal, we can access the

packages inside this workspace.

Before discussing the creation of packages, we need to discuss the

catkin build system in ROS. You get a better idea about the building

process when you are aware of the catkin build system.

�ROS Build System
Chapters 2 and 3 discussed the build system, which is nothing but tools

to compile a set of source code and create target executables from it. The

target can be an executable or a library. In ROS, there is a build system for

compiling ROS packages. The name of the build system that we are using

is catkin (http://wiki.ros.org/catkin). catkin is a custom build system

made from the CMake build system and Python scripting. So why not

directly use CMake? The answer is simple: building a set of ROS packages

is complicated. The complexity increases with the number of packages

and package dependencies. The catkin build system takes care of all

these things.

You can read more about the catkin build system at http://wiki.ros.

org/catkin/conceptual_overview.

Chapter 5 Programming with ROS

http://dx.doi.org/10.1007/978-1-4842-3405-1_2
http://dx.doi.org/10.1007/978-1-4842-3405-1_3
http://wiki.ros.org/catkin
http://wiki.ros.org/catkin/conceptual_overview
http://wiki.ros.org/catkin/conceptual_overview

179

�ROS Catkin Workspace
We have created a catkin workspace, but didn’t discuss how it works. The

workspace has several folders. Let’s look at the function of each folder.

�src Folder
The src folder inside the catkin workspace folder is the place where you

can create, or clone, new packages from repositories. ROS packages only

build and create an executable when it is in the src folder. When we

execute the catkin_make command from the workspace folder, it checks

inside the src folder and builds each package.

�build Folder
When we run the catkin_make command from the ROS workspace, the

catkin tool creates some build files and intermediate cache CMake files

inside the build folder. These cache files help prevent from rebuilding all

the packages when running the catkin_make command; for example, if

you build five packages and then add a new package to the src folder, only

the new package builds during the next catkin_make command. This is

because of those cache files inside the build folder. If you delete the build

folder, all the packages build again.

�devel Folder
When we run the catkin_make command, each package is built, and if the

build process is successful, the target executable is created. The executable

is stored inside the devel folder, which has shell script files to add the

current workspace to the ROS workspace path. We can access the current

Chapter 5 Programming with ROS

180

workspace packages only if we run this script. Generally, the following

command is used to do this:

source ~/<workspace_name>/devel/setup.bash

We are adding this command in the .bashrc file, so that we can access

the workspace packages in all terminal sessions. If you go through the

procedures to set up the catkin workspace, you see these steps.

�install Folder
After building the target executable locally, run the following command to

install the executable:

$ catkin_make install

It has to execute from the ROS workspace folder. If you do this, you see

the install folder in the workspace. This folder keeps the install target

files. When we run the executable, it executes from the install folder.

There is more information about the catkin workspace at http://

wiki.ros.org/catkin/workspaces#Catkin_Workspaces.

�Creating a ROS Package
We are done creating the ROS workspace. Next, let’s look at how to create

a ROS package. The ROS package is where ROS nodes are organized—

libraries and so forth. We can create a catkin ROS package by using the

following command:

Synatx:

$ catkin_create_pkg ros_package_name package_dependencies

The command that we use to create the package is catkin_create_

pkg. The first parameter for this command is the package name, and the

Chapter 5 Programming with ROS

http://wiki.ros.org/catkin/workspaces#Catkin_Workspaces
http://wiki.ros.org/catkin/workspaces#Catkin_Workspaces

181

dependencies of the package follow it; for example, we are going to create

a package called hello_world with dependencies. We discuss more about

the dependencies in the next section.

You have to execute the command from the src folder in the catkin

workspace:

$ /catkin_ws/src$ catkin_create_pkg hello_world roscpp rospy

std_msgs

The output of this command is shown in Figure 5-5. This is how we

create ROS packages.

Figure 5-5.  Output of catkin_create_pkg command

The structure of a ROS package is shown in Figure 5-6.

Figure 5-6.  Output of catkin_create_pkg command

Inside the package are the src folder, package.xml, CMakeLists.txt,

and the include folder:

•	 CMakeLists.txt: This file has all the commands to

build the ROS source code inside the package and

create the executable.

Chapter 5 Programming with ROS

182

•	 package.xml: This is basically an XML file. It mainly

contains the package dependencies, information, and

so forth.

•	 src: The source code of ROS packages is kept in this

folder. Normally, C++ files are kept in the src folder.

If you want to keep Python scripts, you can create

another folder called scripts inside the package folder.

•	 include: This folder contains the package header files.

It can be automatically generated, or third-party library

files go in it.

The next section discusses ROS client libraries, which are used to

create ROS nodes.

�Using ROS Client Libraries
We have covered various ROS concepts like topics, services, messages, and

so forth. How do we implement these concepts? The answer is by using

ROS client libraries. The ROS client libraries are a collection of code with

functions to implement ROS concepts. We can simply include these library

functions in our code to make it a ROS node. The client library saves

development time because it provides the built-in functions to make a ROS

application.

We can write ROS nodes in any programming language. If there is any

ROS client for that programming language, it is easier to create ROS nodes;

otherwise, we may need to implement our own ROS concepts.

The following are the main ROS client libraries:

•	 roscpp: This is the ROS client library for C++. It is widely

used for developing ROS applications because of its

high performance.

Chapter 5 Programming with ROS

183

•	 rospy: This is the ROS client library for Python

(http://wiki.ros.org/rospy). Its advantage is saving

development time. We can create a ROS node in less

time than with roscpp. It is ideal for quick prototyping

applications, but performance is weaker than with

roscpp. Most of the command-line tools in ROS are

coded using rospy such as roslaunch, roscore, and

so forth.

•	 roslisp: This is the ROS client library of the Lisp

language. It is mainly used in motion planning libraries

on ROS, but it is not as popular as roscpp and rospy.

There are also experimental client libraries, including rosjava,

rosnodejs, and roslua. The complete list of ROS client libraries is at

http://wiki.ros.org/Client%20Libraries.

We will mainly work with roscpp and rospy. The next section shows a

basic example of ROS nodes created using roscpp and rospy.

�roscpp and rospy
This section discusses the various aspects of writing a node using client

libraries such as roscpp and rospy. This includes the header files and

modules used in ROS nodes, initializing a ROS node, publishing and

subscribing a topic, and so forth.

�Header Files and ROS Modules
When you write code in C++, the first section includes the header files.

Similarly, when you write Python code, the first section imports Python

modules. In this section, we look at the important header files and

modules that we need to import into a ROS node.

Chapter 5 Programming with ROS

http://wiki.ros.org/rospy
http://wiki.ros.org/Client Libraries

184

To create a ROS C++ node, we have to include the following

header files:

#include "ros/ros.h"

The ros.h has all the headers required to implement ROS

functionalities. We can’t create a ROS node without including this

header file.

The next type of header file used in ROS nodes is a ROS message

header. If we want to use a specific message type in our node, we have to

include the message header file. ROS has some built-in message definition,

and the user can also create a new message definition. There is a built-in

message package in ROS called std_msgs that has a message definition of

standard data types, such as int, float, string, and so forth. For example, if

we want to include a string message in our code, we can use the following

line of code:

#include "std_msgs/String.h"

Here, the first part is the package name and the next part is the

message type name. If there is a custom message type, we can call it with

the following syntax:

include "msg_pkg_name/message_name.h"

The following are some of the messages in the std_msgs package:

include "std_msgs/Int32.h"

include "std_msgs/Int64.h"

The complete list of message types inside the std_msgs package is at

http://wiki.ros.org/std_msgs.

Chapter 5 Programming with ROS

http://wiki.ros.org/std_msgs

185

In Python, we have to import modules to create a ROS node. The ROS

module that we need to import is

import rospy

rospy has all the important ROS functions. To import a message type, we

have to import the specific modules, like we did in C++.

The following is an example of importing a string message type

in Python:

from std_msgs.msg import String

We have to use package_name.msg and import the required

message type.

�Initializing a ROS Node
Before starting any ROS node, the first function called initializes the node.

This is a mandatory step in any ROS node.

In C++, we initialize using the following line of code:

int main(int argc, char **argv)

{

ros::init(argc, argv, "name_of_node")

.....................

}

After the int main() function, we have to include ros::init(), which

initializes the ROS node. We can pass the argc,argv command-line

arguments to the init() function and the name of the node. This is the

ROS node name, and we can retrieve its list by using rosnode list.

In Python, we use the following line of code:

rospy.init_node('name_of_node', anonymous=True);

Chapter 5 Programming with ROS

186

The first argument is the name of the node, and the second argument

is anonymous=True, which means the node can run on multiple instances.

�Printing Messages in a ROS Node
ROS provides APIs to log messages. These messages are readable string

that convey the status of the node.

In C++, the following functions log the node’s messages:

ROS_INFO(string_msg,args): Logging the information of node

ROS_WARN(string_msg,args): Logging warning of the node

ROS_DEBUG(string_msg ,args): Logging debug messages

ROS_ERROR(string_msg ,args): Logging error messages

ROS_FATAL(string_msg ,args): Logging Fatal messages

Eg: ROS_DEBUG("Hello %s","World");

In Python, there are different functions for the logging operations:

rospy.logdebug(msg, *args)

rospy.logerr(msg, *args)

rospy.logfatal(msg, *args)

rospy.loginfo(msg, *args)

rospy.logwarn(msg, *args)

�Creating a Node Handle
After initializing the node, we have to create a NodeHandle instance that

starts the ROS node and other operations, like publishing/subscribing

a topic. We are using the ros::NodeHandle instance to create those

operations.

In C++, the following shows how to create an instance of ros::NodeHandle:

ros::NodeHandle nh;

Chapter 5 Programming with ROS

187

The rest of the operations in the node use the nh instance. In Python,

we don’t need to create a handle; the rospy module internally handles it.

�Creating a ROS Message Definition
Before publishing a topic, we have to create a ROS message definition. The

message definition is created by using the following methods.

In C++, we can create an instance of a ROS message with the following line

of code; for example, this is how we create an instance of std_msgs/String:

std_msgs::String msg;

After creating the instance of the ROS message, we can add the data by

using the following line of code:

msg.data = "String data"

In Python, we use the following line of code to add data to the string

message:

msg = String()

msg.data = "string data"

�Publishing a Topic in ROS Node
This section shows how to publish a topic in a ROS node.

In C++, we use the following syntax:

ros::Publisher publisher_object = node_handle.advertise<ROS

message type >("topic_name",1000)

Chapter 5 Programming with ROS

188

After creating the publisher object, the publish() command sends

the ROS message through the topic:

publisher_object.publish(message)

Example:

ros::Publisher chatter_pub = nh.advertise<std_

msgs::String>("chatter", 1000);

chatter_pub.publish(msg);

In this example, chatter_pub is the ROS publisher instance, and it is

going to publish a topic with message type std_msgs/String and chatter

as the topic name. The queue size is 1000.

In Python, the publishing syntax is as follows:

Syntax:

publisher_instance = rospy.Publisher('topic_name', message_

type, queue_size)

Example:

pub = rospy.Publisher('chatter', String, queue_size=10)

pub.publish(hello_str)

This example publishes a topic called chatter with a std_msgs/String

message type and a queue_size of 10.

�Subscribing a Topic in ROS Node
When publishing a topic, we have to create a message type and need to

send through the topic. When subscribing a topic, the message is received

from the topic.

In C++, the following is the syntax of subscribing a topic:

ros::Subscriber subscriber_obj = nodehandle.subscribe("topic_

name", 1000, callback function)

Chapter 5 Programming with ROS

189

When subscribing a topic, we don’t need to mention the topic message

type, but we do need to mention the topic name and a callback function.

The callback function is a user-defined function that executes once a ROS

message is received over the topic. Inside the callback, we can manipulate

the ROS message—print it or make a decision based on the message data.

(Callback is discussed in the next section.)

The following is a subscription example of the "chatter" topic with

the "chatterCallback" callback function:

ros::Subscriber sub = n.subscribe("chatter", 1000,

chatterCallback);

The following shows how to subscribe a topic in Python:

rospy.Subscriber("topic_name",message_type,callback funtion name")

The following shows how to subscribe the "chatter" topic with the

message type as string and a callback function. In Python, we have to

mention the message type along with the Subscriber() function.

rospy.Subscriber("chatter", String, callback)

�Writing the Callback Function in ROS Node
When we subscribe a ROS topic and a message arrives in that topic, the

callback function is triggered. You may have seen the mention of a callback

function in the subscriber function. The following is the syntax and an

example of callback function in C++:

void callback_name(const ros_message_const_pointer &pointer)

{

// Access data

pointer->data

}

Chapter 5 Programming with ROS

190

The following shows how to handle a ROS string message and print

the data:

void chatterCallback(const std_msgs::String::ConstPtr& msg)

{

 ROS_INFO("I heard: [%s]", msg->data.c_str());

}

The following shows how to write a callback in Python. It’s very similar

to a Python function, which has an argument that holds the message data.

def callback(data):

 �rospy.loginfo(rospy.get_caller_id() + "I heard %s",

data.data)

�The ROS Spin Function in ROS Node
After starting the subscription or publishing, we may have to call a

function to process the request to subscribe and publish. In a C++ node,

the ros::spinOnce() function should be called after publishing a topic,

and the ros::spin() function should be called if you are only subscribing

a topic. If you are doing both, use the spinOnce() function.

