
SQL and NoSQL 
Databases
Modeling, Languages, Security 
and Architectures for Big Data 
Management

Second Edition 

Michael Kaufmann
Andreas Meier



SQL and NoSQL Databases



Michael Kaufmann • Andreas Meier 

SQL and NoSQL 
Databases 
Modeling, Languages, Security 
and Architectures for Big Data 
Management 

Second Edition



Michael Kaufmann 
Informatik 
Hochschule Luzern 
Rotkreuz, Switzerland 

Andreas Meier 
Institute of Informatics 
Universität Fribourg 
Fribourg, Switzerland 

ISBN 978-3-031-27907-2 ISBN 978-3-031-27908-9 (eBook) 
https://doi.org/10.1007/978-3-031-27908-9 

# The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland 
AG 2023 
The first edition of this book was published by Springer Vieweg in 2019 
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether 
the whole or part of the material is concerned, specifically the rights of reprinting, reuse of illustrations, 
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission 
or information storage and retrieval, electronic adaptation, computer software, or by similar or 
dissimilar methodology now known or hereafter developed. 
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication 
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant 
protective laws and regulations and therefore free for general use. 
The publisher, the authors, and the editors are safe to assume that the advice and information in this 
book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or 
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any 
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional 
claims in published maps and institutional affiliations. 

This Springer imprint is published by the registered company Springer Nature Switzerland AG 
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-031-27908-9


Foreword 

The term database has long since become part of people’s everyday vocabulary, for 
managers and clerks as well as students of most subjects. They use it to describe a 
logically organized collection of electronically stored data that can be directly 
searched and viewed. However, they are generally more than happy to leave the 
whys and hows of its inner workings to the experts. 

Users of databases are rarely aware of the immaterial and concrete business 
values contained in any individual database. This applies as much to a car importer’s 
spare parts inventory as the IT solution containing all customer depots at a bank or 
the patient information system of a hospital. Yet failure of these systems, or even 
cumulative errors, can threaten the very existence of the respective company or 
institution. For that reason, it is important for a much larger audience than just the 
“database specialists” to be well-informed about what is going on. Anyone involved 
with databases should understand what these tools are effectively able to do and 
which conditions must be created and maintained for them to do so. 

Probably the most important aspect concerning databases involves (a) the dis-
tinction between their administration and the data stored in them (user data) and 
(b) the economic magnitude of these two areas. Database administration consists of 
various technical and administrative factors, from computers, database systems, and 
additional storage to the experts setting up and maintaining all these components— 
the aforementioned database specialists. It is crucial to keep in mind that the 
administration is by far the smaller part of standard database operation, constituting 
only about a quarter of the entire efforts. 

Most of the work and expenses concerning databases lie in gathering, 
maintaining, and utilizing the user data. This includes the labor costs for all 
employees who enter data into the database, revise it, retrieve information from 
the database, or create files using this information. In the above examples, this means 
warehouse employees, bank tellers, or hospital personnel in a wide variety of 
fields—usually for several years. 

In order to be able to properly evaluate the importance of the tasks connected with 
data maintenance and utilization on the one hand and database administration on the 
other hand, it is vital to understand and internalize this difference in the effort 
required for each of them. Database administration starts with the design of the 
database, which already touches on many specialized topics such as determining the
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consistency checks for data manipulation or regulating data redundancies, which are 
as undesirable on the logical level as they are essential on the storage level. The 
development of database solutions is always targeted on their later use, so 
ill-considered decisions in the development process may have a permanent impact 
on everyday operations. Finding ideal solutions, such as the golden mean between 
too strict and too flexible when determining consistency conditions, may require 
some experience. Unduly strict conditions will interfere with regular operations, 
while excessively lax rules will entail a need for repeated expensive data repairs. 

vi Foreword

To avoid such issues, it is invaluable for anyone concerned with database 
development and operation, whether in management or as a database specialist, to 
gain systematic insight into this field of computer sciences. The table of contents 
gives an overview of the wide variety of topics covered in this book. The title already 
shows that, in addition to an in-depth explanation of the field of conventional 
databases (relational model, SQL), the book also provides highly educational infor-
mation about current advancements and related fields, the keywords being NoSQL 
and Big Data. I am confident that the newest edition of this book will once again be 
well-received by both students and professionals—its authors are quite familiar with 
both groups. 

Professor Emeritus for Databases 
ETH Zürich 
Zürich, Switzerland 

Carl August Zehnder



Preface 

It is remarkable how stable some concepts are in the field of databases. Information 
technology is generally known to be subject to rapid development, bringing forth 
new technologies at an unbelievable pace. However, this is only superficially the 
case. Many aspects of computer science do not essentially change. This includes not 
only the basics, such as the functional principles of universal computing machines, 
processors, compilers, operating systems, databases and information systems, and 
distributed systems, but also computer language technologies such as C, TCP/IP, or 
HTML that are decades old but in many ways provide a stable fundament of the 
global, earth-spanning information system known as the World Wide Web. Like-
wise, the SQL language (Structured Query Language) has been in use for almost five 
decades and will remain so in the foreseeable future. The theory of relational 
database systems was initiated in the 1970s by Codd (relation model) and 
Chamberlin and Boyce (SEQUEL). However, these technologies have a major 
impact on the practice of data management today. Especially, with the Big Data 
revolution and the widespread use of data science methods for decision support, 
relational databases and the use of SQL for data analysis are actually becoming more 
important. Even though sophisticated statistics and machine learning are enhancing 
the possibilities for knowledge extraction from data, many if not most data analyses 
for decision support rely on descriptive statistics using SQL for grouped aggrega-
tion. SQL is also used in the field of Big Data with MapReduce technology. In this 
sense, although SQL database technology is quite mature, it is more relevant today 
than ever. 

Nevertheless, the developments in the Big Data ecosystem brought new 
technologies into the world of databases, to which we pay enough attention too. 
Non-relational database technologies, which find more and more fields of applica-
tion under the generic term NoSQL, differ not only superficially from the classical 
relational databases but also in the underlying principles. Relational databases were 
developed in the twentieth century with the purpose of tightly organized, operational 
forms of data management, which provided stability but limited flexibility. In 
contrast, the NoSQL database movement emerged in the beginning of the new 
century, focusing on horizontal partitioning, schema flexibility, and index-free 
neighborhood with the goal of solving the Big Data problems of volume, variety, 
and velocity, especially in Web-scale data systems. This has far-reaching
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consequences and leads to a new approach in data management, which deviate 
significantly from the previous theories on the basic concept of databases: the way 
data is modeled, how data is queried and manipulated, how data consistency is 
handled, and how data is stored and made accessible. That is why in all chapters we 
compare these two worlds, SQL and NoSQL databases. 

viii Preface

In the first five chapters, we analyze in detail the management, modeling, 
languages, security, and architecture of SQL databases, graph databases, and, in 
the second English edition, new document databases. In Chaps. 6 and 7, we provide 
an overview of other SQL- and NoSQL-based database approaches. 

In addition to classic concepts such as the entity and relationship model and its 
mapping in SQL or NoSQL database schemas, query languages, or transaction 
management, we explain aspects for NoSQL databases such as the MapReduce 
procedure, distribution options (fragments, replication), or the CAP theorem (con-
sistency, availability, partition tolerance). 

In the second English edition, we offer a new in-depth introduction to document 
databases with a method for modeling document structures, an overview of the 
database language MQL, as well as security and architecture aspects. The new 
edition also takes into account new developments in the Cypher language. The 
topic of database security is newly introduced as a separate chapter and analyzed 
in detail with regard to data protection, integrity, and transactions. Texts on data 
management, database programming, and data warehousing and data lakes have 
been updated. In addition, the second English edition explains the concepts of JSON, 
JSON Schema, BSON, index-free neighborhood, cloud databases, search engines, 
and time series databases. 

We have launched a Website called sql-nosql.org, where we share teaching and 
tutoring materials such as slides, tutorials for SQL and Cypher, case studies, and a 
workbench for MySQL and Neo4j, so that language training can be done either with 
SQL or with Cypher, the graph-oriented query language of the NoSQL database 
Neo4j. 

We thank Alexander Denzler and Marcel Wehrle for the development of the 
workbench for relational and graph-oriented databases. For the redesign of the 
graphics, we were able to work with Thomas Riediker. We thank him for his tireless 
efforts. He has succeeded in giving the pictures a modern style and an individual 
touch. In the ninth edition, we have tried to keep his style in our new graphics. For 
the further development of the tutorials and case studies, which are available on the 
website sql-nosql.org, we thank the computer science students Andreas Waldis, 
Bettina Willi, Markus Ineichen, and Simon Studer for their contributions to the 
tutorial in Cypher, respectively, to the case study Travelblitz with OpenOffice Base 
and with Neo4J. For the feedback on the manuscript, we thank Alexander Denzler, 
Daniel Fasel, Konrad Marfurt, Thomas Olnhoff, and Stefan Edlich for their willing-
ness to contribute to the quality of our work with reading our manuscript and with 
providing valuable feedback. A heartfelt thank you goes out to Michael Kaufmann’s 
wife Melody Reymond for proofreading our manuscript. Special thanks to Andy



Oppel of the University of California, Berkeley, for grammatical and technological 
review of the English text. A big thank goes to Leonardo Milla of Springer, who has 
supported us with patience and expertise. 
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Rotkreuz, Switzerland Michael Kaufmann 
Fribourg, Switzerland Andreas Meier 
October 2022
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Database Management 1 

1.1 Information Systems and Databases 

The evolution from the industrial society via the service society to the information 
and knowledge society is represented by the assessment of information as a factor in 
production. The following characteristics distinguish information from material 
goods:

• Representation: Information is specified by data (signs, signals, messages, or 
language elements).

• Processing: Information can be transmitted, stored, categorized, found, or 
converted into other representation formats using algorithms and data structures 
(calculation rules).

• Combination: Information can be freely combined. The origin of individual parts 
cannot be traced. Manipulation is possible at any point.

• Age: Information is not subject to physical aging processes.
• Original: Information can be copied without limit and does not distinguish 

between original and copy.
• Vagueness: Information can be imprecise and of differing validity (quality).
• Medium: Information does not require a fixed medium and is therefore indepen-

dent of location. 

These properties clearly show that digital goods (information, software, multime-
dia, etc.), i.e., data, are vastly different from material goods in both handling and 
economic or legal evaluation. A good example is the loss in value that physical 
products often experience when they are used—the shared use of information, on the 
other hand, may increase its value. Another difference lies in the potentially high 
production costs for material goods, while information can be multiplied easily and 
at significantly lower costs (only computing power and storage medium). This 
causes difficulties in determining property rights and ownership, even though digital 
watermarks and other privacy and security measures are available. 
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Information System 

Communication 
network 
or WWW 

Application Software

� User guidance

� Dialog design

� Business logic

� Data querying

� Data manipulation

� Access permissions

� Data protection 

Request 

Response 

User 

Database 
Storage 

Database 
Management 

Database System 

Fig. 1.1 Architecture and components of information systems 

Considering data as the basis of information as a production factor in a company 
has significant consequences:

• Basis for decision-making: Data allows well-informed decisions, making it vital 
for all organizational functions.

• Quality level: Data can be available from different sources; information quality 
depends on the availability, correctness, and completeness of the data.

• Need for investments: Data gathering, storage, and processing cause work and 
expenses.

• Degree of integration: Fields and holders of duties within any organization are 
connected by informational relations, meaning that the fulfillment of the said 
duties largely depends on the degree of data integration. 

Once data is viewed as a factor in production, it must be planned, governed, 
monitored, and controlled. This makes it necessary to see data management as a task 
for the executive level, inducing a major change within the company. In addition to 
the technical function of operating the information and communication infrastructure 
(production), planning and design of data flows (application portfolio) is crucial. 

As shown in Fig. 1.1, an  information system enables users to store and connect 
information interactively, to ask questions, and to get answers. Depending on the 
type of information system, the acceptable questions may be limited. There are, 
however, open information systems and online platforms in the World Wide Web 
that use search engines to process arbitrary queries. 

The computer-based information system in Fig. 1.1 is connected to a communi-
cation network such as the World Wide Web in order to allow for online interaction



and global information exchange in addition to company-specific analyses. Any 
information system of a certain size uses database systems to avoid the necessity to 
redevelop database management, querying, and analysis every time it is used. 
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Database systems are software for application-independently describing, storing, 
and querying data. All database systems contain a storage and a management 
component. The storage component called the database includes all data stored in 
organized form plus their description. The management component called the 
database management system (DBMS) contains a query and data manipulation 
language for evaluating and editing the data and information. This component not 
only does serve the user interface but also manages all access and editing 
permissions for users and applications. 

SQL databases (SQL = Structured Query Language, cf. Sect. 1.2) are the most 
common in practical use. However, providing real-time Web-based services 
referencing heterogeneous data sets is especially challenging (cf. Sect. 1.3 on Big 
Data) and has called for new solutions such as NoSQL approaches (cf. Sect. 1.4). 

When deciding whether to use relational or non-relational technologies, pros and 
cons have to be considered carefully—in some use cases, it may even be ideal to 
combine different technologies (cf. operating a Web shop in Sect. 5.6). Modern 
hybrid DBMS approaches combine SQL with non-relational aspects, either by 
providing NoSQL features in relational databases or by exposing an SQL querying 
interface to non-relational databases. Depending on the database architecture of 
choice, data management within the company must be established and developed 
with the support of qualified experts (Sect. 1.5). Further reading is listed in Sect. 1.6. 

1.2 SQL Databases 

1.2.1 Relational Model 

One of the simplest and most intuitive ways to collect and present data is in a table. 
Most tabular data sets can be read and understood without additional explanations. 

To collect information about employees, a table structure as shown in Fig. 1.2 can 
be used. The all-capitalized table name EMPLOYEE refers to the entire table, while 
the individual columns are given the desired attribute names as headers, for example, 
the employee number “E#,” the employee’s name “Name,” and their city of resi-
dence “City.” 

An attribute assigns a specific data value from a predefined value range called 
domain as a property to each entry in the table. In the EMPLOYEE table, the 
attribute E# allows to uniquely identify individual employees, making it the key of 
the table. To mark key attributes more clearly, they will be written in italics in the 
table headers throughout this book.1 The attribute City is used to label the respective

1 Some major works of database literature mark key attributes by underlining. 



places of residence and the attribute Name for the names of the respective employees 
(Fig. 1.3). 
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E# Name City 

EMPLOYEE 

Table name 

Attribute 

Key attribute 

Fig. 1.2 Table structure for an EMPLOYEE table 

E# Name City 

EMPLOYEE 
Column (or attribute) 

E19 

E4 

E1 

E7 

Stewart 

Bell 

Murphy 

Howard 

Stow 

Kent 

Kent 

Cleveland 

Data value Record 
(row or tuple) 

Fig. 1.3 EMPLOYEE table with manifestations 

The required information of the employees can now easily be entered row by row. 
In the columns, values may appear more than once. In our example, Kent is listed as 
the place of residence of two employees. This is an important fact, telling us that both 
employee Murphy and employee Bell are living in Kent. In our EMPLOYEE table, 
not only cities but also employee names may exist multiple times. For that reason, 
the aforementioned key attribute E# is required to uniquely identify each employee 
in the table.
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Identification Key 
An identification key or just key of a table is one attribute or a minimal combination 
of attributes whose values uniquely identify the records (called rows or tuples) 
within the table. If there are multiple keys, one of them can be chosen as the primary 
key. This short definition lets us infer two important properties of keys:

• Uniqueness: Each key value uniquely identifies one record within the table, i.e., 
different tuples must not have identical keys.

• Minimality: If the key is a combination of attributes, this combination must be 
minimal, i.e., no attribute can be removed from the combination without 
eliminating the unique identification. 

The requirements of uniqueness and minimality fully characterize an identifica-
tion key. However, keys are also commonly used to reference tables among 
themselves. 

Instead of a natural attribute or a combination of natural attributes, an artificial 
attribute can be introduced into the table as key. The employee number E# in our 
example is an artificial attribute, as it is not a natural characteristic of the employees. 

While we are hesitant to include artificial keys or numbers as identifying 
attributes, especially when the information in question is personal, natural keys 
often result in issues with uniqueness and/or privacy. For example, if a key is 
constructed from parts of the name and the date of birth, it may not necessarily be 
unique. Moreover, natural or intelligent keys divulge information about the respec-
tive person, potentially infringing on their privacy. 

Due to these considerations, artificial keys should be defined application-inde-
pendent and without semantics (meaning, informational value). As soon as any 
information can be deduced from the data values of a key, there is room for 
interpretation. Additionally, it is quite possible that the originally well-defined 
principle behind the key values changes or is lost over time. 

Table Definition 
To summarize, a table is a set of rows presented in tabular form. The data records 
stored in the table rows, also called tuples, establish a relation between singular data 
values. According to this definition, the relational model considers each table as a set 
of unordered tuples. Tables in this sense meet the following requirements:

• Table name: A table has a unique table name.
• Attribute name: All attribute names are unique within a table and label one 

specific column with the required property.
• No column order: The number of attributes is not set, and the order of the 

columns within the table does not matter.
• No row order: The number of tuples is not set, and the order of the rows within 

the table does not matter.
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E# Name City 

EMPLOYEE 

E19 Stewart Stow 
E4 Bell Kent 
E1 Murphy Kent 
E7 Howard Cleveland 

Example query: 
“Select the names of the employees living in Kent.” 

Formulation with SQL: 
SELECT Name 
FROM  EMPLOYEE 
WHERE  City = 'Kent' 

Results table: 

Name 

Bell 
Murphy 

Fig. 1.4 Formulating a query in SQL 

• Identification key: Strictly speaking, tables represent relations in the mathemati-
cal sense only if there are no duplicate rows. Therefore, one attribute or a 
combination of attributes can uniquely identify the tuples within the table and is 
declared the identification key. 

1.2.2 Structured Query Language SQL 

As explained, the relational model presents information in tabular form, where each 
table is a set of tuples (or records) of the same type. Seeing all the data as sets makes 
it possible to offer query and manipulation options based on sets. 

The result of a selective operation, for example, is a set, i.e., each search result is 
returned by the database management system as a table. If no tuples of the scanned 
table show the respective properties, the user gets a blank result table. Manipulation 
operations similarly target sets and affect an entire table or individual table sections. 

The primary query and data manipulation language for tables is called Structured 
Query Language, usually shortened to SQL (see Fig. 1.4). It was standardized by



ANSI (American National Standards Institute) and ISO (International Organization 
for Standardization).2 
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SQL is a descriptive language, as the statements describe the desired result 
instead of the necessary computing steps. SQL queries follow a basic pattern as 
illustrated by the query from Fig. 1.4: 

“SELECT the attribute Name FROM the EMPLOYEE table WHERE the city is 
Kent.” 

A SELECT-FROM-WHERE query can apply to one or several tables and always 
generates a table as a result. In our example, the query would yield a results table 
with the names Bell and Murphy, as desired. 

The set-based method offers users a major advantage, since a single SQL query 
can trigger multiple actions within the database management system. Relational 
query and data manipulation languages are descriptive. Users get the desired results 
by merely setting the requested properties in the SELECT expression. They do not 
have to provide the procedure for computing the required records. The database 
management system takes on this task, processes the query or manipulation with its 
own search and access methods, and generates the results table. 

With procedural database languages on the other hand, the methods for retrieving 
the requested information must be programmed by the user. In that case, each query 
yields only one record, not a set of tuples. 

With its descriptive query formula, SQL requires only the specification of the 
desired selection conditions in the WHERE clause, while procedural languages 
require the user to specify an algorithm for finding the individual records. As an 
example, let us take a look at a query language for hierarchical databases (see 
Fig. 1.5): For our initial operation, we use GET_FIRST to search for the first record 
that meets our search criteria. Next, we access all other corresponding records 
individually with the command GET_NEXT until we reach the end of the file or a 
new hierarchy level within the database. 

Overall, we can conclude that procedural database management languages use 
record-based or navigating commands to manipulate collections of data, requiring 
some experience and knowledge of the database’s inner structure from the users. 
Occasional users basically cannot independently access and use the contents of a 
database. Unlike procedural languages, relational query and manipulation languages 
do not require the specification of access paths, processing procedures, or naviga-
tional routes, which significantly reduces the development effort for database 
utilization. 

If database queries and analyses are to be done by end users instead of IT 
professionals, the descriptive approach is extremely useful. Research on descriptive 
database interfaces has shown that even occasional users have a high probability of 
successfully executing the desired analyses using descriptive language elements. 
Figure 1.5 also illustrates the similarities between SQL and natural language. In

2 ANSI is the national standards organization of the USA. The national standardization 
organizations are part of ISO. 



fact, there are modern relational database management systems that can be accessed 
with natural language. 
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Natural language: 

“Select the names of the employees living in Kent.” 

Descriptive language: 

SELECT Name 
FROM  EMPLOYEE 
WHERE  City = 'Kent' 

Procedural language: 

get first EMPLOYEE 

while status = 0 do 
begin 

end 

if City = 'Kent' then print(Name) 
get next EMPLOYEE 

Fig. 1.5 The difference between descriptive and procedural languages 

1.2.3 Relational Database Management System 

Databases are used in the development and operation of information systems in order 
to store data centrally, permanently, and in a structured manner. 

As shown in Fig. 1.6, relational database management systems are integrated 
systems for the consistent management of tables. They offer service functionalities 
and the descriptive language SQL for data description, selection, and manipulation. 

Every relational database management system consists of a storage and a man-
agement component. The storage component stores both data and the relationships 
between pieces of information in tables. In addition to tables with user data from 
various applications, it contains predefined system tables necessary for database 
operation. These contain descriptive information and can be queried, but not 
manipulated, by users. 

The management component’s most important part is the language SQL for 
relational data definition, selection, and manipulation. This component also contains 
service functions for data restoration after errors, for data protection, and for backup. 
Relational database management systems (RDBMS) have the following properties:
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�

�
�

�

� Data and relationships in tables

� Metadata in system tables

� Query and manipulation language SQL

� Special functions (recovery, reorganization, 
security, data protection, etc.) with SQL 

+ 

Relational Database System 

Fig. 1.6 Basic structure of a relational database management system

• Model: The database model follows the relational model, i.e., all data and data 
relations are represented in tables. Dependencies between attribute values of 
tuples or multiple instances of data can be discovered (cf. normal forms in Sect. 
2.3.1).

• Schema: The definitions of tables and attributes are stored in the relational 
database schema. The schema further contains the definition of the identification 
keys and rules for integrity assurance.

• Language: The database system includes SQL for data definition, selection, and 
manipulation. The language component is descriptive and facilitates analyses and 
programming tasks for users.

• Architecture: The system ensures extensive data independence, i.e., data and 
applications are mostly segregated. This independence is reached by separating 
the actual storage component from the user side using the management compo-
nent. Ideally, physical changes to relational databases are possible without having 
to adjust related applications.

• Multi-user operation: The system supports multi-user operation (cf. Sect. 4.1), 
i.e., several users can query or manipulate the same database at the same time. 
The RDBMS ensures that parallel transactions in one database do not interfere 
with each other or worse, with the correctness of data (Sect. 4.2).

• Consistency assurance: The database management system provides tools for 
ensuring data integrity, i.e., the correct and uncompromised storage of data.

• Data security and data protection: The database management system provides 
mechanisms to protect data from destruction, loss, or unauthorized access. 

NoSQL database management systems meet these criteria only partially (see 
Chaps. 4 and 7). For that reason, most corporations, organizations, and especially



SMEs (small and medium enterprises) rely heavily on relational database manage-
ment systems. However, for spread-out Web applications or applications handling 
Big Data, relational database technology must be augmented with NoSQL technol-
ogy in order to ensure uninterrupted global access to these services. 

10 1 Database Management

1.3 Big Data and NoSQL Databases 

1.3.1 Big Data 

The term Big Data is used to label large volumes of data that push the limits of 
conventional software. This data can be unstructured (see Sect. 5.1) and may 
originate from a wide variety of sources: social media postings; e-mails; electronic 
archives with multimedia content; search engine queries; document repositories of 
content management systems; sensor data of various kinds; rate developments at 
stock exchanges; traffic flow data and satellite images; smart meters in household 
appliances; order, purchase, and payment processes in online stores; e-health 
applications; monitoring systems; etc. 

There is no binding definition for Big Data yet, but most data specialists will 
agree on three Vs: volume (extensive amounts of data), variety (multiple formats: 
structured, semi-structured, and unstructured data; see Fig. 1.7), and velocity (high-
speed and real-time processing). Gartner Group’s IT glossary offers the following 
definition: 

Big Data 
“Big data is high-volume, high-velocity and high-variety information assets that 
demand cost-effective, innovative forms of information processing for enhanced 
insight and decision making.” 

Multimedia 

Text Graphics Image Audio Video

�  Continuous text
�  Structured text
 Collection of�

  texts
�  Tags etc.

�  City map
�  Road map
�  Technical
 drawing
�  3D graphics

�  Photograph
�  Satellite image
�  X-ray image
 etc.

�  Language
�  Music
�  Sounds
�  Animal sounds
�  Synthetic 

sounds etc.

�  Film
�  Animation
�  Ads
�  Video
 conference etc.

 etc. 

Fig. 1.7 Variety of sources for Big Data
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With this definition, Big Data are information assets for companies. It is indeed 
vital for companies and organizations to generate decision-relevant knowledge in 
order to survive. In addition to internal information systems, they increasingly utilize 
the numerous resources available online to better anticipate economic, ecologic, and 
social developments on the markets. 

Big Data is a challenge faced by not only for-profit-oriented companies in digital 
markets but also governments, public authorities, NGOs (non-governmental 
organizations), and NPOs (nonprofit organizations). 

A good example are programs to create smart or ubiquitous cities, i.e., by using 
Big Data technologies in cities and urban agglomerations for sustainable develop-
ment of social and ecologic aspects of human living spaces. They include projects 
facilitating mobility, the use of intelligent systems for water and energy supply, the 
promotion of social networks, expansion of political participation, encouragement of 
entrepreneurship, protection of the environment, and an increase of security and 
quality of life. 

All use of Big Data applications requires successful management of the three Vs 
mentioned above:

• Volume: There are massive amounts of data involved, ranging from giga- to 
zettabytes (megabyte, 106 bytes; gigabyte, 109 bytes; terabyte, 1012 bytes; 
petabyte, 1015 bytes; exabyte, 1018 bytes; zettabyte, 1021 bytes).

• Variety: Big Data involves storing structured, semi-structured, and unstructured 
multimedia data (text, graphics, images, audio, and video; cf. Fig. 1.7).

• Velocity: Applications must be able to process and analyze data streams in real 
time as the data is gathered. 

Big Data can be considered an information asset, which is why sometimes 
another V is added:

• Value: Big Data applications are meant to increase the enterprise value, so 
investments in personnel and technical infrastructure are made where they will 
bring leverage or added value can be generated. 

To complete our discussion of the concept of Big Data, we will look at another V:

• Veracity: Since much data is vague or inaccurate, specific algorithms evaluating 
the validity and assessing result quality are needed. Large amounts of data do not 
automatically mean better analyses. 

Veracity is an important factor in Big Data, where the available data is of variable 
quality, which must be taken into consideration in analyses. Aside from statistical 
methods, there are fuzzy methods of soft computing which assign a truth value 
between 0 (false) and 1 (true) to any result or statement.
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1.3.2 NoSQL Database Management System 

Before Ted Codd’s introduction of the relational model, non-relational databases 
such as hierarchical or network-like databases existed. After the development of 
relational database management systems, non-relational models were still used in 
technical or scientific applications. For instance, running CAD (computer-aided 
design) systems for structural or machine components on relational technology is 
rather difficult. Splitting technical objects across a multitude of tables proved 
problematic, as geometric, topological, and graphical manipulations all had to be 
executed in real time. 

The omnipresence of the Internet and numerous Web-based and mobile 
applications has provided quite a boost to the relevance of non-relational data 
concepts vs. relational ones, as managing Big Data applications with relational 
database technology is hard to impossible. 

While “non-relational” would be a better description than NoSQL, the latter has 
become established with database researchers and providers on the market over the 
last few years. 

NoSQL 
The term NoSQL is used for any non-relational database management approach 
meeting at least one of two criteria:

• The data is not stored in tables.
• The database language is not SQL. 

NoSQL technologies are in demand, especially where the applications in the 
framework for Big Data (speed, volume, variety) are in the foreground, because 
non-relational structures are often better suited for this. Sometimes, the term NoSQL 
is translated to “Not only SQL.” This is to express that non-relational storage and 
language functions are used in addition to SQL in an application. For example, there 
are SQL language interfaces for non-relational systems, either native or as 
middleware; and relational databases today also offer NoSQL functions, e.g., docu-
ment data types or graph analyses. 

The basic structure of a NoSQL database system is outlined in Fig. 1.8. Mostly, a 
NoSQL database system is subject to a massively distributed data storage architec-
ture. Data is stored in alternative non-tabular structures depending on the type of 
NoSQL database. As an example, Fig. 1.9 shows key/value stores, document 
databases, and graph databases. To ensure high availability and to protect the 
NoSQL database system against failures, different replication concepts are 
supported. With a massively distributed and replicated computer architecture, paral-
lel evaluation procedures can be used. The analysis of extensive data volumes or the 
search for specific facts can be accelerated with distributed computation procedures. 
In the MapReduce procedure, subtasks are distributed to various computer nodes, 
and simple key-value pairs are extracted (Map) before the partial results are com-
bined and output (Reduce).
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� Data in columns, documents, or graphs

� Distributed data replicas

� Parallel execution

� Weak to strong consistency 

NoSQL Database System 

Fig. 1.8 Basic structure of a NoSQL database management system 

Key-value store Document store Graph database 

Document A 
Document B 

Document C 
Document D 

Document E 
MOVIE 

DIRECTOR 

ACTOR 

DIRECTED_BY ACTED_IN 

Document E 
Document D 

Document C 

Customer profile 

Key= Order-Nr 

Shopping cart 

Item 1 

Item 2 

Item 3 

Document A 
Document BValue = Order-Nr 1 

Key= Session-ID 1 

Value = Order-Nr 2 

Key= Session-ID 2 

Value = Order-Nr 3 

Key= Session-ID 3 

Fig. 1.9 Three different NoSQL databases
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In massively distributed computer networks, differentiated consistency concepts 
are also offered. Strong consistency means that the NoSQL database system 
guarantees consistency at all times. Weak consistency means that changes to 
replicated nodes are tolerated with a delay and can lead to short-term inconsistencies. 

NoSQL Database System 
Storage systems are considered NoSQL database systems if they meet some of the 
following requirements:

• Model: The underlying database model is not relational.
• Data: The database system includes a large amount of data (volume), flexible 

data structures (variety), and real-time processing (velocity).
• Schema: The database management system is not bound by a fixed database 

schema.
• Architecture: The database architecture supports massively scalable 

applications.
• Replication: The database management system supports data replication.
• Consistency assurance: According to the CAP theorem, consistency may be 

ensured with a delay to prioritize high availability and partition tolerance. 

Figure 1.9 shows three different NoSQL database management systems. Key-
value stores (see also Sect. 7.2) are the simplest version. Data is stored as an 
identification key <key = "key"> and a list of values <value = "value 1", "value 
2", . . .>. A good example is an online store with session management and shopping 
basket. The session ID is the identification key; the order number is the value stored 
in the cache. In document stores, records are managed as documents within the 
NoSQL database. These documents are structured files which describe an entire 
subject matter in a self-contained manner. For instance, together with an order 
number, the individual items from the basket are stored as values in addition to the 
customer profile. The third example shows a graph database on movies and actors 
discussed in the next section. 

1.4 Graph Databases 

1.4.1 Graph-Based Model 

NoSQL databases support various database models (see Fig. 1.9). Here, we discuss 
graph databases as a first example to look at and discuss its characteristics. 

Property Graph 
Property graphs consist of nodes (concepts, objects) and directed edges 
(relationships) connecting the nodes. Both nodes and edges are given a label and 
can have properties. Properties are given as attribute-value pairs with the names of 
attributes and the respective values.



1.4 Graph Databases 15

MOVIE 
Title 
Year 

DIRECTOR 
Name 

Nationality 

ACTOR 
Name 

Birthyear 

GENRE 
Type 

ACTED_IN 
Role 

HAS 

DIRECTED_BY 

Fig. 1.10 Section of a property graph on movies 

A graph abstractly presents the nodes and edges with their properties. Figure 1.10 
shows part of a movie collection as an example. It contains the nodes MOVIE with 
attributes Title and Year (of release), GENRE with the respective Type (e.g., crime, 
mystery, comedy, drama, thriller, western, science fiction, documentary, etc.), 
ACTOR with Name and Year of Birth, and DIRECTOR with Name and Nationality. 

The example uses three directed edges: The edge ACTED_IN shows which artist 
from the ACTOR node starred in which film from the MOVIE node. This edge also 
has a property, the Role of the actor in the movie. The other two edges, HAS and 
DIRECTED_BY, go from the MOVIE node to the GENRE and DIRECTOR node, 
respectively. 

In the manifestation level, i.e., the graph database, the property graph contains the 
concrete values (Fig. 1.11). For each node and for each edge, a separate record is 
stored. Thus, in contrast to relational databases, the connections between the data are 
not stored and indexed as key references, but as separate records. This leads to 
efficient processing of network analyses. 

1.4.2 Graph Query Language Cypher 

Cypher is a declarative query language for extracting patterns from graph databases. 
ISO plans to extend Cypher to become the international standard for graph-based 
database languages as Graph Query Language (GQL) by 2023. 

Users define their query by specifying nodes and edges. The database manage-
ment system then calculates all patterns meeting the criteria by analyzing the
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Name:   Keanu Reeves 
Birthyear:  1964 

Title:  Man of Tai Chi 
Year:  2013 

Title:  The Matrix 
Year:  1999 
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Fig. 1.11 Section of a graph database on movies 

possible paths (connections between nodes via edges). The user declares the struc-
ture of the desired pattern, and the database management system’s algorithms 
traverse all necessary connections (paths) and assemble the results. 

As described in Sect. 1.4.1, the data model of a graph database consists of nodes 
(concepts, objects) and directed edges (relationships between nodes). In addition to 
their name, both nodes and edges can have a set of properties (see Property Graph in 
Sect. 1.4.1). These properties are represented by attribute-value pairs. 

Figure 1.11 shows a segment of a graph database on movies and actors. To keep 
things simple, only two types of nodes are shown: ACTOR and MOVIE. ACTOR 
nodes contain two attribute-value pairs, specifically (Name: FirstName LastName) 
and (YearOfBirth: Year). 

The segment in Fig. 1.11 includes different types of edges: The ACTED_IN 
relationship represents which actors starred in which movies. Edges can also have 
properties if attribute-value pairs are added to them. For the ACTED_IN relation-
ship, the respective roles of the actors in the movies are listed. For example, Keanu 
Reeves is the hacker Neo in “The Matrix.” 

Nodes can be connected by multiple relationship edges. The movie “Man of Tai 
Chi” and actor Keanu Reeves are linked not only by the actor’s role (ACTED_IN) 
but also by the director position (DIRECTED_BY). The diagram therefore shows 
that Keanu Reeves both directed the movie “Man of Tai Chi” and starred in it as 
Donaka Mark. 

If we want to analyze this graph database on movies, we can use Cypher. It uses 
the following basic query elements:
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• MATCH: Specification of nodes and edges, as well as declaration of search 
patterns

• WHERE: Conditions for filtering results
• RETURN: Specification of the desired search result, aggregated if necessary 

For instance, the Cypher query for the year the movie “The Matrix” was released 
would be: 

MATCH (m: Movie {Title: "The Matrix"}) 
RETURN m.Year 

The query sends out the variable m for the movie “The Matrix” to return the 
movie’s year of release by m.Year. In Cypher, parentheses always indicate nodes, 
i.e., (m: Movie) declares the control variable m for the MOVIE node. In addition to 
control variables, individual attribute-value pairs can be included in curly brackets. 
Since we are specifically interested in the movie “The Matrix,” we can add {Title: 
“The Matrix”} to the node (m: Movie). 

Queries regarding the relationships within the graph database are a bit more 
complicated. Relationships between two arbitrary nodes (a) and (b) are expressed 
in Cypher by the arrow symbol “->,” i.e., the path from (a) to (b) is declared as “(a) -
> (b).” If the specific relationship between (a) and (b) is of importance, the edge 
[r] can be inserted in the middle of the arrow. The square brackets represent edges, 
and r is our variable for relationships. 

Now, if we want to find out who played Neo in “The Matrix,” we use the 
following query to analyze the ACTED_IN path between ACTOR and MOVIE: 

MATCH (a: Actor) –[: Acted_In {Role: "Neo"}] –> 
(: Movie {Title: "The Matrix"}]) 
RETURN a.Name 

Cypher will return the result Keanu Reeves. For a list of movie titles (m), actor 
names (a), and respective roles (r), the query would have to be: 

MATCH  (a: Actor) –[r: Acted_In] –> (m: Movie) 
RETURN m.Title, a.Name, r.Role 

Since our example graph database only contains one actor and two movies, the 
result would be the movie “Man of Tai Chi” with actor Keanu Reeves in the role of 
Donaka Mark and the movie “The Matrix” with Keanu Reeves as Neo.
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In real life, however, such a graph database of actors, movies, and roles has 
countless entries. A manageable query would therefore have to remain limited, e.g., 
to actor Keanu Reeves, and would then look like this: 

MATCH  (a: Actor) –[r: Acted_In] –> (m: Movie) 
WHERE  (a.Name = "Keanu Reeves") 
RETURN m.Title, a.Name, r.Role 

Similar to SQL, Cypher uses declarative queries where the user specifies the 
desired properties of the result pattern (Cypher) or results table (SQL) and the 
respective database management system then calculates the results. However, 
analyzing relationship networks, using recursive search strategies, or analyzing 
graph properties is hardly possible with SQL. 

Graph databases are even more relationship-oriented than relational databases. 
Both nodes and edges of the graph are independent data sets. This allows efficient 
traversal of the graph for network-like information. However, there are applications 
that focus on structured objects as a unit. Document databases are suitable for this 
purpose, which will be described in the next section. 

1.5 Document Databases 

1.5.1 Document Model 

As a second example of NoSQL databases, we introduce document databases here. 
A document is a written record that describes a specific subject matter for which it 
contains all relevant information. As an example of a document, an invoice (see 
Fig. 1.12 to the left) describes information about customers, suppliers, dates, articles, 
and prices. 

A document database describes the entire facts of an invoice in a self-contained 
data set that contains all information relevant to the facts. Such a complete data set is 
called a document, analogous to a written record. 

Digital Document 
A digital document is a set of information that describes a subject matter as a closed 
unit and is stored as a file in a computer system. 

In contrast, as shown in the previous section, a graph database would use different 
node and edge types. A separate data set would be stored for each node and for each 
edge. The data would be divided in a network-like manner (cf. Fig. 1.12 to the right). 

Data records in document databases have a structuring that divides the content 
into recognizable subunits. Lists of field values can be nested in a tree-like manner. 
For example, the invoice document in Fig. 1.12 contains an “Item” field. This 
contains a list of items, each of which again has fields such as “Name” and



“Price” with corresponding values. More often than lists or arrays, the complex 
object structure is used to organize documents. The JSON (JavaScript Object 
Notation) format is a syntax for describing complex objects that is particularly 
suitable for Web development in JavaScript (see Sect. 2.5.1). 
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Fig. 1.12 Invoice data is stored in a self-contained manner in the document model 

1.5.2 Document-Oriented Database Language MQL 

MongoDB Query Language (MQL) is an object-oriented language for interacting 
with document databases to create, read, update, delete, and transform data. The 
JavaScript-based language was originally developed for server-side Web 
programming. 

The database model of an MQL document database consists of collections of 
structured digital documents. For example, in Fig. 1.12, there are five invoice 
documents in the INVOICES collection. Because they are schema-free, the 
documents in a collection can have any number of fields. Thus, new fields and 
objects can be created very flexibly at any time. For example, for private persons, the 
fields “First name” and “Last name” can be stored instead of the field “Company.” 
As a rule, however, documents with predominantly identical fields are collected in 
collections. Collections provide the following basic elements as methods in MQL:
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• find ( ) allows filtering a collection.
• insertOne ( ) adds data to a collection.
• updateOne ( ) allows to modify a collection.
• deleteOne ( ) deletes documents in a collection. 

For example, if we want to display the invoices of the company “Miller Elektro” 
in Fig. 1.12, we can use the following MQL query: 

db.INVOICES.find ( {"Vendor.Company": "Miller Elektro"} ) 

This will make the database system return a list of invoices that match the filter 
criterion. Each document is output in a complex object structure with a unique 
identification key. This way, we get all the complete data for each invoice with 
self-contained records. 

In this code example, the constant “db” is an object that provides the functionality 
of the database system. Collections of the database are accessible as child objects in 
fields of the “db” object, e.g., db.INVOICES, providing methods such as find, 
insertOne, updateOne, and deleteOne. 

The query language MQL is structured with JSON. For example, the filter in the 
find() method is passed as a parameter in JSON notation, which lists the filter criteria 
as a field-value pair. 

If we want to output a list of customers to whom the company “Miller Elektro” 
has written an invoice, this is accomplished with a second argument: 

db.INVOICES. find( 
{"Vendor.Company": "Miller Elektro"}, 
{"customer.company": 1, _id: 0} ) 

The second list defines the projection with fields that are either included (value 1) 
or excluded (value 0). Here, the field “Company” of the subobject “Customer” is 
included in the result as an inclusion projection; the field _id is excluded. Thus, we 
get a list of JSON documents containing only the values of the included fields: 

{ customer: { company: "Mega IT" } } 
{ customer: { company: "Bakery Becker" } } 
{ customer: { company: "Sewing Studio Needle" } } 
...
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Unlike SQL, MQL evolved in practice and is based on the JSON format, whose 
creator says he did not invent it but “discovered” it because it already “existed in 
nature.” Because of this organic development, many concepts of MQL appear 
somewhat different from those of SQL, which have been theorized based on 
mathematical principles. 

1.6 Organization of Data Management 

Many companies and organizations view their data as a vital resource, increasingly 
joining in public information gathering (open data) in addition to maintaining their 
own data. The continuous global increase of data volume and the growth of 
information providers and their 24/7 services reinforce the importance of 
Web-based data pools. 

The necessity for current information based in the real world has a direct impact 
on the conception of the field of IT. In many places, specific positions for data 
management have been created for a more targeted approach to data-related tasks 
and obligations. Proactive data management deals both strategically with informa-
tion gathering and utilization and operatively with the efficient provision and 
analysis of current and consistent data. 

Development and operation of data management incur high costs, while the 
return is initially hard to measure. Flexible data architecture, non-contradictory 
and easy-to-understand data description, clean and consistent databases, effective 
security concepts, current information readiness, and other factors involved are hard 
to assess and include in profitability considerations. Only the realization of the data’s 
importance and longevity makes the necessary investments worthwhile for the 
company. 

For better comprehension of the term data management, we will look at the four 
subfields: data architecture, data governance, data technology, and data utilization. 
Figure 1.13 illustrates the objectives and tools of these four fields within data 
management. 

Data utilization enables the actual, profitable application of business data. A 
specialized team of data scientists conducts business analytics, providing and 
reporting on data analyses to management. They also support individual 
departments, e.g., marketing, sales, customer service, etc., in generating specific 
relevant insights from Big Data. Questions that arise in connection with data use are 
the following:

• What purpose does the database serve?
• Which decisions are supported by which data, and how?
• Where does the data come from, and for what reason?
• What results are provided based on the data, and how are they presented?
• How can users interact with the data?
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► Use case 

► Decision Support 

► Data Sources 

► Data Visualization 

► User Interaction 

Data Utilization 

► Operational organization 

► Data Access 

► Database Security 

Data Administration 

► Database Software 

► Integrated System 

► Data Input 

► Data Processing 

► Performance 

Data Technology 

► System Interfaces 

► Data Modeling 

► Database Schema 

Data Architecture 

Fig. 1.13 The four cornerstones of data management 

Employees in data architecture analyze, categorize, and structure the relevant 
data, system components, and interfaces by a sophisticated methodology. In addition 
to the assessment of data and information requirements, the major data classes and 
their relationships with each other must be documented in data models of varying 
specificity. These models, created from the abstraction of reality and matched to each 
other, form the foundation of the database schemas. Data architecture answers the 
following questions:

• What are the components, interfaces, and data flows of the database and informa-
tion systems?

• Which entities, relationships, and attributes are mapped for the use case?
• Which data structures and data types are used by the DBMS to organize the data? 

Data administration aims for a unified coverage of the responsibilities in order to 
ensure a cross-application use of the long-lived data. Today’s tendency toward 
increased data security leads to a growing responsibility of data administrators for 
security concepts and assigning permissions. For this purpose, the following points 
are addressed from the data administration point of view:

• Who plans, develops, and operates the database and information systems using 
what methods?

• Who has what access to the data?
• How are security, confidentiality, integrity, and availability requirements met?
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Data technology specialists install, monitor, and reorganize databases and are in 
charge of their multilayer security. Their field further includes technology manage-
ment and the need for the integration of new extensions and constant updates and 
improvements of existing tools and methods. The data flows from and to the 
database systems, and the user interfaces are also provided technologically. For 
Big Data, it is of central importance that the speed of data processing is also 
optimized for large data volumes. Thus, data engineering deals with the following 
questions:

• Which SQL or NoSQL database software is used and for what reasons?
• How is the database system implemented and integrated?
• How is the data entered or migrated into the database?
• How is the data queried, manipulated, and transformed?
• How can the database system and queries be optimized in terms of volume and 

speed? 

Based on the characterization of data-related tasks and obligations, data manage-
ment can be defined as: 

Data Management 
Data management includes all operational, organizational, and technical aspects of 
data usage, data architecture, data administration, and data technology that optimize 
the deployment of data as a resource. 

Data Management Plan 
A planning document that outlines solutions for the use, architecture, technology, 
and administration of data, and addresses corresponding issues, is called a data 
management plan. 

Such a plan is often prepared prior to implementing a database system. If all of the 
questions listed above are answered, a data management system is anchored in a 
comprehensive breadth of context and planned accordingly. Locally, however, some 
questions are only answered iteratively during operation. 
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Database Modeling 2 

2.1 From Requirements Analysis to Database 

Data models provide a structured and formal description of the data and data 
relationships required for an information system. Based on this, a database model 
or schema defines the corresponding structuring of the database. When data is 
needed for IT projects, such as the information about employees, departments, and 
projects in Fig. 2.1, the necessary data categories and their relationships with each 
other can be defined. The definition of those data categories, called entity sets, and 
the determination of relationship sets are at this point done without considering the 
kind of database management system (SQL or NoSQL) to be used for entering, 
storing, and maintaining the data later. This is to ensure that the data and data 
relationships will remain stable from the users’ perspective throughout the develop-
ment and expansion of information systems. 

It takes three steps to set up a database structure: requirement analysis, conceptual 
data modeling, and implementing database schemas by mapping the entity relation-
ship model to SQL or NoSQL databases. 

The goal of requirement analysis (see point 1 in Fig. 2.1) is to  find, in cooperation 
with the user, the data required for the information system and their relationships to 
each other including the quantity structure. This is vital for an early determination of 
the system boundaries. The requirements catalog is prepared in an iterative process, 
based on interviews, demand analyses, questionnaires, form compilations, etc. It 
contains at least a verbal task description with clearly formulated objectives and a list 
of relevant pieces of information (see the example in Fig. 2.1). The written descrip-
tion of data connections can be complemented by graphical illustrations or a 
summarizing example. It is imperative that the requirement analysis puts the facts 
necessary for the later development of a database in the language of the users. 

Step 2 in Fig. 2.1 shows the conception of the entity-relationship model, which 
contains both the required entity sets and the relevant relationship sets. Our model 
depicts the entity sets as rectangles and the relationship sets as rhombi. Based on the 
requirement catalog from step 1, the main entity sets are DEPARTMENT,
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1. Requirements analysis 
Order no. 113 
Date: 07/14/2023 

Goal 
For project monitoring purposes, employees, work, and project 
times should periodically be reported per department. 

1.   Employees report to departments, with each employee being assigned
  to exactly one department. 

2.    Each project is centrally assigned a unique project number. 

3.    Employees can work on multiple projects simultaneously; the respective
  percentages of their time are logged. 

4.   ... 

DEPARTMENT 

EMPLOYEE PROJECT 

2.   Entity-relationship
 model 

MEMBERSHIP 

INVOLVED 

Entity sets 

Relationship sets 

3a. Relational model 3b. Graph model 

EMPLOYEE 

PROJECT 

DEPARTMENT 

MEMBERSHIP 

INVOLVED 

EMPLOYEE 

DEPARTMENT 

IS_MEMBER IS_INVOLVED 

PROJECT 

3c. Document model 

EMPLOYEE: 

Place: 
Name: 

DEPARTMENT: 
Name: 

PROJECTS: 

Workload: 
Name: 

Workload: 
Name: 

Fig. 2.1 The three steps necessary for database modeling



EMPLOYEE, and PROJECT.1 To record which departments the employees are 
working in and which projects they are part of, the relationship sets MEMBERSHIP 
and INVOLVED are established and graphically connected to the respective entity 
sets. The entity-relationship model therefore allows for the structuring and graphic 
representation of the facts gathered during data analysis. However, it should be noted 
that the identification of entity and relationship sets, as well as the definition of the 
relevant attributes, is not always a simple, clear-cut process. Rather, this design step 
requires quite some experience and practice from the data architect.
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Next, in step 3, the entity relationship model is mapped into a database schema, 
with different rules for SQL and NoSQL databases. This can be, e.g., a relational 
database schema (Fig. 2.1, 3a), a graph database schema (Fig. 2.1, 3b), or a 
document database schema (Fig. 2.1, 3c). 

Since relational database management systems allow only tables as objects, the 
data records and their relationships can only be expressed in terms of tables and 
columns. For that reason, there is one entity set table each for the entity sets 
DEPARTMENT, EMPLOYEE, and PROJECT in Fig. 2.1, step 3a. In order to 
represent the relationships in tables as well, separate tables have to be defined for 
each relationship set. In our example, this results in the tables MEMBERSHIP and 
INVOLVED. Such relationship set tables always contain the keys of the entity sets 
affected by the relationship as foreign keys and potentially additional attributes of 
the relationship. 

