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Abstract

Beg et al. introduced the concept of generalized orthogonal F - Suzuki contraction

mapping and proved some fixed point theorems on orthogonal b-metric spaces.

The results given in this article extend some of the well-known results in existing

literature. The authors applied the proven result and showed the existence of a

unique solution to the first-order ordinary differential equation. In this thesis, we

further generalized the contraction condition of Beg et al. by incorporating the

α function. Two theorems are established in this research. The first theorem es-

tablishes a unique fixed point for (α− F − P◁) Suzuki contraction. In the second

theorem, the existence of a unique fixed point is proved using the orthogonal con-

tinuity. One non-trivial example is provided for the validation of proven theorems.

Several corollaries are elaborated to exhibit the fact that many existing fixed point

results are the special case of those proved in the present research. Furthermore,

our results generalize the results proved by Beg et al.
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Chapter 1

Introduction

Mathematics is the most powerful tool in the history of science and technology. As 

the mother of all sciences, it has played a vital role in solving daily life problems. In 

the complexities of this world, mathematics provides the vital tools to find the 

solutions to problems.Functional analysis is an essential branch of mathematics 

that arose in the early 19th century. This branch is the study of linear operators of 

infinite dimensional normed s p aces. Functional analysis originates in the theory of 

ordinary and partial differential e q uations, a n d i t s t arted t o f o rm a discipline of 

its own through integral equations in early decades the 20th century. Functional 

analysis was first u s ed i n b e havior a n alysis b y B . F . S k inner i n 1948. Some of 

the crucial concepts of functional analysis are the Hahn-Banach theo-rem, the 

uniform boundedness principle, and the open mapping principle. Metric spaces (a 

generalization of distance functions) are important in fixed p oint theory. Fixed point 

theory is the combination of topology, geometry, and analysis. This theory has a 

great role in finding u n ique s o lutions i n t h e d ifferential an d integral equations 

theory.

Fixed point theory is productive and progressive work to solve non-linear prob-

lems. Fixed point theory was initiated in 1866 by Poincare [1], and he may rightly be 

considered a pioneer as he gave his first fi xed po int th eorem wi thout it s proof. 

Afterward, in 1912, Brouwer [2] proved a fixed p oint t heorem o n t he u nit sphere, 

which confirmed t h e e x istence o f fi xe d po in t, an d it is st at ed as on e of th e early

1



Introduction 2

approaches that Kakutani [3] further explored to prove the results on set valued

mappings. Fixed point theory is used as a technique of successive approximation,

which helps us in three ways:

(i) To guarantee the existence of solutions for non-linear problems.

(ii) To establish the uniqueness of the solution.

(iii) To establish an iterative scheme and conclude that the fixed p oint i s exactly

the limit of the iterative sequence.

The appearance of the fixed-point theory that started in the later part of the 19th

century was used for successive approximation to search out the existence and de-

tection of a unique solution of differential e quations. This methodology i s linked

with the very prolific m athematicians l ike Fredholm, Voltera, L iouville, Cauchy,

and particularly the works of Picard, search out the existence of a unique differ-

ential equation solution.

In the history of mathematics the Banach’s fixed p oint t heorem, a lso k nown as

the contraction mapping theorem (BCP), is an essential break through for the

researchers working on metric fixed p oint t heory. I t demonstrates the accessibil-

ity and uniqueness of fixed p oints o f s elf-maps o f m etric s paces a nd a n effective

technique for finding those fixed po ints. It  can be  expressed as  an  abstract form

of Picard’s method of successive approximations. Stefan Banach (1892-1945) is

recognized for introducing the theorem in 1922.

A standard application of the theorem is in the existence and uniqueness of solu-

tions to certain ordinary differential equations by using the ingredients used in the

Banach contraction principle: a complete space and a suitable integral operator.

The renowned theorem guarantees the existence and uniqueness of the integral

equations.

This principle occupies a significant p a rt o f t h e fi el d of fu nc tional an al ysis. 

Afterward, the Banach contraction principle has been extended in various direc-

tions. Edelstein [4] gave the first g e neralization o f t h e B a nach c o ntraction con-

dition in 1962 by taking constant k = 1 and using distinct points from the
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space H. In the same year, Rakotch [5] established a contractive condition by

replacing the constant k of the contraction with a monotonic decreasing function

k : [0, ∞) −→ [0, 1]. Presic [6], Kannan [7], Keeler et al. [8] worked on BCP by altering

the contraction condition. Fomin [9] and Gupta [10] introduced a rational expression

and extended the Banach contraction principle; later on, this result was extended by

Dolhare[11].

The idea of b-metric space was given by Bourbaki [12] and Bakhtin [13]. Czer-wik

[14] also gave the axiom of b-metric space, which was weaker than triangular

inequality and formally defined b -metric s pace w ith a v iew o f g eneralizing t he Ba-

nach.contraction,theorem.

He introduced a constant k in the triangular inequality, and for the case when

k = 1, b-metric space is a metric space. Generally, this concept is weaker than the

metric spaces. Czerwik was keen to examine more closely the topological aspects

of.the.spaces.

In 2012, Wardowski [15] presented another well-known contraction, F -contraction.

Sagroi et al. [16] proved fixed p o int r e sults o n F - c ontraction i n 2 0 13 w i th some

applications on integral equations. Alot of work is done in this area; see for ex-

amples,[17–24].

F -contraction was further generalized in many ways, for existence an generaliza-tion of

F -contraction is (α, F )-contractive mapping. (α, F )-contractive mapping was firstly i

ntroduced b y K a mran e t a l . [ 1 9] i n 2 0 16 i n t h e s t ructure o f b-metric space on

single valued mappings. In 2017, this contraction was further extended to multi-valued

by Hussain et al. [25]. Recently, Sawangsup et al. [26] established

a new notion of orthogonal F contraction map and proved certain fixed p oint the-

orems for the orthogonal complete metric space. Gordji [27], and others introduce the

new concept of orthogonality in metric spaces. After that, the fixed-point results

in generalized orthogonal metric spaces were demonstrated by Gordji and Habibi

[28]. These concepts are further generalized by Beg et al. [29] by devel-oping a

new idea on the generalized orthogonal F Suzuki contraction map on the orthogonal

b-metric.space.

The research in this thesis is in continuation of this studies. In this thesis, the
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results of Beg et al. [29] are further generalized by introducing generalized α−F -

contraction on the platform of b-metric spaces. The organization of the thesis is

given below:

Chapter 2 covers all the fundamental concepts of functional analysis, which are

necessary for the subsequent discussion. The crucial concepts related to metric

spaces are explained along with examples. Some important fixed-point results are

presented, which provide a base for the main results.

Chapter 3 gives a comprehensive review of the article “Fixed points of orthogonal

F -Suzuki contraction mapping on O-Complete b-metric Spaces using applications”

by Beg et al. [29]. The theorems are well elaborated, along with examples.

In Chapter 4, the results of Beg et al. are further generalized by introducing a

new contraction condition, namely generalized (α − F ) Suzuki contraction map-

ping (α-F -P◁) Scm. It is worth mentioning that the results of Beg et al. are a

special case of those provided in the present research. One non-trivial example

is provided in support of proven theorems. Many existing results are the special

case of results given in Chapter 4. Some corollaries authenticate this fact.



Chapter 2

Prelimineries

This chapter covers the fundamental concepts of functional analysis. It introduces

the concept of metric space (ms) and b-metric space(bms), along with some exam-

ples. The chapter also covers different types of mappings, providing appropriate

examples to illustrate each concept. Eventually, some classical fixed point results

are provided for better understanding of main result.

2.1 Metric Space(ms)

In 1906, M. Frechet introduced the concept of ms, which extenteds the notion of

distance to a more general setting. These spaces became an important connection

between the fields of topology and real analysis, and helped establish the idea

of metric fixed points. Metric spaces provided a framework for addressing many

mathematical problems and were instrumental in resolving a number of issues in

these fields.

Definition 2.1. Metric Space(ms)

“A Metric Space(ms) is a pair (H,ℜ), where H is a set and ℜ is a metric on H

(or distance function on H) , that is function defined on ℜ : H × H → R+ such

that for all µ1, µ2, µ3 ∈ H we have:

(p1): ℜ is real-valued, finite and non-negative, ℜ(µ, ν) > 0 ∀ µ, ν ∈ H,

5
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(p2): ℜ(µ1, µ2) = 0, if and only if µ1 = µ2,

(p3): ℜ(µ1, µ2) = ℜ(µ2, µ1) (symmetry),

(p4): ℜ(µ1, µ2) ≤ ℜ(µ1, µ3) + ℜ(µ3, µ2), (triangular inequality).

Then (H,ℜ) is called a ms then H is called underlying set. Its elements are called

points.” [30]

Example 2.1.1.

Consider P = R2, Let µ, ν ∈ P,

where µ = (µ1, µ2), ν = (ν1, ν2) ∈ R2.

Define ℜ : P× P → R as,

ℜ((µ, ν) = max{|µ1 − µ2|, |ν1 − ν2|},

then ℜ is a metric on R2 and it is also called box metric. Now check the fourth

property since first three are trivial. Let (µ1, ν1), (µ2, ν2) ∈ R2.

Then,

|µ1 − µ2| ≤ |µ1 − µ3| + |µ3 − µ2|,

and,

|ν1 − ν2| ≤ |ν1 − ν3| + |ν3 − ν2|,

by the triangular inequality.

|µ1 − µ3| + |µ3 − µ2| ≤ max{|µ1 − µ3|, |ν1 − ν3|} + max{|µ3 − µ2|, |ν3 − ν2|},

and similarly for,

|ν1 − ν3| + |ν3 − ν2|,

both,

|µ1 − µ2|, |ν1 − ν2|,
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are smaller then or equal to,

ℜ((µ1, ν1), (µ3, ν3)) + ℜ((µ3, ν3), (µ2, ν2)),

so their maximum ℜ((µ1, ν1), (µ2, ν2)) is as well. So we conclude that ℜ is a metric

on R2.

Example 2.1.2.

Consider a space of all (bounded and unbounded) sequences of complex numbers

and the metric ℜ defined by,

ℜ(µ, ν) =
∞∑
i=1

1

2i

|Υi − ςi|
1 + |Υi − ςi|

, where µ = {Υi} and ν = {ςi}.

Axioms (p1) to (p3) are trivially satisfied. Now verify the triangle inequality. For

this purpose we use the auxiliary function f defined on R.

f(c) =
c

1 + c
, ⇒ f ′(c) =

1

(1 + c)2
.

which is positive. Hence, f is monotone increasing. Consequently, using the result,

|µ + ν| ≤ |µ| + |ν|; ⇒ f |µ + ν| ≤ f(|µ| + |ν|).

⇒ |µ + ν|
1 + |µ + ν|

≤ |µ| + |ν|
1 + |µ| + |ν|

;

=
|µ|

1 + |µ| + |ν|
+

|ν|
1 + |µ| + |ν|

;

≤ |µ|
1 + |µ|

+
|ν|

1 + |ν|
.

In this inequality we let µ = Υi − ϱi and ν = ϱi − ςi, where ϑ = (ϱi). Then

µ + ν = Υi − ςi and we have,

|Υi − ςi|
1 + |Υi − ςi|

≤ |Υi − ϱi|
1 + |Υi − ϱi|

+
|ϱi − ςi|

1 + |ϱi − ςi|
.
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If we multiply both sides by 1
2i

and sum over i from 1 to ∞, we obtain, ℜ(µ, ν) on

the left and the sum of ℜ(µ, ϑ) and ℜ(ϑ, ν) on the right:

ℜ(µ, ν) ≤ ℜ(µ, ϑ) + ℜ(ϑ, ν).

This establishes (p4) and hence, ℜ is a metric.

Example 2.1.3.

Define a metric ℜ on C[a,b] by,

ℜ(µ, ν) =

∫ b

a

|µ(s) − ν(s)|d(s).

In order to show that ℜ is a metric on given space. Define metric

ℜ(µ− ν) =

∫ b

a

|µ(s), ν(s)|d(s), ∀ s ∈ C[a, b], a < b.

(p1): |µ(s) − ν(s)| ≥ 0 ⇒
∫ d

c
|µ(s) − ν(s)|d(s) ≥ 0

⇒ ℜ(µ, ν) ≥ 0,

(p2): ℜ(µ, ν) =
∫ b

a
|µ(s) − ν(s)|d(s) = 0,

⇔ |µ(s) − ν(s)| = 0 ⇔ µ(s) − ν(s) = 0,

⇔ µ(s) = ν(s) ⇔ µ = ν, ∀, s ∈ C[a, b],

(p3): ℜ(µ, ν) =
∫ b

a
|µ(s) − ν(s)|d(s) =

∫ b

a
|ν(s) − µ(s)|d(s) = ℜ(ν, µ),

(p4): let µ, ν, ϑ ∈ C[a, b] then |µ(s) − ν(s)| = |µ(s) − ϑ(s) + ϑ(s) − ν(s)|,

⇒ |µ(s) − ν(s) ≤ |µ(s) − ϑ(s)| + |ϑ(s) − ν(s),

⇒
∫ b

a
|µ(s) − ν(s)|d(s) ≤

∫ b

a
|µ(s) − ϑ(s)|d(s) + |ϑ(s) − ν(s)|d(s),

⇒ ℜ(µ, ν) ≤ ℜ(µ, ϑ) + ℜ(ϑ, ν),

ℜ is a metric on given space.

