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Abstract

Digital signature provides authenticity, integrity and non-repudiation. In digital

signature the sender signs the message with his private key and sends it to the

receiver. The receiver verifies the signature by using public key of the sender. A

digital signature attaches the identity of the signer to the document. Almost in

all the digital signature, we use abelian structures which are taken from classical

algebra. After the proposal of polynomial time quantum cryptanalysis by Peter

W. Shor there is a requirement of such platform which are equally secured on

quantum machines as on conventional machines. For this process tropical alge-

bra is an efficient platform. We modified the scheme of Rososhek by employing

tropical algebra. We mainly concentrated on the enhancement of efficiency of

the scheme by suggesting the structure of circulant matrices over tropical semir-

ing (Z ∪ {∞},⊕,⊗) with tropical addition ⊕ and tropical multiplication ⊗. In

tropical algebra tropical multiplication ⊗ is actually a usual addition and tropical

addition ⊕ is a minimum operation so there is no usual multiplication of num-

bers or matrices at all. That is why tropical addition and tropical multiplication

are very fast. Hence tropical protocols are more efficient then classical protocols.

Another advantage of tropical cryptography is that linear system of equations in

tropical sense are harder to solve than classical case. The scheme is illustrated by

example.
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Chapter 1

Introduction

In this chapter, after a brief description of cryptography and its history, the mean-

ing of digital signature is discussed and some literature on the digital signature is

also highlighted. We defined and explained tropical cryptography and its signif-

icance in modern cryptography. At the end we gave an overview of our research

work and layout of the thesis.

1.1 Background

Cryptography [1] is an art of a secure communication and creating a secure com-

munication channel although there exist a third party known as adversary. In

cryptography we study different techniques and procedures to make a secure com-

munication channel. These techniques or procedures are known as cryptosystem

or ciphers. Cryptography is not a modern course of study it was in practice since

2000 BC [2]. It was first introduced by ancient Egyptian. In Egyptian civilization

it was used and employed in different manners and methods. After that around

100 BC Julius Caesar [3] made a landmark in the history of classical cryptography

and introduced one of the classical cipher in cryptography known by his name

Caesar cipher. In world war II American forces were made helpless and frustrated

due to intelligent application of cryptography by Germans in the battle field .

1



Introduction 2

The German forces used Enigma machine that was invented by a German Arthur

Scherbius [4]. Later on many different ciphers were introduced for sending codes

and secret informations. For example, mono alphabetical cipher, play-fair cipher,

four square cipher, hill ciphers of different orders, etc see [1, 5] for details on these

ciphers.

In cryptography the main focus is on the creation and development of a strong

cryptosystem such that no adversary can interfere and alter the private messages

between two parties. To develop a secure communication channel there is a simple

setup in cryptography called cryptosystem. It consists of five main components

named as plaintext, encryption algorithm, decryption algorithm, ciphertext and

key. Plaintext is a simple text or message which is supposed to be send by a sender

using encryption algorithm. The output of encryption algorithm is a ciphertext

which is a scrambled text that seems meaningless to any adversary. The receiver

uses decryption algorithm to obtain the original plaintext. A secure key is used

by both sender and receiver which is not known to adversary.

Cryptography does not only give encryption and decryption of a confidential data

but it also gives electronic identification and data integrity. For example its use

in ATMs, Internet mobile banking etc. Cryptography has two primary classifica-

tions. The symmetric key cryptography [5] and the asymmetric key cryptography

[5]. In symmetric key cryptography encryption and decryption is performed with

a single key. The key is known to sender and receiver only. The most renowned

examples of symmetric key cryptography are DES (Data Encryption Standard)

[6] and AES (Advanced Encryption Standard) [7]. Symmetric key cryptography is

still used worldwide for data encryption and data integrity but the issue with sym-

metric key cryptography is that when the key is distributed to the participants the

eavesdropper can get the key and hence whole cryptosystem becomes inefficient.

To control this issue of key distribution in symmetric key cryptography, In 1976

Diffie and Hellman [8] introduced a new type of cryptography called asymmetric

key cryptography . This idea of Diffie and Hellman made a huge impact on cryp-

tography and led the foundation of a new field in cryptography which resolved

the issue of key distribution in many ways. In asymmetric key cryptography two
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different keys are used one for encryption and another one for decryption. one of

them which is used for encryption is called is private key and is kept secret. The

other one which is used for decryption is called public key and is always public

for all parties. Example of asymmetric key cryptography are RSA cryptosystem

[9], Elgamal cryptosystem [10], Elliptic curve cryptosystem (ECC) [11] etc. As

asymmetric cryptography has many advantages over symmetric cryptography but

there is also a disadvantage of asymmetric cryptography that is encryption and

decryption is very slow as compared to symmetric key cryptography. In asymmet-

ric cryptography there must be a mathematical problem which is computationally

not easy to solve known as hard problem is cryptography. The most common

hard problems are discrete logarithms problem (DLP) [12], integer factorization

problem (IFP) [13]. All these problems comprises on the foundations of number

theory, classical algebra and computational algebra.

1.2 Digital Signature

Digital signature is a cryptographic protocol whose function is to check and verify

the authorization, authentication of sender [14]. Digital signatures offers many

features but one of its main purpose is to give identification that whether the

message is sent by the authorized sender or it is sent by any other third party

[1]. Digital signature tends to resist against the tampering of message in a secure

communication channel.

The idea of digital signature was first proposed by Diffie and Hellman in 1976 in

their historical research paper New Direction in Cryptography [8]. In their pro-

posed digital signature scheme every single entity have their own public key and

private key. Both of public key and private key have a mathematical correspon-

dence. The digital signature is generated by using private key of sender and it

is verified by using public key of sender. Whole scheme was based on Discrete

logarithm problem (DLP). Since Diffie and Hellman explained the idea of a digital

signature scheme but they did not invented any algorithm and only theoretically

proposed that such kind of signature scheme can be constructed. In 1977 Rivest,
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Shamir and Adleman invented the first digital signature scheme by constructing a

digital signature algorithm known as RSA algorithm [15]. The scheme is based on

the idea and assumptions of RSA cryptosystem. The signature scheme was based

on Integer factorization problem (IFP). Goldwasser et al.[16] also worked on dig-

ital signature scheme (for more details also see [17]). Rompher introduced first

time one way trapdoor function in digital signature scheme. Genaro and Helevi

[18] Cramer and Shoup [19] proposed the first signature schemes which were prac-

tically applicable and was used in market.

In these days , almost all the digital signature schemes comprises in abelian struc-

tures described in classical algebra. In these schemes most of the problems are

solved in finite field and mostly hard problems are DLP and IFP. Recent technolo-

gies affecting the advancement of cryptographic protocols are Quantum computers.