In step 3b of Fig. 2.1, we see the depiction of an equivalent graph database. Each 
entity set corresponds to a node in the graph, so we have the nodes DEPARTMENT, 
EMPLOYEE, and PROJECT. The relationship sets MEMBERSHIP and 
INVOLVED from the entity-relationship model are converted into edges in the 
graph-based model. The relationship set MEMBERSHIP becomes a directed edge 
type from the DEPARTMENT node to the EMPLOYEE node and is named 
IS_MEMBER. Similarly, a directed edge type with the name IS_INVOLVED is 
drawn from the EMPLOYEE to the PROJECT node types. 

The mapping of the facts in document databases is shown in Fig. 2.1, 3c. Several 
related entities are serialized in a unified document structure. For this purpose, the 
entities are aggregated, i.e., nested. This implies an order of aggregation, which may 
vary depending on the use case. In the example in the figure, there is a field 
EMPLOYEE on the first level. This represents an employee object with fields 
name and location. On the second level, there is on the one hand a field DEPART-
MENT, which embeds the corresponding department data per employee as a 
subobject. On the other hand, a list of project information is stored per employee 
in the PROJECTS field, including the workload, which is essential for reporting. 

This is only a rough sketch of the process of data analysis, development of an 
entity-relationship model, and definition of a relational or graph-based database 
schema. The core insight is that a database design should be developed based on

1 The names of entity and relationship sets are spelled in capital letters, analogous to table, node, and 
edge names. 



an entity-relationship model. This allows for the gathering and discussion of data 
modeling factors with the users, independent from any specific database system. 
Only in the next design step is the most suitable database schema determined and 
mapped out. For relational, graph-oriented, and document-oriented databases, there 
are clearly defined mapping rules. 
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Entity:        Employee Murphy, lives on
          Morris Road in Kent 

Entity set:     Set of all employees with the attributes
          Name, Street, and City 

Identification key: Employee number as an artificial key 

Representation in the entity-relationship model 

E# 

Name 

City 

Street 

EMPLOYEE 

Fig. 2.2 EMPLOYEE entity set 

2.2 The Entity-Relationship Model 

2.2.1 Entities and Relationships 

An entity is a specific object in the real world or our imagination that is distinct from 
all others. This can be an individual, an item, an abstract concept, or an event. 
Entities of the same type are combined into entity sets and further characterized by 
attributes. These attributes are property categories of the entity and/or the entity set, 
such as size, name, weight, etc. 

For each entity set, an identification key, i.e., one attribute or a specific combina-
tion of attributes, is set as unique. In addition to uniqueness, it also has to meet the 
criterion of the minimal combination of attributes for identification keys as described 
in Sect. 1.2.1. 

In Fig. 2.2, an individual employee is characterized as an entity by their concrete 
attributes. If, in the course of internal project monitoring, all employees are to be 
listed with their names and address data, an entity set EMPLOYEE is created. An 
artificial employee number in addition to the attributes Name, Street, and City allows



for the unique identification of the individual employees (entities) within the staff 
(entity set). 
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Relationship:      Employee Murphy spends 70 % of their time
          working on project P17 

Relationship set:   Set of all employee project involvements
          with the attributes Employee number, Project
          number, and Percentage 

Identification key: Concatenated key consisting of employee
          number and project number 

Representation in the entity-relationship model 

E# 

Percentage 

P# 

EMPLOYEE PROJECTINVOLVED 

Fig. 2.3 INVOLVED relationship between employees and projects 

Besides the entity sets themselves, the relationships between them are of interest 
and can form sets of their own. Similar to entity sets, relationship sets can be 
characterized by attributes. 

Figure 2.3 presents the statement “Employee Murphy does 70 % of their work on 
project P17” as a concrete example of an employee-project relationship. The respec-
tive relationship set INVOLVED is to list all project participations of the employees. 
It contains a concatenated key constructed from the foreign keys employee number 
and project number. This combination of attributes ensures the unique identification 
of each project participation by an employee. Along with the concatenated key, the 
relationship set receives its own attribute named “Percentage” specifying the per-
centage of working hours that employees allot to each project they are involved in. 

In general, relationships can be understood as associations in two directions: The 
relationship set INVOLVED can be interpreted from the perspective of the 
EMPLOYEE entity set as “one employee can participate in multiple projects” and 
from the entity set PROJECT as “one project is handled by multiple employees.” 

2.2.2 Associations and Association Types 

The association of an entity set ES_1 to another entity set ES_2, also called role, is 
the meaning of the relationship in that direction. As an example, the relationship



DEPARTMENT_HEAD in Fig. 2.4 has two associations: On the one hand, each 
department has one employee in the role of department head; on the other hand, 
some employees could fill the role of department head for a specific department. 
Associations are sometimes also labeled. This is important when multiple 
relationships are possible between two identical entity sets. 

30 2 Database Modeling

DEPARTMENT 

EMPLOYEE INVOLVED 

MEMBERSHIPDEPARTMENT_HEAD 

PROJECT 

Association types: 
Type 1:   “exactly one” 
Type c:  “none or one” 
Type m:  “one or
    
Type mc:  “none, one, or
    

c 1 

1 m 

m mc 

Example for department heads: 
Typ c:   “Each employee may or may not be a department head.” 
Typ 1:  “Each department has exactly one department head.” 

multiple” 

multiple” 

Fig. 2.4 Entity-relationship model with association types 

Each association from an entity set ES_1 to an entity set ES_2 can be weighted by 
an association type. The association type from ES_1 to ES_2 indicates how many 
entities of the associated entity set ES_2 can be assigned to a specific entity from 
ES_1.2 The main distinction is between single, conditional, multiple, and multiple-
conditional association types. 

Unique association (type 1) 
In unique, or type 1, associations, each entity from the entity set ES_1 is assigned 
exactly one entity from the entity set ES_2. For example, our data analysis showed 
that each employee is a member of exactly one department, i.e., matrix management 
is not permitted. The MEMBERSHIP relationship from employees to departments in 
Fig. 2.4 therefore is a unique/type 1 association. 

Conditional association (type c) 
A type c association means that each entity from the entity set ES_1 is assigned zero 
or one, i.e., maximum one entity from the entity set ES_2. The relationship is

2 It is common in database literature to note the association type from ES_1 to ES_2 next to the 
associated entity set, i.e., ES_2. 



optional, so the association type is conditional. An example for a conditional 
association is the relationship DEPARTMENT_HEAD (see Fig. 2.4), since not 
every employee can have the role of a department head. 
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Multiple association (type m) 
In multiple, or type m, associations, each entity from the entity set ES_1 is assigned 
one or more entities from the entity set ES_2. This association type is often called 
complex, since one entity from ES_1 can be related to an arbitrary number of entities 
from ES_2. An example for the multiple association type in Fig. 2.4 is the 
INVOLVED relationship from projects to employees: Each project can involve 
multiple employees, but must be handled by at least one. 

Multiple-conditional association (type mc) 
Each entity from the entity set ES_1 is assigned zero, one, or multiple entities from 
the entity set ES_2. Multiple-conditional associations differ from multiple 
associations in that not every entity from ES_1 must have a relationship to any 
entities in ES_2. In analogy to that type, they are also called conditional-complex. 
We will exemplify this with the INVOLVED relationship in Fig. 2.4 as well, but this 
time from the employees’ perspective: While not every employee has to participate 
in projects, there are some employees involved in multiple projects. 

The association types provide information about the cardinality of the relation-
ship. As we have seen, each relationship contains two association types. The 
cardinality of a relationship between the entity sets ES_1 and ES_2 is therefore a 
pair of association types in the form: 

Cardinality := (association type ES_1 to ES_2, association type ES_2 to ES_1).3 

For example, the pair (mc,m) of association types between EMPLOYEE and 
PROJECT indicates that the INVOLVED relationship is (multiple-conditional, 
multiple). 

Figure 2.5 shows all 16 possible combinations of association types. The first 
quadrant contains four options of unique-unique relationships (case B1 in Fig. 2.5). 
They are characterized by the cardinalities (1,1), (1,c), (c,1), and (c,c). For case B2, 
the unique-complex relationships, also called hierarchical relationships, there are 
eight possible combinations. The complex-complex or network-like relationships 
(case B3) comprise the four cases (m,m), (m,mc), (mc,m), and (mc,mc). 

Instead of the association types, minimum and maximum thresholds can be set if 
deemed more practical. For instance, instead of the multiple association type from 
projects to employees, a range of (MIN,MAX) := (3,8) could be set. The lower 
threshold defines that at least three employees must be involved in a project, while 
the maximum threshold limits the number of participating employees to eight.

3 The character combination “:=” stands for “is defined by.” 
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B2:  unique-complex relationships 
B3:  complex-complex relationships 

Fig. 2.5 Overview of the possible cardinalities of relationships 

The entity relationship model is often abbreviated to ER model. It is very 
important for computer-based data modeling tools, as it is supported by many 
CASE (computer-aided software engineering) tools to some extent. Depending on 
the quality of these tools, both generalization and aggregation can be described in 
separate design steps, on top of entity and relationship sets. Only then can the ER 
model be converted, in part automatically, into a database schema. Since this is not 
always a one-on-one mapping, it is up to the data architect to make the appropriate 
decisions. Sections 2.3.2, 2.4.2, and 2.5.2 provide some simple mapping rules to 
help in converting an entity-relationship model into a relational, graph, or document 
database. 

2.2.3 Generalization and Aggregation 

Generalization is an abstraction process in which entities or entity sets are subsumed 
under a superordinate entity set. The dependent entity sets or subsets within a 
generalization hierarchy can vice versa be interpreted as specializations. The gener-
alization of entity sets can result in various constellations:

• Overlapping entity subsets: The specialized entity set overlap with each other. 
As an example, if the entity set EMPLOYEE has two subsets PHOTO_CLUB 
and SPORTS_CLUB, the club members are consequently considered employees. 
However, employees can be active in both the company’s photography and sports 
club, i.e., the entity subsets PHOTO_CLUB and SPORTS_CLUB overlap.

• Overlapping complete entity subsets: The specialization entity sets overlap with 
each other and completely cover the generalized entity set. If we add a
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EMPLOYEE 
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Example for employee categorization: 
“Each employee is either part of management, a specialist, or a 
trainee.” 

disjoint 
complete 

Fig. 2.6 Generalization, illustrated by EMPLOYEE 

CHESS_CLUB entity subset to the PHOTO_CLUB and SPORTS_CLUB and 
assume that every employee joins at least one of these clubs when starting work at 
the company, we get an overlapping complete constellation. Every employee is a 
member of at least one of the three clubs, but they can also be in two or all three 
clubs.

• Disjoint entity subsets: The entity sets in the specialization are disjoint, i.e., 
mutually exclusive. To illustrate this, we will once again use the EMPLOYEE 
entity set, but this time with the specializations MANAGEMENT_POSITION 
and SPECIALIST. Since employees cannot at the same time hold a leading 
position and pursue a specialization, the two entity subsets are disjoint.

• Disjoint complete entity subsets: The specialization entity sets are disjoint, but 
together completely cover the generalized entity set. As a result, there must be a 
sub-entity in the specialization for each entity in the superordinate entity set and 
vice versa. For example, take the entity set EMPLOYEE with a third specializa-
tion TRAINEE in addition to the MANAGEMENT_POSITION and SPECIAL-
IST subsets, where every employee is either part of management, a technical 
specialist, or a trainee. 

Generalization hierarchies are represented by specific forked connection symbols 
marked “overlapping incomplete,” “overlapping complete,” “disjoint incomplete,” 
or “disjoint complete.” 

Figure 2.6 shows the entity set EMPLOYEE as a disjoint and complete generali-
zation of MANAGEMENT_POSITION, SPECIALIST, and TRAINEE. All depen-
dent entities of the entity subsets, such as team lead or department head in 
MANAGEMENT_POSITION, are also part of EMPLOYEE, since the respective



association type is 1. Generalization is therefore often called an is-a relationship: A  
team lead is a(n) employee, just as a department head is a(n) employee. In disjoint 
complete generalization hierarchies, the reverse association is also of type 1, i.e., 
every employee is part of exactly one entity subset. 
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dependent on...” 

Fig. 2.7 Network-like aggregation, illustrated by CORPORATION_STRUCTURE 

Another important relationship structure beside generalization is aggregation, the 
combination of entities into a superordinate total by capturing their structural 
characteristics in a relationship set. 

To model the holding structure of a corporation, as shown in Fig. 2.7, a relation-
ship set CORPORATION_STRUCTURE is used. It describes the relationship 
network of the entity set COMPANY with itself. Each company ID from the 
COMPANY entity set is used in CORPORATION_STRUCTURE as a foreign 
key twice, once as ID for superordinate and once for subordinate company holdings. 
CORPORATION_STRUCTURE can also contain additional relationship attributes 
such as shares. 

In general, aggregation describes the structured merging of entities in what is 
called a part-of structure. In CORPORATION_STRUCTURE, each company can 
be part of a corporate group. Since CORPORATION_STRUCTURE in our example 
is defined as a network, the association types of both super- and subordinate parts 
must be multiple-conditional. 

The two abstraction processes of generalization and aggregation are major struc-
turing elements in data modeling. In the entity-relationship model, they can be 
represented by specific graphic symbols or as special boxes. For instance, the 
aggregation from Fig. 2.7 could also be represented by a generalized entity set 
CORPORATION implicitly encompassing the entity set COMPANY and the rela-
tionship set CORPORATION_STRUCTURE. 

PART-OF structures do not have to be networks, but can also be hierarchic. Let’s 
assume an ITEM_LIST as illustration in Fig. 2.8: Each item can be composed of



multiple sub-items, while on the other hand, each sub-item points to exactly one 
superordinate item. 
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Example for an item list: 
Type mc:    “Each item may consist of multiple sub-items.” 
Type c:   “Each sub-item is dependent on exactly one superordinate item.” 

Fig. 2.8 Hierarchical aggregation, illustrated by ITEM_LIST 

The entity-relationship model is very important for computer-based data 
modeling tools, as it is supported by many CASE (computer-aided software engi-
neering) tools to some extent. Depending on the quality of these tools, both general-
ization and aggregation can be described in separate design steps, on top of entity 
and relationship sets. Only then can the entity-relationship model be converted, in 
part automatically, into a database schema. Since this is not always a one-to-one 
mapping, it is up to the data architect to make the appropriate decisions. The 
following sections provide some simple mapping rules to help in converting an 
entity-relationship model into a relational, graph, or document database. 

2.3 Implementation in the Relational Model 

2.3.1 Dependencies and Normal Forms 

The study of the relational model has spawned a new database theory that precisely 
describes formal aspects. 

Relational Model 
The relational model represents both data and relationships between data as tables. 
Mathematically speaking, any relation R is simply a set of n-tuples. Such a relation is 
always a subset of a Cartesian product of n attribute domains,  R  ⊆ D1 × D2 × . . .  × 
Dn, with Di as the domain of the i-th attribute/property. A tuple is an ordered set of 
specific data values or manifestations, r = (d1,  d2, . . .,  dn). Please note that this



definition means that any tuple may only exist once within any table, i.e., a relation R 
is a tuple set R = {r1, r2, . . ., rm}. 
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Fig. 2.9 Redundant and anomalous table 

The relational model is based on the works of Edgar Frank Codd from the early 
1970s. They were the foundation for the first relational database systems, created in 
research facilities and supporting SQL or similar database languages. Today, their 
sophisticated successors are firmly established in many practical uses. 

One of the major fields within this theory are the normal forms, which are used to 
discover and study dependencies within tables in order to avoid redundant informa-
tion and resulting anomalies. 

Attribute Redundancy 
An attribute in a table is redundant if individual values of this attribute can be 
omitted without a loss of information. 

To give an example, the following table DEPARTMENT_EMPLOYEE contains 
employee number, name, street, and city for each employee, plus their department 
number and department name. 

For every employee of department D6, the table in Fig. 2.9 lists the department 
name Accounting. If we assume that each department consists of multiple 
employees, similar repetitions would occur for all departments. We can say that 
the DepartmentName attribute is redundant, since the same value is listed in the table 
multiple times. It would be preferable to store the name going with each department 
number in a separate table for future reference instead of redundantly carrying it 
along for each employee. 

Tables with redundant information can lead to database anomalies, which can 
take one of three forms: If, for organizational reasons, a new department D9, labeled 
marketing, is to be defined in the DEPARTMENT_EMPLOYEE table from Fig. 2.9, 
but there are not yet any employees assigned to that department, there is no way of



adding it. This is an insertion anomaly—no new table rows can be inserted without a 
unique employee number. 
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Fig. 2.10 Overview of normal forms and their definitions 

Deletion anomalies occur if the removal of some data results in the inadvertent 
loss of other data. For example, if we were to delete all employees from the 
DEPARTMENT_EMPLOYEE table, we would also lose the department numbers 
and names. 

The last kind are update anomalies (or modification anomalies): If the name of 
department D3 were to be changed from IT to Data Processing, each of the 
department’s employees would have to be edited individually, meaning that 
although only one detail is changed, the DEPARTMENT_EMPLOYEE table has 
to be adjusted in multiple places. This inconvenient situation is what we call an 
update anomaly. 

The following paragraphs discuss normal forms, which help to avoid 
redundancies and anomalies. Figure 2.10 gives an overview over the various normal 
forms and their definition. Below, we will take a closer look at different kinds of 
dependencies and give some practical examples.
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As seen in Fig. 2.10, the normal forms progressively limit acceptable tables. For 
instance, a table or entire database schema in the third normal form must meet all 
requirements of the first and second normal form, plus there must be no transitive 
dependencies between non-key attributes. 

In the following, the first, second, and third normal forms are treated and 
discussed with examples. For reasons of lack of relevance for practice, even more 
restrictive normal forms are not discussed further. We refer to relevant literature for 
theoretical interest.4 

Understanding the normal forms helps to make sense of the mapping rules from 
an entity-relationship model to a relational model (see Sect. 2.3.2). In fact, we will 
see that with a properly defined entity-relationship model and consistent application 
of the relevant mapping rules, the normal forms will always be met. Simply put, by 
creating an entity-relationship model and using mapping rules to map it onto a 
relational database schema, we can mostly forget checking the normal forms for 
each individual design step. 

Functional Dependencies 
The first normal form is the basis for all other normal forms and is defined as follows: 

First Normal Form (1NF) 
A table is in the first normal form when the domains of the attributes are atomic. The 
first normal form requires that each attribute get its values from an unstructured 
domain and there must be no sets, lists, or repetitive groups within the individual 
attributes. 

The table PROJECT_PARTICIPANT in Fig. 2.11 is not yet normalized, since 
each employee tuple contains multiple numbers of projects the employee is involved 
in. The unnormalized table can be converted to the first normal form by simply 
creating a separate tuple for each project participation. This conversion of the 
PROJECT_PARTICIPANT table to 1NF requires the key of the table to be 
expanded, since we need both the employee and the project number to uniquely 
identify each tuple. It is common (but not required) with concatenated keys to put the 
key parts next to each other at the beginning of the table. 

Paradoxically, using the first normal form leaves us with a table full of 
redundancies—in our example in Fig. 2.11, both the names and addresses of the 
employees are redundantly repeated for each project involvement. This is where the 
second normal form comes into play: 

Second Normal Form (2NF) 
A table is in the second normal form when, in addition to the requirements of the first 
normal form, each non-key attribute is fully functionally dependent on each key.

4 For example, author Graeme C. Simsion presents a simplified hybrid of fourth and fifth normal 
forms he calls “Business Fifth Normal Form” in “Data Modeling Essentials,” which is easy for 
newcomers to data modeling to understand. 
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Fig. 2.11 Tables in the first and second normal form 

An attribute B is functionally dependent on an attribute A if for each value of A, 
there is exactly one value of B, written as A → B. A functional dependency of B on 
A therefore requires that each value of A uniquely identifies one value of B. As seen 
before, it is a property of identification keys that all non-key attributes are uniquely 
dependent on the key, so for an identification key K and an attribute B in one table, 
there is a functional dependency K → B. 

Keys can consist of several columns in the relation model. This is typically the 
case for tables that establish relationships between two or more entities. For such 
concatenated keys, this functional dependency (→) must become a full functional



dependency ()). An attribute B is fully functionally dependent on a concatenated 
key consisting of K1 and K2 (written as (K1,K2)) B) if B is functionally dependent 
on the entire key, but not its parts, i.e., full functional dependency means that only 
the entire concatenated key uniquely identifies the non-key attributes. While the 
functional dependency (K1,K2) ) B must apply, neither K1 → B nor K2 → B is  
allowed. Full functional dependency of an attribute from a composite key prohibits a 
functional dependency of the attribute from any part of the key. 
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The PROJECT_PARTICIPANT table in 1NF in Fig. 2.11 contains the 
concatenated key (E#,P#), i.e., it must be tested for full functional dependency. 
For the names and addresses of the project participants, the functional dependencies 
(E#,P#) → Name and (E#,P#) → City apply. However, while each combination of 
employee and project number uniquely identifies one name or place of residence, the 
project numbers have absolutely no bearing on this information, and it is already 
defined by the employee numbers alone. Both the Name and the City attribute are 
therefore functionally dependent on a part of the key, because E# → Name and E# 
→ City. This violates the definition of full functional dependency, i.e., the 
PROJECT_PARTICIPANT table is not yet in the second normal form. 

If a table with a concatenated key is not in 2NF, it has to be split into subtables. 
The attributes that are dependent on a part of the key are transferred to a separate 
table along with that key part, while the concatenated key and potential other 
relationship attributes remain in the original relationship table. 

In our example from Fig. 2.11, this results in the tables EMPLOYEE and 
PROJECT_INVOLVEMENT, both of which fulfill both the first and the second 
normal form. The EMPLOYEE table does not have a concatenated key, and 
the requirements of the second normal form are obviously met. The 
PROJECT_INVOLVEMENT table has no non-key attributes, which saves us the 
need to check for 2NF here as well. 

Transitive Dependencies 
In Fig. 2.12, we return to the DEPARTMENT_EMPLOYEE table from earlier, 
which contains department information in addition to the employee details. We can 
immediately tell that the table is in both first and second normal form—since there is 
no concatenated key, we do not even have to check for full functional dependency. 
However, the DepartmentName attribute is still redundant. This can be fixed using 
the third normal form. 

Third Normal Form (3NF) 
A table is in the third normal form when, in addition to the requirements of the 
second form, no non-key attribute is transitively dependent on any key attribute. 

Again, we use a dependency to define a normal form: In transitive dependency, 
formally symbolized by a double arrow ), an attribute is indirectly functionally 
dependent on another attribute. For instance, the attribute DepartmentName in our 
table is functionally dependent on the employee number via the department number. 
We can see functional dependency between the employee number and the depart-
ment number, as well as between department number and department name. These



two functional dependencies E# → D# and D# → DepartmentName can be merged 
to form a transitive dependency. 

2.3 Implementation in the Relational Model 41

DEPARTMENT_EMPLOYEE (in second normal form) 

E19 Stewart E Main Street Stow D6 Accounting 

E1 Murphy Morris Road Kent D3 IT 

E7 Howard Lorain Avenue Cleveland D5 HR 

E4 Bell S Water Street Kent D6 Accounting 

E# Name Street City D# DepartmentName 

E# DepartmentNameD# 

Transitive dependency: 

D# is not functionally 

EMPLOYEE (in third normal form) 

E19 Stewart E Main Street Stow D6 

E1 Murphy Morris Road Kent D3 

E7 Howard Lorain Ave Cleveland D5 

E4 Bell S Water Street Kent D6 

E# Name Street City D#_Sub 

DEPARTMENT (3NF) 

D3 IT 

D5 HR 

D6 Accounting 

D# DepartmentName 

dependent on E# 

Fig. 2.12 Transitive dependency and third normal form 

In general, given two functional dependencies A →B and B → C with a common 
attribute B, the merged dependency A → C will also be functional: if A uniquely 
identifies the values of B and B uniquely identifies the values of C, C inherits the 
dependency on A, i.e., the functional dependency A → C  is  definitely the case. In 
addition, the dependency is called transitive, if aside from the functional 
dependencies A → B and B → C, A is not also functionally dependent on B. This 
gives us the following definition for transitive dependency: An attribute C is



transitively dependent on A if B is functionally dependent on A, C is functionally 
dependent on B, and A is not functionally dependent on B. 
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Since the DepartmentName attribute in the example 
DEPARTMENT_EMPLOYEE table in Fig. 2.12 is transitively dependent on the 
E# attribute, the table is by definition not in the third normal form. The transitive 
dependency can be removed by splitting off the redundant DepartmentName attri-
bute and putting it in a separate DEPARTMENT table with the department numbers. 
The department number also stays in the remaining EMPLOYEE table as a foreign 
key (see attribute “D#_Sub”). The relationship between employees and departments 
is therefore still ensured. 

The second and third normal forms succeed in eliminating redundancies in the 
non-key attributes. The detection of redundant information need not theoretically 
stop at the non-key attributes, since composite keys can also occur redundantly. 

An extension of the third normal form that may be required is called the “Boyce-
Codd normal form” or BCNF, based on the work of Boyce and Codd. Such a form 
comes into play when several key candidates occur in one and the same table. 

In practice, however, the second and third normal forms are already more than 
sufficient. Often, even intentional denormalization, i.e., redundancy, is introduced to 
optimize the speed of processing for Big Data. This will be discussed in Sect. 2.5. 

2.3.2 Mapping Rules for Relational Databases 

This section discusses how to map the entity-relationship model onto a relational 
database schema, i.e., how entity sets and relationship sets can be represented in 
tables. 

Database Schema 
A database schema is the description of a database, i.e., the specification of the 
database structures and the associated integrity constraints. A relational database 
schema contains definitions of the tables, the attributes, and the primary keys. 
Integrity constraints set limits for the domains, the dependencies between tables, 
and the actual data. 

There are two rules of major importance in mapping an entity-relationship model 
onto a relational database schema (see also Fig. 2.13): 

Rule R1 (Entity Sets) 
Each entity set has to be defined as a separate table with a unique primary key. The 
primary key can be either the key of the respective entity set or one selected 
candidate key. The entity set’s remaining attributes are converted into corresponding 
attributes within the table. 

By definition, a table requires a unique primary key (see Sect. 1.2.1). It is possible 
that there are multiple candidate keys in a table, all of which meet the requirement of 
uniqueness and minimality. In such cases, it is up to the data architects which 
candidate key they would like to use as the primary key.
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Fig. 2.13 Mapping entity and relationship sets onto tables 

Rule R2 (Relationship Sets) 
Each relationship set can be defined as a separate table; the identification keys of 
the corresponding entity sets must be included in this table as foreign keys. The 
primary key of the relationship set table can be a concatenated key made from the 
foreign keys or another candidate key, e.g., an artificial key. Other attributes of the 
relationship set are listed in the table as further attributes. 

The term foreign key describes an attribute within a table that is used as an 
identification key in at least one other table (possibly also within this one). Identifi-
cation keys can be reused in other tables to create the desired relationships between 
tables. 

Figure 2.13 shows how rules R1 and R2 are applied to a concrete example: Each 
of the entity sets DEPARTMENT, EMPLOYEE, and PROJECT is mapped onto a 
corresponding table DEPARTMENT, EMPLOYEE, and PROJECT. Similarly,



tables are defined for each of the relationship sets DEPARTMENT_HEAD, MEM-
BERSHIP, and INVOLVED. 
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The DEPARTMENT_HEAD uses the department number D# as primary key. 
Since each department has exactly one department head, the department number D# 
suffices as identification key for the DEPARTMENT_HEAD table. 

The MEMBERSHIP table uses the employee number E# as primary key. Like-
wise, E# can be the identification key of the MEMBERSHIP table because each 
employee belongs to exactly one department. 

In contrast, the INVOLVED table requires the foreign keys employee number E# 
and project number P# to be used as a concatenated key, since one employee can 
work on multiple projects and each project can involve multiple employees. In 
addition, the INVOLVED table lists also the Percentage attribute as another charac-
teristic of the relationship. 

The use of rules R1 and R2 alone does not necessarily result in an ideal relational 
database schema as this approach may lead to a high number of individual tables. For 
instance, it seems doubtful whether it is really necessary to define a separate table for 
the role of department head in our example from Fig. 2.13. As shown in the next 
section, the DEPARTMENT_HEAD table is indeed not required under mapping 
rule R5. The department head role would instead be integrated as an additional 
attribute in the DEPARTMENT table, listing the employee number of the respective 
head for each department. 

Mapping Rules for Relationship Sets 
Based on the cardinality of relationships, we can define three mapping rules for 
representing relationship sets from the entity-relationship model as tables in a 
corresponding relational database schema. In order to avoid an unnecessary large 
number of tables, rule R3 expressly limits which relationship sets always and in any 
case require separate tables: 

Rule R3 (Network-Like Relationship Sets) 
Every complex-complex relationship set must be defined as a separate table which 
contains at least the identification keys of the associated entity sets as foreign 
keys. The primary key of a relationship set table is either a concatenated key from 
the foreign keys or another candidate key. Any further characteristics of the relation-
ship set become attributes in the table. 

This rule requires that the relationship set INVOLVED from Fig. 2.14 has to be a 
separate table with a primary key, which in our case is the concatenated key 
expressing the foreign key relationships to the tables EMPLOYEE and PROJECT. 
The Percentage attribute describes the share of the project involvement in the 
employee’s workload. 

Under rule R2, we could define a separate table for the MEMBERSHIP relation-
ship set with the two foreign keys department number and employee number. This 
would be useful if we were supporting matrix management and planning to get rid of 
unique subordination with the association type 1, since this would result in a 
complex-complex relationship between DEPARTMENT and EMPLOYEE.



However, if we are convinced that there will be no matrix management in the 
foreseeable future, we can apply rule R4 for the unique-complex relationship: 
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Fig. 2.14 Mapping rule for complex-complex relationship sets 

Rule R4 (Hierarchical Relationship Sets) 
Unique-complex relationship sets can be represented without a separate relation-
ship set table by the tables of the two associated entity sets. The unique association 
(i.e., association type 1 or c) allows for the primary key of the referenced table to 
simply be included in the referencing table as a foreign key with an appropriate role 
name. 

Following rule R4, we forgo a separate MEMBERSHIP table in Fig. 2.15. Instead 
of the additional relationship set table, we add the foreign key D#_Sub to the 
EMPLOYEE table to list the appropriate department number for each employee. 
The foreign key relationship is defined by an attribute created from the carried-over 
identification key D# and the role name Subordination. 

For unique-complex relationships, including the foreign key can uniquely iden-
tify the relationship. In Fig. 2.15, the department number is taken over into the 
EMPLOYEE table as a foreign key according to rule R4. If, reversely, the employee 
numbers were listed in the DEPARTMENT table, we would have to repeat the 
department name for each employee of a department. Such unnecessary and redun-
dant information is unwanted and goes against the theory of the normal forms (in this 
case, conflict with the second normal form; see Sect. 2.3.1).
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Fig. 2.15 Mapping rule for unique-complex relationship sets 

Rule R5 (Unique-Unique Relationship Sets) 
Unique-unique relationship sets can be represented without a separate table by the 
tables of the two associated entity sets. Again, an identification key from the 
referenced table can be included in the referencing table along with a role name. 

Here, too, it is relevant which of the tables we take the foreign key from: Type 
1 associations are preferable so the foreign key with its role name can be included in 
each tuple of the referencing table (avoidance of null values; see also Sect. 3.3.4). 

In Fig. 2.16, the employee numbers of the department heads are added to the 
DEPARTMENT table, i.e., the DEPARTMENT_HEAD relationship set is 
represented by the M#_DepHead attribute. Each entry in this referencing attribute 
with the role “DepHead” shows who leads the respective department. 

If we included the department numbers in the EMPLOYEE table instead, we 
would have to list null values for most employees and could only enter the respective 
department number for the few employees actually leading a department. Since null 
values often cause problems in practice, they should be avoided whenever possible, 
so it is better to have the “DepartmentHead” role in the DEPARTMENT table. For 
(1,c) and (c,1) relationships, we can therefore completely prevent null values in the 
foreign keys, while for (c,c) relationships, we should choose the option resulting in 
the fewest null values.
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Fig. 2.16 Mapping rule for unique-unique relationship sets 

2.4 Implementation in the Graph Model 

2.4.1 Graph Properties 

Graph theory is a complex subject matter vital to many fields of use where it is 
necessary to analyze or optimize network-like structures. Use cases range from 
computer networks, transport systems, work robots, power distribution grids, or 
electronic relays over social networks to economic areas such as corporation 
structures, workflows, customer management, logistics, process management, etc. 
In graph theory, a graph is defined by the sets of its nodes (or vertices) and edges plus 
assignments between these sets. 

Undirected Graph 
An undirected graph G = (V,E) consists of a vertex set V and an edge set E, with 
each edge being assigned two (potentially identical) vertices. 

Graph databases are often founded on the model of directed weighted graphs. 
However, we are not yet concerned with the type and characteristics of the vertices 
and edges, but rather the general abstract model of an undirected graph. This level of 
abstraction is sufficient to examine various properties of network structures, such as:

• How many edges have to be passed over to get from one node to another one?
• Is there a path between two nodes?
• Is it possible to traverse the edges of a graph visiting each vertex once?
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Fig. 2.17 An Eulerian cycle for crossing 13 bridges 

• Can the graph be drawn two-dimensionally without any edges crossing each 
other? 

These fundamental questions can be answered using graph theory and have 
practical applications in a wide variety of fields. 

Connected Graph 
A graph is connected if there are paths between any two vertices. 

One of the oldest graph problems illustrates how powerful graph theory can be: 

The Königsberg Bridge Decision Problem (Eulerian Cycles) 
In 1736, mathematician Leonhard Euler discovered, based on the seven bridges in 
the town of Königsberg (now Kaliningrad), that a path traversing each edge of a 
graph exactly once can only exist if each vertex has an even degree. 

Degree of a Vertex 
The degree of a vertex is the number of edges incident to it, i.e., originating from it. 

The decision problem for an Eulerian cycle is therefore easily answered: A graph 
G is Eulerian, if it is connected and each node has an even degree. 

Figure 2.17 shows a street map with 13 bridges. The nodes represent districts, the 
edges connecting bridges between them. Every vertex in this example has an even 
degree, which means that there has to be an Eulerian cycle. 

Dijkstra’s Algorithm for Finding Shortest Paths 
In 1959, Edsger W. Dijkstra published a three-page article describing an algorithm 
for calculating the shortest paths within a network. This algorithm, commonly called 
Dijkstra’s algorithm, requires a weighted graph (edges weighted, e.g., as distances in 
meters or minutes) and an initial node from which the shortest path to any other 
vertex in the network is then determined.
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Fig. 2.18 Shortest subway route from stop v0 to stop v7 

Weighted Graph 
Weighted graphs are graphs whose vertices or edges have properties assigned 
to them. 

As an example, Fig. 2.18 shows an edge-weighted graph representing a small 
subway network, with the stops as nodes and the connections between stops as 
edges. The weights of the edges are the distances between the stops, given in 
kilometers.



50 2 Database Modeling

Weight of a Graph 
The weight of a graph is the sum of all weights within the graph, i.e., all node or edge 
weights. 

This definition also applies to partial graphs, trees, or paths as subsets of a 
weighted graph. Of interest is generally the search for partial graphs with maximum 
or minimum weight. In the subway example from Fig. 2.18, we are looking for the 
smallest weight between the stations v0 and v7, i.e., the shortest path from stop v0 to 
stop v7. 

Figure 2.18 illustrates how Dijkstra’s algorithm creates a solution tree (compare 
the bold connections starting from the initial node v0 to the tree structure). Each node 
in the tree is annotated with the previous vertex (pre_v) and the total distance from 
the start (dist). In v5, for instance, v2 is entered as the previous node, and the distance 
will be 4 (3 + 1) as the total distance in kilometers from v0 to v5. 

We can now derive Dijkstra’s algorithm for positively weighted graphs, assigning 
“Previous vertex” and “distance” (total distance from the initial node) attributes to 
each vertex. 

The algorithm can be expressed as follows: 

Dijkstra’s Algorithm
• (1) Initialization: Set the distance in the initial node to 0 and in all other nodes to 

infinite. Define the set S0 := {pre_v: initial node, dist: 0}.
• (2) Iterate Sk while there are still unvisited vertices and expand the set Sk in each 

step as described below: 
– (2a) Calculate the sum of the respective edge weights for each neighboring 

vertex of the current node. 
– (2b) Select the neighboring vertex with the smallest sum. 
– (2c) If the sum of the edge weights for that node is smaller than the distance 

value stored for it, set the current node as the previous vertex (pre_v) for it and 
enter the new distance in Sk. 

It becomes obvious that with this algorithm, the edges traversed are always 
those with the shortest distance from the current node. Other edges and nodes are 
considered only when all shorter paths have already been included. This method 
ensures that when a specific vertex is reached, there can be no shorter path (greedy 
algorithm5 ). The iterative procedure is repeated until either the distance from 
initial to destination node has been determined or all distances from the initial 
node to all other vertices have been calculated. 

Property Graph 
Graph databases have a structuring scheme, the property graph, which was 
introduced in Sect. 1.4.1. Formally, a property graph can be defined by a set of

5 In each step, greedy algorithms select the locally optimal subsequent conditions according to the 
relevant metric. 



edges E, a set of vertices V, a domain of properties P, an incidence mapping 
i:V→ExE, and a property mapping p: V[E→2P . Here, 2P is the power set of the 
property domain, which contains all possible subsets of properties. Thus, the prop-
erty function points from nodes or edges to the sets of properties belonging to them. 
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In a graph database, data is stored as nodes and edges, which contain as properties 
node and edge types and further data, e.g., in the form of attribute-value pairs. Unlike 
conventional graphs, property graphs are multigraphs, i.e., they allow multiple edges 
between two nodes. To do this, edges are given their own identity and are no longer 
defined by pairs of nodes, but by two indicators that define the beginning and end of 
the edge. This edge identity and the mapping of edges as their own data sets lead to 
the constant performance in graph analyses, independent of data volume (see Sect. 5. 
2.7 on “Index-Free Adjacency”). 

2.4.2 Mapping Rules for Graph Databases 

Parallel to the mapping rules R1 to R5 for deriving tables from an entity-relationship 
model, this section presents the rules G1 to G5 for graph databases. The objective is 
to convert entity and relationship sets into nodes and edges of a graph. 

Figure 2.19 once again shows the previously used project management entity-
relationship model (cf. Fig. 2.4). The first mapping rule, G1, concerns the conversion 
of entity sets into nodes: 

Rule G1 (Entity Sets) 
Each entity set has to be defined as an individual vertex in the graph database. The 
attributes of each entity set are made into properties of the respective vertex. 

The center of Fig. 2.19 shows how the entity sets DEPARTMENT, EMPLOYEE, 
and PROJECT are mapped onto corresponding nodes of the graph database, with the 
attributes attached to the nodes (attributed vertices). 

Rule G2 (Relationship Sets) 
Each relationship set can be defined as an undirected edge within the graph 
database. The attributes of each relationship set are assigned to the respective edge 
(attributed edges). 

Applying rule G2 to the relationship sets DEPARTMENT_HEAD, MEMBER-
SHIP, and INVOLVED gives us the following constellation of edges: 
DEPARTMENT_HEAD and MEMBERSHIP between vertices D (for DEPART-
MENT) and E (for EMPLOYEE) and INVOLVED between vertices E and P 
(PROJECT). 

Relationship sets can also be represented as directed edges. In the next mapping 
rules, G3 (for network-like relationships), G4 (hierarchical relationships), and G5 
(unique-unique relationships), we will focus on directed edge constellations. They 
are used to highlight one specific association of a relationship or the direction of the 
corresponding edge.
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Fig. 2.19 Mapping entity and relationship sets onto graphs 

Mapping Rules for Relationship Sets 
First, we will look at complex-complex or network-like relationships. Figure 2.20 
illustrates rule G3, which applies to these constellations.
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Fig. 2.20 Mapping rule for network-like relationship sets 

Rule G3 (Network-Like Relationship Sets) 
Any complex-complex relationship set can be represented by two directed edges 
where the associations of the relationship provide the names of the edges and the 
respective association types are noted at the arrowheads. One or both edges can 
have attributes of the corresponding relationship set attached. 

In Fig. 2.20, rule G3 is applied to the project participation relationship set, 
resulting in the network-like relationship set INVOLVED being represented by the 
two edges IS_INVOLVED and INVOLVES. The former goes from the employees 
(E) to the projects (P) and has the attribute Percentage, i.e., the workload of the 
individual employees from their assigned projects. Since not necessarily all 
employees work on projects, the association type “mc” is noted at the arrowhead. 
The INVOLVES edge leads from the projects (P) to the employees (E) and has the 
association type “m.” 

It is also possible to define individual nodes for network-like relationship sets, if 
desired. Compared to the relational model, the graph model allows for a broader 
variety of options for representing entity and relationship sets: undirected graph, 
directed graph, relationship sets as edges, relationship sets as nodes, etc. Rules G3, 
G4, and G5, however, strongly suggest using directed edges for relationship sets. 
This serves to keep the definition of the graph database as simple and easy to 
understand as possible, so that infrequent users can intuitively use descriptive 
query languages for graphs. As a rule, directed edges point to unique nodes, i.e., 
to the entity sets which occur exactly once (association type 1) or, in the second 
priority, at most once (association type c) in a relation.
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Fig. 2.21 Mapping rule for hierarchical relationship sets 

Rule G4 (Hierarchical Relationship Sets) 
Every unique-complex relationship set can be established as a directed edge between 
the corresponding vertices. The direction should be chosen so that the association 
type at the arrowhead is unique. 

In Fig. 2.21, the hierarchical subordination of the employees of a department is 
shown. The directed edge IS_MEMBER leads from the leaf node E (for 
EMPLOYEES) to the root node D (DEPARTMENT). The association type 1 is 
associated with the end of the arrow, because all employees are member of exactly 
one department. 

Rule G5 (Unique-Unique Relationship Sets) 
Every unique-unique relationship set can be represented as a directed edge between 
the respective vertices. The direction of the edge should be chosen so that the 
association type at the arrowhead is unique, if possible. 

For instance, Fig. 2.22 illustrates the definition of department heads: The rela-
tionship set DEPARTMENT_HEAD becomes the directed edge 
HAS_DEPARTMENT_HEAD leading from the DEPARTMENT node (D) to the 
EMPLOYEE node (E). The arrowhead is associated with “1,” since each department 
has exactly one department head. 

The graph-based model is highly flexible and offers lots of options, since it is not 
limited by normal forms. However, users can use this freedom too lavishly, which 
may result in overly complex, potentially redundant graph constellations. The



presented mapping rules for entity sets (G1) and relationship sets (G2, G3, G4, and 
G5) are guidelines that may be ignored based on the individual use case. 
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Fig. 2.22 Mapping rule for unique-unique relationship sets 

2.5 Implementation in the Document Model 

2.5.1 Document-Oriented Database Modeling 

Document databases store structured data in records called documents. Common 
document databases have been designed designed to be used for Web and mobile 
applications. This makes them easy to integrate with Web technologies such as 
HTML, JavaScript, or HTTP. The structured document in this sense represents a 
complex object that describes a state of affairs in an app view completely (i.e., 
without references to other data records). 

This requirement for completeness of a document makes foreign key 
relationships unnecessary. This makes it efficient to distribute documents in a 
computer cluster because there is no network latency as with foreign key resolution. 
This horizontal scaling combines different computers into one overall system. Large 
volumes of data (volume, the first V of Big Data) can thus be distributed across 
multiple computers. This mechanism is called sharding. Thus, in the case of docu-
ment databases, the focus is on processing large volumes of heterogeneous data.
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Complex Objects 
Complex objects allow the description of structural relationships between semanti-
cally related data in their entirety. The holistic approach is intended to make 
references and foreign keys unnecessary, which enables the scaling mentioned 
above. Precisely for this purpose, complex objects represent a powerful structuring 
tool that is easy to understand. 

Complex objects are built from simpler objects by applying constructors to them. 
The simplest objects include values such as numbers, text, and Boolean values. 
These are called atomic objects. Based on this, composite structures can be created 
by combining and structuring objects with so-called constructors. There are different 
object constructors like tuples, sets, lists, and arrays. These constructors can be 
applied to all objects: to atomic as well as to compound, constructed, complex 
objects. Thus, by repeated application of the constructors, starting from atomic 
objects, complex objects can be built, which can represent various relationships 
between entities together with their attributes through their structuring. 

A well-known example of a syntax for mapping complex objects is JSON, which 
we will look at in detail below, since it forms the basis for the data structure of 
common document databases. 

JSON Data Format 
JavaScript Object Notation (JSON) is a format for describing complex objects. It  
originates from a subset of JavaScript but can be used independently in most 
programming languages. The syntax is easy for both humans and machines to read 
and write or parse and generate. These features have arguably contributed to JSON’s 
success. 

JSON was originally specified in 1997 by Douglas Crockford as a private 
initiative. Crockford said in a talk that he did not invent JSON, but discovered it 
in JavaScript as a way to exchange data on the Web. He proposed the subset of the 
notation for JavaScript objects as a data exchange format on his private website. The 
format subsequently became widely used in Web development, much to his surprise. 
Today, JSON is internationally standardized and used for Web APIs, client-server 
data communication, mobile applications, and document databases. The JSON 
syntax is built on five basic structures: 

1. Object: Comma-separated set of fields enclosed by curly braces { }. 
2. Field: A pair consisting of a property and a value, separated by a colon :. 
3. Property: Name of the property as a string enclosed in quotation marks " ". 
4. Value: Values are either another object (here the recursive nesting takes effect), 

simple strings in quotes, numbers, truth values (true, false, null), or lists. 
5. List: Comma-separated lists of values enclosed by square brackets [ ]. 

The constructors OBJECT { } and LIST [ ] are orthogonal in the sense of complex 
objects, because they can be applied to all values, i.e., to basic data types as well as to 
more complex structures.
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{ 
"EMPLOYEE": { 

"Name": "Murphy", 
"Place": "Kent", 
"DEPARTMENT": { 

"Designation": "IT" }, 
"PROJECTS": [ { 

"Title": "WebX", 
"Workload": 0.55 }, { 
"Title": "ITorg", 
"Workload": 0.45 } ] 

} } 

EMPLOYEE: 

Place: 
Name: 

DEPARTMENT: 
Designation: 

PROJECTS: 

Workload: 
Title: 

Workload: 
Title: 

Document Structure 

JSON-Syntax 

Fig. 2.23 JSON representation of a fact about the use case in Fig. 2.1 

As an example, Fig. 2.23 shows a JSON structure that meets the requirements of 
the use case in Fig. 2.1. We see in a collection of JSON documents the description of



the case for the IT employee Murphy from Kent. He works on the WebX project 
55% of the time and on the ITorg project 45% of the time. 
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JSON-Schema 

{ 
"type": "object", 
"properties": { 

"EMPLOYEE": { "type": "object", 
"properties": { 

"Name": { "type": "string" }, 
"Place": { "type": "string" }, 
"DEPARTMENT": { "type": "object", 
"properties": { 

"Designation": { "type": "string" } } }, 
"PROJECTS": { "type": "array", 
"items": [ { "type": "object", 
"properties": { 

"Title": { "type": "string" }, 
"Workload": { "type": "integer" } } } 

] } } } } } 

Fig. 2.24 Specification of the structure from Fig. 2.23 with JSON Schema 

To represent this situation, we need an object EMPLOYEE with fields Name and 
Location, a subobject DEPARTMENT with field Designation, and a list of 
subobjects PROJECT with fields Title and Workload. 

JSON does not provide a schema definition as a standard. Since the validation of 
data exchanges is relevant in practice, another standard has developed for this 
purpose in the form of JSON Schema (cf. Fig. 2.24). 

JSON Schema 
A JSON Schema can be used to specify the structure of JSON data for validation and 
documentation. JSON Schemas are descriptive JSON documents (metadata) that 
specify an intersection pattern for JSON data necessary for an application. JSON 
Schema is written in the same syntax as the documents to be validated. Therefore, 
the same tools can be used for both schemas and data. JSON Schema was specified 
in a draft by the Internet Engineering Task Force. There are several validators for 
different programming languages. These can check a JSON document for structural 
conformance with a JSON Schema document. 

JSON Data Modeling with Prototypes 
Because of the rich functionality of JSON Schema, the definition in Fig. 2.24 is 
rather complex, although the subject matter is very simple. In practice and for more



complex facts, JSON Schemas become unwieldy. They are well-suited for machine 
validation, but are not easy for humans to read. 
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JSON-Prototype 

{ 
"EMPLOYEE": { 

"Name": "", 
"PLACE": "", 
"DEPARTMENT": { 

"Designation": "" }, 
"PROJECTS": [ { 

"Title": "", 
"Workload": 0 } ] 

} } 

Fig. 2.25 Model of the structure in Fig. 2.23 as a JSON prototype 

Therefore, we propose the prototype method for conceptual JSON data modeling. 
A prototype (from Greek: πρωτóτυπoς, original image) is an exemplar that 
represents an entire category. Thus, a JSON prototype is a JSON document 
representing a class of JSON documents with the same structural elements 
(OBJECT, PROPERTY, LIST). A JSON prototype defines the structure not as a 
description by metadata, but by demonstration. For example, the document in 
Fig. 2.24 can be viewed as a blueprint for documents having the same objects, 
properties, and lists, where JSON data corresponding to this prototype can have 
arbitrary data values (FIELD, VALUE) of the same data type in the same fields. 

However, to distinguish JSON prototypes from concrete data, we propose to 
represent the values with zero values instead of dummy values. These are the empty 
string ("") for text, zero (0) for numbers, and true for truth values. For lists, we 
assume that specified values represent repeatable patterns of the same structure. 

In Fig. 2.25, we see a well-human-readable JSON prototype instead of the JSON 
Schema in Fig. 2.24 for modeling. For conceptual design, this human-oriented 
approach of the JSON prototype is recommended. Moreover, for machine validation, 
a JSON Schema can be generated from a prototype using appropriate tools. 

For these reasons, we will use the JSON prototype method in the following for 
modeling JSON structures and for mapping entity-relationship models in JSON 
models. 

2.5.2 Mapping Rules for Document Databases 

Very similar to the mapping rules for the design of tables and the structuring of 
graphs, we now look at how we can map entity and relationship sets in JSON 
documents as objects, properties, and lists. As an illustrative example, Fig. 2.26



gives the well-known entity-relationship model for project management 
(cf. Fig. 2.4). 
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{ 
"EMPLOYEE": { 

"Name": "", 
"Place": "" 

} } 

{ 
"PROJECT": { 

"Title": "" 
} } 

{ 
"DEPARTMENT": { 

"Designation": "" 
} } 

Fig. 2.26 Mapping of selected entity sets and attributes to objects and properties 

The first mapping rule D1 is dedicated to the transformation of entity sets and 
attributes into objects and properties.
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Rule D1 (Entity Sets and Attributes) 
Selected entities are defined as objects in documents. The attributes are kept as its 
properties. A root element is suitable for information about the nature of the 
entity set: a parent object embeds the entity in a field whose only property is the 
entity set and whose value is the entity. 