In Python, there is no spin() function, but you can use the rospy.

sleep() function after publishing or the rospy.spin() function if there is

only subscription of the topic.

�The ROS Sleep Function in ROS Node
If we want to make a constant rate inside a loop that is inside a node, we

can use ros::Rate. We can create an instance of ros::Rate and mention

the desired rate that we want. After creating the instance, we have to call

the sleep() function inside it to get the rate in effect.

Chapter 5 Programming with ROS

191

The following is an example of getting 10Hz in C++:

ros::Rate r(10); // 10 hz

r.sleep();

The following is how to do it in Python:

rate = rospy.Rate(10) # 10hz

rate.sleep()

�Setting and Getting a ROS Parameter
In C++, we use the following line of code to access a parameter in our code.

Basically, we have to declare a variable and use the getParam() function

inside the node_handle to access the desired parameter.

std::string global_name;

if (nh.getParam("/global_name", global_name))

{

 ...

}

The following shows how to set a ROS parameter. The name and the

value should be mentioned inside the setParam() function.

nh.setParam("/global_param", 5);

In Python, we can do the same thing using the following line of code:

global_name = rospy.get_param("/global_name")

rospy.set_param('~private_int', '2')

Chapter 5 Programming with ROS

192

�The Hello World Example Using ROS
In this section, you are going to create a basic package called hello_world

and a publisher node and a subscriber node to send a “Hello World” string

message. You also learn how to write a node in C++ and Python.

�Creating a hello_world Package
In ROS, the programs organized as packages. So we have to create a ROS

package before writing any program.

To create a ROS package, we have to give a name of the package and

then the dependent packages which help to compile the programs inside

the package. For example, if your package has a C++ program, you have to

add “roscpp” as dependency, and if it is Python, you have to add “rospy”

as dependency.

Before creating the package, first switch to the src folder:

$ catkin_ws/src$ catkin_create_pkg hello_world roscpp rospy

std_msgs

Figure 5-7 shows the output when we execute this command.

Figure 5-7.  The output of catkin_create_pkg

Chapter 5 Programming with ROS

193

Now we can explore the different files created. The first important file

is package.xml. As discussed, this file has information about the package

and its dependencies.

The package.xml file definition is shown in Figure 5-8. Actually, when

we create the package, it also has some commented code. All comments

have been removed here to make it cleaner.

Figure 5-8.  The package.xml definition

You can edit this file and add dependencies, package information, and

other information to the package. You can learn more about package.xml

at http://wiki.ros.org/catkin/package.xml.

Chapter 5 Programming with ROS

http://wiki.ros.org/catkin/package.xml

194

Figure 5-9 shows what the CMakeLists.txt file looks like.

Figure 5-9.  The CMakeLists.txt definition

In this file, the minimum version of CMake required to build the

package and the project name is at the top of the file.

The find_package() finds the necessary dependencies of this

package. If these packages are not available, we won’t be able to build this

package. The catkin_package() is a catkin-provide CMake macro used for

specifying catkin-specific information to the build system.

You can learn more about CMakeLists.txt at http://wiki.ros.org/

catkin/CMakeLists.txt.

A good reference for creating a ROS package is at http://wiki.ros.

org/ROS/Tutorials/catkin/CreatingPackage.

�Creating a ROS C++ Node
After creating the package, the next step is to create the ROS nodes. The

C++ code is kept in the src folder.

Chapter 5 Programming with ROS

http://wiki.ros.org/catkin/CMakeLists.txt
http://wiki.ros.org/catkin/CMakeLists.txt
http://wiki.ros.org/ROS/Tutorials/catkin/CreatingPackage
http://wiki.ros.org/ROS/Tutorials/catkin/CreatingPackage

195

The following is the first ROS node. It’s a C++ node to publish a “Hello

World” string message. You can save it under src/talker.cpp.

#include "ros/ros.h"

#include "std_msgs/String.h"

#include <sstream>

int main(int argc, char **argv)

{

 ros::init(argc, argv, "talker");

 ros::NodeHandle n;

 �ros::Publisher chatter_pub = n.advertise<std_

msgs::String>("chatter", 1000);

 ros::Rate loop_rate(10);

 int count = 0;

 while (ros::ok())

 {

 std_msgs::String msg;

 std::stringstream ss;

 ss << "hello world" << count;

 msg.data = ss.str();

 ROS_INFO("%s", msg.data.c_str());

 chatter_pub.publish(msg);

 ros::spinOnce();

 loop_rate.sleep();

 ++count;

 }

 return 0;

}

The code is self-explanatory. Basically, it creates a new string message

instance and a publisher instance. After creating both, it adds data to the

string message along with a count. After adding the data, it publishes

the topic, "/chatter. You can also see the usage of the ros::spinOnce()

function here. The code executes until you press Ctrl+C.

Chapter 5 Programming with ROS

196

Next, you see the listener.cpp, which subscribes the topic published by

talker.cpp. After getting data from the topic, it prints that message.

#include "ros/ros.h"

#include "std_msgs/String.h"

void chatterCallback(const std_msgs::String::ConstPtr& msg)

{

 ROS_INFO("I heard: [%s]", msg->data.c_str());

}

int main(int argc, char **argv)

{

 ros::init(argc, argv, "listener");

 ros::NodeHandle n;

 �ros::Subscriber sub = n.subscribe("chatter", 1000,

chatterCallback);

 ros::spin();

 return 0;

}

In listener.cpp, the "chatter" topic is subscribing and registering

a callback function for the topic, which is chatterCallback. The callback

is defined at the beginning of the code. Whenever a message comes to the

"chatter" topic, this callback is executed. Inside the callback, the data in

the message is printed.

ros::spin() executes the subscribe callbacks and helps the node

remain in a wait state, so it won’t quit until you press Ctrl+C.

�Editing the CMakeLists.txt File
After saving the two files in the hello_world/src folder, the nodes need

to be compiled to create the executable. To do this, we have to edit the

CMakeLists.txt file, which is not too complicated. We need to add four

lines of code to CMakeLists.txt. Figure 5-10 shows the additional lines of

code to insert.

Chapter 5 Programming with ROS

197

Figure 5-10.  Adding building instructions inside CMakeLists.txt

You can see that we are adding add_executable() and target_

link_libraries() to CMakeLists.txt. add_executable() creates the

executable from the source code. The first parameter is the executable

name, which links with the libraries. If these two processes are successful,

we get executable nodes.

�Building C++ Nodes
After saving CMakeLists.txt, we can build the source code. The command

to build the nodes is catkin_make. Just switch to the workspace folder and

execute the catkin_make command.

To switch to the catkin_ws folder, assume that the workspace is in the

home folder:

$ cd ~/catkin_ws

Executing the catkin_make command to build the nodes

$ catkin_make

Chapter 5 Programming with ROS

198

If everything is correct, you get a message saying that the build was

successful (see Figure 5-11).

Figure 5-11.  Building messages in the terminal

So we have successfully built the nodes. Now what? We can execute

these nodes, right? That is covered in the next section.

�Executing C++ Nodes
After building the nodes, the executables are generated inside the catkin_

ws/devel/lib/hello_world/ folder (see Figure 5-12).

Chapter 5 Programming with ROS

199

Figure 5-12.  Generated executable

After creating the executable, we can run it on a Linux terminal.

Open three terminals, and execute each command one by one:

Starting roscore

$ roscore

The following command starts the talker node. We can use the rosrun

command to start the node.

$ rosrun hello_world talker

The node prints messages on the terminal. Check the list of ROS topics

in the system by using the following command:

$ rostopic list

You see the following topics:

/chatter

/rosout

/rosout_agg

Chapter 5 Programming with ROS

200

/chatter is the topic published by the talker node. The /rosout

topics are for logging purposes. It starts publishing when we execute the

roscore command.

The listener node can start in another terminal:

$ rosrun hello_world listener

Figure 5-13 shows the message data from the /chatter topic.

Figure 5-13.  Output of talker and listener C++ nodes

You can close each terminal by pressing the Ctrl+C key combination.

Next, we look at the talker and listener nodes in Python.

Chapter 5 Programming with ROS

201

�Creating Python Nodes
We can make a folder called script inside the package, and we can keep

the Python scripts inside this folder (scripts/talker.py). The first program

that we are going to discuss is talker.py.

import rospy

from std_msgs.msg import String

def talker():

 rospy.init_node('talker', anonymous=True)

 pub = rospy.Publisher('chatter', String, queue_size=10)

 rate = rospy.Rate(10) # 10hz

 while not rospy.is_shutdown():

 hello_str = "hello world %s" % rospy.get_time()

 rospy.loginfo(hello_str)

 pub.publish(hello_str)

 rate.sleep()

if __name__ == '__main__':

 try:

 talker()

 except rospy.ROSInterruptException:

 pass

In the talker.py code, in the beginning, we can see we are importing

the rospy module and ros message modules. In the talker() function, we

can see the initialization of ROS node, the creation of a new ROS publisher.

After initializing the node, we are using a while loop to publish a string

message called “Hello World” to the /chatter topic. The working of this

node is the same as talker.cpp that we already discussed.

The subscribing node, called listener.py, should be kept inside scripts/

listener.py:

Chapter 5 Programming with ROS

202

import rospy

from std_msgs.msg import String

def callback(data):

 �rospy.loginfo(rospy.get_caller_id() + "I heard %s",

data.data)

def listener():

 �# In ROS, nodes are uniquely named. If two nodes with

the same

 # node are launched, the previous one is kicked off. The

 # anonymous=True flag means that rospy will choose a unique

 # name for our 'talker' node so that multiple talkers can

 # run simultaneously.

 rospy.init_node('listener', anonymous=True)

 rospy.Subscriber("chatter", String, callback)

 �# spin() simply keeps python from exiting until this node

is stopped

 rospy.spin()

if __name__ == '__main__':

 listener()

The node is similar to listener.cpp. We are initializing the node and

creating a subscriber on the /chatter topic. After subscribing the topic,

it waits for ROS messages. The waiting is done with the rospy.spin()

function. Inside the callback() function, the message is printed.

�Executing Python Nodes
In this section, we see how to execute the nodes. There is no need to

compile the Python nodes. We can just execute it using the following

commands. You can see the output of the commands from Figure 5-14.

Start the roscore

$ roscore

Chapter 5 Programming with ROS

203

Start the talker.py

$ rosrun hello_world talker.py

Start the listener.py

$ rosrun hello_world listener.py

Figure 5-14.  Output of talker and listener Python nodes

�Creating Launch Files
This section discusses how to write launch files for C++ and Python nodes.

The advantage of ROS launch files is that we can run any number of nodes

in a single command.

We can create a folder called launch inside the package and keep the

launch files in that folder.

The following is talker_listener.launch, which can run C++ executables:

<launch>

 �<node name="listener_node" pkg="hello_world" type="listener"

output="screen"/>

 �<node name="talker_node" pkg="hello_world" type="talker"

output="screen"/>

</launch>

Chapter 5 Programming with ROS

204

This launch file can run the talker and listener nodes in one shot.

The package name of the node is in the pkg= field, and the name of the

executable is in the type= field. You can assign any name to the node. It is

better if it is similar to the executable name.

After saving the launch file inside the launch folder, you may have to

change the permission of the executable.

The following shows how to do that:

$ hello_world/launch$ sudo chmod +x talker_listener.launch

The following is the command to execute this launch file. We can

execute it from any terminal path.

$ roslaunch hello_world talker_listener.launch

After the roslaunch command, use the package name and then the

launch file name.

Figure 5-15 shows the output.

Figure 5-15.  Output of talker_listener.launch file

To launch the Python nodes, use the following launch file. You can save

it as launch/talker_listener_python.launch.

Chapter 5 Programming with ROS

205

<launch>

 �<node name="listener_node" pkg="hello_world" type="listener.

py" output="screen"/>

 �<node name="talker_node" pkg="hello_world" type="talker.py"

output="screen"/>

</launch>

After saving it, change the permissions of the file too:

$ hello_world/launch$ sudo chmod +x talker_listener_

python.launch

Then execute the launch file using the roslaunch command:

$ roslaunch hello_world talker_listener_python.launch

The output is the same as with the C++ nodes. We can stop the launch

file by pressing Ctrl+C in the terminal in which the launch file is running.

�Visualizing a Computing Graph
Do you want to see what’s happening when the launch files are executing?

The rqt_graph GUI tool visualizes the ROS computation graph.

Use any of the launch files that we created in the previous section:

$ roslaunch hello_world talker_listener.launch

And in another terminal, run the following:

$ rqt_graph

Chapter 5 Programming with ROS

206

Figure 5-16 shows the output of this GUI tool.

Figure 5-16.  Output of rqt_graph tool

In the graph, you see talker_node, which is the name given to talker

in the launch file. listener_node is the name of the listener node.

/chatter is the topic published by the talker_node. It is subscribed by the

listener_node.

All the debug messages from these two nodes are going to /rosout.

The debug messages are message that we printed using ROS debug

functions (http://wiki.ros.org/roscpp/Overview/Logging). We have

already discussed those functions. The /rqt_gui node is also sending

debug statements to /rosout.

This is how the ROS computation graph works.