The resistance to quantum cryptanalysis became important after the proposal of

polynomial time quantum cryptanalysis by Peter W. Shor [20]. For conventional

cryptographic primitives named as Diffie-Hellman, RSA, ECC cryptosystem the

security to quantum cryptanalysis became more challenging. So there is a require-

ment of such platform which are equally secured on quantum machines as secured

on conventional machines. For this purpose tropical algebra is an efficient platform

because it provides security against linear algebraic attacks.

1.3 Tropical Cryptography

Tropical cryptography uses tropical algebra in cryptographic protocols and schemes.

In tropical cryptography usual operations are replaced by tropical operations

namely the tropical addition ⊕ and the tropical multiplication ⊗. In early 70s,

a Brazilian mathematician Imre Simon [21] first time introduced tropical algebra.

He is known as a pioneers of tropical mathematics. The word tropical was given by

French mathematicians Jean-Eric Pin in the honor of Imre Simon acknowledging

his work in this field. Tropical algebra is also called min-plus algebra. The set

of integers embedded with ∞ (Z ∪ {∞},⊕,⊗) is a tropical semiring having two

tropical operations ⊕ and ⊗ [22]. In tropical algebra tropical multiplication ⊗
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is actually a usual addition and tropical addition ⊕ is a minimum operation so

there is no usual multiplication at all. Therefore tropical addition and tropical

multiplication are very fast as compared with classical addition and multiplica-

tion of numbers. Tropical algebra reduces the computational cost of a protocol.

Hence tropical protocols are more efficient then classical protocols. After the

consequences of properties of tropical algebra it became an interesting course of

study for mathematicians, for example see [22]. Grigoriev and Shpilrain [23] intro-

duced and employed tropical matrix algebra on stickels key exchange protocol [24],

they also extended their work on homomorphisms and semi direct products [25].

Recently Speyer, Sturmfels [26] have given more aspects and results of Tropical

Mathematics which are also useful in tropical algebra. Also many cryptologist em-

ployed tropical matrix algebra on the classical schemes see [27, 28] . The solution

of these tropical schemes [29–31] are based on min-plus linear equations system

[32], so therefore solution of these systems are based on the complexity classes of

NP
⋂
co−NP (intersection of NP and co−NP ). For more study on complexity

classes see [33, 34]

1.4 Current Research

In this thesis we have reviewed the article “Fast And Secure Modular Matrix

Based Digital Signature” proposed by Rososhek [35]. He proposed Modular Matrix

Digital Signature (MMDS) with matrices defined over the finite field Zn and the

hard problem was conjugacy search problem (CSP) [36]. We mainly focused on

the modification of digital signature scheme of Rososhek. For this purpose we have

proposed a modified scheme by introducing two modifications of the scheme. The

scheme is modified by changing its hard problem from conjugacy search problem

(CSP) to symmetric decomposition problem (SDP) [37] and matrix decomposition

problem (MDP). Symmetric decomposition problem (SDP) gives more security to

scheme by increasing the value of r, s in X = δ ⊗ (E ⊗ I)⊗r ⊗ J ⊗ (E ⊗ I)⊗s

an attacker has to solve non linear equations and in D = E ⊗ F it is hard to

find matrices E and F if only matrix D is known (see Chapter 4, 5 for details).
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Then on the proposed scheme we have employed a new platform of tropical algebra

of matrices over tropical integers Zmin = (Z ∪ {∞},⊕,⊗) with tropical addition

⊕ and tropical multiplication ⊗. By using tropical algebra, we have increased

both security and efficiency of the scheme because it fails the algebraic attack and

also reduces computational cost see Section 5.2. The scheme is illustrated by an

example. The security analysis shows that the proposed scheme is more secure

and computationally efficient than the original scheme of Rososhek [35].

1.5 Thesis Layout

The frame work of our thesis is expressed as below:

1. In Chapter 2 we described the basic definitions and fundamental ideas of

cryptography. Then we described tropical algebra and discussed its prop-

erties on matrices in detail. At the end we defined the hash functions and

explained their properties.

2. In Chapter 3 we reviewed the research paper “Fast And Secure Modu-

lar Matrix Digital Signature Scheme” proposed by Rososhek [35]. For that

purpose we discussed RSA digital signature and Elgamal signature scheme.

At last, we discussed briefly about Modular Matrix Based Digital Signature

scheme with the help of an example.

3. In Chapter 4 we proposed a modified form of the digital signature scheme

proposed by Rososhek [35] . We also employed tropical algebra on the pro-

posed scheme. Example is given to illustrate how the proposed scheme works.

4. In Chapter 5 we presented the security analysis of our proposed modified

digital signature scheme by applying different state of the art cryptanalysis

techniques. Then we discussed advantage of tropical scheme over classical

scheme.

file:Section 5.2


Chapter 2

Preliminaries

In this chapter we will discuss cryptography and a related mathematical back-

ground. Hard problems in cryptography and basic definitions with examples are

also presented. At the end of the chapter, we will define a new platform tropical

algebra and will also discuss about its properties with examples.

2.1 Cryptology

The word cryptology is originated from two Greek words kryptos (Hidden) and

logos (words). Hence cryptology is a science for the safe and secure communication

of data. It consists of the following two fields of study:

1. Cryptography

2. Cryptanalysis

2.1.1 Cryptography

Cryptography is the branch of cryptology that transforms the original message

(audio, video or text) securely and it would be very difficult for an intruder to

discover it’s original meaning.

7
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The sender transforms the original message or Plaintext M into scrambled message

or Ciphertext C. A ciphertext C is a form of a message that is un-understandable

for anyone, that is why it must be converted back into plaintext at the receiver’s

end. The process of transforming M into C is known as encryption and process of

transforming C back into M is known as decryption. A key is the hypersensitive

information used in encryption and decryption for the transformation of plain-

text into ciphertext and vice versa. Authentication of a cryptosystem depends

on key, therefore it must be kept secret. In cryptography we develop a secure

cryptosystem. A system in which we convert data or message into secret codes

using encryption algorithm and convert secret codes back into message using de-

cryption algorithm is know as cryptosystem. This whole procedure of encryption

and decryption is done with the help of a secret key K as shown in Figure 2.1

Figure 2.1: Cryptography

Cryptography have the following types

• Symmetric Cryptography (Secret Key Cryptography)

• Asymmetric Cryptography (Public Key Cryptography)
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2.1.2 Symmetric Cryptography

A system in which same or related keys are used for both encryption and de-

cryption is called symmetric key cryptography. For example, Data Encryption

Standard (DES) [6], Double Data Encryption Standard [5] and Advance Encryp-

tion Standard (AES) [7]. A model of symmetric key cryptography is shown in the

Figure 2.2.