For example, in Fig. 2.26, the entity sets DEPARTMENT with attribute Desig-
nation, EMPLOYEE with attributes Name and Location, and PROJECT with 
attribute Title are mapped into corresponding objects with root element. 

Now we consider the mapping of relationship sets to documents. Here we notice 
that a complete document mapping a set of facts with multiple entities and 
relationships implies an ordering of the entities and relationships. In the document 
model, the relationships are no longer symmetric, but aggregated. 

Rule D2 (Aggregation) 
For each symmetric set of relationships mapped in a document type, an asymmetric 
aggregation must be specified. It is decided which of the related entity sets will be 
superordinately associated in the present use case and which entity set will be 
subordinately associated. 

These questions of aggregation need to be answered on a case-by-case basis. In 
the use case of the project report in Figs. 2.1 and 2.23, for the document type 
EMPLOYEES, it was decided to aggregate the DEPARTMENT information so 
that the employees can be stored as individual documents. 

We propose to mark the root element, i.e. the entity set that is named first in the 
JSON structure of a document type, in the ER diagram with an additional frame. 
Furthermore, the aggregation directions for relationship sets can be marked by an 
additional wide frame on the child side of the relationship symbol. 

As an example, we see in Fig. 2.27 that the entity set EMPLOYEE represents the 
root element of the document type. This is marked by the additional frame around 
the entity set symbol. The entity set DEPARTMENT is aggregated. This is marked 
on the relationship symbol with an additional wider frame on the side of the entity set 
that is aggregated in the JSON document. 

In Fig. 2.27, the association of EMPLOYEE to DEPARTMENT is unique, so the 
child entity can be stored as a scalar value in an object field. 

Rule D3 (Unique Child Association) 
A child entity set whose association is unique (type 1 or c) is inserted as a child 
object in a field within the object of the parent associated entity set. The child entity 
set determines the name of the corresponding property. 

Rule D4 (Multiple Child Association) 
Any child entity set whose association is multiple (type m or mc) is inserted as a list 
of child objects in a field of the parent object. The child entity set determines the 
name of the property of this field.
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DEPARTMENT MEMBERSHIP m1 

RULE D3 

RULE D2 

EMPLOYEE 

{ 
"EMPLOYEE": { 

"Name": "", 
"Place": "", 
"DEPARTMENT": { 

"Designation": "" } 
} } 

Fig. 2.27 Aggregation of a unique association as a field with a subobject 

For multivalued associations, list fields are needed. As another example, we see in 
Fig. 2.28 that the association of EMPLOYEE to PROJECT is multiple (mc). Again, 
EMPLOYEE is marked root element with an extra rectangle. Also, in Fig. 2.28, 
INVOLVED is marked with a wider frame on the side of PROJECT to indicate that 
projects will be aggregated into the EMPLOYEE object in the document. However, 
this time, the association of EMPLOYEE to PROJECT is multiple. Employees can 
work on different projects with different workloads (Percentage). Therefore, in 
Fig. 2.28, the projects to employees are stored in a field with lists of subobjects of 
type PROJECTS. 

The relationship attribute Percentage is stored as the property Workload in the 
subobject PROJECT in Fig. 2.28. Here we see that from the entity-relationship 
model, the attributes of relationships with composite keys (here, e.g., Percentage; 
cf. Fig. 2.3) can be mapped in JSON as fields of the subobjects (in this case, 
projects), since these take on the context of the parent objects (such as the employees 
in this case). 

Rule D5 (Relationship Attributes) 
Attributes of a relationship set whose associated entity set is aggregated can be 
embedded in the corresponding subobject because the subobject takes over the 
context of the parent object. 

A document type stores a data structure with respect to a particular use case in an 
application. For example, this can be a view, a download, an editor, or a data 
interface. Different use cases may involve the same entity and relationship sets in



different perspectives. Because of the denormalized, application-oriented data stor-
age in document databases, there is no one-to-one correspondence of entity and 
relationship sets to document types. 
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RULE D5 

{ 
"EMPLOYEE": { 

"Name": "", 
"Place": "", 
"PROJECTS": [ { 

"Title": "", 
"Workload": 0 } ] 

} } 

Fig. 2.28 Aggregation of an ambiguous association as a field with a list of subobjects, including 
relationship attributes 

Rule D6 (Document Types) 
For each document type, the selection of entity sets and attributes must be decided 
according to rule D1 and aggregation according to rule D2. Document types are 
determined by the application and are used for the performant storage and represen-
tation of a complete set of facts for a specific use case. 

This means that one and the same entity can be subordinate at one time and 
superordinate at another time in different document types. For example, for project 
management data model in Fig. 2.1, there are two use cases: 

First, the employee data is entered in an input mask according to the structure in 
Fig. 2.23 on the level of individual employees. For this write access, it is more 
efficient to store individual employee records as independent documents. 

Second, all employees are reported per department with project workloads 
including calculated financial expenditure in one application view. For this read 
access, the transmission of a single document per department is more economical. 
Therefore, for the sake of performance, a deliberate redundancy can be inserted by 
serving both use cases with different document structures that use the same entity 
and relationship sets. Therefore, in Fig. 2.29, another document type has been
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DEPARTMENT 

EMPLOYEE 

MEMBERSHIPDEPARTMENT_HEAD 

PROJECT 

c 1 

1 m 

m mc 

INVOLVED 

RULE D6 

RULE D7 

{ 
"DEPARTMENT": { 

"Designation": "", 
"EMPLOYEES": { 

"DEPARTMENT_HEAD": { 
"Name": "", 
"Place": "" } }, 

"MEMBERS": [ { 
"Name": "", 
"Place": "", 
"PROJECTS": [ { 

"Title": "", 
"Workload": 0, 
"Expense": 0 } ] 

} ] } 
} } 

Fig. 2.29 Document type DEPARTMENT with aggregation of the same entity set EMPLOYEE in 
two different associations DEPARTMENT_HEAD and MEMBERS



defined for this purpose. This time, DEPARTMENT is the root entity, and 
employees are aggregated. Now, a second, unique association of department to 
employee has been added: the department head. Thus, a field named EMPLOYEE 
would not be unique. This has been solved here by adding another structural level 
under EMPLOYEES with two properties named after the DEPARTMENT_HEAD 
and MEMBERSHIP relationship sets.
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Rule D7 (Relationship Sets) 
If property names for aggregations according to rules D3–D4 are not unique because 
they concern the same entity set, they can each be disambiguated by another 
subordinate object field with the name of the corresponding relationship set. 

Further, we see the new property Expense in subobjects of type PROJECTS. In 
the use case, this is a calculated field. Document databases often store application-
oriented aggregated data rather than normalized granular data to optimize perfor-
mance for Big Data. 

2.6 Formula for Database Design 

This section condenses our knowledge of data modeling into a formulaic action plan. 
The design steps can be characterized as follows: First, during the requirements 
analysis, the relevant information facts must be recorded in writing in a catalog. In 
the further design steps, this list can be supplemented and refined in consultation 
with the future users, since the design procedure is an iterative process. In the second 
step, the entity and relationship sets are determined as well as their identification 
keys and feature categories. 

Then, generalization hierarchies and aggregation structures6 can be examined in 
the third step. In the fourth step, the entity-relationship model is aligned with the 
existing application portfolio so that the further development of the information 
systems can be coordinated and driven forward in line with the longer-term corporate 
goals. In addition, this step serves to avoid legacy systems as far as possible and to 
preserve the enterprise value with regard to the data architecture. 

The fifth step maps the entity-relationship model to an SQL and/or NoSQL 
database. In this process, the explained mapping rules for entity sets and relationship 
sets are used (cf. corresponding mapping rules for the relational, graph, and docu-
ment models, respectively). In the sixth step, the integrity and privacy rules are 
defined. In the seventh step, the database design is checked for completeness by

6 Two important abstraction principles in data modeling are aggregation and generalization. Under 
the title “Database Abstractions: Aggregation and Generalization,” the two database specialists 
J.M. Smith and D.C.P Smith already pointed this out in 1977 in Transactions on Database Systems. 
Aggregation means the combination of entity sets to a whole; generalization means the generaliza-
tion of entity sets to a superordinate entity set. 



developing important use cases (cf. Unified Modeling Language7 ) and prototyping 
them with descriptive query languages. 
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Steps in database design 

Fig. 2.30 From rough to detailed in ten design steps 

The determination of an actual quantity structure as well as the definition of the 
physical data structure takes place in the eighth step. This is followed by the physical 
distribution of the data sets and the selection of possible replication options in the 
ninth step. When using NoSQL databases, it must be weighed up here, among other 
things, whether or not availability and failure tolerance should be given preference 
over strict consistency (cf. CAP theorem in Sect. 4.5.1). Finally, performance testing 
and optimization of data and access structures must be performed in the tenth step to 
guarantee users from different stakeholder groups reasonable response times for their 
application processes or data searches. 

The recipe shown in Fig. 2.30 is essentially limited to the data aspects. In addition 
to data, functions naturally play a major role in the design of information systems. 
Thus, CASE tools (CASE = computer-aided software engineering) have emerged in 
recent years to support not only database design but also function design.

7 The Unified Modeling Language or UML is an ISO-standardized modeling language for the 
specification, construction, and documentation of software. An entity-relationship model can be 
easily transformed into a class diagram and vice versa. 
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Database Languages 3 

3.1 Interacting with Databases 

In the previous chapter, we have seen how to model databases. To operate the 
database, different stakeholders interact with it, as shown in Fig. 3.1. 

Data architects define the database schema. They design an architecture to run 
the database system and embed it into the existing landscape with all necessary 
components. They also describe and document the data and structures. It makes 
sense for them to be supported by a data dictionary system (see “Glossary”). 

Database specialists, often called database administrators, install the database 
server. For schema-oriented database systems (e.g., relational), they create the 
database schema. For schema-free databases (e.g., document model), this step is 
not necessary, because the schema is created implicitly by inserting appropriate 
database objects. Based on this, large amounts of data can be imported into the 
database. To do this, there are extract-transform-load (ETL) tools or powerful import 
functionalities of the database software. To protect the data, administrators define 
users, roles, and access rights and ensure regular backup of the database. For large 
amounts of data, they ensure the performance and efficiency of the database system 
by, for example, creating indexes, optimizing queries syntactically, or distributing 
the database server across multiple computers. 

Application programmers develop applications that allow users to insert, modify, 
and delete data in the database. They also implement interfaces through which data 
can be automatically exchanged with other databases. 

Data analysts, who are also called data scientists if they are very highly 
specialized, analyze databases in order to support data-based decisions. To do this, 
they query data, evaluate it using statistical and/or soft computing-based methods 
(see, e.g., fuzzy databases in Chap. 6), and visualize the results. 

To successfully operate a database, a database language is necessary that can 
cover the different requirements of the users. Query and manipulation languages for 
databases have the advantage that one and the same language can be used to create 
databases, assign user rights, or modify and evaluate data. In addition, a descriptive

# The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 
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language allows precise, reproducible interaction with the database without having 
to program routines and procedures. Therefore, we will look at different database 
languages in the following.
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Data architects Database specialists 

Design the system architecture 
Define the database schema 
Describe the data 

Implement applications 
and interfaces 
Query, manipulate, or 
delete data 

Application 
programmers 

Data analysts 

Install the database server 
Create the database schema 

Import data 
Assign user rights 

Secure backups 
Optimize performance 

Query, analyze, and 
visualize data 

Support decisions 

Applications 

Interfaces 

Databases 

Users 

Fig. 3.1 Interaction with a database 

3.2 Relational Algebra 

3.2.1 Overview of Operators 

We start with a theoretical model for database languages. The relational algebra 
provides a formal framework for database query languages. It defines a number of 
algebraic operators that always apply to relations. Although most modern database 
languages do not use those operators directly, they provide analogous 
functionalities. However, they are only considered relationally complete languages 
in terms of the relational model if the original potential of relational algebra is 
retained. 

Below, we will give an overview of the operators used in relational algebra, 
divided into set operators and relational operators, on two sample relations R and 
S. Operators work on either one or two tables and always output a new relation. This



consistency (algebraic property) allows for the combination of multiple operators 
and their effects on relations. 
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Set operators 

R 

S 

R ø S 

R 

S 

R 

S 

R \ S 

Set union of two 
relations R and S 

Set intersection of two 
relations R and S 

Set difference of two 
relations R and S 

Cartesian product of two 
relations R and S 

R ù S 

R ×  S 

R 

S 

Fig. 3.2 Set union, set intersection, set difference, and Cartesian product of relations 

Set operators match the known set operations (see Fig. 3.2 and Sect. 3.2.2 below). 
This group consists of set union with the symbol [, set intersection \, set difference 
\, and Cartesian product ×. Two relations R and S that are union-compatible can be 
combined (R[S), intersected (R\S), or subtracted (R\S). The Cartesian product of 
two relations R and S (R×S) can be defined without conditions. These set operations 
result in a new set of tuples, i.e., a new relation. 

The relation operators shown in Fig. 3.3 were defined by Ted Codd specifically 
for relations and are discussed in detail in Sect. 3.2.3. The project operator, 
represented by Greek letter π (pi), can be used to reduce relations to subsets. For 
instance, the expression πA(R) forms a subset of the relation R based on a set A of 
attributes. An expression σF(R) with the select operator σ (Greek letter sigma) takes a 
range of tuples from the relation R based on a selection criterion or formula F. The 
join operator, symbol |×|, conjoins two relations into a new one. For instance, the two 
relations R and S can be combined by an operation R|×|PS with P specifying the 
applicable join condition or join predicate. Lastly, a divide operation R÷S, with the 
divide operator represented by the symbol ÷, calculates a new table by dividing the 
relation R by the relation S.
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Relation operators 

Projection of a relation R on 
a set M of attributes 

R 

M (R) 

R 

F (R) 

Selection from a relation 
R using a formula F 

R 

R |X|P S
Join of two relations 
R and S with the 
join predicate P 

R S 

R ÷ S 

Division of a relation R 
by a sub-relation S 

S 

Fig. 3.3 Projection, selection, join, and division of relations 

The following two sections provide a more detailed explanation of set and 
relation operators of relational algebra with illustrative examples. 

3.2.2 Set Operators 

Since every relation is a set of records (tuples), multiple relations can be correlated 
using set theory. However, it is only possible to form a set union, set intersection, or 
set difference of two relations if they are union-compatible.
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Union Compatibility 
Two relations are union-compatible if they meet both of the following criteria: Both 
relations have the same number of attributes and the data formats of the 
corresponding attribute categories are identical. 

Figure 3.4 shows an example: For each of two company clubs, a table has been 
defined from an employee file, containing employee numbers, last names, and street 
names. The two tables SPORTS_CLUB and PHOTO_CLUB are union-compatible: 
They have the same number of attributes, with values from the same employee file 
and therefore defined from the same range. 

In general, two union-compatible relations R and S are combined by a set union 
R[S where all entries from R and all entries from S are entered into the resulting 
table. Identical records are automatically unified, since a distinction between tuples 
with identical attribute values in the resulting set R[S is not possible. 

The CLUB_MEMBERS table (Fig. 3.5) is a set union of the tables 
SPORTS_CLUB and PHOTO_CLUB. Each result tuple exists in the 
SPORTS_CLUB table, the PHOTO_CLUB table, or both of them. Club member 
Howard is only listed once in the result table, since duplicate results are not 
permitted in the unified set. 

The other set operators are defined similarly: The set intersection R\S of two 
union-compatible relations R and S holds only those entries found in both R and 
S. In our table excerpt, only employee Howard is an active member of both the 
SPORTS_CLUB and the PHOTO club. 

The resulting set SPORTS_CLUB\PHOTO_CLUB is a singleton, since exactly 
one person has both memberships. 

SPORTS_CLUB 

E1 Murphy Murray Road Kent 

E7 Howard Lorain Ave. Cleveland 

E19 Stewart E Main St. Stow 

E# Name Street City 

PHOTO_CLUB 

E4 Bell S Water St. Kent 

E7 Howard Lorain Ave. Cleveland 

E# Name Street City 

Fig. 3.4 Union-compatible tables SPORTS_CLUB and PHOTO_CLUB
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Fig. 3.5 Set union of the two tables SPORTS_CLUB and PHOTO_CLUB 

Union-compatible relations can also be subtracted from each other: The set 
difference R\S is calculated by removing all entries from R that also exist in S. In 
our example, a subtraction SPORTS_CLUB\PHOTO_CLUB would result in a 
relation containing only the members Murphy and Stewart. Howard would be 
eliminated, since he is also a member of the PHOTO_CLUB. The set difference 
operator therefore allows us to find all members of the sport club that are not also part 
of the photo club. 

The basic relationship between the set intersection operator and the set difference 
operator can be expressed as a formula: 

R \ S R∖ R∖Sð Þ: 
The determination of set intersections is therefore based on the calculation of set 

differences as can be seen in our example with the sports and photography club 
members. 

The last remaining set operator is the Cartesian product of two arbitrary relations 
R and S that do not have to be union-compatible. The Cartesian product R×S of two 
relations R and S is the set of all possible combinations of tuples from R with tuples 
from S. 

To illustrate this, Fig. 3.6 shows a table COMPETITION containing a combina-
tion of members of (SPORTS_CLUB \ PHOTO_CLUB) × PHOTO_CLUB, i.e., all 
possible combinations of sports club members (that are not also members of the 
photo club) and photo club members. It shows a typical competition constellation for 
the two clubs. Of course, Howard as a member of both clubs cannot compete against 
himself and enters on the photography club side due to the set difference 
SPORTS_CLUB \ PHOTO_CLUB. 

This operation is called a Cartesian product because all respective entries of the 
original tables are multiplied with those of the other. For two arbitrary relations R 
and S with m and n entries, respectively, the Cartesian product R×S has m times n 
tuples.
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COMPETITION = (SPORTS_CLUB \ PHOTO_CLUB)  ×  PHOTO_CLUB 

E1 Murphy Murray Road Kent 

E1 Murphy Murray Road Kent 

E19 Stewart E Main Street Stow 

E# Name Street City 

E19 Stewart E Main Street Stow 

E4 Bell S Water Street Kent 

E7 Howard Lorain Avenue Cleveland 

E4 Bell S Water Street Kent 

E# Name Street City 

E7 Howard Lorain Avenue Cleveland 

Fig. 3.6 COMPETITION relation as an example of Cartesian products 

3.2.3 Relation Operators 

The relation-based operators complement the set operators. A projection πa(R) with 
the project operator π forms a subrelation of the relation R based on the attribute 
names defined by a. For instance, given a relation R with the attributes (A,B,C,D), 
the expression πA,C(R) reduces R to the attributes A and C. The attribute names in a 
projection do not have to be in order; e.g., R′ := πC,A(R) means a projection of R = 
(A,B,C,D) onto R′ = (C,A). 

The first example in Fig. 3.7, πCity(EMPLOYEE), lists all places of residence 
from the EMPLOYEE table in a single-column table without any repetitions. The 
second example, πSub,Name(EMPLOYEE), results in a subtable with all department 
numbers and names of the respective employees. 

The select operator σ in an expression σF(R) extracts a selection of tuples from the 
relation R based on the formula F. F consists of a number of attribute names and/or 
value constants connected by comparison operators, such as <, >, or  =, or b  
logical operators, e.g., AND, OR, or NOT. σF(R) therefore includes all tuples from R 
that meet the selection condition F. 

This is illustrated by the examples for selection of tuples from the EMPLOYEE 
table in Fig. 3.8: In the first example, all employees meeting the condition 
City=Kent, i.e., living in Kent, are selected. The second example with the condition 
“Sub=D6” picks out only those employees working in department D6. The third and 
last example combines the two previous selection conditions with a logical connec-
tive, using the formula “City=Kent AND Sub=D6.” This results in a singleton 
relation, since only employee Bell lives in Kent and works in department D6. 

Of course, the operators of relational algebra as described above can also be 
combined with each other. For instance, if we first do a selection for employees of 
department D6 by σSub=D6(EMPLOYEE) and then project on the City attribute 
using the operator πCity(σSub=D6(EMPLOYEE)), we get a result table with the two 
towns of Stow and Kent.
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EMPLOYEE 

E19 Stewart E Main Street Stow D6 

E1 Murphy Murray Road Kent D3 

E7 Howard Lorain Avenue Cleveland D5 

E4 Bell S Water Street Kent D6 

E# Name Street City Sub 

City  (EMPLOYEE) 

Stow 

Kent 

Cleveland 

City 

Sub,Name (EMPLOYEE) 

D6 Stewart 

D3 Murphy 

D5 Howard 

D6 Bell 

Sub Name 

Fig. 3.7 Sample projection on EMPLOYEE 

Next is the join operator, which merges two relations into a single one. The join 
R|×|PS of the two relations R and S by the predicate P is a combination of all tuples 
from R with all tuples from S where each meets the join predicate P the join operator 
combines a Cartesian product with a selection over predicate P, hence the symbol. 
The join predicate contains one attribute from R and one from S. Those two 
attributes are correlated by a comparison operator (<, >, or  =) so that the relations 
R and S can be combined. If the join predicate P uses the relational operator =, the 
result is called an equi-join. 

The join operator often causes misunderstandings which may lead to wrong or 
unwanted results. This is mostly due to the predicate for the combination of the two 
tables being left out or ill-defined. 

For example, Fig. 3.9 shows two join operations with and without a defined join 
predicate. By specifying EMPLOYEE |×|Sub=D#DEPARTMENT, we join the 
EMPLOYEE and DEPARTMENT tables by expanding the employee information 
with their respective departments. 

Should we forget to define a join predicate in the example from Fig. 3.9 and 
simply specify EMPLOYEE × DEPARTMENT, we get the Cartesian product of the 
two tables EMPLOYEE and DEPARTMENT. This is a rather meaningless combi-
nation of the two tables, since all employees are juxtaposed with all departments, 
resulting in combinations of employees with departments they are not actually part 
of (see also the COMPETITION table in Fig. 3.6).
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City=Kent (EMPLOYEE)σ 

σ 

σ 

E1 Murphy Murray Road Kent D3 

E4 Bell S Water Street Kent D6 

E# Name Street City Sub 

Sub=D6(EMPLOYEE) 

E19 Stewart E Main Street Stow D6 

E4 Bell S Water Street Kent D6 

E# Name Street City Sub 

City=Kent AND Sub=D6 (EMPLOYEE) 

E4 Bell S Water Street Kent D6 

E# Name Street City Sub 

Fig. 3.8 Examples for selection operations 

As shown by the examples in Fig. 3.9, the join operator |×| with the join predicate 
P is merely a limited Cartesian product. 

In fact, a join of two tables R and S without a defined join predicate P expresses 
the Cartesian product of the R and S tables, i.e., for an empty predicate P={} 

R j× jP= fg S R × S: 

Using a join predicate as the selection condition in a select operation yields 

R ×j jP S P R× Sð Þ: 
This general formula demonstrates that each join can be expressed using first a 

Cartesian product and second a selection. 
Referring to the example from Fig. 3.9, we can calculate the intended join 

EMPLOYEE j× jSub=D# DEPARTMENT with the following two steps: First we 
generate the Cartesian product of the two tables EMPLOYEE and DEPARTMENT. 
Then all entries of the preliminary result table meeting the join predicate Sub=D# 
are determined using the selection σSub=D#(EMPLOYEE × DEPARTMENT). This 
gives us the same tuples as calculating the join EMPLOYEE j× jSub=D# DEPART-
MENT directly (see the tuples marked in yellow in Fig. 3.9).
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EMPLOYEE 

E19 Stewart E Main St. Stow D6 

E1 Murphy Murray Road Kent D3 

E7 Howard Lorain Ave. Cleveland D5 

E4 Bell S Water St. Kent D6 

E# Name Street City Sub 

DEPARTMENT 

D3 IT 

D5 HR 

D6 Accounting 

D# DepartmentName 

EMPLOYEE |×|Sub=D# DEPARTMENT 

E19 Stewart E Main St. Stow D6 

E1 Murphy Murray Road Kent D3 

E7 Howard Lorain Ave. Cleveland D5 

E4 Bell S Water St. Kent D6 

E# Name Street City Sub 

D6 Accounting 

D3 IT 

D5 HR 

D# DepartmentName 

D6 Accounting 

EMPLOYEE × DEPARTMENT 

E# Name Street City Sub D# DepartmentName 

E19 Stewart E Main St. Stow D6 D3 IT 

E19 Stewart E Main St. Stow D6 D5 HR 

E19 Stewart E Main St. Stow D6 D6 Accounting 

E1 Murphy Murray Road Kent D3 D3 IT 

E1 Murphy Murray Road Kent D3 D5 HR 

E1 Murphy Murray Road Kent D3 D6 Accounting 

E7 Howard Lorain Ave. Cleveland D5 D3 IT 

E7 Howard Lorain Ave. Cleveland D5 D5 HR 

E7 Howard Lorain Ave. Cleveland D5 D6 Accounting 

E4 Bell S Water St. Kent D6 D3 IT 

E4 Bell S Water St. Kent D6 D5 HR 

E4 Bell S Water St. Kent D6 D6 Accounting 

Fig. 3.9 Join of two relations with and without a join predicate
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R: Table of employees 
and projects they are 
assigned to 

P1 

P2 

P4 

P1 

E# P# 

P2 

P4 

E1 

E1 

E1 

E2 

E2 

E4 

E4 P2 

S: Project combination 

P2 

P4 

P# 

R’ := R ÷  S 

E1 

E4 

E# 

All employees working 
on projects P2 and P4 

Fig. 3.10 Example of a divide operation 

A division of the relation R by the relation S is only possible if S is contained 
within R as a subrelation. The divide operator R÷S calculates a subrelation R′ 
from R, which has the property that all possible combinations of the tuples r′ from 
R′ with the tuples s from S are part of the relation R, i.e., the Cartesian product R′×S 
must be contained within R. 

Table R in Fig. 3.10 shows which employees work on which projects. Assuming 
we want to determine who works on all projects from S, i.e., projects P2 and P4, we 
first define the table S with the project numbers P2 and P4. S is obviously contained 
in R, so we can calculate the division R′ := R÷S. The result of this division is the 
table R′ with the two employees E1 and E4. A quick check shows that E1 and E4 do 
indeed work on both P2 and P4, since the table R contains the tuples (E1,P2), (E1, 
P4), (E4,P2), and (E4,P4). 

A divide operation can also be expressed through project and set difference 
operators and a Cartesian product, which makes the divide operator the third 
substitutable operator in relational algebra besides the set intersection and the join 
operator. 

In summary, set union, set difference, Cartesian product, projection, and selection 
make up the minimal set of operators that renders relational algebra fully functional: 
Set intersection, join, and division can all be expressed using those five operators of 
relational algebra, although sometimes circuitously. 

The operators of relational algebra not only are theoretically significant but also 
have a firm place in practical application. They are used in the language interfaces of 
relational database systems for the purpose of optimization (see Sect. 5.3.2) as well 
as in the construction of database computers: The operators of relational algebra and 
their derivatives do not have to be realized in software—they can be implemented 
directly in hardware components.
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3.2.4 Relationally Complete Languages 

Languages are relationally complete if they are at least equivalent to relational 
algebra, i.e., all operations that can be executed on data with relational algebra 
must also be supported by relationally complete languages. 

Relational algebra is the orientation point for the commonly used languages of 
relational database systems. We already mentioned SQL (Structured Query Lan-
guage), which is equally powerful as relational algebra and is therefore considered a 
relationally complete language. Regarding database languages, relationally com-
plete means that they can represent the operators of relational algebra. 

Completeness Criterion 
A database language is considered relationally complete if it enables at least the set 
operators set union, set difference, and Cartesian product as well as the relation 
operators projection and selection. 

This is the most important criterion for assessing a language’s suitability for 
relational contexts. Not every language working with tables is relationally complete. 
If it is not possible to combine multiple tables via their shared attributes, the 
language is not equivalent to relational algebra and can therefore not be considered 
relationally complete. 

Relational algebra is the foundation for the query part of relational database 
languages. Of course, it is also necessary to be able to not only analyze but also 
manipulate tables or individual parts. Manipulation operations include, among 
others, insertion, deletion, or changes to tuple sets. Database languages therefore 
need the following functions in order to be practically useful:

• It has to be possible to define tables and attributes.
• Insert, change, and delete operations must be possible.
• Aggregate functions such as addition, maximum and minimum determination, or 

average calculation should be included.
• Formatting and displaying tables by various criteria must be possible, e.g., 

including sorting orders and control breaks for table visualization.
• Languages for databases must include elements for assigning user permissions 

and for protecting the databases (see Sect. 4.2).
• Arithmetic expressions and calculations should preferably be supported.
• Multi-user access should be supported (transaction principle; see Sects. 4.4 and 

4.5), and commands for data security should be included. 

The definition of relational algebra has given us the formal framework for 
relational database languages. However, this formal language is not per se used in 
practice; rather, it has been a long-standing approach to try and make relational 
database languages as user-friendly as possible. Since the algebraic operators in 
their pure form are beyond most database users, they are represented by more 
accessible language elements. The following sections will give examples from 
SQL in order to illustrate this.
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3.3 Relational Language SQL 

In the 1970s, the language SEQUEL (Structured English QUEry Language) was 
created for IBM’s System R, one of the first working relational database systems. 
The concept behind SEQUEL was to create a relationally complete query language 
based on English words, such as “select,” “from,” “where,” “count,” “group by,” 
etc., rather than mathematical symbols. A derivative of that language named SQL 
(Structured Query Language) was later standardized first by ANSI and then interna-
tionally by ISO. For years, SQL has been the leading language for database queries 
and interactions. 

A tutorial for SQL can be found on the website accompanying this book, www. 
sql-nosql.org. The short introduction given here covers only a small part of the 
existing standards; modern SQL offers many extensions, e.g., for programming, 
security, object orientation, and analysis. 

Before we can query data, we must be able to enter data into the database. 
Therefore, we will first start with how to create a database schema starting from 
the table structure and fill it with data. 

3.3.1 Creating and Populating the Database Schema 

SQL provides the CREATE TABLE command for defining a new table. The 
EMPLOYEE table would be specified as follows. The first column, which consists 
of six characters, is called E# and cannot be empty; The second column called Name 
can contain up to 20 characters, and so on.1 

CREATE TABLE EMPLOYEE 
( E# CHAR(6) NOT NULL, 
Name VARCHAR(20), 
...)

1 The column name E# without double quotes is used here for illustrative purposes. In standard 
SQL, unquoted object names may contain only letters (A–Z and a–z), numbers (0–9), and the 
underscore character. Thus, a column name such as E# is not a legal name unless you enclose it in 
double quotes (called a quoted identifier in the SQL standard), but if you do that, you have to 
reference it as “E#” everywhere it is referenced. The names can also be modified to something like 
E_ID if readers would like to run the examples throughout the book. 

http://www.sql-nosql.org
http://www.sql-nosql.org
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The SQL language allows to define characteristics and tables (data definition 
language or DDL). The SQL standard specifies different formats as data types:

• CHARACTER(n) or CHAR(n) means a sequence of letters of fixed length.
• CHARACTER VARYING or VARCHAR allows the specification of letter 

sequences of any length.
• Numeric data is specified with the data types NUMERIC or DECIMAL, where 

size and precision must be specified.
• Integers can be specified by INTEGER or SMALLINT.
• The data type DATE gives dates by YEAR, MONTH, and DAY. Different 

formats are used, e.g., (yyyy,mm,dd) for year, month, and day (see Sect. 6.3 
about temporal databases).

• The TIME data type returns time information in HOUR, MINUTE, and 
SECOND.

• The TIMESTAMP data type is a combination of the DATE and TIME types. 
Additionally, the precision of the time and the time zone can be specified.

• There are also other data types for bit strings (BIT or BIT VARYING) and for 
large objects (CHARACTER LARGE OBJECT or BINARY LARGE OBJECT).

• In addition, the integration of complex objects with XML (eXtensible Markup 
Language) and JSON (JavaScript Object Notation) is supported. 

The opposite command, DROP TABLE, is used to delete table definitions. It is 
important to note that this command also eliminates all table contents and assigned 
user permissions (see Sect. 4.2). 

Once a table is defined, the following command can be used to insert new tuples: 

INSERT INTO EMPLOYEE VALUES 
('E20', 'Mahoney', 'Market Ave S', 'Canton', 'D6'), 
('E21', 'Baker', O Street', Lincoln, 'D5'); 

In practice, the INSERT command of SQL is rather suitable for modest data 
volumes. For larger data volumes (cf. big data), SQL database systems often offer 
special NoSQL language extensions that support efficient loading of large data 
volumes (so-called bulk loads).2 In addition, extract-transform-load (ETL) tools 
and application programming interfaces (API) exist for this purpose. 

Existing tables can be manipulated using UPDATE statements:

2 Examples are the LOAD command in MySQL and the COPY command in PostgreSQL. 
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UPDATE EMPLOYEE 
SET City = 'Cleveland' 
WHERE City = 'Cuyahoga Heights' 

This example replaces the value Cuyahoga Heights for the City attribute with the 
new name Cleveland in all matching tuples of the EMPLOYEE table. The UPDATE 
manipulation operation is set-based and can edit a multi-element set of tuples. 

The content of entire tables or parts of tables can be removed with the help of 
DELETE statements: 

DELETE FROM EMPLOYEE 
WHERE City = 'Cleveland' 

DELETE statements usually affect sets of tuples if the selection predicate applies 
to multiple entries in the table. Where referential integrity is concerned, deletions can 
also impact dependent tables. 

3.3.2 Relational Operators 

As described in Sect. 1.2.2, the basic structure of SQL looks like this: 

SELECT selected attributes (Output) 
FROM tables to be searched (Input) 
WHERE selection condition (Processing) 

In the following, we will look at the individual relational operators and their 
implementation in SQL. 

Projection 
The SELECT clause corresponds to the project operator of relational algebra, in that 
it defines a list of attributes. In SQL, the equivalent of the project operator πSub, 
Name(EMPLOYEE) as shown in Fig. 3.7 is simply 

SELECT Sub, Name 
FROM EMPLOYEE
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SELECT City 
FROM EMPLOYEE 

SELECT DISTINCT City 
FROM EMPLOYEE 

Fig. 3.11 Projection with and without elimination of duplicates 

If a list of places of residence according the EMPLOYEE table is to be compiled, 
the following instruction will suffice: 

SELECT Place 
FROM EMPLOYEE; 

The result table is a single-column table with the localities Stow, Kent, Cleveland, 
and Kent, as shown in Fig. 3.11 to the right. 

Correctly, it must be added here that the result table of query is not a relation at all 
in the sense of the relation model, since every relation is a set by definition and hence 
does not allow duplicates. Since SQL, unlike relation algebra, does not eliminate 
duplicates, the word DISTINCT must be added to the SELECT clause (cf. Fig. 3.11). 

Cartesian Product 
The FROM clause lists all tables to be used. For instance, the Cartesian product of 
EMPLOYEE and DEPARTMENT is expressed in SQL as 

SELECT E#, Name, Street, City, Sub, D#, Department_Name 
FROM EMPLOYEE, DEPARTMENT 

This command generates the cross-product table from Fig. 3.9, similar to the 
equivalent operators



3.3 Relational Language SQL 85

EMPLOYEE ×j jP= fgDEPARTMENT 

and 

EMPLOYEE ×DEPARTMENT: 

Join 
By setting the join predicate “Sub=D#” in the WHERE clause, we get the equi-join 
of the EMPLOYEE and DEPARTMENT tables in SQL notation: 

SELECT E#,Name,Street,City,Sub,D#,Department_Name 
FROM EMPLOYEE, DEPARTMENT 
WHERE Sub=D# 

An alternative way of expressing this is the following: 

SELECT * 
FROM EMPLOYEE, 
JOIN DEPARTMENT 
ON Sub=D# 

An asterisk (*) in the SELECT clause means that all attributes in the table are 
selected, i.e., the result table contains all the attributes E#, Name, Street, City, and 
Sub (Subordinate). 

Selection 
Qualified selections can be expressed by separate statements in the WHERE clause 
being connected by the logical operators AND or OR. The SQL command for the 
selection of employees σCity=Kent AND Sub=D6(EMPLOYEE) as shown in Fig. 3.8 
would be 

SELECT * 
FROM EMPLOYEE 
WHERE City='Kent' AND Sub='D6' 

The WHERE clause contains the desired selection predicate. Executing the above 
query would therefore give us all information of the employee Bell from Kent 
working in department D6.
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Union 
The set-oriented operators of the relation algebra find their equivalent in the SQL 
standard. For example, if one wants to unite the union-compatible tables 
SPORTCLUB with FOTOCLUB, this is done in SQL with the keyword UNION: 

SELECT * 
FROM SPORTCLUB 

UNION 
SELECT * 
FROM FOTOCLUB; 

Since the two tables are union-compatible, the results table contains all sports and 
photo club members, eliminating duplicates. 

Difference 
If you want to find out all sport club members who are not in the photo club at the 
same time, the query is done with the difference operator EXCEPT: 

SELECT * 
FROM SPORTCLUB 

EXCEPT 
SELECT * 
FROM PHOTOCLUB; 

Intersection 
For union-compatible tables, intersections can be formed. If you are interested in 
members who participate in both the sports club and the photo club, the INTER-
SECT keyword comes into play: 

SELECT * 
FROM SPORTCLUB 

INTERSECT 
SELECT * 
FROM FOTOCLUB; 

3.3.3 Built-In Functions 

In addition to the common operators of relational algebra, SQL also contains built-in 
functions that can be used in the SELECT clause.
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Aggregate Functions 
These include the aggregate functions which calculate a scalar value based on a set, 
namely, COUNT for counting, SUM for totaling, AVG for calculating the average, 
MAX for determining the maximum, and MIN for finding the minimum value. 

For example, all employees working in department D6 can be counted. In SQL, 
this request is as follows: 

SELECT COUNT (M#) 
FROM EMPLOYEE 
WHERE Sub='D6' 

The result is a one-element table with a single value 2, which according to the 
table excerpt in Fig. 3.7 stands for the two persons Stewart and Bell. 

Grouping 
The results of aggregations can also be grouped by values of variables. For example, 
all employees working in each department can be counted. In SQL, this prompt is as 
follows: 

SELECT Sub, COUNT (E#) 
FROM EMPLOYEES 
GROUP BY Sub 
ORDER BY COUNT(E#)DESC 

The result is a table with one row per department number together with the 
corresponding number of employees.3 With the last line of the statement, the result 
is sorted by the number of employees in descending order. 

Nested Queries 
It is allowed and sometimes necessary to formulate another SQL call within an SQL 
statement. In this context, one speaks of nested queries. Such queries are useful, for 
example, when searching for the employee with the highest salary:

3 COUNT(*) can also be used, the difference being COUNT(*) counts all rows that pass any filters 
while COUNT(column_name) only counts rows where the column name specified is not NULL, 
cf. Sect. 3.3.4. 
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SELECT M#, Name 
FROM EMPLOYEE 
WHERE Salary >= ALL (SELECT Salary 

FROM EMPLOYEE); 

This statement contains another SQL statement within the WHERE clause to 
select the salaries of all employees. This is called an inner SQL expression or 
subquery. In the outer SQL statement, the PERSONNEL table is consulted again 
to get the employee with M# and name who earns the highest salary. The keyword 
ALL means that the condition must be valid for all results of the subquery. 

The existence quantifier of the propositional logic is expressed in the SQL 
standard by the keyword EXISTS. This keyword is set to “true” in an SQL evalua-
tion if the subsequent subquery selects at least one element or row. 

As an example of a query with an EXISTS keyword, we can refer to the project 
affiliation INVOLVED, which shows which employees work on which projects. If 
we are interested in the employees who are not doing project work, the SQL 
statement is as follows: 

SELECT M#, Name, Street, City 
FROM EMPLOYEES e 
WHERE NOT EXISTS (SELECT * 

FROM INVOLVED i 
WHERE e.E# = i.E#); 

In the outer statement, the names and addresses of the employees who do not 
belong to a project are selected from the table EMPLOYEES. For this purpose, a 
subquery is formulated to get all employees’ project affiliations (relations). In the 
exclusion procedure (NOT EXISTS), we obtain the desired employees who do not 
perform project work. 

In this query, we can see once again how useful substitute names (aliases) are 
when formulating SQL statements. 

3.3.4 Null values 

The work with databases regularly entails situations where individual data values for 
tables are not (yet) known. For instance, it may be necessary to enter a new employee 
in the EMPLOYEE table before their full address is available. In such cases, instead 
of entering meaningless or maybe even wrong filler values, it is advisable to use null 
values as placeholders. 

A null value represents an as yet unknown data value within a table column. 
Null values, illustrated in Fig. 3.12 as “?”, must not be confused with the number 

0 (zero) or the value “”(space). These two values express specific situations in
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SELECT * 
FROM  EMPLOYEE 
WHERE  City = ‘Kent’ 

UNION 
SELECT  * 
FROM  EMPLOYEE 
WHERE  NOT City = ‘Kent’ 

EMPLOYEE 

E19 Stewart E Main Street Stow D6 

E1 Murphy ? ? D3 

E7 Howard Lorain Avenue Cleveland D5 

E4 Bell ? ? D6 

E# Name Street City Sub 

RESULTS_TABLE 

E19 Stewart E Main Street Stow D6 

E7 Howard Lorain Avenue Cleveland D5 

E# Name Street City Sub 

Fig. 3.12 Unexpected results from working with null values 

relational databases, while the keyword NULL is a placeholder (with meaning 
unknown). 

Figure 3.12 shows the EMPLOYEE table with null values for the attributes Street 
and City. Of course, not all attribute categories may contain null values; otherwise, 
conflicts are unavoidable. Primary keys must not contain null values by definition; in 
our example, that applies to the employee number E#. For the foreign key “Sub,” the 
database architect can make that decision at their discretion and based on their 
practical experiences. 

Working with null values can be somewhat problematic, since they form a new 
logic state UNKNOWN (?) in addition to TRUE (1) and FALSE (0). We therefore 
have to leave behind the classical binary logic in which any statement is either true or 
false. Truth tables for logical connectives such as AND, OR, or NOT can also be 
derived for three truth values. As shown in Fig. 3.13, combinations of true or false 
statements with propositions of unknown truth value return null values, which may 
lead to counter-intuitive results as in the example in Fig. 3.12.
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OR 1 ?1 0  

1 

? 

0 

1 1 1  
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1 

? 
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0 

? 
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Fig. 3.13 Truth tables for three-valued logic 

The query in Fig. 3.12, which selects all employees from the EMPLOYEE table 
who live either in Kent or not in Kent, returns a result table containing only a subset 
of the employees in the original table. The reason is that some places of residence of 
employees are unknown. Therefore, the truth of both comparisons, City='Kent' and 
NOT City='Kent', is unknown and therefore not true. 

This clearly goes against the conventional logical assumption that a union of the 
subset “employees living in Kent” with its complement “employees NOT living in 
Kent” should result in the total set of all employees. 

Sentential logic with the values TRUE, FALSE, and UNKNOWN is commonly 
called three-valued logic for the three truth values a statement can take. This logic is 
less known and poses a special challenge for users of relational databases, since 
analyses of tables with null values are hard to interpret. In practice, null values are 
therefore largely avoided. Sometimes, DEFAULT values are used instead. For 
instance, the company address could be used to replace the yet unknown private 
addresses in the EMPLOYEE table from our example. The function COALESCE 
(X, Y) replaces all X attributes with a null value with the value Y. If null values have 
to be allowed, attributes can be checked for unknown values with specific compari-
son operators, IS NULL or IS NOT NULL, in order to avoid unexpected side effects. 

Foreign keys are usually not supposed to take null values; however, there is an 
exception for foreign keys under a certain rule of referential integrity. For instance, 
the deletion rule for the referenced table DEPARTMENT can specify whether 
existing foreign key references should be set to NULL or not. The referential 
integrity constraint “set NULL” declares that foreign key values are set to NULL 
if their referenced tuple is deleted. For example, deleting the tuple (D6, Accounting) 
from the DEPARTMENT table in Fig. 3.12 with the integrity constraint rule “set 
NULL” results in null values for the foreign keys of employees Stewart and Bell in 
the EMPLOYEE table. For more information, see also Sect. 4.3.1. 

Null values also exist in graph-based languages. As we will see in the following 
section, handling null values with IS NULL and COALESCE is done in the Cypher 
language as well, which we will cover in detail in the next section.
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3.4 Graph-Based Language Cypher 

Graph-based database languages were first developed toward the end of the 1980s. 
The interest in high-performance graph query languages has grown with the rise of 
the Internet and social media, which produce more and more graph-structured data. 

Graph databases store data in graph structures and provide options for data 
manipulation on a graph transformation level. As described in Sect. 1.4.1, graph 
databases consist of property graphs with nodes and edges, with each graph storing a 
set of key-value pairs as properties. Graph-based database languages build on that 
principle and enable the use of a computer language to interact with graph structures 
in databases and program the processing of those structures. 

Like relational languages, graph-based languages are set-based. They work with 
graphs, which can be defined as sets of vertices and edges or paths. Graph-based 
languages allow for filtering data by predicates, similar to relational languages; this 
filtering is called a conjunctive query. Filtering a graph returns a subset of nodes 
and/or edges of the graph, which form a partial graph. The underlying principle is 
called subgraph matching, the task of finding a partial graph matching certain 
specifications within a graph. Graph-based languages also offer features for 
aggregating sets of nodes in the graph into scalar values, e.g., counts, sums, or 
minimums. 

In summary, the advantage of graph-based languages is that the language 
constructs directly target graphs, and thus the language definition of processing 
graph-structured data is much more direct. As a language for graph databases, we 
focus on the graph-based language Cypher in this work. 

Cypher is a declarative query language for graph databases. It provides pattern 
matching on property graphs. It was developed by Andrés Taylor in 2011 at Neo4J, 
Inc. With openCypher, the language was made available to the general public as an 
open-source project in 2015. It is now used in more than ten commercial database 
systems. In 2019, the International Organization for Standardization (ISO) decided 
to further develop openCypher into an international standard under the name GQL 
by 2023. 

The graph database Neo4J4 (see also Cypher tutorial and Travelblitz case study 
with Neo4J on www.sql-nosql.org) uses the language Cypher to support a language 
interface for the scripting of database interactions. 

Cypher is based on a pattern matching mechanism. Cypher has language 
commands for data queries and data manipulation (data manipulation language, 
DML); however, the schema definition in Cypher is done implicitly, i.e., node and 
edge types are defined by inserting instances of them into the database as actual 
specific nodes and edges. 

Cypher also includes direct linguistic elements for security mechanisms, similar 
to relational languages, with statements such as GRANT and REVOKE (see Sect. 
4.2). Below, we will take a closer look at the Cypher language.

4 http://neo4j.com 

http://www.sql-nosql.org
http://neo4j.com
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3.4.1 Creating and Populating the Database Schema 

Schema definition in Cypher is done implicitly, i.e., abstract data classes (metadata) 
such as node and edge types or attributes are created by using them in the insertion of 
concrete data values. The following example inserts new data into the database: 

CREATE 
(p:Product { 
productName:'Alice’s Adventures in Wonderland'})

-[:PUBLISHER]-> 
(o:Organization { 
name:'Macmillan'}) 

This instruction deserves special consideration because it implicitly extends the 
schema. Two new nodes are created and connected to each other. The first node, p, 
stores the record for the Alice in Wonderland product. The second node, o, defines 
the record for the Macmillan publishing house. This implicitly creates a new node 
type, “Organization,” since it did not exist before. 

Attribute-value pairs are inserted into the new nodes. Since the attribute “name” 
did not exist before, it is also implicitly added in the schema without the need for an 
additional command. 

In addition, an edge is created between the book node and the publisher node with 
edge type “PUBLISHER.” Assuming that this is a new edge type, it is also implicitly 
added to the database schema. 

To change data, then the command MATCH ... WHERE ... SET can be used. The 
following example shows an expression that resets the price of the specified product: 

MATCH (p:Product) 
WHERE p.productName = 'Alice’s Adventures in Wonderland' 
SET p.unitPrice = 13.75 

With DELETE, it is possible to eliminate nodes and edges as specified. Since 
graph databases ensure referential integrity (see Sect. 4.3), vertices can only be 
deleted if they have no edges attached. Before being able to remove a node, the user 
therefore has to delete all incoming and outgoing edges. 

Below is an expression that first recognizes all edges connected to the product 
selected by name, then eliminates those edges, and finally deletes the node of the 
product itself.
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MATCH 
()-[r1]->(p:Product), 
(p)-[r2]->() 

WHERE p.productName = 'Alice’s Adventures in Wonderland' 
DELETE r1, r2, p 

3.4.2 Relation Operators 

As described in Sect. 1.4.2, Cypher has three basic commands:

• MATCH for defining search patterns
• WHERE for conditions to filter the results by
• RETURN for outputting properties, vertices, relationships, or paths 

Even though Cypher operates on graphs, property graphs can be mapped con-
gruently to relations. Therefore, it is possible to analyze the relational operators of 
Cypher. 

Selection and Projection 
The following example returns the node with the specified product name. This 
corresponds to a relational selection, which is specified in the WHERE clause. 

MATCH (p:Product) 
WHERE p.productName = 'Alice’s Adventures in Wonderland' 
RETURN p 

The RETURN clause can output either vertices or property tables. The return of 
entire nodes is similar to “SELECT *” in SQL. Cypher can also return properties as 
attribute values of nodes and edges in the form of tables: 

MATCH (p:Product) 
WHERE p.unitPrice > 55 
RETURN p.productName, p.unitPrice 
ORDER BY p.unitPrice 

This query includes a selection, a projection, and a sorting. The MATCH clause 
defines a pattern matching filtering the graph for the node of the “Product” type; the 
WHERE clause selects all products with a price greater than 55; and the RETURN
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clause projects those nodes on the product name and price, with the ORDER BY 
clause sorting the products by price. 