Definition 2.2. Convergent sequence

“A sequence {an} in a metric space H = (H,ℜ) is said to converge or to be con-

vergent if there is an a ∈ H such that,

lim
n→∞

ℜ(an, a) = 0,



Fundamental Material 9

a is called the limit of (an) and we write,

lim
n→∞

ℜ(an, a) = a,

or simply, an → a.” [30]

Definition 2.3. Cauchy Sequence

“A sequence {an} in a ms H = (H,ℜ) is said to be Cauchy sequence if every ϵ ≥ 0

there is an N = N(ϵ) such that

ℜ(am, an) < ϵ ∀ m,n > N.” [30]

Example 2.1.4.

Let (R,ℜ) be a usual ms. Consider a sequence {an} = { n
n+1

} in R. For every,

ϵ > 0, choose N ∈ N such that, 1
N

< ϵ
2
. Now if n,m > N ,

⇒ | n

n + 1
− m

m + 1
|,

= |m + 1 − n− 1

(n + 1)(m + 1)
| ≤ |m− n

mn
| < 1

n
+

1

m
<

ϵ

2
+
ϵ

2
= ϵ.

Hence {an} is a Cauchy sequence.

Definition 2.4. Complete Metric Space(Cms)

“The ms H is said to be complete if every Cauchy sequence in H converges (in H

,has a limit which is an element of H).” [30]

Example 2.1.5.

(a): Euclidean space (Rn) and unitary space (Cn) are Cms.

(b): The space ℓ∞ is Cms with the metric ℜ defined as,

ℜ(µ, ν) = sup
i

|Υi − ςi|, µ = {Υi}, ν = {ςi}.

(c): The space lp is Cms with the metric define as:

ℜ(µm, µn) = (
∞∑
j=1

|Υm
j − Υn

j |p)
1
p .
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2.2 b-Metric Space (bms)

In 1989 Bakhtin gave the first generalization of ms namely bms. Later on, Czerwik

proved some fixed point results on this platform. Since then, many researchers

have worked on bms and achieved impressive results.

Definition 2.5. b-Metric Space (bms)

“ Let H be a non empty set and k be any real number such that k ≥ 1. A function

ℜb: H×H → [0,∞) is called a bms, if it satisfies the following properties for all

µ, ν, ϑ ∈ H.

(p1): ℜb(µ, ν) ≥ 0;

(p2): ℜb(µ, ν) = 0 if and only if µ = ν;

(p3): ℜb(µ, ν) = ℜb(ν, µ) for all µ, ν ∈ H;

(p4): ℜb(µ, ν) ≤ k[ℜb(µ, ϑ) + ℜb(ϑ, ν)].

The pair (H,ℜb) is called a bms. [14]

Remark 2.6.

If k= 1, then bms becomes ms. We can easily conclude that class of b-metric

Spaces is bigger then the class of metric Spaces.”

Example 2.2.1.

Let H :=  Lp of [0,1] be the space of all real functions µ(s), s ∈ [0, 1] such that,

∫ 1

0

|µ(s)|p < ∞ with 0 < p < 1.

Define ℜ : H×H → R+,

ℜ(µ, ν) = (

∫ 1

0

|µ(s) − ν(s)|pd(s))
1
p .

Then ℜ is a bms with coefficient with b = 2
1
p .

Definition 2.7. Convergence of Sequence

“Let (H,ℜb) be a bms. A sequence {an} in H is said to be convergent, if there

exist a ∈ H such that,

lim
n→∞

ℜb(an, as) = 0,
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a is called limit of an we write,

lim
n→∞

an = a or an → a.”[31]

Definition 2.8. Cauchy Sequence in bms

“Let (H,ℜb) be a b-metric Spaces. A sequence {an} in H is said to be a Cauchy

sequence, if for every ϵ > 0 there exist N ∈ N such that,

ℜb(am, an) < ϵ, for every m,n ≥ N.” [31]

Definition 2.9. Complete b-Metric Space (Cbms)

“A b-metric Space (H,ℜb) is said to be a complete, if every Cauchy sequence in

H is convergent in H.” [31]

It is worth to mention that b-metric is not a continuous function. Following

example depicts this fact:

Example 2.2.2.

Let H = N ∪ {∞} and ℜ : H×H → R, where

ℜ(p, q) =



0 for p = q.

|1
p
− 1

q
| for p and q are both even or p is even and q = ∞ or p = ∞

and q is even.

8 for p and q are both odd or p is odd and q = ∞ or p = ∞

and q is odd.

5 others.

then ℜ is a b-metric on H with k= 3. We want to show that ℜ is discontinuous

at (∞, 1) ∈ H ×H.

Consider a sequence {2n} in H then 2n → ∞, but

if we cheese f(u) = ℜ(2u, 1),

then

|f(2n) − f(∞)|,
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= |ℜ(2n, 1) −ℜ(∞, 1)|,

= |5 − 8| = 3 ⇒ f(2n) → 3.

Hence ℜ is not continuous.

2.3 Mappings on Metric Spaces

This section is focused on presenting various types of mappings on ms. Each

definition is accompanied by an appropriate example to help clarify the concept.

Fixed point theorems are primarily concerned with identifying conditions on the

structure and properties of underlying spaces. They also deals with the properties

of self mapping S on H in order to increase fixed point outcomes. Thus this section

includes the discussion of various conditions on mappings that are useful in this

context.

Definition 2.10. Continuous Mapping

“Let (P,ℜ1) and (T,ℜ2) be two metric Spaces. A mapping f : P → T is continuous

at a point k0 ∈ P, if for every ϵ > 0 there is δ > 0, such that,

ℜ2(fk, fk0) < ϵ ∀ k ℜ1(k, k0) < δ.” [30]

Figure 2.1: Continuous Mapping

Definition 2.11. Lipschitzian Mapping

“Let (H,ℜ) be a metric Space. A mapping P : H → H is said to be Lipschitzian

mapping if there exist a constant µ > 0 with
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ℜ(P(k),P(u)) ≤ µℜ(k, u) ∀ k, u ∈ P”.

The Lipschitzian constant for P is the smallest µ for which condition holds. [32]

Definition 2.12. Contraction Mapping

“let H = (H,ℜ) is a metric Space. A mapping P : H → H is called a contraction

on H if there is a positive real number k < 1 such that, ∀ µ, ν ∈ H,

ℜ(Pµ,Pν) ≤ kℜ(µ, ν).” [30]

Example 2.3.1.

Let H = [0, 1] be a ms and ℜ(φ,Υ) = |φ− Υ|.

Then define a mapping P : H → H by

P(φ) =
1

φ + 8
.

ℜ(Pφ,PΥ) = |( 1

φ + 8
) − (

1

Υ + 8
)|,

ℜ(Pφ,PΥ) ≤ | Υ + 8 − φ− 8

(φ + 8)(Υ + 8)
|,

≤ | Υ − φ

(φ + 8)(Υ + 8)
|,

≤ | −(φ− Υ)

(φ + 8)(Υ + 8)
|,

≤ | φ− Υ

(φ + 8)(Υ + 8)
|,

≤ |φ− Υ

(8)(8)
|,

≤ 1

64
|φ− Υ|,

≤ 1

64
ℜ(φ,Υ),

then P is a contraction with k = 1
64

< 1.



Fundamental Material 14

Definition 2.13. Contractive mapping

“A mapping P : H → H is said to be a contractive if for k1 ≠ k2, we have,

ℜ(P(k1),P(k2)) < ℜ(k1, k2), ∀ k1, k2 ∈ P”. [33]

2.4 Some Crucial Fixed Point Results

The field of fixed point theory emerged from the important work of Poincare in the

last decade of 18th century and first decade of 19th century. Fixed point results

become a valuable tool in many areas of mathematics and quantitative sciences,

including economics, engineering, and many more. These results have been used

to establish the existence of solutions to a wide range of problems, making them

an important tool for researchers.

Definition 2.14. Fixed Point

“A fixed point of a mapping P : H → H of a set H to itself is µ ∈ H which is

mapped on to itself that is,

P(µ) = µ.

The image P(µ) = µ conincides with µ.” [30]

Geometrically, the point of intersection of a real valued function y = f(x) and the

line y = x is called fixed point. A function may or may not have a fixed point.

Furthermore, if it has then the fixed point may not be unique.

Example 2.4.1.

1 : Define a mapping f : R → R by

f(µ) = µ2 − 2,

Consider,

f(µ) = µ.
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Hence, µ = −1, 2 are fixed points of f .

-8-8 -6-6 -4-4 -2-2 22 44 66 88

-6-6

-4-4

-2-2

22

44

66

88

00

ff

gg

Figure 2.2: A graph having two fixed points.

2 : Consider the function

f(µ) = µ + 1;

it is obvious that f has no fixed point.

3 : A mapping f : [0, 1] → [0, 1] is define by

f(µ) = 4µ(1 − µ).

The fixed points of a function f are simply solution of f(µ) = µ. Hence fixed

points of the function are µ = 0 and µ = 3
4
.

Geometrically, These are the points where y = f(µ) and the line ν = y meet.

-1-1 -0.8-0.8 -0.6-0.6 -0.4-0.4 -0.2-0.2 0.20.2 0.40.4 0.60.6 0.80.8 11

-0.8-0.8

-0.6-0.6

-0.4-0.4

-0.2-0.2

0.20.2

0.40.4

0.60.6

0.80.8

11

1.21.2

00

ff

gg

Figure 2.3: A graph having two fixed points.

4 : Consider the function

f(µ) = ⌊µ⌋;

has infinitely many fixed point.
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Figure 2.4: A graph having infinitely many fixed point.

The Brouwer fixed point theorem is the foundation for more general fixed point

theorems that are essential in functional analysis. Brouwer fixed point theorem

was one of the early successes of algebraic topology. Brouwer Fixed point theorem

was stated and proven in 1912 by the Dutch mathematician L. E. J. Brouwer.

Theorem 2.4.2. Brouwer’s Fixed Point Theorem

“Let P be a closed ball in Rn. Then any continuous mapping f : P → P has atleast

one fixed point”. [33]

Juliusz Schauder established the theory in 1930 and established it for specific cases

which include Banach spaces. His general case assumption was became known in

the Scottish book.

Theorem 2.4.3. Schauder’s Fixed Point Theorem

“Let P be a non empty compact convex subset of a Banach space H, and suppose 

f: P → P is continuous. Then f has atleast one fixed point.” [33]

Banach contraction principle theorem is named on the scientist Stefan Banach who

firstly stated in 1922. This theorem is also known as contraction mapping theo-

rem. It is considered as most important tool in the theory of ms. It guaranteed

the existence and uniqueness of fixed point of self map ms. It can be formu-

lated as an generated as an abstract formulation of Picard’s method of successive

approximation.
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Theorem 2.4.4. Banach Fixed Point Theorem:

“Consider a metric space H = (H,ℜ), where H ̸= ϕ. Suppose that H is complete

and let P : H → H be a contraction on H.Then P has precisely one fixed point.”

[30]



Chapter 3

F◁b-Contraction Mapping

In order to demonstrate the fixed point theorems on Cbms, Alsulami [34] developed

the ideas of generalized F -Suzuki type contraction mapping. Gordji [27] developed

the new idea of an orthogonality in ms and established the fixed point results for

contraction mappings in ms with this new type of orthogonality.

Inspired by these two ideas Beg et al. [29] presented some fixed point results

for F-Suzuki contraction (F -Sc) on the platform of O-complete b-metric space

(OCbms). This chapter provides a detailed discussion of this research.

3.1 Basic Concepts

Following is the definition of control function F introduced by Wardowski [15]:

Definition 3.1. F-mappings

Let S denote the family of all function F : R+ → R satisfying the following

properties.

(F1) It is strictly increasing.

(F2) For each sequence {an} of positive numbers, we have,

lim
n→∞

µn = 0 ⇔ lim
n→∞

F (µn) = −∞.

18
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Example 3.1.1.

The following mapping from R+ → R are examples of F - mapping:

i : F (µ) = − 1
√
µ

; where µ > 0.

ii : F (µ) = ln(µ) where µ > 0.

iii : F (µ) = ln(µ2 + µ) where µ > 0.

Definition 3.2. F-Contraction Mapping

A mapping P : H → H, is called F -contraction if there exist τ > 0 such that, for

all µ, ν ∈ H,

ℜ(µ, ν) > 0, ⇒ τ + F (ℜ(Pµ,Pν)) ≤ F (ℜ(µ, ν)). (3.1)

Remark 3.3.

Obviously, by choosing F (µ) = ln(µ) and τ = ln( 1
k
), k ∈ [0, 1] the conditions of

(3.1) becomes the Banach contraction.

Example 3.1.2.

Let H = {an : n ∈ N} where an =
n∑

k=1

k =
1

2
n(n + 1) equipped with usual metric,

ℜ(µ, ν) = |µ− ν| ∀ µ, ν ∈ H.

Then (H,ℜ) is complete ms.

Let P : H → H be defined as

Pan =

an for n = 1,

an−1 for otherwise.

Obviously P is F -contraction but it is not Banach contraction. For τ = 1 and

F (a) = a + ln a.

Definition 3.4. Orthogonal set

Let H be a non-empty set and ◁⊆ H × H a binary relation. If ◁ satisfies the
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following conditions:

∃ a0 ∈ H (∀ a ∈ H, a ◁ a0) or (∀ a ∈ H, a0 ◁ a),

then the set H is called orthogonal set and denoted by (H,◁).

Example 3.1.3.

