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Abstract
Hammad and Abdeljawad established some quadruple fixed point and quadruple
coincidence point theorems in the setting of generalized metric spaces. In this
research study, we extended quadruple fixed point theorems in the framework of
generalized b-metric spaces in association with matrices. Some corollaries being
the spacial cases of main results are also presented. For the validation of results,
some supportive examples are attached. Eventually, an application on the study
of unique stationary distribution of Markov process is constructed in the support
of the theoretical ideas.
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Chapter 1

Introduction

1.1 Background

“Mathematics is the mother of all sciences”, is not only a sentence but there lies

a whole universe in it. There are countless applications of mathematics in almost

every field of life, for example, in weather prediction, medical science, security

concerns, engineering, banking and finance and many others. Mathematics is

fractionated into many branches such as arithmetic, algebra, trigonometry, calcu-

lus, number theory, probability and statistics and many more. One of the most

powerful branch of mathematics is functional analysis. The term “ functional”

implying “a function whose argument is a function” was introduced by an Ital-

ian mathematician Vito Volterra in 19th century and in 1910 it was first used by

a French mathematician J.S. Hadamard in his book on that subject. Functional

analysis is widely applicable in linear and non-linear analysis, calculus of variation,

approximation theory, numerical analysis, integral equations and many others. In

non-linear analysis, one of the fundamental tools is metric fixed point theory. In

the current research period, one of the most valuable research is finding the solu-

tion of differential and integral equation by the way of fixed point theory.

In 1886, the field of fixed point theory was first time deliberated by a French

mathematician Poincare [1] and introduced various results on the study of fixed

1



Introduction 2

point theorems. A fixed point theorem is a statement which guarantees that under

specific conditions there exist one or more points of a mapping 𝟋 : X → Y such

that 𝟋(r) = r, where r ∈ X called fixed point of mapping 𝟋. In 1910, Brouwer [2]

established his fixed point theorem for continuous mappings over Euclidean metric

space. Subsequently, Stephan Banach [3] presented his remarkable result in 1922

known as Banach contraction principle (BCP), which was accepted as the funda-

mental result in fixed point theory. BCP states that a self map 𝟋 : X → X on a

complete metric space (X , d) has a unique fixed point in X if it satisfy contraction

condition i.e,

d(𝟋(r),𝟋(t) ≤ αd(r, t), ∀ r, t ∈ X ,

provided that α ∈ [0, 1).

In 1906, M. Frechet [21] established a new class of spaces termed as metric spaces

under certain conditions satisfied by the mapping over the underlying set. With

the passage of time, researchers paid efforts on the generalization of BCP in two

different directions (i) by changing the space (ii) working with more properties of

contractions mappings. In this regard, a useful result was presented by Edelstein

[4] in 1962 by adapting changes in contraction condition.

Perov [5] in 1964 extended classical BCP on spaces endowed with vector-valued

metric spaces. Later on, in 1968 Kannan [6] introduced a new version of BCP

by way of refinement in the continuity of contraction condition. Subsequently,

BCP was generalized by Nadler [7] in 1969 on set-valued mappings by working

on multi-valued contraction mappings and opened a new door for researcher to

quench the thirst. For more concepts in this regard, we refer to [8–10].

Later on, meddling with the defined properties of metric, authors demonstrated

various types of metric spaces. Working on the idea of non-zero self distance,

Matthews [22] introduced the notion of partial metric spaces in 1992. In 1983, by

introducing a new parameter in triangular inequality, Bakhtin [23] generate the

concept of b-metric space which was remodeled by Czerwik [24] in 1993. Moreover,

BCP was also generalized on b-metric space. Afterwards, Akkouchi [25] elaborated

his exciting results on the existence of fixed point of mappings in b-metric spaces.
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Ever since, many articles have been publicized on numerous type of single-valued

and multi-valued operations in frame of b-metric spaces, see [26, 27].

Working on a new track, idea of couple fixed point was first studied by Optoitsev

[11] and then in 1987 by Guo and Lakshmikantham [12], later on in the year 2006,

Bhaskhar and Lakshmikantham [13] introduced the concept of mixed monotone

mappings and worked on coupled fixed point of mappings in a partial ordered

metric spaces (PoMs) and the idea was supported by demonstrating an application

to the existence of solution of a periodic boundary value problem. Following the

path, Berinde and Borcut [14], in 2011, extended the idea of couple fixed point

and presented the notion of triple fixed point (TFp) for self mappings and set

up remarkable results in PoMs. Subsequently, generalizing the concept of TFp

in 2012, Karapinar [15] opened a gateway for researchers in the new direction by

proposing the theory of quadruple fixed point (QFp) of mappings and established

exciting consequences in this regard [16, 17]. One can have a deeper understanding

of the concepts through [18–20].

Perov’s [5] extension of BCP on spaces endowed with vector-valued metric spaces

gave birth to a new way of research for authors. These spaces named as generalized

metric spaces (GMS). For GMS, the notions of convergent sequences, Cauchy

sequences, completeness, open subsets, closed subsets and continuous mappings

are similar to those for usual metric spaces. In 1884, Gary Gruenhage [28] studied

the concept the GMS under weak topological properties in his book on title “Set-

Theoretical Topology”. Later on, authors established fixed point theorems for fixed

point of mappings [29, 30], coupled fixed point results [31, 32], TFp results [33]

and QFp results [34, 35] on GMS.

In our research study, a blend of the GMS endowed with vector-valued metric

spaces and b-metric spaces is produced and termed as generalized b-metric spaces

endowed with vector-valued metric spaces (GbMS) by adapting a new co-efficient

in triangular inequality of GMS. Furthermore, motivated by the idea presented in

[34], we established coincident points and quadruple fixed points of mappings in

the setting of GbMS and introduced some useful theoretical consequences.
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1.2 Thesis Contribution

An outline of the forthcoming chapters of our thesis is highlighted below;

(1). Chapter 2:

Chapter 2 includes a short review of basic concepts regarding metric space.

This chapter is partitioned into four sections. “Matrix Equations” includes

the few definitions and important results about matrix conversions. Next

section is “Basic Tools” which is about to built a base in metric spaces

together with a few examples in this context are also stated. In “Fixed Point

of Mappings”, a quick review of history of fixed point theorems is illustrated.

Eventually, we present few important extensions in metric spaces which will

be helpful in the forthcoming chapters.

(2). Chapter 3:

In this chapter a detailed review of the work by Hammad et al. [34] is articu-

lated. Some definitions and few important consequences on the structure of

GMS with the help of examples are demonstrated. Lastly, an applications

about stationary distribution of Markov process verifies the obtained results.

(3). Chapter 4:

The main theme presented in this chapter is the establishment of coincidence

point and quadruple fixed point of mappings in the setting of GbMS, general-

ized from the idea presented in [34]. Furthermore, we modify few definitions

and results of GMS on the structure of GbMS and elaborate by virtue of

some examples. Lastly, an application on the study of existence of unique

stationary distribution in the frame of GbMS validates our generalized idea.

(4). Chapter 5:

Chapter 5 is based on conclusion and future works.



Chapter 2

Preliminaries

Chapter 2 is an introduction to the basics of metric spaces and fixed point theo-

rems. First section covers the main idea of metric spaces along with the notions

of convergence, Cauchy sequence, completeness, continuity and contraction map-

pings. Second section deals with the theory of fixed points. Next section highlights

few extensions in metric spaces, important results and examples on b-metric spaces

and generalized metric spaces(GMS). Last section includes the concept of matrix

convergence in Mn×n(R+) with supportive examples.

2.1 Basic Tools

This section is short analysis of few basic concepts and fundamental results in

metric spaces along with some examples.

Definition 2.1.1.
“A partially ordered set is a set X on which there is defined partial ordering, that

is, a binary relation which is written as ⪯ and satisfies the conditions:

(P 1) r ⪯ r for every r ∈ X ; (Reflexive)

(P 2) r ⪯ t and t ⪯ r, then r = t; (Anti-symmetric)

5
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(P 3) r ⪯ t and t ⪯ q, then r ⪯ q. (Transitive)

Partially emphasizes that X may contain r and t for which neither r ⪯ t nor t ⪯ r

holds. Then r and t are called incomparable elements. In contrast, two elements

r and t are called comparable elements if they satisfy r ⪯ t or t ⪯ r (or both).”

[21]

Example 2.1.2.

(i): Let X be a non empty set and P (X ) be the power set of X i.e contains all

subsets of X , define a partial order “⪯” on P (X ) as for any U, V ∈ P (X ),

U ⪯ V ⇐⇒ U ⊆ V.

Then, the pair (P (X ),⪯) is a partially ordered set.

(ii): Let Q be the set of all real-valued functions on [0, 1] and “⪯” be the binary

relation on Q defined as;

f ⪯ g ⇐⇒ f(r) ≤ g(r), ∀ r ∈ [0, 1],

for any f, g ∈ Q. Hence, (Q,⪯) is a partially ordered set.

Definition 2.1.3.
“A totally ordered set or chain is a partially ordered set such that every two

elements of the set are comparable. In other words, a chain is a partially ordered

set that has no incomparable elements.” [21]

Remark 1:

Every totally ordered set is a partially ordered set but the converse is not true in

general.

Example 2.1.4.
The divisibility relation on the set of natural numbers N is a partial order and

not a total order. However certain subsets of N with the divisibility relation on
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them may be totally ordered. For instance, consider the divisibility relation on

the subset

M = {4, 16, 64, 256, 1024}.

As it can be seen, all ordered pairs in the relation are comparable.

M. Frechet [21] introduced the concept of metric spaces in 1906. Later on, it turns

into a vast field of research for authors and opens a broader stage for pure as well

as applied mathematicians.

Definition 2.1.5.
“A metric space is a pair (X , d), where X is a set and d is a metric on X (or

distance function on X ), that is, a function defined on X × X such that for all

r1, r2, r3 ∈ X , we have:

(M1): d is real-valued, finite and non-negative;

(M2): d(r1, r2) = 0 if and only if r1 = r2;

(M3): d(r1, r2) = d(r2, r1); (Symmetry)

(M4): d(r1, r3) ≤ d(r1, r2) + d(r2, r3). (Triangle inequality)

The symbol × denotes the Cartesian product of two sets. Hence, X ×X is the set

of all ordered pairs of elements of X .” [21]

Example 2.1.6.
Some examples on the idea of metric space are discussed below:

(I) Real Line R. Let X = R be the set of all real numbers and d : X ×X → R

be the distance function defined as for all r1, r2 ∈ X

d(r1, r2) = |r1 − r2|.
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Then, the metric d satisfies all of the axioms of metric space. Hence, the

pair (X , d) is a metric space known as usual metric space.

(II) Euclidean Plane R2. Let X = R2 be the Euclidean space and d be the

euclidean metric on X defined as, for all r = (r1, r2), t = (t1, t2) ∈ X

d(r, t) =
√

(r1 − t1)2 + (r2 − t2)2.

Hence, (R2, d) is a metric space known as Euclidean metric space.

(III) Taxicab Metric Space. Let X = R2 be the Cartesian Plane and d be the

metric defined in an other way as, for all r = (r1, r2), t = (t1, t2) ∈ X

d(r, t) = |r1 − t1|+ |r2 − t2|.

Since, one can easily verify that the axioms (M1) - (M4) are satisfied for above

defined metric, hence (R2, d) is a metric space which is called Taxicab metric space.

Definition 2.1.7.
“ A sequence {rn} in a metric space X = (X , d) is said to converge or to be

convergent if there is an r ∈ X such that

lim
n→∞

d(rn, r) = 0.

r is called limit of {rn} and we write lim
n→∞

rn = r, or simply, rn → r.” [21]

Definition 2.1.8.
“ A sequence {rn} in a metric space X = (X , d) is said to be Cauchy Sequence

(or fundamental) if for every ϵ > 0 there is an N = N (ϵ) such that

d(rm, rn) < ϵ, ∀ m,n > N .”[21]

Example 2.1.9.
Let {rn} be a sequence in R equipped with usual metric. Suppose that for
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0 < α < 1, {rn} satisfy the condition |rn+1 − rn| ≤ αn for all n ∈ N. Then {rn} is

a Cauchy sequence in R. Since, for m,n ∈ N with m > n, we have

|rm − rn| ≤ |rn − rn+1|+ |rn+1 − rn+2|+ · · ·+ |rm−1 − rm|

≤ αn + αn+1 + · · ·+ αm−1

=
αn

1− α
|1− αm−n| < αn

1− α
.

Since, 0 < α < 1, αn → 0 and so given any ϵ > 0, we can choose N ∈ N such

that αn

1−α
< ϵ, hence for all m,n > N , we have

|rm − rn| ≤
αn

1− α
< ϵ.

Hence, {rn} is a Cauchy sequence in R.

Remark 2:

Every convergent sequence is a Cauchy sequence in a metric space but converse is

not true in general.

Definition 2.1.10.
“ A metric space X = (X , d) is said to be complete metric space if every Cauchy

sequence in X converges (that is, has a limit which is an element in X ).” [21]

Example 2.1.11.
Some examples of complete metric spaces are illustrated bellow.

(1) The Real line and the Complex plane are complete metric spaces.

(2) Completeness of Rn and Cn: Euclidean Space Rn and Unitary Space Cn

are complete under the following defined metric

d(r, t) =

( n∑
j=1

(rj − tj)
2

) 1
2

where r = {rj}, t = {tj} ∈ Rn or Cn.

Let {rm} be a Cauchy sequence in Rn (or Cn), where rm = (r
(m)
1 , r

(m)
2 , · · · , r(m)

n ).
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Hence, for each ϵ > 0 there is an N (ϵ) such that

d(rm, rk) =

( n∑
j=1

(r
(m)
j − r

(k)
j )2

) 1
2

< ϵ, (m, k > N (ϵ)).

Squaring, we have for m,n > N (ϵ) and j = 1, 2, · · · , n

(
r
(m)
j − r

(k)
j

)2
< ϵ2, and |r(m)

j − r
(k)
j | < ϵ.

Since, for each j, the sequence (r
(1)
j , r

(2)
j , · · · ) is a Cauchy sequence in R( or

C) and every Cauchy sequence in R (or C) converges i.e for each j, r(m)
j → rj

as m → ∞. Using n limits, we define r = (r1, r2, · · · , rn) ∈ R( or C) such

that with k → ∞

d(rm, r) < ϵ, (m > N (ϵ)).

Which proves the completeness of Rn (or Cn).

Definition 2.1.12.
“Let X = (X , d1) and Y = (Y , d2) be metric spaces. A mapping 𝟋 : X → Y is

said to be continuous at a point ro ∈ X if for every ϵ > 0 there is a δ > 0, such

that d2(𝟋(r),𝟋(ro)) < ϵ, for all r satisfying d1(r, ro) < δ.” [21]

Example 2.1.13.
Let 𝟋 : X → X be a mapping on metric space X = [0, 1] equipped with usual

metric defined as;

𝟋(r) =
1

r + 1
, ∀ r ∈ X .

