
CAPITAL UNIVERSITY OF SCIENCE AND

TECHNOLOGY, ISLAMABAD

Best Proximity Point for

Multi-Valued

(αF , b, φ̆)-Contraction on Partially

Ordered b-Metric Spaces
by

Sana Noreen
A thesis submitted in partial fulfillment for the

degree of Master of Philosophy

in the

Faculty of Computing

Department of Mathematics

2023

file:www.cust.edu.pk
file:www.cust.edu.pk
Faculty Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)


i

Copyright c© 2023 by Sana Noreen

All rights reserved. No part of this thesis may be reproduced, distributed, or

transmitted in any form or by any means, including photocopying, recording, or

other electronic or mechanical methods, by any information storage and retrieval

system without the prior written permission of the author.



ii

Dedicated to my Parents





iv

Author’s Declaration

I, Sana Noreen hereby state that my MS thesis titled “Best Proximity Point

for Multi-valued (αF , b, φ̆)-Contraction on Partially Ordered b-Metric

Spaces” is my own work and has not been submitted previously by me for tak-

ing any degree from Capital University of Science and Technology, Islamabad or

anywhere else in the country/abroad.

At any time if my statement is found to be incorrect even after my graduation,

the University has the right to withdraw my Mphil Degree.

(Sana Noreen)

Registration No: MMT213030



v

Plagiarism Undertaking

I solemnly declare that research work presented in this thesis titled “Best Prox-

imity Point for Multi-valued (αF , b, φ̆)-Contraction on Partially Ordered

b-Metric Spaces” is solely my research work with no significant contribution

from any other person. Small contribution/help wherever taken has been duly

acknowledged and that complete thesis has been written by me.

I understand the zero tolerance policy of the HEC and Capital University of Science

and Technology towards plagiarism. Therefore, I as an author of the above titled

thesis declare that no portion of my thesis has been plagiarized and any material

used as reference is properly referred/cited.

I undertake that if I am found guilty of any formal plagiarism in the above titled

thesis even after award of Mphil Degree, the University reserves the right to with-

draw/revoke my Mphil degree and that HEC and the University have the right to

publish my name on the HEC/University website on which names of students are

placed who submitted plagiarized work.

(Sana Noreen)

Registration No: MMT213030



vi

Acknowledgement

All praise is due to Allah alone, the sustainer of all worlds, the most gracious and

powerful, who assisted and directed His helpless servant to achieve another life

goal. With the utmost sincerity, I would like to thank my respected supervisor,

Dr. Dure- Shehwar Sagheer, for giving me valuable time and energy, for

consistent support and guidance, for being nice and patient during all discussions,

for being always available to answer my doubts, empower me to think outside

the box and enabling me to explore new ideas in this subject. It has been an

honour for me to be her student and I will never forget her collaborative efforts

and recommendations to complete my research work.

I am grateful to the management of the Head of Department, Dr. Muhammad

Sagheer, for providing a pleasant study environment and encouraging students

during research. My sincere thank also goes to Dr. Samina Batul, Dr. Rashid

Ali, Dr. Sabeel Khan, Dr. Afzal and Dr. Abdul Rehman Kashif for

their appreciation and support. I would like to especially thank my friends Saliha

Ameen, Noor ul Absar, and Sherbano for providing me the strength to focus

on my main objectives.

I would like to thank my parents for all their love, encouragement, and support.

Most of all, I wish to express my deep gratitude to my brother Adbul Qadeer

for his help, support, motivation, and all his contributions of time, ideas, and

suggestions to make my dissertation productive and stimulating.

(Sana Noreen)

Registration No: MMT213030



vii

Abstract

Recently, Jain et al. established certain best proximity point results for multi-

valued generalized contraction on partially ordered complete metric spaces ac-

companying the notion of altering distance function. In this thesis, the idea of

generalized (αF , b, φ̆)-contraction in the setting of b-metric is introduced. The

main results of the research are about the existence of fixed points for multi-

valued (αF , b, φ̆)-contractions on partially ordered b-metric space. Furthermore,

examples are provided for the verification of the main result. Eventually, the

existence of the solution to a second-order differential equation and a fractional

differential equation is analyzed using the proven results’ axioms. It is worth men-

tioning that the results of Jain et al. are the special cases of the theorems proved

in the present research. Several Corollaries are elaborated to show that our results

generalize many existing fixed-point results.
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Chapter 1

Introduction

One of the significant mathematical achievements of the first part of the twentieth

century was the introduction of functional analysis, which has a wide range of

applications. Functional analysis is a field of mathematics that evolved from clas-

sical analysis. Now a days, the functional analytic approach and its results have

value in many fields of mathematics. The functional analysis concerns functionals,

functions, and functions in infinite dimensional spaces. The rapid development of

functional analysis techniques began about a century ago. The outstanding result

of that development is a fixed point(FP)theory. In multiple disciplines of applied or

pure mathematics, as well as other quantitative sciences, in particular, economics,

engineering, and so on, fixed point results have proved extremely useful in deter-

mining and establishing the existence of solutions to various issues. Fixed point

theory ensures a solution to non-linear problems by demonstrating the presence of

fixed points. First of all, Poincare [1] started some preliminary work on fixed point

theory in 1866. He presented his primary fixed point theorem without providing

any proof.

Brouwer [2] in 1912, was the first to prove the fixed point theorem on the unit

sphere, and it is regarded as one of the early approaches that Kakutani [3] further

pursued. Stefan Banach [4] presented the Banach contraction principle(BCP) in

1922, a fundamental theorem in fixed point theory in the context of metric space

and the most influential mathematical concepts. The BCP provided not only the

1
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requirements for the existence of a unique fixed point of a contraction defined on

a complete metric space but also the procedure for finding the desired fixed point,

which Brouwers fixed point theorem lacked. Many similar theorems were given

over the next few decades, depending on the sort of mapping and space. Later,

BCP was generalized under other mapping flavors; Edelstein [5] provided the first

generalization in 1962 by altering the contraction requirement. Edelstein used

continuous mapping on a compact space for the existence of a fixed point.

Kasahara [6] conducted additional research on BCP in premetric spaces in 1968, and

Kannan [7] highlighted certain advances in the continuity of contraction condition

of BCP in the same year. Nadlers [8] ] generalized BCP for multi-valued functions

in 1969 by using Hausdroff metric over the family of nonempty closed bounded

subsets of a complete metric space. In 1972, Chatterjea [9] generalized the BCP as,

every Chatterjea type contration on a complete metric space has a unique fixed

point.

In 1975, Dass and Gupta [10] gave the fixed point theorem of new rational con-

traction to generalized the BCP.

The notion of metric space was introduced by Frechet [11] in 1906. Later, the

concept of the metric was developed and generalized in many different directions

in mathematics and fundamental sciences; such generalizations were created by

altering, modifying, adding, and eliminating metric space features and conditions.

In this prospect, Bakhtin [12] introduced a new notion, namely b-metric. He ac-

complished this goal by altering the metric space triangle inequality. This new

idea is a fascinating generalization of the metric space and an intriguing direction

for researchers. We can observe that in the previous several years, many new

structures in b-metric spaces have been constructed by mathematicians.

Czerwik [13] generalized a fixed point result employing the weaker triangular state.

Dikranjan [14] and Heinonen [15] also established new results by using complete

bMS for single-valued mappings and then for set-valued mappings. In this context,

several new findings are demonstrated by mathematicians employing the complete

b-metric space layout for self mappings and, eventually, multi-valued mappings.

Among the critical challenges within metric fixed point theory is estimating the
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solution of fixed point problem. It compels scholars to use contractive conditions

over cardinal functions to ensure a fixed points existence. When non-self map-

pings are involved, the issue becomes more exciting and complicated. The idea of

non-self maps explores the idea of the best proximity point(BPP) along with asso-

ciated theorems. Basha [16] discoverd the best proximity point using the Banach

contraction principle in 2010. Basha et al. [17] considered non-self mappings on

metric spaces and analyzed the existence of best proximity point. Karapinar and

Erhan [18] investigated the ideal proximity for various contractions. The notion

of fixed points for multi-valued mappings is vital in confirming the presence of

solutions according to the theory concerning integral inclusions. Nadler pioneered

the investigation within fixed point theory for multi-valued mappings. Strict con-

tractive criteria, either for self-mappings or multi-valued non-self mappings, do

not assure the presence of fixed points in the setting of metric spaces, as shown

in [19]. Recently, Wardwoski [20] suggested the concept of F -contraction as a

generalized contraction. Klim et al. [21] studied and demonstrated fixed point

theorems involving F -contractions for dynamic processes.

Sagheer et al. [22] developed the concept of (α,F)-contractive multi-valued map-

pings on uniform spaces in 2022. Recently, jain et al. [23] gave a novel idea for

multi-valued F - contraction on partially ordered metric space (POMS) using an ap-

proach concerning altering distance function to guarantee the occurrence of best

proximity point via best proximity theorem.

The format of the thesis is slightly presented here.

Chapter 2 This chapter offers precise definitions and examples for illuminating

the essential notions of metric spaces. We also go through several forms of map-

pings, fixed points, and the fixed point theorems.

Chapter 3 provides a detailed review of the article by Jain et al. [23]. The

authors explained the contraction, which is formed by combining the notion of

the F - function and altering distance function. This idea is called multi-valued

F -contraction based on altering distance function. F -contraction is used to gen-

eralize multiple fixed-point results. Examples and applications are provided.

Chapter 4 provides an extension of the results given in [23]. The b-metric space
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platform is used for this purpose. The condition is further generalized by involv-

ing an α function. Examples are also provided for the better understanding of the

proved theorem. Applications are constructed for the authentication purpose of

our main result.

Chapter 5 include our research analysis in well defined manner in this chapter.



Chapter 2

Basic Material

This chapter includes some basic definitions, examples, and results that are signif-

icant enough to be used in subsequent chapters. The first section of this chapters

presents introduction with some crucial definitions from the metric space. The

subject of the following section is b-metric space, and the final section provides a

historical overview of fixed point theorems.

2.1 Metric Spaces

In 1906, M. Frechet presented the idea of metric space, which is the generalization

of natural distance. Later, these spaces served as a platform between topological

spaces and real analysis for the foundation of metric fixed point theory.

Definition 2.1.1. Metric Space

“A metric space is a pair (J, ℘), where J is a set and ℘ is a metric on J (or distance

function on J), that is, a function define on J× J such that ∀ a, b,m ∈ J we have

(M1): ℘ is real-valued, finite and non-negative,

(M2): ℘(a, b) = 0 if and only if a = b,

(M3): ℘(a, b) = ℘(b, a), (Symmetry)

(M4): ℘(a,m) ≤ ℘(a, b) + ℘(b,m). (Triangular inequality)”[24]

5
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Example 2.1.2.

Let J = `∞, be the set of all bounded real or complex sequences. Define a metric

function;

℘(a, b) = max
i∈N
{|ai − bi|}; ∀ a, b ∈ `∞ where; a = {ai}, b = {bi}.

The first three axioms are straightforward. To prove the triangular inequality, we

continue as follows:

℘(a, b) = max{|ai − bi|}

= max{|ai − ci + ci − bi|}

≤ max{|ai − ci|}+ max{|ci − bi|}

≤ ℘(a, c) + ℘(c, b).

Hence (`∞, ℘) is metric space.

Example 2.1.3.

Consider a real number p ≥ 1 and define a set of real sequences as

`p = {{an} : |a1|p + |a2|p + ... <∞}.

Define ℘ : `p × `p → R as

℘(b, c) =

(
∞∑
i=1

|bi − ci|p
) 1

p

,

here first three properties are trivially satisfied. One can easily prove the triangular

inequality by using Minkowski inequality.

Definition 2.1.4. Continuous Mapping

“Let (J1, ℘1) and (J2, ℘2) be metric spaces. A mapping

S : J1 → J2

is said to be continuous at a point b ∈ J1,
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if for every ε > 0, there is a δ > 0 such that

℘2(Sa,Sb) < ε ∀ a whenever ℘1(a, b) < δ.

S is said to be continuous if it is continuous at every point of J1.” [24]

Example 2.1.5.

Assume J = R and ℘ is a usual metric. The widely known quadratic function is

continuous. We consider one such mapping, S : J→ J defined by

Sa = 4a2

For any δ > ℘(a, b) = |a− b|, consider

℘(Sa,Sb) = |4a2 − 4b2|

= 4|a− b||a + b|

= 4℘(a, b)|a + b|

< 4δ|a + b|

so if we choose ε = 4δ|a + b|, then we have

℘(Sa,Sb) < ε whenever ℘(a, b) < δ.

Definition 2.1.6. Convergence

“A sequence {an} in a metric space J = (J, ℘) is said to converge or to be conver-

gent if there is an a ∈ J such that

lim
n→∞

℘(an, a) = 0.

a is called limit of {an} and we write

lim
n→∞

an = a or an → a.

We say that {an} converges to a or has the limit a. If {an} does not converges,
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then it is said to be divergent.”[24]

Example 2.1.7.

Consider the set of real numbers R with usual metric which is defined as;

℘(a, b) = |a− b|

then, the sequence {an} = { 1
n
} in J is a convergent sequence.