�Programming turtlesim Using rospy
We are done with the “Hello World” ROS example in C++ and Python. In

this section, we use a more interesting application. We saw the turtlesim

Chapter 5 Programming with ROS

http://wiki.ros.org/roscpp/Overview/Logging

207

application in ROS. Now we look at how to program turtlesim using rospy

Py. We are using rospy for the demo because it is very simple to prototype.

In turtlesim, there is a turtle that we can move around the workspace.

�Moving turtlesim
This section discusses how to program turtlesim to move around its

workspace.

You already know how to start the turtlesim application. The following

is the list of commands to run:

Starting roscore

$ roscore

Running turtlesim node in another terminal

$ rosrun turtlesim turtlesim_node

Here is the list of topics which is publishing by

turtlesim_node

$ rostopic list

/rosout

/rosout_agg

/turtle1/cmd_vel

/turtle1/color_sensor

/turtle1/pose

To move the turtle inside the turtlesim application, publish the linear

and angular velocity to the /turtle1/cmd_vel topic.

Check the type of the /turtle1/cmd_vel topic by using the following

command:

$ rostopic type /turtle1/cmd_vel

geometry_msgs/Twist

Chapter 5 Programming with ROS

208

This means that the /cmd_vel topic has the geometry_msgs/Twist

message type, so we have to publish the same message type to this topic to

move the robot.

To see the geometry_msgs/Twist definition, use the following

command:

$ rosmsg show geometry_msgs/Twist

The output of the command is shown in Figure 5-17.

Figure 5-17.  Definition of geometry_msgs/Twist message

The twist message has two subsections: linear velocity and angular

velocity.

If we set the robot’s linear velocity component, it moves forward or

backward. In turtlesim, we can only set the linear.x component because it

can move only in x direction; there is no motion along y and z. Also, we can

set angular.z components to rotate the robot on its axis. There is no effect

to other components.

More information about this message is at http://docs.ros.org/api/

geometry_msgs/html/msg/Twist.html.

Chapter 5 Programming with ROS

http://docs.ros.org/api/geometry_msgs/html/msg/Twist.html
http://docs.ros.org/api/geometry_msgs/html/msg/Twist.html

209

How can we move the topic through the command line? By using

rostopic. The following command publishes the linear.x = 0.1 velocity to

the turtlesim node:

$ rostopic pub /turtle1/cmd_vel geometry_msgs/Twist "linear:

 x:0.1

 y:0

 z:0

angular:

 x:0

 y:0

 z:0"

Note  You don’t need to enter the complete command. Use the Tab
key to autocomplete the command. Just type rostopic pub /turtle1/
cmd_vel, and use the Tab key to autocomplete other fields.

How do we move the turtle in a Python node?

We are going to create a new node called move_turtle and publish a

twist message to the turtlesim node. Figure 5-18 shows the communication

between the two nodes.

Figure 5-18.  Computation graph of move_turtle node and
turtlesim node

Chapter 5 Programming with ROS

210

The following is the code for the move_turtle.py node. You can read the

comments in the code to get a better idea about each line of code.

#!/usr/bin/env python

import rospy

#Importing Twist message: Used to send velocity to Turtlesim

from geometry_msgs.msg import Twist

#Handling command line arguments

import sys

#Function to move turtle: Linear and angular velocities are

arguments

def move_turtle(lin_vel,ang_vel):

 rospy.init_node('move_turtle', anonymous=False)

 �#The /turtle1/cmd_vel is the topic in which we have to

send Twist messages

 �pub = rospy.Publisher('/turtle1/cmd_vel', Twist, queue_

size=10)

 rate = rospy.Rate(10) # 10hz

 #Creating Twist message instance

 vel = Twist()

 while not rospy.is_shutdown():

 �#Adding linear and an gular velocity to

the message

 vel.linear.x = lin_vel

 vel.linear.y = 0

 vel.linear.z = 0

 vel.angular.x = 0

 vel.angular.y = 0

 vel.angular.z = ang_vel

 �rospy.loginfo("Linear Vel = %f: Angular

Vel = %f",lin_vel,ang_vel)

 #Publishing Twist message

Chapter 5 Programming with ROS

211

 pub.publish(vel)

 rate.sleep()

if __name__ == '__main__':

 try:

 �#Providing linear and angular velocity through

command line

 move_turtle(float(sys.argv[1]),float(sys.argv[2]))

 except rospy.ROSInterruptException:

 pass

This code takes the linear and the angular velocity through a command

line. We can use the Python sys module to get the command-line

arguments inside our code. Once it has the linear velocity and the angular

velocity, it calls the move_turtle() function, which inserts both velocities

into a twist message and publishes it.

You can save the code as move_turtle.py and change the permission to

executable.

The following shows how to run it:

Start roscore

$ roscore

Start the turtlesim node

$ rosrun turtlesim turtlesim_node

Run the move_turtle.py node along with the command-line

arguments, which are 0.2 and 0.1. That is, linear velocity = 0.2 m/s and

angular velocity = 0.1 rad/s.

$ rosrun hello_world move_turtle.py 0.2 0.1

You get the output shown in Figure 5-19 if you run this code. It creates

a circle.

Chapter 5 Programming with ROS

212

Figure 5-19.  Output of move_turtle.py

�Printing the Robot’s Position
You have seen how to publish the turtle’s velocity. Now you are going to

learn how to get the turtle’s current position from the /turtle1/pose topic.

Restart turtlesim_node and close move_turtle.py. Echo the /turtle1/

pose topic using rostopic. The turtle’s current position is shown in

Figure 5-20.

$ rostopic echo /turtle1/pose

Chapter 5 Programming with ROS

213

Figure 5-20.  Turtle pose from topic /turtle1/pose

You see the current (x,y,theta) value of the robot and the turtle’s

current linear and angular velocities.

If you want to get this position in a Python node, you have to subscribe

the called /turtle1/pose topic. To do that and get the data from the

message, you have to know the ROS message type. The following finds the

message type:

$ rostopic type /turtle1/pose

turtlsim/Pose

If you want to know the message definition, use the following

command:

$ rosmsg show turtlesim/Pose

As shown in Figure 5-21, there are five terms inside the message: x, y,

theta, linear velocity, and angular velocity.

Chapter 5 Programming with ROS

214

Figure 5-21.  ROS message definition of turtlesim/Pose

To learn more about this message, refer to http://docs.ros.org/api/

turtlesim/html/msg/Pose.html.

Let’s modify the existing move_turtle.py and add the option to

subscribe the /turtle1/pose topic. Save this code as move_turtle_get_

pose.py.

Figure 5-22 shows how the program works. It is feeding velocity and

subscribing the position from the turtlesim node at the same time.

Figure 5-22.  move_turtle_get_pose.py code

#!/usr/bin/env python

import rospy

from geometry_msgs.msg import Twist

from turtlesim.msg import Pose

import sys

#/turtle1/Pose topic callback

def pose_callback(pose):

 �rospy.loginfo("Robot X = %f : Y=%f : Z=%f\n",

pose.x,pose.y,pose.theta)

Chapter 5 Programming with ROS

http://docs.ros.org/api/turtlesim/html/msg/Pose.html
http://docs.ros.org/api/turtlesim/html/msg/Pose.html

215

def move_turtle(lin_vel,ang_vel):

 rospy.init_node('move_turtle', anonymous=True)

 �pub = rospy.Publisher('/turtle1/cmd_vel', Twist, queue_

size=10)

 �#Creating new subscriber: Topic name= /turtle1/pose:

Callback name: pose_callback

 rospy.Subscriber('/turtle1/pose',Pose, pose_callback)

 rate = rospy.Rate(10) # 10hz

 vel = Twist()

 while not rospy.is_shutdown():

 vel.linear.x = lin_vel

 vel.linear.y = 0

 vel.linear.z = 0

 vel.angular.x = 0

 vel.angular.y = 0

 vel.angular.z = ang_vel

 �rospy.loginfo("Linear Vel = %f: Angular Vel = %f",lin_

vel,ang_vel)

 pub.publish(vel)

 rate.sleep()

if __name__ == '__main__':

 try:

 move_turtle(float(sys.argv[1]),float(sys.argv[2]))

 except rospy.ROSInterruptException:

 pass

This code is self-explanatory. You can see comments where the code

for subscribing the /turtle1/pose topic is added.

Run the code by using the following commands. Figure 5-23 shows that

the code is printing the robot’s positon and velocity.

Chapter 5 Programming with ROS

216

Starting roscore
$ roscore
Restarting the turtlesim node
$ rosrun turtlesim turtlesim_node
Running move_turtle_get_pose.py code
$ rosrun hello_world move_turtle_get_pose.py 0.2 0.1

Figure 5-23.  Output of move_turtle_get_pose.py code

If we are getting both position and velocity, we can simply command

the robot to move to a specific distance, right? The next example is moving

the robot with distance feedback.

The code is a modification of the move_turtle_get_pose.py code.

Chapter 5 Programming with ROS

217

�Moving the Robot with Position Feedback
We can save this code as move_distance.py. The communication between

this node and turtlesim is shown in Figure 5-24.

Figure 5-24.  Communication of move_distance.py to turtlesim

This node is simple. We can give linear velocity, angular velocity, and

distance (global distance) to it as a command-line argument.

Along with publishing velocity to the turtle, it checks the distance

moved. When it reaches its destination, the turtle or robot stops. You can

read the comments inside the code to understand what's happening inside

the code.

#!/usr/bin/env python

import rospy

from geometry_msgs.msg import Twist

from turtlesim.msg import Pose

import sys

robot_x = 0

def pose_callback(pose):

 global robot_x

 rospy.loginfo("Robot X = %f\n",pose.x)

 robot_x = pose.x

def move_turtle(lin_vel,ang_vel,distance):

 global robot_x

 rospy.init_node('move_turtle', anonymous=True)

 pub = rospy.Publisher('/turtle1/cmd_vel', Twist, queue_size=10)

 rospy.Subscriber('/turtle1/pose',Pose, pose_callback)

 rate = rospy.Rate(10) # 10hz

Chapter 5 Programming with ROS

218

 vel = Twist()

 while not rospy.is_shutdown():

 vel.linear.x = lin_vel

 vel.linear.y = 0

 vel.linear.z = 0

 vel.angular.x = 0

 vel.angular.y = 0

 vel.angular.z = ang_vel

 �#rospy.loginfo("Linear Vel = %f: Angular Vel = %f",lin_

vel,ang_vel)

 �#Checking the robot distance is greater than the

commanded distance

 # If it is greater, stop the node

 if(robot_x >= distance):

 rospy.loginfo("Robot Reached destination")

 rospy.logwarn("Stopping robot")

 break

 pub.publish(vel)

 rate.sleep()

if __name__ == '__main__':

 try:

 �move_turtle(float(sys.argv[1]),float(sys.argv[2]),

float(sys.argv[3]))

 except rospy.ROSInterruptException:

 pass

We can run the code by using the following commands. You can see

the output in Figure 5-25.

Start roscore

$ roscore

Start turtlesim node

$ rosrun turtlesim turtlesim_node

Chapter 5 Programming with ROS

219

Figure 5-25.  Output of move_distance.py

We have played with lot of things in turtlesim using ROS topic. Now, we

can work with ROS service and a ROS parameter. The next example simply

resets the turtlesim workspace and randomly changes the background

color. The workspace reset is accomplished using ROS services, and the

color changing is done using ROS parameter. When the workspace resets,

the robot’s position resets to the home position and the turtle model

changes.

Run the move_distance.py. Mention linear, angular velocity and

the global distance the robot should travel.

$ rosrun hello_world move_distance.py 0.2 0.0 8.0

�Reset and Change the Background Color
This code shows how to call a service and a parameter from a Python code.

The following gets the list of services in the turtlesim node (see

Figure 5-26):

$ rosservice list

Chapter 5 Programming with ROS

220

Figure 5-26.  List of turtlesim node services

There are several services, but we want the /reset service. When we call

this service, the workspace resets.

We can retrieve the type of service from the following topic:

$ rosservice type /reset

std_srvs/Empty

std_srvs/Empty is a built-in service from ROS. It has no fields.

The following command shows the field of the corresponding topic:

$ rossrv show std_srvs/Empty

We can also list the ROS parameters. You can see the turtlesim

background color in three parameters. If we change these parameters, we

change the color. After setting the color, we have to reset the workspace to

show the new color (see Figure 5-27).

$ rosparam list

Chapter 5 Programming with ROS

221

Figure 5-27.  List of parameters from turtlesim node

The following gets the value from each parameter:

$ rosparam get /background_b

255

The following topic publishes the background color (see Figure 5-28):

$ rostopic echo /turtle1/color_sensor

Figure 5-28.  Topic publishing the color

Chapter 5 Programming with ROS

222

The following code sets the parameter for the background color and

resets the workspace by calling /reset service:

#!/usr/bin/env python

import rospy

import random

from std_srvs.srv import Empty

def change_color():

 rospy.init_node('change_color', anonymous=True)

 #Setting random values from 0-255 in the color parameters

 �rospy.set_param('/turtlesim/background_b',random.

randint(0,255))

 �rospy.set_param('/turtlesim/background_g',random.

randint(0,255))

 rospy.set_param('/turtlesim

/background_r',random.randint(0,255))

#Waiting for service /reset

rospy.wait_for_service('/reset')

#Calling /reset service

 try:

 serv = rospy.ServiceProxy('/reset',Empty)

 resp = serv()

 rospy.loginfo("Executed service")

 except rospy.ServiceException as e:

 rospy.loginfo("Service call failed: %s" %e)

 rospy.spin()

if __name__ == '__main__':

 try:

 change_color()

 except rospy.ROSInterruptException:

 pass

Chapter 5 Programming with ROS

223

We can save the code as turtle_service_param.py. The following

commands start the ROS node (see Figure 5-29):

Starting roscore

$ roscore

Starting turtlesim_node

$ rosrun turtlesim turtlesim_node

Execute the turtle_service_param.py code

$ rosrun hello_world turtle_service_param.py

Figure 5-29.  Resetting workspace and changing colors

You have successfully done the turtlesim exercise. The turtle is actually

a robot. You can do all of the operations that you did with the turtle with a

physical robot too. The next section explains how to do this operation with

an actual robot. It is only a simulation but uses the same procedure as with

real hardware.