Let H be a set of humans in world. Define a binary relation ℜ : H → H such that

H1 ◁ H2 if H1 can donate blood to H2 .

According to this relation if a person whose blood group is O- then H0 ◁ H ∀,H ∈

H. This implies that (H,◁) is orthogonal set. Furthermore, if H0 is a person with

blood group AB+ then H ◁ H0 ∀,H ∈ H. Following table depicts the all blood

types, donors and receivers of each blood group.

Type Can give blood to Can receive blood from
A+ A+, AB+ A+, A−, O+, O−
O+ O−, A+, B+, AB+ O+, O−
B+ B+, AB+ B+, B−, O+, O−
AB+ AB+ Everyone
A− A+, A−, AB+, AB− A−, O−
O− Everyone O−
B− B+, B−, AB+, AB− B−, O−
AB− AB+, AB− AB−, B−, O−, A−

Table 3.1: Blood Groups with Donors and Receivers

Definition 3.5. Orthogonal Sequence

Let (H,◁) be an orthogonal set. A sequence {an} is called an orthogonal sequence

if,

(∀ n ∈ N, an ◁ an+1) or (∀ n ∈ N, an+1 ◁ an).

Definition 3.6. Orthogonal Metric Space

The triple (H,◁,ℜ) is called an orthogonal metric space if, (H,◁) is an orthogonal

set and (H,ℜ) is a ms.

Definition 3.7. Orthogonal Complete Metric Space (OCms)

Let (H,◁,ℜ) be an orthogonal metric space. Then H is said to be a OCms if

every orthogonal Cauchy sequence converges in it.
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Remark 3.8. Every complete metric space is O-complete but not conversely.

Following example verifies this fact.

Example 3.1.4.

Let H = {µ : 0 ≤ µ < 1} and suppose that

µ ◁ ν ⇐⇒ µ ≤ ν ≤ 1
2
, or µ = 0.

Then (H,◁) is an orthogonal set. In general, H with the usual ms is not a complete

ms but it is in fact orthogonal complete. If {an} is an arbitrary orthogonal Cauchy

sequence of H, then there exists a subsequence {anp} of {ap} with {anp} = 0 ∀ n ≥

1 or there exists a monotonic subsequence {anp} of {ap} that anp ≤ 1
2

∀ n ≥ 1.

Since {apn} converges to a point a ∈ [0, 1
2
] ⊂ H. We already know that every

Cauchy sequence with a convergent subsequence is convergent. So {an} is the

convergent.

Definition 3.9. Orthogonal Continuous Mapping

Let (H,◁,ℜ) be an orthogonal ms. Then map P : H → H is said to be orthog-

onal continuous in a ∈ H if for each sequence {an} in H with lim
n→∞

an = a ⇒

lim
n→∞

P(an) = P(a). P is called ◁-continuous on H if P is ◁-continuous for each

a ∈ H.

Example 3.1.5.

Let H = R and suppose that

µ ◁ ν if µ, ν ∈ (n +
1

3
, n +

2

3
) ∀ n ∈ Z,

or

µ = 0.

It is convenient to prove that (H,◁) is an orthogonal set. There is a function f

defined: f : H → H by

f(µ) = [µ] = m if µ ∈ (m +
1

3
,m +

2

3
).

Then f is ◁-continuous on H. Here we note that if {µp} is an arbitrary sequence

O in H then {µp} converges to µ ∈ H. Then the following possibilities apply:
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Case(1)

If ∀ p, µp = 0 and f(µp) = 0 = f(µ).

Case(2)

If µp0 ̸= 0 with some p0 then ∃ q ∈ Z s.t µp ∈ (q + 1
3
, q + 2

3
) ∀ p ≥ p0. Hence

µ ∈ (q + 1
3
, q + 2

3
) and f(µp) = q = f(µ).

Definition 3.10. Orthogonal Preserving

Let (H,◁) be an orthogonal set. A mapping P : H → H is called ◁-preserving

if P(p) ◁ P(q) whenever p ◁ q.

Definition 3.11. F-Suzuki Contraction mapping (F-Scm)

Let (H,ℜ) be a ms. A map P : H → H is called a general F -Scm if it exists,

τ > 0 such that, µ, ν ∈ H with µ ̸= ν.

1

2s
ℜ(µ,Pµ) < ℜ(µ, ν),

⇒ τ + F (ℜ(Pµ,Pν))

≤ a1F (ℜ(µ, ν)) + a2F (ℜ(µ,P)) + a3F (ℜ(ν,Pν)),

where a3 ∈ [0, 1) and a1, a2 ∈ [0, 1] are real numbers with a1 + a2 + a3 = 1.

Definition 3.12. Generalized F◁b- Suzuki Contraction

Let (H,◁,ℜ) be an orthogonal bms with constant s ≥ 1. Mapping P : H → H is

called a generalized orthogonal F - Suzuki (F◁b) contraction map on (H,◁,ℜ) if

there is F ∈ S and τ > 0 such that,

∀ a, b ∈ H with a ◁ b [ℜ(Pa,Pb) > 0,
1

2s
ℜ(a,Pa) < ℜ(a, b)

=⇒ τ + F (ℜ(Pa,Pb)) ≤ a1F (ℜ(a, b)) + a2F (ℜ(a,Pa)) + a3F (ℜ(b,Pb))],

where a3 ∈ [0, 1) and a1, a2 ∈ [0, 1] are real numbers with a1 + a2 + a3 = 1.

If take a1 = 1 and a2 = a3 = 0; it will gives the following definition.

Definition 3.13. P◁b-Contraction Mapping

Let (H,◁,ℜ) be an orthogonal bms with constant s ≥ 1. A mapping P : H → H
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is said to be an orthogonal F -Scm on (H,◁,ℜ) if there are F ∈ S and τ > 0

such that,

∀ a, b ∈ H with a ◁ b [ℜ(Pa,Pb) > 0,
1

2s
ℜ(a,Pa) < ℜ(a, b)

=⇒ τ + F (ℜ(Pa,Pb)) ≤ F (ℜ(a, b))].

3.2 Fixed Point for F◁b-Contraction Mappings

Theorem 3.2.1.

Consider (H,◁,ℜ) an OCbms with an orthogonal element a0 and a constant

s ≥ 1. Suppose that F ∈ S; τ > 0 and P : H → H is a self map satisfying the

following axioms:

(i) P is ◁-preserving,

(ii) P is generalized F◁b-contraction mapping,

then the sequence {Pna} converges to a unique fixed point m ∈ H of P.

Proof. Since, (H,◁) is an O-set,

∃ a0 ∈ H : (∀ a ∈ H, a ◁ a0) or (∀ a ∈ H, a0 ◁ a).

It follows that

a0 ◁ Pa0 or Pa0 ◁ a0.

Let

a1 = Pa0, a2 = Pa1 = P2a0......, an+1 = Pan = Pn+1a0, ∀ n ∈ N ∪ {0}. (3.2)

If an = an+1 for any n ∈ N ∪ {0}, so, then an is a fixed point of P . If an ̸= an+1

for all n ∈ N ∪ {0}, then ℜ(Pan,Pan+1) > 0 for all n ∈ N ∪ {0}. ⇒ P preserves

◁, we have,

an ◁ an+1 or an+1 ◁ an, ∀ n ∈ N ∪ {0}.
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This means that {an} is an orthogonal sequence. Because P is a generalized F◁b-

contraction mapping, we conclude that,

1

2s
ℜ(an,Pan) < ℜ(an,Pan), ∀ n ∈ N. (3.3)

Thus, in light of this theorem’s hypothesis, we have

τ + F (ℜ(Pan,P2an)) ≤ a1F (ℜ(an,Pan)) + a2F (ℜ(an,Pan))

+ a3F (ℜ(Pan,P2an)),

⇒ τ + (1 − a3)F (ℜ(Pan,P2an)) ≤ (a1 + a2)F (ℜ(an,Pan)). (3.4)

Given that a1 + a2 + a3 = 1, the inequality becomes

F (ℜ(Pan,P2an)) ≤ F (ℜ(an,Pan)) − τ

a1 + a2
< F (ℜ(an,Pan)).

Using (F1), we determine that

ℜ(an+1,Pan+1) = ℜ(Pan,P2an) < ℜ(an,Pan), ∀ n ∈ N. (3.5)

Thus, {ℜ(an,Pan)}∞n=1 is a decreasing sequence of real numbers that is bounded

below.

lim
n→∞

ℜ(an,Pan) = δ = inf{ℜ(an,Pan) : ∀ n ∈ N}.

To prove δ = 0, Suppose on δ > 0. i.e, for every ϵ > 0 there exists p ∈ N, such

that

ℜ(ap,Pap) < δ + ϵ.

⇒ F (ℜ(ap,Pap)) < F ((δ + ϵ).

However, we have
1

2s
ℜ(ap,Pap) < ℜ(ap,Pap),

from (3.3). Given that P is generalized F◁b-contraction, we acquire,

τ + F (ℜ(Pap,P2ap)) ≤ a1F (ℜ(ap,Pap)) + a2F (ℜ(ap,Pap)) + a3F (ℜ(Pap,P2ap)).
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⇒ τ + (1 − a3)F (ℜ(Pap,P2ap)) ≤ (a1 + a2)F (ℜ(ap,Pap)).

⇒ F (ℜ(Pap,P2ap)) ≤ F (ℜ(ap,Pap)) −
τ

a1 + a2
. (3.6)

Likewise, again by (3.3), gives

1

2s
ℜ(Pap,P2ap).

Due to the fact that P is generalized F◁b-contraction, we observe that

τ+F (ℜ(P2ap,P3ap)) ≤ a1F (ℜ(Pap,P2ap))+a2F (ℜ(Pap,P2ap))+a3F (ℜ(P2ap,P3ap)).

⇒ F (ℜ(P2ap,P3ap)) ≤ F (ℜ(Pap,P2ap)) −
τ

a1 + a2
, (3.7)

⇒ F (ℜ(P2aP ,P3ap)) ≤ F (ℜ(Pap,P2ap)) −
τ

a1 + a2
.

≤ F (ℜ(ap,Pap)0 − 2τ
a1+a2

.

Continuing in the same manner:

F (ℜ(Pnap,Pn+1ap)) ≤ F (ℜ(Pnap,Pn−1ap)) −
τ

a1 + a2
,

≤ F (ℜ(Pn−1ap, Pn−2ap)) −
2τ

a1 + a2
,

≤ F (ℜ(Pap, ap)) −
nτ

a1 + a2

≤ F (δ + ϵ) − nτ

a1 + a2
.

Applying lim
n→∞

on both sides

lim
n→∞

F (ℜ(Pnap,Pn+1ap)) = −∞.

(F2) implies lim
n→∞

ℜ(Pnap,Pn+1ap) = 0. Hence, there is p1 ∈ N such that

ℜ(Pnap,Pn+1ap) < δ, ∀ n ≥ p1,

⇒ ℜ(ap+n,Pap+n) < δ, ∀ n ≥ p1,
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which contradicts the definition of δ. Hence

lim
n→∞

ℜ(an,Pan) = 0. (3.8)

To prove,

lim
n,p→∞

ℜ(an, ap) = 0.

Assume, on contrary, for ϵ > 0 then exist two sequences of natural number

{r(n)}∞n=1 and {t(n)}∞n=1.

r(n) > t(n) > n, ℜ(ar(n), at(n)) ≥ ϵ,

ℜ(ar(n)−1, at(n)) < ϵ, ∀ n ∈ N. (3.9)

Consider,

ℜ(ar(n), at(n)) ≤ s[ℜ(ar(n), ar(n)−1) + ℜ(ar(n)−1, at(n)]

≤ sℜ(ar(n), ar(n)−1) + sϵ

= sℜ(ar(n)−1,Par(n)−1) + sϵ, ∀ n ∈ N, (3.10)

(3.8) implies that there is p2 ∈ N

ℜ(ar(n),Par(n)) < ϵ, ∀ n > p2. (3.11)

(3.11), (3.10) ⇒ way

ℜ(ar(n), at(n)) < 2sϵ, ∀ n > p2.

⇒ F (ℜ(ar(n), at(n))) < F (2sϵ), ∀ n > p2. (3.12)

Alternatively, one can easily obtain that

1

2s
ℜ(ar(n),Par(n)) <

ϵ

2s
< ϵ ≤ ℜ(ar(n), at(n)), ∀ n > p2. (3.13)
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Claim that,

ℜ(Par(n),Pat(n)) = ℜ(ar(n)+1, at(n)+1) > 0, ∀ n ∈ N. (3.14)

such that, applying contradiction ∃ p ≥ N

ℜ(ar(p)+1, at(p)+1) = 0. (3.15)

From (3.9), (3.13) and (3.15) it implies that

ϵ ≤ ℜ(ar(p), at(p) ≤ ℜ(ar(p), ar(p)+1) + ℜ(ar(p)+1, at(p))

≤ ℜ(ar(p), ar(p)+1) + ℜ(ar(p)+1, at(p)+1) + ℜ(at(p)+1, at(p))

= ℜ(ar(p),Par(p)) + ℜ(ar(p)+1, at(p)+1) + ℜ(at(p),Pat(p))

< ϵ
2s

+ 0 + ϵ
2s

= ϵ
s
,

this contradiction leads towards (3.14). Since P is ◁-preserving, thus we have

ar(n) ◁ at(n) or at(n) ◁ ar(n).

P is generalized F◁b-contraction, thus for any n > p2.