Definition 2.1.8. Cauchy Sequence

“A sequence {an} in a metric space J = (J, ℘) is said to be Cauchy (or fundamen-

tal) if for every ε > 0 there is an N = N(ε) such that

℘(am, bn) < ε ∀m,n > N.” [24]

Definition 2.1.9. Complete Space

“A space J is said to be complete if every Cauchy sequence in J converges (that

is, has a limit which is an element of J).”[24]

Example 2.1.10.

With usual metric on R the closed interval [0, 1] is complete.

For our main result it is necessary to define the distance between two sets. For

this purpose we define the following concept.

Definition 2.1.11. Distance of a Point and a Set.

“The distance ℘(a, A) from a point a to a non-empty subset A of (J, ℘) is defined

to be

℘(a, A) = inf
a∈A

℘(a, a).”[24]

Definition 2.1.12. Distance between two Sets.

“The distance D(K,L) between two non-empty subsets K and L of a metric space

(J, ℘) is defined to be

D(K,L) = inf {℘(a, b) : a ∈ K, b ∈ L} .”[24]
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Definition 2.1.13. Hausdorff Distance

“Let (J, ℘) be a metric space and CB(J) denotes the collection of all non-empty

closed and bounded subsets of J. For K,L ∈ CB(J) define

H(K,L) = max

{
sup
a∈K

℘(a,L), sup
b∈L

℘(b,K)

}
,

where ℘(a,L) is distance of a to the set L. It is known that H is a metric on

CB(J), called the Hausdorff metric induced by the metric ℘.”[25]

2.2 b-Metric Space

In 1989, Bakhtin [12] proposed the idea of b-metric space (bMS). It is accurately

described as an initial extension of a MS. In current section, some definitions, ex-

amples and various facts pertaining to b-metric spaces are presented.

Definition 2.2.1. b-metric Space

“Let J be a non-empty set and let b ≥ 1 be a given real number. A function

℘b: J×J→ [0,∞) is called a b-metric if for all a, b,m ∈ J the following conditions

are satisfied,

(b1) : ℘b(a, b) = 0 ⇐⇒ a = b,

(b2) : ℘b(a, b) = ℘b(b, a),

(b3) : ℘b(a,m) ≤ b[℘b(a, b) + ℘b(b,m)].

The pair (J, ℘b) is called a b-metric space.”[26]

Remark

1. Every bMS is a metric with b = 1.

2. Class of bMS is larger than the class of MS.

Example 2.2.2.

Assume (J, ℘) is a metric space. Then for a real number s > 1, we define a function

℘b(a, b) = (℘(a, b))s
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then, ℘b is a bMS along b = 2s−1.

To prove this following following inequality is required:

(
a + b

2

)s
≤ as + bs

2
for a, b > 0.

Let us check the third axiom

℘b(a, c) ≤ 2s−1 (℘b(a, b) + ℘b(b, c))

(a + b)s

2s
≤ (as + bs)

2

⇒ (a + b)s ≤ 2s
(as + bs)

2

⇒ (a + b)s ≤ 2s−1 (as + bs)

≤ 2s−1 [(℘(a, b))s + (℘(b, c))s]

=⇒ ℘(a, c) ≤ 2s−1 (℘(a, b) + ℘(b, c))

hence, ℘ is a b-metric with b = 2s−1

Definition 2.2.3. Cauchy Sequence in b-metric space

“Let (J, ℘) be a b-metric space. Then a sequence {an} in J is called Cauchy

sequence if and only if for all ε > 0 there exists n(ε) ∈ N such that for each

n,m ≥ n(ε) we have

℘(an, am) < ε.”[27]

Definition 2.2.4. Convergence in b-metric space

“Let (J, ℘) be a b-metric space. Then a sequence {an} in J is called convergent

sequence if and only there exists a ∈ J such that there exists n(ε) ∈ N such that

for all n ≥ n(ε) we have

℘(an, a) < ε.

In this case we write lim
n→∞

an = a.” [27]

Definition 2.2.5. Completeness in b-metric space

“The b-metric space is complete if every Cauchy sequence convergent.” [27]
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2.3 Fixed Point and Contractions

The burgeoning area of fixed point theory began, with the crucial work of poincare

at the end of the nineteenth and early twentieth centuries.

In multiple discipline of applied and pure mathematics as well as other quantita-

tive sciences fixed point results have proved extremely useful in determining the

existence of solutions. In this section, definition of fixed point and various types

of contractions with examples are presented in well defined manner.

Definition 2.3.1. Fixed Point

“A fixed point of a mapping S : J → J of a set J into itself is an a ∈ J which is

mapped onto itself (is “kept fixed” by S), that is,

Sa = a,

the image Sa coincides with a.”[24]

Geometrically, The presence of a fixed point for a real-valued function, expressed

as b = S(a), is determined by the intersection of the function’s graph and the real

line b = a.

Example 2.3.2.

Suppose J = R. A self mapping S : J→ J such that

S(a) = a2,

has two fixed points that are = 0, 1 (Fig 2.1).

Example 2.3.3. If S : J → J defined as S(a) = a − ln(1 + ea), then there is

no fixed point of S.

Example 2.3.4.

Consider the following trigonometric function.

S(a) = tan(a),
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Figure 2.1: Two Fixed Points
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Figure 2.2: No Fixed Point

This function has infinite number of fixed points.

Definition 2.3.5. Lipschitzian Mapping

“Let (J, ℘) be a metric space. A mapping S : J → J is said to be Lipschitzain if

there exists a constant ν ≥ 0 with,

℘(S(a),S(b)) ≤ ν℘(a, b) ∀ a, b ∈ J.
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Figure 2.3: Infinitely Many Fixed Points

The smallest ν for which this condition holds is said to be the Lipschitzian constant

for S.” [28]

Example 2.3.6.

Consider (R, ℘) with usual metric. Define a self map in S : R→ R as

S(a) = 2a + 7,

=⇒ ℘(S(a),S(b)) = |2a + 7− 2b− 7|

= |2a− 2b|

= |2||a− b|

= 2℘(a, b),

showing that S is Lipschitzian map with Lipchitz constant 2.

Definition 2.3.7. Contraction Mapping

“Let (J, ℘) be a complete metric space and mapping S : J→ J is called contraction

mapping on J if, ∃ ν ∈ [0, 1) such that

℘(Sa,Sb) ≤ ν ℘(a, b) ∀ a, b ∈ J.”[29]

Example 2.3.8. Let J = [0, 1] with usual metric.
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Define S : J→ J by

S(a) =
1

2 + a

℘ (S(a),S(b)) =
∣∣ 1

2 + a
− 1

2 + b

∣∣
=

∣∣∣∣ b− a

(2 + a)(2 + b)

∣∣∣∣
≤ 1

4
℘(a, b)

is contraction mapping with contraction constant 1
4
.

Definition 2.3.9. Contractive Mapping

“A mapping S : J→ J is said to be contractive if for a 6= b, we have,

℘(S(a),S(b)) < ℘(a, b),

for all a, b ∈ J.”[30]

Example 2.3.10.

Consider J = [1,∞) with usual metric, define S : J→ J by

S(a) = a +
1

a

℘ (S(a),S(b)) =

∣∣∣∣(a +
1

a

)
−
(

b +
1

b

) ∣∣∣∣
=

∣∣∣∣(a− b)−
(
−1

a
+

1

b

) ∣∣∣∣

=

∣∣∣∣(a− b)−
(
−b + a

ab

) ∣∣∣∣
=

∣∣∣∣(a− b)−
(

a− b

ab

) ∣∣∣∣
=| a− b || 1− 1

ab
|

<| a− b | since lim
a→∞

| 1− 1

ab
|= 1
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Therefore S is contractive.

One of the most fundamental fixed point theorem, called the Banach Contraction

Principle BCP, was given by the stefan Banach in 1922. As obvious from name, the

BCP is applied on contraction mappings defined on complete metric spaces. Many

extension of the crucial BCP are constructed for other types of mappings, some

milestone on fixed point theory are discussed below.

Theorem 2.3.11. Banach Contraction Principle

“Let (J, ℘) be a complete metric space and S : J → J be a contraction mapping,

then S admits a unique fixed point in J.” [4]

Theorem 2.3.12. Edelstein Theorem

“Let J be a metric space and S a mapping of J into it self; S will be said to be a

globally contractive mapping if the condition

℘(S(a),S(b)) < ν℘(a, b)

with constant ν, 0 ≤ ν < 1 holds for every a, b ∈ J. [31]

Definition 2.3.13. Multi-valued Mapping

“Suppose (J, ℘) be a CMS with contraction mapping S : J → J. Let J and K be

non-empty sets. S is said to be multi-valued mapping from K to J if S is function

for K to the power set of J. We denote a multi-valued mapping by

S : K→ 2J.”[32]

Definition 2.3.14. Fixed Point of Multi-valued

“Let J be any non-empty set. An element a ∈ J is said to be a fixed point of a

multi-valued mappings S : J→ 2J if

a ∈ Sa.”[25]

Definition 2.3.15. Multi-valued Contraction

“A multi-valued mapping S : J→ CB(K) is said to be contraction if

H(Sa,Sb) ≤ ν℘(a, b)
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for all a, b ∈ J and for some ν ∈ [0, 1).” [25]

Remark: Multi-valued Contraction Mappings are Continuous.

The following is Nadler‘s well known FP theorem for multi-valued mappings

Theorem 2.3.16. Nadler’s Fixed Point Theorem

“Let (J, ℘) be a complete metric space. If S : J → CB(J) is a multi-valued

contraction mapping, then S has a fixed point.” [8]



Chapter 3

Existence of Best Proximity Point

Results, for Multi-Valued

F-Contraction with Applications

This chapter includes the detailed review of Jain et al. [23], who establish BPP

theorems by defining a novel concept of multivalued F -contraction over partially

ordered complete metric space (POCMS) with the assumption of altering distance

function (ADF).

3.1 Preliminaries

Firstly, some symbols are introduced that are used in main result. Assume J is a

non-empty set and (J, ℘,�) is a POMS. Suppose K and L are non-empty subsets

of the metric space (J, ℘) and CB(J) represents the family of closed and bounded

non-empty subsets of J. Now, define the following;

D(a,L) = inf{℘(a, b) : b ∈ L, ∀ a ∈ J}

δ(K,L) = sup{℘(a, b) : a ∈ K, and b ∈ L}

℘(K,L) = inf{℘(a, b) : a ∈ K, and b ∈ L}

17



BPP and its Applications 18

K0 = {a ∈ K : ℘(a, b) = ℘(K,L), for some b ∈ L}

L0 = {b ∈ L : ℘(a, b) = ℘(K,L), for some a ∈ K}.

Definition 3.1.1. Best Proximity Point

Suppose K and L are non-empty subsets of a metric space (J, ℘) and S : K→ 2L

is a multivalued mapping. Then, ∃ a point a ∈ J is the BPP for S if

D(a,Sa) = ℘(K,L). [19]

Remark 3.1.2.

If we take self-mapping, then BBP turn into a fixed point.

Khan et al. [33] presented the idea of altering distance function (ADF) as:

Definition 3.1.3. Altering Distance Function (ADF)

A function φ̆ : R+ → R+ is known as ADF if it fulfil the conditions given below:

(D1). φ̆ is continuous,

(D2). φ̆ is monotonically increasing,

(D3). φ̆(b) > 0 ∀ b > 0.

In 2012, Wardowski [20] introduced the notion of F -contraction.

Definition 3.1.4. F-Mapping

A mapping F : (0,+∞)→ R is known as F -contraction if:

(F1) : F is increasing, which implies ∀ a1, b1 ∈ (0,∞), so that

a1 < b1 =⇒ F(a1) ≤ F(b1);

(F2) : Every sequence {=n} of positive numbers,

lim
n→∞

=n = 0 iff lim
n→∞

F(=n) = −∞;

(F3) : ∃ ν ∈ (0, 1) such that
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lim
=→0
=νF(=) = 0.

Family of all such F -function is denoted by F̄ .

Example 3.1.5.

Define F : (0,∞)→ R with ν ∈ (0, 1) and a ∈ R+ as

F(a) =
−1√

a
for a > 0,

one can easily verify that all the conditions of F -mapping for any constant

ν ∈ (0, 1) are satisfied.

Definition 3.1.6. F-contraction

A mapping S : J→ J is called F -contraction if for τ̌ > 0

℘(Sa,Sb) > 0 =⇒ τ̌ + F (℘ (Sa,Sb)) ≤ F (℘ (a, b)) ∀ a, b ∈ J, [20] (3.1)

for some F ∈ F̄ .

Remark 3.1.7.

Every F -contraction is necessarily continuous.

Example 3.1.8.

For an F mapping F : (0,+∞)→ R defined as:

F(a) = ln a + a,

with a > 0, and constant ν ∈
(

1
2
, 1
)

the contraction condition (3.1) takes the

following form:

℘ (Sa,Sb)

℘ (a, b)
e℘(Sa,Sb)−℘(a,b) ≤ e−τ̌ ,

for all a, b ∈ R+, Sa 6= Sb.

Raj [34] initially presented P-property as;
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Definition 3.1.9. P-Property

Suppose (K,L) be the pair of non-empty subsets of metric space J such that K0

is non-empty. Then the pair (K,L) have P-property iff,

℘(a1, b1) = ℘(K,L)

℘(a2, b2) = ℘(K,L)

 =⇒ ℘(a1, a2) = ℘(b1, b2),

where a1, a2 ∈ K0 and b1, b2 ∈ L0.