Figure 2.2: Symmetric Key Cryptography

The main disadvantage of symmetric key cryptography is key sharing which means

that the secret key is to be transmitted to each party involved in the communica-

tion. Electronic communication used for this purpose may not be a secure way of

exchanging keys because anyone can access to the communication channels. The

only protected ways of switching keys will be to exchange them privately but it

could be a very difficult task.

2.1.3 Public Key Cryptography

Public key cryptosystem is first proposed by Diffie-Hellman in 1976 [8]. In public

key cryptography, there are two different keys used for encryption and decryption,

one of them is called public key which is known to everybody and the other one

is called secret key which is kept secret by user.

A typical protocol of public key cryptography is shown in the Figure 2.3. Here
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sender encrypt original text using public key and encryption algorithm to obtain

the ciphertext C. The secret key and decryption algorithm are used at the receiver

end to obtain that corresponding original text M.

Figure 2.3: Asymmetric Key Cryptography

A public scheme is based on the idea of a trapdoor function that is a function which

is easy to calculate in one direction but hard to calculate in other direction. RSA

cryptosystem [9] and Elgamal cryptosystem [10] are examples of asymmetric key

cryptography. Public key cryptosystems are based on trapdoor function. Public

key cryptographic protocol relies on some hard problems which will be discussed.

2.1.4 Cryptanalysis

A process of acquiring plaintext from ciphertext without knowing the key is called

cryptanalysis [38]. A person who takes the above process is called cryptanalyst.

A cryptanalyst does this job if any of the four properties (confidentiality, data

integrity, message authentication and non-repudiation) are found to be weak [39].

If weakness is found then cryptosystem is said to be vulnerable to attack. Crypt-

analysis is mainly used either for attacking a secret communication or to check
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the strength of cryptosystem. For more details on cryptanalysis we refer to see

[40–42].

2.2 Mathematical Background

In this section, we recall some tools in mathematics that are used in the thesis.

2.2.1 Group

“Let G be a non empty set and ∗ be a binary operation on G. Then (G, ∗) is

called a group if it satisfies the following properties:

i) Closure: For all a, b ∈ G, a ∗ b ∈ G,

ii) Associative: For all a, b, c ∈ G (a ∗ b) ∗ c = a ∗ (b ∗ c),

iii) Identity: There is element e ∈ G such that a ∗ e = e ∗ a = a,

iv) Inverse: If p ∈ G, then there is an element p1 ∈ G such that

p ∗ p1 = p1 ∗ p = e”

Moreover, if g1∗g2 = g2∗g1 for all g1, g2 in G then it is called a commutative/abelian

group. [43]

Example The following are examples of group

i) Set of integers Z is a group with respect to addition of integers.

ii) Set of non-singular square matrices over real numbers with ordinary matrix

multiplication form a group.

iii) Set R/{0} form a group under multiplication.

iv) Set of all matrices of order n×n form a group under addition and is denoted

by Mn.

v) Zn form a group under addition. Where Zn = {0, 1, 2, . . . , n− 1} mod n.
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2.2.2 Ring

“A non-empty set together with two binary operations, one is addition (+) and

other is multiplication (·), denoted by (R,+,·) is said to be a ring if it satisfies the

following properties:

i) (R,+) is an abelian group.

ii) (R,·) is a semi group.

iii) Distributive property of multiplication over addition holds.

That is ∀ p,m, n ∈ R

p.(m+ n) = p.m+ p.n and

(p+m).n = p.n+m.n”

Moreover, if p1 · q1 = q1 · p1 for all p1, q1 in (R,+,·) then it is called a commutative

ring. [44, 45]

Example 1 Followings are the examples of ring.

i) ( Z,+,·), (Q,+, ·), (R,+, ·) and (C,+, ·) all form ring under usual addition

and multiplication.

ii) Mn(R) set of all n × n matrices over the ring R is also a ring under usual

addition and multiplication .

iii) The set of all bounded functions defined on any non-empty set X to set of

real numbers R is a ring and is denoted by B(X,R).

iv) Set of odd integer is not a ring because it does not satisfied closure property

under multiplication.

Example 2 Following are some examples of commutative ring.

i) Zn is a commutative ring. Where Zn = {0, 1, 2, . . . , n− 1} mod n.
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ii) 2Z is a commutative ring where 2Z = {2z | z ∈ Z}.

iii) Mn(R) is the set of all n× n matrices over a ring R is not commutative ring

because matrix multiplication is not commutative.

2.2.3 Semiring

“A set S , together with two binary operation “+” and “·” is called a semiring if

it satisfies the following conditions:

i) S is semi-group under “+”

ii) S is semi-group under “·”

iii) Multiplication is distributive over addition from both sides. That is, for all

u, v, w ∈ S we have

u · (v + w) = (u · v) + (u · w)

(u+ v) ·w= (u·w)+(v·w)”

Moreover, if p1 · q1 = q1 · p1 for all p1, q1 in (S,+,·) then it is called a commutative

Semiring. [46, 47]

Example 1 Following are the examples of semiring.

i) Every ring is a semiring therefore set of integers Z, rational number Q, real

number R and complex number C all are semirings.

ii) Set of natural number N is a semiring.

iii) For any semiring S, Mn(S) the set of matrices of order n×n is a semiring

with ordinary addition and multiplication. In specific Mn(N) is a semiring.

iv) The set of polynomial with natural numbers as coefficients, denoted by N[X],

forms a semiring. In fact, this is the commutative semiring on a single

generator X.
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Example 2 The set of integers equipped with tropical operations is a commutative

semiring and denoted by Zmin = (Z ∪ {∞}, ⊕ , ⊗). All tropical semiring are

commutative semiring.

2.2.4 Field

Recall that a commutative-ring is called a field if it also has a multiplicative

inverses of each of its element. We will denote such rinds by F. [47]

Example Examples of field are

i) Set of real and complex numbers are fields under usual addition and multi-

plication.

ii) For any prime number p, Zp is a field. Where Zp = {0, 1, . . . , p− 1} mod p.

iii) Set of integers Z is not a field as there are no multiplicative inverses in Z.

2.2.5 Finite Field

“A field having finite number of elements is known as finite field. For every prime

p, set of integers Zp under mod p is a finite field, also it is denoted by Fp.” [48]

Example Z5 = {0,1,2,3,4} is a finite field. Addition and multiplication is defined

as:

For x, y ∈ Z5, x + y will be equal to the remainder value left after dividing the

usual sum of x and y by 5. x · y is equal to the remainder left after dividing the

simple product of x and y by 5. It means that 7+6=13 will be equal to 3 in Z5.