τ + F (ℜ(Par(n),Pat(n))) ≤ a1F (ℜ(ar(n), at(n)))

+a2F (ℜ(ar(n),Par(n))) + a3F (ℜ(ar(n),Pat(n))). (3.16)

(3.12) is applied into considered, and (3.16) outcomes.

τ + F (ℜ(Par(n),Pat(n))) < a1F (2sϵ) + a2F (ℜ(ar(n),Par(n)))

+ a3F (ℜ(at(n),Pat(n))), ∀ n ∈ p2.

In term of (3.8), we obtain that

lim
n→∞

F (ℜ(Par(n),Pat(n))) = −∞.
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F2, ensures that

lim
n→∞

F (ℜ(Par(n),Pat(n))) = 0 ⇐⇒ lim
n→∞

F (ℜ(ar(n)+1, at(n)+1)) = 0. (3.17)

This contradicts the (3.9). Therefore, lim
p,n→∞

ℜ(an, ap) = 0;

i.e {an}∞n=1 where H is a Cauchy sequence.

∃ m ∈ H such that due to the (H,ℜ) completeness.

lim
n→∞

ℜ(an,m) = 0. (3.18)

For any n, we say that it belongs to N,

1

2s
ℜ(an,Pan) < ℜ(an,m) or

1

2s
ℜ(Pan,P2an) < ℜ(Pan,m), ∀ n ∈ N. (3.19)

However, if p ∈ N exists, in such a way that

1

2s
ℜ(ap,Pap) ≥ ℜ(ap,m),

1

2s
ℜ(Pap,P2ap) ≥ ℜ(Pap,m). (3.20)

We have from (3.5) and (F1),

ℜ(Pap,P2ap) < ℜ(ap,Pap). (3.21)

From (3.20) ans (3.21) it is obvious that

ℜ(ap,Pap) ≤ sℜ(ap,m) + sℜ(m,Pap)

≤ 1

2
ℜ(ap,Pap) +

1

2
ℜ(Pap,P2ap).

< 1
2
ℜ(ap,Pap) + 1

2
ℜ(ap,Pap) = ℜ(ap,Pap).

This is a contradiction. Hence, (3.19) is true. P is generalized F◁b-contraction,

(3.19) provides that, for any n ∈ N.

τ + F (ℜ(Pan,Pm)) ≤ a1F (ℜ(an,m))
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+ a2F (ℜ(an,Pan)) + a3F (ℜ(m,Pm)), (3.22)

τ + F (ℜ(P2an,Pm)) ≤ a1F (ℜ(Pan,m))

+ a2F (ℜ(Pan,P2an)) + a3F (ℜ(m,Pm)), (3.23)

holds. Due to (F2), the limits between (3.8) and (3.18) suggests that

lim
n→∞

F (ℜ(an,m)) = −∞, lim
n→∞

F (ℜ(an,Pan) = −∞.

So from (3.22), we determine that

lim
n→∞

F (ℜ(Pan,Pm)) = −∞.

From (F2),

lim
n→∞

F (ℜ(Pan,Pm)) = 0. (3.24)

From (3.2), we conclude that

ℜ(m,Pm) ≤ s[ℜ(m,Pan) + ℜ(Pan,Pm)]

= sℜ(m, an+1) + sℜ(Pan,Pm).

We determine that ℜ(m,Pm) = 0 by taking n → ∞ on (3.18) and (3.24). As a

result p = Pp, where p is a fixed point of P. Consider the second case (3.3). Then

from (3.4), we have

F (ℜ(P2an,Pm)) < τ + F (ℜ(P2an,Pm)) ≤ a1F (ℜ(Pan,m))

+ a2F (ℜ(Pan,P2an)) + a3F (ℜ(m,Pm)),

= a1F (ℜ(an+1,m)) + a2F (ℜ(an+1,Pan+1)) + a3F (ℜ(m,Pm)).

As from (3.8), (3.18), and (F2):

lim
n→∞

F (ℜ(P2an,Pm)) = −∞.

Likewise, from (F2) we obtain

lim
n→∞

F (ℜ(P2an,Pm)) = 0. (3.25)
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Using (3.2), we determine that

ℜ(m,Pm) ≤ sℜ(m,P2an) + ℜ(P2an,Pm)]

= sℜ(m, an+2) + sℜ(P2an,Pm).

⇒ ℜ(m,Pm) = 0. Hence, m is a fixed point of P. Claim that Pnc = c ̸= d = Pnd

for all n ∈ N and that c, d ∈ H are two fixed points of P. By using a0, we have

(a0 ◁ c and a0 ◁ d) or (c ◁ a0 and d ◁ a0).

P is ◁-preserving, so the result is

(Pna0 ◁ Pnc and Pna0 ◁ Pnd) or (Pnc ◁ Pna0 and Pnd ◁ Pna0),

for each n ∈ N. Now,

ℜ(c, d) = ℜ(Pnc,Pnd) ≤ s(ℜ(Pnc,Pna0) + ℜ(Pna0,Pnd)).

As a result n → ∞, we get ℜ(c, d) ≤ 0. So that c = d. Therefore P has a unique

fixed point in H.

Example 3.2.2.

Consider H = [0,1]∪{2, 4}, and a mapping ℜ : H×H → [0,∞) is determined by

ℜ(c, d) = |c− d|2, ∀ c, d ∈ H.

ℜ is bm with s = 2. If cd ≤ (c ∨ d) then define the binary relation ◁ on H as

c ◁ d, where c ∨ d = c or d. Define the mapping P : H → H by

P(d) =

ln(1 + d
2
) if d ∈ [0, 1],

d− 1 if d ∈ {2, 4}.
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Suppose a1 = 1
2
, a2 = 1

4
, a3 = 1

4
and τ > 0. Suppose c = 2, d = 4, then cd ≤ c.

We obtain

ℜ(Pc,Pd) = |c− 1 − (d− 1)|2,

= |c− 1 − d + 1|2,

= 4.

ℜ(c, d) = |c− d|2,

= 4.

ℜ(c,Pc) = |c− (c− 1)|2,

= 1.

ℜ(d,Pd) = |d− (d− 1)|2,

= 1.

Hence, ∀, e, f ∈ H with e ◁ f [ℜ(Pe,Pf) > 0, 1
2s
ℜ(e,Pe) < ℜ(e, f)

=⇒ τ + ℜ(Pc,Pd) ≥ a1F (ℜ(c, d)) + a2F (ℜ(c,Pc)) + a3F (ℜ(d,Pd))].

Thus, P is not generalized F -Scm, F (m) = lnm, where m ∈ (0,∞). If τ =

ln 4, a3 ∈ [0, 1) and a1, a2 ∈ [0, 1] are real numbers and a1 + a2 + a3 = 1.

∀, e, f ∈ H with e ◁ f [ℜ(Pe,Pf) > 0,
1

2s
ℜ(e,Pe) < ℜ(e, f)]

⇐= [c, d ∈ [0, 1] ∨ c ∈ [0, 1] and d ∈ {2, 4} ∨ c ∈ {2, 4} and d ∈ [0, 1]].

Observe that if

∀, e, f ∈ H with e ◁ f [ℜ(Pe,Pf) > 0,
1

2s
ℜ(e,Pe) < ℜ(e, f)

=⇒ τ + F (ℜ(Pe,Pf)) ≤ a1F (ℜ(e, f))

+ a2F (ℜ(e,Pe)) + a3F (ℜ(f,Pf))], (3.26)

P is ◁-preserving. Therefore c ◁ d. Without sacrificing generality, we can suppose

that cd ≤ d. Then we evaluate the subsequent scenarios:

Case(1):
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Suppose that c, d ∈ [0, 1],

ℜ(Pc,Pd) = | ln(1 + (
c

2
)) − ln(1 + (

d

2
))|2 > 0,

ℜ(c, d) = |c− d|2,

ℜ(c,Pc) = |c− ln(1 +
c

2
)|2,

ℜ(d,Pd) = |d− ln(1 +
d

2
)|2.

It is clear that

c ◁ d,ℜ(Pc,Pd) > 0,

and
1

2s
ℜ(c,Pc) < ℜ(c, d).

This implies (3.25) satisfied.

Case(2):

When c ∈ [0, 1] and d ∈ {2, 4}, then

ℜ(Pc,Pd) = | ln(1 + c
2
) − d + 1|2,

ℜ(c, d) = |c− d|2,

ℜ(c,Pc) = |c− ln(1 + c
2
)|2,

ℜ(d,Pd) = |d− (d− 1)|2 = 1.

It is clear that

c ◁ d, ℜ(Pc,Pd) > 0,

and
1

2s
ℜ(c,Pc) < ℜ(c, d).

τ + F (ℜ(Pc,Pd)) ≤ a1F (ℜ(c, d)) + a2F (ℜ(c,Pc)) + a3F (ℜ(d,Pd)).

Case(3):

When c ∈ {2, 4} and d ∈ [0, 1].

This implies (3.25) satisfied.

Similar to Case(2), (3.25) is satisfied.

As all hypothesis of theorem (3.2.1) are satisfied so P has unique fixed point i.e
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m = 0.

Theorem 3.2.3.

Consider that (H,◁,ℜ) an OCbms with an orthogonal element a0 and a constant

s ≥ 1. Suppose that F ∈ S; τ > 0 and P : H → H is a self mapping satisfying

the following axioms :

(i) P is ◁- preserving,

(ii) P is a F◁b-contraction mapping,

then the sequence {Pna} converges to a unique fixed point m ∈ H of P.

Proof. (3.2.3) is concluded by applying a1 = 1 and a2 = a3 = 0 in (3.2.1).

Example 3.2.4.

Consider H = [0, 1] ∪ {4, 6}, and a mapping ℜ : H×H → [0,∞) is determined

by

ℜ(c, d) = |c− d|2, ∀ c, d ∈ H.

If cd ≤ (c ∨ d) then define s = 2 the binary relation ◁ on H as c ◁ d, where c ∨ d

= c or d. Then an OCbms is (H,ℜ). A mapping P : H → H is define by

P(d) =

ln(1 + d
3
) if d ∈ [0, 1],

d− 1 if d ∈ {4, 6}.

Suppose a1 = 1, and a2 = a3 = 0 and τ > 0. Suppose c = 4, d = 6, then cd ≤ c.

ℜ(Pc,Pd) = |c− 1 − (d− 1)|2,

= |c− 1 − d + 1|2,

= 4.

ℜ(c, d) = |c− d|2,

= 4.

Hence, ∀, e, f ∈ H, and F ∈ S and τ > 0, we obtain

τ + F (ℜ(Pe,Pf)) > F (ℜ(e, f)).
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Thus, P is not generalized F -Scm. Consider F (m) = lnm, where m ∈ (0,∞)

and τ = ln 4.

∀, e, f ∈ H with e ◁ f [ℜ(Pe,Pf) > 0,
1

2s
ℜ(e,P) < ℜ(e, f)]

=⇒ [c, d ∈ [0, 1] ∨ c ∈ [0, 1] and d ∈ {4, 6} ∨ c ∈ {4, 6} and d ∈ [0, 1]].

Observe that if

e, f ∈ H with e ◁ f [ℜ(Pe,Pf) > 0,
1

2s
ℜ(e,Pe) < ℜ(e, f)

=⇒ τ + F (ℜ(Pe,Pf)) ≤ F (ℜ(e, f)). (3.27)

Obviously, P is ◁-preserving. Therefore c ◁ d. Without sacrificing generality, we

can suppose that cd ≤ d, then we evaluate the subsequent scenarios:

Case(1):

Suppose that c, d ∈ [0, 1],

ℜ(Pc,Pd) = | ln(1 + ( c
3
)) − ln(1 + (d

3
))|2 > 0,

ℜ(c, d)) = |c− d|2,

ℜ(c,Pc) = |c− ln(1 + ( c
3
))|2,

ℜ(d,Pd) = |d− ln(1 + (d
3
))|2.

It is clear that
c ◁ d,ℜ(Pc,Pd) > 0,

and
1

2s
ℜ(c,Pc) < ℜ(c, d).

This implies (3.27) is satisfied.

Case(2):

When c ∈ [0, 1] and d ∈ {4, 6}, then

ℜ(Pc,Pd) = | ln(1 + ( c
3
)) − d + 1|2,

ℜ(c, d) = |c− d|2,

ℜ(c,Pc) = |c− ln(1 + ( c
3
))|2,

ℜ(d,Pd) = 1.
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It is clear that

c ◁ d, ℜ(Pc,Pd) > 0.

and

1
2s
ℜ(c,Pc) < ℜ(c, d).

This implies (3.27) is satisfied.

Case(3):

When c ∈ {4, 6} and d ∈ [0, 1]. Similar to Case(2). As all the hypothesis of

(3.2.3) are satisfied, so P has a unique fixed point i.e m = 0.

Corollary 3.2.5.

Consider (H,◁,ℜ) an OCms. Suppose that F ∈ S; τ > 0 and P : H → H is a

self mapping satisfying the following axioms:

(i) P is ◁-preserving,

(ii) ∀, e, f ∈ H with e ◁ f [ℜ(Pe,Pf) > 0, 1
2
ℜ(e,Pe) < ℜ(e, f)

=⇒ τ + F (ℜ(Pe,Pf)) ≤ a1F (ℜ(e, f)),

where a3 ∈ [0, 1) and a1, a2 ∈ [0, 1] with a1 + a2 + a3 = 1. Then, P has a unique

fixed point that is m ∈ H.