3.2 Multivalued F-Contraction

Pragadeeswarar et al. [35] established some BPP results regarding multivalued

mappings in the setting of POMS. These results are further explained by Jain et

al. [23] on partially ordered complete metric spaces. For better understanding of

those results following definitions are necessary:

Definition 3.2.1. Multivalued F-Contraction with Altering Distance

Function

Suppose K and L are two non-empty closed subsets of (J, ℘). A multivalued

mapping S : K → CB(L) is called F -contraction with ADF φ̆ in order that Sa0 ⊆

L0, ∀ a0 ∈ K0 it satisfying:

τ̌ + F
(
φ̆ (δ (Sa,Sb))

)
≤ F

(
φ̆ (N (a, b))− φ̆ (℘ (L,M))

)
∀ a ≤ b ∈ L, (3.2)

Where,

N (a, b) = max

{
℘(a, b),D(a,Sa),D(b,Sb),

D(a,Sb) +D(b,Sa)

2

}

the function φ̆ with φ̆(a, b) ≤ φ̆(a) + φ̆(b) ∀ a, b ∈ [0,+∞).

By Choosing F(a) = ln a in (3.2) is knwon as contraction by Pragadeeswarar et

al. [35]:
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τ̌ + ln
(
φ̆ (δ (Sa,Sb))

)
≤ ln

(
φ̆ (N (a, b))− φ̆ (℘ (L,M))

)
⇔ ln eτ̌ + ln

(
φ̆ (δ (Sa.Sb))

)
≤ ln

(
φ̆ (N (a, b))− φ̆ (℘ (K,L))

)
⇔ ln φ̆ (δ (Sa,Sb)) ≤ ln

{
φ̆ (N (a, b))− φ̆ (℘(a, b))

eτ̌

}
⇔ φ̆ (δ (Sa,Sb)) ≤ 1

eτ̌

(
φ̆ (N (a, b))

)
− φ̆(℘(K,L))) ∵

1

eτ̌
= ν

⇔ φ̆ (δ (Sa,Sb)) ≤ ν
(
φ̆ (N (a, b))

)
− φ̆(℘(K,L))).

Theorem 3.2.2.

Consider a POCMS (J,�, ℘). Suppose K and L be non-empty closed subset of the

MS (J, ℘) in such a way that K0 is non empty and the pair (K,L) has P-property.

Suppose S : K→ CB(L) be a multivalued F -contraction with ADF φ̆, satisfies :

(Q1) : ∃ two elements a0, a1 ∈ K0 and b0 ∈ Sa0 such that

℘(a1, b0) = ℘(K,L) and a0 � a1.

(Q2) : ∀ a, b ∈ K0, a � b =⇒ Sa ⊂ Sb.

(Q3) : If {an} is a non decreasing sequence in K such that an → a, then an �

a, ∀ n.

Then, ∃ a ∈ K such that D(a,Sa) = ℘(K,L).

Proof. Using (Q1) ∃ a0, a1 in K0 and b0 ∈ Sa0 such that ℘(a1, b0) = ℘(K,L) and

a0 � a1.

By (Q2) =⇒ Sa0 ⊂ Sa1, so ∃ b1 ∈ Sa1 with ℘(a2, b1) = ℘(K,L) such that

a1 � a2. Generally, in each case n ∈ N, ∃ an+1 ∈ K0 and bn ∈ San such that

℘(an+1, bn) = ℘(K,L). Thus,

℘(an+1, bn) = D(an+1,San) = ℘(K,L) ∀ n ∈ N. (3.3)

Now,

a0 � a1 � a3 � ... � an � an+1...
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If ∃ n0 such that an0 = an0+1 then ℘(an0+1, bn0) = D(an0 ,San0) = ℘(K,L). It

follows that an0 is the best proximity point of S and we are done.

Now, assume an 6= an+1 ∀ n. Since ℘(an+1, bn) = ℘(K,L) and ℘(an, bn−1) =

℘(K,L) and (K,L) has the P-property

℘(an, an+1) = ℘(bn−1, bn) ∀ n ∈ N. (3.4)

Given an−1 ≺ an, so

F(φ̆(℘(an, an+1))) = F(φ̆(℘(bn−1, bn)))

F(φ̆(℘(an, an+1))) ≤ F(φ̆(δ(San−1,San)))

≤ F(φ̆(N (an−1, an))− φ̆(℘(K,L)))− τ̌ . (3.5)

Now

N (an−1, an) = max

{
℘(an−1, an),D(an−1,San−1),D(an,San),

D(an−1,San) +D(an,San−1)

2

}
≤max

{
℘(an−1, an), ℘(an−1, ln−1), ℘(an, ln),

℘(an−1, ln) + ℘(an, ln−1)

2

}
≤max

{
℘(an−1, an), ℘(an−1,bn−2) + ℘(bn−2,bn−1)℘(an,bn−1) + ℘(bn−1,bn),

℘(an−1,bn−2) + ℘(bn−2,bn−1) + ℘(bn−1,bn) + ℘(an, ln−1)

2

}
≤max

{
℘(an−1, an), ℘(K,L) + ℘(an−1, an), ℘(K,L) + ℘(an, an−1),

℘(K,L) + ℘(an−1, an) + ℘(an, an+1) + ℘(K,L)

2

}
≤ max

{
℘(K,L) + ℘(an−1, an), ℘(K,L) + ℘(an, an+1)

}
.

Using Equation (3.4)

F(φ̆(℘(an, an+1) ≤ F(φ̆max

{
℘(K,L) + ℘(an−1, an), ℘(K,L) + ℘(an, an+1)

}
− φ̆(℘(K,L)))− τ̌ . (3.6)

If ℘(an, an+1) > ℘(an−1, an) from (3.5)

F(φ̆(℘(an, an+1) ≤ F(φ̆(℘(K,L) + ℘(an, an+1)),−φ̆(℘(K,L)))− τ̌

F(φ̆(℘(an, an+1) ≤ F(φ̆(℘(K,L)) + φ̆(℘(an, an+1))),−φ̆(℘(K,L)))− τ̌
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F(φ̆(℘(an, an+1)) ≤ F(φ̆(℘(an, an+1)))− τ̌ ,

which leads to contradiction. So,

℘(an, an+1) ≤ (an−1, an). (3.7)

Since, the sequence {℘(an, kn+1)} is monotonically, non-increasing and bounded

below, so, ∃ s ≥ 0 such that,

lim
n→∞

℘(an, an+1) = s ≥ 0. (3.8)

Let lim
n→∞

℘(an, an+1) = s ≥ 0 using (3.7), equation (3.8) becomes

F(φ̆(℘(an, an+1))) ≤ F(φ̆(℘(an−1, an)))− τ̌

⇒ F(φ̆(℘(an, an+1))) ≤ F(φ̆(℘(an−2, an−1)))− 2τ̌ .

Continuing in the same manner, following is obtained

F(φ̆(℘(an, an+1))) ≤ F(φ̆(℘(a0, a1)))− nτ̌ . (3.9)

=⇒ lim
n→∞

F(φ̆(℘(an, an+1))) = −∞

=⇒ lim
n→∞

φ̆(℘(an, an+1)) = 0 (3.10)

using (F3) ∃ γ ∈ (0, 1) such that,

lim
℘(an,an+1)→0

(φ̆(℘(an, an+1)))γF(φ̆(℘(an, an+1))) = 0

=⇒ lim
n→∞

(φ̆(℘(an, an+1)))γF(φ̆(℘(an, an+1))) = 0 (3.11)

Now, by (3.9),

F(φ̆(℘(an, an+1))) ≤ F(φ̆(℘(a0, a1)))− nτ̌
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F(φ̆(℘(an, an+1)))−F(φ̆(℘(a0, a1)) ≤ −nτ̌

(φ̆(℘(an, an+1)))γF(φ̆(℘(an, an+1)))−F(φ̆(℘(a0, a1))) ≤ −(φ̆(℘(an, an+1)))γnτ̌ ≤ 0.

Denoting ψn = φ̆(℘(an, an+1)), we have

(ψn)γ(F(ψn)−F(ψ0)) ≤ −(ψn)γnτ̌ ,

applying n→∞, the above equation, (3.10) and (3.11) gives.

lim
n→∞

(ψn)γ(F(ψn)−F(ψ0)) ≤ lim
n→∞

−(ψn)γnτ̌ ≤ 0

lim
n→∞

n(ψn)γ = 0. (3.12)

Now, note that from (3.12) for any value of ε > 0 ∃ n1 ∈ N such that

|n(ψn)γ − 0| < ε ∀n ≥ n1,

=⇒ |n(ψn)γ| < ε,

=⇒ (ψn) <
ε

n
1
γ

∀n ≥ n1.

consider {an} is Cauchy,

so assume m, n ∈ N 3 m > n > n1. Hence,

φ̆(℘(am, an)) ≤ φ̆(℘(am, am−1)) + φ̆(℘(am−1, am−2)) + ...+ φ̆(℘(an+1, an))

≤ ψm−1 + ψm−2 + ...+ ψn

<

∞∑
i=n

ψi ≤
∞∑
i=n

ε

n
1
γ

.

Given γ ∈ (0, 1) so, 1
γ
> 1. Consequentially, by using the P-series test,

∞∑
i=n

1

i
1
γ

is

convergent for 1
γ
> 1. Therefore, {an} is a Cauchy sequence in K. Given that K

is complete, so ∃ a ∈ K such that,
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lim
n→∞

an = a or an → a.

Since ℘(an, an+1) = ℘(bn−1, bn). Hence {bn} is Cauchy sequence in K and conver-

gent.

Assume that bn → b. By the relation ℘(an+1, bn) = ℘(K,L) ∀ n.

We conclude that ℘(a, b) = ℘(K,L). Now, suppose that b ∈ Sa. Given an is an

increasing sequence in K and an → a according to the axiom (Q3), an � a for all

n.

Suppose that b /∈ Sa. Consider the contraction condition (3.2),

F(φ̆(D(bn,Sa)))

≤F(φ̆(δ(San,Sa)))

≤F
(
φ̆

(
max

{
℘(an, a),D(an,San),D(a,Sa),

D(an),Sa) +D(a,San
2

})
− φ̆(℘(K,L)

)
− τ̌

≤F
(
φ̆

(
max

{
℘(an, a), ℘(an,San),D(a,Sa),

D(an),Sk) + ℘(a,San
2

})
− φ̆(℘(K,L)

)
− τ̌ ,

applying n→∞ on the above inequality by using an → a, bn → b and ℘(a, b) =

℘(K,L), we have

F(φ̆(D(b,Sa)))

≤ F
(
φ̆

(
max

{
0, ℘(an, a),D(an,San),D(a,Sa),

D(an),Sa) +D(a,San
2

})
− φ̆(℘(K,L)

)
− τ̌

≤ F(φ̆(℘(K,L) +D(b,Sa))− φ̆(℘(K,L)))− τ̌

≤ F(φ̆(℘(K,L) + ℘(b,Sa))− φ̆(℘(K,L)))− τ̌

F(φ̆(D(b,Sa))) ≤ F(φ̆(D(b,Sa)))− τ̌ ,

which is contradiction.

This means that b ∈ Sa, and hence, D(a,Sa) = ℘(K,L).

Hence, a is BBP of S.

3.3 Consequences

This section includes some consequences of Theorem 3.2.2. Following theorem

follows analogously by Theorem 3.2.2. Here, some results of BPP and FP for multi-

valued and self mappings in POCMS are given.
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Theorem 3.3.1.

Consider (J,�, ℘) be a POCMS. Suppose K and L are non-empty closed subset of

the MS (J, ℘) in such a way that K0 is non-empty and K,L satisfies P-property.

Assume S : K → CB(L) be a multi-valued mapping along ADF φ̆, satisfies the

following axioms,

(A1): ∃ two elements a0, a1 ∈ K0 and b0 ∈ Sa0 such that

℘(a1, b0) = ℘(K,L) and a0 � a1;

(A2): S(K0) ⊆ L0 and F(φ̆(δ(Sa,Sb))) ≤ F(φ̆(N (a, b)))− τ̌ ∀ a � b ∈ L, where

N (a,b) = max

{
℘(a,b),D(a,b)−℘(K,L),D(b,Sb)−℘(K,L),

D(a,Sb) +D(b,Sa)

2
−℘(K,L)

}

∀ (a, b) ∈ [0,+∞);

(A3): For all (a, b) ∈ L0, a � b =⇒ Sa ⊂ Sb;

(A4): If {an} is a non-decreasing sequence in K 3 an → a, then an � a ∀ n.

Then, ∃ an element a in K such that D(a,Sa) = ℘(K,L).

Proof. It follows from Theorem 3.2.2 .

Here are some corollaries, which are deduced from Theorem (3.2.2) by incorporat-

ing the self mapping.

Corollary 3.3.2.