Then, 𝟋 is a continuous map on X .

Theorem 2.1.14.
“A mapping 𝟋 : X → Y of a metric space (X , d1) into a metric space (Y , d2) is

continuous at a point r ∈ X if and only if rn → r implies 𝟋(rn) → 𝟋(r).” [21]

Definition 2.1.15.
“Let X = (X , d) be a metric space. A mapping 𝟋 : X → X is called a contraction



Preliminaries 11

on X if there is a positive real number α < 1 such that for all q, r ∈ X ,

d(𝟋(q),𝟋(r)) ≤ αd(q, r),

where, (α < 1).

Geometrically, this means that any points q and r have images that are closer

together than those points q and r, more precisely, the ratio d(𝟋(q),𝟋(r))
d(q,r)

does not

exceed a constant α which is strictly less than 1.” [21]

Example 2.1.16.
Let X = [0, 1] be a metric space equipped with metric d(q, r) = |q − r|. Define a

mapping 𝟋 : X → X as

𝟋q =
q + 1

4
, ∀ q ∈ X .

Then,

d(𝟋q,𝟋r) = |q + 1

4
− r + 1

4
|

= |q + 1− r − 1

4
|

= |q − r

4
|

=
1

4
|q − r|

=
1

4
d(q, r).

Hence, with contraction constant α = 1
4
, 𝟋 is a contraction mapping on X .

Remark 3:

Every contraction mapping is continuous.

2.2 Fixed Points of Mappings

In 19th century, H. Poincare introduced the idea that finding the solution of an

equation is equivalent to that of finding the fixed point of parallel mapping. This
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notion is defined as under;

Definition 2.2.1.
“A fixed point of a mapping 𝟋 : X → X on set X into itself is r ∈ X which is

mapped onto itself, that is, 𝟋(r) = r, the image 𝟋(r) coincides with r.” [21]

Geometrically, fixed point of a real-valued function(mapping) is the point of in-

tersection of the line y = r and mapping y = 𝟋(r). One or more than one fixed

points of a mapping can exists, moreover, sometimes mappings do not have even

a single fixed point.

In 1922, Stephan Banach introduced a fundamental result for the existence of a

unique fixed of a mapping.

Theorem 2.2.2.
“Consider a metric space X = (X , d), where X ̸= ∅. Suppose that X is a complete

metric space and let 𝟋 : X → X be a contraction mapping on X . Then, 𝟋 has

precisely one fixed point.” [21]

Example 2.2.3.
Some examples of fixed points are:

(a): Let 𝟋 : R → [0, 1] be a function defined as 𝟋(r) = 1
2
cos2(r). Graphically,

Figure 2.1: Unique fixed point
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Hence, 𝟋 has unique fixed point.

(b): The function 𝟋 : X → R, where X = R−{(2n+1)π
2
} defined as 𝟋(r) = tan(r)

has infinitely many fixed points.

Figure 2.2: Infinitely many fixed points

(c): In many of the cases, there dose not exists even a single fixed point of given

mapping. One of them is translation of line y = r. For example, the function

𝟋(r) = r+1 has no fixed point. In other words, the graph of the lines 𝟋(r) = r+1

and 𝟋(r) = r has no point of intersection. Graphically, it is presented as;

Figure 2.3: No fixed point
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Bhaskar and Lakshmikantham [13] in 2006 worked on the idea of couple fixed

poin [12] in the setting of mixed monotone mappings having mixed monotone

property(MMp).

Definition 2.2.4.
“Let (X ,⪯) be a partially ordered set and S : X 2 → X be a mapping, then S is

said to have MMp if for any r1, r2, r3 ∈ X ,

r∗1, r
∗∗
1 ∈ X , r∗1 ⪯ r∗∗1 ⇒ S(r∗1, r2) ⪯ S(r∗∗1 , r2),

r∗2, r
∗∗
2 ∈ X , r∗2 ⪯ r∗∗2 ⇒ S(r1, r

∗
2) ⪰ S(r1, r

∗∗
2 ),

whenever S(r1, r2) is non-decreasing in r1 and non-increasing in r2.” [13]

Definition 2.2.5.
“An element (r1, r2) ∈ X 2 is called a coupled fixed point of the mapping S : X 2 →

X if S(r1, r2) = r1 and S(r2, r1) = r2.” [12]

Definition 2.2.6.
“The two given mappings S : X 2 → X and s : X → X have a common couple

fixed point (r1, r2) ∈ X 2 if S(r1, r2) = s(r1) and S(r2, r1) = s(r2).” [13]

Example 2.2.7.
Some examples of couple fixed points are stated bellow;

(i): Let S : R2 → R be a mapping defined as

S(r1, r2) = r1 + r2, ∀ (r1, r2) ∈ R2.

Then, (0, 0) is a coupled fixed point of S.

(ii): Let S : R2 → R be a mapping defined as

S(r, t) = r3, ∀ (r, t) ∈ R2.
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Hence, (−1, 0), (0,−1), (0, 0), (1, 0), (0, 1), and (1, 1) are some coupled fixed points

of S.

(iii): Let us define two mappings S : R2 → R and s : R → R such that

S(r, r∗) = rr∗ and s(r) = r2, ∀ r, r∗ ∈ R,

respectively. Then,

f = {(r, r∗) ∈ R2 : r = r∗},

is the set of all common couple fixed points of S and s.

Theorem 2.2.8.
“Let (X , d,≤) be a partially ordered complete metric space and 𝟋 : X 2 → X be a

continuous mapping having mixed monotone property on X . Assume that there

exists a k ∈ [0, 1) with

d(𝟋(r1, r2),𝟋(t1, t2)) ≤
k

2
[d(r1, t1) + d(r2, t2)], ∀ t1 ≤ r1, r2 ≤ t2.

If there exists ro, to ∈ X such that ro ≤ 𝟋(ro, to) and 𝟋(to, ro) ≤ to, then there

exists (r, t) ∈ X 2 such that r = 𝟋(r, t) and t = 𝟋(t, r). ” [13]

Concept of triple fixed point was presented by Berinde and Borcut [38] and gen-

eralized the definition of MMp for triple-valued mappings.

Definition 2.2.9.
“ An element (r1, r2, r3) ∈ X 3 is called a triple fixed point of the mapping S :

X 3 → X if S(r1, r2, r3) = r1, S(r2, r3, r1) = r2 and S(r3, r1, r2) = r3.” [38]

Example 2.2.10.
Some examples of triple fixed points are discussed here:

(i): Let S : R → R be a mapping defined as

S(r1, r2, r3) = r1 + r2 + r3, ∀ (r1, r2, r3) ∈ R3.
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Then, (0, 0, 0) is a triple fixed point of S.

(ii): Let us define a mapping S : R+3 → R

S(r1, r2, r3) =
√
r1. ∀ (r1, r2, r3) ∈ R+3.

Then, (0,0,0), (1,0,1), (1,1,0), (0,1,1), (0,0,1), (0,1,0), (1,0,0), (1,1,1) are some

triple fixed points of S.

Definition 2.2.11.
“Let (X ,⪯) be a partially ordered set and S : X 3 → X be a mapping, then S is

said to have MMp if S(r1, r2, r3) is non-decreasing in r1 and r3 and non-increasing

in r2, that is for any r1, r2, r3 ∈ X ,

r∗1, r
∗∗
1 ∈ X , r∗1 ⪯ r∗∗1 ⇒ S(r∗1, r2, r3) ⪯ S(r∗∗1 , r2, r3),

r∗2, r
∗∗
2 ∈ X , r∗2 ⪯ r∗∗2 ⇒ S(r1, r

∗
2, r3) ⪰ S(r1, r

∗∗
2 , r3),

r∗3, r
∗∗
3 ∈ X , r∗3 ⪯ r∗∗3 ⇒ S(r1, r2, r

∗
3) ⪯ S(r1, r2, r

∗∗
3 ).”[38]

Theorem 2.2.12.
“Let (X ,⪯) be a partially ordered set and suppose there is a metric d on X such

that (X , d) is a complete metric space. Let 𝟋 : X 3 → X be a continuous mapping

having the MMp on X . Assume that there exist the constants a, b, c ∈ [0, 1) with

a+ b+ c < 1 for which

d(𝟋(r1, r2, r3),𝟋(t1, t2, t3)) ≤ ad(r1, t1) + bd(r2, t2) + cd(r3, t3),

for all r1 ≥ t1, r2 ≤ t2, r3 ≥ t3. If there exists ro, to, qo ∈ X such that

ro ≤ 𝟋(ro, to, qo), to ≥ 𝟋(to, qo, ro), qo ≤ 𝟋(qo, ro, to).

Then, there exist r, t, q ∈ X such that r = 𝟋(r, t, q), t = 𝟋(t, q, r), q ≤ 𝟋(q, r, t)”

[14].

Definitions of quadruple fixed point and MMp for quarter-valued mappings were

introduced by Karapinar [16] in 2012.
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Definition 2.2.13.
“Let X ̸= ∅, an element (r1, r2, r3, r4) ∈ X 4 is said to be the quadruple fixed

point of mapping S : X 4 → X if S(r1, r2, r3, r4) = r1, S(r2, r3, r4, r1) = r2,

S(r3, r4, r1, r2) = r3 and S(r4, r1, r2, r3) = r4.” [15]

Definition 2.2.14.
“Let X ̸= ∅, an element (r1, r2, r3, r4) ∈ X 4 is said to be the quadruple coincidence

point of mappings S : X 4 → X and s : X → X if S(r1, r2, r3, r4) = s(r1),

S(r2, r3, r4, r1) = s(r2), S(r3, r4, r1, r2) = s(r3) and S(r4, r1, r2, r3) = s(r4).” [15]

Example 2.2.15.

(i): Let S : R4 → R be a mapping defined as

S(r1, r2, r3, r4) = r1 + r2 + r3 + r4, ∀ r1, r2, r3, r4 ∈ R4.

Then, (0, 0, 0, 0) is a unique quadruple fixed point of S.

(ii): Let S : R4 → R and s : R → R be to mappings

S(r1, r2, r3, r4) =
r1r2r3r4

4
and s(r) = r2, ∀r1, r2, r3, r4, r ∈ R4.

Then, (2,2,2,2) is a quadruple coincidence point of S and s.

(iii): If we define S and s in such a way that

S(r1, r2, r3, r4) =
r1 + r2 + r3 + r4

2
and s(r) = r2, ∀r1, r2, r3, r4, r ∈ R4.

Then, in this case (2,2,2,2) is also a unique quadruple coincidence point of S and

s.

Note that for s : X → X being identity map concept of quadruple coincidence

point is reduces into the notion of quadruple fixed point of mappings.
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Definition 2.2.16.
“ Let S : X 4 → X and s : X → X be two mappings, then S and s are called

commutative if

s(S(r1, r2, r3, r4)) = S(s(r1), s(r2), s(r3), s(r4)), ∀ r1, r2, r3, r4 ∈ X .”[15]

Definition 2.2.17.
“A mapping S : X 4 → X defined on a partial ordered set (X ,⪯), is said to have

MMp if for any r1, r2, r3, r4 ∈ X ,

r∗1, r
∗∗
1 ∈ X , r∗1 ⪯ r∗∗1 ⇒ S(r∗1, r2, r3, r4) ⪯ S(r∗∗1 , r2, r3, r4),

r∗2, r
∗∗
2 ∈ X , r∗2 ⪯ r∗∗2 ⇒ S(r1, r

∗
2, r3, r4) ⪰ S(r1, r

∗∗
2 , r3, r4),

r∗3, r
∗∗
3 ∈ X , r∗3 ⪯ r∗∗3 ⇒ S(r1, r2, r

∗
3, r4) ⪯ S(r1, r2, r

∗∗
3 , r4),

r∗4, r
∗∗
4 ∈ X , r∗4 ⪯ r∗∗4 ⇒ S(r1, r2, r3, r

∗
4) ⪰ S(r1, r2, r3, r

∗∗
4 ),

where, S is non-decreasing in r1 and r3 and non-increasing in r2 and r4.” [15]

The generalization of above definition for two mappings is given bellow.

Definition 2.2.18.
“Let S : X 4 → X and s : X → X be two mappings defined on a partial ordered

set (X ,⪯). Then S is said to have mixed s-monotone property (MsMP) if for any

r1, r2, r3, r4 ∈ X ,

r∗1, r
∗∗
1 ∈ X , s(r∗1) ⪯ s(r∗∗1 ) ⇒ S(r∗1, r2, r3, r4) ⪯ S(r∗∗1 , r2, r3, r4),

r∗2, r
∗∗
2 ∈ X , s(r∗2) ⪯ s(r∗∗2 ) ⇒ S(r1, r

∗
2, r3, r4) ⪰ S(r1, r

∗∗
2 , r3, r4),

r∗3, r
∗∗
3 ∈ X , s(r∗3) ⪯ s(r∗∗3 ) ⇒ S(r1, r2, r

∗
3, r4) ⪯ S(r1, r2, r

∗∗
3 , r4),

r∗4, r
∗∗
4 ∈ X , s(r∗4) ⪯ s(r∗∗4 ) ⇒ S(r1, r2, r3, r

∗
4) ⪰ S(r1, r2, r3, r

∗∗
4 ), ”[5]

Theorem 2.2.19.
“ Let (X , d,⪯) be a partially ordered metric space and S : X 4 → X be a con-

tinuous mapping such that S has mixed monotone property. Assume that there
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exist ϕ ∈ Φ such that

d(S(r1, r2, r3, r4), S(t1, t2, t3, t4)) ≤ ϕmax{d(r1, t1)+d(r2, t2)+d(r3, t3)+d(r4, t4)}

for all r1, r2, r3, r4, t1, t2, t3, t4 ∈ X provided that

r1 ⪯ t1, r2 ⪰, r3 ⪯ t3, r4 ⪰ t4.

Here, Φ is the set of all non-decreasing functions ϕ : [0,+∞) → [0,+∞) such that

lim
n→+∞

ϕn(t) = 0, for all t > 0. If there exist ro1, r
o
2, r

o
3, r

o
4 ∈ X such that

ro1 ⪯ S(ro1, r
o
2, r

o
3, r

o
4), ro2 ⪯ S(ro2, r

o
3, r

o
4, r

o
1)

ro3 ⪯ S(ro3, r
o
4, r

o
1, r

o
2), ro4 ⪯ S(ro4, r

o
1, r

o
2, r

o
3).

Then, S has a quadruple fixed point.” [17].

2.3 Some Extensions of Metric Spaces

In the field of abstract spaces, metric space covers a area of research. Authors

worked in many directions in ordered to introduce the generalization of metric

spaces by manipulating with the existing axioms of metric spaces. In this section,

few generalization of metric spaces are articulated, furthermore some examples are

also illustrated in this regard.