Proof. Since each ms is a bms with s = 1 Hence, proof is analogous to proof of

theorem (3.2.1), by taking a1 = 1 and a2, a3 = 0 in Theorem (3.2.1).

Corollary 3.2.6.

Consider (H,◁,ℜ) an OCms. Suppose that F ∈ S; τ > 0 and P : H → H is a

self mapping satisfying the following axioms:

(i) P is ◁-preserving,

(ii) ∀, e, f ∈ H with e ◁ f [ℜ(Pe,Pf) > 0, 1
2
ℜ(e,Pe) < ℜ(e, f)

=⇒ τ + F (ℜ(Pe,Pf)) ≤ F (ℜ(e, f))].

Therefore, P has a unique fixed point that is m ∈ H.

Proof. Since, each ms is a bms with s = 1 and hence proof is analogous to Theorem 

(3.2.1) by taking a1 = 1 and a2 = a3 = 0.

Theorem 3.2.7.

Consider (H,◁,ℜ) an OCbms with an orthogonal element ao and a constant
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s ≥ 1. Suppose that F ∈ S; τ > 0 and P : H → H is a self mapping satisfying

the following axioms:

(i) P is ◁-preserving,

(ii) ∀ e, f ∈ H with e ◁ f [ℜ(Pe,Pf) > 0

=⇒ τ + F (ℜ(Pe,Pf)) < a1F (ℜ(e, f)) + a2F (ℜ(e,Pe)) + a3F (ℜ(f,Pf))],

where a3 ∈ [0, 1) and a1, a2 ∈ [0, 1] with a1 + a2 + a3 = 1.

(iii) P is ◁-continuous.

Then, P has a unique fixed point m ∈ H.

Proof. Since, (H,◁) is an O-set,

∃ a0 ∈ H : (∀ a ∈ H, a ◁ a0) or (∀ a ∈ H, a0 ◁ a).

It indicates that either a0 ◁ Pa0 or Pa0 ◁ a0. Take

a1 = Pa0, a2 = Pa1 = P2a0....., an+1 = Pan = Pn+1a0, ∀ n ∈ N ∪ {0}. (3.28)

If an = an+1 for any n ∈ N ∪ {0}, so than an is a fixed point of P. If an ̸=

an+1 ∀ n ∈ N then ℜ(Pan,Pan+1) > 0 for all n ∈ N ∪ {0}. Since P preserves ◁ ,

we have

an ◁ an+1 or an+1 ◁ an, ∀, n ∈ N ∪ {0}.

⇒ {an} is an O-sequence. Using (ii), we have

0 < ℜ(an,Pan) = ℜ(Pan−1,Pan), ∀ n ∈ N. (3.29)

Hence, we have

τ+F (ℜ(Pan−1,Pan)) ≤ a1F (ℜ(an−1, an))+a2F (ℜ(an−1,Pan−1))+a3F (ℜ(an,Pan)),

= a1F (ℜ(an−1, an))+a2F (ℜ(an−1, an))+a3F (ℜ(Pan−1,Pan)).

⇒ τ + (1 − a3)F (ℜ(Pan−1,Pan)) ≤ (a1 + a2)F (ℜ(an−1, an)).
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a1 + a2 + a3 = 1, therefore, we obtain

F (ℜ(Pan−1,Pan)) ≤ F (ℜ(an−1, an)) − τ

a1 + a2
< F (ℜ(an−1, an)),

(F1) implies that

ℜ(an,Pan) = ℜ(Pan−1,Pan) < ℜ(an−1,Pan−1), ∀ n ∈ N,

⇒ {ℜ(an,Pan)}∞n=1 is a decreasing sequence that is bounded below, and

lim
n→∞

ℜ(an,Pan) = δ = inf{ℜ(an,Pan) : ∀ n ∈ N}.

To prove δ = 0. Assume on contrary δ > 0. ∃ p ∈ N such that for every ϵ > 0,

⇒ ℜ(ap,Pap) < δ + ϵ.

⇒ F (ℜ(ap,Pap)) < F (δ + ϵ). (3.30)

From (3.28), we conclude

0 < ℜ(ap,Pap) = ℜ(ap−1,Pap).

⇒ τ + F (ℜ(Pap−1,Pap)) ≤ a1F (ℜ(ap−1, ap)) + a2F (ℜ(ap−1,Pap−1))

+ a3F (ℜ(ap,Pap)),

= a1F (ℜ(ap−1, ap)) + a2F (ℜ(ap−1, ap))

+ a3F (ℜ(Pap−1,Pap)),

⇒ τ + (1 − a3)F (ℜ(Pap−1,Pap)) < (a1 + a2)F (ℜ(ap−1, ap)).

Given that a1 + a2 + a3 = 1, we get

F (ℜ(Pap−1,Pap)) ≤ F (ℜ(ap−1, ap)) −
τ

a1 + a2
. (3.31)

From (3.29), we have 0 < ℜ(Pap, Pap+1) < ℜ(Pap, P2ap), 

and by the assumption of theorem, we obtain
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τ + F (ℜ(Pap,Pap+1)) ≤ a1F (ℜ(ap, ap+1)) + a2F (ℜ(ap,Pap))

+ a3F (ℜ(ap+1,Pap+1)),

= a1F (ℜ(ap, ap+1)) + a2F (ℜ(ap, ap+1))

+ a3F (ℜ(Pap,Pap+1)),

and,

τ + (1 − a3)F (ℜ(Pap,Pap+1)) ≤ (a1 + a2)F (ℜ(ap,Pap+1)).

Since, a1 + a2 + a3 = 1, we obtain

F (ℜ(Pap,Pap+1)) ≤ F (ℜ(ap,Pap+1)) −
τ

a1 + a2
. (3.32)

Now, from (3.30) and carrying out the same procedure as in

(3.31) and (3.32), we obtain

F (ℜ(ap+n, ap+n+1)) = F (ℜ(Pap+n−1,Pap+n)),

≤ F (ℜ(ap+n−1, ap+n)) − τ
a1+a2

,

= F (ℜ(Pap+n−2,Pap+n−1))
τ

a1+a2
,

≤ F (ℜ(ap+n−2, ap+n−1)) − 2τ
a1+a2

,

= F (ℜ(Pap+n−3,Pap+n−2)) − 2τ
a1+a2

,

≤ F (ℜ(ap+n−3, ap+n−2)) − 3τ
a1+a2

,

≤ F (ℜ(ap+1, ap+2)) − (n−1)τ
a1+a2

,

= F (ℜ(Pap,Pap+1)) − (n−1)τ
a1+a2

,

≤ F (δ + ϵ) − nτ
a1+a2

.

Considering n → ∞, we obtain that

lim
n→∞

F (ℜ(ap+n, ap+n+1)) = −∞.

⇒ lim
n→∞

F (ℜ(ap+n, ap+n+1)) = 0. P1 ∈ N exists in such a way

ℜ(ap+n, ap+n+1) < δ, ∀ n ≥ P1,

and we obtain from (3.28), and

⇒ ℜ(ap+n,Pap+n) < δ, ∀ n ≥ P1.
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Which contradicts the definition of δ.

Hence, δ = 0 and from (3.30), we get

lim
n→∞

ℜ(an,Pan) = 0. (3.33)

Claim that,

⇒ lim
n,p→∞

ℜ(an, ap) = 0.

Assume, on contrary there exists two sequences of natural number

{r(n)}∞n=1 and {t(n)}∞n=1, then

r(n) > t(n) > n, ℜ(ar(n), at(n)) ≥ ϵ,

ℜ(ar(n)−1, at(n)) < ϵ, ∀ n ∈ N. (3.34)

⇒ ℜ(ar(n), at(n)) ≤ sℜ(ar(n), ar(n)−1) + ℜ(ar(n)−1, at(n))],

≤ sℜ(ar(n), ar(n)−1) + sϵ,

= sℜ(ar(n)−1,Par(n)−1) + sϵ, ∀ n ∈ N. (3.35)

By (3.33), there are P2 ∈ N in the way that

ℜ(ar(n),Par(n)) < ϵ, ∀ n > P2. (3.36)

(3.35) and (3.36) suggests that

ℜ(ar(n), at(n)) < 2sϵ, ∀ n > P2,

by (F2),

F (ℜ(ar(n), at(n)) < F (2sϵ), ∀ n > P2, (3.37)

using (3.34),

ϵ ≤ ℜ(ar(n)+1, at(n)+1) = ℜ(Par(n),Pat(n)), ∀ n > P2.
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From (3.37),

τ + F (ℜ(Par(n),Pat(n))) ≤ a1F (ℜ(ar(n), at(n))) + a2F (ℜ(ar(n),Par(n)))

+ a3F (ℜ(at(n),Pat(n))),

< a1F (2sϵ) + a2F (ℜ(ar(n),Par(n)))

+ a3F (ℜ(at(n),Pat(n))), ∀ n ∈ N.

From (3.35) and (F2),

lim
n→∞

F (ℜ(Par(n),Pat(n))) = −∞,

by (F2),

lim
n→∞

F (ℜ(Par(n),Pat(n))) = 0 ⇔ lim
n→∞

F (ℜ(ar(n)+1, at(n)+1)) = 0.

Contradiction in relation to (3.34) . Thus, lim
p,n→∞

ℜ(an, ap) = 0. There are m ∈ H

such that due to the completeness of (H,ℜ),

lim
n→∞

ℜ(an,m) = 0.

Since, P is ◁-continuous,

lim
n→∞

ℜ(Pan,Pm) = 0.

As ℜ(m,Pm) ≤ sℜ(m, an) + ℜ(an,Pm)], m is a fixed points of P since ℜ(m,Pm)

= 0. Assuming that Pnc = c ̸= d = Pnd ∀ n ∈ N, let c, d ∈ H be two fixed point

of H. By choice of a0, we get

(a0 ◁ c and a0 ◁ d) or (c ◁ a0 and d ◁ a0).

P is ◁-preserving, we get

(Pna0 ◁ Pnc and Pna0 ◁ Pnd) or (Pnc ◁ Pna0 and Pnd ◁ Pna0), ∀ n ∈ N.

Now,

ℜ(c, d) = ℜ(Pnc,Pnd) ≤ s(ℜ(Pnc,Pna0) + ℜ(Pna0,Pnd)).



F◁b-Contraction Mapping 41

We get ℜ(c, d) ≤ 0 as n → ∞. ⇒ c = d. Therefore, P has a unique fixed point in

H.

Example 3.2.8.

Suppose H = R and the mapping ℜ : H×H → [0,∞) is determined by

ℜ(c, d) = max{c, d}2, ∀, c, d ∈ H,

is a bms with s = 2. If c, d ∈ [3, n + 4] ∀, n ∈ N or c = 0,

define the binary relation ◁ on H by c ◁ d.

Then the bms (H, d) is OCms.

Define the P : H → H mapping by

P(d) =


0 if d = 0,

d + 1 if d ∈ [1, 2],

d + 1 if d ∈ (2,∞).

If c ∈ H and {cn} is any ◁-sequence in H that converges to c,

then the following conditions are fulfilled:

Case(1):

c = 0 and P(cn) = 0 = P(c) if cn = 0 ∀ n.

Case(2):

If cn ̸= 0 for all n, then q ∈ N in order for c ∈ [3, q + 4], and P(cn) = P(c).

P is thus not continuous on H but is ◁-continuous on P.

Suppose a1 = 1
2
, a2 = 1

4
, and a3 = 1

4
. Therefore,

ℜ(Pc,Pd) = 9, ℜ(P1,P2) = 9, ℜ(c, d) = 4, ℜ(1, 2) = 4, ℜ(1,P1) = 4,

ℜ(2,P2) = 9, ∀, F ∈ S and τ > 0 we obtain

c, d ∈ H with c ◁ d [ℜ(Pc,Pd) > 0

=⇒ τ + ℜ(Pc,Pd) ≥ a1F (ℜ(c, d)) + a2F (ℜ(c,Pc)) + a3F (ℜ(d,Pd))].

Consider F (m) = lnm, where m ∈ (0,∞). Initially, we note that

∀ c, d ∈ H with c ◁ d [ℜ(Pc,Pd) > 0] ⇐ [c = 0 and d ∈ (2,∞)].
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Consider that if

∀ c, d ∈ H with c ◁ d [ℜ(Pc,Pd) > 0,
1

2s
ℜ(c,Pc) < ℜ(c, d)

=⇒ τ +F (ℜ(Pc,Pd)) ≤ a1F (ℜ(c, d)) + a2F (ℜ(c,Pc)) + a3F (ℜ(d,Pd))].

(3.38)

Obviously, P is ◁-preserving. Suppose c ◁ d and c = 0, d ∈ (2,∞), τ = ln 2,

then

ℜ(Pc,Pd) = (d− 1)2,ℜ(c, d) = d2,ℜ(c,Pc) = 0, and ℜ(d,Pd) = d2. It is obvious

that (3.38) is satisfied.

Theorem 3.2.9.

Consider that (H,◁,ℜ) is an OCbms with an orthogonal element a0 and a con-

stant s ≥ 1. Suppose that τ > 0 and F ∈ S and P : H → H is a self mapping

satisfying the following axioms:

(i) P is ◁-preserving ∀ e, f ∈ H with e ◁ f [Pe,Pf) > 0

=⇒ τ + F (ℜ(Pe,Pf)) < F (ℜ(e, f))];

(ii) P is ◁-continuous,

then, P has a unique fixed point m ∈ H.

Proof. Follows by substitution a1 = 1 and a2 = a3 = 0 in Theorem (3.2.7).