Consider a POCMS (J,�, ℘). Assume K and L be a non-empty closed subsets of MS

(J, ℘) 3 K0 is non-empty and (K,L) satisfies the P-property. Suppose S : K→ L

is a self mapping satisfying:

(A1): ∃ two elements (a0, a1) in K0 and b0 ∈ Sa0 such that

℘(a1, b0) = ℘(K,L) and a0 � a1;
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(A2): S(K0) ⊂ L0 and F(φ̆(℘(Sa,Sb))) ≤ F(φ̆(N (a, b))) − τ̌ ∀ a � b ∈ K,

where

N (a,b) = max

{
℘(a,b), ℘(a,Sa)− ℘(K,L)− ℘(b,Sb)− ℘(K,L),

℘(a,Sb) + ℘(b,Sa)

2
− ℘(K,L)

}

and φ̆ is an ADF such that φ̆(a + b) ≤ φ̆(a) + φ̆(b),

∀ (a, b) ∈ [0,∞);

(A3): ∀ a, b ∈ K0, a � b =⇒ Sa � Sb;

(A4): If {an} is a non-decreasing sequence in K, 3 an → a, then an � a ∀ n.

so, ∃ a ∈ K such that ℘(a,Sa) = ℘(K,L).

Proof. Follows from Theorem (3.2.2)

If we consider K = L in Theorem 3.2.2 and Theorem 3.3.1 following results are

obtained.

Corollary 3.3.3.

Consider a POCMS (J,�, ℘). Suppose K is non-empty closed subset of MS J. Consider

a multi-valued F -contraction

S : K→ CB(K) along ADF φ̆ satisfies the following axioms:

(A1): ∃ two elements a0, a1 in K and bo ∈ Sa0 such that ℘(a1, b0) = 0 and a0 �

a1 = b0;

(A2): ∀ a, b ∈ K, a � b =⇒ Sa � Sb;

(A3): If {an} is a non- decreasing sequence in K 3 an → a, then an � a ∀ n.

Then, ∃ a in K such that ℘(a,Sa) = D(a,Sa) = 0. a is a fixed point in S.

Corollary 3.3.4.

Consider a POCMS, (J,�, ℘). Let K is a non-empty closed subset of a metric space

J and S : K→ K is a self mapping and φ̆ is an ADF satisfying:

(A1): ∃ two elements a0, a1 in K and bo ∈ Sa0 such that ℘(a1,Sa0) = 0 and a0 � a1;
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(A2): S satisfies F(φ̆(℘(Sa,Sb))) ≤ F(φ̆(N (a, b)))− τ̌ for all a � b in K, where

N (a, b) = max

{
℘(a, b), ℘(a,Sa), ℘(b,Sb),

℘(a,Sb) + ℘(b,Sa)

2

}

and φ̆ is an ADF such that φ̆(a + b) ≤ φ̆(a) + φ̆(l) ∀ a, b ∈ [0,∞);

(A3): ∀ a, b ∈ K, a � b =⇒ Sa � Sb;

(A4): If {an} is a non-decreasing sequence in K, 3 an → a, then an � a ∀ n. Then,

∃ a in K such that ℘(a,Sa) = 0 i.e. a is a FP of mapping S.

Following corollaries are obtained by further choosing φ̆, an identity function

φ̆(r) = r for all r ∈ (0,∞).

Corollary 3.3.5.

Consider a partially ordered metric space (J,�, ℘). Suppose K is non-empty closed

subsets of J, and S : K→ L be a self mapping satisfying:

(A1): ∃ two elements a0, a1 in K and b0 ∈ Sa0 such that ℘(a1,Sa0) = 0 and

a0 � a1;

(A2): S satisfies F(℘(Sa,Sb))) ≤ F(N (a, b)))− τ̌ ∀ a � b ∈ K, where

N (a, b) = max

{
℘(a, b), ℘(a,Sa), ℘(b,Sb),

℘(a,Sb) + ℘(b,Sa)

2

}

(A3): ∀ a, b ∈ K, a � b =⇒ Sa � Sb;

(A4): If {an} is a non-decreasing sequence in K such that an → a, then

an � a ∀ n ∈ N.

Then, ∃ an element a in K such that ℘(a,Sa) = 0 i.e. a is a FP

of the mapping S.

Example 3.3.6.

Consider J = R2 and the order (a, b) � (m, q) ⇐⇒ a ≤ m and b ≤ q, here ≤ is

usual order within R. As a result, (J,�) is a partially ordered set. Furthermore,
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(J, ℘) MS with the metric specified as:

℘ ((a1, b1) , (a2, b2)) =| a1 − a2 | + | b1 − b2 | .

Suppose K = {(−7, 0), (0,−7), (0, 5)} and L = {(−2, 0), (0,−2), (0, 0), (−2, 2), (2, 2)}

is a closed subset of J.

Consider the following calculations:

℘(K,L) = inf{℘(a, b) : a ∈ K and b ∈ L}

= inf{℘((−7, 0), (−2, 0)), ℘((−7, 0), (0,−2)),

℘((−7, 0), (0, 0)), ℘((−7, 0), (−2, 2)), ℘((−7, 0), (2, 2)),

℘((0,−7), (−2, 0)), ℘((0,−7), (0,−2)), ℘((0,−7), (0, 0)),

℘((0,−7), (0, 0)), ℘((0,−7), (−2, 2)), ℘((0,−7), (2, 2))

,℘((0, 5), (−2, 0)), ℘((0, 5), (0,−2)), ℘((0, 5), (0, 0)),

℘((0, 5), (−2, 2)), ℘((0, 5), (2, 2))}

℘(K,L) = inf{|5|+ |0|, |7|+ |2|, |7|+ |0|, |5|+ |2|, |9|+ |2|,

|2|+ |7|, |0|+ |5|, |0|+ |7|, |2|+ |9|, |2|+ |9|,

|2|+ |5|, |0|+ |7|, |0|+ |5|, |2|+ |3|, |2|+ |3|}

= inf{5, 9, 7, 7, 11, 9, 5, 7, 11, 11, 7, 7, 5, 5, 5}

=5,

and K = K0 and L = L0. Let S : K→ CB(L) is defined as,

S(a, b) =


{(0,−2), (0, 0)}, if (a, b) = (−7, 0)

{(2, 2), (−2, 2)}, if (a, b) = (0,−7)

{(−2, 2), (0, 0), (0,−2), (2, 2)}, if (a, b) = (0, 5).

As, there are two components (−7, 0), (0, 5) ∈ K0 and (0, 0) ∈ S(−7, 0) such that,

℘((0, 5), (0, 0)) = ℘(K,L) = 5 and (−7, 0) � (0, 5).
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As a result, the first condition is satisfied. Now, condition (3.2) of Theorem

3.2.2 be proven. It is straightforward to demonstrate that Sa0 is a component of

L0 ∀ a0 ∈ K.

Since “ � ” is defined in K, there are two cases, and each of them give the following

δ(K,L) = sup{℘(a, b) : a ∈ K, b ∈ L}.

Sa1 = {(0,−2), (0, 0)},Sa2 = {(2, 2), (−2, 2)},Sa3 = {(−2, 2), (0, 0), (0,−2), (2, 2)}.

Now, we calculate

δ(Sa1,Sa2) = sup{℘(a, b) : a ∈ Sa1, b ∈ Sa2}

= sup{6, 6, 4, 4}

= 6

δ(Sa1,Sa3) = sup{℘(a, b) : a ∈ Sa1, b ∈ Sa3}

= sup{6, 2, 0, 6, 4, 0, 2, 4}

= 6

δ(Sa2,Sa3) = sup{℘(a, b) : a ∈ Sa2, b ∈ Sa3}

= sup{4, 4, 6, 4, 0, 4, 6, 4}

= 6

δ(Sa,Sb) = 6.

Now

N (a, b) = max

{
℘(a, b),D(a,Sa),D(b,Sb),

D(a,Sb) +D(b,Sa

2
)

}

℘(a, b) = (−7, 0), (0, 5)

= | − 7− 0|+ |0− 5|

= |7|+ |5|

= 12

D(a,Sa) = (−7, 0), (0, 0)

= | − 7− 0|+ |0− 0|
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= |7|+ |0|

= 7

D(b,Sb) = (0, 5), (2, 2)

= |0− 2|+ |5− 2|

= |2|+ |3|

= 5

1

2
D(a,Sb) +D(b,Sa) =

1

2
D(a,Sb) +D(b,Sa)

=
1

2
[(D(−7, 0), (0,−2)) + (D(0, 5), (0,−2))]

=
1

2
[|7 + 2|+ |0 + 7|]

=
1

2
[9 + 2]

= 8

N (a, b) = max{12, 7, 5, 8}

N (a, b) = 12

and ℘(K,L) = 5.

Suppose F is defined as F(α) = lnα + α and τ̌ = 1.

For φ̆(q) = 2q, we get φ̆(δ(Sa,Sb)) = 2× 6 = 12, also,

φ̆(N (a, b))− φ̆(℘(K,L)) = 2(12)− 2(5) = 24− 10 = 14.

Thus,

φ̆(δ(Sa,Sb))

φ̆(N (a, b))− φ̆(℘(K,L))
eφ̆(δ(Sa,Sb))−(φ̆(N (a,b))−φ̆(℘(K,L))

=
12

14

(
e12−14

)
=

12

14
e−2 < e−1.

So, S meets the requirement (3.2). One can easily verify (Q2) and (Q3). Hence,

all the hypotheses of the Theorem (3.2.2) are fulfilled. It’s also clear that (0, 5) is

BPP of S, i.e.

D((0, 5),S(0, 5)) = ℘(K,L) = 5

.
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Example 3.3.7.

Suppose J = {0, 1, 2, 3...} is a partial order set having usual order � and suppose

℘ : J× J→ R be given as

℘(a, b) =

0; a = b,

a + b; a 6= b.

Then (J, ℘) is a complete metric space. Suppose S : J→ J be defined as,

S(a) =

0 if a = 0,

a− 1 if a 6= 0.

So, we show how S is F -contraction, with F(α) = lnα + α and τ̌ = 1.

Let us consider the following five cases:

Case 1: Assume a > b along b 6= 0, then

℘(Sa,Sb) = ℘(a− 1,b− 1) = a + b− 2

N (a,b) = max

{
℘(a,b), ℘(a,Sa), ℘(b,Sb),

℘(a,Sa) + ℘(b,Sb)

2

}
= max

{
℘(a,b), ℘(a, a− 1), ℘(b,b− 1),

℘(a,b− 1) + ℘(b, a− 1)

2

}
= max {a + b, 2a− 1, 2b− 1, a + b, a + b− 1}

= 2a− 1

℘(Sa,Sb)

N (a,b)
e℘(Sa,Sb)−N (a,b) =

a + b− 2

2a− 1
ea+b−2−(2a−1)

=
a + b− 2

2a− 1
e−a+b−1 < e−1.

Case 2: If b > a and a 6= 0, then

℘(Sa,Sb) = ℘(a− 1,b− 1) = a + b− 2

N (a,b) = max

{
℘(a,b), ℘(a,Sa), ℘(b,Sb),

℘(a,Sa) + ℘(b,Sb)

2

}
= max

{
℘(a,b), ℘(a, a− 1), ℘(b,b− 1),

℘(a,b− 1) + ℘(b, a− 1)

2

}
= max {a + b, 2a− 1, 2b− 1, a + b, a + b− 1}

= 2a− 1
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℘(Sa,Sb)

N (a,b)
e℘(Sa,Sb)−N (a,b) =

a + b− 2

2a− 1
ea+b−2−(2b−1)

=
a + b− 2

2b− 1
ea−b−1 < e−1.

Case 3: If a > b and b = 0, then

℘(Sa,Sb) = ℘(a− 1, 0) = a− 1

N (a,b) = max

{
℘(a,b), ℘(a,Sa), ℘(b,Sb),

℘(a,Sa) + ℘(b,Sb)

2

}
= max

{
℘(a, 0), ℘(a, a− 1), ℘(0, 0),

℘(a, 0) + ℘(0, a− 1)

2

}
= max

{
a, 2a− 1, 0, a− 1

2

}
= 2a− 1

℘(Sa,Sb)

N (a,b)
e℘(Sa,Sb)−N (a,b) =

a− 1

2a− 1
ea−1−(2a−1)

=
a− 1

2a− 1
ea < e−1.

Case 4: If b > a and a = 0, then

℘(0,Sb) = ℘(0,b− 1) = b− 1

N (a,b) = max

{
℘(a,b), ℘(a,Sa), ℘(b,Sb),

℘(a,Sa) + ℘(b,Sb)

2

}
= max

{
℘(0,b), ℘(0, a− 0), ℘(b,b− 1),

℘(0,b− 1) + ℘(b, 0)

2

}
= max

{
a, 2a− 1, 0, a− 1

2

}
= 2b− 1

℘(Sa,Sb)

N (a,b)
e℘(Sa,Sb)−N (a,b) =

b− 1

2b− 1
eb−1−(2b−1)

=
b− 1

2b− 1
eb < e−1.

Case 5: If b = a, then

℘(Sa,Sb) = ℘(a− 1, a− 1) = 0

N (a,b) = max

{
℘(a,b), ℘(a,Sa), ℘(b,Sb),

℘(a,Sa) + ℘(b,Sb)

2

}
= max

{
℘(0, ℘(a, a− 1), ℘(a, a− 1),

℘(a, a− 1) + ℘(a, a− 1)

2

}
= max {0, 2a− 1, 2a− 1, 2a− 1}

= 2a− 1

℘(Sa,Sb)

N (a,b)
e℘(Sa,Sb)−N (a,b) =

0

2a− 1
e0−(2a−1) < e−1.
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Hence, all the conditions of Corollary (3.3.5) are met and 0 is a fixed point of S.