2.3.1 b-Metric Spaces

Bakhtin [23] in 1989 generalized the notion of metric spaces by introducing a new

parameter in triangular inequality and defined the concept of b-metric space. Later

on, in 1993 Czerwik [24] modified the idea by using completeness property and

generalized BCP.

Definition 2.3.1.
“Let X be non empty set and b ≥ 1 be a given real number. A function db :
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X × X → R+ is said to be b-metric on X , the pair (X , db) is called a b-metric

space if for all r1, r2, r3 ∈ X ,

(b1) db(r1, r2) = 0 if and only if r1 = r2,

(b2) db(r1, r2) = db(r2, r1),

(b3) db(r1, r3) ≤ b{db(r1, r2) + db(r2, r3)}.”[23]

Remark 4:

• If b = 1, then the pair (X , d) becomes metric space.

• Following two inequalities are key points for the proof of existences of trian-

gular inequality in b-metric spaces;

(a+ b)t ≤ 2t−1(at + bt), t ≥ 1. (2.1)

( ∞∑
i=1

|ai + bi|p
) 1

p ≤ (
∞∑
i=1

|ai|p)
1
p + (

∞∑
i=1

|bi|p)
1
p , 1 < p < ∞. (2.2)

• The notions of convergent sequences, Cauchy sequences, and completeness

hold in the same scenario as in metric spaces.

Example 2.3.2.
To demonstrate the concept of b-metric spaces, some examples are illustrated

bellow.

(1). Let db : R× R → R be a function defined as

db(r, t) = |r − t|2, ∀ r, t ∈ R.

Then, the pair (R, db) is a b-metric space with b = 2.

(2). Let X = lp(R) be the space of all sequences in R such that

∞∑
k=1

{rk} < ∞, ∀ r = {rk} ⊂ R, p ∈ (0, 1). (2.3)
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Let db : X × X → R+ be a function defined as

db(r, t) = (
∞∑
k=1

|rk − tk|p)
1
p .

Since, (b1) and (b2) are obvious. Now,

(b3) : For any q, r, t ∈ X

db(q, r) = (
∞∑
k=1

|qk − rk|p)
1
p

= (
∞∑
k=1

|qk − rk + tk − tk|p)
1
p

≤ (
∞∑
k=1

2p−1(|qk − tk|p + |tk − rk|p))
1
p , using (2.1)

≤ 2p−1{(
∞∑
k=1

|qk − tk|p)
1
p + (

∞∑
k=1

|tk − rk|p)
1
p}, using (2.2)

= b{db(q, t) + db(t, r)}.

Hence, (X , db) is b-metric space with b = 2p−1.

(3). Let X = {1, 2, 3} and db(2, 0) = db(0, 2) = m ≥ 2, db(0, 1) = db(1, 0) =

db(1, 2) = db(2, 1) = 1 and db(1, 1) = db(0, 0) = db(2, 2) = 0. Then,

db(r1, r2) ≤
m

2
[db(r1, r3) + db(r3, r2)], r1, r2, r3 ∈ X .

Hence, (X , db) is a b-metric space. If m < 2, then triangular inequality does

not hold.

Theorem 2.3.3.
“Let (X , db) be a complete b-metric space and 𝟋 : X × X → R+ satisfies

db(𝟋(r1),𝟋(r2)) ≤ ϕdb(r1, r2), ∀ r1, r2 ∈ X ,

where ϕ : R+ → R+ is an increasing function such that lim
n→∞

ϕn(r) = 0. Then 𝟋
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has only one fixed point ro and lim
n→∞

db(𝟋n(r), ro) = 0.” [24]

2.3.2 Generalized Metric Spaces

Perov’s [5] , in 1964, established fixed point results on the spaces endowed with

vector valued spaces by generalizing the range of metric function over vector spaces.

These spaces were named as generalized metric spaces(GMS). This subsection

includes the concept of GMS, few important definitions and result in the frame of

GMS.

Definition 2.3.4.
“A mapping υ : ℵ2 → Rk where (ℵ ̸= ∅) is called a vector-valued metric on ℵ, if

the conditions bellow are satisfied, for any r1, r2, r3 ∈ ℵ,

(ℵ1) υ(r1, r2) ⪰ 0, υ(r1, r2) = 0 ⇔ r1 = r2,

(ℵ2) υ(r1, r2) = υ(r2, r1),

(ℵ3) υ(r1, r2) ⪯ υ(r1, r3) + υ(r3, r2).

If u, v ∈ Rk, where u = (u1, u2, · · · , uk) and v = (v1, v2, · · · , vk), then u ⪯ v if and

only if ui ≤ vi for 1 ≤ i ≤ k. Then, the pair (ℵ, υ) is called a generalized metric

space(GMS).” [30]

Remark 5:

• For k = 1 in above definition, GMS converts into usual metric space.

• For GMS, the notions of convergent sequences, Cauchy sequences, complete-

ness, open subsets, closed subsets and continuous mappings are similar to

those for usual metric spaces.

Example 2.3.5.
Let ℵ ̸= ∅ and d1, d2, d3, · · · , dk be the metrics on ℵ. Let υ : ℵ × ℵ → Rk be a

mapping define as for all r1, r2 ∈ ℵ,

υ(r1, r2) = (d1(r1, r2), d2(r1, r2), · · · , dk(r1, r2)),
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then (ℵ, υ) is a generalized metric space.

Theorem 2.3.6.
“Let (ℵ, υ) be a complete generalized metric space and 𝟋 : ℵ → Pcl(ℵ) where

(Pcl(ℵ) = {Y ∈ P(ℵ) : Y is closed}) a multi-valued operator. One suppose that

there exists A,B ∈ Mn×n(R+) such that for each r1, r2 ∈ ℵ and all q ∈ 𝟋(r1),

their exists t ∈ 𝟋(r2) with

υ(q, t) ≤ Aυ(r1, r2) + Bυ(r2, q).

If A is matrix converges to zero matrix, then 𝟋 has at least one fixed point.” [30]

Definition 2.3.7.
“The mapping ῡ :ℵ4 × ℵ4 → Rk defined on a generalized metric space (ℵ, υ)

equipped with

ῡ((r1, r2.r3, r4), (t1, t2, t3, t4)) = υ(r1, t1) + υ(r2, t2) + υ(r3, t3) + υ(r4, t4),

defines a metric on ℵ4. Moreover for simplicity it will be denoted by υ, for each

ri, ti ∈ ℵ.” [39]

Definition 2.3.8.
“Let (ℵ, υ,⪯) be a partially ordered set then, ℵ is called regular if the conditions

bellow are satisfied:

1. for n ≥ 0, rn1 ⪯ r1 if a non-decreasing sequence rn1 → r1,

2. for n ≥ 0, r2 ≤ rn2 if a non-increasing sequence rn2 → r2.” [40]

2.4 Matrix Equations

Now onward in our thesis, the symbols Mn,n(R+), O, I represent the set of all

n× n matrices over R+, zero and identity matrices respectively, and the set W =
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{0, 1, 2, 3 · · · }. Let ZM be denoted as the set of all n × n matrices over R+ such

that for all Γ ∈ Mn,n(R+), Γn → O whenever n → ∞.

Definition 2.4.1.
“Let Γ be a matrix in Mn,n(R+), then Γ is said to be convergent if and only if,

lim
n→∞

Γn = O.”[36]

Example 2.4.2.
Consider the matrix

Γ =

r1 r2

r1 r2

 ∈ M2,2(R+),

such that r1 + r2 < 1 for some r1, r2 ∈ R+, then the matrix Γ converges to O.

Example 2.4.3.
Any matrix in M2,2(R+) of the form

Γ =

r1 r2

0 r3

 ,

converges to zero matrix provided that max{r1, r2} < 1.

Example 2.4.4.
Consider the matrix

Ψ =

r1 r2

r1 r2


belongs to M2,2(R+) with the condition that r1 + r2 ≥ 1, for some r1, r2 ∈ R+,

then the matrix Ψ does not converges in M2,2(R+).

Let Rk be a k dimensional vector space [30]. Let 0 = (0, 0, · · · , 0) and 1 =

(1, 1, · · · , 1) be the zero vector and identity vector respectively. Addition and

multiplication in Rk are defined as for any r, r∗ ∈ Rk,

r+r∗ = (r1+r∗1, r2+r∗2, r3+r∗3, · · · , rk+r∗k) and r.r∗ = (r1.r
∗
1, r2.r

∗
2, · · · , rk.r∗k),
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where r = (r1, r2, r3, · · · , rk) and r∗ = (r∗1, r
∗
2, r

∗
3, · · · , r∗k), In matrix analysis, the

following propositions are equivalent;

Lemma 2.4.5.
“Let Γ be a square matrix with entries from R+, then the following statements are

equivalent:

(L1) Γ → O;

(L2) Γn → O as n → ∞;

(L3) for each γ ∈ C , |γ| < 1 with det(Γ− γI) = O;

(L4) I − Γ is a non-singular matrix and

(I − Γ)−1 = I + Γ + · · ·+ Γn + · · · ;

(L5) two matrices Γng and gΓn tends to zero as n → ∞, for g ∈ Rk.” [37]

Definition 2.4.6.
“Let Γ = (Γij) and Υ = (Υij) be two matrices in ZM. Then,

Γ ≤ Υ ⇐⇒ Γij ≤ Υij,

where 1 ≤ i, j ≤ n, and

max{Γ,Υ} = Π = (Πij), ∋ max(Πij) = max{Γij,Υij}.

Clearly, if Γ ≤ Υ then, max{Γ,Υ} = Υ.” [34]



Chapter 3

Some Quadruple Fixed Point

Results in GMS Involved with

Matrix Equations

In chapter 3, we presented a detailed review of work by Hammad et al. [34], in

which the contraction condition of mappings and fixed point theorems on the exis-

tences of unique quadruple fixed point of mappings over generalized metric space

are presented. Also, an application on existence of unique stationary distribution

of Markov process in the frame of generalized metric space is discussed.

3.1 Results in Generalized Metric Spaces:

Perov [5] introduced the notion of GMS and generalized BCP on GMS. Later on,

authors established exciting results on theory of QFp of mappings under GMS.

This section covers some useful definitions on mappings and sequences.

26
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3.1.1 Definitions on Two Mappings

Definition 3.1.1. Let S : ℵ4 → ℵ and s : ℵ → ℵ be two mappings defined

on a metric space (ℵ, υ). Then, S and s are said to be compatible if the following

conditions holds.

(i) lim
n→+∞

υ(s(U1234), S(V1234)) = 0,

where U1234 = S(rn1 , r
n
2 , r

n
3 , r

n
4 ) and V1234 = (s(rn1 ), s(r

n
2 ), s(r

n
3 ), s(r

n
4 )),

(ii) lim
n→+∞

υ(s(U2341), S(V2341)) = 0,

where U2341 = S(rn2 , r
n
3 , r

n
4 , r

n
1 ) and V2341 = (s(rn2 ), s(r

n
3 ), s(r

n
4 ), s(r

n
1 )),

(iii) lim
n→+∞

υ(s(U3412), S(V3412)) = 0,

where U3412 = S(rn3 , r
n
4 , r

n
1 , r

n
2 ) and V3412 = (s(rn3 ), s(r

n
4 ), s(r

n
1 ), s(r

n
2 )),

(iv) lim
n→+∞

υ(s(U4123), S(V4123)) = 0,

where U4123 = S(rn4 , r
n
1 , r

n
2 , r

n
3 ) and V4123 = (s(rn4 ), s(r

n
1 ), s(r

n
2 ), s(r

n
3 )),

whenever {rn1}, {rn2}, {rn3} and {rn4} are sequences in ℵ such that

lim
n→+∞

U1234 = lim
n→+∞

s(rn1 ) = r1, lim
n→+∞

U2341 = lim
n→+∞

s(rn2 ) = r2,

lim
n→+∞

U3412 = lim
n→+∞

s(rn3 ) = r3, lim
n→+∞

U4123 = lim
n→+∞

s(rn4 ) = r4,

for some r1, r2, r3, r4 ∈ ℵ.

Definition 3.1.2.
The mappings S : ℵ4 → ℵ and s : ℵ → ℵ are called reciprocally continuous if for

some r1, r2, r3, r4 ∈ ℵ, following conditions holds.

(i) lim
n→+∞

s(U1234) = s(r1) and lim
n→+∞

S(V1234) = S(r1, r2, r3, r4),

(ii) lim
n→+∞

s(U2341) = s(r2) and lim
n→+∞

S(V2341) = S(r2, r3, r4, r1),

(iii) lim
n→+∞

s(U3412) = s(r3) and lim
n→+∞

S(V3412) = S(r3, r4, r1, r2),

(iv) lim
n→+∞

s(U4123) = s(r4) and lim
n→+∞

S(V4123) = S(r4, r1, r2, r3),
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whenever {rn1}, {rn2}, {rn3}, {rn4} are sequences in ℵ such that

lim
n→+∞

U1234 = lim
n→+∞

s(rn1 ) = r1, lim
n→+∞

U2341 = lim
n→+∞

s(rn2 ) = r2,

lim
n→+∞

U3412 = lim
n→+∞

s(rn3 ) = r3, lim
n→+∞

U4123 = lim
n→+∞

s(rn4 ) = r4.

Definition 3.1.3.
The mapping S : ℵ4 → ℵ and s : ℵ → ℵ are called weakly reciprocally continuous

if for some r1, r2, r3, r4 ∈ ℵ, conditions bellow are satisfied.

(i) lim
n→+∞

s(U1234) = s(r1) or lim
n→+∞

S(V1234) = S(r1, r2, r3, r4),

(ii) lim
n→+∞

s(U2341) = s(r2) or lim
n→+∞

S(V2341) = S(r2, r3, r4, r1),

(iii) lim
n→+∞

s(U3412) = s(r3) or lim
n→+∞

S(V3412) = S(r3, r4, r1, r2),

(iv) lim
n→+∞

s(U4123) = s(r4) or lim
n→+∞

S(V4123) = S(r4, r1, r2, r3),

whenever {rn1}, {rn2}, {rn3}, {rn4} are sequences in ℵ such that

lim
n→+∞

U1234 = lim
n→+∞

s(rn1 ) = r1, lim
n→+∞

U2341 = lim
n→+∞

s(rn2 ) = r2,

lim
n→+∞

U3412 = lim
n→+∞

s(rn3 ) = r3, lim
n→+∞

U4123 = lim
n→+∞

s(rn4 ) = r4.

3.1.2 Definitions on Mapping of Sequences

Definition 3.1.4.
Let ξn : ℵ4 → ℵ and s : ℵ → ℵ be the mappings on a metric space (ℵ, υ), then

the sequence {ξn}n∈W and s are said to be compatible if the conditions bellow are

satisfied.