Cartesian Product and Join 
The Cartesian product of two nodes can be generated in Cypher with the following 
syntax: 

MATCH (p:Product), (c:Category) 
RETURN p.productName, c.categoryName 

This command lists all possible combinations of product names and category 
names. A join of nodes, i.e., a selection on the Cartesian product, is executed graph-
based by matching path patterns by edge types: 

MATCH (p:Product) -[:PART_OF]-> (c:Category) 
RETURN p.productName, c.categoryName 

For each product, this query lists the category it belongs to, by only considering 
those product and category nodes connected by edges of the PART_OF type. This 
equals the inner join of the “Product” node type with the “Category” node type via 
the edge type PART_OF. 

3.4.3 Built-In Functions 

In Cypher, there are built-in functions which can be applied to properties and data 
sets. These functions, as a supplement to selection, projection, and join, are central 
for the usability in practice. An important category for data analysis are the aggregate 
functions. 

Aggregate Functions 
An important category of built-in functions for data analysis are the aggregating 
functions like COUNT, SUM, MIN, MAX, and AVG, which Cypher supports. 

Suppose we want to generate a list of all employees, together with the number of 
subordinates. To do this, we match the pattern MATCH (e:Employee)<-[: 
REPORTS_TO]-(sub) and get a list of employees where the number of subordinates 
is greater than zero:
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MATCH (e:Employee) <-[:REPORTS_TO]-(sub) 
RETURN e.employeeID, COUNT(sub.employeeID) 

There are node types where only a subset of the nodes has an edge of a specific 
edge type. For instance, not every employee has subordinates, i.e., only a subset of 
the nodes of the “Employee” type has an incoming REPORTS_TO type edge. 

An OPTIONAL MATCH clause allows to list all employees including those 
without subordinates: 

MATCH (e:Employee) 
OPTIONAL MATCH (e)<-[:REPORTS_TO]-(sub) 
RETURN e.employeeID, COUNT (sub.employeeID) 

With OPTIONAL MATCH, connected attributes that are not connected remain 
empty (NULL). Cypher is based on three-valued logic. Handling null values with IS 
NULL and COALESCE is analogous to SQL (see Sect. 3.3.4). To filter records with 
null values, the additional code WHERE sub.employeeID IS NULL can be used. 
With the function COALESCE(sub.employeeID, "not available"), the null values 
can be replaced. 

Other aggregates are sum (SUM), minimum (MIN), and maximum (MAX). An 
interesting non-atomic aggregate is COLLECT, which generates an array from the 
available data values. Thus, the expression in the previous example lists all 
employees by first name and abbreviated last name, along with a list of the employee 
numbers of their subordinates. 

Data Operators 
Cypher supports functions on data values. The following query returns the full first 
name and the last name initial for each employee, along with the number of 
subordinates: 

MATCH (e:Employee) 
OPTIONAL MATCH (e)<-[:REPORTS_TO]-(sub) 
RETURN 
e.firstName + " " 
+ LEFT(e.lastName, 1) + "." as name, 
COUNT(sub.employeeID) 

The operator + can be used on “text” type data values to string them together. The 
operator LEFT returns the first n characters of a text.
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Part 

HAS mc 

c Part 

HAS 

Fig. 3.14 Recursive relationship as entity-relationship model and as graph with node and edge 
types 

3.4.4 Graph Analysis 

Graph-based languages offer additional analysis mechanisms for paths within 
graphs. An area of special interest is the search for patterns directly in the paths of 
a graph, which can be done with dedicated language elements. A regular path query 
allows to describe path patterns in a graph with regular expressions in order to find 
matching records in the database (see the Cypher tutorial on www.sql-nosql.org for 
more information). 

Figure 3.14 illustrates this using an entity-relationship model of item parts. It 
shows a recursive relationship, where parts (e.g., product parts) can potentially have 
multiple subparts and at the same time also potentially be a subpart to another, 
superordinate part. If we want to query all subparts contained in a part both directly 
and indirectly, a simple join is not sufficient. We have to recursively go through all 
subparts of subparts, etc. in order to get a complete list. 

For a long time, this kind of query could not even be defined in SQL. Only with 
the SQL:1999 standard did recursive queries become possible via common table 
expressions (CTEs); however, their formulation is still highly complicated. Defining 
the query for all direct and indirect subparts with a (recursive) SQL statement is 
rather cumbersome: 

with recursive 
r_path (partID, hasPartId, length) – CTE definition 
as ( 
select partID, hasPartId, 1 -- Initialization 
from part 
union all 
select r.partID, p.hasPartId, r.length+1 
from part p 
join r_path r – Recursive join of CTE 
on (r.hasPartId = p.partID) 

) 
select 
distinct path.partID, path.hasPartId, path.length 
from r_path -- Selection via recursive defined CTE

http://www.sql-nosql.org
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This query returns a list of all subparts for a part, plus the degree of nesting, i.e., 
the length of the path within the tree from the part to any (potentially indirect) 
subpart. 

A regular path query in a graph-based language allows for simplified filtering of 
path patterns with regular expressions. For instance, the regular expression HAS* 
using a Kleene star (*) defines the set of all possible concatenations of connections 
with the edge type HAS (called the Kleene hull). This makes defining a query for all 
indirectly connected vertices in a graph-based language much easier. The example 
below uses the graph-based language Cypher to declare the same query for all direct 
and indirect subparts as the SQL example above, but in only two lines: 

MATCH path = (p:Part) <-[:HAS*]- (has:Part) 
RETURN p.partID, has.partID, LENGTH(path) 

In addition to the data manipulation we know from SQL, Cypher also supports 
operations on paths within the graph. In the following example, an edge of the type 
BASKET is generated for all product pairs that have been ordered together. This 
edge shows that those two products have been included in at least one order together. 
Once that is done, the shortest connection between any two products through shared 
orders can be determined with a shortestPath function: 

MATCH 
(p1:Product)<--(o:Order)-->(p2:Product) 
CREATE 
p1-[:BASKET{order:o.orderID}]->p2, 
p2-[:BASKET{order:o.orderID}]->p1; 

MATCH path = 
shortestPath( 
(p1:Product)-[b:BASKET*]->(p2:Product)) 
RETURN 
p1.productName, p2.productName, LENGTH(path), 
EXTRACT(r in RELATIONSHIPS(path)| r.order) 

In addition to the names of the two products, the RETURN clause also contains 
the length of the shortest path between them and a list of the order numbers indirectly 
connecting them. 

It should be noted here that, while Cypher offers some functions for analyzing 
paths within graphs (including the Kleene hull for edge types), it does not support the 
full range of Kleene algebra for paths in graphs, as required in the theory of graph-
based languages. Nevertheless, Cypher is a language well-suited for practical use.
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3.5 Document-Oriented Language MQL 

The MongoDB Query Language (MQL) is a JSON-based language for interacting 
with document databases. MQL provides methods that are parameterized with JSON 
objects. These methods can be used to create, edit, and query collections of 
documents. 

3.5.1 Creating and Filling the Database Schema 

Document databases like MongoDB5 are schema-free. This does not mean that their 
records do not follow a schema. A schema is always necessary to structure records. 
Schema freedom simply means that database users are free to use any schema they 
want for structuring without first reporting it to the database system and without 
requiring that the schemas of records within a collection be uniform. It is thus a 
positive freedom to use any schema within a collection. The database schema in a 
document database is an implicit schema. 

Therefore, all that is needed to populate a document database schema is a JSON 
document. We propose that an entity-relationship model be used to structure the 
JSON records, as described in Sect. 2.5. For example, to insert a document about an 
employee into the database according to the structure in Fig. 2.25, we use the 
insertOne() method on the EMPLOYEE collection as follows: 

db.EMPLOYEES.insertOne( { 
{ "EMPLOYEE": 
{ "Name": "Steward", 
"City": { "Stow", 
"DEPARTMENT": { "Designation": "Finance" }, 
}, { "PROJECTS": 
[ { "Title": "DWH", "Workload": 0.3 }, 
{ "Title": "Strat", "Workload": 0.5 } ] } } 

) 

If the used collection does not exist yet, it will be created implicitly. To insert 
multiple documents, the method insertMany() can be applied. 

To adapt an existing document, the method updateOne() can be applied. In the 
following example for employee Steward, the department is changed to “IT”:

5 https://www.mongodb.com 

https://www.mongodb.com
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db.EMPLOYEES.updateOne( 
{ "EMPLOYEE.Name": "Steward" }, 
{ $set: { 
"EMPLOYEE.DEPARTMENT.Designation": "IT" }}) 

The updateOne() method can use several update operators. The $set operator sets 
a new value for a field or adds the field if it does not already exist. With $unset, a 
field can be removed; with $rename, it is renamed. Other operators are available, 
such as $inc, which increments the field value by the specified value. 

UpdateOne changes the first document that matches the filter criterion. Similar to 
insertion, multiple documents can be changed at once with the updateMany() 
method. 

The deleteOne() method is used to delete a document that matches a filter 
criterion. If there are several documents that match the filter, the first one is deleted. 
To delete several documents at once, the deleteMany() method can be used. In the 
following example, we delete all documents related to employees named “Smith.” 

db.EMPLOYEES.deleteMany( 
{ "EMPLOYEE.Name": "Smith" } ) 

Once we have inserted data into the database, we can query that data. The 
relational operators, which exist in a similar form for MQL, are used for this purpose. 

3.5.2 Relation Operators 

MQL operates on sets of JSON-structured records. However, JSON documents can 
be mapped to tuples. Therefore, relational algebra can serve as a theoretical model 
for MQL. Assuming the model in Sect. 2.5.1, we will emulate relational operators 
with MQL in the following paragraphs. 

Selection 
To select employees, the find() method is applied to the EMPLOYEES collection. In 
the following example, the filter “location = Kent” is given as a parameter in JSON 
syntax. 

db.EMPLOYEES.find({ 
"EMPLOYEES.City": "Kent"})
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Different filter criteria can be combined with the Boolean operators $and, $or, and 
$not, even over multiple attributes, as shown in the following example. Here, 
employees are selected who live in Kent and work in IT. 

db.EMPLOYEES.find( 
{$and: [ 
{"EMPLOYEE.city": "Kent"}, 
{"EMPLOYEE.DEPARTMENT.Designation": "IT" 
} ] } ) 

Projection 
Document sets (collections) can be projected to attributes. For this purpose, a second 
parameter can be given to the find() method, specifying a list of properties of the 
document to be returned by the database. In the following example, the fields name 
and city are shown for the employees from Kent. This is called an inclusion 
projection. 

db.EMPLOYEES.find({ 
"EMPLOYEE.City": "Kent"}, 
{_id:0, 
"EMPLOYEE.Name": 1, 
"EMPLOYEE.City": 1}) 

The _id field is an automatically generated identification key for documents, 
which is output by default (cf. Sect. 4.3.3). This can be changed by using the 
exclusion projection with the value 0. However, the _id field is the only field that 
allows mixing exclusion and inclusion. 

Join 
By definition, documents are complete with respect to a subject. For certain 
evaluations, it can be nevertheless meaningful to join document sets. This is basi-
cally possible in MQL with the $lookup aggregation. The operation performs a kind 
of left outer join because all documents of the parent (left) collection are returned, 
even if they do not match the filter criteria. However, the operation is not performant 
and should be used with caution. 

The following example associates the employees (according to Fig. 2.25) with the 
departments (according to Fig. 2.29) using the “Designation” field, thus adding the 
name of the department head. We are looking for the departments whose name 
matches the department of the corresponding employee. The statements in the 
pipeline field are used here to modify the connected documents with the $project 
operator. The department documents are projected to a single “Name” field, which 
stores the name of the department head. The $ operator before the property name on



3.5 Document-Oriented Language MQL 101

the fourth to last line eliminates the nested field properties and reduces the JSON 
structure to the value of the corresponding field. 

db.EMPLOYEES.aggregate([{ 
$lookup: { 
from: "DEPARTMENTS", 
localField: "EMPLOYEE.DEPARTMENT.name", 
foreignField: "DEPARTMENT.Designation", 
pipeline: [ 
{ $project: { _id:0, "name": 
"$DEPARTMENT.EMPLOYEES.DEPARTMENT_HEAD.Name" 
}}], 
as: "STAFF.DEPARTMENT.Head" 
}}]); 

Pipelines show the advantage of using root elements in JSON objects, as 
suggested by rule D1 (Sect. 2.5.2). By specifying the entity set in the field path, 
we can more easily understand which document types and properties are referenced. 
In fact, MQL pipelines can get much more complicated in practice. Therefore, it pays 
to name the fields so that the field origin is clear. Below we show the return of the 
above query for the document in Fig. 2.23. The _id field is the automatic primary key 
mentioned above. The $lookup operation was used to insert a new field “Head” with 
the name of the department head from the DEPARTMENTS collection in the field 
EMPLOYEE.DEPARTMENT: 

{ _id: ObjectId("62aa3c16c1f35d9cedb164eb"), 
EMOPLOYEE: 
{ Name: 'Murphy', 
Place: 'Kent', 
DEPARTMENT: { Designation: 'IT', 

'Head': [ { Name: 'Miller' } ] }, 
PROJECTS: 
[ { Title: 'WebX', Workload: 0.55 }, 
{ Title: 'ITorg', Workload: 0.45 } ] } } 

The $lookup operator always returns the associated documents and values are as 
an array, even if there is only one corresponding document. Therefore, this value is 
enclosed in square brackets. With further operations, this single value could be 
unpacked. 

Cartesian Product 
Similarly, we can use the $lookup operation to derive a kind of Cartesian product by 
omitting the join predicates localField and foreignField. This cross join is only listed
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here for the sake of completeness. The operation is inefficient even for small 
data sets. 

For example, the names of all department heads could be stored in a new field 
“Bosses”: 

db.EMPLOYEES.aggregate([{ 
$lookup: { 
from: "DEPARTMENTS", 
pipeline: [ 
{ $project: { _id:0, "Name": 
"$DEPARTMENT.EMPLOYEE.DEPARTMENT.Designation" 
}}], 
as: "EMPLOYEES.Bosses" 
}}]); 

Union 
To unify collections as sets of documents, the aggregation operator $unionWith is 
available. In the following example, all documents of the collection 
SPORTS_CLUB are united with all documents of the collection PHOTO_CLUB. 
However, it is not a true set operator because $unionWith does not remove the 
duplicates. It is more like the SQL command UNION ALL. 

db.SPORTS_CLUB.aggregate([ 
{ $unionWith: { coll: "PHOTO_CLUB"} } 

]) 

Similar operators for intersections or difference sets at the collection level do not 
exist. We see that MQL is relationally incomplete, since basic set operators are 
missing. However, MQL provides a rich set of built-in functions, some of which we 
look at below. 

3.5.3 Built-In Functions 

In MQL terminology, the term aggregation is used in a more general sense. There-
fore, aggregation functions such as $count or $sum are called aggregation 
accumulators in MQL to distinguish them from other aggregations such as $lookup 
or $unionWith. 

Accumulation Aggregations 
With the $count accumulator, we can count documents in a collection. In the 
following, we count the number of employees:
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db.EMPLOYEES.aggregate([ { 
$count: "Result" 

} ] ) 

Other accumulators include average ($avg), minimum ($min), and maximum 
($max). These accumulator aggregations can be used together with a $group aggre-
gation, which corresponds to a grouping of aggregated values according to the 
characteristics of a variable. 

Grouping 
An accumulator aggregation such as sum, count, or average cut can be grouped using 
a variable. For each value of this variable, a corresponding partial result is calculated. 
In the following example, we ask for the number of employees per location: 

db.EMPLOYEES.aggregate( [ { 
$group: { 

_id: "$employee.location", 
Number_of_employees: { $count: { } } 

} } ] ) 

The output of this query is one JSON object per department, with the name of the 
department in the “_id” field and the number of employees in the 
“Number_of_employees” field. If records for employees are stored in the database 
analogous to Fig. 1.3, this results in the following output in Mongo Shell (mongosh): 

{ _id: 'Stow', count: 1 } 
{ _id: 'Kent', count: 1 } 
{ _id: 'Cleveland', count: 2 } 

The $group aggregation can be used with all the above aggregation accumulators 
like $sum, $avg, $count, $max, and $min. 

Output Valid JSON Syntax 
The Mongo Shell return value above is oriented on JSON, but it deviates from the 
JSON standard. Properties are not quoted, and values are represented in single 
quotes. To produce valid JSON as output, the JSON.stringify() method can be 
used on a conversion of the result set as an array, as shown in the following example:
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JSON.stringify( 
db.EMPLOYEES.aggregate( [ { 

$group: { 
_id: "$EMPLOYEE.City", 
count: { $count: { } } 

} } ] ) 
.toArray()) 

Nested Queries with Pipelines 
The step-by-step processing of aggregation functions is called pipeline in MQL. 
These allow to combine several query steps. Any number of processing steps can be 
declared sequentially in a pipeline. Operators for pipelines are, for example, 
$unwind, $group, $lookup, and $project, as already shown above. Other options 
include $match to filter results, $sort for sorting, or $limit to limit results. 

When using accumulators and groupings, arrays (lists of field values) can lead to 
unexpected results. For example, the $sum accumulator in the $group aggregation 
treats numeric values inside arrays as non-numeric. Therefore, they will not be 
summed. The array must first be unwound as individual values using $unwind. 

For example, if we want to know the sum of project stints per department in a 
document structure shown in Fig. 2.25, we face the problem that stints may be 
contained multiple times in arrays. Therefore, applying the $sum accumulator to the 
field EMPLOYEES.PROJECTS.WORKLOAD would return the value 0. Therefore, 
to unwind the array of project stints, we write the following query: 

db.EMPLOYEES.aggregate([ 
{ $unwind: "$EMPLOYEES.PROJECTS" }, 
{ $group: { 

_id:"$EMPLOYEES.DEPARTMENT.Designation", 
"s": {"$sum":"$EMPLOYEES.PROJECTS.Workload"} 

}} 
]) 

For the sum of the workloads stored within an array of projects for the employees, 
in addition to the grouping, the unwinding of the array structure with $unwind is 
necessary. 

3.5.4 Null Values 

In MQL field values can remain unknown explicitly. For this purpose, the keyword 
“null” is used (the lower case is relevant). The special feature of the schema-free 
document model is that even the omission of an object field can logically be a null 
value.



3.5 Document-Oriented Language MQL 105

Fig. 3.15 Null values in MQL 

In a three-valued first-order logic, it is the same whether one specifies a field with 
a property whose value is “null,” which means explicitly unknown, or whether the 
field is omitted altogether and is thus implicitly unknown. However, in three-valued 
second-order logic, the former is a known unknown, but the latter is an unknown 
unknown. MQL treats both variants as equivalent. 

As an example, let’s look at the documents for employees Smith, Smyth, and 
Smythe in Fig. 3.15. While we know the Place is Basel for Smith, it is unknown for 
the other two. For Smyth, we explicitly mark this as a null value in the object field 
with property “Place”; for Smythe, we omit the field with property “Place.” This now 
leads to different ways of filtering with null values.

• In query (1) in Fig. 3.15, we use “null” directly as a filter criterion. This means 
that the criterion itself is unknown, and therefore it is not applied at all—so all 
employees are returned.

• In query (2) in Fig. 3.15, we  filter on whether the “Place” property is equal to 
“null.” In this case, documents are returned that either have such a field with 
explicit value “null”—as with Smyth—or do not have such a field, as with 
Smythe.

• In query (3) in Fig. 3.15, we explicitly select for values of data type 10 (BSON 
Type Null). Thus, only documents are returned that have a field with property 
“Place” and an explicit value “null,” like Smyth.

• In query (4) in Fig. 3.15, we ask for documents in the collection EMPLOYEES 
for which no field with property “Place” exists. This is only true for Smythe.
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MQL is oriented to nested document structures. The language was developed in 
practice. The target group are software developers, especially in the area of mobile 
and Web applications. Therefore, data analysts used to the logic of SQL may 
encounter some surprises when analyzing data in document databases. Fortunately, 
there are tools such as Apache Drill that automatically translate SQL queries to 
MQL. This can make it easier for those familiar with SQL to get started querying 
document databases. 

3.6 Database Programming with Cursors 

The query and manipulation languages for databases can be not only used interac-
tively as stand-alone languages but also embedded in an actual, i.e., procedural, 
programming language (host language). For embedding in a programming environ-
ment, however, some precautions have to be taken, which we will discuss in more 
detail here. 

Cursor Concept 
A cursor is a pointer that can traverse a set of records in a sequence specified by the 
database system. Since a sequential program cannot process an entire set of records 
in one fell swoop, the cursor concept allows a record-by-record, iterative approach. 

In the following, we take a closer look at the embedding of SQL, Cypher, and 
MQL in procedural languages with cursors. 

3.6.1 Embedding of SQL in Procedural Languages 

The concept of embedded languages will first be explained using SQL as an 
example. For a program to read a table by a SELECT statement, it must be able to 
access the table from one tuple to the next, for which a cursor concept is required. 
For the selection of a table, a cursor can be defined in the program as follows: 

DECLARE cursor-name CURSOR FOR <SELECT-statement> 

This allows to process the individual records in a table, i.e., tuple by tuple. If 
necessary, it is also possible to modify some or all data values of the current tuple. If 
the table has to be processed in a specific sequence, the above declaration must be 
amended by an ORDER BY clause.
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Multiple cursors can be used within one program for navigation reasons. They 
have to be declared and then activated and deactivated by OPEN and CLOSE 
commands. The actual access to a table and the transmission of data values into 
the corresponding program variables happen via a FETCH command. The types of 
the variables addressed in the programming language must match the formats of the 
respective table fields. The FETCH command is phrased as 

FETCH cursor-name INTO host-variable {,host-variable} 

Each FETCH statement moves the CURSOR forward by one tuple. If no further 
tuples are found, a corresponding status code is returned to the program. 

Cursor concepts allow the embedding of set-oriented query and manipulation 
languages into a procedural host language. For instance, the same linguistic 
constructs in SQL can be either used interactively or embedded. This has additional 
advantages for testing embedded programming sections, since the test tables can be 
analyzed and checked with interactive SQL at any point. 

Stored Procedures and Stored Functions 
From SQL:1999 onward, SQL standards offered the possibility to embed SQL in 
internal database procedures and functions. Since those are stored in the data 
dictionary on the database server, they are called stored procedures or, if they return 
values, stored functions. Such linguistic elements enable the procedural processing 
of record sets via CURSORs and the use of branches and loops. The procedural 
linguistic elements of SQL were only standardized long after the language’s intro-
duction, so many vendors developed separate proprietary formats. Procedural pro-
gramming with SQL is therefore largely product-specific. 

The following example of a stored function calculates the first quartile6 of all 
employee salaries:

6 Quartiles of ranked data sets are the points between the quarters of the set. 
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CREATE FUNCTION SalaryQuartile() 
RETURNS INTEGER DETERMINISTIC 
BEGIN 
DECLARE cnt int; 
DECLARE i int; 
DECLARE tmpSalary int; 
DECLARE employeeCursor CURSOR FOR 
SELECT Salary 
FROM Employee 
ORDER BY Salary ASC; 
SELECT COUNT(*)/4 INTO cnt FROM Employee; 
SET i := 0; 
OPEN employeeCursor; 
employeeLoop: LOOP 
FETCH employeeCursor INTO tmpSalary; 
SET i := i + 1; 
IF i >= cnt THEN 
LEAVE employeeLoop; 
END IF; 
END LOOP; 
RETURN tmpSalary; 

This function opens a cursor on the employee table sorted by salary (low to high), 
loops through each row, and returns the value of the Salary column from the row 
where COUNT(*)/4 iterations of the loop have been run. This value is the first 
quartile, i.e., the value separating the lowest 25% of values in the set. The result of 
the function can then be selected with the statement 

Select SalaryQuartile(); 

Embedding SQL in External Programming Languages 
Recently, the Python programming language has become popular. Especially for 
data analysis, but also for Web and mobile applications, the language is very 
common. Therefore, let’s take a look at the cursor concept in the following example 
in the Python language: 

import mysql.connector as mysql 
db = mysql.connect( 
host="localhost", user="root", passwd=" ") 
cursor = db.cursor() 
cursor.execute("SELECT * FROM EMPLOYEES") 
for record in cursor:print(record[1])
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First, the program library for the database is imported, which is product-specific. 
Then a connection to the database is opened with appropriate access information (see 
Sect. 4.2) and stored in the variable db. Finally, a cursor is opened on a 
SQL-SELECT query, which is run sequentially in a FOR loop. In this simple 
example, only the record is printed with print(); any processing logic could now 
be inserted here. 

3.6.2 Embedding Graph-Based Languages 

Graph-based languages, since they are also set-oriented, can be embedded in host 
languages using the same principle with the use of the cursor concept. One receives a 
result set back under execution of an embedded Cypher statement, which can be 
processed arbitrarily in a loop. 

Python is also used more and more in the area of graph databases. For this reason, 
there is also the possibility to embed Cypher in Python scripts. In the following 
example, we see a corresponding example with Python: 

from neo4j import GraphDatabase 
driver = GraphDatabase.driver( 
"bolt://localhost:7687", 
auth=("neo4j", "password")) 
session = driver.session() 
query = "MATCH (p:Product) RETURN p.productName" 
result = session.run(query) 
for r in result: print(r) 

First, the program library is imported. Then a driver is instantiated that contains 
the access information. With this, a database session can be opened. With the run 
command, a Cypher query can be executed on the database server. The processing of 
the CURSOR is done in a FOR loop. 

3.6.3 Embedding Document Database Languages 

We have now seen the embedding of the set-oriented database languages SQL and 
Cypher. However, MQL is actually a program library that is controlled with JSON 
parameters. Therefore, MQL is not embedded as a separate language in procedural 
host languages. The find, insert, update, and delete commands are applied directly as 
routines of the corresponding APIs and parameterized accordingly. Below we see an 
example of using MQL in Python:
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import pymongo 
uri = "mongodb://localhost:27017" 
client = pymongo.MongoClient(uri) 
database = client['Company'] 
collection = database['EMPLOYEES'] 
result = collection.find({},{"Name" : 1}) 
for r in result: print(r) 

Again, after importing the program library, a connection to the database is 
established, a query is executed, and the result is processed sequentially in a cursor. 

In this example, we see an advantage of the Python language: its proximity to 
JSON with the object constructor {}. The filter criterion can thus be specified 
directly in the JSON syntax. 

We have now introduced some basic principles of database languages for rela-
tional, graph, and document databases. These have been related to the insertion and 
processing of data. We now devote a separate chapter to a central category of 
language elements: security functions. Therefore, the following chapter will apply 
the CIA triad of information security to databases and analyze in detail the 
corresponding language elements in the area of access control, integrity conditions, 
and consistency assurance for the three database types with SQL, Cypher, and MQL. 
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Database Security 4 

4.1 Security Goals and Measures 

As soon as a database system is put into operation, it is exposed to risks. For 
example, data can be lost, unintentionally or maliciously changed, or disclosed. In 
order to ensure the long-term functioning of a database system, the general 
objectives of information security as classically defined by the CIA triad are 
followed:

• Confidentiality: Protecting privacy from unauthorized access to information
• Integrity: Ensuring the correctness and accuracy of information
• Availability: Maintaining the functional state of the information system 

Database security is based on the basic security of the data center, the computers, 
and the network in which the database server is operated. Computers must use the 
latest version of all software components to close security gaps. The network must 
be protected with firewall rules and geo-IP filters. And the data center must physi-
cally protect hardware from access. We do not go into these basics of cybersecurity 
here, but refer to relevant literature. We focus on the technical functions that a 
database system can use to achieve the security goals. 

Figure 4.1 lists necessary measures for databases for each of the three CIA goals. 
The security measures in Fig. 4.1 build on each other. To achieve integrity, confi-
dentiality must also be ensured, and the measures for integrity are also necessary but 
not sufficient for availability. In the following, we provide a brief overview of the 
general security measures before we discuss the special features in the database 
environment in the following sections. 

To ensure confidentiality, privacy protection is central. Authentication uses 
accounts and passwords to verify that users are who they say they are. With 
appropriate password policies, users are encouraged to choose passwords with a 
sufficiently large number of characters (e.g., 9) with upper and lower case, including 
numbers and special characters, and to change them regularly. Authorization rules 
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►Authentication 

►Password policies 

►Read access 
authorization 

►Protection against 
code injection 

►Encryption of the 
database 

►Encryption of 
communication (SSL) 

►Certification of the 
database server 

Confidentiality 

All measures for 
confidentiality; 
furthermore: 

►Authorization with 
restricted write rights 

►Integrity conditions 

►Transaction 
management 

►Auditing of all 
database activities 

Integrity 

All measures for 
integrity; moreover: 

►Regular data backups 

►Transaction log 

►Log file backup   

►Redundant servers 
with load balancing 

►Multiple 
geographically 
distributed database 
servers 

Availabilty 

Fig. 4.1 Database security measures for confidentiality, integrity, and availability 

restrict access rights and give users exactly the access they need. However, even with 
the best access protection, injection attacks can inject executable code into user 
interfaces to read or modify the database without permission. This must be prevented 
with appropriate measures (e.g., prepared statements). Encryption of the database 
and communication with the database server prevents unauthorized reading. The 
certification of the server ensures that information is entrusted to one’s own system 
and not unintentionally revealed to a “person in the middle.” 

Many of the measures mentioned above serve to ensure the integrity of the data as 
well, i.e., to protect it from unintentional modification. In the case of authorization, 
additional care must be taken to be particularly restrictive in terms of write 
permissions. Furthermore, database auditing can be used to record who has 
performed which action on the database and when, which allows errors to be traced 
and corrected. A special feature of database management systems is that they can 
partially check the integrity of the data automatically. For this purpose, conditions 
under which the data is correct, so-called integrity constraints, can be formulated. 
Inconsistencies can also occur in multi-user operation if data records are modified 
simultaneously. Transaction management provides mechanisms to protect the integ-
rity of data from side effects and version conflicts. 

To ensure the availability of the services of a database system, further measures 
are needed. A system of multiple servers with load balancing ensures availability 
even with a large number of requests. The geographical distribution of redundant, 
identical database systems protects against interruptions caused by natural disasters 
and other major events. Regular backups of the database ensure that all data remains 
available in the event of damage. A transaction log records all changes to the
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database and ensures that all transactions are completed consistently in the event of a 
crash. To do this, the log files must be copied and backed up regularly. 

In the following sections, we will deal with security measures for which the 
database management system provides specific mechanisms: access control, integ-
rity conditions, and transaction management. 

4.2 Access Control 

4.2.1 Authentication and Authorization in SQL 

Data protection is the prevention of access to and manipulation of data by unautho-
rized persons. Protective measures include procedures for the positive identification 
of a person or for the assignment of user permissions for specific data access as well 
as cryptographic methods for confidential data storage and transmission. In contrast, 
data security means the hardware and software solutions that help to protect data 
from falsification, destruction, and loss. 

The relational model facilitates the implementation of reliable restrictions to 
ensure data protection. A major data protection mechanism in relational databases 
is to provide users with only those tables and table sections they need for their work. 

To create a user account for authentication, we use the CREATE USER com-
mand. The following example creates a user account for employee Murphy with a 
relatively secure password that does not contain words, but lowercase and uppercase 
letters, numbers, and special characters: 

CREATE USER murphy 
IDENTIFIED BY 'jd7k_Ddjh$1'; 

Similar to other database objects, user accounts can be modified and deleted with 
ALTER USER and DROP USER. 

The GRANT command is used to authorize users for actions on tables. The 
following command authorizes user Murphy for all actions on the STAFF table (see 
Fig. 4.2). 

GRANT ALL ON STAFF TO murphy; 

What is awarded with GRANT can be taken back with REVOKE:
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STAFF 

E19 Stewart Stow 88,000 D6 

E1 Murphy Kent 59,000 D3 

E7 Howard Cleveland 100,000 D5 

E4 Bell Kent 76,000 D6 

E# Name City Salary Sub 

CREATE VIEW 
EMPLOYEE AS 
SELECT E#, Name, City, Sub 
FROM  STAFF 

E19 Stewart Stow D6 

E1 Murphy Kent D3 

E7 Howard Cleveland D5 

E4 Bell Kent D6 

E# Name City Sub 

E19 Stewart 88,000 D6 

E7 Howard 100,000 D5 

E# Name Salary Sub 

CREATE VIEW 
GROUP_A AS 
SELECT E#, Name, Salary, Sub 
FROM  EMPLOYEE 
WHERE  Salary BETWEEN 80,000
    AND 100,000 

Fig. 4.2 Definition of views as part of data protection 

REVOKE ALL ON STAFF FROM murphy; 

To simplify the assignment of rights for several users, reusable roles can be 
defined. In the following example, a role “hr” is created. This role will be authorized 
to perform read and write actions on the table STAFF. 

CREATE ROLE hr; 
GRANT SELECT, INSERT, UPDATE on STAFF to hr; 
GRANT hr TO murphy; 

However, the GRANT command only allows access control at the level of entire 
database objects, such as tables. In many cases, we may want to further restrict 
access to columns and rows of a table. This is done with table views, each of which is
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based on either one or multiple physical tables and is defined using a SELECT 
statement: 

CREATE VIEW view-name AS <SELECT-statement> 

However, view security is only effective when users are granted privileges on the 
views rather than on the base tables. 

Figure 4.2 shows two example views based on the STAFF table. The 
EMPLOYEE view shows all attributes except for the salary information. The view 
GROUP_A shows only those employees with their respective salaries who earn 
between USD 80,000 and 100,000 annually. Other views can be defined similarly, 
e.g., to allow HR to access confidential data per salary group. 

The two examples in Fig. 4.2 demonstrate important protection methods: On the 
one hand, tables can be limited for specific user groups by projection; on the other 
hand, access control can also be value-based, e.g., for salary ranges, via 
corresponding view definitions in the WHERE clause. 

As on tables, it is possible to formulate queries on views; however, manipulation 
operations cannot always be defined uniquely. If a view is defined as a join of 
multiple tables, change operations may be denied by the database system under 
certain circumstances. 

Updateable views allow for insert, delete, and update operations. The following 
criteria determine whether a view is updateable:

• The view contains content from only one table (no joins allowed).
• That base table has a primary key.
• The defining SQL expression contains no operations that affect the number of 

rows in the result set (e.g., aggregate, group by, distinct, etc.). 

It is important to note that for different views of a single table, the data are 
managed uniformly in the base table; rather, merely the definitions of the views are 
stored. Only when the view is queried with a SELECT statement are the 
corresponding result tables generated from the view’s base tables with the permitted 
data values. 

Using views, it is now possible to grant only reading privileges for a subset of 
columns of the STAFF table with the EMPLOYEE view from Fig. 4.2: 

GRANT SELECT ON EMPLOYEE TO PUBLIC
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Instead of listing specific users, this example uses PUBLIC to assign reading 
privileges to all users so they can look at the limited EMPLOYEE view of the base 
table. 

For a more selective assignment of permissions, for instance, it is possible to 
authorize only a certain HR employee with the user ID ID37289 to make changes to 
a subset of rows in the GROUP_A view from Fig. 4.2: 

GRANT UPDATE ON GROUP_A TO ID37289 
WITH GRANT OPTION 

User ID37289 can now modify the GROUP_A view and, thanks to the GRANT 
OPTION, even assign this authorization or a limited reading privilege to others and 
take it back. This concept allows to define and manage dependencies between 
privileges. 

The complexity of managing the assignment and removal of permissions when 
giving end users access to a relational query and manipulation language is not to be 
underestimated, even if the data administrators can use GRANT and REVOKE 
commands. In reality, daily changes and the monitoring of user authorizations 
require additional management tools (e.g., auditing). Internal or external controlling 
instances and authorities may also demand special measures to constantly ensure the 
proper handling of especially sensitive data (see also the legal data protection 
obligations for your jurisdiction). 

SQL Injection 
One security aspect that plays an increasingly important role in the age of the Web in 
the area of databases is the prevention of so-called SQL injections. When Web pages 
are programmed on the server side and connected to an SQL database, server scripts 
sometimes generate SQL code to interface with the database (see Sect. 3.6). If the 
code contains parameters that are entered by users (e.g., in forms or as part of the 
URL), additional SQL code can be injected there, the execution of which exposes or 
modifies sensitive information in the database. 

As an explanatory example, let’s assume that after logging into the user account 
of a Web store, the payment methods are displayed. The Web page that displays the 
user’s saved payment methods has the following URL: 

http://example.net/payment?uid=117 

Let’s assume that in the background, there is a program in the Java programming 
language that fetches the credit card data (name and number) from the database via
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Java Database Connectivity (JDBC). The Java servlet uses embedded SQL and a 
cursor (see Sect. 3.6.1). Then the data is displayed on the Web page using HTML: 

Connection connection = DriverManager.getConnection( 
"jdbc:mysql://127.0.0.1:3306/ma", 
"user", 
"password"); 

ResultSet cursor = 
connection.createStatement().executeQuery( 

"SELECT credit card number, name+ 
+ "FROM PAYMENT"  
+ "WHERE uid = " 
+ request.getParameter("uid"));   

while (cursor.next()) { 
out.println( 

resultset.getString("credit_card_number ") 
+ "<br/>" + 

+ resultset.getString("name"); 
} 

For this purpose, an SQL query of the PAYMENT table is generated on lines 
6 and following of the Java code above. It is parameterized via the user input via 
URL using a get request (request.getParameter). This type of code generation is 
vulnerable to SQL injection. If the parameter uid is added to the URL as follows, all 
credit card data of all users will be displayed on the Web page: 

http://example.net/payment?uid=117%20OR%201=1 

The reason for this is that the servlet shown above generates the following SQL 
code based on the GET parameter: 

SELECT credit_card_number, name 
FROM PAYMENT 
WHERE uid = 117 OR 1=1; 

The additional SQL code “OR 1=1” inserted, the SQL injection, causes the 
search filter to become inactive with the user identification in the generated query, 
since 1=1 is always true, and an OR operation is always true even if only one of the 
conditions is true. Therefore, in this simple example, the website is exposing 
protectable data due to this SQL injection.



118 4 Database Security

SQL injection is a security vulnerability that should not be underestimated. 
Hackers repeatedly succeed in attacking even well-known websites via this mecha-
nism. There are several ways to protect a website from this. SQL code generation can 
be outsourced to typed stored functions in the database (see Sect. 3.6.1). In the 
example above, a server-side function can accept a user ID as input as a numeric 
value and then return the credit card information as output. If this function were 
given a text instead of a number, an error message would be generated. As a client-
side option, the Java code could be modified to use so-called prepared statements 
instead of inserting the input string directly into the query text: 

PreparedStatement ps = con.prepareStatement( 
"SELECT credit_card_number, name FROM PAYMENT" + 
"WHERE uid = "?"); 
ps.setString(1, + request.getParameter("uid")); 
ResultSet resultset = ps.executeQuery(); 

In summary, SQL databases provide comprehensive protection mechanisms with 
the GRANT and REVOKE and CREATE VIEW constructs. However, these control 
mechanisms can be leveraged with code injection in the larger context of Web-based 
information systems. The situation is similar for NoSQL databases, as we will see in 
the following sections. 

4.2.2 Authentication in Cypher 

Newer versions of Cypher provide mechanisms for authentication and authorization 
of users. The CREATE USER command can be used to create a user account for 
Murphy. The password must be changed the first time the user logs in. 

CREATE USER murphy 
SET PASSWORD 'jd7k_Ddjh$1' 
CHANGE REQUIRED; 

With SHOW USERS, all existing user accounts can be displayed. To rename a 
user account, use the command RENAME USER: 

RENAME USER murphy TO murphy.kent
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An account can be changed with the command ALTER USER, e.g., to reset the 
password. With the addition CHANGE NOT REQUIRED, the specified password 
can be reused. 

ALTER USER murphy.kent 
SET PASSWORD 'j83hd_:sdfD' 
CHANGE NOT REQUIRED; 

For authorization, Cypher offers the GRANT command. There are predefined 
roles for the role-based access control (RBAC):

• PUBLIC can access its own HOME database and perform all functions there. All 
user accounts have this role.

• reader can read data from all databases.
• editor can read databases and modify contents.
• publisher can read and edit and add new node and edge types and property 

names.
• architect has in addition to publisher the ability to manage indexes and integrity 

constraints.
• admin can manage databases, users, roles, and permissions in addition to the 

architect role. 

The following command assigns the role architect to user account murphy.kent: 

GRANT ROLE architect TO murphy.kent; 

With REVOKE, authorizations can be removed again: 

REVOKE ROLE architect FROM murphy.kent; 

Privileges can also be set in a fine-grained way. The following command allows 
reading all node types (*) of the “company” graph for user account muprh. 

GRANT MATCH {*} ON GRAPH company NODE * 
TO murphy.kent
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Authorization works similarly for relationship types. The following Cypher code 
creates a new role project.admin, gives it the ability to create relationships of type 
Team, and grants permissions to this role to murphy.kent. 

CREATE ROLE project.admin; 

GRANT WRITE {*} ON GRAPH company RELATIONSHIP Team 
TO project.admin; 

GRANT ROLE project.admin TO murphy.kent; 

Cypher supports the division of access rights at the level of individual properties. 
The following ensures that the role project.admin can read all nodes and edges, but 
cannot see the property wage of the table personnel. 

GRANT MATCH {*} ON GRAPH company NODE * 
TO project.admin; 

GRANT MATCH {*} ON GRAPH company RELATIONSHIP * 
TO project.admin; 

DENY READ {Wage} ON GRAPH Company NODE Personnel 
TO project.admin; 

If a user account is forbidden to read a property, it can be queried in a Cypher 
request without error message, but the return value remains empty (NULL, cf. Sect. 
3.3.4). 

Cypher Injection 
Cypher injection is an attack using specifically formatted input from users to perform 
unexpected operations on the database, read, or modify data without permission. 
Let’s assume that a Web application allows to insert new records about projects into 
the database. To do this, a Web server executes the following Java code: 

String query = "CREATE (p:project)" 
+ "SET p.name = '" 
+ user_input + "'" 

session.run(query); 

This code is vulnerable to Cypher injection. Users could write the following input 
to the Web form:
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"Anything' WITH true as x MATCH (p:project) DELETE p//" 

Cypher code has been injected in this user input. If this string is interpreted in the 
Java code above, the following Cypher command is generated: 

CREATE (p:project) 
SET p.name = 'Anything' 
WITH true as x 
MATCH (p:Project) DETACH DELETE p //' 

It doesn’t matter what other code comes directly before the quotation mark that 
terminates the string. The WITH statement after the CREATE command allows in 
Cypher to append a MATCH and DELETE statement. This deletes all project data 
here. All other strings are reduced to comments with the double crossbar //, and are 
therefore not executed as code. 

To work around this problem, user input can be passed as parameters in Cypher. 
This way the query is precompiled, and the parameter inputs are not interpreted by 
the DBMS. 

HashMap<String,Object> params = new HashMap(); 
params.put( "name", <user input> ); 
String qry = "CREATE (p:project) SET p.name = $name"; 
System.out.println(qry); 
session.run(qry, params);¨ 

In summary, Cypher databases provide a comprehensive protection mechanism 
using the GRANT and REVOKE constructs, even at the level of individual node 
types, edge types, and properties. When embedding Cypher in programming 
languages, care must be taken to prevent injection attacks. 

4.2.3 Authentication and Authorization in MQL 

Sophisticated concepts of access control are present in MQL. The basis is to create a 
user account for authentication with the createUser() method:
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use Company 
db.createUser( 
{ 

user: "murphy", 
pwd: passwordPrompt(), 
roles: [ 

{ role: "read", db: "Company" }, 
] 

} 
) 

This request creates a user account “murphy” in the database “Company” With 
the passwordPrompt() specification, the password is not passed as plain text, but by 
command prompt. This has security advantages. The password is not visible on the 
screen, is not saved as a file, does not appear in the command history of the 
command line, and is invisible to other processes of the operating system. However, 
the createUser() function can be passed the password in plain text if necessary. 

db.changeUserPassword("murphy", 
"KJDdfgSD$_3") 

To authorize accounts for database actions, database-level roles can be 
communicated in the roles field of the createUser() method. There are built-in 
roles in MongoDB that cover the typical requirements:

• read: read access
• readWrite: read and write access
• dbAdmin: rights for indexes and statistics
• userAdmin: rights to create user accounts and define and assign roles
• dbOwner: combines the rights of all above roles 

These roles each apply to all collections in a database. In order to set the user 
rights on the level of collections, user-defined roles can be created. For example, to 
give a user account write access to the “Staff” collection, a “staffAdmin” role can be 
created using the “createRole()” method:
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use admin 
db.createRole( 

{ 
role: "staffAdmin", 
privileges: [ 

{ 
actions: [ "insert", "remove", "update" ], 
resource: { db: "Company", 

collection: "Staff" } 
} 

], 
roles: [] } ) 

This command gives the “staffAdmin” role the privileges to perform the insert, 
remove, and update actions on the “Staff” collection. This role can now be assigned 
to individual user accounts using the “grantRolesToUser()” method. 

use Company 
db.grantRolesToUser( 

"murphy", 
[ 

{ role: "staffAdmin", db: "Company" } ] ) 

With the opposite function “revokeRolesFromUser(),” roles can be taken away 
again: 

use reporting 
db.revokeRolesFromUser( 

}, "murphy", 
[ 

{ role: "read", db: "Company" } ] ) 

MQL does not offer the possibility to grant privileges to user accounts individu-
ally. All access rights are distributed via roles. Roles allow to distribute access rights 
on collections level. To restrict read access to individual fields and to subsets of 
documents, MQL can define views.
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Use Company; 
db.createView( 

"vStaff", 
"Staff", 
[ 

{ $match: { Salary:  
{ $gte : 80000, $lte : 160000} } }, 
{ $project: { Salary: 0 } } 

] ) 

This view shows only employees with salaries between 80,000 and 160,000, but 
without the exact salary information, because the field was expanded in the view 
definition with an exclusion projection. 

Subsequently, a user-defined role can be authorized to read this view instead of 
the original collection: 

use Company 
db.grantPrivilegesToRole( 

"staffAdmin", 
[ 

{ 
resource: { 

db: "Company", 
collection: "vStaff" }, 

actions: [ "find" ] 
} 

) 

JavaScript Injection 
Although MQL is not interpreted as a language, but is parameterized with JSON 
objects, NoSQL injection attacks are certainly possible with MongoDB. Let’s 
assume, for example, that the user name and password for authentication in a Web 
application with MongoDB are passed as Get parameters via the URL: 

https://example.org/login?user=u526&password=123456 

Let’s further assume that in the background, this URL request to the Web server is 
forwarded to the MongoDB database in a Python program to check if the combina-
tion of user and password is present in the database:
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result = collection.find({"$where": 
"this.user == '" 

+ parse_qs(urlparse(url).query)['user'][0] 
+ "' && this.pw == '" 

+ parse_qs(urlparse(url).query)['pw'][0] 
+ "'" }) 

Given the input parameters, this Python program generates and executes the 
following MQL query: 

Db.users.find({'$where': 
"this.user == 'u526' 
&& this.pw == '123456'" } ) 

The $where operator in MQL, in the current version 5.0 of MongoDB, allows a 
JavaScript expression to be checked for document selection. The operator is vulner-
able to JavaScript injection. 

If an attacker injects JavaScript code into the URL, it could look like this: 

'https://example.org/login?user=u526&pw=%27%3B%20return%20tr 
ue%2B%27 

In this URL, special characters like single quotes (%27), a semicolon (%3B), 
spaces (%20), and a plus sign (%2B) have been injected together with JavaScript 
code like “return true.” The server generates the following query to MongoDB 
from this: 

Db.users.find({'$where': 
"this.user == 'u526' 
&& this.pw == ''; return true+''" } ) 

By injecting the statement “return true,” the filter predicate for checking users and 
passwords becomes a tautology, so it is always true. Thus, we can bypass the 
password in this example. 

A real authentication is certainly not implemented this way. We simply want to 
show here that the injection is principally possible in MQL. This simple example 
should suffice for that.
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MongoDB does not provide stored procedures or prepared statements to prevent 
injections. However, server-side execution of JavaScript can be disabled. In addi-
tion, every input must be checked via user interface. There are sanitizing libraries 
that provide additional security. For example, special characters can be escaped. 

4.3 Integrity Constraints 

The integrity of a database is a fundamental security objective that the database 
management system must support. 

The term integrity or consistency refers to the absence of contradictions in 
databases. A database is considered to have integrity or consistency if the stored 
data is recorded without errors and correctly reflects the desired information content. 
Data integrity, on the other hand, is violated when ambiguities or contradictory facts 
come to light. For a consistent representation of employees in a database, we assume, 
for example, that the names of the employees, street names, location information, 
etc. are correct and exist in reality. 

The rules that apply to insert or change operations at any time are called integrity 
constraints. It makes sense not to specify such rules individually in each program, 
but to specify them comprehensively once in the database schema. Depending on the 
maturity level, the DBMS can automatically check compliance with the rules defined 
by the integrity constraints. A distinction is made between declarative, procedural, 
and transactional integrity conditions. Declarative integrity conditions for ensuring 
integrity are those rules that can be expressed by the database schema itself. 
Procedural conditions are defined by programs with sequences of statements. Trans-
actional consistency rules refer to consistency across multiple individual actions. 

The following classes of integrity conditions are essential to database manage-
ment systems:

• Uniqueness constraint: An attribute value can exist at most once within a given 
class of records.

• Existence constraint: An attribute has to exist at least once within a given class 
of records and must not be empty.

• Key constraint: An attribute value has to exist exactly once within a given set of 
records, and the corresponding attribute has to be present for each record of a 
class. The key condition combines uniqueness and existence constraints. Keys 
can also be defined on attribute combinations.

• Primary key constraint: If multiple attributes exist that satisfy the key condition, 
at most one of them can be defined as primary.

• Domain constraint: The set of possible values of an attribute can be restricted, 
for example, using data types, enumerations, and checking rules.

• Referential integrity constraint: Attributes within a data set that refer to other 
data sets must not point to nothing, i.e., the referenced data sets must exist.
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In the following, we will compare examples of possible integrity conditions for 
relational databases, graph databases, and document databases using the SQL, 
Cypher, and MQL languages. 

4.3.1 Relational Integrity Constraints 

Integrity or consistency of data means that stored data does not contradict itself. A 
database has integrity/consistency if the stored data is free of errors and accurately 
represents the anticipated informational value. Data integrity is impaired if there are 
ambiguities or conflicting records. For example, a consistent EMPLOYEE table 
requires that the names of employees, streets, and cities really exist and are correctly 
assigned. 

Declarative integrity constraints are defined during the generation of a new table 
in the CREATE TABLE statement using the data definition language. Constraints 
can be added to, changed, and removed from existing tables using the ALTER 
TABLE statement. In the example in Fig. 4.3, the primary key for the DEPART-
MENT table is specified as an integrity constraint with PRIMARY KEY. Primary 
and foreign key of the EMPLOYEE table are defined similarly. 