3.4 Applications

In this section, two applications of the main results are provided.

3.4.1 Application Regarding Equation of Motion

Suppose ℘ : C[0, 1]× C[0, 1]→ R is a MS defined as

℘(a, b) =‖ a− b ‖∞= max
t̀∈[0,1]

|a(̀t)− b(t̀)|.

and (C[0, 1], ℘) is a CMS.

A body with mass m started its motion at time t̀ = 0 and distance x. A force f

act on it in the direction x and its velocity increases from 0 to 1 instantly after

t̀ = 0. The problem is to explore a function for position in terms of time t̀.

The governing equation for this problem is

m
d2x

dt̀2
= f(t̀, x(t̀)) together with x(0) = 0, x′(1) = 0, (3.13)

here f is a real valued function with domain in [0, 1]× R.

Green′s function of (3.13) is ;

G(t̀, ξ) =

(−1 + ξ)t̀, t̀ ≤ ξ

−ξ(1− t̀), t̀ ≥ ξ.

Assume φ̆ : R× R→ R is function along subsequent constraints:

1. | f(t̀, q)−f(t̀, r) |≤ max
q,r∈R

| q−r | ∀ t̀ ∈ [0, 1] having q, r ∈ R with φ̆(q, r) ≥ 0;



BPP and its Applications 35

2. ∃ x0 ∈ C[0, 1] 3 φ̆(x0(t,Sx0(t̀)) ≥ 0 ∀ t̀ ∈ [0, 1], where

S is self mapping on [0, 1].

Theorem 3.4.1. Let J = C[0, 1]. Consider a mapping S : C([0, 1])→ C([0, 1])

defined as

Sx(t̀) =

∫ 1

0

G(t̀, ξ)f(ξ, x(ξ))dξ, t̀ ∈ [0, 1],

satisfying the above assumptions (1) and (2). Then the equation (3.13) has a

solution.

Proof. Let x ∈ C([0, 1]). is a solution of integral equation,

x(t̀) =

∫ 1

0

G(t̀, ξ)f(ξ, x(ξ))dξ, t̀ ∈ [0, 1].

Let x, y ∈ C[0, 1] in order that φ̆(x(t̀), y(t̀)) ≥ 0 ∀ t̀ ∈ [0, 1].

Suppose,

| S(x(t̀))− S(y(t̀)) | =
∣∣∫ 1

0

G(t̀, ξ)f(ξ, x(ξ))dξ −
∫ 1

0

G(t̀, ξ)f(ξ, y(ξ))dξ
∣∣

| S(x(t̀))− S(y(t̀)) | ≤
∫ 1

0

G(t̀, ξ) | f(ξ, x(ξ))− f(ξ, y(ξ)) | dξ

≤
∫ 1

0

G(t̀, ξ) max | x(ξ)− y(ξ) | dξ

≤ ‖x− y‖∞ sup
t̀∈[0,1]

{∫ 1

0

G(t̀, ξ)dξ

}
.

As

∫ 1

0

G(t̀, ξ)dξ =

∫ 1

0

(t̀− 1)ξdξ +

∫ 1

t̀

(ξ − 1)t̀dξ

= (t̀− 1)ξdξ|t̀0 + t̀

(
ξ2

2
− ξ
)
|t̀1

= (t̀− 1)
t̀2

2
+ t̀

(
−1

2

)
− t̀3

2
+ t̀2
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=
t̀2

2
− t̀

2
∀t̀ ∈ [0, 1].

So, sup
t̀∈[0,1]

{∫ 1

0

G(t̀, ξ)dξ

}
=

1

8
it follows that ‖Sx− Sy‖∞ ≤ 1

8
‖x− y‖∞.

Taking natural log on both sides

ln(‖Sx− Sy‖∞) ≤ ln(‖x− y‖∞)− ln 8,

ln 8 + ln(‖Sx− Sy‖∞) ≤ ln(‖x− y‖∞).

Suppose that the function F : (0,∞)→ R described as F(x) = ln x.

Since ln 8 + F(℘(Sx,Sy)) ≤ F(℘(x, y)).

And F(℘(x, y)) ≤ F(N (x, y)) =⇒ ln 8 + F(℘(Sx,Sy)) ≤ F(N (x, y)).

Mapping S is F -contraction. According to Corollary (3.3.5) S possess fixed point

x in C2([0, 1]), such that

S(x(t̀) = x(t̀)

=

∫ 1

0

G(t̀, ξ)f(ξ, x(ξ))dξ, , t̀ ∈ [0, 1].

which is the solution to (3.14).

3.4.2 Application Regarding Fractional Calculus

℘ : C([0, 1])× C([0, 1])→ R is a MS define as

℘(a, b) =‖ a− b ‖∞= max
t̀∈[0,1]

|a(t̀)− b(t̀)|.

The Caputo fractional derivative of α order of continuous function q : [0,+∞)→ R

described as:

νDα(q(t̀)) =
1

Γ(b− α)

∫ t̀

0

(t̀− ξ)b−α−1j(b)(ξ)dξ (b− 1 < α < n, b = [α] + 1).
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Here Γ represents gamma function and α represents the integral component of

real integer. We illustrate the existence of a solution to a non-linear fractional

differential equation in this section.

νDα(a(t̀) + f(t̀, a(t̀)) = 0 (0 ≤ t̀ ≤ 1, 1 < α ≤ 2), (3.14)

using a(0) = a(1) = 0 where f is a real valued function with domain in [0, 1]× R.

Green’s function [36] of Equation (3.14), is defined as

G(t̀, ξ) =


[t̀(1−ξ)α−1−(t̀−ξ)α−1

Γ(α)
, 0 ≤ ξ ≤ t̀ ≤ 1,

[t̀(1−ξ)α−1

Γ(α)
, 0 ≤ t ≤ ξ ≤ 1.

Assume the following conditions are met:

1. | f(t̀, a)− f(t̀, b) |≤ e−τ̌J(a, b) ∀ t̀ ∈ [0, 1] also a, b ∈ R, such that

J(a, b) = max

{
| a− b |, | a− Sa |, | b− Sb |, | a− Sb | + | b− Sa |

2

}
;

2. ∃ a0 ∈ C[0, 1] such that φ̆(a0(t̀),Sa0(t̀) ≥ 0 ∀ t̀ ∈ [0, 1].

Theorem 3.4.2.

Consider a mapping S : C[0, 1]→ C[0, 1] defined as

S(a(t̀)) =

∫ 1

0

G(t̀, ξ)f(ξ, a(ξ))dξ,

satisfying the above assumptions (1) and (2). Then the fractional differential

equation (3.14) has a solution.

Proof. It is obvious that the solution of (3.14) is equivalent to,

a(t) =

∫ 1

0

G(t̀, ξ)f(ξ, a(ξ))dξ for all t̀ ∈ [0, 1].

Consider

| Sa(y)− Sb(y) | =
∣∣∣ ∫ 1

0

G(y, ξ)f (ξ, a(ξ)) dξ −
∫ 1

0

G(y, ξ)f (ξ,b(ξ)) dξ
∣∣∣
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≤
∫ 1

0

|G(y, ξ) (f (ξ, a(ξ))− f (ξ,b(ξ))) dξ|

≤
∫ 1

0

||G(y, ξ)|| (f (ξ, a(ξ))− f (ξ,b(ξ))) |dξ

≤
∫ 1

0

|G(y, ξ)|e−τ̌J(a,b)dξ

≤
∫ 1

0

|G(y, ξ)|e−τ̌ max

{
| a− b |, | a− Sa |, | b− Sb |, | a− Sb | + | b− Sa |

2

}
dξ

≤ e−τ̌ max

{
℘(a,b), ℘(a,Sa), ℘(b,Sb),

℘(a,Sb) + ℘(b,Sa)

2

}∫ 1

0

(G(y, ξ)) dξ

≤ e−τ̌ max

{
℘(a,b), ℘(a,Sa), ℘(b,Sb),

℘(a,Sb) + ℘(b,Sa)

2

}
× sup
y∈[0,1]

(∫ 1

0

(G(y, ξ)) dξ

)
.

Since ∫ 1

0

G(y, ξ)dξ =
1

γΓ(γ)

[
tγ−1 − tγ

]
y ∈ [0, 1].

Then

sup
y∈[0,1]

(∫ 1

0

(G(y, ξ)) dξ

)
≤ 1.

As a result of this

| Sa(y)− Sb(y) |≤ e−τ̌N (a, b)

where

N (a, b) = max

{
℘(a, b), ℘(a,Sa), ℘(b,Sb),

℘(a,Sa) + ℘(b,Sa)

2

}
.

Hence , ∀ a, b ∈ J and ∀ y ∈ [0, 1],

we have

℘(Sa− Sb) ≤
(
e−τ̌N (a, b)

)
.

Using logarithm on both sides, we have

ln
(
℘(Sa− Sb) ≤ ln

(
e−τ̌N (a, b)

))
− τ̌ .

Let’s now suppose that the function F : (0,+∞)→ (0,+∞) identified as F(y) =

ln y.

τ̌ + F(℘(Sa,Sb)) ≤ F(℘(N (a, b))).
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Hence, mapping S known as F -contraction. According to the Corollary (3.3.5)

S having fixed point a in C([0, 1]), such that

S(a(t̀) = a(t̀)

=

∫ 1

0

G(t̀, ξ)f(ξ, a(ξ))dξ. ∀ t̀ ∈ [0, 1]

which is the solution to (3.14)



Chapter 4

Best Proximity Point for

Multi-valued

(αF , b, φ̆)-Contractions on

Partially Ordered b-Metric Spaces

This chapter provides certain fixed point results generalizing the result of Jain

et al. [23]. This task is achieved by using b-metric space as the base space and

incorporating α function in the contraction. Two examples are provided to justify

the required axioms of the theorems. For application purpose existence of the

solution to a fractional differential equation is established using the proven result.

4.1 Preliminaries

Following notations and assumptions are used throughout this chapter.

Suppose J is a non-empty set and (J, ℘b,�) is a partially ordered bMS. Let K and

L be non-empty subsets of the bMS and CB(J) represents the family of closed and

bounded non-empty subsets of J. Then;

40
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D(a,L) = inf{℘b(a, b) : b ∈ L ∀ a ∈ J}

δ(K,L) = sup{℘b(a, b) : a ∈ K and b ∈ L}

℘b(K,L) = inf{℘b(a, b) : a ∈ K and b ∈ L}

K0 ={a ∈ K : ℘b(a, b) = ℘b(K,L) for some b ∈ L}

L0 ={b ∈ L : ℘b(a, b) = ℘b(K,L) for some a ∈ K}.

Definition 4.1.1. α-Admissible Mapping

A mapping S : K → CB(K) is said to be α-admissible mapping for α : K × K →

[0,∞), such that

α(a0, a1) ≥ 1 =⇒ α(v,w) ≥ 1,

for v ∈ Sa0 and w ∈ Sa1. [37]

Definition 4.1.2. Multivalued (αF , b, φ̆)-Contraction

Let (J, ℘b) be a partially ordered bMS and K and L are two non-empty closed

subsets of J such that Sa0 ⊂ L0, a0 ∈ L0. A mapping S : K → CB(L) is called

(αF , b, φ̆)-contraction with φ̆ an ADF if it satisfies

τ̌ + F
(
α(a0, a1)(b2(φ̆((δ (Sa,Sb))

)
≤ F

(
φ̆ (N (a,b))− φ̆ (℘b (L,M))

)
∀ a ≤ b ∈ L, (4.1)

where α : J× J→ [0,∞) and

N (a, b) = max

{
℘b(a, b),D(a,Sa),D(b,Sb),

D(a,Sb) +D(b,Sa)

2b

}
.

Also φ̆(a, b) ≤ φ̆(a) + φ̆(b) ∀ a, b ∈ [0,+∞).

Now, by choosing F(a) = ln a, in (4.1), the contraction condition takes the follow-

ing form

τ̌ + ln
(
α(a0, a1)(b2(φ̆ (δ (Sa,Sb))

)
≤ ln

(
φ̆ (N (a, b))− φ̆ (℘b((L,M))

)
⇔ ln eτ̌ + ln

(
(α(a0, a1)(b2(φ̆ (δ (Sa.Sb))

)
≤ ln

(
φ̆ (N (a, b))− φ̆ (℘b((L,M))

)
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⇔ ln(α(a0, a1)(b2(φ̆ (δ (Sa,Sb)) ≤ ln

{
φ̆ (N (a, b))− φ̆ (℘b(a, b))

eτ̌

}
⇔ (α(a0, a1)(b2(φ̆ (δ (Sa,Sb)) ≤ 1

eτ̌

(
φ̆ (N (a, b))

)
− φ̆(℘b(L,M))) ∵

1

eτ̌
= ν

⇔ (α(a0, a1)(b2(φ̆ (δ (Sa,Sb)) ≤ ν
(
φ̆ (N (a, b))

)
− φ̆(℘b(L,M))).

4.2 Main Theorem

Theorem 4.2.1.