(i) lim
n→+∞

υ(s( `U1234), ξn( `V1234)) = 0,

where `U1234 = ξn(r
n
1 , r

n
2 , r

n
3 , r

n
4 ) and `V1234 = (s(rn1 ), s(r

n
2 ), s(r

n
3 ), s(r

n
4 )),

(ii) lim
n→+∞

υ(s( `U2341), ξn( `V2341)) = 0,

where `U2341 = ξn(r
n
2 , r

n
3 , r

n
4 , r

n
1 ) and `V2341 = (s(rn2 ), s(r

n
3 ), s(r

n
4 ), s(r

n
1 )),
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(iii) lim
n→+∞

υ(s( `U3412), ξn( `V3412)) = 0,

where `U3412 = ξn(r
n
3 , r

n
4 , r

n
1 , r

n
2 ) and `V3412 = (s(rn3 ), s(r

n
4 ), s(r

n
1 ), s(r

n
2 )),

(iv) lim
n→+∞

υ(s( `U4123), ξn( `V4123)) = 0,

where `U4123 = ξn(r
n
4 , r

n
1 , r

n
2 , r

n
3 ) and `V4123 = (s(rn4 ), s(r

n
1 ), s(r

n
2 ), s(r

n
3 )),

whenever {rn1}, {rn2}, {rn3} and {rn4} are sequences in ℵ such that

lim
n→+∞

`U1234 = lim
n→+∞

s(rn+1
1 ) = r1, lim

n→+∞
`U2341 = lim

n→+∞
s(rn+1

2 ) = r2,

lim
n→+∞

`U3412 = lim
n→∞

s(rn+1
3 ) = r3, lim

n→+∞
`U4123 = lim

n→+∞
s(rn+1

4 ) = r4,

for some r1, r2, r3, r4 ∈ ℵ.

Definition 3.1.5.
Let ξn : ℵ4 → ℵ and s : ℵ → ℵ be the mappings restricted on a metric space

(ℵ, υ), then {ξn}n∈N and s are said to be weakly reciprocally continuous if the

following conditions hold.

(i) lim
n→+∞

s( `U1234) = s(r1), lim
n→+∞

s( `U2341) = s(r2),

(ii) lim
n→+∞

s( `U3412) = s(r3), lim
n→+∞

s( `U4123) = s(r4),

whenever {rn1}, {rn2}, {rn3} and {rn4} are sequences in ℵ such that

lim
n→+∞

`U1234 = lim
n→+∞

s(rn+1
1 ) = r1, lim

n→+∞
`U2341 = lim

n→+∞
s(rn+1

2 ) = r2,

lim
n→+∞

`U3412 = lim
n→+∞

s(rn+1
3 ) = r3, lim

n→+∞
`U4123 = lim

n→+∞
s(rn+1

4 ) = r4,

for some r1, r2, r3, r4 in ℵ.

Example 3.1.6.
Let ℵ = [0, 1] be a metric space with metric defined as υ(r1, r2) = |r1 − r2|. Let

ξn : ℵ4 → ℵ and s : ℵ → ℵ be the mappings defined as

ξn(r1, r2, r3, r4) =
1

2n
− r1r2r3r4

2
and s(r1) = r1.
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Let us define four sequences {rn1}, {rn2}, {rn3} and {rn4} ∈ ℵ as,

rn1 =
n

n2 + 1
, rn2 =

n√
n2 + 1

, rn3 =
1

rn1 + 1
and rn4 =

1

n3 + 1
, ∀n ∈ N.

Then, few simple calculations drives us to the result that

lim
n→+∞

`U1234 = lim
n→+∞

s(rn+1
1 ) = r1 = 0, lim

n→+∞
`U2341 = lim

n→+∞
s(rn+1

2 ) = r2 = 0,

lim
n→+∞

`U3412 = lim
n→+∞

s(rn+1
3 ) = r3 = 0, lim

n→+∞
`U4123 = lim

n→+∞
s(rn+1

4 ) = r4 = 0,

for some r1 = r2 = r3 = r4 = 0 ∈ ℵ. Also, following conditions are satisfied as

lim
n→+∞

s( `U1234) = s(r1) = 0, lim
n→+∞

s( `U2341) = s(r2) = 0,

lim
n→+∞

s( `U3412) = s(r3) = 0, lim
n→+∞

s( `U4123) = s(r4) = 0,

lim
n→∞

υ(s( `U1234), ξn( `V1234)) = 0, lim
n→∞

υ(s( `U2341), ξn( `V2341)) = 0,

lim
n→+∞

υ(s( `U3412), ξn( `V3412)) = 0, lim
n→∞

υ(s( `U4123), ξn( `V4123)) = 0.

Hence, {ξn}n∈N and s are compatible and weakly reciprocally continuous.

Definition 3.1.7.
Let ξn : ℵ4 → ℵ and s : ℵ → ℵ be the mappings on a partially ordered set (ℵ,⪯),

then {ξn}n∈W and s are said to have mixed-s monotone property (MsMP) if for

any r1, r2, r3, r4, t1, t2, t3, t4 ∈ ℵ,

s(r1) ⪯ s(t1) ⇒ ξn(r1, r2, r3, r4) ⪯ ξn+1(t1, t2, t3, t4),

s(r2) ⪰ s(t2) ⇒ ξn(r2, r3, r4, r1) ⪰ ξn+1(t2, t3, t4, t1),

s(r3) ⪯ s(t3) ⇒ ξn(r3, r4, r1, r2) ⪯ ξn+1(t3, t4, t1, t2),

s(r4) ⪰ s(t4) ⇒ ξn(r4, r1, r2, r3) ⪰ ξn+1(t4, t1, t2, t3).

3.2 Main Results

This section deals with the contraction condition of mappings, QFp theorems,

corollaries, and supportive examples.
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Definition 3.2.1.
Let ξn : ℵ4 → ℵ and s : ℵ → ℵ be the mappings, then {ξi}i∈W and s are said to

satisfy the (O) condition if

υ(ξi(r1, r2, r3, r4), ξj(t1, t2, t3, t4)) ≤ Γ[υ(s(r1), ξi(r1, r2, r3, r4))

+ υ(s(t1), ξj(t1, t2, t3, t4))]

+ Υ[υ(s(r1), s(t1))],

(3.1)

for some r1, r2, r3, r4, t1, t2, t3, t4,∈ ℵ provided that s(ri) ⪯ s(ti) for 1 ≤ i ≤ 4, or

s(ri) ⪰ s(ti) for 1 ≤ i ≤ 4, I ̸= Γ = (Γij) and I ̸= Υ = (Υij) ∈ ZM satisfy the

condition (Γ + Υ)(I − Γ)−1 ∈ ZM.

Example 3.2.2.
Let ℵ = [0, 1] be a metric space equipped with metric υ(r1, r2) = |r1 − r2|.

(1) Let Γ =
( 1

4
0

0 1
4

) and Υ=
( 0 1

4
1
4

0
) be two matrices in ZM. Then, it is easy to

compute that (Γ + Υ)(I − Γ)−1 ∈ ZM.

(2) Let Γ = αI, and Υ = ((1−α)3 −α)I ∈ ZM such that α = 1
4
, 1
5
, 1
7
, 1
8

then we

get that (Γ + Υ)(I − Γ)−1 ∈ ZM.

(3) For Γ = 1
5

(
1 1
1 1 ) and Υ = 1

7

(
1 1
1 1 ) in ZM, some simple calculations leads us to

the result that (Γ + Υ)(I − Γ)−1 ∈ ZM.

Definition 3.2.3.
Let ξ0 : ℵ → ℵ and s : ℵ → ℵ be two sequences, then ξo and s are said to have

mixed quadruple transcendence point(MQTp) if ∃ r01, r
0
2, r

0
3, r

0
4 ∈ ℵ such that

ξ0(r
0
1, r

0
2, r

0
3, r

0
4) ⪰ s(r01), ξ0(r

0
2, r

0
3, r

0
4, r

0
1) ⪯ s(r02)

ξ0(r
0
3, r

0
4, r

0
1, r

0
2) ⪰ s(r03), and ξ0(r

0
4, r

0
1, r

0
2, r

0
3) ⪯ s(r04),

(3.2)

given that ξ0 and s have non-decreasing transcendence point in r01, r
0
3 and a non-

increasing transcendence point in r02, r
0
4.

Lemma 3.2.4.
Let ξi : ℵ4 → ℵ and s : ℵ → ℵ be two mappings on a partially ordered complete
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generalized metric space (POCGMS) (ℵ, υ,⪯). Suppose that {ξi}i∈W have MsMP

such that ξi(ℵ4) ⊆ s(ℵ). If ξo and s have MQTp, then

1. ∃ sequences {rn1}, {rn2}, {rn3} and {rn4} ∈ ℵ such that

s(rn1 ) = ξn−1(r
n−1
1 , rn−1

2 , rn−1
3 , rn−1

4 ), s(rn2 ) = ξn−1(r
n−1
2 , rn−1

3 , rn−1
4 , rn−1

1 ),

s(rn3 ) = ξn−1(r
n−1
3 , rn−1

4 , rn−1
1 , rn−1

2 ), and s(rn4 ) = ξn−1(r
n−1
4 , rn−1

1 , rn−1
2 , rn−1

3 ).

2. {s(rn1 )}, {s(rn3 )} are non-decreasing sequences and {s(rn2 )}, {s(rn4 )} are non-

increasing sequences.

Proof. (1) Suppose that (3.2) holds for ro1, r
o
2, r

o
3, r

o
4 ∈ ℵ. Since ξo(ℵ4) ⊆ s(ℵ), we

can define r11, r
1
2, r

1
3, r

1
4 ∈ ℵ such that

s(r11) =ξo(r
o
1, r

o
2, r

o
3, r

o
4), s(r12) = ξo(r

o
2, r

o
3, r

o
4, r

o
1),

s(r13) =ξo(r
o
3, r

o
4, r

o
1, r

o
2), s(r14),= ξo(r

o
4, r

o
1, r

o
2, r

o
3).

(3.3)

Since ξo(ℵ4) ⊆ s(ℵ), then ∃ r21, r
2
2, r

2
3, r

2
4 ∈ ℵ such that

s(r21) = ξ1(r
1
1, r

1
2, r

1
3, r

1
4), s(r22) = ξ1(r

1
2, r

1
3, r

1
4, r

1
1),

s(r23) = ξ1(r
1
3, r

1
4, r

1
1, r

1
2), s(r24) = ξ1(r

1
4, r

1
1, r

1
2, r

1
3).

In the similar way, we end with

s(rn1 ) = ξn−1(r
n−1
1 , rn−1

2 , rn−1
3 , rn−1

4 ),

s(rn2 ) = ξn−1(r
n−1
2 , rn−1

3 , rn−1
4 , rn−1

1 ),

s(rn3 ) = ξn−1(r
n−1
3 , rn−1

4 , rn−1
1 , rn−1

2 ),

s(rn4 ) = ξn−1(r
n−1
4 , rn−1

1 , rn−1
2 , rn−1

3 ).

(3.4)
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(2) By way of mathematical induction, ∀ n ≥ 0, it is computed that

s(rn1 ) ⪯ s(rn+1
1 ), s(rn3 ) ⪯ s(rn+1

3 ), s(rn2 ) ⪰ s(rn+1
2 ), and s(rn4 ) ⪰ s(rn+1

4 ).

(3.5)

From (3.3), we get that (3.5) holds for n = 0, that is

s(ro1) ⪯ s(r11), s(ro3) ⪯ s(r13), s(ro2) ⪰ s(r12) and s(ro4) ⪰ s(r14).

Hence, (3.4) and (3.5) completes the required result.

Main theorem of this section is discussed here:

Theorem 3.2.5.
Suppose that all the conditions of the Lemma 3.2.4 holds, assume that {ξi}i∈W
and s are monotonically decreasing and satisfy (O) condition, furthermore both

mappings are compatible and weakly reciprocally continuous provided that s is

continuous. If s(ℵ) ⊆ ℵ is complete and regular then, {ξi}i∈W and s have a

quadruple coincidence point(QCp), whenever O ̸= Γ,Υ ∈ ZM.

Proof. Let {rn1}, {rn2}, {rn3} and {rn4} be the sequences in ℵ constructed by Lemma

3.2.4, then from (3.1) it follows that

υ(s(rn1 ), (r
n+1
1 )) = υ(ξn−1(r

n−1
1 , rn−1

2 , rn−1
3 , rn−1

4 ), ξn(r
n
1 , r

n
2 , r

n
3 , r

n
4 ))

≤ Γ[υ(s(rn−1
1 ), ξn−1(r

n−1
1 , rn−1

2 , rn−1
3 , rn−1

4 ))

+ υ(s(rn1 ), ξn(r
n
1 , r

n
2 , r

n
3 , r

n
4 ))] + Υ(s(rn−1

1 ), s(rn1 ))

= (Γ + Υ)υ(s(rn−1
1 ), s(rn1 )) + Γ(υ(s(rn1 ), s(r

n+1
1 ))).

This results in

υ(s(rn1 ), s(r
n+1
1 )) ≤ (Γ + Υ)(I − Γ)−1υ(s(rn−1

1 ), s(rn1 )), (3.6)

similarly, it can be written as

υ(s(rn2 ), s(r
n+1
2 )) ≤ (Γ + Υ)(I − Γ)−1υ(s(rn−1

2 ), s(rn2 )),

υ(s(rn3 ), s(r
n+1
3 )) ≤ (Γ + Υ)(I − Γ)−1υ(s(rn−1

3 ), s(rn3 )),
(3.7)
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and

υ(s(rn4 ), s(r
n+1
4 )) ≤ (Γ + Υ)(I − Γ)−1υ(s(rn−1

4 ), s(rn4 )). (3.8)

Addition of (3.6)-(3.8) provides that

λn = υ(s(rn1 ), s(r
n+1
1 )) + υ(s(rn2 ), s(r

n+1
2 )) + υ(s(rn3 ), s(r

n+1
3 )) + υ(s(rn4 ), s(r

n+1
4 ))

≤ (Γ + Υ)(I − Γ)−1[υ(s(rn−1
1 ), s(rn1 )) + υ(s(rn−1

2 ), s(rn2 )) + υ(s(rn−1
3 ), s(rn3 ))

+ υ(s(rn−1
4 ), s(rn4 ))].

Hence,

λn ≤ (Γ + Υ)(I − Γ)−1)λn−1.

Let (Γ + Υ)(I − Γ)−1 = Y, then for n ∈ N, we get

O ≤ λn ≤ Y λn−1 ≤ Y 2λn−2 ≤ · · · ≤ Y nλo.