Similarly 8×12 = 96 and will be equivalent to 1 in Z5. In the case of negative

integers it will be computed by adding the mod integer unless we get a positive

integer which will be less then the mod value. For instance, consider -10+6=-4

will be equal to 1.
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+ 0 1 2 3 4

0 0 1 2 3 4

1 1 2 3 4 0

2 2 3 4 0 1

3 3 4 0 1 2

4 4 0 1 2 3

Table 2.1: Addition in Z5

· 0 1 2 3 4

0 0 0 0 0 0

1 0 1 2 3 4

2 0 2 4 1 3

3 0 3 1 4 2

4 0 4 3 2 1

Table 2.2: Multiplication in Z5

In finite field Zp every non-zero element has a multiplicative inverse. For inverses

in Zp we use extended euclidean algorithm.

2.2.6 Modular Inverses

Given any two integer r and s, the problem is to find an integer t such r.t ≡ 1

mod s and r−1≡ t mod s, where 1 ≤ t ≤ s− 1.

The multiplicative inverse of r in mod s is t if r is relatively co-prime that is,

gcd(r, s) = 1. To find modular inverses we can use extended euclidean algorithm.

2.2.6.1 Extended Euclidean Algorithm

To find the multiplicative inverse in Zp, we can implement Euclidean Algorithm

[49] in the computer algebra system ApCoCoA [50].
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Following is the method of finding the inverse of r mod s.

Input: An integer r and an integer s.

Output: r−1 mod s

i) Initialize six integers Ui and Vi for i=1,2,3 as

(V1, V2, V3) = (1, 0,m)

(W1,W2,W3) = (0, 1, r)

ii) If W3=0, return V3=gcd (r, s); no inverse of r exist in mod s

iii) If W3=1 then return W3 = gcd (r, s) and W2 = r−1 mod s

iv) Now divide V3 by W3 and find the quotient Q when V3 is divided by W3

v) Set (P1, P2, P3) = ((V1 −QW1), (V2 −QW2), (V3 −QW3))

vi) Set (V1, V2, V3) = (W1,W2,W3)

vii) Set (W1,W2,W3) = (P1, P2, P3)

viii) Go to step (ii).

2.2.7 Isomorphism

A mapping η : (R1,+, ·) 7→ ( R2,+, ·) (where ( R1,+, ·), ( R2,+, ·) are rings) is

called ring isomorphism if:

i) A mapping η is bijective

ii) η satisfies the homomorphism properties, That is,

(a) η(x+ y) = η(x) + η(y)

(b) η(x · y) = η(x) · η(y) for all x, y ∈ (R1,+, ·). [51]

Example Some examples of isomorphisms are given below.

i) The mapping χ : Z 7→ Zn defined by χ(x) = a mod n is a ring isomorphism.
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2.2.8 Automorphism

An automorphism is a bijective homomorphism of an algebraic structure with

itself. Let ξ : G′ 7→ G′ be a (group) isomorphism from G′ to itself. Then ξ is a

group-automorphism [52]. Similarly for any ring R if mapping ξ : R′ 7→ R′ is an

isomorphism then ξ is called ring automorphism. [53]

Example Some examples of automorphism are given below:

i) The mapping χ : Z 7→ Z defined by χ(x) = −x is an automorphism.

ii) For any abelian group G′ the mapping ξ : G′ 7→ G′ defined by ξ(g) = g−1 ,

for all g ∈ G′ is an automorphism.

2.2.9 Ring of Integers

For any positive integer n the set Zn = {0, 1, 2, . . . , n−1} mod n is a commutative

ring. It is also known as ring of integers under modulo n.

2.2.10 Residue Ring

“The set of congruence classes or residue classes is also a ring and is denoted by

Z∗n. It consist of those elementsof Zn which have multiplicative inverse in Zn mod

n, that is the numbers which are relatively prime with n. Its order can be find by

using Euler’s totient function.” [54]

2.2.11 Eulers Totient Function

Eulers totient function is defined as the number of positive integers less than n

which are relatively prime with n. It is denoted by φ(n). For any prime p’

φ(p′) = (p′ − 1)
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For any n = r · s, where r and s are prime numbers then,

φ(n) = φ(r) · φ(s)

= (r − 1) · (s− 1)

2.3 Cryptographic Hard Problems

In this section, we will explain some of cryptographic hard problems which are

related to our thesis.

2.3.1 Discrete Logarithm Problem

Given x, y ∈ Zp such that

xn = y mod p

then finding n is known as discrete logarithm problem.

In discrete logarithm problem base integer are known and hard problem is to find

the power n. Diffie-Hellman key exchange and Elgamal encryption are based on

Discrete logarithm problem (DLP). [55]

2.3.2 Integer Factorization Problem

“Let n be a given number, the problem of decomposition of n to the product of

prime p and q such that n = pq is called integer factorization problem . That

given n, finding p and q is a hard problem.”

It is not easy to find prime factors of a composite number and for a large number

there is not any efficient algorithm to find the prime factors. RSA cryptosystem

[9] is based on integer factorization problem (IFP). [55]
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2.3.3 Symmetrical Decomposition Problem

“Given a, b ∈ G and m,n ∈ Z, find x ∈ G such that

b = xm.a.xn

then finding x is known as symmetrical decomposition problem.” [37]

2.3.4 Conjugacy Search Problem

“Let G be a group and x, y ∈ G, whether or not they represent conjugate element

of G. That is, the problem is to determine whether there exist an element z of G

such that y = zxz−1 is known as Conjugacy Search Problem.” [36]

2.3.5 Matrix Decomposition Problem

Factorization of a matrix into a product of matrices i.e A = BC is known as matrix

decomposition problem . It is hard to find matrices B and C if only matrix A is

known.

2.4 Hash Function

“A Hash function is any function, that maps data of random size into a fixed

length hash value as shown in the Figure 2.4. The hash value is representative of

the original string of character, but is smaller than the original [56, 57]. Secure

Hash Algorithm (SHA) is commonly used hash function. National institute of

standard and technology (NIST) developed SHA in 1993.” A hash value can be

used to uniquely identify secret information. Hash function should be collision

resistant.
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Figure 2.4: Hash Function

Some known cryptographic hash function are (SHA-1 [58] , which produces a hash

value of 160 bits), SHA-256, SHA-512 [59] and MD-6 [60]. There are several tools

to calculate cryptographic hash function like hash tool 1.2, Crypto-precision and

DNS [61].

Followings are the properties of Hash function

i) Performance: It is easy to calculate H(P ) where P is plaintext.

ii) One way Function: If H(P ) is given it is difficult to find P .

iii) Weak Collision Resistance: If P and H(P ) are given it is very hard to

find P ′ such that H(P ) = H(P ′)

iv) Strong Collision Resistance: It is hard to find P , P ′ such that H(P ) =

H(P ′).