The various types of declarative integrity constraints are:

• Primary key definition: PRIMARY KEY defines a unique primary key for a 
table. Primary keys must, by definition, not contain any NULL values.

• Foreign key definition: FOREIGN KEY can be used to specify a foreign key, 
which relates to another table in the REFERENCES clause.

• Uniqueness: The uniqueness of an attribute can be determined by the UNIQUE 
constraint. Unlike primary keys, unique attributes may contain NULL values.

• Existence: The NOT NULL constraint dictates that the respective attribute must 
not contain any NULL values. For instance, the attribute Name in the 
EMPLOYEE table in Fig. 4.3 is set to NOT NULL, because there must be a 
name for every employee.

• Check constraint: Such rules can be declared with the CHECK command and 
apply to every tuple in the table. For example, the CHECK Salary >30,000 
statement in the STAFF table in Fig. 4.3 ensures that the annual salary of each 
employee is at least USD 30,000.

• Set to NULL for changes or deletions: ON UPDATE SET NULL or ON 
DELETE SET NULL declares for dependent tables that the foreign key value 
of a dependent tuple is set to NULL when the corresponding tuple in the 
referenced table is modified or removed.

• Restricted changes or deletion: If ON UPDATE RESTRICT or ON DELETE 
RESTRICT is set, tuples cannot be manipulated or deleted while there are still 
dependent tuples referencing them.

• Cascading changes or deletion: ON UPDATE CASCADE or ON DELETE 
CASCADE defines that the modification or removal of a reference tuple is 
extended to all dependent tuples.
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DEPARTMENT 

D3 IT 

D5 HR 

D6 Accounting 

D# DepartmentName 

Primary key 

EMPLOYEE 

E19 Stewart E Main Street Stow D6 

E1 Murphy Murray Road Kent D3 

E7 Howard Lorain Avenue Cleveland D5 

E4 Bell S Water Street Kent D6 

E# Name Street City D#_Sub 

Reference 

Foreign key 

CREATE TABLE EMPLOYEE
 (E#     CHAR (6),
  Name    CHAR (20) NOT NULL,
  Street    CHAR (30),
  City     CHAR (25),
  D#_Sub    CHAR (2), 

PRIMARY KEY (E#), 
  FOREIGN KEY (D#_Sub)    
   REFERENCES DEPARTMENT(D#) 
   ON DELETE RESTRICT)

-- Primary Key Definition
-- Foreign Key Definition 

CREATE TABLE DEPARTMENT( 
D# CHAR(2), 
DepartmentName VARCHAR(2) 
PRIMARY KEY (D#) 
) 

Fig. 4.3 Definition of declarative integrity constraints 

In Fig. 4.3, a restrictive deletion rule has been specified for the two tables 
DEPARTMENT and EMPLOYEE. This ensures that individual departments can 
only be removed if they have no dependent employee tuples left. The command 

DELETE FROM Department WHERE D# = 'D6' 

would therefore return an error message, since the employees Stewart and Bell are 
listed under the accounting department.



will also return an error message: Department D7 is not yet listed in the referenced
table DEPARTMENT, but due to the foreign key constraint, the DBMS checks
whether the key D7 exists in the referenced table before the insertion.
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Aside from delete operations, declarative integrity constraints can also affect 
insert and update operations. For instance, the insert operation 

INSERT INTO EMPLOYEE 
VALUES ('E20','Kelly','Market Ave S','Canton','D7') 

Declarative, or static, integrity constraints can be defined during table generation 
(CREATE TABLE statement). On the other hand, procedural, or dynamic, integrity 
constraints compare database states before and after a change, i.e., they can only be 
checked during runtime. The triggers are an alternative to declarative integrity 
constraints because they initiate a sequence of procedural branches via instructions. 
Triggers are mostly defined by a trigger name, a database operation, and a list of 
subsequent actions: 

CREATE TRIGGER NoCuts -- trigger name 
BEFORE UPDATE ON Employee -- database operation 
FOR EACH ROW BEGIN -- subsequent action 
IF NEW.Salary < OLD.Salary 
THEN set NEW.Salary = OLD.Salary 
END IF; 
END 

The example above shows a situation where employees’ salaries must not be cut, 
so before updating the EMPLOYEE table, the trigger checks whether the new salary 
is lower than the old one. If that is the case, the integrity constraint is violated, and 
the new salary is reset to the original value from before the update. This is a very 
basic example meant to illustrate the core concept. In a production environment, the 
user would also be notified. 

Working with triggers can be tricky, since individual triggers may prompt other 
triggers, which raises the issue of terminating all subsequent actions. In most 
commercial database systems, the simultaneous activation of multiple triggers is 
prohibited to ensure a clear action sequence and the proper termination of triggers. 

4.3.2 Integrity Constraints for Graphs in Cypher 

In graph databases, implicit and explicit integrity constraints exist. The graph 
database model implicitly checks referential integrity by ensuring that all edges are



connected to existing nodes. The four consistency conditions that Cypher explicitly 
supports are the following:
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• Unique node property constraints
• Relationship property existence constraints
• Node property existence constraints
• Node key constraints 

Uniqueness Constraint for Node Properties 
Node properties in the graph can be defined to be unique for a node type, i.e., to 
occur only once per node type. For example, the following integrity condition 
specifies that the e-mail address of employees must be unique: 

CREATE CONSTRAINT EMPLOYEE_EMailAddress 
ON (e:EMPLOYEE) 
ASSERT e.EMailAddress IS UNIQUE 

With the opposite command DROP CONSTRAINT, the integrity condition can 
be deleted again: 

DROP CONSTRAINT EMPLOYEE_EMailAddress 

Existence Constraint for Node Properties 
An integrity condition can be defined to ensure that a property must exist for each 
node of a node type. For example, the following condition enforces that all 
employees receive a social security number (Ssn): 

CREATE CONSTRAINT EMPLOYEE_Svn 
ON (m:EMPLOYEE) 
ASSERT EXISTS (m.Ssn) 

Existence Constraint for Edge Attributes (Relationship Property) 
For edge attributes, we can define that they must exist at each edge of an edge type. 
For example, we can ensure that a workload is specified for each project assignment 
of employees:
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CREATE CONSTRAINT PROJECT_EMPLOYMENT_Workload 
ON ()- [R:PROJECT ASSIGNMENT]-() 
ASSERT EXISTS (R.Workload) 

Node Key Condition 
For a node type, it can be defined that a property or a combination of properties is a 
key. This means that the property or combination is always present for that node type 
and that it is unique for that node type. For example, the following integrity 
condition specifies that for collaborators, the Number property is a key: 

CREATE CONSTRAINT EMPLOYEE_Number 
ON (e:EMPLOYEE) 
ASSERT (e.Number) IS NODE KEY 

There can be more than one key for a node type. The key condition is simply a 
combination of the existence and uniqueness conditions. 

Value Range Conditions 
Cypher provides schema-free data types for properties. This means that the same 
property within the same node type may have different data types at individual 
nodes. The same is true for edge properties. Thus, there are no range conditions for 
properties in Cypher. For example, the following query is allowed: 

CREATE (:EMPLOYEE { Ssn: 1 }); 
CREATE (:EMPLOYEE { Ssn: "A" }); 

These statements insert two EMPLOYEE nodes with the Ssn property, first with 
type Integer and then with type String. In terms of schema freedom, this is possible. 
However, schema freedom does not mean that Cypher has no datatypes. The apoc. 
meta.type() function can be used to output the list of data types it stores for an input: 

MATCH (n) RETURN distinct apoc.meta.type(n.Ssn)
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Referential Integrity 
As a graph database language, Cypher implicitly checks all edges for referential 
integrity, i.e., neither primary nor foreign keys need to be explicitly declared for 
linking nodes to directed edges. The database management system ensures that 
edges refer to existing nodes in all cases. Nodes can therefore only be deleted if 
there are no edges associated with them. In addition, it is not possible to insert edges 
without nodes. Edges must always be created as triples together with source and 
target nodes. If necessary, the connected nodes can also be created directly during 
the insertion of the edge. 

4.3.3 Integrity Constraints in Document Databases with MQL 

The MongoDB database system, with its concept of schema freedom, offers a 
flexible insertion of new data. This means that any data structure can be inserted 
into all collections by default. This is especially useful for dealing with heteroge-
neous data (Big Data variety). Nevertheless, it is possible to ensure data integrity in 
MQL in various ways. 

Primary Key Conditions 
In MongoDB, each document in a collection has a unique field with property “_id” 
(cf. Sect. 3.5.2). This satisfies the conditions of a primary key for the document. 
Users can assign their own unique value to the “_id” field, or the database manage-
ment system can automatically generate a unique object identity. 

Uniqueness Constraints 
It is possible in MQL to create an index for a property that ensures the uniqueness of 
the property values. For example, the following statement prevents records from 
being inserted into the EMPLOYEE collection if the value of the EMPLOYEE. 
EMailAddress field already exists. 

db.EMPLOYEES.createIndex( 
{ "EMPLOYEE.EMailAddress": 1}, 
{ unique: true } ) 

Existence Constraints 
MQL supports validation of input documents with JSON Schema (see Sect. 2.5.1). 
This is the variant of schema validation recommended by the manufacturer. For 
example, JSON Schema can be used to specify which properties must be present for 
a document. The following example creates a collection EMPLOYEE with validator 
that sets an existence condition for the fields EMPLOYEE.Name and EMPLOYEE. 
Status. Thus, only documents can be inserted which have at least these two fields.
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db.createCollection("EMPLOYEE", { 
validator: { 

$jsonSchema: { 
required: [ "EMPLOYEE.Name", "EMPLOYEE.Status" ] 

} 
} 

}) 

Domain Constraints 
In addition to JSON Schema, MQL supports validation rules which allow filters with 
all existing filter operators, with few exceptions. This allows sophisticated value 
range conditions to be defined. For example, the following statement creates a new 
collection EMPLOYEE with a validator that checks if titles are of type string and 
restricts the Status field to three possible values. 

db.createCollection( "PROJECTS", 
{ validator: { $and:[ 

{ PROJECTS.title: { $type: "string" } }, 
{ PROJECTS.status: { $in: 

[ "Requested", "Active", "Performed"] 
} } ] } } ) 

Referential Integrity Constraints 
MQL assumes, based on the document definition (see Sect. 1.5), that records are 
complete in themselves, so there is no way in MQL to define relationships, between 
documents or foreign keys, in the database schema. This is a deliberate choice, as 
assuming completeness of documents allows for faster queries and easier 
partitioning of the database for very large data sets. 

In summary, we see that despite foregoing referential integrity checking in favor 
of scalability for Big Data, MQL has comprehensive and flexible mechanisms for 
checking integrity constraints. 

4.4 Transaction Consistency 

4.4.1 Multi-user Operation 

The terms consistency and integrity of a database describe a state in which the stored 
data does not contradict itself. Integrity constraints are to ensure that data consis-
tency is maintained for all insert and update operations.
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One potential difficulty arises when multiple users simultaneously access a 
database and modify contained data. This can cause conflicts involving blocking 
each other (deadlocks) or even consistency violations. Depending on the use case, 
breaches of consistency rules are absolutely unacceptable. A classic example are 
posting transactions in banking, where the principles of double-entry bookkeeping 
must always be observed and must not be violated. 

Transaction management systems ensure that consistent database states are only 
changed to other consistent database states. These systems follow an all-or-none rule 
to prevent transactions from executing partial changes to the database. Either all 
requested changes are applied or the database is not modified at all. Pessimistic or 
optimistic concurrency control methods are used to guarantee that the database 
remains in a consistent state at any time. 

However, with comprehensive Web applications, it has been shown that striving 
for full consistency is not always desirable. This is due to the CAP theorem, which 
states that any database can, at most, have two out of three: consistency, availability, 
or partition tolerance. Therefore, if the focus is on availability and partition toler-
ance, temporarily inconsistent database states are unavoidable. 

4.4.2 ACID 

Ensuring the integrity of data is a major requirement for many database applications. 
The transaction management of a database system allows conflict-free simultaneous 
work by multiple users. Changes to the database are only applied and become visible 
if all integrity constraints as defined by the users are fulfilled. 

The term transaction describes database operations bound by integrity rules, 
which update database states while maintaining consistency. More specifically, a 
transaction is a sequence of operations that has to be atomic, consistent, isolated, and 
durable.

• Atomicity (A): Transactions are either applied in full or not at all, leaving no trace 
of its effects in the database. The intermediate states created by the individual 
operations within a transaction are not visible to other concurrent transactions. A 
transaction can therefore be seen as a unit for the resettability of incomplete 
transactions.

• Consistency (C): During the transaction, integrity constraints may be temporarily 
violated; however, at the end of the transaction, all of them must be met again. A 
transaction therefore always results in moving the database from one consistent 
state into another and ensures the integrity of data. It is considered a unit for 
maintaining consistency.

• Isolation (I): The concept of isolation requires that parallel transactions generate 
the same results as transactions in single-user environments. Isolating individual 
transactions from transactions executed simultaneously protects them from 
unwanted side effects. This makes transactions a unit for serializability.
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• Durability (D): Database states must remain valid and be maintained until they 
are changed by a transaction. In case of software errors, system crashes, or errors 
on external storage media, durability retains the effects of a correctly completed 
transaction. In relation to the reboot and recovery procedures of databases, 
transactions can be considered a unit for recovery. 

These four principles, Atomicity (A), Consistency (C), Isolation (I), and Durabil-
ity (D), describe the ACID concept of transactions, which is the basis of several 
database systems and guarantees that all users can only make changes that lead from 
one consistent database state to another. Inconsistent interim states remain invisible 
externally and are rolled back in case of errors. 

4.4.3 Serializability 

A major aspect in the definition of operation systems and programming languages is 
the coordination or synchronization of active processes and the mutual exclusion of 
simultaneous processes. For database systems, too, concurrent accesses to the same 
data objects must be serialized in order for database users to be able to work 
independently from each other. 

Concept of Serializability 
A system of simultaneous transactions is synchronized correctly if there is a serial 
execution creating the same database state. 

The principle of serializability ensures that the results in the database are identi-
cal, whether the transactions are executed one after the other or in parallel. The focus 
in defining conditions for serializability is on the READ and WRITE operations 
within each transaction, i.e., the operations which read and write records in the 
database. 

Banking provides typical examples of concurrent transactions. The basic integrity 
constraint for posting transactions is that debit and credit have to be balanced. 
Figure 4.4 shows two simultaneously running posting transactions with their 
READ and WRITE operations in chronological order. Neither transaction on its 
own changes the total amount of the accounts a, b, and c. The transaction TRX_1 
credits account a with 100 units of currency and, at the same time, debits account b 
with 100 units of currency. The posting transaction TRX_2 similarly credits account 
b and debits account c for 200 currency units each. Both transactions therefore fulfill 
the integrity constraint of bookkeeping, since the ledgers are balanced. 

However, if both transactions are executed simultaneously, a conflict arises: The 
transaction TRX_1 misses the credit b := b+2001 done by TRX_2, since this change 
is not immediately written back, and reads a “wrong” value for account b. After both

1 The notation b := b+200 means that the current balance of account b is increased by 200 currency 
units. 



transactions are finished, account a holds the original amount + 100 units (a+100), 
the amount in account b is reduced by 100 units (b-100), and c holds 200 units less 
(c-200). Due to the Transaction TRX_1 missing the b+200 step for account b and 
not calculating the amount accordingly, the total credits and debits are not balanced, 
and the integrity constraint is violated. 
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Time 

BEGIN_OF_TRX_1 BEGIN_OF_TRX_2 

READ(a) 

READ(b)a := a + 100 

WRITE(a) 

b := b + 200 

READ(b) 

WRITE(b) 

READ(c) 

b := b - 100 

WRITE(c) 

WRITE(b) c := c - 200 

END_OF_TRX_1 END_OF_TRX_2 

Fig. 4.4 Conflicting posting transactions 

Potential conflicts can be discovered beforehand. To do so, those READ and 
WRITE operations affecting a certain object, i.e., a single data value, a record, a 
table, or sometimes even an entire database, are filtered from all transactions. The 
granularity (relative size) of the object decides how well the picked transactions can 
be synchronized. The larger the granularity, the smaller the degree of transaction 
synchronization and vice versa. All READ and WRITE operations from different 
transactions that apply to a specific object are therefore listed in the log of the object 
x, short LOG(x). The LOG(x) of object x contains, in chronological order, all READ 
and WRITE operations accessing the object.
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Log 

LOG(b) 

TRX_2:READ 

TRX_1:READ 

TRX_2:WRITE 

TRX_1:WRITE 

Precedence graph for 
data value b 

TRX_2 

TRX_1 

READ_WRITE 
edge 

WRITE_WRITE 
edge 

READ_WRITE edge:  “TRX_1:READ” is followed by “TRX_2:WRITE” 
WRITE_WRITE edge:  “TRX_2:WRITE” is followed by “TRX_1:WRITE” 

Fig. 4.5 Analyzing a log using a precedence graph 

In our example of the concurrent posting transactions TRX_1 and TRX_2, the 
objects in question are the accounts a, b, and c. As shown in Fig. 4.5, the log for 
object b, for instance, contains four entries (see also Fig. 4.4). First, TRX_2 reads the 
value of b, and then TRX_1 reads the same value, before TRX_2 gets to write back 
the modified value of b. The last log entry is caused by TRX_1 when it overwrites 
the value from TRX_2 with its own modified value for b. Assessing the logs is an 
easy way to analyze conflicts between concurring transactions. A precedence graph 
represents the transactions as nodes and possible READ_WRITE or 
WRITE_WRITE conflicts as directed edges (arched arrows). For any one object, 
WRITE operations following READs or WRITEs can lead to conflicts, while 
multiple READ operations are generally not a conflict risk. The precedence graph 
does therefore not include any READ_READ edges. 

Figure 4.5 shows not only the log of object b for the posting transactions TRX_1 
and TRX_2 but also the corresponding precedence graph. Starting from the TRX_1 
node, a READ on object b is followed by a WRITE on it by TRX_2, visualized as a 
directed edge from the TRX_1 node to the TRX_2 node. According to the log, a 
WRITE_WRITE edge goes from the TRX_2 node to the TRX_1 node, since the 
WRITE operation by TRX_2 is succeeded by another WRITE on the same object by 
TRX_1. The precedence graph is therefore cyclical, in that there is a directed path 
from a node that leads back to the same node. This cyclical dependency between the 
transactions TRX_1 and TRX_2 shows that they are not serializable. 

Serializability Condition 
A set of transactions is serializable if the corresponding precedence graphs contain 
no cycles. 

The serializability condition states that multiple transactions have to yield the 
same results in a multi-user environment as in a single-user environment. In order to



ensure serializability, pessimistic methods prevent any concurrent transaction runs 
that would lead to conflicts, while optimistic methods accept the chance of conflicts 
and fix them retroactively by rolling back the respective transactions. 
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4.4.4 Pessimistic Methods 

Transactions can secure themselves from interferences by others by using locks to 
prevent additional accesses to the objects they need to read or update. Exclusive 
locks let only one transaction access the affected object, while concurring 
transactions that require access to the same object are rejected or queued. If such a 
lock is placed on an object, all other transactions that need this object have to wait 
until the object is released again. 

The locking protocol defines how locks are set and released. If locks are cleared 
too early or without proper care, non-serializable sequences can arise. It is also 
necessary to prevent multiple transactions from blocking each other and creating a 
deadlock. 

The exclusive locking of objects requires the operations LOCK and UNLOCK. 
Every object has to be locked before a transaction can access it. While an object x is 
blocked by a LOCK(x), no other transaction can read or update it. Only after the lock 
on object x has been released by UNLOCK(x) can another transaction place a new 
lock on it. 

Normally, locks follow a well-defined protocol and cannot be requested or 
released arbitrarily. 

Two-Phase Locking Protocol 
Two-phase locking (2PL) prevents a transaction from requesting an additional 
LOCK after the first UNLOCK. 

Transactions under this locking protocol are always executed in two phases: 
During the expanding phase, all locks are requested and placed; during the shrinking 
phase, the locks are released one by one. This means that during the expanding phase 
of a transaction with 2PL, LOCKs can only be placed, gradually or all at once, but 
never released. UNLOCK operations are only allowed during the shrinking phase, 
again individually or in total at the end of the transaction. Two-phase locking 
effectively prohibits an intermix of creating and releasing locks. 

Figure 4.6 shows a possible 2PL protocol for the posting transaction TRX_1. 
During the expanding phase, first account a is locked and then account b, before both 
accounts are released again in the same order. It would also be possible to have both 
locks in this example created right at the beginning of the transaction instead of one 
after the other. Similarly, they could both be released at once at the end of the 
transaction, rather than progressively. 

However, requesting the locks on the objects a and b one by one during the 
expanding phase and releasing them individually during the shrinking phase increase 
the degree of synchronization for TRX_1. If both locks were set at the beginning and



only lifted at the end of the transaction, concurring transactions would have to wait 
the entire processing time of TRX_1 for the release of objects a and b. 
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BEGIN_OF_TRX_1 

LOCK(a) 
READ(a) 
a := a + 100 
WRITE(a) 

LOCK(b) 
READ(b) 

UNLOCK(a) 
b := b - 100 
WRITE(b) 

UNLOCK(b) 

END_OF_TRX_2 Time 

LOCK(a) UNLOCK(b) 

LOCK(b) UNLOCK(a) 

Locks 

Fig. 4.6 Sample two-phase locking protocol for the transaction TRX_1 

Overall, two-phase locking ensures the serializability of simultaneous 
transactions. 

Pessimistic concurrency control 
With the help of two-phase locking, any set of concurring transactions is serializable. 
Due to the strict separation of expanding and shrinking phase, the 2PL protocol 
prevents any cyclical dependencies in all precedence graphs from the start; the 
concurring transactions remain free of conflict. In case of the two posting 
transactions TRX_1 and TRX_2, that means that with properly planned locking 
and unlocking, they can be synchronized without any violation of the integrity 
constraint. 

Figure 4.7 shows how such a conflict-free parallel run of TRX_1 and TRX_2 can 
be achieved. LOCKs and UNLOCKs are set according to 2PL rules, so that, for 
instance, account b is locked by TRX_2 and can only be unlocked during the 
transaction’s shrinking phase, while TRX_1 has to wait to get its own lock on 
b. Once TRX_2 releases account b via UNLOCK(b), TRX_1 requests access to 
and a lock on b. In this run, TRX_1 reads the correct value for b, i.e., b+200. The two 
transactions TRX_1 and TRX_2 can therefore be executed simultaneously.
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Time 

BEGIN_OF_TRX_1 BEGIN_OF_TRX_2 

LOCK(a) 
READ(a) LOCK(b) 

READ(b) 

a := a + 100 
WRITE(a) b := b + 200 

END_OF_TRX_1 END_OF_TRX_2 

WRITE(b) 

UNLOCK(c) 

c := c - 200 
WRITE(c) 

UNLOCK(b) 

LOCK(c) 
READ(c) 

b := b - 100 

WRITE(b) 

UNLOCK(b) 

LOCK(b) 
READ(b) 

UNLOCK(a) 

LOG(b) 

TRX_2:READ 

TRX_2:WRITE 

TRX_1:READ 

TRX_1:WRITE 

Fig. 4.7 Conflict-free posting transactions 

2PL causes a slight delay in the transaction TRX_1, but after both transactions are 
finished, integrity is retained. The value of account a has increased by 100 units (a 
+100), as has the value of account b (b+100), while the value of account c has been 
reduced by 200 units (c-200). The total amount across all three accounts has 
therefore remained the same. 

A comparison between the LOG(b) from Fig. 4.7 and the previously discussed 
log from Fig. 4.5 shows a major difference: It is now strictly one read (TRX_2: 
READ) and one write (TRX_2: WRITE) by TRX_2 before TRX_1 gets access to 
account b and can also read (TRX_1: READ) and write (TRX_1:WRITE) on it. The 
corresponding precedence graph contains neither READ_WRITE nor 
WRITE_WRITE edges between the nodes TRX_1 and TRX_2, i.e., it is free of 
cycles. The two posting transactions therefore fulfill the integrity constraint. 

In many database applications, the demand for high serializability prohibits the 
use of entire databases or tables as locking units. Consequently, it is common to 
define smaller locking units, such as database excerpts, parts of tables, tuples, or



even individual data values. Ideally, locking units are defined in a way that allows for 
hierarchical dependencies in lock management. For instance, if a set of tuples is 
locked by a specific transaction, the superordinate locking units such as the 
containing table or database must not be completely blocked by other transactions 
during the lock’s validity. When an object is put under an exclusive lock, locking 
hierarchies can be used to automatically evaluate and mark superordinate objects 
accordingly. 
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Various locking modes are also important: The most basic classification of locks 
is the dichotomy of read and write locks. Read locks (or shared locks) grant read-
only access for the object to a transaction, while write locks (or exclusive locks) 
permit read and write access to the object. 

Another pessimistic method ensuring serializability are timestamps that allow for 
strictly ordered object access according to the age of the transactions. Such time 
tracking methods preserve the chronological order of the individual operations 
within the transactions and therefore avoid conflicts. 

4.4.5 Optimistic Methods 

Optimistic methods are based on the assumption that conflicts between concurring 
transactions will be rare occurrences. No locks are set initially in order to increase the 
degree of synchronization and reduce wait times. Before transactions can conclude 
successfully, they are validated retroactively. 

Transactions with optimistic concurrency control have three parts: read phase, 
validation phase, and write phase. During the read phase, all required objects are 
read, saved to a separate transaction workspace, and processed there, without any 
preventative locks being placed. After processing, the validation phase is used to 
check whether the applied changes conflict with any other transactions. The goal is 
to check currently active transactions for compatibility and absence of conflicts. If 
two transactions block each other, the transaction currently in the validation phase is 
deferred. In case of successful validation, all changes from the workspace are entered 
into the database during the write phase. 

The use of transaction-specific workspaces increases concurrency in optimistic 
methods, since reading transactions do not impede each other. Checks are only 
necessary before writing back changes. This means that the read phases of multiple 
transactions can run simultaneously without any objects being locked. Instead, the 
validity of the objects in the workspace, i.e., whether they still match the current state 
of the database, must be confirmed in the validation phase. 

For the sake of simplicity, we will assume that validation phases of different 
transactions do not overlap. To ensure this, the time the transaction enters the 
validation phase is marked. This allows for both the start times of validation phases 
and the transactions themselves to be sorted chronologically. Once a transaction 
enters the validation phase, it is checked for serializability. 

The procedure to do so in optimistic concurrency control is as follows: Let TRX_t 
be the transaction to be validated and TRX_1 to TRX_k be all concurrent



transactions that have already been validated during the read phase of TRX_t. All 
other transactions can be ignored since they are handled in strict chronological order. 
All objects read by TRX_t must be validated, since they could have been modified 
by any of the critical transactions TRX_1 to TRX_k in the meantime. The set of 
objects read by TRX_t is labeled READ_SET(TRX_t), and the set of objects written 
by the critical transactions is labeled WRITE_SET(TRX_1,. . .,TRX_k). This gives 
us the following serializability condition: 
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a 

c 

b 

READ_SET(TRX_1) WRITE_SET(TRX_2) 

Fig. 4.8 Serializability condition for TRX_1 not met 

Optimistic Concurrency Control 
In order for the transaction TRX_t to be serializable in optimistic concurrency 
control, the sets READ_ SET(TRX_t) and WRITE_SET(TRX_1,...,TRX_k) must 
be disjoint. 

For a more practical example, we will revisit the two posting transactions TRX_1 
and TRX_2 from Fig. 4.4, with the assumption that TRX_2 has been validated 
before TRX_1. To assess whether TRX_1 is serializable in this scenario, we 
compare the objects read by TRX_1 and those written by TRX_2 (Fig. 4.8) to see 
that object b is part of both sets, i.e., READ_SET(TRX_1) and WRITE_SET 
(TRX_2) overlap, thereby violating the serializability condition. The posting trans-
action TRX_1 has to be rolled back and restarted. 

Optimistic methods can be improved by preventatively ensuring the disjointness 
of the sets READ_SET and WRITE_SET, using the validation phase of a transaction 
TRX_t to check whether it will modify any objects that have already been read by 
other transactions. This assessment method limits the validation effort to transactions 
that actually make changes to database contents.
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4.4.6 Recovery 

Various errors can occur during database operation and will normally be mitigated or 
corrected by the database system itself. Some error cases, such as integrity violations 
or deadlocks, have already been mentioned in the sections on concurrency control. 
Other issues may be caused by operating systems or hardware, for instance, when 
data remains unreadable after a save error on an external medium. 

The restoration of a correct database state after an error is called recovery. It is 
essential for recovery to know where an error occurred: in an application, in the 
database software, or in the hardware. In case of integrity violations or after an 
application program “crashes,” it is sufficient to roll back and then repeat one or 
several transactions. With severe errors, it may be necessary to retrieve earlier saves 
from backup archives and restore the database state by partial transaction re-runs. 

In order to roll back transactions, the database system requires certain informa-
tion. Usually, a copy of an object (called before image) is written to a log file2 before 
the object is modified. In addition to the object’s old values, the file also contains 
markers signaling the beginning and end of the transaction. In order for the log file to 
be used efficiently in case of errors, checkpoints are set either based on commands in 
the application program or for certain system events. A system-wide checkpoint 
contains a list of the transactions active up until that time. If a restart is needed, the 
database system merely has to find the latest checkpoint and reset the unfinished 
transaction. 

This procedure is illustrated in Fig. 4.9: After system failure, the log file must be 
read backward until the last checkpoint. Of special interest are those transactions that 
had not been able to indicate their correct conclusion with an EOT (end of transac-
tion) marker, such as the transactions TRX_2 and TRX_5 in our example. For them, 
the previous database state has to be restored with the help of the log file (undo). For 
TRX_5, the file has to be read back until the BOT (beginning of transaction) marker 
in order to retrieve the transaction’s before image. Regardless of the type of 
checkpoint, the newest state (after image) must be restored for at least TRX_4 
(redo). 

The recovery of a database after a defect in an external storage medium requires a 
backup of the database and an inventory of all updates since the creation of the 
backup copy. Backups are usually made before and after the end-of-day processing, 
since they are quite time-consuming. During the day, changes are recorded in the log 
file, with the most up-to-date state for each object being listed. 

Securing databases requires a clear-cut disaster prevention procedure on the part 
of the responsible database specialists. Backup copies are usually stored in 
generations, physically separate, and sometimes redundant. The creation of backup 
files and the removal of old versions have to be fully documented. In case of errors or 
for disaster drills, the task is to restore current data from backup files and logged 
changes within a reasonable timeframe.

2 This log file is not to be confused with the log from Sect. 4.2.2. 
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Fig. 4.9 Restart of a database system after an error 

4.5 Soft Consistency in Massive Distributed Data 

4.5.1 BASE and the CAP Theorem 

It has become clear in practice that for large and distributed data storage systems, 
consistency cannot always be the primary goal; sometimes, availability and partition 
tolerance take priority. 

In relational database systems, transactions at the highest isolation level are 
always atomic, consistent, isolated, and durable (see ACID, Sect. 4.4.2). 
Web-based applications, on the other hand, are geared toward high availability and 
the ability to continue working if a computer node or a network connection fails. 
Such partition-tolerant systems use replicated computer nodes and a softer consis-
tency requirement called BASE (Basically Available, Soft state, Eventually consis-
tent): This allows replicated computer nodes to temporarily hold diverging data 
versions and only be updated with a delay. 

During a symposium in 2000, Eric Brewer of the University of California, 
Berkeley, presented the hypothesis that the three properties of consistency, avail-
ability, and partition tolerance cannot exist simultaneously in a massive distributed 
computer system.
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Fig. 4.10 The three possible combinations under the CAP theorem

• Consistency (C): When a transaction changes data in a distributed database with 
replicated nodes, all reading transactions receive the current state, no matter from 
which node they access the database.

• Availability (A): Running applications operate continuously and have acceptable 
response times.

• Partition tolerance (P): Failures of individual nodes or connections between 
nodes in a replicated computer network do not impact the system as a whole, and 
nodes can be added or removed at any time without having to stop operation. 

This hypothesis was later proven by researchers at MIT in Boston and established 
as the CAP theorem. 

CAP Theorem 
The CAP theorem states that in any massive distributed data management system, 
only two of the three properties consistency, availability, and partition tolerance can 
be ensured. In short, massive distributed systems can have a combination of either 
consistency and availability (CA), consistency and partition tolerance (CP), or 
availability and partition tolerance (AP); but it is impossible to have all three at 
once (see Fig. 4.10). Use cases of the CAP theorem may include:

• Stock exchange systems requiring consistency and availability (CA), which are 
achieved by using relational database systems following the ACID principle.

• Country-wide networks of ATMs, which still require consistency, but also parti-
tion tolerance, while somewhat long response times are acceptable (CP); 
distributed and replicated relational or NoSQL systems supporting CP are best 
suited for this scenario.

• The Internet service Domain Name System (DNS) is used to resolve URLs into 
numerical IP addresses in TCP/IP (Transmission Control Protocol/Internet Proto-
col) communication and must therefore be always available and partition tolerant
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(AP), a task that requires NoSQL data management systems, since a relational 
database system cannot provide global availability and partition tolerance. 

4.5.2 Nuanced Consistency Settings 

Ideally, there would be only one approach to ensuring consistency in a distributed 
system: Whenever a change is made, all reading transactions see the change and are 
certain to get the current state. For instance, if a hotel chain offers online reservation 
via their website, any bookings are immediately recognized by all reading 
transactions, and double bookings are prevented. 

However, the CAP theorem has taught us that in networks of replicated computer 
nodes, only two out of three corresponding properties can be achieved at any time. 
International hotel chains commonly focus on AP, meaning they require high 
availability and partition tolerance. In exchange, they accept that bookings are 
made according to the BASE principle. There are other possible refinements that 
can be configured based on the following parameters:

• N = number of replicated nodes or number of copies in the cluster
• R = number of copies to be read (successful read)
• W = number of copies to be written (successful write) 

With these three parameters N, R, and W, it is possible to formulate four basic 
options for nuanced consistency control. Figure 4.11 gives an overview over those 
variants for a sample case of three replicated nodes (N=3). Initially, all nodes hold 
the object version A, before some nodes are subsequently overwritten with the new 
version B. The issue at hand is how reading programs can identify current versions if 
writing programs make modifications. 

The first option is formulated as W+R≤N. In the example in Fig. 4.11 (top left), 
the parameters are set to N=3, W=1, and R=2. W=1 means that at least one node 
must be written successfully, while R2 requires at least two nodes to be read 
successfully. In the node accessed by the writing program, the old version A is 
replaced with the new version B. In the worst case scenario, the reading program 
accesses the other two nodes and receives the old version A from both of them. This 
option is therefore an example for eventual consistency. 

One alternative is “consistency by writes,” in which W must match the number of 
replicated nodes, i.e., W=N (Fig. 4.11, top right). Successful write operations 
replace version A with the new version B in all three nodes. When a reading program 
accesses any node, it will always get the current version B. 

Option 3 is called “consistency by reads,” since the number of reads equals the 
number of nodes (Fig. 4.11, bottom left). The new version B is only written on one 
node, so the consultation of all three nodes by a reading operation returns both the 
current version B and the old version A. When a transaction receives multiple read 
results, such as versions A and B in this case, it has to establish the chronological 
order of the results, i.e., whether it is A before B (A<B) or B before A (B<A), in



order to determine which is the newest. This is done with the help of vector clocks 
(see Sect. 4.5.3). 
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Fig. 4.11 Ensuring consistency in replicated systems 

The fourth and final case is “consistency by quorum” with the formula W+R>N 
(Fig. 4.11, bottom right). In our example, both parameters W and R are set to two, 
i.e., W=2 and R=2. This requires two nodes to be written and two nodes to be read 
successfully. The read operation once again definitely returns both versions A and B 
so that the chronological order has to be determined using vector clocks. 

4.5.3 Vector Clocks for the Serialization of Distributed Events 

In distributed systems, various events may occur at different times due to concurring 
processes. Vector clocks can be used to bring some order into these events. They are 
not time-keeping tools, but counting algorithms allowing for a partial chronological 
ordering of events in concurrent processes. 

Below, we will look at concurrent processes in a distributed system. A vector 
clock is a vector with k components or counters Ci with i=1,...,k, where k equals the 
number of processes. Each process Pi therefore has a vector clock Vi=[C1,...,Ck] 
with k counters.
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Fig. 4.12 Vector clocks showing causalities 

A vector clock works along the following steps:

• Initially, all vector clocks are set to zero, i.e., Vi=[0,0,...,0], for all processes Pi 
and counters Ck.

• In each interprocess message, the sender includes its own vector clock for the 
recipient.

• When a process receives a message, it increments its own counter Ci in its vector 
by one, i.e., Ci=Ci+1. It also merges its own updated vector Vi with the received 
vector W component by component by keeping the higher of two corresponding 
counter values, i.e., Vi[j]=max(Vi[j],W[j]), for all j=1,...,k. 

Figure 4.12 shows a possible scenario with three concurrent processes P1, P2, and 
P3. Process P3 includes the three events B, D, and E in chronological order. It 
increments its own counter C3 in its vector clock by one for each event, resulting in 
the vector clocks [0,0,1] for event B, [0,0,2] for event D, and [0,0,3] for event E. 

In process P1, event A occurs first, and the process’ counter C1 is raised by one in 
its vector clock V1, which is then [1,0,0]. Next, P1 sends a message M1 to process P2, 
including its current vector clock V1. Event C in process P2 first updates the process’ 
own vector clock V2 to [0,1,0] before merging it with the newly received vector 
clock V1=[1,0,0] into [1,1,0].
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Similar mergers are executed for the messages M2 and M3: First, the processes’ 
vector clocks V2/V1 are incremented by one in the process’ own counter, and then 
the maximum of the two vector clocks to be merged is determined and included. This 
results in the vector clocks V2=[1,2,3] (since [1,2,3]=max([1,2,0],[0,0,3])) for event 
F and V1=[3,2,3] for event G. 

Causality can be established between two events in a distributed system: Event X 
happened before event Z if the vector clock V(X)=[X1,X2,...,Xk] of X is less than the 
vector clock V(Y)=[Y1,Y2,...,Yk] of Y. In other words: 

Causality Principle Cased on Vector Clocks 
Event X happened before event Y (or X<Y) if Xi<Yi for all i=1,...,k and if there is 
at least one j where Xj<Yj. 

In Fig. 4.12, it is clear that event B took place before event D, since the 
corresponding vector clocks [0,0,1] and [0,0,2] meet the abovementioned condition. 

Comparing the events F and G, we can also see from their vector clocks [1,2,3] 
and [3,2,3] that F happened before G. The first counter of the vector clock V(F) is 
less than the first counter of V(G) and the other components are identical, and [1,2,3] 
<[3,2,3] in the vector clocks means a causality F<G. 

Now assume two fictional vector clocks V(S)=[3,1,1] for an event S and V(T)= 
[1,1,2] for an event T: These two vector clocks are not comparable, since neither 
S<T nor T<S is true. The two events are concurrent and no causality can be 
established. 

Vector clocks are especially suitable for massive distributed and replicated 
computer structures. Since actual time clocks are hard to synchronize in global 
networks, vector clocks are used instead, including as many components as there 
are replicas. 

During the distribution of replicas, vector clocks allow to determine which 
version is the newer and therefore more current one. For the two options “consis-
tency by reads” and “consistency by quorum” in Sect. 4.3.2, read operations returned 
both the versions A and B. If these two versions have vector clocks, the causality 
condition described above can be applied to conclude that A<B, i.e., B is the newer 
version. 

4.5.4 Comparing ACID and BASE 

There are some major differences between the ACID (Atomicity, Consistency, 
Isolation, Durability) and BASE (Basically Available, Soft state, Eventually consis-
tent) approaches, as summarized in Fig. 4.13. 

Most SQL and NoSQL database systems are strictly based on ACID, meaning 
that consistency is ensured at any time in both centralized and distributed systems. 
Distributed database systems require a coordinating program that implements all 
changes to table contents in full and creates a consistent database state. In case of 
errors, the coordinating program makes sure that the distributed database is not 
affected in any way and the transaction can be restarted.
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ACID BASE 
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by the database schema 

Fig. 4.13 Comparing ACID and BASE 

Some NoSQL systems support ensuring consistency in various ways. Generally, 
changes in massive distributed data storage systems are written on the source node 
and replicated to all other nodes. However, this replication may come at a slight 
delay, so it is possible for nodes to not have the current database state available when 
accessed by user queries. Individual nodes in the computer network are usually 
accessible (basically available), but may not have been properly updated yet (even-
tually consistent), i.e., they may be in a soft state. 

Most SQL and NoSQL database systems commonly use pessimistic concurrency 
control procedures which require locks to be placed and released according to the 
two-phase locking protocol (see Sect. 4.4.4) for the operations of a transaction. If 
database applications execute disproportionately fewer changes than queries, 
optimistic methods (see Sect. 4.4.5) may be deployed. If conflicts arise, the respec-
tive transactions have to be restarted. 

Massively distributed data management systems focused on availability and 
partition tolerance can only provide consistent states with a delay according to the 
CAP theorem. Moreover, placing and removing locks on replicated nodes would be 
an exorbitant effort. Some NoSQL systems therefore use optimistic concurrency 
control. 

In terms of availability, relational database systems are on par with their 
alternatives up to a certain amount of data and distribution. Applications with a 
very high data volume, however, are generally based on NoSQL systems that offer 
high availability in addition to partition tolerance. Examples are column family 
databases (e.g., Apache Cassandra) or key-value databases (e.g., Riak). 

Some NoSQL systems allow for more nuanced settings on how to ensure 
consistency, resulting in some fuzzy lines between ACID and BASE.
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4.6 Transaction Control Language Elements 

4.6.1 Transaction Control in SQL 

To declare a series of operations in SQL as one transaction, they should be marked 
with BEGIN TRANSACTION. They end either with COMMIT (success) or ROLL-
BACK (failure). Start and end of a transaction indicate to the database system which 
operations form a unit and must be protected by the ACID concept. 

The SQL statement COMMIT applies the changes from the transaction. They 
remain until changed by another successfully completed transaction. In case of an 
error during the transaction, the entire transaction can be undone with the SQL 
command ROLLBACK. 

The SQL standard allows for the degree of consistency enforced by the database 
system to be configured by setting an isolation level with the following expression: 

SET TRANSACTION ISOLATION LEVEL <isolation level> 

There are four isolation levels:

• READ UNCOMMITTED (no consistency enforcement)
• READ COMMITTED (only applied changes can be read by other transactions)
• REPEATABLE READ (read queries give the same result repeatedly)
• SERIALIZABLE (full serializable ACID consistency enforced) 

Each of these isolation levels provides a different degree of consistency. Only 
SERIALIZABLE guarantees ACID-consistency. But it uses extensive locking to do 
so, which slows down concurrent processing. Figure 4.14 visualizes with warning 
triangles which of the three common version conflicts can occur in which isolation 
level. 

Dirty read refers to reading data that originate from transactions that have not yet 
been successfully completed. Non-repeatable read occurs when the repetition of the 
same read operation within a transaction produces different results. And phantom 
read means that the read operation returns data that is no longer current because it has 
been modified by other transactions. 

Let’s look at this using an example in Fig. 4.15. In a table ACCOUNTS, accounts 
are stored with their balances. Two parallel processes A and B are running simulta-
neously. Process B wants to transfer 100 currency units to account 2 in one 
transaction. This requires two UPDATE commands, which are executed atomically 
as a whole and can be reversed in the event of an error. Process A inserts amounts to 
accounts 1 (300 currency units) and 2 (200 currency units) in a first transaction. Then 
it starts a new transaction with isolation level REPEATABLE READ. This reads the 
balance of account 2 three times in succession in substeps 4, 6, and 8 to test exactly 
when the changes made by process B running in parallel become visible. After the
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Fig. 4.14 Risks of consistency errors with different isolation levels 

START TRANSACTION; 
INSERT INTO Account (Id, 
Balance) VALUES(1,300),(2,200); 
COMMIT; 

Transaction A 

t 

1 

Transaction B 

UPDATE Account 
SET Balance = Balance + 100 
WHERE Id = 2; 

START TRANSACTION; 
UPDATE Account 
SET Balance = Balance - 100 
WHERE Id = 1; 

SELECT Balance FROM Account 
WHERE Id = 2; -- 200 

SELECT Balance FROM Account 
WHERE Id = 2; -- 200 

2 

3 

8 

6 

5 

4 

SET TRANSACTION 
ISOLATION LEVEL 
REPEATABLE READ; 
START TRANSACTION; 

SELECT Balance FROM Account 
WHERE Id = 2; -- 200 
COMMIT; 

SELECT Balance FROM Account 
WHERE Id = 2; -- 300 

COMMIT;7 

9 

Fig. 4.15 Example of two parallel transactions in SQL 

transaction is complete, process A reads this balance again in step 9. Which balances 
does process A read at times 4, 6, 8, and 9?
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At point 4, the balance of account 2 is unchanged at 200, represented in Fig. 4.15 
by the SQL comment --.200, which is what process A reads. Due to the REPEAT-
ABLE READ isolation level, subsequent read operations within the same transaction 
will continue to receive this value of 200, i.e., even at point 8, when process B has 
already committed (COMMIT) the change. Only after the completion of the trans-
action at point 9, process A sees the change in account 2, namely, the balance of 300. 

These read operations are repeatable, but not serializable, because the result does 
not correspond to what a serial execution would have produced. Since process B 
started the transaction at time 2 before process A, a correctly timed serialized 
execution would have first run process B completely. Only then would process A 
have been started. Process A would therefore have already read the changed balance 
of 300 at time no. 8. The value of 200 at time no. 8 in process A can therefore be 
described as a phantom. 

Since process B started the transaction first, sequential execution of the two 
processes would result in process A reading the new balance of 300 from account 
2 from the beginning. This is indeed the case with isolation level SERIALIZABLE. 
However, this is only possible with a lock, with which process A would have to wait 
for process B to complete the transaction, which would increase the execution time. 

If we had chosen the isolation level READ COMMITTED, process A would have 
already read the new balance at eventNo. 8. Thus, the read operation of time points 
#4 and #6 would not have been repeatable. 

With the isolation level READ UNCOMMITTED, which actually does not 
isolate at all, process A would have already read the changed balance at time point 
6. This would correspond to a “dirty read,” since B had not yet completed the 
transaction with a COMMIT at this point. 

4.6.2 Transaction Management in the Graph Database Neo4J 
and in the Cypher Language 

To protect data integrity, the Neo4j database system supports transactions that 
basically comply with the ACID principle. All database operations that access 
graphs, indexes, or the schema must be performed in a transaction. Deadlock 
detection is also integrated into the central transaction management. However, data 
retrieved by graph traversal is not protected from modification by other transactions. 

Individual Cypher queries are executed within one transaction each. Changes 
made by updating queries are held in memory by the transaction until committed, at 
which time the changes are saved to disk and visible to other transactions. If an error 
occurs, either during query evaluation (e.g., division by zero) or during commit, the 
transaction is automatically rolled back, and no changes are saved. Each updating 
query is always either completely successful or not successful at all. Thus, a query 
that makes many updates consumes large amounts of memory because the transac-
tion holds changes in memory.
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Isolation Levels 
Transactions in the Neo4j database system use the READ COMMITTED isolation 
level. Transactions see data changes once they have been committed, and they do not 
see data changes that have not yet been committed. This type of isolation is weaker 
than serializability but offers significant performance advantages. It is sufficient for 
most cases. However, non-repeatable reads may occur because locks are only 
maintained until the end of a transaction. 

If this is not sufficient, the Neo4j Java API allows explicit locking of nodes and 
relationships. One can manually set up write locks on nodes and relationships to 
achieve the higher isolation level of serializability by explicitly requesting and 
releasing locks. For example, if a lock is placed on a shared node or relationship, 
all transactions on that lock will be serialized if the lock is maintained. 

Transactions in Cypher 
Cypher does not support explicit language elements for transaction management. By 
default, each individual Cypher statement runs as a separate transaction. This means 
that, for example, UPDATE commands in a transaction run atomically using the 
ACID principle, even if they modify many nodes and edges simultaneously. How-
ever, it is currently not directly possible with Cypher to run multiple separate 
statements as a single transaction. 

To start multiple statements as one transaction in the Neo4J database manage-
ment system, there are several other ways. The easiest way to do this is usually via an 
API, e.g., via HTTP or Java. Also in the command line program Cypher shell, it is 
possible with the commands :begin, :commit, and :rollback the transaction control; 
however, the commands are not part of the Cypher language. The following example 
will illustrate this. Suppose the following sequence of commands is executed as a 
batch script via Cypher shell. What result will be returned by the last line? 

CREATE (k:Account {Id:1}) SET k.Balance = 1; 
CREATE (k:Account {Id:2}) SET k.Balance = 2; 

MATCH (k:Account {Id:1}) SET k.Balance = 3; 
MATCH (k:Account {Id:2}) SET k.Balance = 4/0; 

:begin 
MATCH (k:account {Id:1}) SET k.balance = 5; 
MATCH (k:account {Id:2}) SET k.balance = 6/0; 
:commit 
:rollback 

MATCH(k:Account) RETURN k; 

The following is returned as the result: Account with Id 1 has balance 3, and 
Account with Id 2 has balance 2. Why? The first two statements create two nodes of 
type Account with Id 1 and 2 and set the balance to 1 and 2, respectively. The third
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statement sets Balance to 3 for Account with Id 1. Each of these statements is 
successfully executed as a single transaction. 

The fourth statement, which is again a separate transaction, is not completed 
successfully due to division by zero. Therefore, the property of Account with Id 2 is 
not reset. 

Subsequently, a new transaction is started in the Cypher shell with :begin. Now 
the next Cypher statements up to the :commit command are executed as an atomic 
transaction. Due to the division by zero, both statements are not processed success-
fully. The :commit command results in an error message. The :rollback command, in 
turn, rolls back all uncommitted changes. Due to the transaction over both 
statements, the balance of the account with Id 1 was not changed either. Therefore, 
we get the following result with the last statement: 

neo4j@neo4j> MATCH(k:account) RETURN k; 
+----------------------------+ 
| k | 
+----------------------------+ 
| (:account {id: 1, balance: 3}) | 
| (:account {id: 2, balance: 2}) | 
+----------------------------+ 

In summary, Cypher provides support for transactions having an isolation level 
READ COMMITTED. However, the language does not provide different isolation 
levels nor language elements for starting and ending transactions. This is a gap that 
the Current Development of Cypher to the International Standard GQL—Graph 
Query Language—aims to close from 2023. In the current GQL draft, serializability 
is required as a standard isolation level and language commands for transaction 
control such as START TRANSACTION, COMMIT, and ROLLBACK are 
planned. 