By using triangular inequality, for m > 0, we have,

υ(s(rn1 ), s(r
n+m
1 )) + υ(s(rn2 ), s(r

n+m
2 )) + υ(s(rn3 ), s(r

n+m
3 )) + υ(s(rn4 ), s(r

n+m
4 ))

≤ υ(s(rn1 ), s(r
n+1
1 )) + υ(s(rn2 ), s(r

n+1
2 )) + υ(s(rn3 ), s(r

n+1
3 )) + υ(s(rn4 ), s(r

n+1
4 ))

+ υ(s(rn+1
1 ), s(rn+2

1 )) + υ(s(rn+1
2 ), s(rn+2

2 )) + υ(s(rn+1
3 ), s(rn+2

3 ))

+ υ(s(rn+1
4 ), s(rn+2

4 )) + · · ·+ υ(s(rn+m−1
1 ), s(rn+m

1 )) + υ(s(rn+m−1
2 ), s(rn+m

2 ))

+ υ(s(rn+m−1
3 ), s(rn+m

3 )) + υ(s(rn+m−1
4 ), s(rn+m

4 ))

= λn + λn+1 + · · ·+ λn+m−1

≤ (Y n + Y n+1 + · · ·+ Y n+m−1)λo

= Y n(I + Y + · · ·+ Y m−1 + · · · )λo

= Y n(I − Y )−1λo.

This leads us to the result that

υ(s(rn1 ), s(r
n+m
1 )) + υ(s(rn2 ), s(r

n+m
2 )) + υ(s(rn3 ), s(r

n+m
3 )) + υ(s(rn4 ), s(r

n+m
4 ))

≤ [(Γ + Υ)(I − Γ)−1]n[I − (Γ + Υ)(I − Γ)−1)]−1λo.
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Taking lim
n→+∞

, provides that

lim
n→+∞

[υ(s(rn1 ), s(r
n+m
1 )) + υ(s(rn2 ), s(r

n+m
2 )) + υ(s(rn3 ), s(r

n+m
3 ))

+ υ(s(rn4 ), s(r
n+m
4 ))] = 0,

⇒ lim
n→+∞

υ(s(rn1 ), s(r
n+m
1 )) = lim

n→+∞
υ(s(rn2 ), s(r

n+m
2 )) = lim

n→+∞
υ(s(rn3 ), s(r

n+m
3 ))

= lim
n→+∞

υ(s(rn4 ), s(r
n+m
4 )) = 0.

This implies that {s(rn1 )}, {s(rn2 )}, {s(rn3 )} and {s(rn4 )} are Cauchy sequences in

ℵ. Since s(ℵ) is complete, this implies that ∃ (r∗1, r
∗
2, r

∗
3, r

∗
4) ∈ ℵ4 such that,

lim
n→+∞

s(rn1 ) = s(r∗1) = r1, lim
n→+∞

s(rn2 ) = s(r∗2) = r2,

lim
n→+∞

s(rn3 ) = s(r∗3) = r3, lim
n→+∞

s(rn4 ) = s(r∗4) = r4.

Which results in

lim
n→+∞

s(rn+1
1 ) = lim

n→+∞
ξn(r

n
1 , r

n
2 , r

n
3 , r

n
4 ), lim

n→+∞
s(rn+1

2 ) = lim
n→+∞

ξn(r
n
2 , r

n
3 , r

n
4 , r

n
1 ),

lim
n→+∞

s(rn+1
3 ) = lim

n→+∞
ξn(r

n
3 , r

n
4 , r

n
1 , r

n
2 ), lim

n→+∞
s(rn+1

4 ) = lim
n→+∞

ξn(r
n
4 , r

n
1 , r

n
2 , r

n
3 ).

Since {ξi}i∈W and s are weakly reciprocally continuous and compatible, then we

have

lim
n→+∞

ξn(s(r
n
1 ), s(r

n
2 ), s(r

n
3 ), s(r

n
4 )) = s(r1),

lim
n→+∞

ξn(s(r
n
2 ), s(r

n
3 ), s(r

n
4 ), s(r

n
1 )) = s(r2),

lim
n→+∞

ξn(s(r
n
3 ), s(r

n
4 ), s(r

n
1 ), s(r

n
2 )) = s(r3),

lim
n→+∞

ξn(s(r
n
4 ), s(r

n
1 ), s(r

n
2 ), s(r

n
3 )) = s(r4).

As {s(rn1 )}, {s(rn3 )} are non-decreasing sequences and {s(rn2 )}, {s(rn4 )} are non-

increasing sequences, then from the regularity of ℵ, for all n ≥ 0 we can obtain

s(rn1 ) ⪯ r1, r2 ⪯ s(rn2 ), s(r
n
3 ) ⪯ r3, r4 ⪯ s(rn4 ). Additionally, utilization of (3.1)
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generates

υ(ξi(r1, r2, r3, r4), ξn(s(r
n
1 ), s(r

n
2 ), s(r

n
3 ), s(r

n
4 )))

≤ Γ[υ(s(r1), ξi(r1, r2, r3, r4)) + υ(s(s(rn1 )), ξn(r
n
1 , r

n
2 , r

n
3 , r

n
4 ))]

+ Υ[υ(s(r1), s(s(r
n
1 )))].

Taking lim
n→+∞

, implies that

υ(ξi(r1, r2, r3, r4), s(r1)) ≤ Γυ(s(r1), ξi(r1, r2, r3, r4)),

which holds only if

υ(ξi(r1, r2, r3, r4), s(r1)) = 0, or ξi(r1, r2, r3, r4) = s(r1).

In similar fashion, it is obtained that

ξi(r2, r3, r4, r1) = s(r2), ξi(r3, r4, r1, r2) = s(r3) and ξi(r4, r1, r2, r3) = s(r4).

Hence, (r1, r2, r3, r4) is a QCp of {ξi}i∈W and s.

Next corollary is an extension of Theorem 3.2.5. Let s = Id, where Id is an identity

map.

Corollary 3.2.6.
Let (ℵ, υ,⪯) is a POCGMS and {ξi}i∈W : ℵ4 → ℵ be a mixed-monotone sequence

such that {ξi}i∈W and Id : ℵ → ℵ satisfy (O) condition, ξo and Id have MQTp

and Id(ℵ) is regular. Then, ∃ (r1, r2, r3, r4) ∈ ℵ4 such that ξi(r1, r2, r3, r4) = r1,

ξi(r2, r3, r4, r1) = r2, ξi(r3, r4, r1, r2) = r3 and ξi(r4, r1, r2, r3) = r4, for i ∈ W.

By excluding some of the conditions from Corollary 3.2.6, that is, taking Γ as a

zero matrix and expanding the distance υ(r1, t1), we concludes with an important

result.

Corollary 3.2.7.
Let (ℵ, υ,⪯) be a POCGMS and 𝟋 : ℵ4 → ℵ be a mixed monotone mapping,
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such that

υ(𝟋(r1, r2, r3, r4),𝟋(t1, t2, t3.t4)) ≤ Υ(υ((r1, r2, r3, r4), (t1, t2, t3, t4))),

where Υ ∈ ZM. If 𝟋 has a MQTp, then 𝟋 has a QFp in ℵ.

Definition 3.2.8.
Two points (r1, r2, r3, r4) and (t1, t2, t3, t4) ∈ ℵ4 are said to be quadruple compa-

rable (QC) if and only if

r1 ⪯ t1, r2 ⪰ t2, r3 ⪯ t3, r4 ⪰ t4 or r1 ⪰ t1, r2 ⪯ t2, r3 ⪰ t3, r4 ⪯ t4 or

r1 ⪯ t2, r2 ⪰ t3, r3 ⪯ t4, r4 ⪰ t1 or r1 ⪰ t2, r2 ⪯ t3, r3 ⪰ t4, r4 ⪯ t1 or

r1 ⪯ t3, r2 ⪰ t4, r3 ⪯ t1, r4 ⪰ t2 or r1 ⪰ t3, r2 ⪯ t4, r3 ⪰ t1, r4 ⪯ t2 or

r1 ⪯ t4, r2 ⪰ t1, r3 ⪯ t2, r4 ⪰ t3 or r1 ⪰ t4, r2 ⪯ t1, r3 ⪰ t2, r4 ⪯ t3.

If we replace (r1, r2, r3, r4) and (t1, t2, t3, t4) with (s(r1), s(r2), s(r3), s(r4)) and

(s(t1), s(t2), s(t3), s(t4)) in above Definition, then we say that (r1, r2, r3, r4) a QC

with (t1, t2, t3, t4) with respect to (w.r.t) s.

Theorem 3.2.9.
Let (ℵ, υ,⪯) be a POCGMS. Assume that {ξi}i∈W : ℵ4 → ℵ and s : ℵ → ℵ be

the mappings such that {ξi}i∈W have QCps and satisfy (O) condition. Moreover,

if {ξi}i∈W has a QC (w.r.t) s, then there exists a unique common QFp of {ξi}i∈W
and s.

Proof. By Theorem 3.2.5, we obtained that there exist a non-empty set of QCps

of mappings. Let (r1, r2, r3, r4) and (t1, t2, t3, t4) be the QC points, that is, if

s(r1) = ξi(r1, r2, r3, r4), s(r2) = ξi(r2, r3, r4, r1),

s(r3) = ξi(r3, r4, r1, r2), and s(r4) = ξi(r4, r1, r2, r3),

s(t1) = ξi(t1, t2, t3, t4), s(t2) = ξi(t2, t3, t4, t1),

s(t3) = ξi(t3, t4, t1, t2), and s(t4) = ξi(t4, t1, t2, t3),
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then, s(r1) = s(t1), s(r2) = s(t2), s(r3) = s(t3), s(r4) = s(t4). Since, QCps are

also QC, then from (3.1) we get that,

υ(s(r1), s(t1)) = υ(ξi(r1, r2, r3, r4), ξj(t1, t2, t3, t4))

≤ Γ[υ(s(r1), ξi(r1, r2, r3, r4)) + υ(s(t1), ξj(t1, t2, t3, t4))]

+ Υ[υ(s(r1), s(t1))]

⇒ υ(s(r1), s(t1)) ≤ Υ[υ(s(r1), s(t1))].

Since, I ̸= Υ ∈ ZM, then υ(s(r1), s(t1)) = 0, or s(r1) = s(t1). Additionally, similar

operations generates that s(r2) = s(t2), s(r3) = s(t3) and s(r4) = s(t4). Hence

s(r1) = s(r2) = s(r3) = s(r4) = s(t1) = s(t4) = s(t3) = s(t4). Which drives the

uniqueness of QCp (s(r1), s(r2), s(r3), s(r4)) of {ξi}i∈W and s. Since {ξi}i∈W and

s are weakly compatible and coincident points of two compatible mappings are

commutable, hence (r1, r2, r3, r4) is a unique QFp of {ξi}i∈W and s.

3.3 Application

Suppose that Rn
+ = {r1 = (r11, r

2
1, r

3
1, · · · , rn1 ) : ri ≥, i ≥ 1} and

Ω4
n−1 = {ρ = (r1, r2, r3, r4) ∈ Rn

+ × Rn
+ × Rn

+ × Rn
+ :

n∑
i=1

ρi =
n∑

i=1

(r1i + r2i + r3i + r4i ) = 1},

represent a 4(n−1) dimensional probability simplex and ρ ∈ Ω4
n−1 is the probability

over respective states. The Markov process is a process which deals with modeling

of a randomly changing system over the time. And in this system probability

of current state in each period ℓ = 1, 2, 3, ... depends only on the probability of

previous state. Suppose that for each ℓ = 1, 2, 3, · · · , eij ≥ 0 shows the probability

matrix which is achieved by state i in the next period starting from state j. Then,

the preceding probability vector ρℓ and the succeeding probability vector ρℓ+1 in

the period ℓ and ℓ+1 respectively, written as ρℓ+1
i =

∑
j eijρ

ℓ
j, for each j ≥ 1. Let

ρℓ be a column vector, then matrix form is achieved by mapping ρℓ+1 = 𝟋ρℓ. In
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addition with that for all eij ≥ 0,
∑n

i=1 eij = 1, required for conditional probability.

Finding the stationary distribution for Markov process is equivalent to finding the

fixed point of the mapping 𝟋 that is there exists some ρ ∈ Ω4
n−1 such that 𝟋ρℓ = ρℓ,

whenever ρℓ+1 = ρℓ, where the period ρℓ is called stationary distribution of Markov

process.

Furthermore, for each i, π =
∑n

i=1 πi, where πi = minj eij.

Now, the main theorem of this section is given bellow.

Theorem 3.3.1.
By the assumption eij ≥ 0, there exists a unique stationary distribution for the

Markov process.

Proof. Let υ : Ω4
n−1 × Ω4

n−1 → R2 be a mapping defined as

υ(R,Q) = υ((r1, r2, r3, r4), (q1, q2, q3, q4))

=
( n∑

i=1

(|ri1 − qi1|+ |ri2 − qi2|+ |ri3 − qi3|+ |ri4 − qi4|),

n∑
i=1

(|ri1 − qi1|+ |ri2 − qi2|+ |ri3 − qi3|+ |ri4 − qi4|)
)
,

Where R = (r1, r2, r3, r4) and Q = (q1, q2, q3, q4) belongs to Ω4
n−1.

Since, υ(R,Q) ≥ (0, 0) for all R and Q in Ω4
n−1. Also, if υ(R,Q) = (0, 0), then

this implies

( n∑
i=1

(|ri1 − qi1|+ |ri2 − qi2|+ |ri3 − qi3|+ |ri4 − qi4|),

n∑
i=1

(|ri1 − qi1|+ |ri2 − qi2|+ |ri3 − qi3|+ |ri4 − qi4|)
)
= (0, 0),

or

|ri1 − qi1|+ |ri2 − qi2|+ |ri3 − qi3|+ |ri4 − qi4| = 0

⇒ |ri1 − qi1| = |ri2 − qi2| = |ri3 − qi3| = |ri4 − qi4| = 0,

⇒ ri1 = qi1, ri2 = qi2, ri3 = qi3, ri4 = qi4,
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hence, R = Q. Conversely, let R = Q, then

ri1 = qi1, ri2 = qi2, ri3 = qi3, ri4 = qi4,

⇒ |ri1 − qi1| = |ri2 − qi2| = |ri3 − qi3| = |ri4 − qi4| = 0.

Hence,

( n∑
i=1

(|ri1 − qi1|+ |ri2 − qi2|+ |ri3 − qi3|+ |ri4 − qi4|),

n∑
i=1

(|ri1 − qi1|+ |ri2 − qi2|+ |ri3 − qi3|+ |ri4 − qi4|)
)
= (0, 0)

or υ(R,Q) = (0, 0).

Moreover,

υ(R,Q) =
( n∑

i=1

(|ri1 − qi1|+ |ri2 − qi2|+ |ri3 − qi3|+ |ri4 − qi4|),

n∑
i=1

(|ri1 − qi1|+ |ri2 − qi2|+ |ri3 − qi3|+ |ri4 − qi4|)
)

=
( n∑

i=1

(|qi1 − ri1|+ |qi2 − ri2|+ |qi3 − ri3|+ |qi4 − ri4|),

n∑
i=1

(|qi1 − ri1|+ |qi2 − ri2|+ |qi3 − ri3|+ |qi4 − ri4|)
)

= υ(Q,R).