2.5 Algebra of Matrices

Theory of matrices is very important in cryptography so this section deals with

rules of addition, multiplication, subtraction, multiplication by a scalar, deter-

minants and inversion of matrices. Let us first give the definition of a matrix

as:
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2.5.1 Matrix

A rectangular array arranged in m rows and n columns in a square bracket is called

an n× n matrix over a ring R and is presented as

K=


k11 k12 . . . k1n

k21 k22 . . . k2n

. . . . . .

kn1 kn2 . . . knn


Matrices are usually identified by capital letters such asA,B etc. Instead of writing

all the elements in rectangular array, it is convenient to write the abbreviated

notation as: K = [kij]m×n , where kij denotes the entry in the ith row and jth

column of the matrix. The matrix which has m rows and n columns is called

rectangular matrix of order m × n and if m = n, then A is known as square

matrix. If each element of diagonal is an element R in a square matrix then it is

known as scalar matrix of order n.

2.5.2 Addition of Matrices:

Let us consider a m × n matrix A = [aij] and matrix B = [bij] of order m × n.

Then

A+B = B + A = C, where C = [cij] = [aij] + [bij]

Remark. Set of all m × n matrices over a ring R forms an abelian group with

respect to addition + defined for matrices.

2.5.3 Multiplication of Matrix by a Scalar:

Let A be an m× n matrix and t ∈ R, then we define:

tA = [taij] = [aijt] = At.
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2.5.4 Multiplication of Matrices:

The product of matrix A of order m× n, with the matrix B of order n× p is an

m× p matrix defined as follows:

If A = [aij] and B = [bij],

then,

C = AB = [aij][bij],

C = [cij],

where

[cij] = ai1b1j + ai2b2j + . . .+ ainbnj

Remark. In general, matrices do not commute.

2.6 The Circulant Matrices

A circulant matrix is a square matrix where, given the first row, the successive rows

are obtained by cyclically right shifting the present row by one element. Thus the

ith row of the circulant matrix of size n× n is obtained by cyclically right shifting

the (i− 1)th row by one position, for i = 2 to n, given the first row. Let the first

row be the roe vector, [k1, k2, ...., kn]. Then the circulant matrix K is obtained as

K=


k1 k2 . . . kn

kn k1 . . . kn−1

. . . . . .

k2 k3 . . . k1


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2.6.1 Properties of Circulant Matrices

Circulant matrices play a pivotal role in computational science and engineering.

i) Product of two circulant matrices is also a circulant matrix.

ii) Circulant matrices are multiplicatively commutative. i.e. AB = BA

iii) For circulant matrices they hold the property (AB)m = AmBm. Because of

this property these kind of matrices holds special significance in many fields

like in number theory, cryptography, simulations, digital signal processing

etc.

iv) In circulant matrices, eigenvectors are always the same. The eigenvalues are

different for each matrix, but since eigenvectors are known so they can be

easily diagonalize them.

2.7 Tropical Algebra

Tropical cryptography is comparatively a new fields in mathematics. It refers

to the study of classical cryptography protocols based on tropical algebras. The

benefits of tropical algebra in cryptography relies on two key features:

i) In tropical arithmetic, addition and multiplication is faster than usual addi-

tion and multiplication,

ii) Linear system of equations in tropical arithmetic is harder than linear system

with usual addition. Hence diminishing the linear algebra attacks which were

possible in classical schemes for example, see [39].

2.7.1 Tropical Semiring

The key object of tropical cryptography is min-plus algebra which is also known

as tropical semiring [62]. Let Z ∪ {∞}be the extended set of integers. A set
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Z∪{∞} with two binary operations tropical addition ⊕ and tropical multiplication

⊗ denoted by Zmin = (Z ∪ {∞},⊕,⊗) is called tropical semiring.

Tropical addition and multiplication is defined as, ∀ `,m ∈ Zmin such that:

`⊕m = min(`,m)

`⊗m = `+m

For example, tropical sum of two numbers 2 and 3 is 2 and tropical multiplication

of 2 and 3 is 5. Symbolically, we write

2⊕ 4 = min(2, 4) = 2

2⊗ 5 = 2 + 5 = 7

Similarly for negative integers,

3⊕−2 = min(3,−2) = −2

−5⊗ 8 = −5 + 8 = 3

Tropical addition and multiplication tables [26] with entries from tropical integers

(−3, . . . , 3) are given as follows:

⊗ −3 −2 −1 0 1 2 3

−3 -6 -5 −4 −3 −2 −1 0

−2 -5 -4 −3 −2 −1 0 1

−1 -4 -3 −2 −1 1 2 3

0 -3 -2 −1 0 1 2 3

1 -2 -1 0 1 2 3 4

2 -1 0 1 2 3 4 5

3 0 1 2 3 4 5 6

Table 2.3: Multiplication in Tropical Algebra
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⊕ −3 −2 −1 0 1 2 3

−3 -3 -3 −3 −3 −3 −3 −3

−2 -3 -2 −2 −2 −2 −2 −2

−1 -3 -2 −1 −1 −1 −1 −1

0 -3 -2 −1 0 0 0 0

1 -3 -2 −1 0 1 1 1

2 -3 -2 −1 0 1 2 2

3 -3 -2 −1 0 1 2 3

Table 2.4: Addition in Tropical Algebra

Following axioms [63] hold for tropical addition and multiplication such that ∀

`,m, n ∈ Zmin. It satisfies:

2.7.1.1 Associative Law

`⊕ (m⊕ n) = (`⊕m)⊕ n

`⊗ (m⊗ n) = (`⊗m)⊗ n

2.7.1.2 Commutative Law

`⊕m = m⊕ `

`⊗m = m⊗ `

2.7.1.3 Distributive Law

(`⊕m)⊗ n = (`⊗ n)⊕ (m⊗ n)

n⊗ (`⊕m) = (n⊗ `)⊕ (n⊗m).
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2.7.1.4 Identities

(a)Additive Identity: There exist a special element∞ such that for any ` ∈ Zmin

`⊕∞ =∞⊕ ` = `

(b)Multiplicative Identity: There exist an element 0 such that for any ` ∈ Zmin

`⊗ 0 = 0⊗ ` = `

2.7.1.5 Inverses:

(a)Additive inverse:

Additive inverse in tropical algebra does not exist because there is no element in

a semiring whose minimum is the identity ∞.

(b)Multiplicative inverse:

There exist an element `′ corresponding to ` such that

`⊗ `′ = 0

where `′ is multiplicative inverse of ` defined as `′ = −`

Remark. There are some Counterintuitive properties of these operations as well

which are not satisfied is usual algebra:

(a) For any element ` ∈ Zmin

`⊕ ` = `

It means element are idempotent under tropical addition ⊕, for further details

see [64]

(b) ` ⊕ 0 could either be 0 or `

For instance

−2⊕ 0 = min(−2, 0) = −2
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3⊕ 0 = min(3, 0) = 0

(c) For any element ` ∈ Zmin there exists an element ∞ such that,

`⊗∞ =∞

Example Following are the examples of tropical semiring [65]

i) The set of integers equipped with tropical operations is known as Tropical

integers and denoted by Zmin = (Z ∪ {∞}, ⊕ , ⊗).

ii) The set of rational numbers equipped with tropical operations is known as

Tropical rationals and denoted by Qmin = (Q ∪ {∞}, ⊕ , ⊗).

iii) The set of real numbers equipped with tropical operations is known as Trop-

ical real numbers and denoted by Rmin = (R ∪ {∞}, ⊕ , ⊗).