4.6.3 Transaction Management in MongoDB and MQL 

In the MongoDB database system, changes to a single document are always atomic. 
Single document transactions are very efficient to process. Since all relevant entities 
for a subject can be aggregated into a single document type (see Sect. 2.5), the need 
for multiple document transactions is eliminated in many use cases. If atomic reads 
and writes are needed across multiple documents, in different collections, or across 
different machines, MongoDB supports distributed transactions. However, this is 
associated with performance penalties. 

Atomicity of Transactions 
When a transaction is committed, all data changes made in the transaction are stored 
and visible outside the transaction. As long as a transaction is not committed, the 
data changes made in the transaction are not visible outside the transaction. When a



transaction commits, all changes made in the transaction are discarded without ever 
becoming visible. If a single action in the transaction fails, the entire transaction is 
rolled back. 
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Transactions in the Mongo Shell 
The MongoDB Query Language (MQL) provides the following language elements 
for transaction control:

• Starting a new transaction with startTransaction()
• Committing a transaction with commitTransaction()
• Aborting a transaction with abortTransaction() 

Let’s look at this with an example.3 If we assume that on the database named “db” 
the collection named “ACCOUNT” is empty, what will be the return of the com-
mand on the last line, and why? 

s = db.getMongo().startSession() 
c = s.getDatabase('db').getCollection('ACCOUNT') 
c.createIndex( { "Key": 1 }, { "unique": true } ) 
c.insertMany([{"Key":1, "Val":1},{" Key":1, "Val":2}]) 
s.startTransaction( ) 
c.insertMany([{"Key3, "Val":3},{" Key":3, "Val":4}]) 
s.commitTransaction( ) 
c.find({},{_id:0}) 

Let’s go through the above example step by step:

• The first line starts a new session. Transactions are bound to sessions in 
MongoDB.

• The second line instantiates the collection ACCOUNT within the session so that 
the following transactions are linked to it. Since the collection does not yet exist, 
it is newly created.

• The third line sets a uniqueness constraint for the “Key” field to test transaction 
behavior in terms of integrity.

• The fourth line tries to insert two documents with the same “Key” which is not 
possible because of the uniqueness condition. Since this happens outside of a 
distributed transaction, the statement over two documents is not executed atom-
ically. Therefore, the first document with "Key"=1 and "Val"=1 is successfully 
committed. The second document generates an error due to the duplicate “Key” 
and is discarded.

• The fifth line starts a transaction with s.startTransaction(). 

3 Transactions work in MongoDB only within replica sets. So the database server (mongod) must be 
started first with the corresponding option --replSet <name>. In addition, the command rs.initiate() 
must then be executed in the Mongo Shell (mongo).
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• The sixth line again wants to insert two documents with the same “Key,” this time 
within the transaction started above. The statement is now executed atomically 
according to the all-or-nothing principle. An error occurs, because duplicates in 
the “Key” field are not accepted due to the unique index.

• The seventh line terminates the transaction with s.commitTransaction().
• On the eighth line, we ask for all documents in the collection, excluding the object 

id. We then see the following output: 

rs0:PRIMARY> c.find({},{_id:0}) 
{ "Key" : 1, "Val" : 1 } 

Within the distributed transaction, the insertion of both documents on the sixth 
line has been rolled back, even though only the one document with “Key”=3 and 
“Balance”=4 generated an error due to the duplicate. The example shows how 
atomicity is ensured within a transaction across multiple documents. 

Isolation of Distributed Transactions Across Multiple Computers 
The isolation level of transactions in MongoDB on a single machine is read-
committed, i.e., changes to a transaction become visible to all transactions, including 
those already running, exactly when they are committed. This can lead to consis-
tency problems due to lack of isolation, such as non-repeatable reads (see 
Sect. 4.6.1). 

To ensure availability under heavy load, MongoDB servers can be replicated. 
Then, a replica can step in when as a computer is overloaded. However, this makes 
transaction management more complex. This is because changes on one node in the 
redundant computer cluster must be propagated to all replicas. Due to network 
latency, the replicas will have different, i.e., inconsistent, data states for a certain 
period of time, until the changes have been tracked everywhere. This is called 
eventual consistency (see Sect. 4.5) and is the default behavior of MongoDB. If 
causal consistency is required, this can be set using the “read concern” parameters 
when starting a transaction. 

Transactions whose “read concern” parameter is set to the “local” level (default 
setting) can see the result of write operations before they have been traced on all 
replica servers. The “majority” level can be used to ensure that only data is read that 
has already been committed and confirmed on a majority of replica servers. The 
consistency levels for read and write operations can be set as follows: 

session = db.getMongo().startSession() 
session.startTransaction({ 

"readConcern": { "level": "majority" }, 
"writeConcern": { "w": "majority" } 

})



158 4 Database Security

In summary, MQL provides a language tool for managing transactions in 
distributed databases that rely on soft consistency requirements based on the 
BASE principle. 
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5.1 Processing of Homogeneous and Heterogeneous Data 

Throughout the 1950s and 1960s, file systems were kept on secondary storage media 
(tape, drum memory, magnetic disk), before database systems became available on 
the market in the 1970s. Those file systems allowed for random, or direct, access to 
the external storage, i.e., specific records could be selected by using an address, 
without the entirety of records needing to be checked first. The access address was 
determined via an index or a hash function (see Sect. 5.2). 

The mainframe computers running these file systems were largely used for 
technical and scientific applications (computing numbers). With the emergence of 
database systems, computers also took over in business contexts (computing num-
bers and text) and became the backbone of administrative and commercial 
applications, since database systems support consistency in multi-user operation 
(see ACID, Sect. 4.4.2). Today, many information systems are based on the rela-
tional database technology which replaced most of the previously used hierarchic or 
network-like database systems. More and more NoSQL database systems such as 
graph databases or document databases are being used for Big Data applications. 
This applies not only to large data volumes but also to a large variety of different 
structured and unstructured data (variety) and fast data streams (velocity). 

Relational database systems use only tables to store and handle data. A table is a 
set of records that can flexibly process structured data. Structured data strictly 
adheres to a well-defined data structure with a focus on the following properties:

• Schema: The structure of the data must be communicated to the database system 
by specifying a schema (see the SQL command CREATE TABLE in Chap. 3). In 
addition to table formalization, integrity constraints are also stored in the schema 
(cf., e.g., the definition of referential integrity and the establishment of appropri-
ate processing rules).

• Data types: The relational database schema guarantees that for each use of the 
database, the data manifestations always have the set data types (e.g., 
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CHARACTER, INTEGER, DATE, TIMESTAMP, etc.; see also the SQL tutorial 
at www.sql-nosql.org). To do so, the database system consults the system tables 
(schema information) at every SQL invocation. Special focus is on authorization 
and data protection rules, which are checked via the system catalog (see VIEW 
concept and privilege assignment via GRANT and REVOKE in Sect. 4.2.1). 

Relational databases therefore mostly process structured and formatted data. In 
order to meet specific requirements in the fields of office automation, technology, 
and Web applications (among others), SQL has been extended by data types and 
functions for alphabetical strings (CHARACTER VARYING), bit sequences (BIT 
VARYING, BINARY LARGE OBJECT), and text fragments (CHARACTER 
LARGE OBJECT). The integration of XML (eXtensible Markup Language) is 
also supported. These additions resulted in the definition of semi-structured and 
unstructured data. 

Semi-structured data is defined as follows:

• They consist of a set of data objects whose structure and content are subject to 
continuous changes.

• Data objects are either atomic or composed of other data objects (complex 
objects).

• Atomic data objects contain data values of a specified data type. 

Data management systems for semi-structured data work without a fixed database 
schema, since structure and content change constantly. A possible use case are 
content management systems for websites which can flexibly store and process 
Web pages and multimedia objects. Such systems require extended relational data-
base technology (see Chap. 6), XML databases, or NoSQL databases (see Chap. 7). 

A data stream is a continuous flow of digital data with a variable data rate 
(records per unit of time). Data within a data stream is sorted chronologically and 
often given a timestamp. Besides audio and video data streams, this can also be a 
series of measurements which are analyzed with the help of analysis languages or 
specific algorithms (language analysis, text analysis, pattern recognition, etc.). 
Unlike structured and semi-structured data, data streams can only be analyzed 
sequentially. 

Figure 5.1 shows a simple use case for data streams. The setting is a multi-item 
auction via an electronic bidding platform. In this auction, bidding starts at a set 
minimum. Participants can make multiple bids that have to be higher than the 
previous highest bid. Since electronic auctions have no physical location, time and 
duration of the auction are set in advance. The bidder who makes the highest bid 
during the set time wins the auction. 

Any AUCTION can be seen as a relationship set between the two entity sets 
OBJECT and BIDDER. The corresponding foreign keys O# and B# are 
complemented by a timestamp and the offered sum (e.g., in USD) per bid. The 
data stream is used to show bidders the current standing bids during the auction. 
After the auction is over, the highest bids are made public, and the winners of the

http://www.sql-nosql.org
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Fig. 5.1 Processing a data stream 

individual items are notified. The data stream can then be used for additional 
purposes, for instance, bidding behavior analyses or disclosure in case of legal 
contestation. 

Unstructured data are digital data without any fixed structure. This includes 
multimedia data such as continuous text, music files, satellite imagery, or audio/ 
video recordings. Unstructured data is often transmitted to a computer via digital 
sensors, for example, in the data streams explained above, which can sequentially 
transport structured and/or unstructured data. 

The processing of unstructured data or data streams calls for special adapted 
software packages. NoSQL databases or specific data stream management systems 
are used to fulfill the requirements of Big Data processing. 

The next sections discuss several architectural aspects of SQL and NoSQL 
databases. 

5.2 Storage and Access Structures 

Storage and access structures for relational and non-relational database systems 
should be designed to manage data in secondary storage as efficiently as possible. 
For large amounts of data, the structures used in the main storage cannot simply be 
reproduced on the background memory. It is necessary to instead optimize the
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storage and access structures in order to enable reading and writing contents on 
external storage media with as few accesses as possible. 

5.2.1 Indexes 

An index of one attribute is an access structure that efficiently provides, in a specific 
order for each attribute value, the internal addresses of all records containing that 
attribute value. It is similar to the index of a book, where each entry—listed in 
alphabetical order—is followed by the numbers of the pages containing it. Similarly, 
indexes exist for attribute combinations (cf. Sect. 5.2.5). 

For an example, we shall look at an index of the Name attribute for the 
EMPLOYEE table. This index, which remains invisible to standard users, can be 
constructed with the following SQL command: 

CREATE INDEX IX1 
ON EMPLOYEE(NAME) 
USING HASH; 

For each name in the EMPLOYEE table, sorted alphabetically, either the identi-
fication key E# or the internal address of the employee tuple is recorded. The 
database system uses this index of employee names for increasing access speed of 
corresponding queries or when executing a join. In this case, the Name attribute is 
the access key. 

In this example, USING HASH is used to create a hash index (see Sect. 5.2.3) that 
is optimized for equality queries. 

Another possibility is to use balanced trees (B-trees; see Sect. 5.2.2) for indexes. 
These are suitable for range queries such as “greater than” or “less than.” 

CREATE INDEX IX1 
ON EMPLOYEE(year) 
USING BTREE; 

5.2.2 Tree Structures 

Tree structures can be used to store records or access keys and to index attributes in 
order to increase efficiency. For large amounts of data, the root, internal, and leaf 
nodes of the tree are not assigned individual keys and records, but rather entire data 
pages. In order to find a specific record, the tree then has to be searched. 

With central memory management, the database system usually uses binary trees 
in the background in which the root node and each internal node have two subtrees.



Such trees cannot be used unlimitedly for storing access keys or records for 
extensive databases, since their height grows exponentially for larger amounts of 
data; large trees, however, are impractical for searching and reading data content on 
external storage media, since they require too many page accesses. 
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The height of a tree, i.e., the distance between the root node and the leaves, is an 
indicator for the number of accesses required on external storage media. To keep the 
number of external accesses as low as possible, it is common to make the storage tree 
structures for database systems grow in width instead of height. One of the most 
important of those tree structures is the B-tree (see Fig. 5.2). 

A B-tree is a tree whose root node and internal nodes generally have more than 
two subtrees. The data pages represented by the individual internal and leaf nodes 
should not be empty, but ideally filled with key values or entire records. They are 
therefore usually required to be filled at least halfway with records or keys (except 
for the page associated with the root node). 

B-Tree 
A tree is a B-tree of the nth order if:

• It is fully balanced (the paths from the root to each leaf have the same length)
• Each node (except for the root node) has at least n and at the most 2*n entries in 

its data page 

That second condition also means that, since every node except the root node has 
at least n entries, each node has at least n subtrees. On the other hand, each node has a 
maximum of 2*n entries, i.e., no node of a B-tree can have more than 2*n subtrees. 

Assume, for instance, that the key E# from the EMPLOYEE table is to be stored 
in a B-tree of the order n=2 as an access structure, which results in the tree shown in 
Fig. 5.2. 

Nodes and leaves of the tree cannot contain more than four entries due to the order 
2. Apart from the keys, we will assume that the pages for the nodes and leaves hold 
not only key values but also pointers to the data pages containing the actual records. 
This means that the tree in Fig. 5.2 represents an access tree, not the data manage-
ment for the records in the EMPLOYEE table. 

In our example, the root node of the B-tree contains the four keys E1, E4, E7, and 
E19 in numerical order. When the new key E3 is added, the root node must be split 
because it cannot hold any more entries. The split is done in a way that produces a 
balanced tree. The key E4 is declared the new root node, since it is in between two 
equal halves of the remaining key set. The left subtree is formed of key values that 
meet the condition “E# lower than E4” (in this case E1 and E3); the right subtree 
consists of key values where “E# higher than E4” (i.e., E7 and E19). Additional keys 
can be inserted in the same way, while the tree retains a fixed height. 

The database system searches for individual keys top-down, e.g., if the candidate 
key E15 is requested from the B-tree B4 in Fig. 5.2, it checks against the entries in 
the root node. Since E15 lies between the keys E4 and E18, it selects the 
corresponding subtree (in this case, only one leaf node) and continues the search



until it finds the entry in the leaf node. In this simple example, the search for E15 
requires only two page accesses, one for the root node and one for the leaf node. 
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Fig. 5.2 B-tree with dynamic changes 

The height of a B-tree determines the access times for keys as well as the data 
associated with a (search) key. The access times can be reduced by increasing the 
branching factor of the B-tree. 

Another option is a leaf-oriented B-tree (commonly called B*-Tree), where the 
actual records are never stored in internal nodes but only in leaf nodes. The internal 
roots contain only key entries in order to keep the tree as low as possible.
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5.2.3 Hashing Methods 

Key hashing or simply hashing is an address determination procedure that is at the 
core of any distributed data and access structures. Hash functions map a set of keys 
on a set of addresses forming a contiguous address space. 

A simple hash function assigns a number between 1 and n to each key of a record 
as its address. This address is interpreted as a relative page number, with each page 
holding a set number of key values with or without their respective records. 

Hash functions have to meet the following requirements:

• It must be possible to follow the transformation rule with simple calculations and 
little resources.

• The assigned addresses must be distributed evenly across the address space.
• The probability of assignment collisions, i.e., the use of identical addresses for 

multiple keys, must be the same for all key values. 

There is a wide variety of hash functions, each of which has its pros and cons. One 
of the simplest and best-known algorithms is the division method. 

The Division Method of Hashing 
Each key is interpreted as an integer by using bit representation. The hash function H 
for a key k and a prime number p is given by the formula 

H kð Þ≔k mod p: 

The integer “k mod p”—the remainder from the division of the key value k by the 
prime number p—is used as a relative address or page number. In the division 
method, the choice of the prime number p determines the memory use and the 
uniformity of distribution. 

Figure 5.3 shows the EMPLOYEE table and how it can be mapped to different 
pages with the division method of hashing. 

In this example, each page can hold four key values. The prime number chosen 
for p is 5. Each key value is now divided by 5, with the remaining integer 
determining the page number. 

Inserting the key E14 causes problems, since the corresponding page is already 
full. The key E14 is placed in an overflow area. A link from page 4 to the overflow 
area maintains the affiliation of the key with the co-set on page 4. 

There are multiple methods for handling overflows. Instead of an overflow area, 
additional hash functions can be applied to the extra keys. Quickly growing key 
ranges or complex delete operations often cause difficulties in overflow handling. In 
order to mitigate these issues, dynamic hashing methods have been developed. 

Such dynamic hash functions are designed to keep memory use independent from 
the growth of keys. Overflow areas or comprehensive redistribution of addresses is 
mostly rendered unnecessary. The existing address space for a dynamic hash 
function can be extended either by a specific choice of hashing algorithm or by the



use of a page assignment table kept in the main memory, without the need to reload 
all keys or records already stored. 
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Fig. 5.3 Hash function using the division method 

5.2.4 Consistent Hashing 

Consistent hashing functions belong to the family of distributed address calculations 
(see hashing methods in the previous section). A storage address or hash value is 
calculated from a set of keys in order to store the corresponding record.
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Fig. 5.4 Ring with objects assigned to nodes 

In Big Data applications, the key-value pairs are assigned to different nodes in the 
computer network. Based on the keys (e.g., term or day), their values (e.g., 
frequencies) are stored in the corresponding node. The important part is that with 
consistent hashing, address calculation is used for both the node addresses and the 
storage addresses of the objects (key-value). 

Figure 5.4 provides a schematic representation of consistent hashing. The address 
space of 0 to 2x key values is arranged in a circle; then a hash function is selected to 
run the following calculations:

• Calculation of node addresses: The nodes’ network addresses are mapped to 
storage addresses using the selected hash function and then entered on the ring.

• Calculation of object addresses: The keys of the key-value pairs are transformed 
into addresses with the hashing algorithm, and the objects are entered on the ring. 

The key-value pairs are stored on their respective storage nodes according to a 
simple assignment rule: The objects are assigned to the next node (clockwise) and 
managed there. 

Figure 5.4 shows an address space with three nodes and eight objects (key-value 
pairs). The positioning of the nodes and objects results from the calculated 
addresses. According to the assignment rule, objects O58, O1, and O7 are stored on 
node K1; objects O15 and O18 on node K2; and the remaining three objects on node 
K3. 

The strengths of consistent hashing best come out in flexible computer structures, 
where nodes may be added or removed at any time. Such changes only affect objects 
directly next to the respective nodes on the ring, making it unnecessary to recalculate



and reassign the addresses for a large number of key-value pairs with each change in 
the computer network. 
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Figure 5.5 illustrates two changes: Node K2 is removed, and a new node K4 is 
added. After the local adjustments, object O18, which was originally stored in node 
K2, is now stored in node K3. The remaining object O15 is transferred to the newly 
added node K4 according to the assignment rule. 

Consistent hashing can also be used for replicated computer networks. The 
desired copies of the objects are simply given a version number and entered on the 
ring. This increases partition tolerance and the availability of the overall system. 

Another option is the introduction of virtual nodes in order to spread the objects 
across nodes more evenly. In this method, the nodes’ network addresses are also 
assigned version numbers in order to be represented on the ring. 

Consistent hashing functions are used in many NoSQL systems, especially in 
implementations of key-value store systems. 

5.2.5 Multi-dimensional Data Structures 

Multi-dimensional data structures support access to records with multiple access key 
values. The combination of all those access keys is called multi-dimensional key. A  
multi-dimensional key is always unique, but does not have to be minimal. 

A data structure that supports such multi-dimensional keys is called a multi-
dimensional data structure. For instance, an EMPLOYEE table with the two key 
parts Employee Number and Year of Birth can be seen as a two-dimensional data 
structure. The employee number forms one part of the two-dimensional key, but



remains unique in itself. The Year attribute is the second part and serves as an 
additional access key, without having to be unique. 
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Unlike tree structures, multi-dimensional data structures are designed so that no 
one key part controls the storage order of the physical records. A multi-dimensional 
data structure is called symmetrical if it permits access with multiple access keys 
without favoring a certain key or key combination. For the sample EMPLOYEE 
table, both key parts, Employee Number and Year of Birth, should be equally 
efficient in supporting access for a specific query. 

One of the most important multi-dimensional data structures is the grid file or 
bucket grid. 

Grid File 
A grid file is a multi-dimensional data structure with the following properties:

• It supports access with a multi-dimensional access key symmetrically, i.e., no key 
dimension is dominant.

• It enables reading any record with only two page accesses, one on the grid index 
and the second on the data page itself. 

A grid file consists of a grid index and a file containing the data pages. The grid 
index is a multi-dimensional space with each dimension representing a part of the 
multi-dimensional access key. When records are inserted, the index is partitioned 
into cells, alternating between the dimensions. Accordingly, the example in Fig. 5.6 
alternates between Employee Number and Year of Birth for the two-dimensional 
access key. The resulting division limits are called the scales of the grid index. 

One cell of the grid index corresponds to one data page and contains at least n and 
at the most 2*n entries, n being the number of dimensions of the grid file, where n is 
the number of dimensions of the grid file. Empty cells must be combined with other 
cells so that the associated data pages can have the minimum number of entries. In 
our example, data pages can hold no more than four entries (n=2). 

Since the grid index is generally large, it has to be stored in secondary memory 
along with the records. The set of scales, however, is small and can be held in the 
main memory. The procedure for accessing a specific record is therefore as follows: 
The system searches the scales with the k key values of the k-dimensional grid file 
and determines the interval in which each individual part of the search key is located. 
These intervals describe a cell of the grid index which can then be accessed directly. 
Each index cell contains the number of the data page with the associated records, so 
that one more access, to the data page of the previously identified cell, is sufficient to 
find whether there is a record matching the search key or not. 

The two-disk-access maximum, i.e., no more than two accesses to secondary 
memory, is guaranteed for the search for any record. The first access is to the 
appropriate cell of the grid index and the second to the associated data page. As an 
example, the employee with number E18, born in 1969, is searched in the grid file 
G4 from Fig. 5.6: The employee number E18 is located in the scale interval E15 to 
E30, i.e., in the right half of the grid file. The year 1969 can be found between the



170 5 System Architecture

E19 Stewart 1958 

E1 Murphy 1967 

E7 Howard 1963 

E4 Bell 1956 

E# Name YearDevelopment of a grid file 

E# 

E# 

Year 

E1,1967 

E7,1963 

E4,1956 

E19,1958 

File G1 

Insert: 
E3,1962 

Year 

E3,1962 
Split at 
1960 

File G2 

Insert: 
E9,1952 
E18,1969 
E2,1953 
E24,1964 

Year 

E# 

Split at 
M15 

File G3 

E18,1969 

E24,1964 

E2,1953 
E9,1952 

Insert: 
E26,1952 
E15,1953 

Year 

E# 

Split at 
1955 

File G4 

E26,1958 

E15,1953 

Fig. 5.6 Dynamic partitioning of a grid index 

scales 1960 and 1970 or in the top half. With those scales, the database system finds 
the address of the data page in the grid index with its first access. The second access, 
to the respective data page, leads to the requested records with the access keys (E18, 
1969) and (E24, 1964). 

A k-dimensional grid file supports queries for individual records or record areas. 
Point queries can be used to find a specific record with k access keys. It is also
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possible to formulate partial queries specifying only a part of the key. With a range 
query, on the other hand, users can examine a range for each of the k key parts. All 
records whose key parts are in the defined range are returned. Again, it is possible to 
only specify and analyze a range for part of the keys (partial range query). 

The search for the record (E18, 1969) described above is a typical example of a 
point query. If only the employee’s year of birth is known, the key part 1969 is 
specified for a partial point query. A search for all employees born between 1960 and 
1969, for instance, would be a (partial) range query. In the example from Fig. 5.6, 
this query targets the upper half of grid index G4, so only those two data pages have 
to be searched. This indexing method allows for the results of range and partial range 
queries in grid files to be found without the need to sift through the entire file. 

In recent years, various multi-dimensional data structures efficiently supporting 
multiple access keys symmetrically have been researched and described. The market 
range of multi-dimensional data structures for SQL and NoSQL databases is still 
very limited, but Web-based searches are increasing the demand for such storage 
structures. Especially geographic information systems must be able to handle both 
topological and geometrical queries (also called location-based queries) efficiently. 

5.2.6 Binary JavaScript Object Notation BSON 

JSON documents are text files (cf. Sect. 2.5.1). They contain spaces and line breaks 
and are not compact enough for database storage on disk. BSON, or Binary JSON, is 
a more storage-efficient solution for storing structured documents in database 
systems. BSON is a binary serialization of JSON-structured documents. Like 
JSON, BSON supports the mapping of complex objects (cf. Sect. 2.5.1). However, 
BSON is stored in bytecode. Additionally, BSON provides data types that are not 
part of the JSON specification, such as date and time values. BSON was first used in 
2009 in the MongoDB document database system for physical storage of documents. 
Today, there are over 50 implementations in 30 programming languages. 

To illustrate the BSON format, let’s start with a comparison. In Fig. 5.7 above, we 
see a JSON document of an employee with name Murphy and city Kent. In Fig. 5.7 
below, we see the same structure in BSON format. The readable strings (UTF-8) 
are shown in bold. Two-digit hexadecimal values for encoding bytes start with the 
letter x. 

BSON is a binary format in which data can be stored in units named documents. 
These documents can be nested recursively. A document consists of an element list, 
which is embedded between a length specification and a so-called null byte. There-
fore, on the first line in the BSON document in Fig. 5.7, we see the length of the 
document, and on the last line, the document is terminated with a null byte. In 
between, there is an element list. 

According to line 1 in the BSON document in Fig. 5.7, the length of the document 
is 58. The length is an integer, which is stored in BSON in a total of four bytes. For 
readability, all integer values in this example are represented as decimal numbers.
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Fig. 5.7 Comparison of JSON data with binary storage in BSON 

On line 14, the null byte x00 indicates the end of the entire document. A null byte 
is a sequence of eight bits, each of which stores the value 0. In hexadecimal notation, 
this is represented by x00.
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In Fig. 5.7, the element list of the overall BSON document consists of lines 
2 through 13. An element list consists of one element, optionally followed by 
another element list. 

An element starts with a type code in the first byte. For example, on line 2 in the 
BSON document in Fig. 5.7, we see the type code x03, which announces an 
embedded document as an element. This is followed by a key string. A key string 
is a sequence of non-empty bytes followed by a null byte. For example, the key 
EMPLOYEE is given on line 3. This is followed by the value of the element 
corresponding to the type code. 

In BSON, there are different element types, e.g., embedded document (type code 
x03), array (type code x04), or string (type code x02). In the BSON example in 
Fig. 5.7, the first element value stored is an embedded document which, like the 
parent document, again starts with the length specification (line 4), has an element 
list, and ends with the null byte (line 13). 

A string element starts with the type code x02. In the example in Fig. 5.7, we see 
on line 5 the beginning of the string element for the property “Name,” whose key 
name is specified on line 6. The value of this element starts on line 7 with length (6), 
followed by the actual string on line 8 (Murphy). A string in BSON is a sequence of 
UTF-8 characters followed by a null byte. Then follows analogously another 
element of type String with key City and value Kent. 

This is the way BSON allows to store JSON data in binary form on disk in a 
space-saving and efficient way. BSON is used by document databases to write 
documents to disk. 

5.2.7 Index-Free Adjacency 

As we saw in Sects. 5.2.1 through 5.2.3, relational databases do not explicitly store 
links between records. A key value is resolved with time-consuming searching in the 
referenced table. An index allows this search process to be sped up; however, even 
indexed queries take longer as more data needs to be searched. 

To solve this problem, graph database systems provide resolution of a record 
reference in constant time. This is of great importance for traversing networks. To do 
this, they make use of the principle of pointers and addresses on the level of binary 
files stored on the disk and manipulated in memory by the operating system. Pointers 
are used to build doubly linked lists that enable the traversal of the graph. Central to 
this is the fact that the edges of the network are stored as separate records (cf. theory 
of multigraphs in Sect. 2.4.1). In the following, we will look at a concrete example. 

In Fig. 5.8, a simple property graph is shown above. An employee named Murphy 
is part of the team of the project with title ITsec with a workload of 50%. In addition, 
another previously unnamed node is linked for illustrative purposes. The elements of 
the graph are numbered and labeled. The example contains three nodes N1 to N3, 
two arrows A1 to A2, and seven properties P1 to P7. For simplicity, node and edge 
types are represented here as properties.
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PROJECT 

Title: ITsec 

EMPLOYEE 

Name: Murphy 

TEAM 
Workload: 0.5 

N1 

A1P1 
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N2 

P5 
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N3 
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Property 

N1 *A1 *P1 

N2 *A1 *P4 

N3 *A2 -
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2 

Next 
Arrow2 

First 
Property 

A1 *N1 *A2 *N2 - *P3 

A2 *N1 *A1 *N3 - *P7 

@ Key Value Next 
Property 

P1 Type PROJECT *P2 

P2 Title ITsec -

P3 Type TEAM *P4 

P4 Workload 0.5 

P5 Type EMPLOYEE *P6 

P6 Name Murphy -

P7 Type TEAM 

Nodes 

Arrows 

Properties 

TEAM 

P4 

P7 

Fig. 5.8 Index-free neighborhood using doubly linked lists with pointers 

In Fig. 5.8 below, we see illustrations of three store files, one for nodes, one for 
arrows, and one for properties. The first field (@) shows the respective file location 
address. In the other fields, the effective data is shown. 

In the node store file, the second field (FirstArrow) contains pointers to the 
first arrow of the node. The third field (FirstProperty) contains pointers to the first 
property of the node. For example, the first arrow of node N1 is A1, and the first 
property is P1.
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If we follow the pointer *P1, we find in the property store file, shown in Fig. 5.8 
below, the property with address P1: the node has the type PROJECT. The store file 
shows in the second and third field the key (Key) and the value (Value) of each 
property. In the fourth field, we find a pointer (NextProperty) to possible further 
properties. In the example of node N1, we find the pointer to property P2 one line 
further down: the project has the title ITsec. In addition, there are no further 
properties for this node, so that this storage field remains empty. 

In the node store file, the entry for node N1 also points to the first edge that 
connects it to the network, A1. The edge store file shown on the right illustrates that 
two nodes are connected by edge A1. The first node (Node1) is N1, and the second 
node (Node2) is N2. Moreover, we find a pointer to another arrow: the next arrow 
from the perspective of the first node (NextArrow1) is arrow A2 in this case. The 
next edge from the perspective of the second node (NextArrow2) is empty in this 
example, because node N2 has no further connections. Further, the node store file 
shows a pointer to node properties in the FirstProperty field, exactly the same as the 
edge store file (see above). 

This pointer structure results in a doubly linked list of nodes and arrows. This 
makes traversal in the graph efficient and linearly scalable in the number of arrows. 
In fact, there is no need to even store the actual address, since an integer number as 
an offset can simply be multiplied by the size of the memory file entries to get to the 
correct location in the binary store file. For the operating system, the cost of calling 
to a file address based on a pointer is always constant, or O(1),1 no matter how much 
data the database contains. Using this mechanism, native graph database systems 
provide index-free adjacency: graph edges can be traversed efficiently without the 
need for building explicit index structures. 

5.3 Translation and Optimization of Relational Queries 

5.3.1 Creation of Query Trees 

The user interfaces of relational database systems are set-oriented, since entire tables 
or views are provided for the users. When a relational query and data manipulation 
language are used, the database system has to translate and optimize the respective 
commands. It is vital that neither the calculation nor the optimization of the query 
tree requires user actions.

1 The Landau symbol O(f(x)), also called Big O notation, is used in computer science when 
analyzing the cost or complexity of algorithms. It gives a measure of the growth f(x) of the number 
of computational steps or memory units as a function of the size x of a given problem. For example, 
the runtime of an algorithm with computation complexity O(n2 ) grows quadratically as a function of 
a parameter n, e.g., the number of data records. 
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EMPLOYEE 

E19 Stewart E Main Street Stow D6 

E1 Murphy Murray Road Kent D3 

E7 Howard Lorain Avenue Cleveland D5 

E4 Bell S Water Street Kent D6 

E# Name Street City Sub 

DEPARTMENT 

D3 IT 

D5 HR 

D6 Accounting 

D# DepartmentName 

SELECT City 
FROM  EMPLOYEE, DEPARTMENT 
WHERE  Sub = D# AND
    DepartmentName = ‘IT’ 

SQL query 

Query tree City 

DEPARTMENTEMPLOYEE 

DepartmentName=IT 

|× |Sub=D# 

Root node 

Internal node 

Leaf node 

Fig. 5.9 Query tree of a qualified query on two tables 

Query Tree 
Query trees graphically visualize relational queries with the equivalent expressions 
of relational algebra. The leaves of a query tree are the tables used in the query; root 
and internal nodes contain the algebraic operators. 

Figure 5.9 illustrates a query tree using SQL and the previously introduced 
EMPLOYEE and DEPARTMENT tables. Those tables are queried for a list of the 
cities where the IT department members live:
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SELECT City 
FROM EMPLOYEE, DEPARTMENT 
WHERE Sub=D# AND Department_Name='IT' 

This query can also be expressed algebraically by a series of operators: 

TABLE := 

� City 
(� Department_Name=IT (EMPLOYEE |�|Sub=D# DEPARTMENT) )  

This expression first calculates a join of the EMPLOYEE and the DEPART-
MENT tables via the shared department number. Next, those employees working in 
the department with the name IT are selected for an intermediate result; and finally, 
the requested cities are returned with the help of a projection. Figure 5.10 shows this 
expression of algebraic operators represented in the corresponding query tree. 

SELECT City 
FROM  EMPLOYEE, DEPARTMENT 
WHERE  Sub = D# AND 

DepartmentName = ‘IT’ 

Example query 

Optimized 
query tree 

πCity 

DEPARTMENT 

EMPLOYEE 
σDepartmentName=IT 

|× |Sub=D# 

πSub,City πD# 

Fig. 5.10 Algebraically optimized query tree
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This query tree can be interpreted as follows: The leaf nodes are the two tables 
EMPLOYEE and DEPARTMENT used in the query. They are first combined in one 
internal node (join operator) and then reduced to those entries with the department 
name IT in a second internal node (select operator). The root node represents the 
projection generating the results table with the requested cities. 

Root and internal nodes of query trees refer to either one or two subtrees. If the 
operator forming a node works with one table, it is called a unary operator; if it 
affects two tables, it is a binary operator. Unary operators, which can only manipu-
late one table, are the project and select operators. 

Binary operators involving two tables as operands are the set union, set intersec-
tion, set difference, Cartesian product, join, and divide operators. 

Creating a query tree is the first step in translating and executing a relational 
database query. The tables and attributes specified by the user must be available in 
the system tables before any further processing takes place. The query tree is 
therefore used to check both the query syntax and the user’s access permissions. 
Additional security measures, such as value-dependent data protection, can only be 
assessed during the runtime. 

The second step after this access and integrity control is the selection and 
optimization of access paths; the actual code generation or interpretative execution 
of the query is the third step. With code generation, an access module is stored in a 
module library for later use; alternatively, an interpreter can take over dynamic 
control to execute the command. 

5.3.2 Optimization by Algebraic Transformation 

As demonstrated in Chap. 3, the individual operators of relational algebra can also be 
combined. If such combined expressions generate the same result despite a different 
order of operators, they are called equivalent expressions. Equivalent expressions 
allow for database queries to be optimized with algebraic transformations without 
affecting the result. By thus reducing the computational expense, they form an 
important part of the optimization component of a relational database system. 

The huge impact of the sequence of operators on the computational expense can 
be illustrated with the example query from the previous section: The expression 

TABLE :=

� City (� Department_Name = IT (EMPLOYEE |�|Sub=D# DEPARTMENT ) ) 

can be substituted with the following equivalent expression, as shown in 
Fig. 5.10:
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TABLE := 

� City (

� Sub,City (EMPLOYEE) |�| 

|�|Sub=D#

� D# (� Department_Name=IT (DEPARTMENT) ) ) 

Here, the first step is the selection (σ Department_Name=IT) on the DEPART-
MENT table, since only the IT department is relevant to the query. Next are two 
projection operations: one (π Sub,City) on the EMPLOYEE table and another (π D#) 
on the intermediate table with the IT department from step 1. Only now is the join 
operation (|×|Sub=D#) via the department number executed, before the final projec-
tion (π City) on the cities is done. While the end result is the same, the computational 
expense is significantly lower this way. 

It is generally advisable to position projection and selection operators in the 
query tree as close to the leaves as possible to get only small intermediate results 
before calculating the time-intensive and therefore expensive join operators. A 
successful transformation of a query tree with such a strategy is called algebraic 
optimization; the following principles apply:

• Multiple selections on one table can be merged into one so the selection predicate 
only has to be validated once.

• Selections should be done as early as possible to keep intermediate results small. 
To this end, the selection operators should be placed as close to the leaves (i.e., 
the source tables) as possible.

• Projections should also be run as early as possible, but never before selections. 
Projection operations reduce the number of columns and often also the tuples.

• Join operators should be calculated near the root node of the query tree, since they 
require a lot of computational expense. 

In addition to algebraic optimization, the use of efficient storage and access 
structures (cf. Sect. 5.2) can also achieve significant gains in processing relational 
queries. For instance, database systems will improve selection and join operators 
based on the size of the affected tables, sorting orders, index structures, etc. At the 
same time, an effective model for estimating access costs is vital to decide between 
multiple possible processing sequences. 

Cost formulas are necessary to calculate the computational expense of different 
database queries, such as sequential searches within a table, searches via index 
structures, the sorting of tables or subtables, the use of index structures regarding 
join attributes, or computations of equi-joins across multiple tables. Those cost 
formulas involve the number of accesses to physical pages and create a weighted 
gauge for input and output operations as well as CPU (central processing unit) usage. 
Depending on the computer configuration, the formula may be heavily influenced by
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access times for external storage media, caches, and main memories, as well as the 
internal processing power. 

5.3.3 Calculation of Join Operators 

A relational database system must provide various algorithms that can execute the 
operations of relational algebra and relational calculus. The selection of tuples from 
multiple tables is significantly more expensive than a selection from one table. The 
following section will therefore discuss the different join strategies, even though 
casual users will hardly be able to influence the calculation options. 

Implementing a join operation on two tables aims to compare each tuple of one 
table with all tuples of the other table concerning the join predicate and, when there 
is a match, insert the two tuples into the results table as a combined tuple. Regarding 
the calculation of equi-joins, there are two basic join strategies: nested join and sort-
merge join. 

Nested Join 
For a nested join between a table R with an attribute A and a table S with an 
attribute B, each tuple in R is compared to each tuple in S to check whether the join 
predicate R.A=S.B is fulfilled. If R has n tuples and S has m tuples, this requires n 
times m comparisons. 

The algorithm for a nested join calculates the Cartesian product and simulta-
neously checks whether the join predicate is met. Since we compare all tuples of R in 
an outer loop with all tuples of S from an inner loop, the expense is quadratic. It can 
be reduced if an index (see Sect. 5.2.1) exists for attribute A and/or attribute B. 

Figure 5.9 illustrates a heavily simplified algorithm for a nested join of employee 
and department information from the established example tables. OUTER_LOOP 
and INNER_LOOP are clearly visible and show how the algorithm compares all 
tuples of the EMPLOYEE table to all tuples of the DEPARTMENT table. 

For the join operation in Fig. 5.11, there is an index for the D# attribute, since it is 
the primary key2 of the DEPARTMENT table. The database system uses the index 
structure for the department number by not going through the entire DEPART-
MENT table tuple by tuple for each iteration of the inner loop, but rather accessing 
tuples directly via the index. Ideally, there is also an index for the Sub (subordinate) 
attribute of the EMPLOYEE table for the database system to use for optimization. 
This example illustrates the importance of the selection of suitable index structures 
by database administrators. 

A more efficient algorithm than a nested join is available if the tuples of tables R 
and S are already sorted physically in ascending or descending order by the attributes 
A and B of the join predicate, respectively. This may require an internal sort before

2 The database system automatically generates index structures for each primary key; advanced 
index structures are used for concatenated keys. 
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Fig. 5.11 Computing a join with nesting 

the actual join operation in order to bring both of the tables into matching order. The 
computation of the join then merely requires going through the tables for ascending 
or descending attribute values of the join predicate and simultaneously compares the 
values of A and B. This strategy is characterized as follows: 

Sort-Merge Join 
A sort-merge join requires the tables R and S with the join predicate R.A=S.B to be 
sorted by the attribute values for A of R and B of S, respectively. The algorithm 
computes the join by making comparisons in the sorting order. If the attributes A 
and B are uniquely defined (e.g., as primary and foreign key), the computational 
expense is linear. 

Figure 5.12 shows a basic algorithm for a sort-merge join. First, both tables are 
sorted by the attributes used in the join predicate and made available as cursors i and 
j. Then the cursor i is passed in the sort order, and the comparisons are executed. 

If the compound predicate i==j is true, that is, if the values at both cursors’ 
current positions are equal, both data sets are merged at this point and output. To do 
this, a Cartesian product of the two subsets of records with the same key, i and j, is 
output. The function GET_SUBSET(x) fetches all records in the cursor x where the 
key x is equal and sets the pointer of the cursor to the immediately following record 
with the next larger key value. 

If either key is less than the other, the GET_SUBSET function is also run for the 
cursor with smaller value, not for output, but to set the cursor’s pointer to the next 
larger key value. This is looped until there are no more records for the first cursor. 

With this algorithm, both tables only need to be traversed once. The cross-product 
is only executed locally for small subsets of records, which increases the execution
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SORT_MERGE_JOIN (Unt,A#):
 SORT (EMPLOYEE) ON (Sub) AS i
 SORT (DEPARTMENT) ON (D#) AS j
 WHILE (HAS_ROWS(Sub)) DO
  IF(i==j) THEN 
   OUTPUT CARD_PROD (
   GET_SUBSET(i),
   GET_SUBSET(j) ) END IF
  IF (i<j) THEN GET_SUBSET(i) END IF
  IF (i>j) THEN GET_SUBSET(j) END IF
 END WHILE 
END SORT_MERGE_JOIN 

Sort-merge join Sub D# 

D6 

D5 

D3 

D3 

D6 

D5 

D5 

Example 

i  

= 
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< 

= 

Fig. 5.12 Going through tables in sorting order 

speed significantly. In the query of the EMPLOYEE and DEPARTMENT tables, the 
sort-merge join is linearly dependent from the occurrences of the tuples, since D# is a 
key attribute. The algorithm only has to go through both tables once to compute 
the join. 

Database systems are generally unable to select a suitable join strategy—or any 
other access strategy—a priori. Unlike algebraic optimization, this decision hinges 
on the current content state of the database. It is therefore vital that the statistical 
information contained in the system tables is regularly updated, either automatically 
at set intervals or manually by database specialists. This enables cost-based 
optimization. 

5.3.4 Cost-Based Optimization of Access Paths 

Another way to optimize queries is statistical, cost-based optimization. An optimizer 
in a database management system evaluates the optimal access structures and 
available indexes for queries. Based on the cost, i.e., the number of records that 
must be searched to fulfill a query, the optimizer selects possible indexes to minimize 
this cost. To do this, it uses information about existing indexes and statistics about 
the number of rows in the tables. In this way, it comes up with cost estimates for 
different variants of query processing. These are called execution plans. Then the 
optimizer chooses the optimal variant. 

In SQL databases, the keyword EXPLAIN can be used to display the execution 
plan for a query. This allows us to see which indexes are being used and where
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inefficient searches still exist. This keyword is often used by database specialists to 
examine queries for their performance and to improve them manually. 

For example, there are situations where an index exists on a search column, but it 
is not used by the optimizer. This is the case, among others, when functions are 
applied to the search column. Let’s assume that there is an index IX1 on the column 
Date of birth in the table Employees: 

CREATE INDEX ix1 
ON EMPLOYEES (date_of_birth) 

Now we want to output the list of employees born before 1960. We can try this 
with the following SQL query: 

SELECT * FROM EMPLOYEES 
WHERE YEAR(date_of_birth)<1960 

When we do this, we will notice that even though the index exists, the query is 
slow for large amounts of data. 

With the EXPLAIN keyword, we can observe the optimizer’s execution plan, 
which defines which queries are run in which order and which indexes are used to 
access the data. 

EXPLAIN 
SELECT * FROM EMPLOYEES 
WHERE YEAR(date_of_birth) < 1960 

When we do this, we will notice from the database system’s response that the 
optimizer did not recognize index IX1 as a possible access path (POSSIBLE_KEY) 
and that the query is of type “ALL,” meaning that all records in the table must be 
searched. This is called full table scan. This is because the optimizer cannot use the 
index when functions are applied to the search columns. The solution to this problem 
is to remove this function call: 

EXPLAIN 
SELECT * FROM EMPLOYEES 
WHERE date_of_birth < '1960-01-01'.
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A renewed call of the execution plan with EXPLAIN now shows that due to this 
change, the query is now of type “RANGE,” i.e., a range query, and that for this, the 
index IX1 can be used as an efficient access path. Thus, the SQL query will now run 
much more efficiently. This is an example of how, in principle, analyzing the 
optimizer’s execution plan works. 

5.4 Parallel Processing with MapReduce 

Analyses of large amounts of data require a division of tasks utilizing parallelism in 
order to produce results within a reasonable time. The MapReduce method can be 
used for both computer networks and mainframes; the following section discusses 
the first, distributed option. 

In a distributed computer network, often consisting of cheap, horizontally scaled 
components, computing processes can be distributed more easily than data sets. 
Therefore, the MapReduce method has gained widespread acceptance for 
Web-based search and analysis tasks. It employs parallel processing to generate 
and sort simple data extracts before outputting the results:

• Map phase: Subtasks are distributed between various nodes of the computer 
network to use parallelism. On the individual nodes, simple key-value pairs are 
extracted based on a query and then sorted (e.g., via hashing) and output as 
intermediate results.

• Reduce phase: In this phase, the abovementioned intermediate results are 
consolidated for each key or key range and output as the final result, which 
consists of a list of keys with the associated aggregated value instances. 

Figure 5.13 shows a simple example of a MapReduce procedure: Documents or 
websites are to be searched for the terms algorithm, database, NoSQL, key, SQL, 
and distribution. The requested result is the frequency of each term. 

The map phase consists of the two parallel mapping functions M1 and M2. M1 
generates a list of key-value pairs, with the search terms as key and their frequencies 
as value. M2 simultaneously executes a similar search on another computer node 
with different documents or websites. The preliminary results are then sorted 
alphabetically with the help of a hashing algorithm. For the upper part, the first 
letters A to N of the keys (search terms) are the sorting criterion; in the lower part, it 
is the letters O–Z. 

The reduce phase in Fig. 5.13 combines the intermediate results. The Reduce 
function R1 adds up the frequencies for the terms starting with A to N; R2 does the 
same for those starting with O to Z. The results, sorted by frequency of the search 
terms, are one list with NoSQL (4), database (3), and algorithm (1) and a second list 
with SQL (3), distribution (2), and key (1). The final result combines these two lists 
and sorts them by frequency. 

The MapReduce method is based on common functional programming languages 
such as LISP (LISt Processing), where the map() function calculates a modified list



for all elements of an original list as an intermediate result. The reduce() function 
aggregated individual results and reduces them into an output value. 
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Fig. 5.13 Determining the frequencies of search terms with MapReduce 

MapReduce has been improved and patented by Google developers for huge 
amounts of semi- and unstructured data. However, the function is also available in 
many open-source tools. The procedure plays an important role in NoSQL databases 
(see Chap. 7), where various manufacturers use the approach for retrieving database 
entries. Due to its use of parallelism, the MapReduce method is useful not only for 
data analysis but also for load distribution, data transfer, distributed searches, 
categorizations, and monitoring. 

5.5 Layered Architecture 

It is considered a vital rule for the system architecture of database systems that future 
changes or expansions must be locally limitable. Similar to the implementation of 
operating systems or other software components, fully independent system layers 
that communicate via defined interfaces are introduced into relational and 
non-relational database systems. 

Figure 5.14 gives an overview of the five layers of system architecture based on 
relational database technology. The section below further shows how those layers



correspond to the major features described in Chap. 4 and the previous sections of 
Chap. 5. 
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Fig. 5.14 Five-layer model for relational database systems 

Layer 1: Set-Oriented Interface 
The first layer is used to describe data structures, provide set operations, define 
access conditions, and check integrity constraints (see Chap. 4). Either during early 
translation and generation of access module or during runtime, it is necessary to 
check syntax, resolve names, and select access paths. There is room for considerable 
optimization in the selection of access paths.
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Layer 2: Record-Oriented Interface 
The second layer converts logical records and access paths into physical structures. 
A cursor concept allows for navigating or processing records according to the 
physical storage order, positioning specific records within a table, or providing 
records sorted by value. Transaction management must be used to ensure that the 
consistency of the database is maintained and no deadlocks arise between various 
user requests. 

Layer 3: Storage and Access Structures 
The third layer implements physical records and access paths on pages. The number 
of page formats is limited, but in addition to tree structures and hashing methods, 
multi-dimensional data structures should be supported in the future. These common 
storage structures are designed for efficient access to external storage media. Physi-
cal clustering and multi-dimensional access paths can also be used to achieve further 
optimization in record and access path management. 

Layer 4: Page Assignment 
For reasons of efficiency and to support the implementation of recovery procedures, 
the fourth layer divides the linear address space into segments with identical page 
limits. The file management provides pages in a cache on request. On the other hand, 
pages can be inserted into or substituted within the cache with insertion or replace-
ment policies. There is not only the direct assignment of pages to blocks but also 
indirect assignment, such as caching methods which allow for multiple pages to be 
inserted into the database cache atomically. 

Layer 5: Memory Allocation 
The fifth layer realizes memory allocation structures and provides block-based file 
management for the layer above. The hardware properties remain hidden from the 
file- and block-oriented operations. The file management usually supports 
dynamically growing files with definable block sizes. Ideally, it should also be 
possible to cluster blocks and in- and output multiple blocks with only one operation. 

5.6 Use of Different Storage Structures 

Many Web-based applications use different data storage systems to fit their various 
services. Using just one database technology, e.g., relational databases, is no longer 
enough: The wide range of requirements regarding consistency, availability, and 
partition tolerance demand a mix of storage systems, especially due to the CAP 
theorem. 