Theorem 3.2.10.

Consider that (H,◁,ℜ) is an OCms. Assume that τ > 0 and F ∈ S

exist such that the following conditions are satisfied:

(i) P is ◁-preserving,

(ii) ∀ e, f ∈ H with e ◁ f [ℜ(Pe,Pf) > 0

=⇒ τ + F (ℜ(Pe,Pf)) < a1F (ℜ(e, f)) + a2F (ℜ(e,Pe)) + a3F (ℜ(f,Pf))],

a1 + a2 + a3 = 1 where a3 ∈ [0, 1) and a1, a2 ∈ [0, 1].

(iii) P is ◁-continuous,

Then, P has a unique fixed point m ∈ H.

Proof. Follows by taking s = 1 in Theorem (3.2.7).
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Theorem 3.2.11.

Consider that (H,◁,ℜ) is an OCms. Assume that τ > 0 and F ∈ S

exist such that the following conditions are satisfied:

(i) P is ◁-preserving,

(ii) ∀ e, f ∈ H with e ◁ f [ℜ(Pe,Pf) > 0

=⇒ τ + F (ℜ(Pe,Pf)) < F (ℜ(e, f))],

(iii) P is ◁-continuous,

then, P has a unique fixed point m ∈ H.

Proof. Every ms is a bms with constant s = 1, hence, m ∈ H is a fixed point of

P. In fact, there is another fixed point q such that for any m, q ∈ H with m ◁

q [ℜ(Pm,Pq)] > 0, then q ∈ H of P. Since τ > 0, we obtain from our foundation

of theorem

F (ℜ(m, q)) = F (ℜ(Pm,Pq)) < τ + F (ℜ(Pm,Pq)) ≤ a1F (ℜ(m, q)),

is contradiction. Therefore P has a unique fixed point.



Chapter 4

(α− F − P◁) Suzuki Contraction

Mapping

Beg et al. [29] introduced the orthogonal F -Scm on OCbms. In this chapter

two results are provided by generalizing the contraction of Beg et al. [29]. For

this purpose we defined generalized (α− F − P◁) Suzuki contractions. Following

material is necessary for the proof of main result.

4.1 Some Useful Definitions

Following definitions are taken from [35]

Definition 4.1. Alpha Admissible mapping

A mapping P : H → H is said to be an α- admissible mapping if there exist, a

function α : H×H → [0,∞) such that, for all µ, ν ∈ H,

α(µ, ν) ≥ 1 ⇒ α(P(µ),P(ν)) ≥ 1.

Definition 4.2. Alpha- type F- Contraction

Let (H,ℜ) be a metric space. Let D be a non empty subset of H. A mapping

P : D → D is said to be a α-type F-contraction if there exist τ > 0, and two

44
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functions F ∈ F, α : D ×D → (0,∞) such that, for all µ, ν ∈ D satisfying

ℜ(Pµ,Pν) > 0, the following inequality holds:

τ + α(µ, ν)F (ℜ(Pµ,Pν)) ≤ F (ℜ(µ, ν)).

4.2 Fixed Point Results for (α − F − P◁) Suzuki

Contraction Mappings

Definition 4.3. (α− F − P◁) Suzuki Contraction

Let (H,◁,ℜb) be an orthogonal bms with constant s ≥ 1. A mapping P : H → H

is said to be an generalized orthogonal (α− F − P◁) Suzuki contraction mapping

on (H,◁,ℜb) if there are F ∈ S, α : H×H → [0,∞) and τ > 0 such that,

a, b ∈ H with a ◁ b [ℜ(Pa,Pb) > 0,
1

2s
ℜ(a,Pa) < ℜ(b,Pb)]

τ + α(a, b)F (ℜ(Pa,Pb)) ≤ a1F (ℜ(a, b)) + a2F (ℜ(a,Pa))

+ a3F (ℜ(b,Pb)) + a4(
F (ℜ(a,Pa))+F (ℜ(b,Pb))

2
),

with a1 + a2 + a3 + a4 < 1.

Theorem 4.2.1.

Consider (H,◁,ℜb) an OCbms with an orthogonal element a0 and a constant

s ≥ 1. Suppose that F ∈ S, τ > 0 and P : H → H is generalized (α − F − P◁)

Suzuki contraction mapping observing the following axioms:

(i) P is α-admissible mapping,

(ii) there exist a0 ∈ H such that α(a0,Pa0) ≥ 1;

(iii) P is ◁-preserving,

then the sequence {Pna} converges to a unique fixed point m ∈ H of P.

Proof. Since, (H,◁) is an O-set,

∃ a0 ∈ H : (∀ a ∈ H, a ◁ a0) or (∀ a ∈ H, a0 ◁ a).



(α− F − P◁) Suzuki Contraction Mapping 46

Thus, it implies that a0 ◁ Pa0 or Pa0 ◁ a0. Let

a1 = Pa0, a2 = Pa1 = P2a0....., an+1 = Pan = Pn+1a0, ∀ n ∈ N ∪ {0}. (4.1)

If an = an+1 for any n ∈ N ∪ {0}, then an is fixed point of P.

If an ̸= an+1 ∀, n ∈ N ∪ {0}, then ℜ(Pan,Pan+1) > 0 for all n ∈ N.

Since P preserves-◁, we have

an ◁ an+1 or an+1 ◁ an, ∀ n ∈ N ∪ {0}.

This means that {an} is an orthogonal sequence.

Because P is a generalized (α− F − P◁) Suzuki contraction mapping,

we have
1

2s
ℜ(an,Pan) < ℜ(an,Pan), ∀ n ∈ N, (4.2)

using (i)

α(a0, a1) = α(a0,Pa0) ≥ 1.

⇒ α(a1, a2) = α(Pa0,Pa1) ≥ 1.

Inductively, we obtain

α(an, an+1) ≥ 1, ∀ n ∈ N ∪ {0}.

Thus, in light of the theorem‘s hypothesis, we have

τ + F (ℜ(Pan,P2an)) ≤ τ + α(an,Pan)F (ℜ(Pan,P2an)) ≤ a1F (ℜ(an,Pan))

+ a2F (ℜ(an,Pan)) + a3F (ℜ(Pan,P2an))

+ a4(
F (ℜ(an,Pan)) + F (ℜ(Pan,P2an))

2
),

since,

a1 + a2 + a3 + a4 < 1,

τ + (1 − a3 −
a4
2

)F (ℜ(Pan,P2an)) ≤ (a1 + a2 +
a4
2

)F (ℜ(an,Pan)). (4.3)

⇒ (1 − a3 −
a4
2

)F (ℜ(Pan,P2an)) ≤ (a1 + a2 +
a4
2

)F (ℜ(an,Pan)) − τ, (4.4)
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F (ℜ(Pan,P2an)) ≤ (
a1 + a2 + a4

2

1 − a3 − a4
2

)F (ℜ(an,Pan)) − τ

1 − a3 − a4
2

,

since
a1+a2+

a4
2

1−a3−a4
2

< 1, the inequality becomes

F (ℜ(Pan,P2an)) < F (ℜ(an,Pan)) − τ

1 − a3 − a4
2

< F (ℜ(an,Pan)).

Using (F1), we determine that

ℜ(an+1,Pan+1) = ℜ(Pan,P2an) < ℜ(an,Pan) ∀ n ∈ N. (4.5)

⇒ {ℜ(an,Pan)}∞n=1 is a decreasing sequence of real numbers

which is bounded below.

lim
n→∞

ℜ(an,Pan) = δ = inf{ℜ(an,Pan) ∀ n ∈ N}.

To prove δ = 0, suppose on the contrary, consider that δ > 0.

i.e, for every ϵ > 0 there exist p ∈ N, such that

ℜ(ap,Pap) < δ + ϵ.

⇒ F (ℜ(ap,Pap)) < F (δ + ϵ).

However, we have
1

2s
ℜ(ap,Pap) < ℜ(ap,Pap).

from (4.1). Given that P is generalized (α − F − P◁) Suzuki contraction, we

acquire,

τ + F (ℜ(Pap,P2ap)) ≤ τ + α(ap,Pap)F (ℜ(Pap,P2ap))

≤ a1F (ℜ(ap,Pap)) + a2F (ℜ(ap,Pap)) + a3F (ℜ(Pap,P2ap))

+ a4(
F (ℜ(ap,Pap)) + F (ℜ(Pap,P2ap))

2
).

Which gives

τ + (1 − a3 −
a4
2

)F (ℜ(Pap,P2ap)) ≤ (a1 + a2 +
a4
2

)F (ℜ(ap,Pap)),
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⇒ (1 − a3 −
a4
2

)F (ℜ(Pap,P2ap)) ≤ (a1 + a2 +
a4
2

)F (ℜ(ap,Pap)) − τ,

F (ℜ(Pap,P2ap)) ≤ (
a1 + a2 + a4

2

1 − a3 − a4
2

)F (ℜ(ap,Pap)) −
τ

1 − a3 − a4
2

,

since,
a1 + a2 + a4

2

1 − a3 − a4
2

< 1,

F (ℜ(Pap,P2ap)) < F (ℜ(ap,Pap)) −
τ

1 − a3 − a4
2

. (4.6)

Since P is generalized (α− F − P◁) Suzuki contraction, we determine

τ + F (ℜ(P2ap,P3ap)) ≤ τ + α(Pap,P2ap)F (ℜ(P2ap,P3ap))

≤ a1F (ℜ(Pap,P2ap)) + a2F (ℜ(Pap,P2ap))

+ a3F (ℜ(P2ap,P3ap)) + a4(
F (ℜ(Pap,P2ap))+F (ℜ(P2ap,P3ap))

2
).

⇒ τ + F (ℜ(P2ap,P3ap)) ≤ a1F (ℜ(Pap,P2ap))

+ a2F (ℜ(Pap,P2ap)) + a3F (ℜ(P2ap,P3ap))

+ a4(
F (ℜ(Pap,P2ap))+F (ℜ(P2ap,P3ap))

2
).

τ + (1 − a3 − a4
2

)F (ℜ(P2ap,P3ap)) ≤ (a1 + a2 + a4
2

)F (ℜ(Pap,P2ap)).

⇒ (1 − a3 − a4
2

)F (ℜ(P2ap,P3ap)) ≤ (a1 + a2 + a4
2

)F (ℜ(Pap,P2ap)) − τ,

F (ℜ(P2ap,P3ap)) ≤ (
a1+a2+

a4
2

1−a3−a4
2

)F (Pap,P2ap)) − τ
1−a3−a4

2

,

since
a1 + a2 + a4

2

1 − a3 − a4
2

< 1,

F (ℜ(P2ap,P3ap)) < F (ℜ(Pap,P2ap)) −
τ

1 − a3 − a4
2

. (4.7)

a1 + a2 + a3 + a4 < 1,

likewise by combining (4.5) and (4.6), we obtain

F (ℜ(P2ap,P3ap)) < F (ℜ(Pap,P2ap)) −
τ

1 − a3 − a4
2

,

< F (ℜ(ap,Pap)) − 2τ
1−a3−a4

2

.

Continuing in the same manner:

F (ℜ(Pnap,Pn+1ap)) < F (ℜ(Pnap,Pn−1ap)) − τ
1−a3−a4

2

,

< F (ℜ(Pn−1,Pn−2ap)) − 2τ
1−a3−a4

2

,

< F (ℜ(Pap, ap)) − nτ
1−a3−a4

2

,
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< F (δ + ϵ) − nτ
1−a3−a4

2

.

Applying limn → ∞ on both sides

lim
n→∞

F (ℜ(Pnap,Pn+1ap)) = −∞.

(F2) implies

lim
n→∞

ℜ(Pnap,Pn+1ap) = 0.

Hence, there exists p1 ∈ N such that

ℜ(Pnap,Pn+1ap) < δ, ∀ n ≥ p1,

and from (4.1), we obtain

ℜ(ap+n,Pap+n) < δ, ∀ n ≥ p1,

which contradicts the definition of δ implies. Hence,

lim
n→∞

ℜ(an,Pan) = 0. (4.8)

To prove,

lim
n→∞

(ℜ(an, ap)) = 0.

Assume, on contrary that for ϵ > 0, ∃ sequences of natural numbers

{r(n)}∞n=1 and {t(n)}∞n=1 such that

r(n) > t(n) > n.

ℜ(ar(n), at(n)) ≥ ϵ. (4.9)

ℜ(ar(n)−1, at(n)) < ϵ, ∀ n ∈ N. (4.10)

The triangular inequality gives us,

ℜ(ar(n), at(n)) ≤ s[ℜ(ar(n), ar(n)−1) + ℜ(ar(n)−1, at(n))],
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≤ sℜ(ar(n), ar(n)−1) + sϵ,

using (4.7)

lim
n→∞

ℜ(an,Pan) = 0.

⇒ ∃ p2 ∈ N such that

ℜ(an, an+1) < ϵ, ∀ n ≥ p2.

ℜ(ar(n), at(n)) < sℜ(ar(n)−1,Par(n)−1) + sϵ, ∀ n ∈ N. (4.11)

There p2 ∈ N such that

⇒ ℜ(ar(n), at(n)) < 2sϵ, ∀ n > p2.

So that from (F2), we get

F (ℜ(ar(n), at(n)) < F (2sϵ), ∀ n > p2.

One can easily get,

1

2s
ℜ(ar(n),Par(n)) <

ϵ

2s
< ϵ ≤ ℜ(ar(n), at(n)), ∀ n > p2.