Chapter 5 Programming with ROS

224

�Programming TurtleBot Simulation
Using rospy
There are several robots available on the market that run completely on

ROS and Ubuntu. The TurtleBot series are a low-cost robots that are used

for education and research. You can learn more about the TurtleBot 3

robot at https://emanual.robotis.com/docs/en/platform/turtlebot3/

features/#specifications. If you want to check out the latest version

of a TurtleBot, go to http://emanual.robotis.com/docs/en/platform/

turtlebot3/overview/.

In this section, we program TurtleBot 3. We look at the installation of

TurtleBot 3 packages and how to start the simulation in Gazebo. The code

that we developed for turtlesim works on the TurtleBot 3 robots. The first

step is to install the TurtleBot 3 packages.

�Installing TurtleBot 3 Packages
The TurtleBot packages are already available in the ROS repository, so we

just need to install them.

The first step is to update the list of packages by using the following

command:

$ sudo apt-get update

Installing TurtleBot simulation packages:

$ sudo apt install ros-noetic-turtlebot3

$ sudo apt install ros-noetic-turtlebot3-simulations

These packages install the TurtleBot simulation environment in

Ubuntu 20.04 LTS.

Chapter 5 Programming with ROS

https://emanual.robotis.com/docs/en/platform/turtlebot3/features/#specifications
https://emanual.robotis.com/docs/en/platform/turtlebot3/features/#specifications
http://emanual.robotis.com/docs/en/platform/turtlebot3/overview/
http://emanual.robotis.com/docs/en/platform/turtlebot3/overview/

225

�Launching the TurtleBot Simulation
After installing the TurtleBot packages, launch the simulation of TurtleBot

3 by using the following command:

$ roslaunch turtlebot3_gazebo turtlebot3_world.launch

Note I t may take time to load the environment in Gazebo. Initially,
the Gazebo window may be black because some 3D mesh files are
downloading. The time it takes to complete the download depends
on your Internet speed. If you feel that Gazebo is stuck, just cancel by
pressing Ctrl+C, and launch it again.

This command launches a ROS launch file from the turtlebot_gazebo

package. If the simulation loads successfully, you get a window like the one

shown in Figure 5-30.

Figure 5-30.  TurtleBot 3

Chapter 5 Programming with ROS

226

�Gazebo Simulation
If you want to move the robot around the environment, start a new

terminal and launch the following command:

$roslaunch turtlebot3_teleop turtlebot3_teleop_key.launch

When you run this command, you get the following messages on the

terminal. Click the terminal using a mouse, and press the keys mentioned

on the terminal. You can move the robot using W and X keys. To move the

robot to the right and left, press keys A and D, respectively. To stop the

robot, press the S key (see Figure 5-31).

Figure 5-31.  TurtleBot 3 teleop application

If you want to stop the robot, press spacebar; if you want to stop the

simulation or teleoperation, just press Ctrl+C.

Chapter 5 Programming with ROS

227

�Moving a Fixed Distance Using a
Python Node
In this section, we move the robot to a fixed distance using the node that

we used for turtlesim. We can modify the move_distance.py node.

For turtlebot the velocity Twist message topic is: /cmd_vel_

mux/input/teleop: Message type: geometry_msgs/Twist

Robot position feedback topic: /odom : Message type: nav_msgs/

Odometry

We get the definition of odometry from the following command:

$ rosmsg show nav_msgs/Odometry

It is a built-in message type in ROS.

We have to import the modules for these messages. The logic of

the robot movement is the same as in turtlesim. The distance is global

distance. The initial origin of the robot is 0,0,0.

#!/usr/bin/env python

import rospy

from geometry_msgs.msg import Twist

from nav_msgs.msg import Odometry

import sys

robot_x = 0

def pose_callback(msg):

 global robot_x

 #Reading x position from the Odometry message

 robot_x = msg.pose.pose.position.x

 rospy.loginfo("Robot X = %f\n",robot_x)

def move_turtle(lin_vel,ang_vel,distance):

 global robot_x

 rospy.init_node('move_turtlebot', anonymous=False)

Chapter 5 Programming with ROS

228

 #The Twist topic is /cmd_vel

 �pub = rospy.Publisher('/cmd_vel/teleop', Twist, queue_

size=10)

 #Position topic is /odom

 rospy.Subscriber('/odom',Odometry, pose_callback)

 rate = rospy.Rate(10) # 10hz

 vel = Twist()

 while not rospy.is_shutdown():

 vel.linear.x = lin_vel

 vel.linear.y = 0

 vel.linear.z = 0

 vel.angular.x = 0

 vel.angular.y = 0

 vel.angular.z = ang_vel

 �#rospy.loginfo("Linear Vel = %f: Angular Vel = %f",lin_

vel,ang_vel)

 if(robot_x >= distance):

 rospy.loginfo("Robot Reached destination")

 rospy.logwarn("Stopping robot")

 vel.linear.x = 0

 vel.linear.z = 0

 break

 pub.publish(vel)

 rate.sleep()

if __name__ == '__main__':

 try:

 �move_turtle(float(sys.argv[1]),float(sys.

argv[2]),float(sys.argv[3]))

 except rospy.ROSInterruptException:

 pass

Chapter 5 Programming with ROS

229

We can run this code by using the following command:

$ roslaunch turtlebot3_gazebo turtlebot3_world.launch

Start the TurtleBot simulation. If you are launching a file, you don’t

need to start roscore because roslaunch already runs roscore.

Run the move distance node with command-line arguments (see

Figure 5-32):

$ rosrun hello_world move_turtlebot.py 0.2 0 1

Figure 5-32.  TurtleBot 3 moving 1 meter from its origin

�Finding Obstacles
Using the same logic, we can find obstacles around TurtleBot. You can

subscribe the laser scan topic from TurtleBot, which gives the obstacle

range around the robot.

Topic: /scan

Message Type: sensor_msgs/LaserScan

Chapter 5 Programming with ROS

230

Also, you get all the fields inside this message by using the following

command:

$ rosmsg show sensor_msgs/LaserScan

A good exercise is to create an obstacle avoidance application in ROS.

�Programming Embedded Boards Using ROS
You have seen how to program a robot in ROS, and you have seen robot

simulation. Now let’s discuss how to create robot hardware and program

using ROS.

One of the core ingredients of a robot is the microcontroller platform.

A microcontroller is basically a chip on which we can write our own code.

We can also configure the chip’s pins. Microcontrollers are used for various

applications. In robotics, controllers are used to interface sensors, such as

ultrasonic distance sensors, IR sensors, and so forth, and for adjusting the

speed of a robot’s motors. Microcontrollers can also communicate with a

PC via serial communication.

In this section, you look at some basic interfacing with popular

microcontroller platforms, such as the Arduino (www.arduino.cc) and the

Tiva-C Launchpad (www.ti.com/tool/EK-TM4C123GXL), and with single-

board computers, such as Raspberry Pi 3 board (www.raspberrypi.org).

Let’s start with the Arduino board.

�Interfacing Arduino with ROS
Arduino boards are on a microcontroller-based platform that program

using a C++-like programming language. There are a variety of Arduino

boards available (www.arduino.cc/en/Main/Products). We are going to

use the Arduino Mega, which is available at https://store.arduino.cc/

usa/arduino-mega-2560-rev3.

Chapter 5 Programming with ROS

http://www.arduino.cc/
http://www.ti.com/tool/EK-TM4C123GXL
http://www.raspberrypi.org
http://www.arduino.cc/en/Main/Products
https://store.arduino.cc/usa/arduino-mega-2560-rev3
https://store.arduino.cc/usa/arduino-mega-2560-rev3

231

Figure 5-33 shows the Arduino Mega 2560 Rev3 board.

Figure 5-33.  Arduino Mega 2560 board

You can program the Arduino board by connecting to your PC. You can

download the Arduino IDE from www.arduino.cc/en/Main/Software.

When you launch the IDE, you first see the window shown in Figure 5-34.

Figure 5-34.  Arduino IDE

Chapter 5 Programming with ROS

https://www.arduino.cc/en/Main/Software

232

In the Arduino programming language, similar to C++, there are a lot

of libraries available for simplifying tasks. For example, there are libraries

for communicating with a PC, sending speed commands to motor drivers,

and so forth.

There is also a library for interfacing with ROS. Using this library,

the Arduino can send/receive messages to the PC. These messages

are converted to topics on the PC side. Arduino can publish data and

subscribe data, similar to a ROS node. Actually, Arduino acts like the ROS

hardware node.

First, let’s learn how to create an Arduino library for communicating

with the ROS system.

We have to install a ROS package to create this library. The following is

the command:

$ sudo apt install ros-noetic-rosserial-arduino

This installs the necessary packages to interface Arduino with ROS.

The next step is to open the Arduino IDE. Select File Menu ➤

Preference. You get the window shown in Figure 5-35.

Chapter 5 Programming with ROS

233

Figure 5-35.  Arduino Preference window

Take a new terminal and switch to sketchbook folder path mentioned

in the Preference window. When you switch to this folder, you can find

another folder called libraries. You can then switch to the libraries

folder and execute the following command (see Figure 5-36):

$ rosrun rosserial_arduino make_libraries.py .

Chapter 5 Programming with ROS

234

Figure 5-36.  Creating a ROS library for Arduino

When you run the preceding command, you can see messages print on

the terminal. This is actually creating the Arduino library for ROS.

After finishing the process, check the libraries folder. The ros_lib

folder is the Arduino library for ROS.

Close the Arduino IDE and restart. Then go to File ➤ Examples ➤ ros_

lib. You see a list of examples using Arduino and ROS. Let’s discuss a basic

example: Blink.

Blink is basically a Hello World example for the Arduino. When the

Arduino interfaces with ROS, we get a topic. When we publish to a topic, it

turns on, and when we publish again, its turns off. It is like LED toggling.

Figure 5-37 shows the Blink example.

Chapter 5 Programming with ROS

235

Figure 5-37.  The Arduino Blink example

The workings of the code are self-explanatory. We create a node and

subscribe a topic called /toggle_led. When a message comes to the topic,

the LED turns on, and when the next data comes to the topic, the LED

turns off.

Let’s upload the code to Arduino. To do that, plug the Arduino to

a laptop.

Find the Arduino serial port by using the dmesg command (see

Figure 5-38):

$ dmesg

Figure 5-38.  The output of dmesg command

Chapter 5 Programming with ROS

236

The Arduino serial device is /dev/ttyACM0.

Change the device’s permission by using the following command:

$ sudo chmod 777 /dev/ttyACM0

After that, select this serial device from the Arduino IDE:

Goto Tools->Port->ttyACM0

We can now compile this example and upload the code to the board.

After uploading the code, we have to execute the following commands

to see the topics from the Arduino. Execute each command in separate

terminals.

Starting roscore

$ roscore

Start the ROS serial server on the PC. The node does the conversion of

topics to and from the Arduino.

$ rosrun rosserial_python serial_node.py /dev/ttyACM0

Publish a value to the /toggle_led topic:

$ rostopic pub toggle_led std_msgs/Empty --once

This turns on the LED on the board. If we do it again, it turns off.

Chapter 5 Programming with ROS

237

Figure 5-39 shows the output.

Figure 5-39.  The LED toggling command

There are more examples of ROS/Arduino interfacing at http://wiki.

ros.org/rosserial_arduino/Tutorials.

�Installing ROS on a Raspberry Pi
The Raspberry Pi computer is a popular board for DIY projects and

robotics. The cost of the board is low, and its specifications are best for DIY

projects. The latest Raspberry Pi 4 board has the following specs:

•	 Name of SoC: Broadcom BCM2711B0 quad-core A72

(ARMv8-A) 64 bit at 1.5GHz

•	 GPU: Broadcom VideoCore VI

•	 Networking: 2.4GHz and 5GHz 802.11b/g/n/ac

wireless LAN

Chapter 5 Programming with ROS

http://wiki.ros.org/rosserial_arduino/Tutorials
http://wiki.ros.org/rosserial_arduino/Tutorials

238

•	 RAM: 1GB, 2GB, or 4GB LPDDR4 SDRAM

•	 Bluetooth: Bluetooth 5.0 and Bluetooth Low

Energy (BLE)

•	 GPIO: 40-pin GPIO header, populated

•	 Storage: microSD

•	 Ports: Two × micro-HDMI 2.0, 3.5 mm analogue audio-

video jack, Two × USB 2.0, Two × USB 3.0, Gigabit

Ethernet, Display Serial Interface (DSI), Camera Serial

Interface (CSI)

•	 Dimensions: 88 mm × 58 mm × 19.5 mm, 46 g

The Raspberry Pi 4 is shown in Figure 5-40.