Tropical arithmetic can be hard because tropical addition operation is not invert-

ible.

For instance, 5 ⊕ ` = min(5, `) does not give any information about `. While

tropical multiplication operation is invertible [66] and inverse of this operation is

denoted by � and defined as `�m = `−m

for example 7� 2 = 7− 2 = 5.

2.7.2 Tropical Monomials

Let x1, x2, x3, . . . , xn represent a elements of the tropical semiring then the tropical

product of these elements (where elements can be repeated) is known as tropical

monomial [67].

For example,

x1 ⊗ x1 ⊗ x1 ⊗ x2 ⊗ x3 ⊗ x3 = x31x2x
2
3

Alternative notation of x⊗ x⊗ x = x⊗3. So we can also write the above equation

as

x31x2x
2
3 = x⊗31 x2x

⊗2
3
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In this thesis the above notation is used for tropical exponents.

A tropical monomial [67] represents a linear function f : Rn 7→ R. Evaluating this

function in classical arithmetic, monomials in n-variables are linear functions with

integer co-coefficients shown as

x⊗21 x⊗32 x⊗23 = x1 + x1 + x2 + x2 + x2 + x3 + x3 = 2x1 + 3x2 + 2x3

Negative powers are expressed as

x⊗−21 x⊗−132 x⊗−73 = −2x1 − 13x2 − 7x2

2.7.3 Tropical Polynomial

A finite linear combination of tropical monomials is known as tropical polynomial

. Generally, a tropical polynomial can be written as

P (x1, x2, x3, . . . , xn) = (a⊗ xi11 xi22 . . . xinn )⊕ (b⊗ xj11 x
j2
2 . . . x

jn
n )⊕ . . .

where a, b. . . are real numbers while powers i1, i2, . . . , in, j1, j2, . . . , jn are integers

Example Consider a tropical polynomial with n-variables

P (x1, x2, . . . , xn) = (x⊗31 ⊗ x2 ⊗ x⊗23 )⊕ x3 ⊕ 10

where (x⊗31 ⊗x2⊗x⊗23 ), x3, 10 are tropical monomials. Tropical polynomial repre-

sents a function f : Rn 7→ R , so by evaluating this function in classical arithmetic,

we get the minimum of finite set of linear functions from Rn 7→ R shown as

P (x1, x2, . . . , xn) = (x⊗31 ⊗ x2 ⊗ x⊗23 )⊕ x3 ⊕ 10 = min(3x1 + x2 + 2x3, x3, 10).

2.7.3.1 Degree of Polynomial

It is defined as the highest power of the tropical monomial in a tropical polynomial.
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Example Consider a tropical polynomial with single variable x

P (x) = x⊗8x⊗6x⊗3

has degree 8, by the highest degree of its monomials.

P (x1, x2, ...xn) = (x⊗31 ⊗ x2 ⊗ x⊗23 )⊕ x3 ⊕ 10

this polynomial has degree 6 by the sum of exponents of the different variables

(3 + 1 + 2) in monomials.

2.8 Tropical Matrix Algebra

Consider a matrix Mn(Zmin) of order n×n with entries from tropical semiring Zmin

equipped with operations tropical addition ⊕ and multiplication ⊗, then Mn(Zmin)

is known as tropical matrix [68]. A tropical addition used in matrix operations is

known as tropical matrix addition and A tropical multiplication used in matrix

operations is known as tropical matrix multiplication respectively.

2.8.1 Tropical Matrix Addition

In tropical matrix addition [69], consider two tropical matrices A = [aij] and

B = [bij] then matrix M = [mij] is formed by the tropical addition of the elements

of A = [aij] and B = [bij]. It is denoted by [mij],

where,

mij = aij ⊕ bij

Example Consider given the tropical matrices from Mn(Zmin)

A =

2 4

5 −3

B =

3 5

6 2


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A⊕B =

2 4

5 −3

⊕
3 5

6 2



A⊕B =

2⊕ 3 4⊕ 5

5⊕ 6 −3⊕ 2



A⊕B =

min(2, 3) min(4, 5)

min(5, 6) min(−3, 2)



=

2 4

5 −3



2.8.2 Tropical Matrix Multiplication

Given n× n matrices, tropical matrix multiplication [69] is same as usual matrix

multiplication except usual addition and multiplication operations are replaced by

tropical addition ⊕ and multiplication ⊗. Consider two tropical matrices A = [aik]

and B = [bkj] then matrix M = [mij] is formed by the tropical multiplication of

the elements of A = [aik] and B = [bkj]. It is denoted by [mij],

where,

M = A⊗B

[mij] = (ai1 ⊗ b1j)⊕ (ai2 ⊗ b2j)⊕ . . . (ain ⊗ bnj).

Example Consider given the tropical matrices from Mn(Zmin)

A =

3 6

7 −5

B =

1 9

7 2



A⊗B =

3 6

7 −5

⊗
1 9

7 2



A⊗B =

 (3⊗ 1)⊕ (6⊗ 7) (3⊗ 9)⊕ (6⊗ 2)

(7⊗ 1)⊕ (−5⊗ 7) (7⊗ 9)⊕ (−5⊗ 2)


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A⊗B =

 (3 + 1)⊕ (6 + 7) (3 + 9)⊕ (6 + 2)

(7 + 1)⊕ (−5 + 7) (7 + 9)⊕ (−5 + 2)



A⊗B =

4⊕ 13 12⊕ 8

8⊕ 2 16⊕−3



A⊗B =

min(4, 13) min(12, 8)

min(8, 2) min(16,−3)



=

4 8

2 −3



2.8.3 Scalar Multiplication

Consider a tropical matrix A and c be any scalar. Then scalar multiplication c ⊗

A is obtained by adding scalar c to each entry of A.

c⊗ A = c⊗ Aij

= c+ Aij

Example Consider given the tropical matrices from Mn(Zmin),

A =

2 3

6 7



5⊗ A = 5⊗

2 3

6 7



5⊗ A =

5⊗ 2 5⊗ 3

5⊗ 6 5⊗ 7



5⊗ A =

 7 8

13 12


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Similarly, multiplying a scalar with a square matrix equals to multiply it with the

corresponding scalar matrix. Scalar matrices are the matrices which have some

scalar h ∈ Zmin on the diagonal and ∞ elsewhere denoted by

h ∞

∞ h


So, multiplication of scalar matrix with any square matrix of the same order is

shown as:

9 ⊗

5 4

3 2

 =

5 4

3 2

 ⊗
 9 ∞

∞ 9

 =

14 13

12 11



2.8.4 Matrix Exponents

Consider a tropical matrix A of order n× n. Let A⊗1 = A then matrix exponents

are computed as

A⊗k = A⊗ A⊗k−1

Example A =

5 4

3 6


then

A⊗2 = A⊗ A⊗1 =

5 4

3 6

 ⊗
5 4

3 6

 =

7 9

8 7



A⊗3 = A⊗ A⊗2 =

5 4

3 6

 ⊗
7 9

8 7

 =

12 11

10 12



2.8.5 Some Properties Of Tropical Algebra

Following are the properties [28] of tropical algebra with respect to matrix addition

and multiplication. Tropical algebra have same properties like usual algebra but

some of its properties are different from usual algebra.
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2.8.5.1 Associative Property w.r.t Addition

Tropical matrices satisfy associative property of addition.