Considering, (4.8) and (4.11) and using the fact that P is generalized (α−F−P◁)

Suzuki type contraction.

τ + F (ℜ(Par(n),Pat(n))) ≤ τ + α(ar(n), at(n))F (ℜ(Par(n),Pat(n)))

≤ a1F (ℜ(ar(n), at(n))) + a2F (ℜ(ar(n),Par(n)))

+ a3F (ℜ(at(n),Pat(n))) + a4(
F (ℜ(ar(n),Par(n)))+F (ℜ(at(n),Pat(n)))

2
).

⇒ τ + F (ℜ(Par(n),Pat(n))) ≤ a1F (ℜ(ar(n), at(n))) + a2F (ℜ(ar(n),Par(n)))

+ a3F (ℜ(at(n),Pat(n))) + a4(
F (ℜ(ar(n),Par(n)))+F (ℜ(at(n),Pat(n)))

2
).

Applying limn → ∞, we get

lim
n→∞

F (ℜ(Par(n),Pat(n))) = −∞.
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From (F2),

lim
n→∞

ℜ(Par(n),Pat(n)) = 0.

This conflicts with (4.9). Consequently,

lim
n,p→∞

ℜ(an, ap) = 0.

{an} is a Cauchy sequence in H.

Due to the completeness of (H,ℜ), there is m ∈ H such that

lim
n→∞

ℜ(an,m) = 0. (4.12)

We claim that
1

2s
ℜ(an,Pan) < ℜ(an,m),

or
1

2s
ℜ(Pan,P2an) < ℜ(Pan,m), ∀ n ∈ N. (4.13)

Suppose on contrary, there exist m ∈ N in such a way

1

2s
ℜ(ap,Pap) ≥ ℜ(ap,m), (4.14)

1

2s
ℜ(Pap,P2ap) ≥ ℜ(Pap,m).

From (4.5) and (F1),

ℜ(Pap,P2ap) ≤ ℜ(ap,Pap). (4.15)

From (4.13) and (4.14)

ℜ(ap,Pap) ≤ sℜ(ap,m) + sℜ(m,Pap),

≤ 1
2
ℜ(ap,PaP ) + 1

2
ℜ(Pap,P2ap),

< 1
2
ℜ(ap,Pap) + 1

2
ℜ(ap,Pap),

= ℜ(ap,Pap).

This is a contradiction. P is generalized (α − F − P◁) Suzuki type contraction,
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hence (4.12) is applicable.

(4.12) outcomes in either for every n ∈ N,

τ + F (ℜ(Pan,Pm)) ≤ τ + α(an,m)F (ℜ(Pan,Pm))

≤ a1F (ℜ(an,m)) + a2F (ℜ(an,Pan))

+ a3F (ℜ(m,Pm)) + a4(
F (ℜ(an,Pan)) + F (ℜ(m,Pm))

2
), (4.16)

then

τ + F (ℜ(Pan,Pm)) ≤ a1F (ℜ(an,m)) + a2F (ℜ(an,Pan))

+ a3F (ℜ(m,Pm)) + a4(
F (ℜ(an,Pan)) + F (ℜ(m,Pm))

2
). (4.17)

Similarly

τ + F (ℜ(P2an,Pm)) ≤ a1F (ℜ(Pan,m)) + a2F (ℜ(Pan,P2an))

+ a3F (ℜ(m,Pm)) + a4(
F (ℜ(Pan,P2an))+F (ℜ(m,Pm))

2
).

Holds as a result of (F2) as indicated by the limits in (4.7).

lim
n→∞

F (ℜ(an,m)) = −∞,

lim
n→∞

F (ℜ(an,Pan)) = −∞.

⇒ (4.15),

lim
n→∞

F (ℜ(Pan,Pm)) = −∞. (4.18)

⇒ lim
n→∞

ℜ(Pan,Pm) = 0.

From (4.1),

ℜ(m,Pm) ≤ s[ℜ(m,Pan) + ℜ(Pan,Pm)],

= sℜ(m, an+1) + sℜ(Pan,Pm).

⇒ lim
n→∞

ℜ(m,Pm) = 0,

⇒ m = Pm.

Analyze the 2nd case (4.16) immediately. From (4.1),

F (ℜ(P2an, Pm)) < τ + F (ℜ(P2an, Pm))
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≤ a1F (ℜ(Pan,m)) + a2F (ℜ(Pan,P2an)) + a3F (ℜ(m,Pm))

+ a4(
F (ℜ(Pan,P2an))+F (ℜ(m,Pm))

2
),

= a1F (ℜ(an+1,m)) + a2F (ℜ(an+1,Pan+1))

+ a3F (ℜ(m,Pm)) + a4(
F (ℜ(an+1,Pan+1))+F (ℜ(m,Pm))

2
).

From (4.7) and (F2), then

lim
n→∞

F (ℜ(P2an,Pm)) = −∞.

⇒ lim
n→∞

ℜ(P2an,Pm) = 0. (4.19)

From the (4.1),

ℜ(m,Pm) ≤ s[ℜ(m,P2an) + ℜ(P2an,Pm)],

= s[ℜ(m, an+2) + ℜ(P2an,Pm)].

⇒ ℜ(m,Pm) = 0,

Hence, m is a fixed point of P. Claim that Pnc = c ̸= d = Pnd

for all n ∈ N and that c, d ∈ H are two fixed points of P.

By using a0, we have

(a0 ◁ c and a0 ◁ d) or (c ◁ a0 and d ◁ a0).

P is ◁-preserving, so the result is

(Pna0 ◁ Pnc and Pna0 ◁ Pnd) or (Pnc ◁ Pna0 and Pnd ◁ Pna0),

for each n ∈ N. Now,

ℜ(c, d) = ℜ(Pnc,Pnd) ≤ s(ℜ(Pnc,Pna0) + ℜ(Pna0,Pnd)).

As a result n → ∞, we get ℜ(c, d) ≤ 0. So that c = d.

Therefore P has a unique fixed point in H.
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Main theorem of Beg et al. is restricted case of (4.2.1) as follows:

Corollary 4.2.2.

Consider (H,◁,ℜb) an OCbms with an orthogonal element a0 and a constant

s ≥ 1. Suppose that F ∈ S, τ > 0 and P : H → H is generalized F - Suzuki (F◁b)

contraction mapping which is ◁-preserving.

Then the sequence {Pna} converges to a unique fixed point m ∈ H of P.

Proof. Proof of (4.2.2) is obtain by substituting a4 = 0

and α(a, b) = 1 ∀ a, b ∈ H and a1 + a2 + a3 < 1 in (4.2.1).

Corollary 4.2.3.

Consider (H,◁,ℜ) an OCms with an orthogonal element a0. Suppose that F ∈ S,

τ > 0 and P : H → H is generalized (α− F − P◁) Suzuki contraction mapping

observing the following axioms:

(i) P is α-admissible mapping,

(ii) there exist a0 ∈ H such that α(a0,Pa0) ≥ 1;

(iii) P is ◁-preserving,

Then the sequence {Pna} converges to a unique fixed point m ∈ H of P.

Proof. (4.2.3) is concluded by taking s = 1 in (4.2.1).

Corollary 4.2.4.

Consider (H,◁,ℜ) an OCms with an orthogonal element a0. Suppose that F ∈ S,

τ > 0 and P : H → H is P◁b-contraction mapping which is ◁-preserving. Then

the sequence {Pna} converges to a unique fixed point m ∈ H of P.

Proof. (4.2.4) is concluded by taking s = 1, a1 = 1, a2 = a3 = a4 = 0

and α(a, b) = 1 ∀ a, b ∈ H in (4.2.1).

Example 4.2.5.

Consider H = [0, 1] ∪ {2, 4}, and a mapping ℜ : H×H → [0,∞)

is determined by

ℜ(c, d) = |c− d|2, ∀ c, d ∈ H,
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is a bms with s = 2.

If cd ≤ (c ∨ d) then define the binary relation ◁ on H as c ◁ d,

where c ∨ d = c or d. Then, OCbms is (H,ℜ).

Determine the mapping P : H → H by

P(d) =

ln(1 + d
2
) if d ∈ [0, 1],

d− 1 if d ∈ {2, 4}.

Suppose a1 = 1
10

, a2 = 1
10

, a3 = 1
10

, a3 = 1
4
, and a4 = 1

10
, and τ > 0.

Consider α : H×H → [0,∞) is define as

α(c, d) = c + d + 1,

Suppose c = 2, d = 4, then α(c, d) = c + d + 1,

and α(Pc,Pd) = ln(1 + c
2
) + ln(1 + d

2
) + 1 ≥ 1,

hence P is α-admissible . cd ≤ c. We obtain

ℜ(Pc,Pd) = |c− 1 − (d− 1)|2,

= |c− 1 − d + 1|2,

= 4.

ℜ(c, d) = |c− d|2,

= 4.

ℜ(c,Pc) = |c− (c− 1)|2,

= 1.

ℜ(d,Pd) = |d− (d− 1)|2,

= 1.

So we have

cd = (2)(4) = 8 ≤ c ∨ d ⇒ c ◁ d,

and

ℜ(Pc,Pd) > 0,
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and
1

2s
ℜ(c,Pc) =

1

2s
(1) < 4 = ℜ(c, d),

⇒ 1

2s
ℜ(c,Pc) < ℜ(c, d).

But Let’s take the mapping F which is defined as F (m) = lnm,

where m ∈ (0,∞). If τ = ln 4 and a1 + a2 + a3 + a4 < 1.

=⇒ τ + F (ℜ(Pc,Pd)) ≤ τ + α(c, d)F (Pc,Pd) ≥ a1F (ℜ(c, d))

+ a2F (ℜ(c,Pc)) + a3F (ℜ(d,Pd)) + a4(
F (ℜ(c,Pc))+F (ℜ(d,Pd))

2
)].

Since P is not generalized (α − F − P◁) Suzuki contraction mapping. Also note

that P is not ◁-preserving in this case because c ◁ d but Pc ◁ Pd does not holds.

Now we consider the following cases.

For τ = ln 4 s.t a1 + a2 + a3 + a4 < 1.

Case(1):

When c, d ∈ [0, 1]. Then

ℜ(Pc,Pd) = | ln(1 +
c

2
) − (1 +

d

2
)|2 > 0,

ℜ(c, d) = |c− d|2,

ℜ(c,Pc) = |c− ln(1 + c
2
)|2,

ℜ(d,Pd) = |d− ln(1 + d
2
)|2,

It is clear that

c ◁ d,ℜ(Pc,Pd) > 0

and
1

2s
ℜ(c,Pc) < ℜ(c, d).

This implies

τ + F (ℜ(Pc,Pd)) ≤ τ + α(c, d)F (Pc,Pd)) ≤ a1F (ℜ(c, d))

+ a2F (ℜ(c,Pc)) + a3F (ℜ(d,Pd)) + a4(
F (ℜ(c,Pc))+F (ℜ(d,Pd))

2
).

Since P is generalized (α− F − P◁) Suzuki contraction mapping.

Also note that P is ◁-preserving in this case.

Case(2):

When c ∈ [0, 1] and d ∈ {2, 4}, then
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ℜ(Pc,Pd) = | ln(1 + c
2
) − c + 1|2,

ℜ(c, d) = |c− d|2,

ℜ(c,Pc) = |c− ln(1 + c
2
|2,

ℜ(d,Pd) = |d− (d− 1)|2 = 1,

It is clear that

c ◁ d,ℜ(Pc,Pd) > 0

and
1

2s
ℜ(c,Pc) < ℜ(c, d),

⇒ τ + F (ℜ(Pc,Pd)) ≤ τ + α(c, d)F (ℜ(Pc,Pd)) ≤ a1F (ℜ(c, d))

+ a2F (ℜ(c,Pc)) + a3F (ℜ(d,Pd)) + a4(
F (ℜ(c,Pc))+F (ℜ(d,Pd))

2
).

Since P is generalized (α− F − P◁) Suzuki contraction mapping.

Also P is ◁-preserving in this case.

Case(3):

When c ∈ {2, 4} and d ∈ [0, 1].

Similar to Case(2) As all the hypothesis of theorem are satisfied

so P has a unique fixed point i.e m = 0.

Theorem 4.2.6.

Consider (H,◁,ℜb) an OCbms with an element a0 and a constant s ≥ 1.

Suppose that F ∈ S; τ > 0 and P : H → H is generalized (α − F − P◁) Suzuki

contraction mapping observing the following axioms:

(i) P is α- admissible mapping,

(ii) there exist a0 ∈ H such that α(a0,Pa0) ≥ 1,

(iii) P is ◁-preserving,

(iv) P is ◁-continuous,

then, P has a unique fixed point m ∈ H.

Proof. Since, (H,◁) is an O-set,

∃ a0 ∈ H : (∀ a ∈ H, a ◁ a0) or (∀ a ∈ H, a0 ◁ a).

Thus, it implies that a0 ◁ Pa0 or Pa0 ◁ a0. Let

a1 = Pa0, a2 = Pa1 = P2a0......, an+1 = Pan = Pn+1a0, ∀ n ∈ N ∪ {0}. (4.20)
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If an = an+1 for any, n ∈ N ∪ {0}, so then an is a fixed point of P.

If an ̸= an+1 ∀ n ∈ N ∪ {0}, then ℜ(Pan,Pan+1) > 0 ∀ n ∈ N.

Since P is ◁-preserving, we have

an ◁ an+1 or an+1 ◁ an, ∀ n ∈ N ∪ {0}.