Figure 5-40.  The Raspberry Pi 4 board

So how do you install an OS on this board and then install ROS onto it?

The next section explains the procedures for installing an operating

system and ROS.

Chapter 5 Programming with ROS

239

�Burning an Ubuntu Mate Image
to a Micro SD Card
To install an OS on the Raspberry Pi 4, you need to buy a micro SD card

that is greater than 16GB. A micro SD card with class 10 is a great choice

for the Pi.

There is a micro SD card that you can buy at http://a.co/1HyY8qr.

You also need to buy a micro SD card reader or an SD card adapter to

plug into your laptop.

You can install the OS into the SD card using the following GUI tools:

•	 Balena Etcher (www.raspberrypi.org/software/)

•	 Raspberry Pi Imager (www.raspberrypi.org/

software/)

We are going to install Ubuntu Mate on the Raspberry Pi 4. You

can download Ubuntu Mate OS file from https://ubuntu-mate.org/

download/. Choose the Raspberry Pi option from the list. Download the

64-bit image file and open any of the preceding tools to write the download

file to you SD card.

After completing the writing process, you can unmount the SD card

from the PC and plug into the Raspberry Pi 4.

�Booting to Ubuntu
After plugging in the SD card, plug a 5V, 3A supply to the Raspberry Pi 4,

and connect Pi to an HDMI monitor. Also, connect a keyboard and a

mouse via USB.

The system boots up, and you see the Ubuntu Mate desktop.

Chapter 5 Programming with ROS

http://a.co/1HyY8qr
http://www.raspberrypi.org/software/
http://www.raspberrypi.org/software/
http://www.raspberrypi.org/software/
https://ubuntu-mate.org/download/
https://ubuntu-mate.org/download/

240

�Installing ROS on a Raspberry Pi
You can follow the ROS installation instructions at http://wiki.ros.org/

noetic/Installation/Ubuntu. These instructions are the same for the

armhf platform, so it works well in Raspberry Pi 4.

�Summary
This chapter discussed programming with ROS. We started the chapter by

discussing creating a ROS workspace. We saw how to create a workspace

and how to create a ROS package. After creating a package, we saw how

to write ROS nodes using C++ and Python. We wrote a sample ROS node

using C++ and Python. We discussed ROS launch files and how to include

our nodes in a launch file. We created a set of examples to work with

turtlesim in ROS, and we worked with a Gazebo simulation of TurtleBot 3.

At the end of the chapter, we saw how to program embedded boards such

as the Arduino and the Raspberry Pi using ROS, which is very useful when

creating robots.

The next chapter discusses how to create wheeled robot hardware and

software using ROS.

Chapter 5 Programming with ROS

http://wiki.ros.org/noetic/Installation/Ubuntu
http://wiki.ros.org/noetic/Installation/Ubuntu

241© Lentin Joseph and Aleena Johny 2022
L. Joseph and A. Johny, Robot Operating System (ROS) for Absolute Beginners,
https://doi.org/10.1007/978-1-4842-7750-8_6

CHAPTER 6

Robotics Project
Using ROS
The previous chapter discussed programming using ROS client libraries

such as rospy and roscpp. In this chapter, you see how to apply those

things to a real robot. You see how to make a low-cost, differential drive

robot that is compatible with ROS. You also see how to perform dead

reckoning in the robot using ROS. By doing this project, you get a clearer

understanding of ROS concepts and where to apply them.

You are going to apply things that you learned in previous chapters,

so you need to have a clear understanding of the last five chapters to do

this project. You see how to assemble the robot hardware, how to interface

sensors using Arduino, how to interface a ROS PC and a robot using a

Bluetooth interface, how to create a robot model in ROS, and, finally, how

to write nodes to move the robot and perform dead reckoning.

�Getting Started with Wheeled Robots
Wheeled robots are a popular category of mobile robots. As the name

suggests, wheels are used for robot locomotion. The differential drive is the

most common and simple type of configuration used in wheeled robotics.

In this configuration, there are two active wheels that move the robot and

one or more passive wheels to support the active wheels. The active wheels

https://doi.org/10.1007/978-1-4842-7750-8_6#DOI

242

have actuation, but passive wheels do not have any actuation. In this

chapter, you see how to build differential drive robot hardware and write

software to interface with ROS. From this chapter, you get a fundamental

idea about interfacing a robot to ROS.

�Differential Drive Robot Kinematics
We are going to build a differential wheeled robot that looks like what’s

shown in Figure 6-1.

Figure 6-1.  The differential drive configuration

In differential drive, there are two wheels on the robot connected in the

opposite direction. These wheels are attached to actuators that rotate the

wheels once powered. Adjusting the speed of the motor moves the robot in

different directions.

If the two motors are rotating in the same direction at the same speed,

the robot moves either forward or backward. If the left wheel is static and

the right wheel moves, the robot rotates around the left wheel and vice

versa. If the two wheels are moving at the same speed but in opposite

Chapter 6 Robotics Project Using ROS

243

directions, the robot spins about its axis. Adjusting the speed of the wheel

motors changes the position and orientation of the robot.

In this project, we are trying to move a differential robot from point A

to point B. How do we do that? To achieve this, we have to calculate the

exact position and orientation of the robot from the wheel speed. How

do we calculate the speed of the robot’s wheels? By using a sensor called

wheel encoders. The wheel encoders count each revolution of the wheel.

This count calculates the velocity and thereby the displacement and

orientation of the robot.

The position and orientation of a robot can be represented as (x, y, z)

and (roll, pitch, and yaw). The x, y, z represents the robot’s 3D coordinates.

Roll is the sidewise rotation of the robot, pitch is the forward and backward

rotation of the robot, and yaw is commonly called the heading of the robot.

Consider a robot on a 2D plane. We only need to take care of three

components to represent the robot position, that is, (x, y, θ), where θ(theta)

is the yaw, or heading, of the robot.

An illustration of x, y, and theta is shown in Figure 6-2.

Figure 6-2.  The robot’s position (x, y, θ) in a global coordinate system

Chapter 6 Robotics Project Using ROS

244

To analyze the motion of the robot, such as calculating the current

position and orientation while the robot is moving, we have to solve the

robot’s kinematics equation. Robot kinematics is the study of a robot’s

motion without considering the cause of it. There are two types of

kinematics equations: forward and inverse. Kinematics equations vary by

the type of robot.

In a differential drive robot, the forward kinematics is defined as

follows: (x, y, θ) is the current position of the robot, and t is the current

time. The kinematics equation can find the next position of the robot

(x’,y’,θ’) in t+δt, having known values of V left and V right, where δt is the

small interval of time and V left and V right are the velocity of the left and

right wheels.

So how do we find (x’,y’,θ’)? To find the future position of the robot, we

can analyze a differential drive robot model. Figure 6-3 shows the analysis

of a differential drive robot model.

Figure 6-3.  Analysis of differential drive configuration

Figure 6-3 shows some of the robot’s parameters. The two wheels are

separated by distance, l. The velocities of the two wheels are Vr and Vl.

There are three new terms: R, ICC (instantaneous center of rotation), and ω.

Chapter 6 Robotics Project Using ROS

245

ICC is an imaginary center point of rotation for both wheels. R is the

distance from ICC to the center of the robot. ω is the angular velocity

(2π/ 180) (rad/s).

Figure 6-4 is another illustration of a moving robot configuration. ωδt is

the angular displacement of the robot in a time step called δt.

Figure 6-4.  Analyzing the motion of a differential drive robot

Figure 6-5 shows the equation to compute (x’,y’,θ’) and the equations

for R, ωδt, and ICC.

Chapter 6 Robotics Project Using ROS

246

Figure 6-5.  Forward differential kinematics equations

In the equation, nr and nl are encoder counts from each wheel. And

step is the value corresponding to the distance the wheel covered for each

tick of the encoder. So basically, we can compute the robot’s next position

from the robot’s current position, encoder ticks, and fixed measurements,

such as step distance and the distance between wheels.

You see how to implement these equations in ROS in upcoming

sections.

�Building Robot Hardware
This section discusses the complete construction of a differential

drive robot.

We are not making a robot from scratch; instead, we can buy a low-cost

robotic platform and integrate all the sensors to make it work. We are using

the standard two-wheel drive (2WD) platform, as shown in Figure 6-6.

Chapter 6 Robotics Project Using ROS

247

Figure 6-6.  2WD robotic kit

�Buying Robot Components
The following lists the complete robot kit components that you need to

purchase.

�Robot Chassis
The 2WD kit consists of a plastic chassis, a pair of plastic gear motors, a

caster wheel (free wheel), an encoder disc, and the necessary nuts, bolts,

and screws.

Figure 6-7 shows the components in the kit.

Chapter 6 Robotics Project Using ROS

248

Figure 6-7.  Components of 2WD robotic kit

This is a common platform available at most online robotic websites,

including https://robu.in/product/transparent-robot-smart-car-

chassis/.

This robotic kit costs around $12.

�Additional Motors and Wheels
We can either use the motors and wheels that come with the kit, or we can

select motors and wheels with a specific configuration. Here, we are using

a 100 RPM motor with a 6.5 cm wheel diameter.

The motor and wheels can be purchased at http://a.co/7XyvdKh.

�Motor Driver
The motor driver is an electronic circuit board that adjusts the speed of the

motor by feeding a pulse-width modulated (PWM) signal as input. We are

using the motor driver shown in Figure 6-8 for this robot.

Chapter 6 Robotics Project Using ROS

https://robu.in/product/transparent-robot-smart-car-chassis/
https://robu.in/product/transparent-robot-smart-car-chassis/
http://a.co/7XyvdKh

249

Figure 6-8.  L-298 motor driver

This motor driver board uses a L298N chip (www.sparkfun.com/

datasheets/Robotics/L298_H_Bridge.pdf) with input voltage in the

range of 5 volts to 35 volts, and a maximum drive current is up to 2

amperes. One motor driver controls the speed of two motors, so we only

need a single-motor driver for this robot.

This board can be purchased at http://a.co/0a3dJR8. This board is

popular, so if the website does not work out, you can Google the board to

find another website.

�Optical Encoder
An important sensor is needed to measure the distance that each of the

robot’s wheels traverses. There are different kinds of wheel encoders

available on the market. Optical encoders and quadrature encoders

are commonly used. In optical encoders, there is an IR LED to detect

the wheel rotation, but magnetic quadrature encoders use a Hall effect

sensor to detect the rotation. The quadrature encoder can detect the

forward and backward movement of wheels; for example, if the wheel is

moving forward, the count increments; if it is moving backward, the count

Chapter 6 Robotics Project Using ROS

http://www.sparkfun.com/datasheets/Robotics/L298_H_Bridge.pdf
http://www.sparkfun.com/datasheets/Robotics/L298_H_Bridge.pdf
http://a.co/0a3dJR8

250

decrements. In most optical encoders, however, we have to use our logic to

detect wheel direction.

With this robot, we are using a simple optical encoder. We can use an

optical encoder and an encoder disk that can attach to the wheel shaft.

Figure 6-9 shows what the sensor looks like and how to connect the optical

disk to the motor shaft.

Figure 6-9.  The optical encoder kit for a single wheel. Left: optical
encoder. Right: encoder disk

We are choosing a low-cost optical encoder kit for this project.

Figure 6-9 shows the encoder pack. It has an optical disk and an optical

encoder sensor for a single wheel. We need a pair of this for our project.

Figure 6-10 shows how to connect the wheel optical disk and the

encoder. Always check that the encoder disk is inside the encoder slot.

There is a provision to put the optical encoder in the magician robot kit.

Chapter 6 Robotics Project Using ROS

251

Figure 6-10.  Attaching the optical disk and sensor to the wheel shaft

The cost of the encoder pair is less than $10.

You can buy the kit at https://robokits.co.in/motors/bo-motor/

bo-motor-wheel-encoder-disc-encoder-sensor-combo.

The following website provides more information on types of

encoders: www.anaheimautomation.com/manuals/forms/encoder-guide.

php#sthash.6YmwLmvD.dpbs.

�Microcontroller Board
We are using the Arduino Mega 2560 board to control the robot motors

and get sensor data. It is available at many online stores, including www.

robotshop.com/en/arduino-mega-2560-microcontroller-rev3.html.

�Bluetooth Breakout
We are communicating with the robot using Bluetooth interface,

particularly with a popular low-cost module called HC-05 Bluelink 5V TTL

(see Figure 6-11). This module is directly compatible with Arduino. There

are other breakouts available on the market, but it is working on 3.3V level,

so you may need to use a level shifter to make it work.

Chapter 6 Robotics Project Using ROS

https://robokits.co.in/motors/bo-motor/bo-motor-wheel-encoder-disc-encoder-sensor-combo
https://robokits.co.in/motors/bo-motor/bo-motor-wheel-encoder-disc-encoder-sensor-combo
http://www.anaheimautomation.com/manuals/forms/encoder-guide.php#sthash.6YmwLmvD.dpbs
http://www.anaheimautomation.com/manuals/forms/encoder-guide.php#sthash.6YmwLmvD.dpbs
http://www.robotshop.com/en/arduino-mega-2560-microcontroller-rev3.html
http://www.robotshop.com/en/arduino-mega-2560-microcontroller-rev3.html

252

Figure 6-11.  The Bluelink Bluetooth module

You can order this module at www.rhydolabz.com/wireless-

bluetooth-ble-c-130_132/hc05-bluelink-5v-ttl-p-1726.html.