(A⊕B)⊕ C = A⊕ (B ⊕ C)

Example Consider three tropical matrices A,B and C.

A =

4 5

7 3

B =

6 5

2 9

C =

8 4

3 2


then

A⊕B =

4 5

7 3

⊕
6 5

2 9

 =

7 9

5 12



B ⊕ C =

6 5

2 9

⊕
8 4

3 2

 =

 8 7

10 6


Hence,

(A⊕B)⊕ C =

7 9

5 12

⊕
8 4

3 2

 =

12 11

13 9



A⊕ (B ⊕ C) =

4 5

7 3

⊕
 8 7

10 6

 =

12 11

13 9



2.8.5.2 Associative Property w.r.t Multiplication

The tropical matrices satisfy associative property of multiplication. It means they

associate the operation of tropical multiplication. That is,

(A⊗B)⊗ C = A⊗ (B ⊗ C)



Preliminaries 34

Example Consider three tropical matrices A,B and C.

A =

9 3

2 6

 , B =

5 4

2 6

 , C =

7 3

5 8


then

A⊗B =

9 3

2 6

⊗
5 4

2 6

 =

5 9

7 6



B ⊗ C =

5 4

2 6

⊗
7 3

5 8

 =

9 8

9 5


hence,

(A⊗B)⊗ C =

5 9

7 6

⊗
7 3

5 8

 =

12 8

11 10



A⊗ (B ⊗ C) =

9 3

2 6

⊗
9 8

9 5

 =

12 8

11 10



2.8.5.3 Commutative Property w.r.t Addition

Tropical matrices satisfy commutative property of addition.

A⊕B = B ⊕ A

Example Consider tropical matrices A and B. Let

A =

9 7

6 5

 , B =

3 4

8 5



A⊕B =

9 7

6 5

⊕
3 4

8 5

 =

3 4

6 5


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B ⊕ A =

3 4

8 5

⊕
9 7

6 5

 =

3 4

6 5



2.8.5.4 Commutative Property w.r.t Multiplication

Let A be a tropical matrix, it is valid that:

A⊗r ⊗ A⊗s = A⊗s ⊗ A⊗r

Example Consider a tropical matrix A :

A =

5 4

3 6


then,

A⊗2 =

5 4

3 6

⊗
5 4

3 6

 =

7 9

8 7



A⊗3 =

5 4

3 6

⊗
7 9

8 7

 =

12 11

10 12



A⊗2 ⊗ A⊗3 =

7 9

8 7

⊗
12 11

10 12

 =

19 18

17 19



A⊗3 ⊗ A⊗2 =

12 11

10 12

⊗
7 9

8 7

 =

19 18

17 19


Similarly, Scalar matrices commutes with any other square matrix of same size.

In scalar matrices, commutativity is shown as:

A⊗B =

 7 ∞

∞ 7

⊗
5 4

3 6

 =

12 11

10 13


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B ⊗ A =

5 4

3 6

⊗
 7 ∞

∞ 7

 =

12 11

10 13



2.8.5.5 Additive Identity Matrix

There is an additive identity matrix say O which is added to any matrix of same

dimension, matrix does not change such that A⊕O = A. Additive identity matrix

in M2×2 is denoted by O =

∞ ∞

∞ ∞

 such that

a1 b1

c1 d1

⊕
∞ ∞

∞ ∞

 =

a1 b1

c1 d1



2.8.5.6 Multiplicative Identity Matrix

The n× n identity matrix, denoted by E is a matrix consists of 0 on the diagonal

and ∞ elsewhere such that A⊗ E = A.

In M2×2 identity matrix is denoted as

 0 ∞

∞ 0

 such that it satisfy,

a1 b1

c1 d1

⊗
 0 ∞

∞ 0

 =

a1 b1

c1 d1



2.8.5.7 Additive Inverse Matrix

Additive inverse of matrices do not exist.

2.8.5.8 Multiplicative Inverse Matrix

The multiplicative inverse of a matrix A is a matrix denoted by A′ such that

A⊗ A′ = E. In M2×2, inverse matrix of a matrix A is denoted by A′ where,
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if A =

 a ∞

∞ a

 then A′ =

−a ∞

∞ −a



such that  a ∞

∞ a

⊗
−a ∞

∞ −a

 =

 0 ∞

∞ 0


In tropical algebra, only diagonal matrices are invertible.

2.8.5.9 Commutative Property of Circulant Matices

There is also a property of circulant matrices over tropical integers Zmin = (Z ∪

{∞}, ⊕ , ⊗)

(A⊗B)⊗r = A⊗r ⊗B⊗r

for all A, B ∈ Mn(Zmin)

Example consider tropical circulant matrices A, B ∈ M2(Zmin) and choose r=2

such that

A =

2 3

3 2

 and B =

 7 10

10 7



A⊗B =

2 3

3 2

⊗
 7 10

10 7



A⊗B =

 9 10

10 9



(A⊗B)⊗2 =

 9 10

10 9

⊗
 9 10

10 9



(A⊗B)⊗2 =

18 19

19 18

 (2.1)
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Now,

A⊗2 =

2 3

3 2

⊗
2 3

3 2



A⊗2 =

4 5

5 4


Similarly,

B⊗2 =

 7 10

10 7

⊗
 7 10

10 7



B⊗2 =

14 17

17 14



A⊗2 ⊗B⊗2 =

4 5

5 4

⊗
14 17

17 14



A⊗2 ⊗B⊗2 =

18 19

19 18

 (2.2)

From equation (2.1) and (2.2) we conclude that

(A⊗B)⊗2 = A⊗2 ⊗B⊗2.



Chapter 3

A Secure And Fast Modular

Matrix Based Digital Signature

In this chapter we discussed digital signature, then we discussed RSA digital sig-

nature [70] and Elgamal signature scheme [71]. The last section is about Modular

Matrix Based Digital Signature scheme by Rososhek [35].