Consider a partially ordered complete metric space (J,�, ℘b). Suppose K and L are

non-empty closed subset of the MS (J, ℘b) in such a way that K0 is non-empty and

(K,L) possesses P-property. Let S : K→ CB(L) be an α-admissible multivalued

(αF , b, φ̆)-contraction such that the conditions given below are satisfied:

(Q1) . ∃ a0, a1 ∈ K such that α(a0, a1) ≥ 1 =⇒ α(v,w) ≥ 1 for v ∈ Sa0, w ∈ Sa1

(Q2) . ∃ two elements a0, a1 ∈ K0 and b0 ∈ Sa0 such that ℘b(a1, b0) = ℘b(K,L)

with a0 � a1

(Q3) . ∀ a, b ∈ K0 with a � b =⇒ Sa ⊂ Sb;

(Q4) . If {an} is a non decreasing sequence in K such that an → a, then an �

a ∀ n.

Then, ∃ a ∈ K such that D(a,Sa) = ℘b(K,L).

Proof.

By using condition (Q1) and α-admissibility of S, we have

α(an, an+1) ≥ 1 ∀ n = 0, 1, 2...

According to (Q2), ∃ a0, a1 in K0 and b0 ∈ Sa0 such that ℘b(a1, b0) = ℘b(K,L)

and a0 ≤ a1

(Q3) =⇒ Sa0 ⊂ Sa1, so ∃ b1 ∈ Sa1 with ℘b(a2, b1) = ℘b(K,L) such that
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a1 � a2. Generally, for each n ∈ N, ∃ an+1 ∈ K0 and bn ∈ San such that

℘b(an+1, bn) = ℘b(K,L). Thus,

℘b(an+1, bn) = D(an+1,San) = ℘b(K,L), ∀ n ∈ N (4.2)

where a0 � a1 � a3 � ... � an � an+1...

If there exist n0 such that an0 = an0+1 then ℘b(an0+1, bn0) = D(an0 ,San0) =

℘b(K,L), then an0 is the best proximity point of S and hence we are done with

proof. Assume that an 6= an+1 ∀ n. Since ℘b(an+1, bn) = ℘b(K,L) and ℘b(an, bn−1) =

℘b(K,L) and (K,L) has the P-property

℘b(an+1, an) = ℘b(bn, bn−1). ∀ n ∈ N. (4.3)

Given an−1 ≺ an, so

F(b2(φ̆(℘b(an, an+1))) ≤ τ̌ + F(α(an, an+1)(b2(φ̆(℘b(an, an+1)))

= τ̌ + F(α(an, an+1)(b2(φ̆(℘b(bn−1,bn)))

≤ F(α(an, an+1)(b2(φ̆(δ(San−1,San)))

≤ F(φ̆(N (an−1, an))− φ̆(℘b(K,L)))− τ̌ . (4.4)

Now

N (an−1, an) = max

{
℘b(an−1, an),D(an−1,San−1),D(an,San),

D(an−1,San) +D(an,San−1)

2b

}
≤ max

{
℘b(an−1, an), ℘(an−1,bn−1), ℘(an,bn),

℘(an−1,bn) + ℘(an,bn−1)

2b

}
≤ max

{
℘b(an−1, an), (b℘b(an−1,bn−2) + ℘b(bn−2,bn−1)), (b℘b(an,bn−1) + ℘b(bn−1,bn)),

b℘b(an−1,bn−2) + b2℘b(bn−2,bn−1) + b2℘b(bn−1,bn) + ℘b(an,bn−1)

2b

}
≤ max

{
℘b(an−1, an), (b℘b(an−1,bn−2) + ℘b(bn−2,bn−1)), (b℘b(an,bn−1) + ℘b(bn−1,bn)),

b℘b(an−1,bn−2) + b2℘b(bn−2,bn−1) + b2℘b(bn−1,bn) + b℘b(an,bn−1)

2b

}
≤ max

{
℘b(an−1, an), (b℘b(K,L) + b℘b(an−1, an) , (b℘b(K,L) + b℘b(an, an+1) ,

℘b(an, an+1) + b℘b(bn−2,bn−1) + b℘b(bn−1,bn) + ℘b(an,bn−1)

2

}
≤ max {℘b(an−1, an), b(℘b(K,L) + ℘b(an−1, an)), b(℘b(K,L) + ℘b(an, an+1)),
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b(℘b(K,L) + ℘b(an−1, an)) + b(℘b(an, an+1) + ℘b(K,L))

2

}
≤ max

{
℘b(K,L) + ℘b(an−1, an), ℘b(K,L) + b(℘b(an, an+1))

}
.

Using Equation (4.4) =⇒

F(b2(φ̆(℘b(an, an+1) ≤ F(φ̆max

{
b(℘b(K,L) + ℘b(an−1, an)), b(℘b(K,L) + ℘b(an, an+1))

}
− φ̆(b(℘b(K,L)))− τ̌ . (4.5)

If ℘b(an, an+1) > ℘b(an−1, an) from (4.5) we have

F(b2(φ̆ (℘(an, an+1))) ≤ F(b(φ̆(℘b(K,L)) + (b (℘b(an, an+1)))− (b(φ̆(℘b(K,L)))− τ̌

F(b2(φ̆(℘(an, an+1))) ≤ F(b(φ̆(℘(an, an+1)))− τ̌ ,

which leads to contradiction. So,

℘b(an, an+1) ≤ ℘b(an−1, an), (4.6)

since, the sequence {℘b(an, an+1)} is monotonically, non increasing and bounded

below, so, ∃ s ≥ 0,

lim
n→∞

℘b(an, an+1) = s ≥ 0. (4.7)

Let lim
n→∞

℘b(an, an+1) = s ≥ 0 using Equation (4.6), Equation (4.5) becomes

(b2(φ̆(℘b(an, an+1)))) ≤ (b(φ̆(℘b(an−1, an))))− τ̌

F(b(φ̆(℘b(an, an+1)))) ≤ F(φ̆(℘b(an−1, an))))− τ̌ .

Take (φ̆(℘b(an, an+1)) = ψn and subsituting in above equation.

F(b(ψn) ≤ F(ψn−1))− τ̌ .

Iteratively,
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⇒ F(bn(ψn) ≤ F(bn−1(ψn−1)− τ̌ ≤ F(bn−2(ψn−2)− 2τ̌ .... ≤ F(ψ0)− nτ̌ . (4.8)

=⇒ lim
n→∞

F(bn(ψn)) = −∞

=⇒ lim
n→∞

bn(ψn)) = 0. by(F2) (4.9)

Using (F3), ∃ γ ∈ (0, 1) such that,

=⇒ lim
n→0

(bnψn)γF(bnψn) = 0 ∀ n ∈ N.

(4.8) =⇒ lim
n→∞

(bnψn)γ(F(bnψn)−F(ψ0)) ≤ lim
n→∞

(bnψn)γnτ̌ ≤ 0. (4.10)

0 ≤ lim
n→∞

(bψn)γnτ̌ ≤ 0.

Now, as τ̌ > 0, we have

lim
n→∞

(bψn)γn = 0.

So, ∃ n1 ∈ N such that

(bnψn)γ n ≤ 1 ∀ n ≥ n1

=⇒ bnψn ≤
1

n
1
γ

. (4.11)

We have to show that {an} is Cauchy.

So, assume n,m ∈ N such that n > m ≥ n1 and b ≥ 1. Hence, by triangular

inequality,

φ̆(℘b(an, am)) ≤ b(φ̆(℘b(an, an+1))) + b(φ̆(℘b(an+1, am)))

≤ b(φ̆(℘b(an, an+1)) + b2(φ̆(℘b(an+1, an+2)) + b2(φ̆(℘b(an+2, am))

≤ b(φ̆(℘b(an, an+1)) + b2(φ̆(℘b(an+1, an+2)) + ...+ bm−n(φ̆(℘b(am−1, am)).

(4.12)



(αF , b, φ̃)-Contraction 46

Equation (4.12)

φ̆(℘b(an, am)) ≤ bψn + b2ψn+1 + b3ψn+2...+ bm−n ψm

=
m−1∑
i=n

bi−n+1(φ̆(℘b(ai, ai+1)))

≤
∞∑
i=n

bi(φ̆(℘b(ai, ai+1)))

≤
∞∑
i=n

bi(ψi)

=⇒ φ̆(℘b(an, am)) ≤
∞∑
i=n

1

i
1
γ

.

Given γ ∈ (0, 1) so 1
γ
> 1. Consequently, by using the P-series test

∞∑
i=n

1

i
1
γ

is

convergent for 1
γ
> 1. Therefore, {an} is a Cauchy sequence in K. Given that, K

is complete so ∃ a ∈ K such that

lim
n→∞

an = a or an → a.

Since ℘b(an, an+1) = ℘b(bn−1, bn). The sequence {bn} in K is Cauchy and then

convergent.

Assume that bn → b. By the relation ℘b(an+1, bn) = ℘b(K,L) ∀ n.

We conclude that ℘b(a, b) = ℘b(K,L). Now, suppose that b ∈ Sa. Given {an} is

an increasing sequence in K and an → a according to the axiom (Q3), an � a for

all n ∈ N.

Suppose b /∈ Sa. Consider the contraction condition (4.1)

F(b2(φ̆(D(bn,Sa))) ≤ F(b2(φ̆(δ(San,Sa)))

≤ F
(
φ̆

(
max

{
℘b(an, a),D(an,San),D(a,Sa),

D(an),Sa) +D(a,San)

2b

}))
−

φ̆(℘b(K,L)

)
−τ̌

≤ F
(
φ̆

(
max

{
(℘b(an, a)),D(an,San)),D(a,Sa)),

D(an,Sk) + ℘(a,San)

2b

})
−

φ̆(℘b(K,L)

)
−τ̌

applying n→∞ on the above inequality by using an → a, bn → b and ℘b(a, b) =

℘b(K,L) we have
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F(b2(φ̆(D(b,Sa)))

≤ F
(
φ̆

(
max

{
0,(℘(an, a)), (D(an,San)), (D(a,Sa)),

D(an),Sa) +D(a,San
2b

})
−

φ̆(℘b(K,L))

)
−τ̌

≤ F(φ̆(℘b(K,L)) + (D(b,Sa)))− φ̆(℘b(K,L)))− τ̌

≤ F(φ̆(℘b(K,L)) + φ(D(b,Sa)))− φ̆(℘b(K,L)))− τ̌

=⇒ F(b2(φ̆(D(b,Sa))) ≤ F(φ̆(D(b,Sa)))− τ̌ ,

which is a contradiction.

This means that b ∈ Sa, and hence, D(a,Sa) = ℘b(K,L). This implies a is the

BPP of S.

Theorem 4.2.2.

Consider a POCMS (J,�, ℘b). Suppose K and L are non-empty closed subset of MS

(J, ℘b) in such a way that K0 is non-empty and (K,L) satisfies P-property. Let

S : K → CB(L) be an α-admissible multivalued (αF , b, φ̆)-contraction such that

the conditions given below are satisfied:

(A1). ∃ a0, a1 ∈ K such that α(a0, a1) ≥ 1 =⇒ α(v,w) ≥ 1 for v ∈ Sa0, w ∈ Sa1;

(A2). There are two elements a0, a1 ∈ K0 and b0 ∈ Sa0 such that

℘b(a1, b0) = ℘b(K,L) and a0 � a1;

(A3). S(K)0 ⊆ L0 and F
(
α(a0, a1)(b2(φ̆((δ (Sa,Sb))

)
≤ F

(
φ̆ (N (a,b))− φ̆ (℘b (L,M))

)
−

τ ∀ a ≤ b ∈ L, where α : J× J→ [0,∞) and

N (a,b) = max

{
℘b(a,b),D(a,b)−℘b(K,L),Db(b,Sb)−℘b(K,L),

D(a,Sb) +D(b,Sa)

2b
−℘b(K,L)

}

∀ (a, b) ∈ [0,+∞);

(A4). ∀ a, b ∈ L0, a � b =⇒ Sa ⊂ Sb;

(A5). If {an} is a non-decreasing sequence in K such that an → a, then

an � a, ∀ n.

Then, ∃ an element a in K such that Db(a,Sa) = ℘b(K,L).
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Proof. It follows from Theorem 4.2.1.

Here are some corollaries, which are deduced from Theorem 4.2.1 by incorporating

the self mapping.

Corollary 4.2.3.

Consider a POCMS (J,�, ℘b). Suppose K and L are non-empty closed subsets of

MS (J, ℘b) such that K0 is non-empty and (K,L) satisfies the P-property. Let

S : K → L be α-admissible single-valued mapping (αF , b, φ̆)-contraction such

that the conditions given below are satisfied:

(A1). ∃ a0, a1 ∈ K such that α(a0, a1) ≥ 1 =⇒ α(v,w) ≥ 1 for v ∈ Sa0, w ∈ Sa1;

(A2). ∃ two elements a0, a1 in K0 and bo ∈ Sa0 such that

℘b(a1, b0) = ℘b(K,L) and a0 � a1;

(A3). ∀ , a, b ∈ K0, a � b =⇒ Sa � Sb;

(A4). If {an} is a non decreasing sequence in K such that an → a, then an ≤ a ∀ n.

so, ∃ a ∈ K such that ℘b(a,Sa) = ℘b(K,L).

Proof. Follows from Theorem 4.2.1 .

Similarly, if we consider K = L in Theorems 4.2.1 and Theorem 4.2.2, following

results are obtained.

Corollary 4.2.4.