�Sharp IR Range Sensor
We are using a popular, low-cost sharp IR sensor (GP2Y0A41SK0F) with

a range of 4–30 cm for obstacle detection (see Figure 6-12) in robots. The

sensor gives output voltage proportional to the distance measured. The

voltage from the sensor can be converted to corresponding digital values

with the help of an ADC inside the microcontroller. The value can then

calibrate with distance and can use for detecting obstacle.

Figure 6-12.  The sharp IR sensor (GP2Y0A41SK0F)

Chapter 6 Robotics Project Using ROS

http://www.rhydolabz.com/wireless-bluetooth-ble-c-130_132/hc05-bluelink-5v-ttl-p-1726.html
http://www.rhydolabz.com/wireless-bluetooth-ble-c-130_132/hc05-bluelink-5v-ttl-p-1726.html

253

You can buy the sharp IR sensor from the following link: https://

robu.in/product/sharp-ir-distance-measuring-sensor-unit-4-30-

cm-cable/.

�Block Diagram of the Robot
Figure 6-13 shows the block diagram of the robot that we are going

to build.

Figure 6-13.  Block diagram of mobile robot with pinout

The two motors are connected to an L-298 H-bridge (www.build-

electronic-circuits.com/h-bridge/). You can connect one motor

polarity opposite the other, because each motor is connected on opposite

ends of the robot.

Chapter 6 Robotics Project Using ROS

https://robu.in/product/sharp-ir-distance-measuring-sensor-unit-4-30-cm-cable/
https://robu.in/product/sharp-ir-distance-measuring-sensor-unit-4-30-cm-cable/
https://robu.in/product/sharp-ir-distance-measuring-sensor-unit-4-30-cm-cable/
http://www.build-electronic-circuits.com/h-bridge/
http://www.build-electronic-circuits.com/h-bridge/

254

To control an H-bridge, several connections are needed between the

H-bridge and the Arduino. The main connections are the enable pin and

two input pins. The enable pin activates the current H-bridge, and two IN

pins determine the motor’s rotation direction. There are a total of six pins

controlling the two motors. The Arduino sends the proper signals to these

pins to control motor movement.

The wheel encoders are the next set of sensors to interface. There

are three pins in wheel encoders: VCC, GND, and output. VCC and GND

can be connected to the Arduino VCC and GND, and the output of both

encoders can be connected to the Arduino’s 3 and 2 pins.

The Bluetooth module has four pins: VCC, GND, TX, and RX. TX and

RX are the transmit and receive pins, respectively. You have to connect the

Bluetooth TX pin to the Arduino RX1 pin and the Bluetooth RX pin to the

Arduino TX1 pin. There are three serial connections in Arduino Mega; we

are using the second serial connection of Arduino. VCC and GND are 5

volts, similar to encoders.

The sharp range finder has three pins: VCC, GND and Vo. The Vo pin

will give the analogue voltage corresponding to the distance. The analogue

voltage can be converted to digital values using Arduino ADC.

Let’s discuss the voltage distribution for each component. The motors

operate between 5 and 9 volts, so the motor driver should power in in

this range. All other components work in 5 volts. So you should be able

to allocate your power in such a way that each component gets enough

power; the GND of all components should be common too. We can power

the robot through a battery or a 7 or a 9 volt DC adapter. The wired power

supply is good for testing the robot.

Chapter 6 Robotics Project Using ROS

255

�Assembling Robot Hardware
The completely assembled robot is shown in Figure 6-14. The Arduino,

motor driver, Bluetooth, and IR range finder sensor are completely wired

and mounted on top of the robot. You can put the components together

according to your logic.

Figure 6-14.  Assembled wheeled robot

�Creating a 3D ROS Model Using URDF
We are done assembling the robot, so now we can start programming it.

The first step is to make the robot model in ROS, which is called URDF

(Unified Robot Description Format). URDF has all the information on

robot 3D models, robot joints, links, robot sensors, actuators, controllers,

and so forth.

We are going to create a URDF model for our robot, which has the 3D

representation of robot, a list of joints, and links.

Chapter 6 Robotics Project Using ROS

256

The URDF is basically an XML file that has XML tags to represent a

joint and a link (http://wiki.ros.org/urdf). Another representation

of URDF is called Xacro (http://wiki.ros.org/xacro). In Xacro

representation, we can create a macro definition using URDF. It can make

our URDF code shorter and reusable.

A list of URDF tutorials is available at the ROS wiki at http://wiki.

ros.org/urdf/Tutorials.

The following describes the basic usage of tags in URDF:

<!-- Definition of Robot link -->

<link name="my_link">

 <inertial>

 </inertial>

 <visual>

 </visual>

 <collision>

 </collision>

 </link>

<!-- Definition of joint -->

<joint name="joint_name" type="joint_type">

 <parent link="parent_link_name"/>

 <child link="child_link_name" />

</joint>

Inside the <link> </link> tag, we can define the properties of robot

link, which contains inertial parameters, collision parameters, and visual

representation. The shape of the robot link is mentioned in the visual tag.

The visual tag can have a primitive shape or a 3D mesh file.

The robot model created using URDF is usually kept on the ROS

package; it is named “robot_name_description”.

Chapter 6 Robotics Project Using ROS

http://wiki.ros.org/urdf
http://wiki.ros.org/xacro
http://wiki.ros.org/urdf/Tutorials
http://wiki.ros.org/urdf/Tutorials

257

The mobile robot’s URDF package is kept in a package called “mobile_

robot_description”. You can find this package in the Chapter 6 code

folder. The URDF file is at mobile_robot_description/urdf/robot_

model.xacro.

The following explains an important section in robot_model.xacro:

<?xml version="1.0" ?>

<robot name="mobile_robot" xmlns:xacro="http://ros.org/

wiki/xacro">

........................

</robot>

The URDF or Xacro are XML files, so the headers are the XML version,

which is shown in the preceding code snippet.

Now, we can define the robot model inside the <robot> </robot> tags.

The link and joint definition of the robot is inside this tag.

 <link name="base_footprint"/>

 <joint name="base_joint" type="fixed">

 <origin xyz="0 0 0.0102" rpy="0 0 -${M_PI/2}" />

 <parent link="base_footprint"/>

 <child link="base_link" />

 </joint>

In the preceding code, you can see the link definition of base_footprint

and the definition of a joint called base_joint. Normally, we create an

imaginary link called base_footprint, which is acting as a reference for

other links.

Following the “base_footprint link”, you can see the joint definition.

A joint is a linkage of two links. The two links are “base_footprint” and

“base_link”. The definition of “base_link” is shown next.

Chapter 6 Robotics Project Using ROS

http://dx.doi.org/10.1007/978-1-4842-3405-1_6

258

 <link name="base_link">

 <visual>

 <geometry>

 <!-- new mesh -->

 �<mesh filename="package://mobile_robot_description/

meshes/body/chasis.dae" scale="0.001 0.001 0.001"/>

 </geometry>

 <origin xyz="-0.07 -0.12 0" rpy="0 0 0"/>

 </visual>

 <collision>

 <geometry>

 <box size="0.14 0.23 0.1" />

 </geometry>

 <origin xyz="0.0 -0.02 0" rpy="0 0 0"/>

 </collision>

 <inertial>

 <!-- COM experimentally determined -->

 <origin xyz="-0.07 -0.12 0"/>

 �<mass value="2.4"/> <!-- 2.4/2.6 kg for small/big

battery pack -->

 <inertia ixx="0.019995" ixy="0.0" ixz="0.0"

 iyy="0.019995" iyz="0.0"

 izz="0.03675" />

 </inertial>

 </link>

In the “base_link” definition, we can see the definition of the link’s

visual and collision parameters, as well as the inertial parameters. In

the “visual” definition, you can see that a mesh file is mentioned, which

means that it shows as a link. The origin and orientation of the link are

also mentioned. The mesh file is in our robot model. The mesh file in this

section is a robot chassis without wheels.

Chapter 6 Robotics Project Using ROS

259

The following code snippet shows how to define wheel joints. The

wheel joint is a rotary joint, but in this project, it is a fixed joint. The

following is only for visualization purposes.

<joint name="left_wheel_joint" type="fixed">

 <origin xyz="-0.06 0 0" rpy="0 0 0"/>

 <parent link="base_link"/>

 <child link="left_wheel_link"/>

 <axis xyz="1 0 0"/>

 <limit effort="100" velocity="100"/>

 <joint_properties damping="0.0" friction="0.0"/>

</joint>

The following code shows how to put a primitive shape in our model

as a visual. There are several primitive shapes available in ROS. One of the

models is a cylinder.

<visual>

 <origin xyz="0 0 0" rpy="0 ${M_PI/2} 0" />

 <geometry>

 <cylinder radius="0.0325" length = "0.02"/>

 </geometry>

 <material name ="black" />

</visual>

The robot model can visualize in Rviz. To visualize the model, copy the

“mobile_robot_description” package to your catkin_ws/src folder, and use

catkin_make to build the packages.

Use the following command to view the robot model in Rviz:

$ roslaunch mobile_robot_description view_robot.launch

Chapter 6 Robotics Project Using ROS

260

Figure 6-15 shows the URDF model of the robot in Rviz. You can

change the camera view using a mouse in order to see the robot at

different angles.

Figure 6-15.  Robot model in Rviz

We can also check the launch file to visualize the robot in Rviz. It is in

mobile_robot_description/launch/view_robot.launch.

<launch>

<arg name="model" />

<!-- Parsing xacro and setting robot_description parameter -->

<param name="robot_description" command="$(find xacro)/xacro.

py --inorder $(find mobile_robot_description)/urdf/robot_model.

xacro"/>

<!-- Starting robot state publish which publish tf -->

<node name="robot_state_publisher" pkg="robot_state_publisher"

type="robot_state_publisher"/>

<!-- Launch visualization in rviz -->

Chapter 6 Robotics Project Using ROS

261

<node name="rviz" pkg="rviz" type="rviz" args="-d $(find

mobile_robot_description)/config/robot.rviz" required="true"/>

</launch>

The first step in the launch file is to load the Xacro file load as a ROS

parameter named “robot_description”.

The robot_state_publisher node publishes the joint state of the robot

model to /tf (http://wiki.ros.org/tf) topic. The /tf topic is useful for

doing higher-level processing.

The next line of code starts the Rviz with a saved configuration file

inside the mobile_robot_description)/config folder.

�Working with Robot Firmware
This section explains how to program Arduino Mega to read the data from

the robot sensors and control the motors. We already wired the sensors

and motors to the appropriate Arduino pins. We also connected the

Bluetooth breakout board in corresponding pins shown in Figure 6-13.

In Chapter 5, we have seen how to program Arduino Mega using rosserial

and publish/subscribe ROS topics. In this project, we are using rosserial to

publish the sensor data and subscribe to the motor speed.

The complete Arduino firmware is in the chapter_6/Arduino_

Firmware/final_code folder.

Let’s have a look at the Arduino firmware code. Figure 6-16 shows the

main logic in the firmware code.

Chapter 6 Robotics Project Using ROS

http://wiki.ros.org/tf

262

Figure 6-16.  Arduino firmware code

The first section of Arduino code to discuss is the Arduino setup()

function. In setup(), we are actually initializing the ROS Arduino node

with serial port and baud rate.

Along with initializing ROS node, we have to set up the publishers and

subscribers. We also need to configure pins for motors and encoders. The

serial port pins interfaces to the Bluetooth module, so if any devices like a

PC or smartphone pair to this Bluetooth module, that device can read all

the data from the robot and can send commands to the Arduino. We are

using a PC for communicating with the Arduino in the robot.

The following code snippet shows how the setup() function looks like.

The default baud rate of the Bluetooth board is 9600. The baud rate of

the Bluetooth board can be changed using the following procedure

(www.rhydolabz.com/wiki/?p=8956). If you change the baud rate, then

you can change the baud from 9600 to 115200.

Chapter 6 Robotics Project Using ROS

http://www.rhydolabz.com/wiki/?p=8956).

263

void setup()

{

//Setting Serial1 and Bluetooth as default serial port for

communication via Bluetooth

 nh.getHardware()->setPort(&Serial1);

 nh.getHardware()->setBaud(9600);

 //Initialize ROS node

 nh.initNode();

 //Setup publisher

 nh.advertise(l_enc_pub);

 nh.advertise(r_enc_pub);

 nh.advertise(sharp_distance_pub);

 //Setup subscriber

 nh.subscribe(left_speed_sub);

 nh.subscribe(right_speed_sub);

 nh.subscribe(reset_sub);

}

In the void loop() function, Arduino publishes left and right encoder

values, publishes IR values, subscribes to motor velocity, and updates

signals to motor driver.