Now,

υ(R,Q) =
( n∑

i−1

(|ri1 − qi1|+ |ri2 − qi2|+ |ri3 − qi3|+ |ri4 − qi4|),

n∑
i=1

(|ri1 − qi1|+ |ri2 − qi2|+ |ri3 − qi3|+ |ri4 − qi4|)
)

=

( n∑
i=1

 |(ri1 − ti1) + (ti1 − qi1)|+ |(ri2 − ti2) + (ti2 − qi2)|

+|(ri3 − ti3) + (ti3 − qi3)|+ |(ri4 − ti4) + (ti4 − qi4)|

 ,

n∑
i=1

 |(ri1 − ti1) + (ti1 − qi1)|+ |(ri2 − ti2) + (ti2 − qi2)|

+|(ri3 − ti3) + (ti3 − qi3)|+ |(ri4 − ti4) + (ti4 − qi4)|

)



Some Quadruple Fixed Point Results in GMS involved with Matrix Equations 41

≤
( n∑

i−1

 |ri1 − ti1|+ |ti1 − qi1|+ |ri2 − ti2|+ |ti2 − qi2|

+|ri3 − ti3|+ |ti3 − qi3|+ |ri4 − ti4|+ |ti4 − qi4|

 ,

n∑
i=1

 |ri1 − ti1|+ |ti1 − qi1|+ |ri2 − ti2|+ |ti2 − qi2|

+|ri3 − ti3|+ |ti3 − qi3|+ |ri4 − ti4|+ |ti4 − qi4|

)

=
( n∑

i=1

(|ri1 − ti1|+ |ri2 − ti2|+ |ri3 − ti3|+ |ri4 − ti4|),

n∑
i=1

(|ri1 − ti1|+ |ri2 − ti2|+ |ri3 − ti3|+ |ri4 − ti4|)
)

+
( n∑

i=1

(|ti1 − qi1|+ |ti2 − qi2|+ |ti3 − qi3|+ |ti4 − qi4|),

n∑
i=1

(|ti1 − qi1|+ |ti2 − qi2|+ |ti3 − qi3|+ |ti4 − qi4|)
)

= υ(R, T ) + υ(T,Q),

where T = (t1, t2, t3, t4) ∈ Ω4
n−1. Hence, (Ω4

n−1, υ) is a generalized metric space.

Completeness of Ω4
n−1 can be easily proved. Now, define partial order on Ω4

n−1 as

for all (r1, r2, r3, r4), (q1, q2, q3, q4) ∈ Ω4
n−1,

(r1, r2, r3, r4) ⪯ (q1, q2, q3, q4) ⇐⇒ r1 ⪰ q1, r2 ⪯ q2, r3 ⪰ q3 and r4 ⪯ q4,

hence, (Ω4
n−1, υ,⪯) is a POCGMS. Let 𝟋 : Ω4

n−1 → Ω4
n−1 be a mapping defined

as for all ρ ∈ Ω4
n−1, 𝟋ρ = ℓ = δj such that for each j, δj =

∑n
i=1 eijρj. Since,

n∑
j=1

δj =
n∑

j=1

n∑
i=1

eijρj =
n∑

i=1

eij

n∑
j=1

(rj1 + rj2 + rj3 + rj4) =
n∑

j=1

(rj1 + rj2 + rj3 + rj4) = 1,

this implies that ℓ ∈ Ω4
n−1 i.e mapping is defined. Now, we have to show that 𝟋

satisfy the contraction condition, for this, let δi be the ith row of δ. Then, for all

(r1, r2, r3, r4), (q1, q2, q3, q4) ∈ Ω4
n−1, we get

υ(𝟋(r1, r2, r3, r4),𝟋(q1, q2, q3, q4))
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=

( n∑
i=1

(
|

n∑
j=1

(
eij(r

j
1 + rj2 + rj3 + rj4)− eij(q

j
1 + qj2 + qj3 + qj4)

)
|
)
,

n∑
i=1

(
|

n∑
j=1

(
eij(r

j
1 + rj2 + rj3 + rj4)− eij(q

j
1 + qj2 + qj3 + qj4)

)
|
))

=

(
n∑

i=1

|
∑n

j=1(eij − πi){(rj1 + rj2 + rj3 + rj4)− (qj1 + qj2 + qj3 + qj4)}

+πi{(rj1 + rj2 + rj3 + rj4)− (qj1 + qj2 + qj3 + qj4)}|

 ,

n∑
i=1

|
∑n

j=1(eij − πi){(rj1 + rj2 + rj3 + rj4)− (qj1 + qj2 + qj3 + qj4)}

+πi{(rj1 + rj2 + rj3 + rj4)− (qj1 + qj2 + qj3 + qj4)}|

)

≤

(
n∑

i=1

|eij − πi|
(
|
∑n

j=1{(r
j
1 + rj2 + rj3 + rj4)− (qj1 + qj2 + qj3 + qj4)}|

)

+
n∑

i=1

|
n∑

j=1

πi{(rj1 + rj2 + rj3 + rj4)− (qj1 + qj2 + qj3 + qj4)}|,

n∑
i=1

(eij − πi)
(
|
∑n

j=1{(r
j
1 + rj2 + rj3 + rj4)− (qj1 + qj2 + qj3 + qj4)}|

)
+

n∑
i=1

|
n∑

j=1

πi{(rj1 + rj2 + rj3 + rj4)− (qj1 + qj2 + qj3 + qj4)}|

)

≤

∑n
i=1

∑n
j=1(|r

j
1 − qj1|+ |rj2 − qj2|+ |rj3 − qj3|+ |rj4 − qj4|)× |eij − πi|∑n

i=1

∑n
j=1(|r

j
1 − qj1|+ |rj2 − qj2|+ |rj3 − qj3|+ |rj4 − qj4| × |eij − πi|)


=(I − π)

∑n
j=1(|r

j
1 − qj1|+ |rj2 − qj2|+ |rj3 − qj3|+ |rj4 − qj4|)∑n

j=1(|r
j
1 − qj1|+ |rj2 − qj2|+ |rj3 − qj3|+ |rj4 − qj4|)


=Υυ((r1, r2, r3, r4), (q1, q2, q3, q4)).

Where (I − π) = Υ ∈ ZM, hence all conditions of corollary 3.2.7 are fulfilled.

Then, there exists a unique quadruple fixed point of mapping 𝟋 or in other words a

unique stationary distribution of Markov process. Moreover, the sequence {𝟋nρl}

converges to a unique stationary distribution for any ρl ∈ Ωn−1.



Chapter 4

Quadruple Fixed Point Results

for GbMS under Matrices

In 1983, the idea of b-metric space was introduced by Bakhtin [23] and generalized

by Czerwik [24] in 1993. An extension of BCP on spaces endowed with vector-

valued metric was presented by Perov in 1964, called generalized metric spaces.

Later on, in 2010, Filip [30] established fixed pint result in generalized metric

spaces. Hammad et al. [34] worked on the theory of QFp of mappings in the frame

me GMS.

In this chapter, we inroduced the definition of generalized b-metric spaces alonwith

vector-valued b-metric spaces and extended the results from [34] for quadruple

fixed point of mappings in the setting of GbMS. Eventually, our theoretical results

are demonstrated by few examples and an application on the existence of unique

stationary distribution of Markov process.

4.1 Few Results in GbMS

This section covers some definitions extended on the structure of GbMS along with

supportive examples.

43
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Definition 4.1.1.
A mapping υb : ℵ2 → Rk where (ℵ ̸= ∅) is called a vector-valued b-metric on ℵ, if

for some b ≥ 1, the conditions bellow are satisfied, that is, for any r1, r2, r3 ∈ ℵ,

(ℵb1) υb(r1, r2) ⪰ 0, υb(r1, r2) = 0 ⇔ r1 = r2,

(ℵb2) υb(r1, r2) = υb(r2, r1),

(ℵb3) υb(r1, r2) ⪯ b{υb(r1, r3) + υb(r3, r2)}.

If a, c ∈ Rk, where a = (a1, a2, · · · , ak) and c = (c1, c2, · · · , ck), then a ⪯ c if and

only if ai ≤ ci for 1 ≤ i ≤ k. Then, the pair (ℵ, υb) is called a generalized b-metric

space (GbMS). Moreover, if b = 1 then the pair (ℵ, υb) becomes generalized metric

space.

Example 4.1.2.
Let ℵ be a non-empty set and db1 , db2 , db3 , · · · , dbk be the b-metrics on ℵ for some

b1, b2, b3, · · · , bk ≥ 1 respectively. Let υb : ℵ×ℵ → Rk be a mapping defined as for

all r1, r2 ∈ ℵ,

υb(r1, r2) = (db1(r1, r2), db2(r1, r2), · · · , dbk(r1, r2)),

then (ℵ, υb) is a generalized b-metric space with b = max{b1, b2, b3, · · · , bk}. Since,

for all r1, r2, r3 ∈ ℵ:

(ℵb1) dbi(r1, r2) ⪰ 0 (1 ≤ i ≤ k) ⇒ υb(r1, r2) ⪰ 0, and

υb(r1, r2) = 0 ⇔ dbi(r1, r2) = 0 (for each i) ⇔ r1 = r2,

(ℵ2)

υb(r1, r2)

= (db1(r1, r2), db2(r1, r2), · · · , dbk(r1, r2))

= (db1(r2, r1), db2(r2, r1), · · · , dbk(r2, r1))

= υb(r2, r1),
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(ℵ3)

υb(r1, r3) = (db1(r1, r3), db2(r1, r3), · · · , dbk(r1, r3))

⪯
(
b1{db1(r1, r2) + db1(r2, r3)}, b2{db2(r1, r2) + db2(r2, r3)}, · · · ,

bk{dbk(r1, r2) + dbk(r2, r3)}
)

⪯
(
b{db1(r1, r2) + db1(r2, r3)}, b{db2(r1, r2) + db2(r2, r3)}, · · · ,

b{dbk(r1, r2) + dbk(r2, r3)})

= b{
(
db1(r1, r2), db2(r1, r2), · · · , dbk(r1, r2)

)
+
(
db1(r2, r3), db2(r2, r3)

, · · · , dbk(r2, r3)
)
}

= b{υb(r1, r2) + υb(r2, r3)}.

Remark 6:

(•) For GbMS, the notions of convergent sequences, Cauchy sequences, com-

pleteness, open subsets, closed subsets and continuous mappings are similar

to those for GMS.

(•) Definitions of compatibility, reciprocally continuous and weakly reciprocally

continuous over two mappings can be extended in the frame of b-metric space

in similar fashion as defined in the previous chapter. Forthcoming examples

are in support of this theory.

Example 4.1.3.
Let ℵ = [0, 1] be a b-metric space under distance function υb(r1, r2) = |r1 − r2|2,

with b = 2, and “⪯” be the partial order on ℵ. Let S : ℵ4 → ℵ and s : ℵ → ℵ be

two mappings defined as

S(r1, r2, r3, r4) =
r1r2 + r3r4

4
and s(r1) = r1.

Consider the sequences {rn1}, {rn2}, {rn3} and {rn4} defined by

rn1 =
1

n2
, rn2 =

1

n+ 1
, rn3 =

1√
n2 + 1

, and rn4 =
1

n3
, ∀ n ∈ N.
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Then, (ℵ, υb) is a partially ordered b-metric space. Some simple calculations leads

us to the following results

lim
n→+∞

U1234 = lim
n→+∞

s(rn1 ) = 0, lim
n→+∞

U2341 = lim
n→+∞

s(rn2 ) = 0,

lim
n→+∞

U3412 = lim
n→+∞

s(rn3 ) = 0, lim
n→+∞

U4123 = lim
n→+∞

s(rn4 ) = 0,

for some r1 = r2 = r3 = r4 = 0 ∈ ℵ. Also above defined sequences, functions and

metric satisfy the conditions of compatibility, reciprocal continuity and weakly

reciprocal continuity. Hence, both mappings S and s are compatible, reciprocally

continuous and weakly reciprocally continuous.

Example 4.1.4.
Let ℵ = [0, 1] be a b-metric space with metric defined as υb(r1, r2) = |r1−r2|2, and

ξn : ℵ4 → ℵ and s : ℵ → ℵ be the mappings defined as

ξn(r1, r2, r3, r4) =
1

4n
− r1r2r3r4

4n2
and s(r1) = r1.

Define four sequences {rn1}, {rn2}, {rn3} and {rn4} in ℵ as,

rn1 =
n

n2 + 1
, rn2 =

n√
n2 + 1

, rn3 =
1

n+ 1
and rn4 =

1

n3 + 1
, ∀ n ∈ N.

Then, some simple steps drives us to the result

lim
n→+∞

`U1234 = lim
n→+∞

s(rn+1
1 ) = r1 = 0, lim

n→+∞
`U2341 = lim

n→+∞
s(rn+1

2 ) = r2 = 0,

lim
n→+∞

`U3412 = lim
n→+∞

s(rn+1
3 ) = r3 = 0, lim

n→+∞
`U4123 = lim

n→+∞
s(rn+1

4 ) = r4 = 0,

for some r1 = r2 = r3 = r4 = 0 ∈ ℵ. Also

lim
n→+∞

s( `U1234) = s(r1) = 0, lim
n→+∞

s( `U2341) = s(r2) = 0,

lim
n→+∞

s( `U3412) = s(r3) = 0, lim
n→+∞

s( `U4123) = s(r4) = 0,

and

lim
n→+∞

υb(s( `U1234), ξn( `V1234)) = 0, lim
n→+∞

υb(s( `U2341), ξn( `V2341)) = 0,
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lim
n→+∞

υb(s( `U3412), ξn( `V3412)) = 0, lim
n→+∞

υb(s( `U4123), ξn( `V4123)) = 0.

Hence, compatibility and weakly reciprocal continuity of {ξn}n∈N and s are proved.

4.2 Main Results

This section deals with contraction condition (B), QFp theorems, corollaries and

supportive examples.

Definition 4.2.1.
Let ξn : ℵ4 → ℵ and s : ℵ → ℵ be the mappings, then {ξi}i∈W and s are said to

satisfy the (B) condition if there exist b ≥ 1 such that

b(υb(ξi(r1, r2, r3, r4), ξj(t1, t2, t3, t4)))

⪯ Γ[υb(s(r1), ξi(r1, r2, r3, r4)) + υb(s(t1), ξj(t1, t2, t3, t4))]

+ Υ[υb(s(r1), s(t1))],

(4.1)

for some r1, r2, r3, r4, t1, t2, t3, t4,∈ ℵ provided that s(ri) ⪯ s(ti) for 1 ≤ i ≤ 4 or

s(ri) ⪰ s(ti) for 1 ≤ i ≤ 4, I ̸= Γ = (Γij) and I ̸= Υ = (Υij) ∈ ZM satisfy the

condition (Γ + Υ)(I − βΓ)−1 ∈ ZM, where β = 1
b
.

Example 4.2.2.
Let ℵ = [0, 1] be a b-metric space equipped with metric

υb(r1, r2) = |r1 − r2|2,

with b = 2 and β = 1
2
.