Consider a POCMS (J,�, ℘b). Suppose K is non-empty closed subset of MS J. Let

S : K→ CB(K) be an α-admissible multi-valued (αF , b, φ̆)-contraction such that

the conditions given below are satisfied:

(A1). ∃ a0, a1 ∈ K such that α(a0, a1) ≥ 1 =⇒ α(v,w) ≥ 1 for v ∈ Sa0, w ∈ Sa1;

(A2). ∃ two elements a0, a1 in K and bo ∈ Sa0 such that ℘b(a1, b0) = 0 and

a0 � a1 = b0;
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(A3). ∀ a, b ∈ K, a � b =⇒ Sa � Sb;

(A4). If {an} is a non decreasing sequence in K such that an → a, then an � a ∀

n ∈ N

Then, ∃ a in K such that ℘b(a,Sa) = D(a,Sa) = 0. a is FP of mapping S.

Corollary 4.2.5.

Consider a POCMS (J,�, ℘b). Let K be a non-empty closed subset of a MS J. Let

S : K→ K be an α admissible single-valued (αF , b, φ̆)-contraction in such a way

that the following axioms are satisfies:

(A1). ∃ a0, a1 ∈ K such that α(a0, a1) ≥ 1 =⇒ α(v,w) ≥ 1 for v ∈ Sa0, w ∈ Sa1;

(A2). ∃ two elements a0, a1 in K and b0 ∈ Sa0 such that ℘b(a1,Sa0) = 0 and

a0 ≤ a1;

(A3). ∀ a, b ∈ K, a � b =⇒ Sa ≤ Sb;

(A4). If {an} is a non decreasing sequence in K such that an → a, then an � a for

all n ∈ N

Then, ∃ a in K such that ℘b(a,Sa) = 0 i.e. a is a FP of the mapping S.

Following corollary is obtained by further choosing φ̆, an identity function

φ̆(r) = r, ∀ r ∈ (0,∞).

Corollary 4.2.6.

Consider a partially ordered (J,�, ℘b). Suppose K is non-empty closed subsets of

J. Let S : K→ K be an α-admissible single-valued (αF , b)-contraction satisfying

the following axioms:

(A1). ∃ a0, a1 ∈ K such that α(a0, a1) ≥ 1 =⇒ α(v,w) ≥ 1 for v ∈ Sa0, w ∈ Sa1

(A2). ∃ two elements a0, a1 in K and b0 ∈ Sa0 such that ℘b(a1,Sa0) = 0 and

a0 � a1;
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(A3). ∀, a, b ∈ K, a � b =⇒ Sa � Sb;

(A4). If {an} is a non decreasing sequence in K such that an → a, then an � k

∀ n ∈ N.

Then, ∃ a in K such that ℘b(a,Sa) = 0 i.e. a is a FP of the mapping S

Example 4.2.7.

Consider J = R2 and assume the order (a, b) � (m, q)⇐⇒ a ≤ m and b ≤ q, here

≤ is the usual order within R. As a result, (J,�) partially ordered set. Further-

more, (J, ℘b) is a complete bMS, b ≥ 1 with the metric specified as

℘b ((a1, b1) , (a2, b2)) = (| a1 − a2 |)2 + (| b1 − b2 |)2 .

Next, define α-admissible α : K×K→ [0,∞) as

α(a, b) = {(a1 + b1) + (a2 + b2) + 3}

Suppose

K = {(−7, 0), (0,−7), (0, 5)}

and

L = {(−2, 0), (0,−2), (0, 0), (−2, 2), (2, 2)}

is a closed subset of J. consider the following calculations

℘b(K,L) = inf{℘b(a, b) : a ∈ K and b ∈ L}

= inf{℘b((−7, 0), (−2, 0)), ℘b((−7, 0), (0,−2)),

℘b((−7, 0), (0, 0)), ℘b((−7, 0), (−2, 2)), ℘b((−7, 0), (2, 2)),

℘b((0,−7), (−2, 0)), ℘b((0,−7), (0,−2)), ℘b((0,−7), (0, 0)),

℘b((0,−7), (0, 0)), ℘b((0,−7), (−2, 2)), ℘b((0,−7), (2, 2))

,℘b((0, 5), (−2, 0)), ℘b((0, 5), (0,−2)), ℘b((0, 5), (0, 0)),

℘b((0, 5), (−2, 2)), ℘b((0, 5), (2, 2))}

℘b(K,L) = inf{|5|2 + |0|2, |7|2 + |2|2, |7|2 + |0|2, |5|2 + |2|2, |9|2 + |2|2,
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|2|2 + |7|2, |0|2 + |5|2, |0|2 + |7|2, |2|2 + |9|2, |2|2 + |9|2,

|2|2 + |5|2, |0|2 + |7|2, |0|2 + |5|2, |2|2 + |3|2, |2|2 + |3|2}

= inf{25, 53, 49, 29, 85, 53, 25, 49, 85, 85, 29, 49, 25, 13, 13}

= 13

and K = K0 and K = K0. Let S : K→ CB(L) is defined as

S(a, b) =


{(0,−2), (0, 0)} if(a, b) = (−7, 0)

{(2, 2), (−2, 2)} if(a, b) = (0,−7)

{(−2, 2), (0, 0), (0,−2), (2, 2)} if(a, b) = (0, 5).

As, there are two elements that are (−7, 0), (0, 5) ∈ K0 and (0, 0) ∈ S(−7, 0) such

that

℘b((0, 5), (0, 0)) = ℘b(K,L) = 25 and (−7, 0) ≤ (0, 5)

As a result, the first condition is satisfied.

Now, condition (4.1) of Theorem 4.2.1 must be satisfied. It is straightforward to

demonstrate that Sa0 is element of L0 ∀ a0 ∈ K.

Since “ � ” is defined in K, there are two cases, and each of those given below

δ(K,L) = sup{℘b(a, b) : a ∈ K, b ∈ L}

Sa1 = {(0,−2), (0, 0)},Sa2 = {(2, 2), (−2, 2)},Sa3 = {(−2, 2), (0, 0), (0,−2), (2, 2)}

Now we calculate

δ(Sa1,Sa2) = sup{℘b(a, b) : a ∈ Sa1, b ∈ Sa2}

= sup{20, 20, 8, 8}

= 20

δ(Sa1,Sa3) = sup{℘b(a, b) : a ∈ Sa1, b ∈ Sa3}

= sup{20, 4, 0, 20, 8, 0, 4, 8}

= 20

δ(Sa1,Sa3) = sup{℘b(a, b) : a ∈ Sa1, b ∈ Sa3}

= sup{20, 4, 0, 20, 8, 0, 4, 8}
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= 20

δ(Sa2,Sa3) = sup{℘b(a, b) : a ∈ Sa2, b ∈ Sa3}

= sup{8, 8, 20, 8, 0, 8, 20, 8}

= 20

δ(Sa,Sb) = 20.

Now, N (a, b) = max
{
℘(a, b),D(a,Sa),D(b,Sb), D(a,Sb)+D(b,Sa

2
)
}

℘b(a, b) = (−7, 0), (0, 5)

= | − 7− 0|2 + |0− 5|2

= |7|2 + |5|2

= 74

D(a,Sa) = (−7, 0), (0, 0)

= | − 7− 0|2 + |0− 0|2

= |7|2 + |0|2

= 49

D(b,Sb) = (0, 5), (2, 2)

= |0− 2|2 + |5− 2|2

= |2|2 + |3|2

= 13

1

2
D(a,Sb) +D(b,Sa) =

1

2
D(a,Sb) +D(b,Sa)

=
1

2
[(D(−7, 0), (0,−2)) + (D(0, 5), (0,−2))]

=
1

2

[
|7 + 2|2 + |0 + 7|2

]
=

1

2

[
92 + 72

]
= 65

N (a, b) = max{74, 49, 13, 65}

N (a, b) = 74
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and ℘b(K,L) = 13.

Suppose F is defined as F(α) = lnα + α , τ̌ = 1 b = 2

For φ̆(t) = 2t, we get φ̆(δ(Sa,Sb)) = 2× 20 = 40 also

φ̆(N (a, b))− φ̆(℘(K,L)) = 2(74)− 2(13) = 148− 26 = 122.

Thus,

φ̆(b(α(a, b)(δ(Sa,Sb))

φ̆(N (a, b))− φ̆(℘(K,L))
eφ̆(b(α(a,b)(δ(Sa,Sb))−(φ̆(N (a,b))−φ̆(℘(K,L)))

=
80

122

(
e80−122

)
=

40

61
e−42 < e−1.

So, S meet requirement (4.1). One can easily verify (Q2) and (Q3). Hence, all

the hypotheses of the Theorem 4.2.1 are fulfilled. This also clear that (0, 5) is BPP

of S, i.e.

D((0, 5),S(0, 5)) = ℘(K,L) = 5

.

Example 4.2.8.

suppose J = {0, 1, 2, 3...} is a partial order set, having usual order � , and suppose

℘ : J× J→ R be given as

℘b(a, b) =

0; a = b,

(a + b)2; a 6= b.

Then (J, ℘b) is a complete b metric space, b > 1. Suppose S : J→ J be defined as

S(a) =

0 if a = 0,

a− 1 if a 6= 0

Consider, α : J× J→ [0,∞), working as
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α(a0, a1) =

2 if a0, a1 ∈ {0, 1}

1
2

otherwise

a0 = 0, a1 = 2 =⇒ Sa0 = 0,Sa1 = a1 − 1 = 1

α(Sa0,Sa1) = α(0, 1) = 2 > 1 α(Sa1,Sa0) = α(0, 1) = 2 > 1 showing that S is an

α- admissible map.

Now, we show how S is F -contraction with F(α) = lnα + α, τ̌ = 1.

There are five cases:

Case 1: Let a > b and b 6= 0,then

℘(Sa,Sb) =℘(a− 1,b− 1) = (a + b− 2)2

N (a,b) = max

{
℘b(a,b), ℘b(a,Sk), ℘b(b,Sb),

℘b(a,Sa) + ℘b(b,Sb)

2b

}
= max

{
℘b(a,b), ℘b(a, a− 1), ℘b(b,b− 1),

℘(a,b− 1) + ℘b(b, a− 1)

2b

}
= max

{
(a + b)2, (2a− 1)2, (2b− 1)2, (a + b− 1)2

}
=(2a− 1)2

b(α(a0, a1)℘(Sa,Sb)

N (a,b)
eb(α(a0,a1)℘(Sa,Sb)−N (a,b) =

(a + b− 2)2

(2a− 1)2
e(a+b−2)2−(2a−1)2

=
(a + b− 2)2

(2a− 1)2
e−3a2+b2+2ab−3+4a < e−1

Case 2: If b > a and a 6= 0, then

℘b(Sa,Sb) =℘b(a− 1,b− 1) = (a + b− 2)2

N (a,b) = max

{
℘b(a,b), ℘b(a,Sa), ℘b(b,Sb),

℘b(a,Sa) + ℘b(b,Sb)

2b

}
= max

{
℘b(a,b), ℘b(a, a− 1), ℘b(b,b− 1),

℘b(a,b− 1) + ℘b(b, a− 1)

2b

}
= max

{
(a + b)2, (2a− 1)2, (2b− 1)2, (a + b− 1)2

}
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=(2a− 1)2

b(α(a0, a1)℘(Sa,Sb)

N (a,b)
eb(α(a0,a1)℘(Sa,Sb)−N (a,b) =

(a + b− 2)2

(2a− 1)2
e(a+b−2)2−(2b−1)2

=
a + b− 2

2b− 1
e−3b2+a2+2ab+4b−3 < e−1

Case 3: If a > b and b = 0, then

℘b(Sa,Sb) =℘b(a− 1, 0) = (a− 1)2

N (a,b) = max

{
℘b(a,b), ℘b(a,Sa), ℘b(b,Sb),

℘b(a,Sa) + ℘b(b,Sb)

2b

}
= max

{
℘(a, 0), ℘b(a, a− 1), ℘b(0, 0),

℘b(a, 0) + ℘b(0, a− 1)

2b

}
= max

{
a2, (2a− 1)2, 0, a2 − 1

4

}
=(2a− 1)2

b(α(a0, a1)℘b(Sa,Sb)

N (a,b)
eb(α(a0,a1)℘b(Sa,Sb)−N (a,b) =

(a− 1)2

(2a− 1)2
e(a−1)2−(2b−1)2

=
(a− 1)2

(2a− 1)2
e−3a2+2a < e−1

Case 4: If b > a and a = 0, then

℘b(0,Sb) =℘b(0,b− 1) = (b− 1)2

N (a,b) = max

{
℘b(a,b), ℘b(a,Sa), ℘b(b,Sb),

℘b(a,Sa) + ℘b(b,Sb)

2b

}
= max

{
℘b(0,b), ℘b(0, a− 0), ℘b(b,b− 1),

℘b(0,b− 1) + ℘b(b, 0)

2b

}
= max

{
b2, (2b− 1)2, 0,b2 − 1

4

}
=(2b− 1)2

b(α(a0, a1)℘b(Sa,Sb)

N (a,b)
eb(α(a0,a1)℘b(Sa,Sb)−N (a,b) =

(b− 1)2

(2b− 1)2
e(a−1)2−(2b−1)2

=
(b− 1)2

(2b− 1)2
e−3b2+2b < e−1
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Case 5: If b = a, then

℘b(Sa,Sb) =℘b(a− 1, a− 1) = 0

N (a,b) = max

{
℘b(a,b), ℘b(a,Sa), ℘b(b,Sb),

℘b(a,Sa) + ℘b(b,Sb)

2b

}
= max

{
℘b(0, ℘b(a, a− 1), ℘b(a, a− 1),

℘b(a, a− 1) + ℘b(a, a− 1)

2b

}
= max

{
0, (2a− 1)2, (2a− 1)2, (2a− 1)2

}
=(2a− 1)2

b(α(a0, a1)℘b(Sa,Sb)

N (a,b)
eb(α(a0,a1)℘b(Sa,Sb)−N (a,b) =

0

(2a− 1)2
e0−(2a−1)2 < e−1

Hence, all the axioms of Corollary 4.2.6 are met and 0 is a FP of S.