Here is the code snippet of loop() function; the Arduino will publish

the encoder and IR values in 10Hz and subscribe always to the left and the

right motor for updating the motor speed:

void loop()

{

 unsigned long currentMillis = millis();

 if (currentMillis - previousMillis >= interval)

Chapter 6 Robotics Project Using ROS

264

 {

 previousMillis = currentMillis;

 l_encoder_msg.data = pulses1;

 r_encoder_msg.data = pulses2;

 l_enc_pub.publish(&l_encoder_msg);

 r_enc_pub.publish(&r_encoder_msg);

 update_IR();

 }

 update_Motor();

 nh.spinOnce();

 delay(20);

}

After compiling and uploading the robot firmware to the Arduino, we

can now connect the robot via Bluetooth in the PC. You can remove the

USB cable used to upload code to Arduino; instead, you can simply power

the Arduino using a DC power jack from the battery.

�Programming Robot Using ROS
Once you have connected Arduino to the DC power jack and power all the

sensors of the robot, now it’s time for testing the robot.

The first step is connecting the robot Bluetooth to the PC. You can

easily do this by going to Ubuntu Settings ➤ Bluetooth. Make sure the

Bluetooth in the PC is turned ON; then you can find the HC-05 device

which is the robot Bluetooth shown in Figure 6-17.

Chapter 6 Robotics Project Using ROS

265

Figure 6-17.  Robot Bluetooth

When you click the Bluetooth device, it will ask for the PIN. The default

pin is 1234. You can change this pin as well. You can change PIN during

changing the baud rate of the Bluetooth. Click the Confirm button to pair

with the robot Bluetooth as shown in Figure 6-18.

After pairing, the HC-05 will show connected. Once it gets connected,

you can enter the following command to start the Bluetooth communication

via serial port. In order to start a serial port connection, we need to know the

MAC id of the Bluetooth; you can find it from the Bluetooth settings.

$ sudo rfcomm connect /dev/rfcomm0 '20:16:04:18:61:60'

Figure 6-18.  Pairing to Bluetooth

Chapter 6 Robotics Project Using ROS

266

If the connection is proper, you will get what is shown in Figure 6-19.

If the connection is successful, we can start the rosserial Python node

which will connect the robot and PC via serial port /dev/rfcomm0.

Start roscore

$ roscore

Start rosserial node using the following command. You can mention

the Bluetooth serial and baud rate along with this command. The serial_

node.py is acting as the bridge node between ROS and Arduino (http://

wiki.ros.org/rosserial_python).

$ rosrun rosserial_python serial_node.py _port:=/dev/rfcomm0

_baud:=9600

You can see the publisher and subscriber in Arduino when you start

the preceding command. You can find the output in Figure 6-20.

Figure 6-19.  Connecting to serial port

Figure 6-20.  Output of rosserial Python node

Chapter 6 Robotics Project Using ROS

http://wiki.ros.org/rosserial_python
http://wiki.ros.org/rosserial_python

267

After launching rosserial Python node, you can check the output of

rostopic using the following command:

$ rostopic list

The Figure 6-20 shows the output of rostopic list command. The topic

subscribed by Arduino is left and right speed of the motor and the reset

command. The topic published by Arduino is robot encoder data and

range finder sensor data. The Figure 6-22 shows the ROS topics publish

and subscribe by the robot using rosserial node.

Figure 6-21.  Output of rostopic list

Figure 6-22.  The ROS serial node publisher and subscriber list

Chapter 6 Robotics Project Using ROS

268

You can start the Bluetooth node by using the following instructions:

Starting roscore

$ roscore

Startin Bluetooth driver node

$rosrun rosserial_python serial_node.py _port:=/dev/rfcomm0

_baud:=9600

�The Teleop Node
The purpose of the keyboard teleop node is to drive the robot using

keyboard keys. This is used to verify that the robot is working and moving

in the correct direction. It is similar to the teleop node used in turtlesim.

The keyboard teleop node is placed in chapter_6/ mobile_robot_

pkg/scripts/robot_teleop_key. This is Python code, and the teleop node

is shown in Figure 6-23.

Figure 6-23.  The teleop node

Chapter 6 Robotics Project Using ROS

269

�The Twist Message to Motor Velocity Node
The twist-to-motor velocity node subscribes the ROS twist message

(geometry_msgs/Twist) and publishes left and right motor speed

(std_msgs/Int32). You can find the code at chapter_6/mobile_robot_pkg/

scripts/twist_to_motors.py.

Figure 6-24 shows the input and output of the node. This node

implements kinematics equations to convert ROS Twist message to

motor speed.

Figure 6-24.  The twist-to-motor velocity node

�The Diff to TF Node
The odometry node is an important ROS node in a dead-reckoning project.

This node subscribes the left and right and encoder ticks and computes

the odometry data. The odometry data is the local position of the robot,

meaning the position of the robot in respect to its starting position. We

are going to use this odometry data to move the robot and rotate it in the

desired angle. The odometry node implements the kinematics equation

to compute the robot’s position, which is the odometry data we are getting

from the /odom topic (see Figure 6-25).

Chapter 6 Robotics Project Using ROS

270

Figure 6-25.  The Diff to TF node

The left and right ticks are the std_msgs/Int32 message, and /odom

is the nav_msgs/Odometry message. You can find this node at mobile_

robot_pkg/scripts/diff_tf.py.

�The Dead-Reckoning Node
Dead reckoning is the final node discussed in this project. The node

subscribes three topics: the odom to get the robot position, obstacle

detection to avoid robot collision, and the /move_base_simple/goal, which

is the destination of the robot.

Figure 6-26 shows the workings of the dead-reckoning node.

Figure 6-26.  The dead-reckoning node

Chapter 6 Robotics Project Using ROS

271

After computing the distance to travel, this node sends the appropriate

command velocity to the robot to reach the position. The goal pose is

to get from the Rviz control panel. There is a dedicated button in Rviz to

command the goal position.

The working of the node is as follows. When this node gets to the

destination point as (x, y, and theta), it sends a twist message to rotate the

robot and align it to the destination point. The rotation is done by taking

feedback from the “odom” topic. After aligning with the destination robot, it

sends a linear velocity command to move the robot in a straight line, while

also taking feedback from the /odom topic to make sure that the destination

is reached. If the destination is reached, the robot stops.

Currently, we are adding some tolerance to the destination point. The

robot may not end up at the exact destination—there may be some drift, so

tolerance in the goal position is added during the operation.

If there is an obstacle in front of the robot, the node takes the

command velocity to zero so that the robot stops at that point.

�Final Run
In this section, you see how to test the robot. Make sure that the Bluetooth

driver node is working well and getting the topic. If it is working, follow the

procedures to start working with the robot.

Pair the PC Bluetooth and the robot, and start the Bluetooth driver

to verify that the connection is OK. After that, quit the node and start the

following launch file to start all the nodes:

Starting the robot stand alone launch file in PC

$ roslaunch mobile_robot_pkg robot_standalone.launch

This command starts running all the nodes and starts the Rviz using

the following command:

$ rosrun rviz rviz

Chapter 6 Robotics Project Using ROS

272

Open the configuration file at mobile_robot_description/config

/robot.rviz. This shows the robot model, much like what’s shown in

Figure 6-27.

Figure 6-27.  The Robot model visualization in Rviz

Now you can command the goal position of the robot in Rviz using the

2D Nav Goal button at the top of the Rviz panel (see Figure 6-28).

Chapter 6 Robotics Project Using ROS

273

Figure 6-28.  Setting goal position in Rviz

The block diagram in Figure 6-29 shows the detailed interconnection

of nodes in the dead-reckoning project.

Figure 6-29.  Interconnection of nodes

If you want to simply run the robot, you can launch $ roslaunch

mobile_robot_pkg keyboard_teleop.launch.

Chapter 6 Robotics Project Using ROS

274

This launch file launches the Bluetooth driver, the twist to motor node,

and the keyboard teleop node, which moves the robot using a keyboard.

�Summary
This chapter discussed a robotic project using ROS. The main aim of the

chapter was to get hands-on experience with ROS on a real robot. The

project was about creating a differential drive robot commanded from a

ROS interface.

The chapter started by discussing the hardware needed to build the

project. You saw the basic components to prototype the robot hardware.

All the hardware components are available on the market at low cost.

After properly connecting the robot’s components, you saw how to create

the ROS software for moving the robot. You saw how to create the robot’s

URDF model and how to write embedded code for controlling the robot.

After that, you wrote ROS nodes in Python to receive the values from the

embedded board and display in the Rviz tool. In the end, you saw how to

move the robot using Rviz.

Chapter 6 Robotics Project Using ROS

275© Lentin Joseph and Aleena Johny 2022
L. Joseph and A. Johny, Robot Operating System (ROS) for Absolute Beginners,
https://doi.org/10.1007/978-1-4842-7750-8

Index

A
Access modifier, 72, 73, 91
Arduino Mega 2560 board,

231, 233, 235, 237, 251

B
Bluelink Bluetooth module, 251, 252
Bluetooth driver node

configuration file, 271–274
dead-reckoning node, 270, 271
interconnection, 273
odometry node, 269, 270
pairing node, 265
publisher and subscriber list, 267
rosserial node, 266
rosserial Python node, 266
serial port, 266
teleop node, 268
twist-to-motor velocity

node, 269

C
C++ language

Bjarne Stroustrup, 54
boost libraries, 54
CMake (cmake.org), 88–90

GCC/G++ compilers, 55
GDB (see GNU Project

Debugger (GDB))
installation, 55
Linux makefile, 85, 86
main code, 88
make command, 87
OOP (see Object-oriented

programming (OOP))
Python, 53
source code, 85, 86
Ubuntu Linux, 54
verification, 56, 57

Client libraries
callback function, 189
concepts, 182
getParam() function, 191
header files and

modules, 183–185
Hello World

build C++ nodes, 197
CMakeLists.txt

definition, 194
computation graph, 205, 206
editing CMakeLists.txt file,

196, 197
launch files, 203–205
node execution, 198–200

https://doi.org/10.1007/978-1-4842-7750-8#DOI

276

package creation, 192–194
python node creation,

201, 202
Python nodes execution, 202

logging operations, 186
message definition, 187
NodeHandle creation, 186
nodes, 185
print messages, 186
publish() command, 187
roscpp and rospy, 182, 183
ROS CPP and ROS Py, sleep

function, 191
roslisp, 183
rospy, 183
setParam() function, 191
sleep() function, 190
spin() function, 190
subscription, 188
TurtleBot (see TurtleBot

simulation (ROSPy))
TurtleSim (see TurtleSim

programming (rospy))
Command-line interface (CLI), 34
Command-line tools, talker and

listener nodes, 163
Cross-platform makefile

(CMake), 88–90

D, E, F
Data hiding, 73
Debian packages, 45, 47, 48

Differential wheeled robot
analysis, 244
angular displacement, 245
configuration, 242
global coordinate system, 243
kinematics equations, 244, 246
parameters, 244
wheel encoders, 243

Disk operating system (DOS), 34

G
Gazebo simulator, 125, 133
GNU Project Debugger (GDB)

compilation process, 61–63
debugger tool, 63–66
gdb command, 58
gedit text editor, 59, 60
hello_world.cpp code, 61
Linux system, 57
namespace std, 61
Ubuntu Linux, 57
verification, 58

H
Hokuyo Laser, 148

I, J
Integrated development

environments (IDEs), 3, 122
Intel NUC, 150
Intel RealSense, 148

Client libraries (cont.)

INDEX

277

K
Kinematics equations,

244, 246, 269

L, M
Linux kernel, 2, 118
Long-term support (LTS), 3, 134

N
NVDIA TX1/TX2, 149

O
Object-oriented

programming (OOP)
access modifier, 72, 73
classes/objects, 71–73
data types, 66
exception handling, 82–84
files/streams, 78
fstream header, 79
function definition, 70
inheritance

derived/base class, 74
derived class, 77, 78
public/protected/

private, 74, 75
source code, 76

inheritance (C++), public/
protected/private, 76

namespace concept, 80–82
object, 66

read/write program, 80
STL, 84
structs/classes, 67–70

Odroid XU4, 150
Open Source Robotics Foundation,

134, 136

P, Q
Package creation, (ROS)

catkin_create_pkg, 180, 181
CMakeLists.txt, 181
package.xml, 182
src folder, 182

Programmable logic controller
(PLC), 126

Programming embedded boards
Arduino

blink command, 235
dmesg command, 235
IDE, 231
LED toggling command, 237
mega 2560 board, 231
preference window, 233
ROS library creation, 234
ROS package

installation, 232
Raspberry Pi 3

board, specs, 238
booting/Ubuntu, 239
ROS installation, 240
specs board, 237
Ubuntu mate image/micro

SD card, 239

INDEX

278

Pulse-width modulated
(PWM), 248

Python programming language
classes, 111–114
code indentation, 102
computer vision, 122
cross-platform language, 100
execution, 99, 100
files, 114, 115
function definition, 108–110
fundamental concepts, 93
handling exception, 110, 111
handling serial ports, 117
Hello World

program, 97, 98
IDEs, 122
input/conditional

statement, 104, 105
installation, 96
interpreter, 95
loops, 106–108
machine/deep learning, 121
modules, 115–117
overview, 94
PySerial installation, 118, 120
robotics, 122
scientific computing/

visualization, 120
scripting method, 97
semicolons, 102
static and dynamic

typing, 101
Ubuntu 16.04 LTS, 95
variables, 102–104

R
Raspberry Pi 3 board, 150, 237
REEM-C, 147
Robonaut 2, 147
Robot application, 3
Robotics project