(1) Let Γ =
( 1

8
0

0 1
8

) and Υ=
( 0 1

8
1
8

0
) be two matrices in ZM. Then, it is easy to

compute that (Γ + Υ)(I − βΓ)−1 ∈ ZM.

(2) Let Γ = αI, and Υ = ((1 − γ)3 − α)I ∈ ZM such that α = 1
4
, 1

5
, 1

7
, 1

8
and

γ = αβ. Then we get that (Γ + Υ)(I − βΓ)−1 ∈ ZM.
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(3) For Γ = 1
7

(
1 1
1 1 ) and Υ = 1

11

(
1 1
1 1 ) in ZM, some simple steps concludes that

(Γ + Υ)(I − βΓ)−1 ∈ ZM.

Lemma 4.2.3.
Let (ℵ, υb,⪯) be a partially ordered complete generalized b-metric space (POCGbMS),

ξi : ℵ4 → ℵ and s : ℵ → ℵ be the mappings such that {ξi}i∈W have MsMP and

ξi(ℵ4) ⊆ s(ℵ). If ξo and s have MQTp, then

1. ∃ sequences {rn1}, {rn2}, {rn3} and {rn4} ∈ ℵ such that

s(rn1 ) = ξn−1(r
n−1
1 , rn−1

2 , rn−1
3 , rn−1

4 ), s(rn2 ) = ξn−1(r
n−1
2 , rn−1

3 , rn−1
4 , rn−1

1 ),

s(rn3 ) = ξn−1(r
n−1
3 , rn−1

4 , rn−1
1 , rn−1

2 ), and s(rn4 ) = ξn−1(r
n−1
4 , rn−1

1 , rn−1
2 , rn−1

3 ).

2. {s(rn1 )}, {s(rn3 )} are non-decreasing sequences and {s(rn2 )}, {s(rn4 )} are non-

increasing sequences.

Proof of the above stated Lemma can be extracted in same manner from the proof

of the Lemma 3.2.4.

Now, the core part of this section is stated bellow.

Theorem 4.2.4.
In addition to the conditions of Lemma 4.2.3, suppose that {ξi}i∈W and s are

monotonically decreasing and satisfy (B) condition, moreover both mappings are

compatible and weakly reciprocally continuous provided that s is continuous. If

s(ℵ) ⊆ ℵ is complete and regular then, there exists a quadruple coincidence point

(QCp) of {ξi}i∈W and s, for any O ̸= Γ,Υ ∈ ZM.

Proof. Let {rn1}, {rn2}, {rn3} and {rn4} be the sequences in ℵ constructed by Lemma

4.2.3, then from (4.1) it follows that (note that β = 1
b
):

υb(s(r
n
1 ), (r

n+1
1 )) = υb(ξn−1(r

n−1
1 , rn−1

2 , rn−1
3 , rn−1

4 ), ξn(r
n
1 , r

n
2 , r

n
3 , r

n
4 ))

⪯ βΓ[υb(s(r
n−1
1 ), ξn−1(r

n−1
1 , rn−1

2 , rn−1
3 , rn−1

4 ))

+ υb(s(r
n
1 ), ξn(r

n
1 , r

n
2 , r

n
3 , r

n
4 ))] + βΥυb(s(r

n−1
1 ), s(rn1 ))

= β(Γ + Υ)υb(s(r
n−1
1 ), s(rn1 )) + βΓ(υb(s(r

n
1 ), s(r

n+1
1 ))).
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This leads us to the result that

υb(s(r
n
1 ), s(r

n+1
1 )) ⪯ β(Γ + Υ)(I − βΓ)−1υb(s(r

n−1
1 ), s(rn1 )), (4.2)

similar operations yields,

υb(s(r
n
2 ), s(r

n+1
2 )) ⪯ β(Γ + Υ)(I − βΓ)−1υb(s(r

n−1
2 ), s(rn2 )),

υb(s(r
n
3 ), s(r

n+1
3 )) ⪯ β(Γ + Υ)(I − βΓ)−1υb(s(r

n−1
3 ), s(rn3 )),

(4.3)

and

υb(s(r
n
4 ), s(r

n+1
4 )) ⪯ β(Γ + Υ)(I − βΓ)−1υb(s(r

n−1
4 ), s(rn4 )). (4.4)

Addition of (4.2)-(4.4) implies,

λn = υb(s(r
n
1 ), s(r

n+1
1 )) + υb(s(r

n
2 ), s(r

n+1
2 )) + υb(s(r

n
3 ), s(r

n+1
3 )) + υb(s(r

n
4 ), s(r

n+1
4 ))

⪯ β(Γ + Υ)(I − βΓ)−1[υb(s(r
n−1
1 ), s(rn1 )) + υb(s(r

n−1
2 ), s(rn2 )) + υb(s(r

n−1
3 ), s(rn3 ))

+ υb(s(r
n−1
4 ), s(rn4 ))]

= β(Γ + Υ)(I − βΓ)−1)λn−1.

Take β(Γ + Υ)(I − βΓ)−1 = Y, then for n ∈ N, we get

O ≤ λn ≤ Y λn−1 ≤ Y 2λn−2 ≤ ... ≤ Y nλo

By way of triangular inequality, for m > 0, we have,

υb(s(r
n
1 ), s(r

n+m
1 )) + υb(s(r

n
2 ), s(r

n+m
2 )) + υb(s(r

n
3 ), s(r

n+m
3 )) + υb(s(r

n
4 ), s(r

n+m
4 ))

⪯ b[υb(s(r
n
1 ), s(r

n+1
1 )) + υb(s(r

n
2 ), s(r

n+1
2 )) + υb(s(r

n
3 ), s(r

n+1
3 )) + υb(s(r

n
4 ), s(r

n+1
4 ))]

+ b2[υb(s(r
n+1
1 ), s(rn+2

1 )) + υb(s(r
n+1
2 ), s(rn+2

2 )) + υb(s(r
n+1
3 ), s(rn+2

3 )) + υb(s(r
n+1
4 ),

s(rn+2
4 ))] + · · ·+ bm[υb(s(r

n+m−1
1 ), s(rn+m

1 )) + υb(s(r
n+m−1
2 ), s(rn+m

2 ))

+ υb(s(r
n+m−1
3 ), s(rn+m

3 )) + υb(s(r
n+m−1
4 ), s(rn+m

4 ))]

= bλn + b2λn+1 + · · ·+ bmλn+m−1

⪯ (bY n + b2Y n+1 + · · ·+ bmY n+m−1)λo

= bY n(I + bY + · · ·+ bm−1Y m−1 + · · · )λo
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= bY n(I − bY )−1λo.

Which drives us to the result that

υb(s(r
n
1 ), s(r

n+m
1 )) + υb(s(r

n
2 ), s(r

n+m
2 )) + υb(s(r

n
3 ), s(r

n+m
3 )) + υb(s(r

n
4 ), s(r

n+m
4 ))

⪯ b[β(Γ + Υ)(I − βΓ)−1]n[I − b(β(Γ + Υ)(I − βΓ)−1)]−1λo

=
1

bn−1
[(Γ + Υ)(I − βΓ)]n[I − (Γ + Υ)(I − βΓ)−1]−1λo

Take lim
n→∞

on both sides implies,

lim
n→+∞

[υb(s(r
n
1 ), s(r

n+m
1 )) + υb(s(r

n
2 ), s(r

n+m
2 )) + υb(s(r

n
3 ), s(r

n+m
3 ))

+ υb(s(r
n
4 ), s(r

n+m
4 ))] = 0,

⇒ lim
n→+∞

υb(s(r
n
1 ), s(r

n+m
1 )) = lim

n→+∞
υb(s(r

n
2 ), s(r

n+m
2 ))

= lim
n→+∞

υb(s(r
n
3 ), s(r

n+m
3 )) = lim

n→+∞
υb(s(r

n
4 ), s(r

n+m
4 )) = 0

This implies that {s(rn1 )}, {s(rn2 )}, {s(rn3 )} and {s(rn4 )} are Cauchy sequences in

ℵ. As s(ℵ) is complete, so ∃ (r∗1, r
∗
2, r

∗
3, r

∗
4) ∈ ℵ4 such that,

lim
n→+∞

s(rn1 ) = s(r∗1) = r1, lim
n→+∞

s(rn2 ) = s(r∗2) = r2,

lim
n→+∞

s(rn3 ) = s(r∗3) = r3, lim
n→+∞

s(rn4 ) = s(r∗4) = r4.

which results in

lim
n→+∞

s(rn+1
1 ) = lim

n→+∞
ξn(r

n
1 , r

n
2 , r

n
3 , r

n
4 ),

lim
n→+∞

s(rn+1
2 ) = lim

n→+∞
ξn(r

n
2 , r

n
3 , r

n
4 , r

n
1 ),

lim
n→+∞

s(rn+1
3 ) = lim

n→+∞
ξn(r

n
3 , r

n
4 , r

n
1 , r

n
2 ), and

lim
n→+∞

s(rn+1
4 ) = lim

n→+∞
ξn(r

n
4 , r

n
1 , r

n
2 , r

n
3 ).

Since {ξi}i∈W and s are weakly reciprocally continuous and compatible, then we

have

lim
n→+∞

ξn(s(r
n
1 ), s(r

n
2 ), s(r

n
3 ), s(r

n
4 )) = s(r1),
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lim
n→+∞

ξn(s(r
n
2 ), s(r

n
3 ), s(r

n
4 ), s(r

n
1 )) = s(r2),

lim
n→+∞

ξn(s(r
n
3 ), s(r

n
4 ), s(r

n
1 ), s(r

n
2 )) = s(r3), and

lim
n→+∞

ξn(s(r
n
4 ), s(r

n
1 ), s(r

n
2 ), s(r

n
3 )) = s(r4).

Since {s(rn1 )}, {s(rn3 )} are non-decreasing sequences and {s(rn2 )}, {s(rn4 )} are non-

increasing sequences, then from the regularity of ℵ, for all n ≥ 0, we can obtain

s(rn1 ) ⪯ r1, r2 ⪯ s(rn2 ), s(rn3 ) ⪯ r3, r4 ⪯ s(rn4 ). Then from (4.1) we get

υb(ξi(r1, r2, r3, r4), ξn(s(r
n
1 ), s(r

n
2 ), s(r

n
3 ), s(r

n
4 )))

⪯ βΓ[υb(s(r1), ξi(r1, r2, r3, r4)) + υb(S(s(r
n
1 )), ξn(r

n
1 , r

n
2 , r

n
3 , r

n
4 ))]

+ βΥ(υb(s(r1), s(s(r
n
1 )))),

Now by applying lim
n→∞

, it is concluded as

υb(ξi(r1, r2, r3, r4), s(r1)) ⪯ βΓυb(s(r1), ξi(r1, r2, r3, r4)),

which holds only if

υb(ξi(r1, r2, r3, r4), s(r1)) = 0 or ξi(r1, r2, r3, r4) = s(r1).

Similar operation generates that ξi(r2, r3, r4, r1) = s(r2), ξi(r3, r4, r1, r2) = s(r3)

and ξi(r4, r1, r2, r3) = s(r4). Hence, (r1, r2, r3, r4) is a QCp of {ξi}i∈W and s.

Next result is extended from Theorem 4.2.4 with the addition of s = Id being

identity map.

Corollary 4.2.5.
Let (ℵ, υb,⪯) is a POCGbMS, {ξi}i∈W : ℵ4 → ℵ be the mixed-monotone mappings

such that {ξi}i∈W and Id : ℵ → ℵ satisfy (B) condition and Id(ℵ) is regular. If ξo
and Id have MQTp, then ∃ (r1, r2, r3, r4) ∈ ℵ4 such that for each i ∈ W,

ξi(r1, r2, r3, r4) = r1, ξi(r2, r3, r4, r1) = r2,

ξi(r3, r4, r1, r2) = r3 and ξi(r4, r1, r2, r3) = r4.
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By excluding some of the conditions from Corollary 4.2.5, taking Γ as a zero matrix

and expanding the distance υ(r1, t1) from Definition 2.3.7 in the framework of

GbMS, we concludes with an exciting outcome.

Corollary 4.2.6.
Let (ℵ, υb,⪯) be a POCGbMS and 𝟋 : ℵ4 → ℵ be a mixed monotone mapping. If

𝟋 has a MQTp and satisfy the condition

bυb(𝟋(r1, r2, r3, r4),𝟋(t1, t2, t3.t4)) ⪯ Υ(υb((r1, r2, r3, r4), (t1, t2, t3, t4))),

then 𝟋 has a QFp in ℵ.

Next result is on the existence of unique common QFp of mappings.

Theorem 4.2.7.
Let {ξi}i∈W : ℵ4 → ℵ and s : ℵ → ℵ be the mappings on a POCGbMS (ℵ, υb,⪯)

such that {ξi}i∈W and s satisfy (B) condition and have QCps with quadruple

comparable (w.r.t) s. Then, {ξi}i∈W and s have a unique common QFp.

Proof. From Theorem 4.2.4, we obtain that the set of QCps is non-empty. Now,

by proving that (r1, r2, r3, r4) and (t1, t2, t3, t4) are QCps, that is, if

s(r1) = ξi(r1, r2, r3, r4), s(r2) = ξi(r2, r3, r4, r1),

s(r3) = ξi(r3, r4, r1, r2), and s(r4) = ξi(r4, r1, r2, r3),

s(t1) = ξi(t1, t2, t3, t4), s(t2) = ξi(t2, t3, t4, t1),

s(t3) = ξi(t3, t4, t1, t2), and s(t4) = ξi(t4, t1, t2, t3),

then, s(r1) = s(t1), s(r2) = s(t2), s(r3) = s(t3), s(r4) = s(t4). Since QCps are

also QC, then from (4.1) we get that,

υb(s(r1), s(t1)) = υb(ξi(r1, r2, r3, r4), ξj(t1, t2, t3, t4))

⪯ βΓ[υb(s(r1), ξi(r1, r2, r3, r4)) + υb(s(t1), ξj(t1, t2, t3, t4))]

+ βΥ[υb(s(r1), s(t1))]

⇒ υb(s(r1), s(t1)) ⪯ βΥ[υb(s(r1), s(t1))].
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Since, I ̸= Υ ∈ ZM, then υb(s(r1), s(t1)) = 0, or s(r1) = s(t1). Similar op-

erations generates that s(r2) = s(t2), s(r3) = s(t3) and s(r4) = s(t4). Hence

s(r1) = s(r2) = s(r3) = s(r4) = s(t1) = s(t4) = s(t3) = s(t4), which shows that

(s(r1), s(r2), s(r3), s(r4)) is a unique QCp of {ξi}i∈W and s. Since, {ξi}i∈W and

s are weakly compatible and coincident points of two compatible mappings are

commutable, thus it proves that (r1, r2, r3, r4) is a unique common QFp of {ξi}i∈W
and s.