4.3 Application

In this section, two applications of the main result are provided.

4.3.1 Application Regarding Equation of Motion

Consider ℘b : C[0, 1]× C[0, 1]→ R is a bMS defined as

℘b(a, b) =‖ a− b ‖∞= sup
t̀∈[0,1]

|a(t̀)− b(t̀)|2,

and (C[0, 1], ℘b) is a complete bMS.

A body with mass m started its motion at time t̀ = 0 and x = 0. A force f act on

it in the direction of x-axis and its velocity increases from 0 to 1 instantly after

t̀ = 0. The problem is to explore a function for position in terms of time t̀

The governing equation for this problem is

m
d2x

dt̀2
= f(t̀, x(t̀)) together with x(0) = 0, x′(1) = 0, (4.13)

where f is a real valued function with domain [0, 1]× R.
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Green’s function for (4.13), is defined as

G(t̀, ξ) =

(−1 + ξ)t̀, t̀ ≤ ξ

−ξ(1− t̀), t̀ ≥ ξ.

Assume φ̆ : R× R→ R is a function along subsequent constraints:

1. | f(t̀, q)− f(t̀, r) |2≤ |q−r|
α(q,r)

1
2
∀ t̀ ∈ [0, 1] having q, r ∈ R with φ̆(q, r) ≥ 0;

2. ∃ x0 ∈ C[0, 1] 3 φ̆(x0(t),Sx0(t̀)) ≥ 0 ∀ t̀ ∈ [0, 1], where S is self-map on

C[0, 1]

Theorem 4.3.1. Let J = C[0, 1]. Consider S is self-map on C[0, 1] defined as

Sx(t̀) =

∫ 1

0

G(t̀, ξ)f(ξ, x(ξ))dξ, t̀ ∈ [0, 1],

satisfying the above assumptions 1 and 2. Then the Equation (4.13) has a solution.

Proof. The solution of Equation (4.13) is,

x(t̀) =

∫ 1

0

G(t̀, ξ)f(ξ, x(ξ))dξ, t̀ ∈ [0, 1].

Assume x, y ∈ C[0, 1] 3 φ̆(x(t̀), y(t̀)) ≥ 0 ∀ t̀ ∈ [0, 1].

Now

| S(x(t̀))− S(y(t̀)) |2 =
∣∣∫ 1

0

G(t̀, ξ)f(ξ, x(ξ))dξ −
∫ 1

0

G(t̀, ξ)f(ξ, y(ξ))dξ
∣∣2

| S(x(t̀))− S(y(t̀)) |2 ≤
(∫ 1

0

G(t̀, ξ) | f(ξ, x(ξ))− f(ξ, y(ξ)) | dξ
)2

≤
∫ 1

0

G(t̀, ξ)2

(
| x(ξ)− y(ξ) |
α(x, y)

1
2

)2

dξ.

Taking sup
t̀∈[0,1]

| S(x(t̀))− S(y(t̀)) |2 ≤ sup
t̀∈[0,1]

| x(ξ)− y(ξ) |2

α(x, y)
sup
t̀∈[0,1]

{∫ 1

0

G(t̀, ξ)dξ

}2

.
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As

∫ 1

0

(G(t̀, ξ)dξ)2 =

∫ 1

0

((t̀− 1)ξ)2dξ +

∫ 1

t̀

((ξ − 1)t̀)2dξ

= (t̀− 1)2ξ2dξ|t̀0 + t̀ (ξ − 1)2|1t̀

= (t̀− 1)
t̀3

3
+

(
t̀2 (t̀− 1)3

3

)
=

t̀4

3
− 2

3
t̀3 +

t̀2

3
∀ t̀ ∈ [0, 1].

So,

sup
t̀∈[0,1]

{∫ 1

0

G(t̀, ξ)dξ

}2

=
1

4

implies

‖Sx− Sy‖∞ ≤
1

4

‖x− y‖∞
α(x, y)

.

=⇒ α(x, y)‖Sx− Sy‖∞ ≤
1

4
‖x− y‖∞

Taking natural log on both sides

ln(α(x, y)‖Sx− Sy‖∞) ≤ ln(‖x− y‖∞)− ln 4,

ln 4 + ln(α(x, y)‖Sx− Sy‖∞) ≤ ln(‖x− y‖∞).

ln 4 + F(α(x, y)℘b(Sx,Sy)) ≤ F(℘b(x, y)).

F(℘b(x, y)) ≤ F(N (x, y))

=⇒ ln 4 + F(α(x, y)℘b(Sx,Sy)) ≤ F(N (x, y)).

Mapping S is with F(x) = ln x. According to Corollary 4.2.6 S possess fixed point

x in C2([0, 1]), such that

S(x(t̀) = x(t̀)

=

∫ 1

0

G(t̀, ξ)f(ξ, x(ξ))dξ, t̀ ∈ [0, 1],
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which is the solution to (4.13).

4.3.2 Application Regarding Fractional Calculus

Suppose ℘b : C([0, 1])× C([0, 1])→ R is a bMS, b ≥ 1 define as

℘b(a, b) =‖ a− b ‖∞= max
t̀∈[0,1]

|a(t̀)− b(t̀)|2.

The Caputo fractional derivative of α order continuous function q : [0,+∞)→ R

described in such a way

νDα(q(t̀)) =
1

Γ(b− α)

∫ t̀

0

(t̀− ξ)b−α−1j(b)(ξ)dξ (b− 1 < α < n, b = [α] + 1).

Here Γ represents Gamma function and [α] represents the integral component of

real number. We illustrate the existence of a solution to a non-linear fractional

differential equation in this section.

νDα(a(t̀) + f(t̀, a(t̀)) = 0 (0 ≤ t̀ ≤ 1, 1 < α ≤ 2). (4.14)

Using a(0) = a(1) = 0 where f is real valued function with domain [0, 1]× R.

Green’s function for (4.14) defined as, [36]

G(t̀, ξ) =


[t̀(1−ξ)α−1−(t̀−ξ)α−1

Γ(α)
, 0 ≤ ξ ≤ t̀ ≤ 1,

[t̀(1−ξ)α−1

Γ(α)
, 0 ≤ t ≤ ξ ≤ 1.

Assume the following conditions are met:

1. | f(t̀, a)− f(t̀, b) |2≤ e
−τ̌
2

α(a,b)
1
2
J(a, b) ∀ t̀ ∈ [0, 1] also a, b ∈ R, such that

J(a, b) = max

{
| a− b |, | a− Sa |, | b− Sb |, | a− Sb | + | b− Sa |

2b

}
;
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2. ∃ a0 ∈ C[0, 1] 3 φ̆(a0(t̀),Sa0(t̀)) ≥ 0 ∀ t̀ ∈ [0, 1].

Theorem 4.3.2.

Consider S is self-mapping on C[0, 1] defined as

S(a(t̀)) =

∫ 1

0

G(t̀, ξ)f(ξ, a(ξ))dξ,

satisfying the above assumptions 1 and 2. Then the fractional differential equation

(4.14) has a solution.

Proof. It is obvious that solution of (4.14) is ,

a(t) =

∫ 1

0

G(t̀, ξ)f(ξ, a(ξ))dξ for all t̀ ∈ [0, 1].

Consider

| Sa(y)− Sb(y) |2 =
∣∣∣ ∫ 1

0

G(y, ξ)f (ξ, a(ξ)) dξ −
∫ 1

0

G(y, ξ)f (ξ,b(ξ)) dξ
∣∣∣2

≤
∫ 1

0

|G(y, ξ) (f (ξ, a(ξ))− f (ξ,b(ξ))) dξ|2

≤
∫ 1

0

|G(y, ξ)|2
(
| (f (ξ, a(ξ))− f (ξ,b(ξ))) |

α(a,b)
1
2

)2

dξ

≤
∫ 1

0

|G(y, ξ)|2 e−τ̌

α(a,b)
J(a,b)dξ

≤
∫ 1

0

|G(y, ξ)|2 e−τ̌

α(a,b)
max

{
| a− b |, | a− Sa |, | b− Sb |, | a− Sb | + | b− Sa |

2b

}
dξ

≤ e−τ̌

α(a,b)
max

{
℘(a,b), ℘(a,Sa), ℘(b,Sb),

℘(a,Sb) + ℘(b,Sa)

2b

}(∫ 1

0

(G(y, ξ)) dξ

)2

≤ e−τ̌

α(a,b)
max

{
℘(a,b), ℘(a,Sa), ℘(b,Sb),

℘(a,Sb) + ℘(b,Sa)

2b

}
× sup
y∈[0,1]

(∫ 1

0

(G(y, ξ)) dξ

)2

.

As

sup
y∈[0,1]

(∫ 1

0

(G(y, ξ)) dξ

)
≤ 1.

It follows that

| Sa(y)− Sb(y) |2 ≤ e−τ̌

α(a, b)
N (a, b)
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=⇒ α(a, b) | Sa(y)− Sb(y) |2 ≤ e−τ̌ ,

where

N (a, b) = max

{
℘b(a, b), ℘b(a,Sa), ℘b(b,Sb),

℘b(a,Sb) + ℘b(b,Sa)

2b

}
.

Hence , ∀ a, b ∈ J and ∀ y ∈ [0, 1],

we have

α(a, b)℘b(Sa− Sb) ≤
(
e−τ̌N (a, b)

)
.

Using natural log on both sides, we have

ln (α(a, b)℘b(Sa− Sb) ≤ ln (N (a, b)))− τ̌ .

Hence

τ̌ + F(α(a, b)℘b(Sa,Sb)) ≤ F(℘b(N (a, b))).

Mapping S is with F(y) = ln(y). According to the Corollary 4.2.6

S having fixed point a in C[0, 1], 3

S(a(t̀)) = a(t̀)

=

∫ 1

0

G(t̀, ξ)f(ξ, a(ξ))dξ. ∀ t̀ ∈ [0, 1]

which is the solution to (4.14)



Chapter 5

Conclusions

The primary source of inspiration in the current dissertation is Wardowski’s work,

which grants the proposal of F -contraction. The abridgement of the thesis disser-

tation is stated below:

• We give precise definitions and examples to enlighten the essential notions of

metric spaces. We also go through several forms of mappings, fixed points, and

fixed-point theorems. A brief background is provided for an explanation of fixed-

point theory.

• A comprehensive review of the article by Jain et al. [23] is provided. This

review explained the idea of Multivalued F -contraction based on altering distance

function. Some non-trivial examples are provided for the authentication of the

main theorem. The existence of a solution to the ordinary differential equation

and Caputo-type fractional differential equation is established by using the fixed-

point technique.

• The work of Jain et al. [23] is further extended by using the platform of b-metric

space. Furthermore, the multivalued F -contraction is generalized to multivalued

(αF , b, φ̃)-contraction.

The following strategy is adopted for this purpose:

• Construct an iterative sequence;

62
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• Proof of the fact that this sequence is Cauchy is provided;

• Existence of the BBP is established.

• The established results generalize many existing results in the literature. This

fact is assured by providing several corollaries. Several examples are given to val-

idate the assumptions of the theorems.

• The existence of the solution to the ordinary differential equation and Caputo-

type fractional differential equation is established using the proven results’ ax-

ioms.
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[36] Z. Bai and H. Lü, “Positive solutions for boundary value problem of non-

linear fractional differential equation,” Journal of mathematical analysis and

applications, vol. 311, no. 2, pp. 495–505, 2005.

[37] M. U. Ali, T. Kamran, and E. Karapınar, “Fixed point of α-ψ-contractive type

mappings in uniform spaces,” Fixed Point Theory and Applications, vol. 2014,

no. 1, pp. 1–12, 2014.




	Author's Declaration
	Plagiarism Undertaking
	Acknowledgement
	Abstract
	List of Figures
	Abbreviations
	Symbols
	1 Introduction
	2 Basic Material
	2.1 Metric Spaces
	2.2 b-Metric Space
	2.3 Fixed Point and Contractions

	3 Existence of Best Proximity Point Results, for Multi-Valued F-Contraction with Applications
	3.1 Preliminaries
	3.2 Multivalued F-Contraction
	3.3 Consequences
	3.4 Applications
	3.4.1 Application Regarding Equation of Motion
	3.4.2 Application Regarding Fractional Calculus


	4 Best Proximity Point for Multi-valued (F,b,)-Contractions on Partially Ordered b-Metric Spaces
	4.1 Preliminaries
	4.2 Main Theorem
	4.3 Application
	4.3.1 Application Regarding Equation of Motion
	4.3.2 Application Regarding Fractional Calculus


	5 Conclusions
	Bibliography