Bluetooth, 264–268
building hardware

assembling, 255
block diagram, 253, 254
bluetooth

breakout, 251, 252
magnetic quadrature

encoder, 249–251
microcontroller board, 251
motor driver, 248, 249
motors/wheels, 248
robot chassis, 247, 248
sharp IR sensor, 252, 253
2WD robotic kit, 247

dead reckoning node, 270, 271
differential wheeled

robot, 242–246
3D ROS model (URDF), 255–261
firmware process, 261–264
interconnection node, 273–275
keyboard teleop node, 268
loop() function, 263
odometry node, 269, 270
setup() function, 262, 263
twist-to-motor velocity

node, 269
wheeled robots, 241

INDEX

279

Robot Operating System (ROS), see
also Robot programming

architecture, 150
actuators and sensors, 151
communication, 151, 152
interprocess

communication, 150
publisher/subscriber

nodes, 152
atomic units, 153
capabilities, 130
command-line

tools, 156–161
common platform/robotics

applications, 137
community, 156
computation

concepts, 155, 156
computing platforms, 149, 150
distribution, 135, 136
ecosystem/community

support, 132
equation, 133
extensive tools/simulators, 133
file system, 153, 154
hello world, talker/listener

nodes, 161–163
high-level programming

language, 131
installation

add keys, 143
ARM board, 139
binary installation, 141
distribution, 140

environment, 145
Kinetic Kame, 140
Kinetic packages, 144
operating systems, 138
OS X, 139
package dependencies, 145
platforms, 138
rosdep, 144
single-board computers, 139
software/updates

application, 142
source.list, 143
Ubuntu/Linux, 139
Ubuntu repository, 141, 142
update package list, 144
version, 139

interprocess
communication, 130

message passing
interface, 130

message type
description, 154

off-the-shelf algorithms, 132
operating system, 130
package manifest, 153
packages, 131
project history, 134, 135
prototyping, 132
robots (see Sensors/

robots, ROS)
ROS 2.0, 138
roscore messages, 157
ROS repository, 154
Rviz/Rqt, 169–171

INDEX

280

self-driving car, 137
service type

definition, 154
third-party libraries, 131
turtlesim (see TurtleSim)

Robot programming
actuators/sensors, 126
community support, 129
components, 126
C++/Python, 128
definition, 125
ease of prototyping, 128
general block diagram, 126
high-level object-oriented

programming, 128
industrial applications, 127
input devices, 127
interprocess

communication, 129
low-level device

control, 128
PC/SBC and microcontroller/

PCL, 127
performance, 129
programming

languages, 127
robotics software

frameworks, 130
self-decision making, 127
third-party libraries, 129
threading, 128

Rviz/Rqt, 169–171

S
Sensors/robots, ROS

Hokuyo Laser, 148
Intel RealSense, 148
Pepper, 147
popular, 147, 148
REEM-C, 147
Robonaut 2, 147
TeraRanger, 148
TurtleBot 2, 147
Universal Robot arm, 147
Velodyne, 148
working process, 146
Xsense MTi IMU, 148
ZED Camera, 148

Shell commands
apt-get command, 45, 46, 48
cd command, 37
cp command, 41
dmesg command, 41
dpkg command, 48, 49
htop command, 50
kill command, 45
ls command, 36
lspci command, 42
lsusb command, 43
manual page (ls), 36
mkdir command, 38
mv command, 40
nano command, 51, 52
poweroff command, 49
ps command, 44
pwd command, 37, 38

Robot Operating System
(ROS) (cont.)

INDEX

281

reboot command, 49
rm command, 38
rmdir command, 39
sudo command, 43
terminal commands, 34, 35

Standard Template Library
(STL), 84, 91

T
TeraRanger, 148
TurtleBot 2, 147
TurtleBot simulation, ROSPy

education/research, 224
embedded boards, 230
launching process

command, 225
Gazebo simulation, 226
teleop application, 226
turtlebot_gazebo

package, 225
move_distance.py

node, 227–229
obstacle range, 229
TurtleBot 3 packages

installation, 224
TurtleSim

commands, 164
parameters list, 166
screen, 164
services list, 165
square path, 168, 169
teleop node, 167
topics, 164

turtle moving, 166, 167
2D simulator, 163

TurtleSim programming (rospy)
background color, 219–223
move_distance.py, 217–219
move option

commands, 207
computation graph, 209
geometry_msgs/Twist

message, 208
nodes, 209
output window, 212
Python node, 209
source code, 210, 211

robot position
message definition, 213, 214
move_turtle_get_pose.py

code, 214, 215
printing option, 215, 216
Turtle pose, 213

turtlesim node services, 220
Two-wheel drive (2WD)

platform, 246

U
Ubuntu operating system

applications, 33, 34
Debian architecture, 2
downloading options, 4
file system, 31–33
GNU/Linux, 1, 2
graphical user

interface, 30, 31

INDEX

282

installation, 3
PC requirements, 4
robotics, 3
shell commands (see Shell

commands)
UNetbootin setup, 28, 29
VirtualBox (see VirtualBox

machine)
Unified Robot Description Format

(URDF), 255–261
link definition, 257
link/joint definition, 257
robot_model.xacro, 257
Rviz, 260, 261
source code, 259
3D models, 255
tutorials, 256
visualization, 259
Xacro, 256

Unity Launcher, 30
Universal Robot arm, 147

V
Velodyne, 148
VirtualBox disk image (VDI), 9
VirtualBox machine

adding option, 6
configurations, 11, 12
DVD image

configuration, 12
guest OS, 13, 14
optical drive, 12, 13

shared folders, 15, 16
system settings, 14, 15

dynamically allocated/fixed
size, 10

guest operating system, 7
installation, 5
RAM allocation, 7, 8
start button, 16, 17
Ubuntu installation

desktop, 27
free space/hard disk, 21, 22
keyboard layout, 18, 19
login information, 25, 26
options, 17, 18
restart option, 26, 27
root partition, 22, 23
something else option, 20, 21
swap partition, 23, 24
third-party software, 20
time zone setting, 24, 25

virtual hard disk, 8, 9
virtual machine/guest, 5
Windows host, 5

Virtual hard disk (VHD), 8–11
Virtual machine disk (VMDK), 9

W
Workspace/package (ROS)

bashrc file, 177
build file/folder, 179
build system, 178
catkin_init_workspace, 175, 176
catkin workspace, 174, 179

Ubuntu operating system (cont.)

INDEX

283

catkin_ws, 174
devel folder, 179
install folder, 180
make command, 176
package, 180–182
src folder, 177, 179

Wheeled robots, 241, 242

X, Y
Xsense MTi IMU, 148

Z
ZED Camera, 148

INDEX

	Table of Contents
	About the Authors
	About the Technical Reviewer
	Chapter 1: Getting Started with Ubuntu Linux for Robotics
	Getting Started with GNU/Linux
	What Is Ubuntu?
	Why Ubuntu for Robotics?
	Installing Ubuntu
	Minimum PC Requirements
	Downloading Ubuntu
	Installing VirtualBox
	Creating a VirtualBox Machine
	Step 1: Adding a New Virtual Machine
	Step 2: Naming the Guest Operating System
	Step 3: Allocating RAM for the Guest OS
	Step 4: Creating a Virtual Hard Disk
	Step 5: Configuring the Type of Virtual Disk
	Step 6: Choosing Ubuntu DVD Image
	Step 7: Starting Virtual Machine

	Installing Ubuntu on VirtualBox
	Installing Ubuntu on a PC
	Playing with the Ubuntu Graphical User Interface
	The Ubuntu File System
	Useful Ubuntu Applications
	Getting Started with Shell Commands
	Terminal Commands Cheat Sheet
	man: Manual Pages for Shell Commands
	ls: List Directory Content
	cd: Change Directory
	pwd: Current Terminal Path
	mkdir: Create a Folder
	rm: Delete a File
	rmdir: Delete a Folder
	mv: Move a File from One Place to Another
	cp: Copy a File from One Path to Another
	dmesg: Display a Kernel Message
	lspci: List of PCI Devices in the System
	lsusb: List of USB Devices in the System
	sudo: Run a Command in Administrative Mode
	ps: List the Running Process
	kill: Kill a Process
	apt-get: Install a Package in Ubuntu
	dpkg -i: Install a Package in Ubuntu
	reboot: Reboot the System
	poweroff: Switch Off the System
	htop: Terminal Process View
	nano: Text Editor in Terminal

	Summary

	Chapter 2: Fundamentals of C++ for Robotics Programming
	Getting Started with C++
	Timeline: The C++ Language
	C/C++ in Ubuntu Linux
	Introduction to GCC and G++ Compilers
	Installing C/C++ Compiler
	Verifying Installation

	Introduction to GNU Project Debugger (GDB)
	Installing GDB in Ubuntu Linux
	Verifying Installation

	Writing Your First Code
	Explaining Code
	Compiling Your Code
	Debugging Your Code

	Learning OOP Concepts from Examples
	The Differences Between Classes and Structs
	C++ Classes and Objects
	Class Access Modifier
	C++ Inheritance
	C++ Files and Streams
	Namespaces in C++
	C++ Exception Handling
	C++ Standard Template Libraries

	Building a C++ Project
	Creating a Linux Makefile
	Creating a CMake File

	Summary

	Chapter 3: Fundamentals of Python for Robotics Programming
	Getting Started with Python
	Timeline: The Python Language
	Python in Ubuntu Linux
	Introduction to Python Interpreter
	Setting Python 3 on Ubuntu 20.04 LTS
	Verifying Python Installation

	Writing Your First Code
	Running Python Code
	Understanding Python Basics
	What’s New in Python?
	Static and Dynamic Typing
	Code Indentation
	Semicolons
	Python Variables
	Python Input and Conditional Statement
	Python: Loops
	Python: Functions
	Python: Handling Exception
	Python: Classes
	Python: Files
	Python: Modules
	Python: Handling Serial Ports
	Installing PySerial in Ubuntu 20.04

	Python: Scientific Computing and Visualization
	Python: Machine Learning and Deep Learning
	Python: Computer Vision
	Python: Robotics
	Python: IDEs

	Summary

	Chapter 4: Kick-Starting Robot Programming Using ROS
	What Is Robot Programming?
	Why Robot Programming Is Different
	Getting Started with ROS
	The ROS Equation
	Robot Programming Before and After ROS
	The History of ROS

	Before and After ROS
	Why Use ROS?
	Installing ROS
	Robots and Sensors Supporting ROS
	Popular ROS Computing Platforms
	ROS Architecture and Concepts
	The ROS File System
	ROS Computation Concepts
	The ROS Community
	ROS Command Tools
	ROS Demo: Hello World Example
	ROS Demo: turtlesim
	Moving the Turtle

	Moving the Turtle in a Square
	ROS GUI Tools: Rviz and Rqt
	Summary

	Chapter 5: Programming with ROS
	Programming Using ROS
	Creating a ROS Workspace and Package
	ROS Build System
	ROS Catkin Workspace
	src Folder
	build Folder
	devel Folder
	install Folder

	Creating a ROS Package
	Using ROS Client Libraries
	roscpp and rospy
	Header Files and ROS Modules
	Initializing a ROS Node
	Printing Messages in a ROS Node
	Creating a Node Handle
	Creating a ROS Message Definition
	Publishing a Topic in ROS Node
	Subscribing a Topic in ROS Node
	Writing the Callback Function in ROS Node
	The ROS Spin Function in ROS Node
	The ROS Sleep Function in ROS Node
	Setting and Getting a ROS Parameter
	The Hello World Example Using ROS
	Creating a hello_world Package
	Creating a ROS C++ Node
	Editing the CMakeLists.txt File
	Building C++ Nodes
	Executing C++ Nodes
	Creating Python Nodes
	Executing Python Nodes
	Creating Launch Files

	Visualizing a Computing Graph
	Programming turtlesim Using rospy
	Moving turtlesim

	Printing the Robot’s Position
	Moving the Robot with Position Feedback
	Reset and Change the Background Color
	Programming TurtleBot Simulation Using rospy
	Installing TurtleBot 3 Packages
	Launching the TurtleBot Simulation
	Gazebo Simulation

	Moving a Fixed Distance Using a Python Node
	Finding Obstacles
	Programming Embedded Boards Using ROS
	Interfacing Arduino with ROS
	Installing ROS on a Raspberry Pi
	Burning an Ubuntu Mate Image to a Micro SD Card
	Booting to Ubuntu
	Installing ROS on a Raspberry Pi
	Summary

	Chapter 6: Robotics Project Using ROS
	Getting Started with Wheeled Robots
	Differential Drive Robot Kinematics
	Building Robot Hardware
	Buying Robot Components
	Robot Chassis
	Additional Motors and Wheels
	Motor Driver
	Optical Encoder
	Microcontroller Board
	Bluetooth Breakout
	Sharp IR Range Sensor
	Block Diagram of the Robot

	Assembling Robot Hardware
	Creating a 3D ROS Model Using URDF
	Working with Robot Firmware
	Programming Robot Using ROS
	The Teleop Node
	The Twist Message to Motor Velocity Node
	The Diff to TF Node
	The Dead-Reckoning Node
	Final Run
	Summary

	Index