⇒ {an} is an orthogonal sequence.

As P map is an α-admissible, then

α(a0, a1) = α(a0,Pa0) ≥ 1.

⇒ (a0, a1) = α(Pa0,Pa1) ≥ 1.

Inductively, we obtain

α(an, an+1) ≥ 1, ∀ n ∈ N ∪ {0}.

Using (iv), we have

0 < ℜ(an,Pan) = ℜ(Pan−1,Pan), ∀ n ∈ N. (4.21)

Hence, we have

τ + F (ℜ(Pan−1,Pan)) ≤ τ + α(an−1, an)F (ℜ(Pan−1,Pan))

≤ a1F (ℜ(an−1, an)) + a2F (ℜ(an−1,Pan−1)) + a3F (ℜ(an,Pan))

+ a4(
F (ℜ(an−1,Pan−1))+F (ℜ(an,Pan))

2
),

⇒ τ + F (ℜ(Pan−1,Pan)) ≤ a1F (ℜ(an−1, an)) + a2F (ℜ(an−1, an))

+ a3F (ℜ(Pan−1,Pan)) + a4(
F (ℜ(an−1,an))+F (ℜ(Pan−1,Pan))

2
),

a1 + a2 + a3 + a4 < 1,

τ + (1 − a3 −
a4
2

)F (ℜ(Pan−1,Pan)) ≤ (a1 + a2 +
a4
2

)F (ℜ(an−1, an)).

F (ℜ(Pan−1,Pan)) ≤ (
a1 + a2 + a4

2

1 − a3 − a4
2

)F (ℜ(an−1, an)) − τ

1 − a3 − a4
2

,



(α− F − P◁) Suzuki Contraction Mapping 59

since
a1 + a2 + a4

2

1 − a3 − a4
2

< 1,

F (ℜ(Pan−1,Pan)) < F (ℜ(an−1,Pan)) − τ

1 − a3 − a4
2

< F (ℜ(an−1, an)),

(F1) implies that

ℜ(an,Pan) = ℜ(Pan−1,Pan) < ℜ(an−1,Pan−1), ∀ n ∈ N,

⇒ {ℜ(an,Pan)}∞n=1 is decreasing sequence that is bounded below, and

lim
n→∞

ℜ(an,Pan) = δ = inf{ℜ(an,Pan) : ∀ n ∈ N}.

To prove δ = 0, assume on contrary, δ > 0 ∃ p ∈ N such that for every ϵ > 0,

ℜ(ap,Pap) < δ + ϵ.

⇒ F (ℜ(ap,Pap)) < F (δ + ϵ). (4.22)

From (4.21), we conclude

0 < ℜ(ap,Pap) = ℜ(ap−1,Pap).

τ + F (ℜ(Pap−1,Pap)) ≤ τ + α(ap−1, ap))F (ℜ(Pap−1,Pap))

≤ a1F (ℜ(ap−1, ap)) + a2F (ℜ(ap−1,Pap)) + a3F (ℜ(ap,Pap))

+ a4(
F (ℜ(ap−1,Pap−1))+F (ℜ(ap,Pap))

2
),

τ + F (ℜ(Pap−1,Pap)) = a1F (ℜ(ap−1, ap)) + a2F (ℜ(ap−1, ap))

+ a3F (ℜ(Pap−1,Pap)) + a4(
F (ℜ(ap−1,ap))+F (ℜ(Pap−1,Pap))

2
),

⇒ τ + (1 − a3 −
a4
2

)F (ℜ(Pap−1,Pap)) ≤ (a1 + a2 +
a4
2

)F (ℜ(ap−1, ap)).

a1 + a2 + a3 + a4 < 1,

F (ℜ(Pap−1,Pap)) ≤ (
a1 + a2 + a4

2

1 − a3 − a4
2

)F (ℜ(ap−1, ap)) −
τ

1 − a3 − a4
2

,
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Since
a1 + a2 + a4

2

1 − a3 − a4
2

< 1,

F (ℜ(Pap−1,Pap)) < F (ℜ(ap−1,Pap)) −
τ

1 − a3 − a4
2

. (4.23)

From (4.21), we have 0 < ℜ(Pap,Pap+1) < ℜ(ap,P2ap),

and by the assumption of theorem, we obtain

τ + F (ℜ(Pap,Pap+1)) ≤ τ + α(ap, ap+1)F (ℜ(ap,Pap+1))

+ a1F (ℜ(ap, ap+1)) + a2F (ℜ(ap,Pap)) + a3F (ℜ(ap+1,Pap+1))

+ a4(
F (ℜ(ap,Pap))+F (ℜ(ap+1,Pap+1)

2
.

τ + F (ℜ(Pap,Pap+1)) = a1F (ℜ(ap, ap+1)) + a2F (ℜ(ap,Pap))

+ a3F (ℜ(ap+1,Pap+1)) + a4(
F (ℜ(ap,Pap))+F (ℜ(ap+1,Pap+1)

2
.

⇒ τ + (1 − a3 −
a4
2

)F (ℜ(Pap,Pap+1)) ≤ (a1 + a2 +
a4
2

)F (ℜ(ap, ap+1)).

a1 + a2 + a3 + a4 < 1,

F (ℜ(Pap,Pap+1)) ≤ (
a1 + a2 + a4

2

1 − a3 − a4
2

)F (ℜ(ap, ap+1)) −
τ

1 − a3 − a4
2

,

Since
a1 + a2 + a4

2

1 − a3 − a4
2

< 1,

F (ℜ(Pap,Pap+1)) < F (ℜ(ap, ap+1)) −
τ

1 − a3 − a4
2

. (4.24)

Now,from (4.22) and carrying out the same procedure as in (4.23)

and (4.24), we obtain

F (ℜ(ap+n, ap+n+1)) = F (ℜ(Pap+n−1,Pap+n)),

≤ F (ℜ(ap+n−1, ap+n)) − τ
1−a3−a4

2

,

= F (ℜ(Pap+n−2,Pap+n−1))
τ

1−a3−a4
2

,

≤ F (ℜ(ap+n−2, ap+n−1)) − 2τ
1−a3−a4

2

,

= F (ℜ(Pap+n−3,Pap+n−2)) − 2τ
1−a3−a4

2

,

≤ F (ℜ(ap+n−3, ap+n−2)) − 3τ
1−a3−a4

2

,

≤ F (ℜ(ap+1, ap+2)) − (n−1)τ

1−a3−a4
2

,

= F (ℜ(Pap,Pap+1)) − (n−1)τ

1−a3−a4
2

,
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≤ F (δ + ϵ) − nτ
1−a3−a4

2

.

⇒ lim
n→∞

F (ℜ(ap+n, ap+n+1)) = −∞.

⇒ lim
n→∞

F (ℜ(ap+n, ap+n+1)) = 0, implies P1 ∈ N exists in such a way

ℜ(ap+n, ap+n+1) < δ, ∀ n ≥ P1,

and we obtain from (4.21),

ℜ(ap+n,Pap+n) < δ, ∀ n ≥ P1,

which contradicts the definition of δ. Hence, δ = 0 and from (4.22), we get

lim
n→∞

ℜ(an,Pan) = 0. (4.25)

To prove

⇒ lim
n,p→∞

ℜ(an, ap) = 0.

Assume, on contrary that there exists two sequences of natural number

{r(n)}∞n=1 and {t(n)}∞n=1, then

r(n) > t(n) > n, ℜ(ar(n), at(n)) ≥ ϵ,

ℜ(ar(n)−1, at(n)) < ϵ, ∀ n ∈ N. (4.26)

⇒ ℜ(ar(n), at(n)) ≤ s[ℜ(ar(n), ar(n)−1) + ℜ(ar(n)−1, at(n))],

≤ sℜ(ar(n), ar(n)−1) + sϵ,

= sℜ(ar(n)−1,Par(n)−1) + sϵ, ∀, n ∈ N. (4.27)

By (4.25), there are P2 ∈ N in the way that

ℜ(ar(n),Par(n)) < ϵ, ∀ n > P2. (4.28)



(α− F − P◁) Suzuki Contraction Mapping 62

(4.26) and (4.27) suggests that

ℜ(ar(n), at(n)) < 2sϵ, ∀ n > P2,

by (F2),

F (ℜ(ar(n), at(n)) < F (2sϵ), ∀ n > P2, (4.29)

using (4.26),

ϵ ≤ ℜ(ar(n)+1, at(n)+1) = ℜ(Par(n),Pat(n)), ∀ n > P2.

From (4.29),

τ + F (ℜ(Par(n),Pat(n))) ≤ τ + α(ar(n), at(n))F (ℜ(Par(n),Pat(n)))

≤ a1F (ℜ(ar(n), at(n))) + a2F (ℜ(ar(n),Par(n))) + a3F (ℜ(at(n),Pat(n)))

+ a4(
F (ℜ(ar(n),Par(n)))+F (ℜ(at(n),Pat(n)))

2
),

τ + F (ℜ(Par(n),Pat(n))) < a1F (ℜ(ar(n), at(n))) + a2F (ℜ(ar(n),Par(n)))

+ a3F (ℜ(at(n),Pat(n))) + a4(
F (ℜ(ar(n),Par(n)))+F (ℜ(at(n),Pat(n)))

2
),

From (4.27) and (F2),

lim
n→∞

F (ℜ(Par(n),Pat(n))) = −∞,

by (F2),

lim
n→∞

F (ℜ(Par(n),Pat(n))) = 0 ⇔ lim
n→∞

F (ℜ(ar(n)+1, at(n)+1)) = 0,

contradiction to (4.26) . By the completeness of (H,ℜ) there exists

m ∈ H such that

lim
n→∞

ℜ(an,m) = 0.

Since, P is ◁-continuous,

lim
n→∞

ℜ(Pan,Pm) = 0.

As

ℜ(m,Pm) ≤ s[ℜ(m, an) + ℜ(an,Pm)],
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m is a fixed points of P since

⇒ ℜ(m,Pm) = 0.

Assuming that Pnc = c ̸= d = Pnd ∀ n ∈ N,

let c, d ∈ H be two fixed point of H. By choice of a0, we get

(a0 ◁ c and a0 ◁ d) or (c ◁ a0 and d ◁ a0).

P is ◁-preserving, we get

(Pna0 ◁ Pnc and Pna0 ◁ Pnd) or (Pnc ◁ Pna0 and Pnd ◁ Pna0), ∀ n ∈ N.

Now,

ℜ(c, d) = ℜ(Pnc,Pnd) ≤ s(ℜ(Pnc,Pna0) + ℜ(Pna0,Pnd)).

We get ℜ(c, d) ≤ 0 as n → ∞. ⇒ c = d.

Therefore, P has a unique fixed point in H.

Corollary 4.2.7.

Consider (H,◁,ℜb) an OCbms with an element a0 and a constant s ≥ 1. Suppose

that F ∈ S; τ > 0 and P : H → H is generalized F - Suzuki (F◁b)-contraction

mapping observing the following axioms:

(i) P is ◁-preserving,

(ii) P is ◁-continuous,

then, P has a unique fixed point m ∈ H.

Proof. (4.2.7) is concluded by taking a4 = 0 and α(a, b) = 1

∀ a, b ∈ H and a1 + a2 + a3 < 1 in (4.2.6).

Corollary 4.2.8.

Consider (H,◁,ℜ) an OCms with an orthogonal element a0. Suppose that F ∈ S;

τ > 0 and P : H → H is generalized (α − F − P◁) Suzuki contraction mapping

observing the following axioms:

(i) P is α-admissible mapping,

(ii) there exist a0 ∈ H such that α(a0,Pa0) ≥ 1,
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(iii) P is ◁-preserving,

(iv) P is ◁-continuous,

then, P has a unique fixed point m ∈ H.

Proof. (4.2.8) is concluded by applying s = 1 in Theorem (4.2.6).

Corollary 4.2.9.

Consider (H,◁,ℜ) an OCms with an orthogonal element a0. Suppose that F ∈ S;

τ > 0 and P : H → H is P◁b-contraction mapping observing the following axioms:

(i) P is ◁-preserving,

(ii) P is ◁-continuous,

then, P has a unique fixed point m ∈ H.

Proof. (4.2.9) is obtain by taking s = 1, a1 = 1, a2 = a3 = a4 = 0

and α(a, b) = 1 ∀ a, b ∈ H in Theorem (4.2.6).



Chapter 5

Conclusion

We wrap up our research in the following manners:

�

A quick overview of history sets the stage for a brief exploration of fixed

point theory.

�

Certain mappings are expounded upon to enhance comprehension of con-

tractions.

�

Special emphasis is given on F- contraction mapping and its extensions,

highlighting its importance along with the examples.

�

A section is dedicated to different important concepts related to the metric

fixed point theory.

�

A comprehensive analysis of the work by Beg et al. [29] is elaborated. This

task involves an in-depth examination of orthogonality within a complete

bms and the preservation of fixed points for F◁b-contraction mapping. These

aspects are explored within the framework of a complete bms.

� Two fixed point results are established within an OCbms, employing the

approach introduced by Beg et al. and using the foundation of a complete

bms.

Existence of fixed point for an (α−F−P◁) Suzuki contraction is established.

65
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� (α − F − P◁) Suzuki contraction mappings is generalization of generalized

F◁b-contraction introduced in [29].

� One non-trivial example is provided for validating the proven result.

� Several corollaries are presented to exhibit that many existing fixed point

results are the special case established in the present research.

� Results proved by Beg et al. [29] are also the restricted case of these theo-

rems.
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