Example 4.2.8.
Let ℵ = [0, 1] be a generalized b-metric space under metric function defined as

υb(r1, r2) =

|r1 − r2|2

|r1 − r2|2

 ,

with b = 2 and β = 1
2
. Let

Γ =

1
2

0

0 1
2

 and Υ =

 0 1
64

1
64

0


be two matrices in ZM. Clearly (ℵ, υb,≤) is a POCGbMS. Let ξi : ℵ4 → ℵ and

s : ℵ → ℵ be the mappings defined as

ξi(r1, r2, r3, r4) =
r1
4i

and s(r1) = 4r1

respectively, then

υb(ξi(r1, r2, r3, r4), ξj(t1, t2, t3, t4)) =

| r1
4i
− t1

4j
|2

| r1
4i
− t1

4j
|2


=

1

16

|(5r1
4i

− r1
4i
) + ( t1

4j
− 5t1

4j
)|2

|(5r1
4i

− r1
4i
) + ( t1

4j
− 5t1

4j
)|2


⪯ 1

16

|(4r1 − r1
4i
) + ( t1

4j
− 4t1) + (r1 − t1)|2

|(4r1 − r1
4i
) + ( t1

4j
− 4t1) + (r1 − t1)|2


⪯ 1

4

(|4r1 − r1
4i
|2

|4r1 − r1
4i
|2

+

|4t1 − t1
4i
|2

|4t1 − t1
4i
|2

)
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+
1

128

|4r1 − 4t1|2

|4r1 − 4t1|2


=
1

2

1
2

0

0 1
2

(υb(s(r1), ξi(r1, r2, r3, r4))
+ υb(s(t1), ξj(t1, t2, t3, t4))

)
+

1

2

 0 1
64

1
64

0

 υb(s(r1), s(t1))

or

bυb(ξi(r1, r2, r3, r4), ξj(t1, t2, t3, t4))

⪯ Γ[υb(s(r1), ξi(r1, r2, r3, r4))+

υb(s(t1), ξj(t1, t2, t3, t4))]

+ Υυb(s(r1), s(t1)),

that is, (B) condition is satisfied. All the conditions of Theorem 4.2.4 are fulfilled,

and (0, 0, 0, 0) is a QCp of {ξi}i∈W and s, also it is unique quadruple common fixed

point of same mappings according to Theorem 4.2.7.

4.3 Application

Suppose that Rn
+ = {r1 = (r11, r

2
1, r

3
1, · · · , rn1 ) : ri ≥, i ≥ 1} and

Ω4
n−1 = {ρ = (r1, r2, r3, r4) ∈ Rn

+ × Rn
+ × Rn

+ × Rn
+ :

n∑
i=1

ρi =
n∑

i=1

(r1i + r2i + r3i + r4i ) = 1},

represent a 4(n − 1) dimensional probability simplex and ρ ∈ Ω4
n−1 is the as a

probability of each possible state. The Markov process is the process which deals

with the modeling of randomly changing process over time. For the probability

event, consider the following conditions.
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(1): Suppose that for each ℓ = 1, 2, 3, .. there exits a scalar κi =
1
bi

, where bi ≥ b4

for each i with the condition that at least one of the “bi = b4”.

(2): Let κieij be the probability matrix with the condition that
∑n

i=1 κieij = 1

and for all eij ≥ 0,
∑n

i=1 eij = 1.

(3): Let ρℓ be a column vector, then to obtain matrix form consider the mapping

ρℓ+1 = 𝟋ρℓ, where ρℓ is the prior probability vector and ρℓ+1 is the posterior

probability vector.

(4): πi = minj eij for all i and π =
∑n

i=1 πi.

(5): κ = β4 such that κ = max{κi : 1 ≤ i ≤ n} for all possible periods.

Now, finding the stationary distribution for Markov process is equivalent to find-

ing the fixed point of the mapping 𝟋 that is there exists some ρ ∈ Ω4
n−1 such that

𝟋ρℓ = ρℓ, whenever ρℓ+1 = ρℓ and ρℓ is called stationary distribution of Markov

process.

Main theorem of this section is given bellow.

Theorem 4.3.1.
By the hypothesis 0 < κi ≤ 1, eij ≥ 0, there exists a unique stationary distribution

for the Markov process.

Proof. Let υb : Ω
4
n−1 × Ω4

n−1 → R2 be a mapping defined as

υb(R,Q) = υb((r1, r2, r3, r4), (q1, q2, q3, q4))

= (
n∑

i=1

(|ri1 − qi1|2 + |ri2 − qi2|2 + |ri3 − qi3|2 + |ri4 − qi4|2),

n∑
i=1

(|ri1 − qi1|2 + |ri2 − qi2|2 + |ri3 − qi3|2 + |ri4 − qi4|2)),

where, R = (r1, r2, r3, r4) and Q = (q1, q2, q3, q4) belongs to Ω4
n−1.

Since, υb(R,Q) ⪰ (0, 0) for all R and Q in Ω4
n−1. Also, if υb(R,Q) = (0, 0), then
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this implies

( n∑
i=1

(|ri1 − qi1|2 + |ri2 − qi2|2 + |ri3 − qi3|2 + |ri4 − qi4|2),

n∑
i=1

(|ri1 − qi1|2 + |ri2 − qi2|2 + |ri3 − qi3|2 + |ri4 − qi4|2)
)
= (0, 0),

or

|ri1 − qi1|2 + |ri2 − qi2|2 + |ri3 − qi3|2 + |ri4 − qi4|2 = 0

⇒ |ri1 − qi1|2 = |ri2 − qi2|2 = |ri3 − qi3|2 = |ri4 − qi4|2 = 0,

or ri1 = qi1, ri2 = qi2, ri3 = qi3, ri4 = qi4.

Yields R = Q.

Conversely, let R = Q, then

ri1 = qi1, ri2 = qi2, ri3 = qi3, ri4 = qi4,

⇒ |ri1 − qi1|2 = |ri2 − qi2|2 = |ri3 − qi3|2 = |ri4 − qi4|2 = 0.

Hence,( n∑
i=1

(|ri1 − qi1|2 + |ri2 − qi2|2 + |ri3 − qi3|2 + |ri4 − qi4|2),

n∑
i=1

(|ri1 − qi1|2 + |ri2 − qi2|2 + |ri3 − qi3|2 + |ri4 − qi4|2
)
= (0, 0),

or υb(R,Q) = (0, 0).

Moreover,

υb(R,Q) =
( n∑

i=1

(|ri1 − qi1|2 + |ri2 − qi2|2 + |ri3 − qi3|2 + |ri4 − qi4|2),

n∑
i=1

(|ri1 − qi1|2 + |ri2 − qi2|2 + |ri3 − qi3|2 + |ri4 − qi4|2)
)

=
( n∑

i=1

(|qi1 − ri1|2 + |qi2 − ri2|2 + |qi3 − ri3|2 + |qi4 − ri4|2),

n∑
i=1

(|qi1 − ri1|2 + |qi2 − ri2|2 + |qi3 − ri3|2 + |qi4 − ri4|2)
)

= υb(Q,R).



Quadruple Fixed Point Results for GbMS under Matrices 57

Now,

υb(R,Q) =

( n∑
i−1

(|ri1 − qi1|2 + |ri2 − qi2|2 + |ri3 − qi3|2 + |ri4 − qi4|2),

n∑
i=1

(|ri1 − qi1|2 + |ri2 − qi2|2 + |ri3 − qi3|2 + |ri4 − qi4|2)
)

=

( n∑
i=1

 |(ri1 − ti1) + (ti1 − qi1)|2 + |(ri2 − ti2) + (ti2 − qi2)|2

+|(ri3 − ti3) + (ti3 − qi3)|2 + |(ri4 − ti4) + (ti4 − qi4)|2

 ,

n∑
i=1

 |(ri1 − ti1) + (ti1 − qi1)|2 + |(ri2 − ti2) + (ti2 − qi2)|2

+|(ri3 − ti3) + (ti3 − qi3)|2 + |(ri4 − ti4) + (ti4 − qi4)|2

)

⪯2

( n∑
i−1

 |ri1 − ti1|2 + |ti1 − qi1|2 + |ri2 − ti2|2 + |ti2 − qi2|2

+|ri3 − ti3|2 + |ti3 − qi3|2 + |ri4 − ti4|2 + |ti4 − qi4|2

 ,

n∑
i=1

 |ri1 − ti1|2 + |ti1 − qi1|2 + |ri2 − ti2|2 + |ti2 − qi2|2

+|ri3 − ti3|2 + |ti3 − qi3|2 + |ri4 − ti4|2 + |ti4 − qi4|2

)

=2{
( n∑

i=1

(|ri1 − ti1|2 + |ri2 − ti2|2 + |ri3 − ti3|2 + |ri4 − ti4|2),

n∑
i=1

(|ri1 − ti1|2 + |ri2 − ti2|2 + |ri3 − ti3|2 + |ri4 − ti4|2)
)

+
( n∑

i=1

(|ti1 − qi1|2 + |ti2 − qi2|2 + |ti3 − qi3|2 + |ti4 − qi4|2),

n∑
i=1

(|ti1 − qi1|2 + |ti2 − qi2|2 + |ti3 − qi3|2 + |ti4 − qi4|2)
)
}

=2{υb(R, T ) + υb(T,Q)}

where T = (t1, t2, t3, t4) ∈ Ω4
n−1. Hence, (Ω4

n−1, υb) is a generalized b-metric space

with b = 2. Completeness of Ω4
n−1 can be easily proved. Moreover, define a partial

order on Ω4
n−1 as for all (r1, r2, r3, r4), (q1, q2, q3, q4) ∈ Ω4

n−1,

(r1, r2, r3, r4) ⪯ (q1, q2, q3, q4) ⇐⇒ r1 ⪰ q1, r2 ⪯ q2, r3 ⪰ q3, and r4 ⪯ q4.

Hence, (Ω4
n−1, υb,⪯) is a POCGbMS.

Let 𝟋 : Ω4
n−1 → Ω4

n−1 be a mapping define as for all ρ ∈ Ω4
n−1, 𝟋ρ = δj such that
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for each j, δj =
∑n

i=1 κieijρj. Since,

n∑
j=1

δj =
n∑

j=1

n∑
i=1

κieijρj =
n∑

i=1

κieij

n∑
j=1

(rj1 + rj2 + rj3 + rj4)

=
n∑

j=1

(rj1 + rj2 + rj3 + rj4) = 1,

this implies that δj ∈ Ω4
n−1 i.e mapping is defined. Now, we have to show that 𝟋

satisfy the contraction condition, for this, let δi be the ith row of δ. Then, for all

(r1, r2, r3, r4), (q1, q2, q3, q4) ∈ Ω4
n−1, we get

υb(𝟋(r1, r2, r3, r4),𝟋(q1, q2, q3, q4))

=

( n∑
i=1

(
|

n∑
j=1

(
κieij(r

j
1 + rj2 + rj3 + rj4)− κieij(q

j
1 + qj2 + qj3 + qj4)

)
|2
)
,

n∑
i=1

(
|

n∑
j=1

(
κieij(r

j
1 + rj2 + rj3 + rj4)− κieij(q

j
1 + qj2 + qj3 + qj4)

)
|2
))

=

(
n∑

i=1

(
|

n∑
j=1

(κieij − κπi){(rj1 + rj2 + rj3 + rj4)− (qj1 + qj2 + qj3 + qj4)}

+ πi{(rj1 + rj2 + rj3 + rj4)− (qj1 + qj2 + qj3 + qj4)}|2
)
,

n∑
i=1

(
|

n∑
j=1

(κieij − κπi){(rj1 + rj2 + rj3 + rj4)− (qj1 + qj2 + qj3 + qj4)}

+ πi{(rj1 + rj2 + rj3 + rj4)− (qj1 + qj2 + qj3 + qj4)}|2
))

⪯2

(( n∑
i=1

(κeij − κπi)
2|

n∑
j=1

{(rj1 + rj2 + rj3 + rj4)− (qj1 + qj2 + qj3 + qj4)}|2

+
n∑

i=1

|
n∑

j=1

πi{(rj1 + rj2 + rj3 + rj4)− (qj1 + qj2 + qj3 + qj4)}|2
)
,

( n∑
i=1

(κeij − κπi)
2|

n∑
j=1

{(rj1 + rj2 + rj3 + rj4)− (qj1 + qj2 + qj3 + qj4)}|2

+
n∑

i=1

|
n∑

j=1

πi{(rj1 + rj2 + rj3 + rj4)− (qj1 + qj2 + qj3 + qj4)}|2
))

⪯8κ2

∑n
i=1

∑n
j=1(|r

j
1 − qj1|2 + |rj2 − qj2|2 + |rj3 − qj3|2 + |rj4 − qj4|2)× (eij − πi)

2,∑n
i=1

∑n
j=1(|r

j
1 − qj1|2 + |rj2 − qj2|2 + |rj3 − qj3|2 + |rj4 − qj4|2 × (eij − πi)

2)


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=8β4(I − π)2

∑n
j=1(|r

j
1 − qj1|2 + |rj2 − qj2|2 + |rj3 − qj3|2 + |rj4 − qj4|2),∑n

j=1(|r
j
1 − qj1|2 + |rj2 − qj2|2 + |rj3 − qj3|2 + |rj4 − qj4|2)


=βΥυb((r1, r2, r3, r4), (q1, q2, q3, q4)).

Where (I − π)2 = Υ ∈ ZM, hence all conditions of corollary 4.2.6 are fulfilled.

Then, there exists a unique quadruple fixed point of mapping 𝟋 or in other words a

unique stationary distribution of Markov process. Moreover, the sequence {𝟋nρl}

converges to a unique stationary distribution for any ρl ∈ Ωn−1.

Remark 7:

• The contraction condition (B) is the generalization of contraction condition

(O) presented in [34]. In other words for b = 1, contraction (O) becomes a

spacial case of (B).

• In case of b = 1, results constructed in [34] turns into a special case of

extended ideas obtained in the research study.



Chapter 5

Conclusion and Future Works

5.1 Conclusion

• A detailed review of work by Hammad et al. [34] based on study of co-

incedence points and quadruple fixed point in generalized metric spaces is

presented.

• In our research work, we extended the notions of generalized metric spaces

in coordination with b-metric spaces and introduced the idea of generalized

b-metric spaces.

• Notion of compatible mappings and contraction condition is modified in the

setting of GbMS. Examples are also illustrated in this regard.

• Working in the direction presented in [34], results for QFp of mappings are

generalized under the umbrella of GbMS.

• Subsequently, an example and an application for unique stationary distribu-

tion of Markov process is attached for the validation of obtained theoretical

consequences.

60
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5.2 Future Works

In future, one can have a different approach in order to find the quadruple fixed

point of mapping.

• An attempt can be done by changing the space e.g by working in the setting

of “extended b-metric spaces or double controlled metric spaces”.

• Working with different contraction conditions using more properties of con-

traction mappings.

• An extension can be made in the articulated theory by extending the notion

of quadruple fixed point of mappings.

• Obtained results can be squeezed in the context of couple and triple fixed

points.
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