Figure 5.15 shows a schematic representation of an online store. In order to 
guarantee high availability and partition tolerance, session management and shop-
ping carts utilize key-value stores (see Chap. 6). Orders are saved to a document 
store (see Chap. 7), and customers and accounts are managed in a relational database 
system.
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Fig. 5.15 Use of SQL and NoSQL databases in an online store 

Performance management is a vital part of successfully running an online store. 
Web analytics are used to store key performance indicators (KPIs) of content and 
visitors in a data warehouse (see Chap. 6). Specialized tools such as data mining and 
predictive business analysis allow for regular assessments of business goals and the 
success of campaigns and other actions. Since analyses on a multi-dimensional data 
cube are time-consuming, the cube is kept in-memory. 

Social media integration for the Web shop is a good idea for many reasons. 
Products and services can be promoted, and customers’ reactions can be evaluated; 
in case of problems or dissatisfaction, good communication and appropriate 
measures can avoid or mitigate possible negative impacts. Following blogs and 
relevant discussion threads on social networks can also help to discover and recog-
nize important trends or innovation in the industry. Graph databases (see Sect. 7.6) 
are the logical choice for the analysis of relationships between individual target 
groups. 

The services needed for the online store and the integration of heterogeneous 
SQL and NoSQL databases can be realized with the REST (Representational State 
Transfer) architecture. It consists of five elements:

• Resource identification: Web resources are identified using a Uniform Resource 
Identifier (URI). Such resources can, for instance, be websites, files, services, or 
e-mail addresses. URIs have up to five parts: scheme (type of URI or protocol), 
authority (provider or server), path, optional query (information to identify a 
resource), and optional fragment (reference within a resource). An example 
would be http://eShop.com/customers/12345.

http://eshop.com/customers/12345
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• Linking: Resources are connected via hyperlinks, i.e., electronic references. 
Hyperlinks or simply links are cross-references in hypertext documents that 
point to a location within the document itself or to another electronic document. 
An HTML hyperlink looks like this: <a href=http://eShop.com>Browse our 
online store for literature</a>.

• Standard methods: Any resource on the Web can be manipulated with a set of 
methods. The standard methods of HTTP (HyperText Transfer Protocol), such as 
GET (request a resource from a server), POST (send data to a server), and 
DELETE (delete a resource), allow for a unified interface. This ensures that 
other Web services can communicate with all resources at any time.

• Representations: Servers based on REST must be able to provide various 
representations of resources, depending on application and requirements. Besides 
the standard HTML (HyperText Markup Language) format, resources are often 
provided in XML (eXtensible Markup Language).

• Statelessness: Neither applications nor servers exchange state information 
between messages. This improves the scalability of services, e.g., load distribu-
tion on multiple computer nodes (cf. MapReduce method). 

REST offers a template for the development of distributed applications with 
heterogeneous SQL and NoSQL components. It ensures horizontal scalability in 
case business volumes increase or new services become necessary. 

5.7 Cloud Databases 

Installation and maintenance of database systems in a physical data center are 
significant tasks. For this purpose, not only the software but also the hardware 
must be provided, maintained, and secured. Larger companies have created entire 
IT operations departments for this purpose, whose job is to provide the hardware and 
operating systems on which database systems and applications run. This type of 
organization is changing, as services in the so-called cloud threaten to make internal 
IT operations departments obsolete. 

The term “cloud” comes from the fact that the Internet is often represented with a 
cloud symbol in system architecture diagrams. The metaphor of the cloud 
symbolizes something opaque and intangible. In the context of networking, it 
means that where and how an IT service is delivered is opaque and intangible to 
the user—what matters is that it works. 

Cloud providers are companies that offer computing resources, i.e., cloud storage, 
cloud computing, or cloud services in general, via the Internet. The operation of the 
hardware and software is automated by the third-party provider, so that users can 
obtain the required services via the Internet without having to worry about the basics 
of hardware and software.
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Cloud Database 
A cloud database is a database that is operated as a cloud service. Access to the 
database is provided by cloud providers as an Internet application. The database 
service is obtained over the Internet and does not require active installation or 
maintenance by the user. A cloud database system is available promptly immediately 
after the online order is placed. Thus, the installation, operation, backup, security, 
and availability of the database service are automated. This is also called database as 
a service (DBaaS). 

Cloud databases provide a higher level of service. DBaaS offerings automate 
database operations tasks. In addition to providing the basics of the computer 
hardware, operating system, and computer network, this includes installing the 
database software and maintaining it, ensuring security across all layers, and effi-
ciently scaling the performance of the entire database system:

• Computing: The hardware, i.e., the physical computers with processor and main 
and fixed storage of cloud services, is built in highly automated data centers. 
Robots are used for this purpose, which can install and replace individual parts.

• Network: The computers are integrated into a network with high-performance 
data cables so that all components can communicate with each other and with the 
outside world.

• Operating system: Virtual machines are operated on this basis, providing the 
operating system on which the database system runs.

• Database software: The database system is automatically installed, configured, 
operated, and maintained by appropriate software on the virtual machines.

• Security: The database system is configured for security. This includes securing 
all layers, from hardware, including geographic redundancy, to securing the 
network and firewall, to securing the operating system and database software.

• Big Data: One advantage of automation is that new resources such as memory 
and processors are allocated autonomously by the cloud service at short notice 
and at any time, providing scalability in Big Data applications. 

These benefits of cloud database systems create a clearly noticeable added value, 
which is also reflected in the price of the services. This consideration must be made 
and calculated for each use case. 
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6.1 The Limits of SQL and What Lies Beyond 

Relational database technology and especially SQL-based databases came to domi-
nate the market in the 1980s and 1990s. Today, SQL databases are still the de facto 
standard for most database applications in organizations and companies. This time-
tested and widely supported technology will in all likelihood continue to be used for 
the next decades. Nevertheless, the future of databases needs to be discussed. 
Keywords here are NoSQL databases, graph databases, document databases, and 
distributed database systems as well as temporal, deductive, semantic, object-
oriented, fuzzy, and versioned database systems. What is behind all those terms? 
This chapter explains some post-relational concepts and shows methods and trends, 
remaining subjective in its choice of topics. NoSQL databases are described in 
Chap. 7. 

The classic relational model and the corresponding SQL-based database systems 
admittedly show some disadvantages stemming on the one hand from extended 
requirements in new areas of application and on the other hand from the functional 
limits of SQL. Relational database technology can be applied in a variety of fields 
and can be seen as the all-rounder among database models. There are, however, 
niches and scenarios in which SQL-based databases, being transaction- and 
consistency-oriented, are a hindrance, for example, when high-performance 
processing of large amounts of data is required. In those cases, it’s better to use 
specialized tools that are more efficient. 

SQL remains the most important and most popular database language. Today, 
there is a wide choice of commercial products with enhanced database functionality, 
some of them open source. It is not easy for professionals to orientate in the variety 
of possibilities. Often, the required effort and the economic benefit of a changeover 
are not clear. Many companies therefore still require a considerable amount of 
mental work to future-proof their application architecture concepts and choose the 
appropriate product. In a nutshell, concise architecture concepts and migration 
strategies for the use of post-relational database technologies are still lacking. 
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In this chapter and the next, we present a selection of problem cases and possible 
solutions. Some demands not covered by classical relational databases can be met by 
individual enhancements of relational database systems; others have to be 
approached with fundamentally new concepts and methods. Both of these trends 
are summarized under post-relational database systems. We also consider NoSQL 
post-relational, but we cover it in a separate Chap. 7. 

6.2 Federated Databases 

Non-centralized or federated databases are used where data is to be stored, 
maintained, and processed in different places. A database is distributed if the data 
content is stored on separate computers. Copying all contained data redundantly onto 
several computers for load balancing is called replication. Fragmentation means that 
for an increased data volume, the data is effectively partitioned into smaller parts, 
so-called fragments, and split between several computers. Fragments are also often 
called partitions or shards; the concept of fragmentation is then accordingly termed 
partitioning or sharding. 

A distributed database is federated if several physical data fragments are kept on 
separate computers and is organized in one single logical database schema. The users 
of a federated database only have to deal with the logical view of the data and can 
ignore the physical fragments. The database system itself performs the database 
operations locally or, if necessary, split between several computers. 

A simple example of a federated database is shown in Fig. 6.1. Splitting the 
EMPLOYEE and DEPARTMENT tables into different physical fragments is an 
important task for the database administrators, not the users. According to our 
example, the departments IT and HR are geographically based in Cleveland, and 
the accounting department is geographically based in Cincinnati. Fragment F1 as a 
partial table of the EMPLOYEE table includes only employees of the IT and the HR 
departments. Similarly, fragment F2 from the initial DEPARTMENT table shows 
those departments that are based in Cleveland. Fragments F3 and F4 contain the 
employees and departments in Cincinnati, respectively. 

If a table is split horizontally, keeping the original structure of table rows, the 
result is called horizontal fragments. The individual fragments should not overlap, 
but combine to form the original table. 

Instead of being split horizontally, a table can also be divided into vertical 
fragments by combining several columns along with the identification key, 
segmenting the tuples. One example is the EMPLOYEE table, where certain parts 
like salary, qualifications, development potential, etc. would be kept in a vertical 
fragment restricted to the HR department for confidentiality reasons. The remaining 
information could be made accessible for the individual departments in another 
fragment. Hybrid forms between horizontal and vertical fragments are also possible.



6.2 Federated Databases 195

E19 Stewart Stow D6 

E1 Murphy Kent D3 

E7 Howard Cleveland D5 

E4 Bell Kent D6 

E# Name City Sub 

EMPLOYEE DEPARTMENT 

D3 IT 

D5 HR 

D6 Accounting 

D# DepartmentName 

Information for the IT and HR 
to be managed at the Cleveland site: 

CREATE FRAGMENT  F1  AS 

SELECT * 

FROM  EMPLOYEE 

WHERE  Sub IN ( D3,D5  ) 

CREATE FRAGMENT  F2  AS 

SELECT * 

FROM  DEPARTMENT 

WHERE  D# IN ( D3,D5  ) 

E1 Murphy Kent D3 

E7 Howard Cleveland D5 

E# Name City Sub 

F1 in Cleveland F2 in Cleveland 

D3 IT 

D5 HR 

D# DepartmentName 

E# Name City Sub 

F3 in Cincinnati F4 in Cincinnati 

D# DepartmentName 

departments is 

Fig. 6.1 Horizontal fragmentation of the EMPLOYEE and DEPARTMENT tables 

One important task of a federated database system is guaranteeing local auton-
omy. Users can autonomously work with their local data, even if certain computer 
nodes in the network are unavailable.1 

Apart from local autonomy, the principle of non-centralized processing is of 
importance. This means the database system can handle queries locally in the 
different network nodes. For non-centralized applications like these which demand 
data from different fragments, the database system has to allow for remote access to

1 Periodically extracted parts of tables (called snapshots) improve local autonomy. 



read and update tables. In order to achieve this, it has to provide a distributed 
transaction and recovery concept. These concepts demand special protection 
mechanisms for distributed databases. 
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Stewart Accounting 

Murphy IT 

Howard HR 

Bell Accounting 

Name DepartmentName 

SELECT Name, DepartmentName 
FROM  EMPLOYEE, DEPARTMENT 
WHERE  Sub = D# 

F1 
EMPLOYEE 

F2 
DEPARTMENT 

F3 
EMPLOYEE 

F4 
DEPARTMENT 

CLEVELAND ∪  CINCINNATI 

CLEVELAND:= 
π Name, DepartmentName 

CINCINNATI:= 
π Name, DepartmentName 

|×| Sub = D# 

π Name, Sub π D#, DepName 

|×| Sub = D# 

π Name, Sub π D#, DepName 

Fig. 6.2 Optimized query tree for a distributed join strategy 

The internal processing strategy for distributed database queries is vital here, as 
the example of querying for employees and department names in Fig. 6.2 illustrates. 
The query can be formulated in normal SQL without specifying the fragment. The 
task of the database system is to determine the optimal calculation strategy for this 
non-centralized query. Both the EMPLOYEE and the DEPARTMENT table are 
fragmented between Cleveland and Cincinnati. Therefore, certain calculations are 
executed locally and synchronously. Each node organizes the join between the 
EMPLOYEE and DEPARTMENT fragments independently from the other. After



these partial calculations, the final result is formed by a set union of the partial 
results. 
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For further optimization, the single nodes make projections on the requested 
attributes Name and Department Name. Then, the join operations on the reduced 
table fragments are calculated separately in Cleveland and Cincinnati. Finally, the 
preliminary results are reduced once more by projecting them on the requested 
names and department names before a set union is formed. 

In calculating non-centralized queries, union and join operations are typically 
evaluated late in the process. This supports high parallelism in processing and 
improves performance on non-centralized queries. The maxim of optimization is 
to put the join operations in the query tree close to the root node, while selections and 
projections should be placed near the leaves of the query tree. 

Federated Database System 
A federated database system fulfils the following conditions:

• It supports a single logical database schema and several physical fragments on 
locally distributed computers.

• It guarantees transparency regarding the distribution of databases, so ad hoc 
queries and application tools do not have to take into account the physical 
distribution of the data, i.e., the partitioning.

• It ensures local autonomy, i.e., it allows working locally on its non-centralized 
data, even if single computer nodes are not available.

• It guarantees the consistency of the distributed databases and internally optimizes 
the distributed queries and manipulations with a coordination program.2 

The first prototypes of distributed database systems were developed in the early 
1980s. Today, relational databases fulfilling the aforementioned demands only 
partially are available. Moreover, the conflict between partition tolerance and 
schema integration remains, so that many distributed databases, especially NoSQL 
databases (cf. Chap. 7), either offer no schema federation, like key-value stores, 
column family stores, or document stores, or do not support the fragmentation of 
their data content, like graph databases. 

6.3 Temporal Databases 

Today’s relational database systems are designed to manage information relevant to 
the present (current information) in tables. For users to query and analyze a relational 
database across time, they need to individually manage and update the information 
relating to the past or future. This is because the database system does not directly 
support them saving, querying, or analyzing time-related information.

2 In distributed SQL expressions, the two-phase commit protocol guarantees consistency. 
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Time is understood as a one-dimensional physical quantity whose values are 
ordered so that any two values in the timeline can be compared using the order 
relations “less than” and “greater than.” Not only date and time, such as “April 
1, 2016, 2.00 pm,” are relevant information but also durations in the form of time 
intervals. One example is the age of an employee, determined by a number of years. 
It is important to note that a given time can be interpreted as either an instant (a point 
in time) or a time period, depending on the view of the user. 

Temporal databases are designed to relate data values, individual tuples, or whole 
tables to the time axis. The time specification itself has different meanings for an 
object in the database, because valid time can be understood either as an instant 
when a certain event takes place or as a period if the respective data values are valid 
throughout a period of time. For instance, the address of an employee is valid until it 
is next changed. 

Another kind of time specification is the transaction time, recording the instant 
when a certain object is entered into, changed in, or deleted from the database. The 
database system usually manages the different transaction times itself with the help 
of a journal, which is why time will always be used in the sense of valid time in the 
following. 

In order to record valid times as points in time, most relational database systems 
support several data types: DATE is used for dates in the form year, month, and day 
and TIME for the time of the day in hours, minutes, and seconds, and TIMESTAMP 
is a combination of date and time. To give a period of time, no special data type has 
to be chosen; integers and decimals are sufficient. This makes it possible to run 
calculations on dates and times. One example is the employees table shown in 
Fig. 6.3, in which Date of Birth and Start Date have been added to the attribute 
categories. These attributes are time-related, and the system can therefore be queried 
for a list of all employees who started working for the company before their 20th 
birthday. 

The EMPLOYEE table still offers a snapshot of the current data. Therefore, it is 
not possible to query into the past nor the future, because there is no information 
regarding the valid time of the data values. If, for instance, the role of employee 
Howard is changed, the existing data value will be overwritten and the new role 
considered as current. However, there is no information from and until when 
employee Howard worked in a specific role. 

Two attributes are commonly used to express the validity of an entity: The “Valid 
From” time indicates the point in time when a tuple or a data value became or 
becomes valid. The attribute “Valid To” indicates the end of a period of validity by 
giving the corresponding instant. Instead of both the VALID_FROM and 
VALID_TO times, on the timeline, the VALID_FROM instant may be sufficient. 
The VALID_TO instants are defined implicitly by the following VALID_FROM 
instants, as the validity intervals of any one entity cannot overlap. 

The temporal table TEMP_EMPLOYEE shown in Fig. 6.4 lists all validity 
statements in the attribute VALID_FROM for the employee tuple M1 (Murphy). 
This attribute must be included in the key so that not only current but also past and 
future states can be identified uniquely.
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SELECT E#, Name 
FROM  EMPLOYEE 
WHERE  (StartDate - DateofBirth)/365.25 < 20 

EMPLOYEE 

E19 Stewart 02/19/1978 Stow 

E1 Murphy 07/09/1988 Kent 

E7 Howard 03/28/1999 Cleveland 

E# Name DateOfBirth City 

E4 Bell 12/06/1982 Kent 

10/01/2009 Clerk 

07/01/2014 Analyst 

01/01/2018 Head of HR 

StartDate Position 

04/15/2018 Internal auditor 

Find all employees  who started working for the company 
before age 20 : 

E7 Howard 

E# Name 

Fig. 6.3 EMPLOYEE table with data type DATE 

The four tuples can be interpreted as follows: Employee Murphy used to live in 
Cleveland from July 1, 2014, to September 12, 2016, and then in Kent until March 
31, 2019, and has lived in Cleveland again since April 1, 2019. From the day they 
started working for the company until May 3, 2017, they worked as a programmer 
and between May 4, 2017, and March 31, 2019, as a programmer analyst, and since 
April 1, 2019, they have been working as an analyst. The table TEMP_EMPLOYEE 
is indeed temporal, as it shows not only current states but also information about data 
values related to the past. Specifically, it can answer queries that do not only concern 
current instants or periods. 

For instance, it is possible in Fig. 6.4 to determine the role employee Murphy had 
on January 1, 2018. Instead of the original SQL expression of a nested query with the 
ALL function (see Sect. 3.3), a language directly supporting temporal queries is 
conceivable. The keyword VALID_AT determines the time for which all valid 
entries are to be queried. 

Temporal Database System 
A temporal database management system (TDBMS):

• Supports the time axis as valid time by ordering attribute values or tuples by time
• Contains temporal language elements for queries into future, present, and past
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TEMP_EMPLOYEE (excerpt) 

E1 07/01/2014 Cleveland 

E1 09/13/2016 Kent 

E1 05/04/2017 Kent 

E# VALID_FROM City 

E1 

Murphy 

Murphy 

Murphy 

Name 

Murphy04/01/2019 Cleveland 

07/01/2014 Programmer 

07/01/2014 Programmer 

07/01/2014 Programmer-analyst 

StartDate Position 

07/01/2014 Analyst 

Find the position held by employee Murphy on 01/01/2018. 

SELECT Position 
FROM  TEMP_EMPLOYEE A 
WHERE  A.E# = ‘E1’ AND 

A.VALID_FROM >= ALL ( 

SELECT VALID_FROM
  FROM  TEMP_EMPLOYEE B
   WHERE  B.E# = ‘E1’  AND 

B.VALID_FROM  <= ‘01/01/2018’ ) 

Programmer-analyst 

Position 

original SQL: 

SELECT Position 
FROM  TEMP_EMPLOYEE 
WHERE  E# = ‘E1’ AND 

VALID_AT = ‘01/01/2018’ 

temporal SQL: 

Fig. 6.4 Excerpt from a temporal table TEMP_EMPLOYEE 

In the field of temporal databases, there are several language models facilitating 
work with time-related information. Especially the operators of relational algebra 
and relational calculus have to be expanded in order to enable a join of temporal 
tables. The rules of referential integrity also need to be adapted and interpreted as 
relating to time. Even though these kinds of methods and corresponding language 
extensions have already proven themselves in research and development, very few 
database systems today support temporal concepts. The SQL standard also supports 
temporal databases. 

6.4 Multi-dimensional Databases 

Operative databases and applications are focused on a clearly defined, function-
oriented performance area. Transactions aim to provide data for business handling as 
quickly and precisely as possible. This kind of business activity is often called online 
transaction processing or OLTP. Since the operative data has to be overwritten daily, 
users lose important information for decision-making. Furthermore, these databases



were designed primarily for day-to-day business, not for analysis and evaluation. 
Recent years have therefore seen the development of specialized databases and 
applications for data analysis and decision support, in addition to transaction-
oriented databases. This process is termed online analytical processing or OLAP. 
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Region dimension 

West East North South 

Sales indicator: 

e.g. 30 pieces for: keyboard, east, Q1/2023 

30 

Product 
dimension 

Harddrive 

Mouse 

Screen 

Keyboard 

Tim
e dim

ensio
n 

Q1/2023 

Q2/2023 

Q3/2023 

Q4/2023 

Fig. 6.5 Data cube with different analysis dimensions 

At the core of OLAP is a multi-dimensional database, where all decision-relevant 
information can be stored according to various analysis dimensions (data cube). 
Such databases can become rather large, as they contain decision-making factors 
from multiple points in time. Sales figures, for instance, can be stored and analyzed 
in a multi-dimensional database by quarter, region, or product. 

This is demonstrated in Fig. 6.5, which also illustrates the concept of a multi-
dimensional database. It shows the three analysis dimensions product, region, and 
time. The term dimension describes the axes of the data cube. The design of the 
dimensions is important, since analyses are executed along these axes. The order of 
the dimensions does not matter; every user can and should analyze the data from 
their own perspective. Product managers, for instance, prioritize the product dimen-
sion; salespeople prefer sales figures to be sorted by region. 

The dimensions themselves can be structured further: The product dimension can 
contain product groups; the time dimension could cover not only quarters but also



days, weeks, and months. A dimension therefore also describes the desired aggrega-
tion levels valid for the data cube. 
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Mouse 

Keyboard 

Product 

West 

East 

Region 

Q1/2023 

Q2/2023 

Time 

Product 

Region 

Time 

Sales 

Indicator table 

Dimension tables 

Fig. 6.6 Star schema for a multi-dimensional database 

From a logical point of view, in a multi-dimensional database or a data cube, it is 
necessary to specify not only the dimensions but also the indicators.3 An indicator is 
a key figure or parameter needed for decision support. These key figures are 
aggregated by analysis and grouped according to the dimension values. Indicators 
can relate to quantitative as well as qualitative characteristics of the business. Apart 
from financial key figures, meaningful indicators concern the market and sales, 
customer base and customer fluctuation, business processes, innovation potential, 
and know-how of the employees. Indicators, in addition to dimensions, are the basis 
for the management’s decision support, internal and external reporting, and a 
computer-based performance measurement system. 

The main characteristic of a star schema is the classification of data as either 
indicator data or dimension data. Both groups are shown as tables in Fig. 6.6. The 
indicator table is at the center, and the descriptive dimension tables are placed around 
it, one table per dimension. The dimension tables are attached to the indicator table 
forming a star-like structure. 

Should one or more dimensions be structured, the respective dimension table 
could have other dimension tables attached to it. The resulting structure is called a 
snowflake schema showing aggregation levels of the individual dimensions. In 
Fig. 6.6, for instance, the time dimension table for the first quarter of 2023 could

3 Indicators are often also called facts, e.g., by Ralph Kimball. See also Sect. 6.7 on facts and rules of 
knowledge databases. 



have another dimension table attached, listing the calendar days from January to 
March 2023. Should the dimension month be necessary for analysis, a month 
dimension table would be defined and connected to the day dimension table. 
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Find the Apple sales for the1. quarter of 2023 by sales lead Mahoney. 

SELECT SUM(Revenue) 
FROM  D_PRODUCT D1, D_REGION D2, D_TIME D3, F_SALES F 
WHERE  D1.P# = F.P# AND 

D2.R# = F.R# AND 
D3.T# = F.T# AND 
D1.Supplier = ‘Apple’ AND 
D2.SalesLead = ‘Mahoney’ AND 
D3.Year = 2023 AND 
D3.Quarter = 1 

D_TIME 

T1 2023 

T# Year 

1 

Quarter 

D_PRODUCT 

P2 Keyboard 

P# ProductName 

Apple 

Supplier 

P2 R2 

P# R# 

T1 

T# 

30 

Quantity 

160,000 

Revenue 

F_SALES 

R2 East 

R# Name 

Mahoney 

SalesLead 

D_REGION 

Fig. 6.7 Implementation of a star schema using the relational model 

The classic relational model can be used for the implementation of a multi-
dimensional database. Figure 6.6 shows how indicator and dimension tables of a 
star schema are implemented. The indicator table is represented by the relation 
F_SALES, which has a multi-dimensional key. This concatenated key needs to 
contain the keys for the dimension tables D_PRODUCT, D_REGION, and 
D_TIME. In order to determine sales lead Mahoney’s revenue on Apple devices in 
the first quarter of 2023, it is necessary to formulate a complicated join of all 
involved indicator and dimension tables (see SQL statement in Fig. 6.7). 

A relational database system reaches its limits when faced with extensive multi-
dimensional databases. Formulating queries with a star schema is also complicated 
and prone to error. There are multiple other disadvantages when working with the 
classic relational model and conventional SQL: In order to aggregate several levels, 
a star schema has to be expanded into a snowflake schema, and the resulting physical 
tables further impair the response time behavior. If users of a multi-dimensional



database want to query more details for deeper analysis (drill-down) or analyze 
further aggregation levels (roll-up), conventional SQL will be of no use. Moreover, 
extracting or rotating parts of the data cube, as commonly done for analysis, requires 
specific soft- or even hardware. Because of these shortcomings, some providers of 
database products have decided to add appropriate tools for these purposes to their 
software range. In addition, the SQL standard has been extended on the language 
level in order to simplify the formulation of cube operations, including aggregations. 
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Multi-dimensional Database System 
A multi-dimensional database management system (MDBMS) supports a data cube 
with the following functionality:

• For the design, several dimension tables with arbitrary aggregation levels can be 
defined, especially for the time dimension.

• The analysis language offers functions for drill-down and roll-up.
• Slicing, dicing, and rotation of data cubes are supported. 

Multi-dimensional databases are often used in an overall system, which addition-
ally offers the aggregation of different databases as a federated database system and 
the historization of data over time as a temporal database system. Such an informa-
tion system is called a data warehouse for structured data or data lake for unstruc-
tured and semi-structured data. Such systems have such an importance in practice 
that we dedicate a separate section to it in the context of post-relational database 
systems. 

6.5 Data Warehouse and Data Lake Systems 

Multi-dimensional databases are often the core of data warehouses. Unlike multi-
dimensional databases alone, a data warehouse is a distributed database system that 
combines aspects of federated, temporal, and multi-dimensional databases. It 
provides mechanisms for integration, historization, and analysis of data across 
several applications of a company, along with processes for decision support and 
the management and development of data flows within the organization. 

The more and easier digital data is available, the greater the need to analyze this 
data for decision support. The management of a company is supposed to base their 
decisions on facts that can be gathered from the analysis of the available data. The 
process of data preparation and analysis for decision support is called business 
intelligence. Due to heterogeneity, volatility, and fragmentation of the data, cross-
application data analysis is often complex: Data is stored heterogeneously in several 
databases in an organization. Additionally, often only the current version is avail-
able. In the source systems, data from one larger subject area, like customers or 
contracts, is rarely available in one place, but has to be gathered, or integrated, via 
various interfaces. Furthermore, this data distributed among many databases needs to 
be sorted into timelines for various subject areas, each spanning several years. 
Business intelligence therefore makes three demands on the data to be analyzed:
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• Integration of heterogeneous data
• Historicization of current and volatile data
• Complete availability of data on certain subject areas 

The three previously introduced post-relational database systems basically cover 
one of those demands each: The integration of data can be carried out with federated 
database systems with a central logical schema, historicization of data is possible 
with temporal databases, and multi-dimensional databases can provide data on 
various subject areas (dimensions) for analysis. 

As relational database technology has become so widespread in practice, the 
properties of distributed, temporal, and multi-dimensional databases can be 
simulated quite well with regular multi-dimensional databases and some software 
enhancements. The concept of data warehousing implements these aspects of 
federated, temporal, and multi-dimensional database systems using conventional 
technologies. 

In addition to those three aspects, however, there is the demand of decision 
support. Organizations need to analyze data as timelines, so that the complete data 
on any subject area is available in one place. But as data in larger organizations is 
spread among a number of databases, a concept4 to prepare it for analysis and 
utilization is necessary. 

Data Warehouse 
A data warehouse or DWH is a distributed information system with the following 
properties:

• Integrated: Data from various sources and applications (source systems) is 
periodically integrated5 and filed in a uniform schema.

• Read only: Data in the data warehouse is not changed once it is written.
• Historized: Thanks to a time axis, data can be evaluated for different points 

in time.
• Analysis-oriented: All data on different subject areas like customers, contracts, or 

products is fully available at one place.
• Decision support: The information in data cubes serves as a basis for manage-

ment decisions. 

A data warehouse offers parts of the functionalities of federated, temporal, and 
multi-dimensional databases. Additionally, there are programmable loading scripts 
as well as specific analysis and aggregation functions. Based on distributed and 
heterogeneous data sources, business-relevant facts need to be available in such a 
way that they can efficiently and effectively be used for decision support and 
management purposes.

4 For more information, look up the KDD (knowledge discovery in databases) process. 
5 See the ETL (extract, transform, and load) process below. 
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Fig. 6.8 Data warehouse in the context of business intelligence processes 

Data warehouses can integrate various internal and external data sets (data 
sources). The aim is to be able to store and analyze, for various business purposes, 
a consistent and historicized set of data on the information scattered across the 
company. To this end, data from many sources is integrated into the data warehouse 
via interfaces and stored there, often for years. Building on this, data analyses can be 
carried out to be presented to decision-makers and used in business processes. 
Furthermore, business intelligence as a process has to be controlled by management. 

The individual steps of data warehousing are summarized in the following 
paragraphs (see Fig. 6.8). 

The data of an organization is distributed across several source systems, for 
instance, Web platforms, accounting (enterprise resource planning, ERP), and cus-
tomer databases (customer relationship management, CRM). In order to analyze and 
relate this data, it needs to be integrated. 

For this integration of the data, an ETL (extract, transform, load) process is 
necessary. The corresponding interfaces usually transfer data in the evening or on 
weekends, when the IT system is not needed by the users. High-performance 
systems today feature continuous loading processes, feeding data 24/7 (trickle 
feed). When updating a data warehouse, periodicity is taken into account, so users 
can see how up to date their evaluation data is. The more frequently the interfaces 
load data into the data warehouse, the more up to date is the evaluation data. The aim 
of this integration is historization, i.e., the creation of a timeline in one logically 
central storage location. The core of a data warehouse (Core DWH) is often modeled 
in second or third normal form. Historicization is achieved using validity statements 
(valid_from, valid_to) in additional columns of the tables, as described in Sect. 6.3 
on temporal databases. In order to make the evaluation data sorted by subject 
available for OLAP analysis, individual subject areas are loaded into data marts, 
which are often realized multi-dimensionally with star schemas.
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The data warehouse exclusively serves for the analysis of data. The dimension of 
time is an important part of such data collections, allowing for more meaningful 
statistical results. Periodic reporting produces lists of key performance indicators. 
Data mining tools like classification, selection, prognosis, and knowledge acquisi-
tion use data from the data warehouse in order to, for instance, analyze customer or 
purchasing behavior and utilize the results for optimization purposes. In order for the 
data to generate value, the insights including the results of the analysis need to be 
communicated to the decision-makers and stakeholders. The respective analyses or 
corresponding graphics are made available using a range of interfaces of business 
intelligence tools (BI tools) or graphical user interfaces (GUI) for office automation 
and customer relationship management. Decision-makers can utilize the analysis 
results from data warehousing in business processes as well as in strategy, market-
ing, and sales. 

The data warehouse is designed to process and integrate structured data. Since 
unstructured and semi-structured data are analyzed more frequently today in the 
context of Big Data (see Sect. 5.1), a new concept of the data lake has become 
established for this purpose. This offers an alternative extract-load-transform (ELT) 
approach for the federation, historization, and analysis of large amounts of unstruc-
tured and semi-structured data. The data lake periodically extracts and loads data 
from different source systems as it is, thus eliminating the need for time-consuming 
integration. Only when the data is eventually used by data scientists is the data 
transformed for the desired analysis. 

Data Lake 
A data lake is a distributed information system with the following characteristics:

• Data fusion: Unstructured and semi-structured data from different data sources 
and applications (source systems) are extracted in the given structure and 
archived centrally.

• Schema-on-read: Federated data is integrated into a unified schema only when it 
is needed for an evaluation.

• Snapshots: Data can be evaluated according to different points in time, thanks to 
timestamps.

• Data-based value creation: The data in the data lake unfolds its value through data 
science analyses, which generate added value by optimizing decisions. 

6.6 Object-Relational Databases 

In order to store information on books in a relational database, several tables need to 
be defined, three of which are shown in Fig. 6.9. In the BOOK table, every book has 
the attributes Title and Publisher added. 

Since a book can have more than one author and, reversely, an author can have 
published multiple books, every author involved is listed in an additional AUTHOR 
table.
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BOOK 

B1 Relational Databases Springer Vieweg 

B2 Computer graphics for engineers McGraw Hill 

B# Title Publisher 

AUTHOR 

A1 Miller 

A1 Miller 

A2 Lewis 

A# Name 

B1 

B2 

B2 

B# 

KEYWORD 

K1 B1 80 

K2 B1 20 

K# B# Weighting 

Database 

Relational model 

Term 

K3 B2 80 

K4 B2 20 

Computer graphics 

Computer geometry 

PART_OF (BOOK) 

Find the title of the book by author Miller  where one 
term is weighted at more than 50%  . 

SELECT Title 
FROM  BOOK, AUTHOR,
    KEYWORD 
WHERE  Name = ‘Miller‘ AND 

Weighting > 50 AND 
BOOK.B# = AUTHOR.B# AND 
BOOK.B# = KEYWORD.B# 

with SQL: 

SELECT Title 
FROM  BOOK-(AUTHOR,
    KEYWORD) 
WHERE  Name = ‘Miller‘ AND 

Weighting > 50 

with implicit join: 

Results table 

Relational Databases 

Title 

Fig. 6.9 Query of a structured object with and without implicit join operator 

The attribute Name is not fully functionally dependent on the combined key of 
the Author and Book Number, which is why the table is neither in the second nor in 
any higher normal form. The same holds true for the KEYWORD table, because 
there is a complex-complex relationship between books and their keywords. 
Weighting is a typical relationship attribute; Label, however, is not fully functionally



dependent on the Keyword Number and Book Number key. For proper normaliza-
tion, the management of books would therefore require several tables, since in 
addition to the relationship tables AUTHOR and KEYWORD, separate tables for 
the attributes Author and Keyword would be necessary. A relational database would 
certainly also include information on the publisher in a separate PUBLISHER table, 
ideally complemented by a table for the relationship between BOOK and 
PUBLISHER. 
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Splitting the information about a book between different tables has its 
disadvantages and is hardly understandable from the point of view of the users, 
who want to find the attributes of a certain book well-structured in a single table. The 
relational query and data manipulation language should serve to manage the book 
information using simple operators. There are also performance disadvantages if the 
database system has to search various tables and calculate time-consuming join 
operators in order to find a certain book. To mitigate these problems, extensions to 
the relational model have been suggested. 

A first extension of the relational database technology is to explicitly declare 
structural properties to the database system, for instance, by assigning surrogates. A 
surrogate is a permanent, invariant key value defined by the system, which uniquely 
identifies every tuple in the database. Surrogates, as invariant values, can be used to 
define system-controlled relationships even in different places within a relational 
database. They support referential integrity as well as generalization and aggregation 
structures. 

In the BOOK table in Fig. 6.9, the book number B# is defined as a surrogate. This 
number is used again in the dependent tables AUTHOR and KEYWORD under the 
indication PART_OF(BOOK). Because of this reference, the database system 
explicitly recognizes the structural properties of the book, author, and keyword 
information and is able to use them in database queries, given that the query and 
manipulation language is extended accordingly. An example for this is the implicit 
hierarchical join operator in the FROM clause that connects the partial tables 
AUTHOR and KEYWORD belonging to the BOOK table. It is not necessary to 
state the join predicates in the WHERE clause, as those are already known to the 
database system through the explicit definition of the PART_OF structure. 

Storage structures can be implemented more efficiently by introducing to the 
database system a PART_OF or analogously an IS_A structure. This means that the 
logical view of the three tables BOOK, AUTHOR, and KEYWORD is kept, while 
the book information is physically stored as structured objects6 so that a single 
database access makes it possible to find a book. The regular view of the tables is 
kept, and the individual tables of the aggregation can be queried as before. 

Another possibility for the management of structured information is giving up the 
first normal form7 and allowing tables as attributes. Figure 6.10 illustrates this with 
an example presenting information on books, authors, and keywords in a table. This

6 Research literature also calls them “complex objects.” 
7 The NF2 model (NF2 = non-first normal form) supports nested tables. 



also shows an object-relational approach, managing a book as one object in the 
single table BOOK_OBJECT. An object-relational database system can explicitly 
incorporate structural properties and offer operators for objects and parts of objects. 
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BOOK_OBJECT 
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Fig. 6.10 BOOK_OBJECT table with attributes of the relation type 

A database system is structurally object-relational if it supports structured object 
types as shown in Fig. 6.10. In addition to object identification, structure description, 
and the availability of generic operators (methods like implicit join, etc.), a fully 
object-relational database system should support the definition of new object types 
(classes) and methods. Users should be able to determine the methods necessary for 
an individual object type themselves. They should also be able to rely on the support 
of inherited properties so that they do not have to define all new object types and 
methods from scratch, but can draw on already existing concepts. 

Object-relational database systems make it possible to treat structured objects as 
units and use fitting generic operators with them. The formation of classes using 
PART_OF and IS_A structures is allowed and supported by methods for saving, 
querying, and manipulating. 

Object-Relational Database System 
An object-relational database management system (ORDBMS) can be described as 
follows:

• It allows the definition of object types (often called classes in reference to object-
oriented programming), which themselves can consist of other object types.

• Every database object can be structured and identified through surrogates.
• It supports generic operators (methods) affecting objects or parts of objects, 

while their internal representation remains invisible from the outside (data 
encapsulation).

• Properties of objects can be inherited. This property inheritance includes the 
structure and the related operators.
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Fig. 6.11 Object-relational mapping 

The SQL standard has for some years been supporting certain object-relational 
enhancements: object identifications (surrogates); predefined data types for set, list, 
and field; general abstract data types with the possibility of encapsulation; 
parametrizable types; type and table hierarchies with multiple inheritance; and 
user-defined functions (methods). 

Object-Relational Mapping 
Most modern programming languages are object-oriented; at the same time, the 
majority of the database systems used are relational. Instead of migrating to object-
relational or even object-oriented databases, which would be rather costly, objects 
and relations can be mapped to each other during software development if relational 
data is accessed with object-oriented languages. This concept of object-relational 
mapping (ORM) is illustrated in Fig. 6.11. In this example, there is a relational 
database management system (RDBMS) with a table AUTHOR, a table BOOK, and 
a relationship table AUTHORED, since there is a complex-complex relationship 
(see Sect. 2.2.2) between books and authors. The data in those tables is to be used 
directly as classes in software development in a project with object-oriented pro-
gramming (OOP). 

An ORM software can automatically map classes to tables, so for the developers, 
it seems as if they were working with object-oriented classes even though the data is



saved in database tables in the background. The programming objects in the main 
memory are thus persistently written, i.e., saved to permanent memory. 
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In Fig. 6.11, the ORM software provides the two classes Author and Book for the 
tables AUTHOR and BOOK. For each line in the table, there is one object as an 
instance of the respective class. The relationship table AUTHORED is not shown as 
a class: object orientation allows for the use of non-atomic object references; thus, 
the set of books the author has written is saved in a vector field books[] in the Author 
object, and the group of authors responsible for a book are shown in the field authors 
[] in the Book object. 

The use of ORM is simple. The ORM software automatically derives the 
corresponding classes based on existing database tables. Records from these tables 
can then be used as objects in software development. ORM is therefore one possible 
way toward object orientation with which the underlying relational database tech-
nology can be retained. 

6.7 Knowledge Databases 

Knowledge databases or deductive databases cannot only manage the actual data— 
called facts—but also rules, which are used to deduct new table contents or facts. 

The EMPLOYEE table in Fig. 6.12 is limited to the names of the employees for 
simplicity. It is possible to define facts or statements on the information in the table,

EMPLOYEE 

Stewart 

Murphy 

Name 

Howard 

Bell 

SUPERVISOR 

Bell 

Howard 

Name_SuV 

Howard 

Stewart 

Murphy 

Name_Emp 

Bell 

Facts about employees: 

is_employee  (Stewart) 
is_employee  (Murphy) 
is_employee  (Howard) 
is_employee  (Bell) 

Facts about supervisors: 

is_supervisor_of  (Bell, Stewart) 
is_supervisor_of  (Howard, Murphy) 
is_supervisor_of  (Howard, Bell) 

Fig. 6.12 Comparison of tables and facts



in this case on the employees. Generally, facts are statements that unconditionally 
take the truth value TRUE. For instance, it is true that Howard is an employee. This 
is expressed by the fact “is_employee (Howard).” For the employees’ direct 
supervisors, a new SUPERVISOR table can be created, showing the names of the 
direct supervisors and the employees reporting to them as a pair per tuple. Accord-
ingly, facts “is_supervisor_of (A,B)” are formulated to express that “A is a direct 
supervisor of B.”
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Job hierarchy: 

Stewart 

Howard 

Murphy Bell 

Find employee Murphy’s direct supervisor. 

SELECT Name_SuV 
FROM  SUPERVISOR 
WHERE  Name_Emp = ‘Murphy’ 

SQL query: Question: 

? - is_supervisor_of ( X,Murphy) 

Howard 

Name_SuV 

Results table Result 

Howard 

Fig. 6.13 Analyzing tables and facts 

The job hierarchy is illustrated in a tree in Fig. 6.13. Looking for the direct 
supervisor of employee Murphy, the SQL query analyzes the SUPERVISOR table 
and finds supervisor Howard. Using a logic query language (inspired by Prolog) 
yields the same result. 

Besides actual facts, it is possible to define rules for the deduction of unknown 
table contents. In the relational model, this is called a derived relation or deduced 
relation. Simple examples of a derived relation and the corresponding derivation rule 
are given in Fig. 6.14. It shows how the supervisor’s supervisor for every employee 
can be found. This may, for instance, come in useful for large companies or



businesses with remote branches in case the direct supervisor of an employee is 
absent and the next higher level needs to be contacted via e-mail. 
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Job hierarchy: 

Find all pairs of employee and superior. 

CREATE VIEW SUPERIOR AS 
SELECT X.Name_SuV, Y.Name_Emp 
FROM SUPERVISOR X, SUPERVISOR Y  
WHERE X.Name_Emp = Y.Name_SuV 

Derived table Rule: 

is_superior_of ( X,Y)
 IF  is_supervisor_of ( X,Z) AND
  is_supervisor_of ( Z,Y ) 

Howard 

Name_SuV 

Results table Result 

Howard, Stewart 

SELECT * 
FROM  SUPERIOR 

SQL query: Question: 

? - is_superior_of ( X,Y) 

Stewart 

Name_Emp 

Stewart 

Howard 

Murphy Bell 

Fig. 6.14 Derivation of new information 

The definition of a derived relation corresponds to the definition of a view. In the 
given example, such a view with the name SUPERIOR is used to determine the next-
but-one supervisor of any employee, formed by a join of the SUPERVISOR table 
with itself. A derivation rule can be defined for this view. The rule “is_superior_of 
(X,Y)” results from there being a Z where X is the direct supervisor of Z and Z in 
turn is the direct supervisor of Y. This expresses that X is the next-but-one supervisor 
of Y, because Z is between them. 

A database equipped with facts and rules automatically becomes a method or 
knowledge base, as it does contain not only obvious facts, like “Howard is an 
employee” or “Howard is the direct supervisor of Murphy and Bell,” but also derived 
findings like “Howard is superior supervisor of Stewart.” In order to find superior



supervisors, the view SUPERIOR defined in Fig. 6.14 is used. The SQL query of this 
view results in a table with the information that there is only one relationship with a 
superior supervisor, specifically employee Stewart and their superior supervisor 
Howard. Applying the corresponding derivation rule “is_superior_of” yields the 
same result. 
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A deductive database as a vessel for facts and rules also supports the principle of 
recursion, making it possible to draw an unlimited amount of correct conclusions 
due to the rules included in the deductive database. Any true statement always leads 
to new statements. 

The principle of recursion can refer to either the objects in the database or the 
derivation rules. Objects defined as recursive are structures that themselves consist 
of structures and, similar to the abstraction concepts of generalization and aggrega-
tion, can be understood as hierarchical or network-like object structures. Further-
more, statements can be determined recursively; in the company hierarchy example, 
all direct and indirect supervisor relationships can be derived from the facts 
“is_employee” and “is_supervisor_of.” 

The calculation process which derives all transitively dependent tuples from a 
table forms the transitive closure of the table. This operator does not belong to the 
original operators of relational algebra; rather, the transitive closure is a natural 
extension of the relational operators. It cannot be formed with a fixed number of 
calculation steps, but only by several relational join, projection, and union operators, 
whose number depends on the content of the table in question. 

These explanations can be condensed into the following definition: 

Knowledge Database Systems 
A knowledge database management system (KDBMS) supports deductive databases 
or knowledge bases if:

• It contains not only data, i.e., facts, but also rules
• The derivation component allows for further facts to be derived from facts 

and rules
• It supports recursion, which, among other things, allows to calculate the transitive 

closure of a table 

An expert system is an information system that provides specialist knowledge and 
conclusions for a certain limited field of application. Important components are a 
knowledge base with facts and rules and a derivation component for the derivation of 
new findings. The fields of databases, programming languages, and artificial intelli-
gence will increasingly influence each other and in the future provide efficient 
problem-solving processes for practical application.
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6.8 Fuzzy Databases 

Conventional database systems assume attribute values to be precise, certain, and 
crisp, and queries deliver clear results:

• The attribute values in the databases are precise, i.e., they are unambiguous. The 
first normal form demands attribute values to be atomic and come from a well-
defined domain. Vague attribute values, such as “2 or 3 or 4 days” or “roughly 
3 days” for the delivery delay of supplier, are not permitted.

• The attribute values saved in a relational database are certain, i.e., the individual 
values are known and therefore true. An exception are NULL values, i.e., attribute 
values that are not known or not yet known. Apart from that, database systems do 
not offer modeling components for existing uncertainties. Probability 
distributions for attribute values are therefore impossible; expressing whether 
an attribute value correspondents to the true value or not remains difficult.

• Queries to the database are crisp. They always have a binary character, i.e., a 
query value specified in the query must either be identical or not identical with the 
attribute values. Querying a database with a query value “more or less” identical 
with the stored attribute values is not allowed. 

In recent years, discoveries from the field of fuzzy logic have been applied to data 
modeling and databases. Permitting incomplete or vague information opens a wider 
field of application. Most of these works are theoretical; however, some research 
groups are trying to demonstrate the usefulness of fuzzy database models and 
database systems with implementations. 

The approach shown here is based on the context model to define classes of data 
sets in the relational database schema. There are crisp and fuzzy classification 
methods. For a crisp classification, database objects are binarily assigned to a 
class, i.e., the membership function of an object to a class is 0 for “not included” 
or 1 for “included.” A conventional process would therefore group a customer either 
into the class “Customers with revenue problems” or into the class “Customers to 
expand business with.” A fuzzy process, however, allows for membership function 
values between 0 and 1. A customer can belong in the “Customers with revenue 
problems” class with a value of 0.3 and at the same time in the “Customers to expand 
business with” class with a value of 0.7. A fuzzy classification therefore allows for a 
more differentiated interpretation of class membership: Database objects can be 
distinguished between border and core objects; additionally, database objects can 
belong to two or more different classes at the same time. 

In the fuzzy-relational database model with contexts, context model for short, 
every attribute Aj defined on a domain D(Aj) has a context assigned. A context K 
(Aj) is a partition of D(Aj) into equivalence classes. A relational database schema 
with contexts therefore consists of a set of attributes A=(A1,. . .,An) and another set 
of associated contexts K=(K1(A1),. . .,Kn(An)).
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Fig. 6.15 Classification matrix with the attributes Revenue and Loyalty 

For the assessment of customers, revenue and loyalty are used as an example. 
Additionally, those qualifying attributes are split into two equivalence classes each. 
The according attributes and contexts for the customer relationship management are:

• Revenue in dollars per month: The domain for revenue in dollars is defined as 
[0. . .1000]. Two equivalence classes [0. . .499] for small revenues and 
[500. . .1000] for large revenues are also created.

• Customer loyalty: The domain {bad, weak, good, great} supplies the values for 
the Customer loyalty attribute. It is split further into the equivalence classes {bad, 
weak} for negative loyalty and {good, great} for positive loyalty. 

The suggested attributes with their equivalence classes show an example of a 
numeric and a qualitative attribute each. The respective contexts are:

• K(revenue) = {  [0. . .499], [500. . .1000] }
• K(loyalty) = { {bad, weak}, {good, great} } 

The partitioning of the revenue and loyalty domains results in the four equiva-
lence classes C1, C2, C3, and C4 shown in Fig. 6.15. The meaning of the classes is 
expressed by semantic class names; for instance, customers with little revenue and 
weak loyalty are labeled “Don’t invest” in C4; C1 could stand for “Retain customer,” 
C2 for “Improve loyalty,” and C3 for “Increase revenue.” It is the database 
administrators’ job, in cooperation with the marketing department, to define the 
attributes and equivalence classes and to specify them as an extension of the database 
schema.
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Customer relationship management aims to take into account the customers’ 
individual wishes and behavior instead of only focusing on product-related 
arguments and efforts. If customers are seen as an asset (customer value), they 
have to be treated according to their market and resource potential. With sharply 
divided classes, i.e., traditional customer segments, this is hardly possible, as all 
customers of one class are treated the same. In Fig. 6.15, for instance, Bell and 
Howard have almost the same revenue and loyalty. Nevertheless, in a sharp seg-
mentation, they are classed differently: Bell falls into the premium class C1 (Retain 
customer) and Howard into the class C4 (Don’t invest). Additionally, top customer 
Stewart is treated the same as Bell, since both belong into segment C1. 

As seen in Fig. 6.15, the following conflicts can arise from sharp customer 
segmentation:

• Customer Bell has barely any incentives to increase revenue or loyalty. They 
belong to the premium class C1 and enjoy the corresponding advantages.

• Customer Bell could face an unpleasant surprise, should their revenue drop 
slightly or their loyalty rating be reduced. They may suddenly find themselves 
in a different customer segment; in an extreme case, they could drop from the 
premium class C1 into the low value class C4.

• Customer Howard has a robust revenue and medium customer loyalty, but is 
treated as a low value customer. It would hardly be surprising if Howard 
investigated their options on the market and moved on.

• A sharp customer segmentation also creates a critical situation for customer 
Stewart. They are, at the moment, the most profitable customer with an excellent 
reputation, yet the company does not recognize and treat them according to their 
customer value. 

The conflict situations illustrated here can be mitigated or eliminated by creating 
fuzzy customer classes. The position of a customer in a two- or more-dimensional 
data matrix relates to the customer value now consisting of different class member-
ship fractions. 

According to Fig. 6.16, a certain customer’s loyalty as a linguistic variable can 
simultaneously be “positive” and “negative.” For example, Bell belongs to the fuzzy 
set μpositive with a rate of 0.66 and to the set μnegative with 0.33, i.e., Bell’s loyalty is 
not exclusively strong or weak, as it would be with sharp classes. 

The linguistic variable μ with the vague terms “positive” and “negative” and the 
membership functions μpositive and μnegative results in the domain D(loyalty) being 
partitioned fuzzily. Analogously, the domain D(revenue) is partitioned by the terms 
“high” and “low.” This allows for classes with gradual transitions (fuzzy classes) in 
the context model. 

An object’s membership in a class is the result of the aggregation across all terms 
defining that class. Class C1 is described by the terms “high” (for the linguistic 
variable revenue) and “positive” (for the linguistic variable loyalty). The aggregation 
therefore has to correspond to the conjunction of the individual membership values. 
For this, various operators have been developed in fuzzy set theory.
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Fig. 6.16 Fuzzy partitioning of domains with membership functions 

Classification queries in the language fCQL (fuzzy Classification Query Lan-
guage) operate on the linguistic level with vague contexts. This has the advantage 
that users do not need to know sharp goal values or contexts, but only the column 
name of the value identifying the object and the table or view containing the attribute 
values. In order to take a more detailed look at single classes, users can specify a 
class or state attributes with a verbal description of their intensity. Classification 
queries therefore work with verbal descriptions on attribute or class level: 

CLASSIFY Object 
FROM Table 
WITH Classification condition 

The language fCQL is based on SQL, with a CLASSIFY clause instead of 
SELECT defining the projection list by the column name of the object to be 
classified. While the WHERE clause in SQL contains a selection condition, the 
WITH clause determines a classification condition. As an example of an fCQL 
query, 

CLASSIFY Customer 
FROM Customer table 

provides a classification of all customers in the table. The query
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CLASSIFY Customer 
FROM Customer table 
WITH CLASS IS Increase revenue 

specifically targets class C3. Bypassing the definition of a class, it is also possible to 
select a certain set of objects by using the linguistic descriptions of the equivalence 
classes. The following query is an example: 

CLASSIFY Customer 
FROM Customer table 
WITH Revenue IS small AND Loyalty IS strong 

This query consists of the identifier of the object to be classified (Customer), the 
name of the base table (Customer table), the critical attribute names (Revenue and 
Loyalty), the term “small” of the linguistic variable Revenue, and the term “strong” 
of the linguistic variable Loyalty. 

Based on the example and the explanations above, fuzzy databases can be 
characterized as follows: 

Fuzzy Database System 
A fuzzy database management system (FDBMS) is a database system with the 
following properties:

• The data model is fuzzily rational, i.e., it accepts imprecise, vague, and uncertain 
attribute values.

• Dependencies between attributes are expressed with fuzzy normal forms.
• Relational calculus as well as relational algebra can be extended to fuzzy rela-

tional calculus and fuzzy relational algebra using fuzzy logic.
• Using a classification language enhanced with linguistic variables, fuzzy queries 

can be formulated. 

Only a few computer scientists have been researching the field of fuzzy logic and 
relational database systems over the years (see Bibliography). Their works are 
mainly published and acknowledged in the field of fuzzy logic, not in the database 
field. It is to be hoped that both fields will grow closer and the leading experts on 
database technology will recognize the potential that lies in fuzzy databases and 
fuzzy query languages. 
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NoSQL Databases 7 

7.1 Development of Non-relational Technologies 

In Chaps. 1–5, all aspects were described in detail for relational, graph, and docu-
ment databases. In Chap. 6, we covered post-relational extensions of SQL databases. 
Chapter 7 now concludes with a rounding overview of important NoSQL database 
systems. 

The term NoSQL was first used in 1998 for a database that (although relational) 
did not have an SQL interface. NoSQL became of growing importance during the 
2000s, especially with the rapid expansion of the Internet. The growing popularity of 
global Web services saw an increase in the use of Web-scale databases, since there 
was a need for data management systems that could handle the enormous amounts of 
data (sometimes in the petabyte range and up) generated by Web services. 

SQL database systems are much more than mere data storage systems. They 
provide a large degree of processing logic:

• Powerful declarative language constructs
• Schemas and metadata
• Consistency assurance
• Referential integrity and triggers
• Recovery and logging
• Multi-user operation and synchronization
• Users, roles, and security
• Indexing 

These SQL functionalities offer numerous benefits regarding data consistency 
and security. This goes to show that SQL databases are mainly designed for integrity 
and transaction protection, as required in banking applications or insurance software, 
among others. However, since data integrity control requires much work and 
processing power, relational databases quickly reach their limits with large amounts
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of data. The powerfulness of the database management system is disadvantageous 
for efficiency and performance, as well as for flexibility in data processing.
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In practical use, consistency-oriented processing components often impede the 
efficient processing of huge amounts of data, especially in use cases where the focus 
is on performance rather than consistency, such as social media. That is why the 
open-source and Web development communities soon began to push the develop-
ment of massive distributed database systems which can fulfill these new demands. 

NoSQL Database 
NoSQL databases usually have the following properties (see also Sect. 1.3.2):

• The database model is not relational.
• The focus is on distributed and horizontal scalability.
• There are weak or no schema restrictions.
• Data replication is easy.
• Easy access is provided via an API.
• The consistency model is not ACID (instead, e.g., BASE; see Sect. 4.2.1). 

Although the term NoSQL originally referred to database functions that are not 
covered by the SQL standard or the SQL language, the phrase “not only SQL” has 
become widespread as an explanation of the term. More and more typical NoSQL 
systems offer an SQL language interface, and classic relational databases offer 
additional functions outside of SQL that can be described as NoSQL functionalities. 
The term NoSQL is therefore a class of database functionalities that extend and 
supplement the functionalities of the SQL language. Core NoSQL technologies are:

• Key-value stores (Sect. 7.2)
• Column family databases (Sect. 7.3)
• Document databases (Sect. 7.4)
• Graph databases (Sect. 7.6) 

These four database models, also called core NoSQL models, are discussed in this 
chapter. Other types of NoSQL described in this chapter are the family of XML 
databases (Sect. 7.5), search engine databases (Sect. 7.7), and time series databases 
(Sect. 7.8). 

7.2 Key-Value Stores 

The simplest way of storing data is assigning a value to a variable or a key. At the 
hardware level, CPUs work with registers based on this model; programming 
languages use the concept in associative arrays. Accordingly, the simplest database 
model possible is data storage that stores a data object as a value for another data 
object as key.
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In key-value stores, a specific value can be stored for any key with a simple 
command, e.g., SET. Below is an example in which data for users of a website is 
stored: first name, last name, e-mail, and encrypted password. For instance, the value 
John is stored for the key User:U17547:firstname. 

SET User:U17547:firstname John 
SET User:U17547:lastname Doe 
SET User:U17547:email john.doe@blue_planet.net 
SET User:U17547:pwhash D75872C818DC63BC1D87EA12 
SET User:U17548:firstname Jane 
SET User:U17548:lastname Doherty 
... 

Data objects can be retrieved with a simple query using the key: 

GET User:U17547:email 
> john.doe@blue_planet.net 

The key space can only be structured with special characters such as colons or 
slashes. This allows for the definition of a namespace that can represent a rudimen-
tary data structure. Apart from that, key-value stores do not support any kind of 
structure, neither nesting nor references. Key-value stores are schema-less, i.e., data 
objects can be stored at any time and in arbitrary formats, without a need for any 
metadata objects such as tables or columns to be defined beforehand. Going without 
a schema or referential integrity makes key-value stores performant for queries, easy 
to partition, and flexible regarding the types of data to be stored. 

Key-Value Store 
A database is a key-value store if it has the following properties:

• There is a set of identifying data objects, the keys.
• For each key, there is exactly one associated descriptive data object, the value for 

that key.
• Specifying a key allows to query the associated value in the database.
• The key is the only access path to query the database. You cannot randomly 

access a data object using any other attribute. 

Key-value stores have seen a large increase in popularity as part of the NoSQL 
trend, since they are scalable for huge amounts of data. As referential integrity is not 
checked in key-value stores, it is possible to write and read extensive amounts of data 
efficiently. Processing speed can be enhanced even further if the key-value pairs are 
buffered in the main memory of the database. Such setups are called in-memory



databases. They employ technologies that allow to cache values in the main memory 
while constantly validating them against the long-term persistent data in the back-
ground memory. 
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Fig. 7.1 Key-value store with sharding and hash-based key distribution 

There is almost no limit to increasing a key-value store’s scalability with frag-
mentation or sharding of the data content. Partitioning is rather easy in key-value 
stores, due to the simple model. Individual computers within the cluster, called 
shards, take on only a part of the key space. This allows for the distribution of the 
database onto a large number of individual machines. The keys are usually 
distributed according to the principles of consistent hashing (see Sect. 5.2.4). 

Figure 7.1 shows a distributed architecture for a key-value store: A numerical 
value (hash) is generated from a key; using the modules operator, this value can now 
be positioned on a defined number of address spaces (hash slots) in order to 
determine on which shard within the distributed architecture the value for the key 
will be stored. The distributed database can also be copied to additional computers 
and updated there to improve partition tolerance, a process called replication. The 
original data content in the primary cluster is synchronized with multiple replicated 
data sets, the replica clusters. 

Figure 7.1 shows an example of a possible massively distributed high-
performance architecture for a key-value store. The primary cluster contains three



computers (shards A, B, and C). The data is kept directly in the main memory 
(RAM) to reduce response times. The data content is replicated to a replica cluster 
for permanent storage on a hard drive. Another replica cluster further increases 
performance by providing another replicated computer cluster for complex queries 
and analyses. 
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Apart from the efficient sharding of large amounts of data, another advantage of 
key-value stores is the flexibility of the data schema. In a relational database, a 
pre-existing schema in the shape of a relation with attributes is necessary for any 
record to be stored. If there is none, a schema definition must be executed before 
saving the data. For database tables with large numbers of records or for the insertion 
of heterogeneous data, this is often a lot of work. Key-value stores are schema-free 
and therefore highly flexible regarding the type of data to be stored. It is not 
necessary to specify a table with columns and data types; rather, the data can simply 
be stored under an arbitrary key. On the other hand, the lack of a database schema 
often causes a clutter in data management. 

7.3 Column-Family Stores 

Even though key-value stores are able to process large amounts of data performantly, 
their structure is still quite rudimentary. Often, the data matrix needs to be structured 
with a schema. Most Column-family stores enhance the key-value concept accord-
ingly by providing additional structure. 

In practical use, it has shown to be more efficient for optimizing read operations 
to store the data in relational tables not per row, but per column. This is because 
rarely all columns in one row are needed at once, but there are groups of columns 
that are often read together. Therefore, in order to optimize access, it is useful to 
structure the data in such groups of columns—column families—as storage units. 
Column-family stores, which are named after this method, follow this model; they 
store data not in relational tables, but in enhanced and structured multi-dimensional 
key spaces. 

Google presented its Bigtable database model for the distributed storage of 
structured data in 2008, significantly influencing the development of column-family 
stores. 

Bigtable 
In the Bigtable model, a table is a sparse, distributed, multi-dimensional, sorted map. 
It has the following properties:

• The data structure is a map which assigns elements from a domain to elements in a 
co-domain.

• The mapping function is sorted, i.e., there is an order relation for the keys 
addressing the target elements.

• The addressing is multi-dimensional, i.e., the function has more than one 
parameter.
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• The data is distributed by the map, i.e., it can be stored on different computers in 
different places.

• The map is sparse, so not for every possible key an entry is required. 

In Bigtable, a table has three dimensions: It maps an entry of the database for one 
row and one column at a certain time as a string: 

(row:string, column:string, time:int64) → string 

Tables in column-family stores are multi-stage aggregated structures. The first 
key, the row key, is an addressing of a database object, as in a key-value store. 
Within this key, however, there is another structure, dividing of the row into several 
columns which are also addressed with keys. Entries in the table are additionally 
versioned with a timestamp. The storage unit addressed with a certain combination 
of row key, column key, and timestamp is called a cell. 

Columns in a table are grouped into column families. These are the unit for access 
control, i.e., for granting reading and writing permissions to users and applications. 
Additionally, the unit of the column family is used in assigning main memory and 
hard drive space. Column families are the only fixed schema rules of the table, which 
is why they need to be created explicitly by changing the schema of the table. Unlike 
in relational databases, various row keys can be used within one column family to 
store data. The column family therefore serves as a rudimentary schema with a 
reduced amount of metadata. 

Data within a column family is of the same type, since it is assumed it will be read 
together. This is also why the database always stores the data of one column family 
in one row of the table on the same computer. This mechanism reduces the time 
needed for combined reading access within the column family. Therefore, the 
database management system sorts column families into locality groups, which 
define on which computer and in which format the data is stored. The data of one 
locality group is physically stored on the same computer. Additionally, it is possible 
to set certain parameters for locality groups, for instance, to keep a specific locality 
group in the main memory, making it possible to read the data quickly without the 
need to access the hard drive. 

Figure 7.2 summarizes how data is stored in the Bigtable model described above: 
A data cell is addressed with row key and column key. In the given example, there is 
one row key per user. The content is additionally historicized with a timestamp. 
Several columns are grouped into column families: The columns Mail, Name, and 
Phone form the column family Contact. Access data, such as user names and 
passwords, could be stored in the column family Access. The columns in a column 
family are sparse. In the example in Fig. 7.2, the row U17547 contains a value for 
the column Contact:Mail, but not for the column Contact:Phone. If there is no entry, 
this information will not be stored in the row.
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Fig. 7.2 Storing data in the Bigtable model 

Column-Family Store 
Databases using a data model similar to the Bigtable model are called column-family 
stores. They can be defined as NoSQL databases with the following properties:

• The data is stored in multi-dimensional tables.
• Data objects are addressed with row keys.
• Object properties are addressed with column keys.
• Columns of the tables are grouped into column families.
• A table’s schema only refers to the column families; within one column family, 

arbitrary column keys can be used.
• In distributed, fragmented architectures, the data of a column family is preferably 

physically stored at one place (co-location) in order to optimize response times. 

The advantages of column-family stores are their high scalability and availability 
due to their massive distribution, just as with key-value stores. Additionally, they 
provide a useful structure with a schema offering access control and localization of 
distributed data on the column family level; at the same time, they provide enough 
flexibility within the column family by making it possible to use arbitrary 
column keys.
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7.4 Document Databases 

A third variety of NoSQL databases, document stores, combines schema freedom 
with the possibility of structuring the stored data. Unlike what is implied by the 
name, document databases do not store arbitrary documents such as Web, video, or 
audio data, but structured data in records which are called documents (cf. Sect. 1.5 
and 2.5). 

The usual document stores were developed specifically for the use in Web 
services. They can therefore easily be integrated with Web technologies such as 
JavaScript and HTTP.1 Additionally, they are readily horizontally scalable by the 
combination of several computers into an integrated system which distributes the 
data volume by sharding. The focus is mostly on processing large amounts of 
heterogeneous data, while for most Web data, for instance, from social media, search 
engines, or news portals, the constant consistency of data does not need to be 
ensured. An exception are security-sensitive Web services such as online banking, 
which heavily rely on schema restrictions and guaranteed consistency. 

Document stores are completely schema-free, i.e., there is no need to define a 
schema before inserting data structures. The schematic responsibility is therefore 
transferred to the user or the processing application. The disadvantage arising from 
not having a fixed schema is the missing referential integrity and normalization. 
However, the absence of schema restrictions allows for flexibility in storing a wide 
range of data, which is what variety in the Vs of Big Data (see Sect. 1.3) refers 
to. This also facilitates fragmentation and distribution of the data. 

On the first level, document stores are a kind of key-value store. For every key 
(document ID), a record can be stored as value. These records are called documents. 
On the second level, these documents have their own internal structure. The term 
document is not entirely appropriate, since they are explicitly no multimedia or other 
unstructured data. A document in the context of a document store is a file with 
structured data, for instance, in JSON2 format. The structure is a list of attribute-
value pairs. All attribute values in this data structure can recursively contain lists of 
attribute-value pairs themselves. The documents are not connected to each other, but 
contain a closed collection of data. 

Figure 7.3 shows a sample document store D_USERS that stores data on the users 
of a website. For every user key with the attribute _id, an object containing all user 
information, such as user name, first name, last name, and gender, is stored. The 
visitHistory attribute holds a nested attribute value as an associative array, which 
again contains key-value pairs. This nested structure lists the date of the last visit to 
the website as the associated value. 

Apart from the standard attribute _id, the document contains a field _rev (revi-
sion), which indexes the version of the document. One possibility to resolving 
concurring queries is multi-version concurrency control: The database makes sure 
that every query receives the revision of a document with the largest number of

1 HyperText Transfer Protocol. 
2 JavaScript Object Notation.



changes. As this cannot ensure full transactional security, it is called eventual 
consistency. The consistency of the data is only reached after some time. This 
significantly speeds up data processing at the expense of transactional security.
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_id: U17547, 
_rev: 2-82ec54af78febc2790
   userName: U17547,
   firstName: John,
   lastName: Doe,
   gender: m,
   visitHistory: [
       index: 2015-03-30 07:55:12,
       blogroll: 2015-03-30 07:56:30,
       login: 2015-03-30 08:02:45
       …
   ] 

Document 

Key: U17547 

Document store: D_USERS 

Fig. 7.3 Example of a document database 

Document Database 
To summarize, a document store is a database management system with the follow-
ing properties:

• It is a key-value store.
• The data objects stored as values for keys are called documents; the keys are used 

for identification.
• The documents contain data structures in the form of recursively nested attribute-

value pairs without referential integrity.
• These data structures are schema-free, i.e., arbitrary attributes can be used in 

every document without defining a schema first.
• In contrast with key-value databases, document databases support ad hoc queries 

not only using the document key but using any document attribute.
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Queries on a document store can be parallelized and therefore sped up with the 
MapReduce procedure (see Sect. 5.4). Such processes are two-phased, where Map 
corresponds to grouping (group by) and Reduce corresponds to aggregation (count, 
sum, etc.) in SQL. 

During the first phase, a map function which carries out a predefined process for 
every document is executed, building and returning a map. Such a map is an 
associative array with one or several key-value pairs per document. The map 
phase can be calculated per document independently from the rest of the data 
content, thereby always allowing for parallel processing without dependencies if 
the database is distributed among different computers. 

In the optional reduce phase, a function is executed to reduce the data, returning 
one row per key in the index from the map function and aggregating the 
corresponding values. The following example demonstrates how MapReduce can 
be used to calculate the number of users, grouped by gender, in the database from 
Fig. 7.3. 

Because of the absence of a schema, as part of the map function, a check is 
executed for every document to find out if the attribute userName exists. If that is the 
case, the emit function returns a key-value pair, with the key being the user’s 
gender, the value the number 1. The reduce function then receives two different 
keys, m and f, in the keys array and for every document per user of the respective 
gender a number 1 as values in the values array. The reduce function returns the 
sum of the ones, grouped by key, which equals the respective number. 

// map 
function(doc){ 
if(doc.userName) { 
emit(doc.gender, 1) 
} 
} 

// reduce 
function(keys, values) { 
return sum(values) 
} 

// > key value 
// > "f" 456 
// >   "m" 567 
// >   "d" 123 

The results of MapReduce processes, called views, should be pre-calculated and 
indexed as permanent views using design documents for an optimal performance. 
Key-value pairs in document stores are stored in B-trees (see Sect. 5.2.1). This 
allows for quick access to individual key values. The reduce function uses a B-tree 
structure by storing aggregates in balanced trees, with only few detail values stored 
in the leaves. Updating aggregates therefore only requires changes to the respective 
leaf and the (few) nodes with subtotals down to the root.



7.5 XML Databases 233

7.5 XML Databases 

XML (eXtensible Markup Language) was developed by the World Wide Web 
Consortium (W3C). The content of hypertext documents is marked by tags, just as 
in HTML. An XML document is self-describing, since it contains not only the actual 
data but also information on the data structure. 

<address> 
<street> W Broad Street </street> 
<number> 333 </number> 
<ZIP code> 43215 </ZIP code> 
<city> Columbus </city> 
</address> 

The basic building blocks of XML documents are called elements. They consist 
of a start tag (in angle brackets<name>) and an end tag (in angle brackets with slash 
</name>) with the content of the element in-between. The identifiers of the start and 
the end tag have to match. 

The tags provide information on the meaning of the specific values and therefore 
make statements about the data semantics. Elements in XML documents can be 
nested arbitrarily. It is best to use a graph to visualize such hierarchically structured 
documents, as shown in the example in Fig. 7.4. 

As mentioned above, XML documents also implicitly include information about 
the structure of the document. Since it is important for many applications to know the 
structure of the XML documents, explicit representations (DTD = document type 
definition or XML schema) have been proposed by W3C. An explicit schema shows 
which tags occur in the XML document and how they are arranged. This allows for, 
e.g., localizing and repairing errors in XML documents. The XML schema is 
illustrated here as it has undeniable advantages for use in database systems. 

An XML schema and a relational database schema are related as follows: 
Usually, relational database schemas can be characterized by three degrees of 
element nesting, i.e., the name of the database, the relation names, and the attribute 
names. This makes it possible to match a relational database schema to a section of 
an XML schema and vice versa. 

Figure 7.4 shows the association between an XML document and a relational 
database schema. The section of the XML document gives the relation names 
DEPARTMENT and ADDRESS, each with their respective attribute names and 
the actual data values. The use of keys and foreign keys is also possible in an XML 
schema, as explained below. 

The basic concept of XML schemas is to define data types and match names and 
data types using declarations. This allows for the creation of completely arbitrary 
XML documents. Additionally, it is possible to describe integrity rules for the 
correctness of XML documents.
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Department 

Address 

IT www.example.com 

W Broad Street 333 43215 Columbus 

DEPARTMENT 

D3 IT Add07 www.example.com 

D# DepartmentName Address Website 

ADDRESS 

Add07 W Broad Street 333 43215 

Add# Street Number ZIP code 

Columbus 

City 

DepartmentName Website 

CityNumber ZIP codeStreet 

Fig. 7.4 Illustration of an XML document represented by tables 

There are a large number of standard data types, such as string, Boolean, integer, 
date, time, etc., but apart from that, user-defined data types can also be introduced. 
Specific properties of data types can be declared with facets. This allows for the 
properties of a data type to be specified, for instance, the restriction of values by an 
upper or lower limit, length restrictions, or lists of permitted values: 

<xs:simpleType name=«city»> 
<xs:restriction base=«xs:string»> 
<xs:length value=«20»/> 
</xs:restriction> 
</xs:simpleType> 

For cities, a simple data type based on the predefined data type string is proposed. 
Additionally, the city names cannot consist of more than 20 characters.
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Several XML editors have been developed that allow for the graphical represen-
tation of an XML document or schema. These editors can be used for both the 
declaration of structural properties and the input of data content. By showing or 
hiding individual sub-structures, XML documents and schemas can be arranged 
neatly. 

It is desirable to be able to analyze XML documents or XML databases. Unlike 
relational query languages, selection conditions are linked not only to values (value 
selection) but also to element structures (structure selection). Other basic operations 
of an XML query include the extraction of subelements of an XML document and 
the modification of selected subelements. Furthermore, individual elements from 
different source structures can be combined to form new element structures. Last but 
not least, a suitable query language needs to be able to work with hyperlinks; path 
expressions are vital for that. 

XQuery, influenced by SQL, various XML languages (e.g., XPath as navigation 
language for XML documents), and object-oriented query languages, was proposed 
by the W3C. XQuery is an enhancement of XPath, offering the option not only to 
query data in XML documents but also to form new XML structures. The basic 
elements of XQuery are FOR-LET-WHERE-RETURN expressions: FOR and LET 
bind one or more variables to the results of a query of expressions. WHERE clauses 
can be used to further restrict the result set, just as in SQL. The result of a query is 
shown with RETURN. 

There is a simple example to give an outline of the principles of XQuery: The 
XML document “Department” (see Figs. 7.4 and 7.5) is queried for the street names 
of the individual departments: 

<streetNames> 
{FOR $Department IN //department RETURN 
$Department/address/street } 
</streetNames> 

The query above binds the variable $Department to the <Department> nodes 
during processing. For each of these bindings, the RETURN expression evaluates 
the address and returns the street. The query in XQuery produced the following 
result: 

<streetNames> 
<street> W Broad Street </street> 
<street>........... </street> 
<street>........... </street> 
</streetNames>
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interface 
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XML file manipulations  (write) 

XML 
Dok. 
XML 
doc 

XML 
Dok. 
XML 
doc 

File upload 

XML 
Dok. 
XML 
doc 

Fig. 7.5 Schema of a native XML database 

In XQuery, variables are marked with the $ sign added to their names, in order to 
distinguish them from the names of elements. Unlike in some other programming 
languages, variables cannot have values assigned to them in XQuery; rather, it is 
necessary to analyze expressions and bind the result to the variables. This variable 
binding is done in XQuery with the FOR and LET expressions. 

In the query example above, no LET expression is specified. Using the WHERE 
clause, the result set could be reduced further. The RETURN clause is executed for 
every FOR loop, but does not necessarily yield a result. The individual results, 
however, are listed and form the result of the FOR-LET-WHERE-RETURN 
expression. 

XQuery is a powerful query language for hyper documents and is offered for 
XML databases as well as some post-relational database systems. In order for 
relational database systems to store XML documents, some enhancements in the 
storage component have to be applied. 

Many relational database systems are nowadays equipped with XML column data 
types and therefore the possibility to directly handle XML. This allows for data to be



stored in structured XML columns and for elements of the XML tree to be queried 
and modified directly with XQuery or XPath. Around the turn of the millennium, 
XML documents for data storage and data communication experienced a boom and 
were used for countless purposes, especially Web services. As part of this trend, 
several database systems that can directly process data in the form of XML 
documents were developed. Particularly in the field of open source, support for 
XQuery in native XML databases is far stronger than in relational databases. 
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Native XML Database 
A native XML database is a database that has the following properties:

• The data is stored in documents; the database is therefore a document store (see 
Sect. 7.4).

• The structured data in the documents is compatible with the XML standard.
• XML technologies such as XPath, XQuery, and XSL/T can be used for querying 

and manipulating data. 

Native XML databases store data strictly hierarchically in a tree structure. They 
are especially suitable if hierarchical data needs to be stored in a standardized format, 
for instance, for Web services in service-oriented architectures (SOA). A significant 
advantage is the simplified data import into the database; some database systems 
even support drag and drop of XML files. Figure 7.5 shows a schematic illustration 
of a native XML database. It facilitates reading and writing access to data in a 
collection of XML documents for users and applications. 

An XML database cannot cross-reference like nodes. This can be problematic 
especially with multi-dimensionally linked data. An XML database therefore is best 
suited for data that can be represented in a tree structure as a series of nested 
generalizations or aggregations. 

7.6 Graph Databases 

The fourth and final type of core NoSQL databases differs significantly from the data 
models presented up to this point, i.e., the key-value stores, column-family stores, 
and document stores. Those three data models forgo database schemas and referen-
tial integrity for the sake of easier fragmentation (sharding). Graph databases, 
however, have a structuring schema: that of the property graph presented in Sect. 
1.4.1. In a graph database, data is stored as nodes and edges, which belong to a node 
type or edge type, respectively, and contain data in the form of attribute-value pairs. 
Unlike in relational databases, their schema is implicit, i.e., data objects belonging to 
a not-yet existing node or edge type can be inserted directly into the database without 
defining the type first. The DBMS implicitly follows the changes in the schema 
based on the available information and thereby creates the respective type. 

As an example, Fig. 7.6 illustrates the graph database G_USERS, which 
represents information on a Web portal with users, Web pages, and the relationships



between them. As explained in Sect. 1.4.1, the database has a schema with node and 
edge types. There are two node types, USER and WEBPAGE, and three edge types, 
FOLLOWS, VISITED, and CREATED_BY. The USER node type has the attributes 
userName, firstName, and lastName; the node type WEBPAGE has only the attri-
bute Name; and the edge type VISITED has one attribute as well, date with values 
from the date domain. It therefore is a property graph. 
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Graph database: G_USERS 

WEBPAGE: 
Name: index 

USER: 
userName:  U17547 
firstName:  John 
lastName:  Doe 

USER: 
userName:  U17555 
firstName:  Thomas 
lastName:  Taylor 

USER: 
userName:  U17548 
firstName:  Jane 
lastName:  Smith 

WEBPAGE: 
Name: blogroll 

CREATED_BY 

VISITED 
date: 2015-03-30 

VISITED 
date: 2015-03-30 

FOLLOWS 

FOLLOWS 

FOLLOWS 

Fig. 7.6 Example of a graph database with user data of a website 

This graph database stores a similar type of data as the D_USERS document 
database in Fig. 7.6; for instance, it also represents users with username, first name, 
last name, and the visited Web pages with date. There is an important difference 
though: The relationships between data objects are explicitly present as edges, and 
referential integrity is ensured by the DBMS. 

Graph Database 
A graph database is a database management system with the following properties:

• The data and the schema are shown as graphs (see Sect. 2.4) or graph-like 
structures, which generalize the concept of graphs (e.g., hypergraphs).
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• Data manipulations are expressed as graph transformations or operations which 
directly address typical properties of graphs (e.g., paths, adjacency, subgraphs, 
connections, etc.).

• The database supports the checking of integrity constraints to ensure data consis-
tency. The definition of consistency is directly related to graph structures (e.g., 
node and edge types, attribute domains, and referential integrity of the edges).

• Graph edges are stored in a separate data set, as are the nodes. This makes graph 
analysis efficient. 

Graph databases are used when data is organized in networks. In these cases, it is 
not the individual record that matters, but the connection of all records with each 
other, for instance, in social media, but also in the analysis of infrastructure networks 
(e.g., water network or electricity grid), in Internet routing, or in the analysis of links 
between websites. The advantage of the graph database is the index-free adjacency 
property: For every node, the database system can find the direct neighbor, without 
having to consider all edges, as would be the case in relational databases using a 
relationship table. Therefore, the effort for querying the relationships with a node is 
constant, independent of the volume of the data. In relational databases, the effort for 
determining referenced tuples increases with the number of tuples, even if indexes 
are used. 

Just as relational databases, graph databases need indexes to ensure a quick and 
direct access to individual nodes and edges via their properties. As illustrated in Sect. 
5.2.1, balanced trees (B-trees) are generated for indexing. A tree is a special graph 
that does not contain any cycles; therefore, every tree can be represented as a graph. 
This is interesting for graph databases, because it means that the index of a graph can 
be a subgraph of the same graph. The graph contains its own indexes. 

The fragmentation (see Sect. 6.2) of graphs is somewhat more complicated. One 
reason why the other types of core NoSQL databases do not ensure relationships 
between records is that records can be stored on different computers with fragmen-
tation (sharding) without further consideration, since there are no dependencies 
between them. The opposite is true for graph databases. Relationships between 
records are the central element of the database. Therefore, when fragmenting a 
graph database, the connections between records have to be taken into account, 
which often demands domain-specific knowledge. There is, however, no efficient 
method to optimally divide a graph into subgraphs. The existing algorithms are 
NP-complete, which means the computational expense is exponential. As a heuristic, 
clustering algorithms can determine highly interconnected partial graphs as 
partitions. Today’s graph databases, however, do not yet support sharding. 

7.7 Search Engine Databases 

In the context of Big Data (see variety, Sects. 1.3 and 5.1), more and more text data 
such as Web pages, e-mails, notes, customer feedback, contracts, and publications 
are being processed. Search engines are suitable for the efficient retrieval of large



amounts of unstructured and semi-structured data. These are database systems that 
enable information retrieval in collections of texts. Due to the spread of Internet 
search engines, this concept is known to the general public. Search engines are also 
used as database systems in IT practice. A search engine is a special form of 
document database that has an inverted index for full-text search, i.e., all fields are 
automatically indexed, and each term in the field value automatically receives an 
index entry for fast return of relevant documents to search terms. 
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The basic concepts of search engines are index, document, field, and term. An 
index contains a sequence of documents. A document is a sequence of fields. A field 
is a named sequence of terms. A term is a string of characters. The same string in two 
different fields is considered a different term. Therefore, terms are represented as a 
pair of strings, the first denoting the field and the second denoting the text within the 
field. 

Let’s take a digital library of journal articles as an example. These documents can 
be divided into different fields such as title, authors, abstract, keywords, text, 
bibliography, and appendices. The fields themselves consist of unstructured and 
semi-structured text. This text can be used to identify terms that are relevant to the 
query. In the simplest case, spaces and line breaks divide text into terms. The 
analyzer process defines which terms are indexed and how. For example, word 
combinations can be indexed, and certain terms can be filtered, such as very common 
words (so-called stop words). 

Internally, a search engine builds an index structure during the so-called indexing 
of documents. A term dictionary contains all terms used in all indexed fields of all 
documents. This dictionary also contains the number of documents in which the term 
occurs, as well as pointers to the term’s frequency data. A second important structure 
is the inverted index. This stores statistics about terms to make term-based searches 
efficient. For a term, it can list the documents that contain it. This is the inverse of the 
natural relationship where documents list terms. For each term in the dictionary, it 
stores the keys of all documents that contain that term and the frequency of the term 
in that document. 

There is a possibility to define the structure of the documents, i.e., the fields in the 
documents, the data type of the values stored in each of the fields, and the metadata 
associated with the document type. It is similar to the table schema of a relational 
database. This type of schema definition is often called mapping in search engines. 

An inverted index allows efficient querying of the database with terms. Thus, no 
query language is needed, but the full-text search is defined directly by entering the 
searched terms. The inverted index can immediately return all documents that 
contain the term or combination of terms. However, this is not sufficient for large 
amounts of data. If a term occurs in thousands of documents, the search engine 
should sort the document list by relevance. The inverted index and the term 
dictionary allow a statistical evaluation of relevance with a simple formula 
TF*IDF (TF, term frequency; IDF, inverted document frequency). The relevance 
of a term T to a document D can be estimated as follows:



=
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Relevance T, Dð Þ=TF T, Dð Þ � IDF Tð Þ: 
This is the multiplication of the term frequency TF(T,D) of a term T in 

document D, with the inverted document frequency IDF(T) of the term T over all 
documents. The word frequency TF is calculated by a simple count of the number of 
occurrences of a term in the document. The search engine can take it directly from 
the term dictionary. The inverted document frequency IDF can be calculated using 
the following formula: 

IDF Tð Þ  1þ log n= DF Tð Þ þ  1ð Þð Þ  
Here, DF(T) is the document frequency of the term B, i.e., the number of 

documents containing T. The search engine finds this key figure in the inverted 
index. 

This formula favors documents with frequent mentions of the search term and 
prioritizes rarer terms over more frequent terms. The simple formula works surpris-
ingly well in practice. Interestingly, this formula can also be used in reverse to search 
for keywords in a given document by indexing a reference corpus for this purpose. 
This is a process called keyword extraction. 

Search Engine Database System 
Because search engine technology is successful for unstructured data (e.g., text) and 
semi-structured data (e.g., JSON), there are now database systems that provide full 
database management system functionality in addition to indexing and searching. 
An application example is the evaluation of server log files for error analysis. These 
search engine database systems, or SDB for short, are characterized by the following 
features:

• Search engine: The SDB indexes terms in fields of semi-structured and unstruc-
tured data and returns lists of documents sorted by relevance, which contain 
search terms in the full text of specific fields.

• Data analysis: SDB provides advanced data analysis tools for pre-processing, 
evaluation, and visualization.

• Interfaces: SDB supports advanced data interfaces for database integration with 
read and write access.

• Security: SDB supports data protection with users, roles, and access rights.
• Scalability: The SDB can provide short response times even for large amounts of 

data with the principle of splitting in a cluster of several computers.
• Fail-safety: SDB can operate multiple redundant databases with the principle of 

replication, so that if one instance fails, other instances can continue operation.
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7.8 Time Series Databases 

A time series is a chronologically ordered sequence of values of a variable (e.g., air 
pressure). If values are registered at regular time intervals (e.g., once per second), it 
is called a measurement series. It is a sequence of discrete data. For example, sensor 
measurements provide data with timestamps, which form time series. The 
measurements that make up a time series can be arranged on a time axis. The 
temporal ordering of data is central because there is a dependency between time 
and measurements, and changing the order distorts the meaning of the data. Time 
series are used in data analyses for the following purposes, among others:

• Time series analysis examines the patterns of how a variable changes as a 
function of time duration.

• Time series forecasting uses the patterns identified to predict future activity, for 
example, weather forecasting. 

Time Series Database System 
A time series database (TSDB) is a type of database optimized for time series or data 
with timestamps. It is designed for processing sensor data, events, or measurements 
with timestamps. It allows to store, read, and manipulate time series in a scalable 
way. Characteristic features of time series databases are the following:

• Scalability of write performance: Time series data, e.g., from IoT sensors, is 
recorded in real time and at high frequency, which requires scalable writes. Time 
series databases must therefore provide high availability and high performance 
for both reads and writes during peak loads. Time series can generate large 
amounts of data quickly. For example, an experiment at CERN sends 100 GB 
of data per second to the database for storage. Traditional databases are not 
designed for this scalability. TSDB offer the highest write throughput, faster 
queries at scale, and better data compression.

• Time-oriented sharding: Data within the same time range is stored on the same 
physical part of the database cluster, enabling fast access and more efficient 
analysis.

• Time series management: Time series databases contain functions and 
operations that are required when analyzing time series data. For example, they 
use data retention policies, continuous queries, flexible time aggregation, range 
queries, etc. This enhances usability by improving the user experience when 
dealing with time-related analytics.

• Highest availability: When collecting time series data, availability at all times is 
often critical. The architecture of a database designed for time series data avoids 
any downtime for data, even in the event of network partitions or hardware 
failures.

• Decision support: Storing and analyzing real-time sensor data in time series 
database enables faster and more accurate adjustments to infrastructure changes,
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energy consumption, equipment maintenance, or other critical decisions that 
impact an organization. 

With the advent of the Internet of Things (IoT), more and more sensor data is 
being generated. The IoT is a network of physical devices connected to the Internet, 
through which data from the devices’ sensors can be transmitted and collected. This 
generates large amounts of data with timestamps or time series. The proliferation of 
the IoT has led to a growing interest in time series databases, as they are excellent for 
efficiently storing and analyzing sensor data. Other use cases for time series 
databases include monitoring software systems such as virtual machines, various 
services, or applications; monitoring physical systems such as weather, real estate, 
and health data; and also collecting and analyzing data from financial trading 
systems. Time series databases can also be used to analyze customer data and in 
business intelligence application to track key metrics and the overall health of the 
business. 

The key concepts in time series databases are time series, timestamps, metrics, 
and categories. A time column is included in each time series and stores discrete 
timestamps associated with the records. Other attributes are stored with the 
timestamp. Measured values store the effective size of the time series, such as a 
temperature or a device status. The measured values can also be qualified with tags, 
such as location or machine type. These categories are indexed to speed up 
subsequent aggregated queries. The primary key of a time series consists of the 
timestamp and the categories. Thus, there is exactly one tuple of measurements per 
timestamp and combination of categories. Retention policies can be defined with the 
time series, such as how long it is historized and how often it is replicated in the 
cluster for failover. A time series in a TSDB is thus a collection of specific 
measurement values on defined category combinations over time, stored with a 
common retention policy. 

Sharding is the horizontal partitioning of data in a database. Each partition is 
called a shard. TSDBs store data in so-called shard groups, which are organized 
according to retention policies. They store data with timestamps that fall within a 
specific time interval. The time interval of the shard group is important for efficient 
read and write operations, where the entire data of a shard can be selected highly 
efficiently without searching. 
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Glossary 

ACID ACID is an acronym for atomicity, consistency, isolation, and durability. 
This abbreviation expresses that all transactions in a database lead from a 
consistent state to a new consistent state of the database. 

Aggregation Aggregation describes the joining of entity sets into a whole. Aggre-
gation structures can be network-like or hierarchical (item list). 

Anomaly Anomalies are records that diverge from reality and can be created during 
insert, change, or delete operations in a database. 

Association The association of one entity set to another is the meaning of the 
relationship in that direction. Associations can be weighted with an association 
type defining the cardinality of the relationship direction. 

BASE BASE is an acronym for Basically Available, Soft state, Eventual consis-
tency, meaning that a consistent state in a distributed database is reached eventu-
ally, with a delay. 

Big Data The term Big Data describes data records that meet at least one of the 
three scalability challenges: volume, massive amounts of data; variety, a multi-
tude of structured, semi-structured, and unstructured data types; and velocity, 
high-speed data stream processing. 

BSON BSON, or Binary JSON, is a binary data format for storing JSON-structured 
files on a fixed storage. 

Business Intelligence Business intelligence (BI) is a company-wide strategy for the 
analysis and the reporting of relevant business data. 

CAP Theorem The CAP (consistency, availability, partition tolerance) theorem 
states that in any massive distributed data management system, only two of the 
three properties consistency, availability, and partition tolerance can be ensured. 

Cloud Database A cloud database is an information technology service over the 
Internet that provides a complete database system at the click of a button. This is 
also called database as a service or DBaaS. 

Column-Family Store Column stores or column-family stores are NoSQL 
databases in which the data is organized in columns or sets of columns. 

Concurrency Control Synchronization is the coordination of simultaneous 
accesses to a database in multi-user operations. Pessimistic concurrency control
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prevents conflicts between concurrent transactions from the start, while optimistic 
concurrency control resets conflicting transactions after completion.
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Cursor Management Cursor management enables the record-by-record 
processing of a set of data records in a procedural programming language with 
the help of a pointer. 

Cypher Cypher is a database language for graph databases, originally from Neo4j. 
It has been released with openCypher and is now offered by several graph 
database systems. Under the GQL (Graph Query Language) project, the ISO 
(International Organization for Standardization) is working to extend and estab-
lish the language as a new international standard. 

Database A database is an organized and structured set of records stored and 
managed for a common purpose. 

Database Language A database language allows to query, manipulate, define, 
optimize, scale, and secure databases by specifying database commands. It 
includes comprehensive database management functionalities in addition to the 
query language. 

Database Management System A database management system, or DBMS, is a 
software that automates electronic databases. It provides functions for database 
definition, creation, query, manipulation, optimization, backup, security, data 
protection, scalability, and failover. 

Database Schema A database schema is the formal specification of the structure of 
a database, such as classes of records and their characteristics, data types, and 
integrity constraints. 

Database Security Database security is a subcategory of information security that 
focuses on maintaining the confidentiality, integrity, and availability of database 
systems. 

Database System A database system consists of a storage and a management 
component. The storage component, i.e., the actual database, is used to store 
data and relationships; the management component, called the database manage-
ment system or DBMS, provides functions and language tools for data mainte-
nance and management. 

Data Dictionary System Data dictionary systems are used for the description, 
storage, and documentation of the data schema, including database structures, 
fields, types, etc., and their connections with each other. 

Data Independence Data independence in database management systems is 
established by separating the data from the application tools via system 
functionalities. 

Data Lake A data lake is a system of databases and loaders that makes historized 
unstructured and semi-structured data from various distributed data repositories 
available in its original raw format for data integration and data analysis. 

Data Management Data management encompasses all operational, organizational, 
and technical functions of the data architecture of data administration and data 
technology that organize the use of data as a resource.
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Data Mining Data mining is the search for valuable information within data sets 
and aims to discover previously unknown data patterns. 

Data Model Data models provide a structured description of the data and data 
relationships required for an information system. 

Data Protection Data protection is the prevention of unauthorized access to and 
use of data. 

Data Record A data record is an information element which, as a unit, describes a 
complex set of facts. 

Data Scientist Data scientists are business analytics specialists and experts on tools 
and methods for SQL and NoSQL databases, data mining, statistics, and the 
visualization of multi-dimensional connections within data. 

Data Security Data security includes all technical and organizational safeguards 
against the falsification, destruction, and loss of data. 

Data Stream A data stream is a continuous flow of digital data with a variable data 
rate (records per unit of time). Data in a data stream is in chronological order and 
may include audio and video data or series of measurements. 

Data Warehouse A data warehouse is a system of databases and loading 
applications which provides historized data from various distributed data sets 
for data analysis via integration. 

Document Database A document database is a NoSQL database which stores 
structured data records called documents that describe a fact completely and 
self-contained, i.e., without dependencies and relationships. This property 
eliminates foreign key lookups and enables efficient sharding and massive scal-
ability for Big Data. 

End User End users are employees in the various company departments who work 
with the database and have basic IT knowledge. 

Entity Entities are equivalent to real-world or abstract objects. They are 
characterized by attributes and grouped into entity sets. 

Entity-Relationship Model The entity-relationship model is a data model defining 
data classes (entity sets) and relationship sets. In graphic representations, entity 
sets are depicted as rectangles, relationship sets as rhombi, and attributes as ovals. 

Fuzzy Database Fuzzy databases support incomplete, unclear, or imprecise infor-
mation by employing fuzzy logic. 

Generalization Generalization is the abstraction process of combining entity sets 
into a superordinate entity set. The entity subsets in a generalization hierarchy are 
called specializations. 

Graph Database Graph databases manage graphs consisting of vertices 
representing objects or concepts and edges representing the relationships between 
them. Both vertices and edges can have attributes. 

Graph-Based Model The graph-based model represents real-world and abstract 
information as vertices (objects) and edges (relationships between objects). Both 
vertices and edges can have properties, and edges can be either directed or 
undirected.
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Hashing Hashing is a distributed storage organization in which the storage location 
of the data records is calculated directly from the keys using a transformation 
(hash function). 

Index An index is a physical data structure that provides the internal addresses of 
the records for selected attributes. 

In-Memory Database In in-memory databases, the records are stored in the 
computer’s main memory. 

Integrity Constraint Integrity constraints are formal specifications for keys, 
attributes, and domains. They ensure the consistent and non-contradictory nature 
of the data. 

Join A join is a database operation that combines two tables via a shared attribute 
and creates a result table. 

JSON JSON, or JavaScript Object Notation, is a data exchange format for convey-
ing complex objects in a simple syntax originally taken from JavaScript. 

JSON Schema JSON Schema is a pattern for defining and validating database 
schemas in JSON format. 

Key A key is a minimal attribute combination that uniquely identifies records 
within a database. 

Key-Value Store Key-value stores are NoSQL databases in which data is stored as 
key-value pairs. 

MapReduce Method The MapReduce method consists of two phases: During the 
map phase, subtasks are delegated to various nodes of the computer network in 
order to use parallelism for the calculation of preliminary results. Those results 
are then consolidated in the reduce phase. 

Normal Form Normal forms are rules to expose dependencies within tables in 
order to avoid redundant information and resulting anomalies. 

NoSQL NoSQL is short for “Not only SQL” and describes database technology 
beyond the functionality of SQL. NoSQL features support Big Data and are not 
subject to a fixed database schema. 

NoSQL Injection NoSQL injection is the counterpart of SQL injection in 
non-relational database technologies. This potential vulnerability in information 
systems with NoSQL databases refers to user input that injects commands in a 
database language that is not based on SQL. The commands are processed by the 
database system, and thus unauthorized data can be made available or modified. 

NULL Value A NULL value is a data value that is unknown to the database. 
Object Orientation In object-oriented methods, data is encapsulated by appropri-

ate means, and properties of data classes can be inherited. 
Optimization The optimization of a database query comprises the rephrasing of the 

respective expression (e.g., algebraic optimization) and the utilization of storage 
and access structures, i.e., indexes, to reduce the computational expense. 

Query Language Query languages are used to analyze and utilize databases, 
potentially set-orientedly, via the definition of selection conditions. 

Recovery Recovery is the restoration of a correct database state after an error.
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Redundancy Multiple records with the same information in one database are 
considered redundancies. 

Relational Algebra Relational algebra provides the formal framework for the 
relational query languages and includes the set union, set difference, Cartesian 
product, project, and select operators. 

Relational Model The relational model is a data model that represents both data 
and relationships between data as tables. 

Replication Replication or mirroring of databases means redundant multiple stor-
age of identical databases with the purpose of fail-safety. 

Search Engine Database System A search engine is a system for indexing, 
querying, and relevance sorting of semi-structured and unstructured text 
documents with full-text search terms. A search engine database is a database 
system that, in addition to the pure search engine, provides mechanisms of a 
database management system for data interfaces, data analysis, security, scalabil-
ity, and failover. 

Selection Selection is a database operation that yields all records from a database 
that match the criteria specified by the user. 

Sharding Database sharding means splitting the database across multiple 
computers in a federation. This is often used for Big Data to process more volume 
at higher speed. 

SQL SQL (Structured Query Language) is the most important database language. It 
has been standardized by ISO (International Organization for Standardization). 

SQL Injection SQL injection is a potential security vulnerability in information 
systems with SQL databases, where user input is used to inject SQL code that is 
processed by the database, thereby making data available or modifying it without 
authorization. 

Table A table (also called relation) is a set of tuples (records) of certain attribute 
categories, with one attribute or attribute combination uniquely identifying the 
tuples within the table. 

Transaction A transaction is a sequence of operations that is atomic, consistent, 
isolated, and durable. Transaction management allows conflict-free simultaneous 
work by multiple users. 

Tree A tree is a data structure in which every node apart from the root node has 
exactly one previous node and where there is a single path from each leaf to 
the root. 

Two-Phase Locking Protocol The two-phase locking (2PL) protocol prohibits 
transactions from acquiring a new lock after a lock on another database object 
used by the transaction has already been released. 

Vector Clock Vector clocks are no time-keeping tools, but counting algorithms 
allowing for a partial chronological ordering of events in concurrent processes. 

XML XML (eXtensible Markup Language) describes semi-structured data, con-
tent, and form in a hierarchical manner.
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