3.1 Digital Signature

Digital Signatures are among the most important cryptographic tools and are

commonly used today. Digital signature share some features with handwritten

signature, but they do offer much more functions. It also guarantees that the

information was not altered. Digital signature is formed on the basis of theory of

asymmetric cryptography. It means sender have to generate two keys. One key

is known as public key and the other key is known as private key. For this a well

known algorithm is required that outputs the private key and the corresponding

public key. A digital signature is developed by encrypting the message m using

private key of sender. Then the signature S and message m are attached and the

pair (m,S) is transmitted to the receiver. The receiver authenticate the sender

by using his public key. A digital signature model is shown in Figure3.1. Here

39
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the hash values of the original message and private key is a signature and original

message with signature is a digitally signed data. This process is called signing.

For verification the useful information along with sender’s public key is used to

compute new data which is again hashed. New hashed value and previously hashed

value sent by sender are same.

Figure 3.1: Digital Signature

3.2 The RSA Signature Scheme

The RSA signature scheme [70] is formulated on the basis of RSA cryptosystem.

The security of RSA signature scheme depends on the difficulty of factoring the

product of two very large prime numbers. It means the hard problem in this

scheme is integer factorization problem (IFP).

Let us suppose Bob wants to send a Signed message m to Alice.

3.2.1 Key Generation

1. Pick two large primes p1 and q1, where p1 6= q1

2. Compute n1 = p1.q1
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3. Compute φ(n1) = (p1 − 1).(q1 − 1)

4. Select e1 such that gcd (e1, φ(n1)) = 1

5. Compute d1 such that d1.e1 = 1 mod φ(n1)

6. Bob’s private key = d1

7. Bob’s public key = (n1, e1)

3.2.2 Signature Generation

To sign the message m Bob will compute the signature S as follows:

S = md1 mod n1

The pair (m,S) is then transmitted to Alice.

3.2.3 Signature Verification

After receiving the signed message (m,S), Alice will perform the following step.

1. Using Bob’s public key compute m′ = Se1 mod n1

2. If m′ = m then the signature is valid and the message is authentic otherwise

discard it.

3.2.4 Correctness

Following are the steps for showing the scheme is correct:

We know that m′ = Se1 mod n1 and S = md1 mod n1
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Therefore,

m′ = (md1)e1 mod n1

= (m)d1.e1 mod n1

= m mod n1.

3.3 Elgamal Digital Signature Scheme

The Elgamal signature scheme [71] is formulated on the basis of Elgamal cryp-

tosystem. The security of Elgamal signature scheme depends on the difficulty of

evaluating the discrete logarithms. It means the hard problem in this scheme is

discrete logarithm problem (DLP) [55].

Let us suppose Bob wants to send a Signed message m to Alice.

3.3.1 Key Generation

1. Pick a very large prime p.

2. Choose an arbitrary integer x

3. Compute y = gx mod p

The public key is (p, g, y) and private key is x. p and g, both are global parameters.

3.3.2 Signature Generation

To sign the message m Bob will compute the signature S as follows:

1. Pick an arbitrary integer k ∈ {2, 3, 4, . . . , p− 1}, gcd(k, p− 1) = 1

2. Compute r = gk mod p
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3. Compute S = (m− x.r)k−1 mod p− 1

The triplet (m, r, S) is a digital signature for sender Alice and is then transmitted

to Bob.

3.3.3 Signature Verification

1. Alice sends signed message to Bob.

2. Bob will carry out following steps for verification.

3. Compute the value t ≡ yrrS mod p such that 0 < r < p , 0 < S < p− 1

If t = gm then the signature is valid and the message is authentic otherwise discard

it.

3.3.4 Correctness

Following are the steps for showing the scheme is correct:

We know that S = (m− x.r)k−1 mod p− 1

m = xr + sk mod p− 1

gm = gxr+sk mod p

gm = gxr.gsk mod p

gm = (gx)r(gk)s mod p

gm = yrrs mod p

gm = t mod p

The signature generation in [35] is based on the following hard problem in group

theory.
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3.4 Modular Matrix Based Digital Signature Scheme

(MMDS)

In the recent past S.K.Rososhek proposed “Fast And Secure Modular Matrix Based

Digital Signature Scheme” [35]. It is much more faster than other digital signatures

that are used commonly used in practice. The scheme [35] is based on conjugacy

search problem (CSP).

3.4.1 Key Generation

Alice will carry out following steps:

1. Pick two random very large prime numbers p, q where p 6= q

2. Compute n = p · q

3. Pick any two invertible matrices E,F in the subgroup G of the group

GL2(Zn)

4. Where G be the set of 2× 2 matrices :

G = {

a b

b a

 | a, b ∈ Zn and a2 − b2 ∈ Z∗n}

where Z∗n is unit group of residue ring Zn [72]

Also G is an abelian subgroup of GL2(Zn)

5. Compute

D = E−1F (3.1)

6. (n,D) is considered to be Alice’s master public key

7. (E,F) is considered to be Alice’s master private. key

3.4.2 Digital Signature Generation

To sign the message m Alice will use some hash H and perform the following steps:
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1. Pick an arbitrary matrix I from the subgroup G of GL2(Zn)

2. Pick an arbitrary matrix J ∈ GL2(Zn)

3. Pick the arbitrary integers ω, δ ∈ Zn

4. (ω, δ, I, J) is considered to be Alice’s session private key

5. Let fD, fEI and fFI be the automorphisms of the matrix ring M2(Zn) [73]

defined as:

fD : A 7→ D−1AD (3.2)

fEI : A 7→ (EI)−1A(EI) (3.3)

fFI : A 7→ (FI)−1A(FI) (3.4)

for all A ∈M2(Zn)

6. Compute X, Y as

X = δfEI(J) (3.5)

Y = fFI(J) (3.6)

γ = δ + ω (3.7)

Sa = H((m)2 ‖ (γY )2) (3.8)

where (m)2 is a bit string binary number representation of message m ,

(γY )2 is a bit string got after shifting the matrix γY in a string of binary

numbers. Using 8-bit format:

γY 7→

t1 t2

t3 t4

 7→ t1‖t2‖t3‖t4
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7. The session public key of Alice for authentication is set as ωY and the pair

(X,Sa) is then transmitted to Bob.

3.4.3 Digital Signature Verification

After receiving the signed message (X,Sa), Bob will perform the following step.

1. Bob gets Alice’s master public key (n,D) and session public key ωY .

2. Compute

Z = ωY + fD(X) (3.9)

3. Compute

S ′a = H((m)2‖(Z)2) (3.10)

4. If S ′a = Sa then the signature is valid and the message is authentic otherwise

discard it.

3.4.4 Correctness

The correctness of the scheme follows from the following steps:

We know that

Z = ωY + fD(X)

Using equation (3.1), (3.2), (3.5) in (3.9)

Z = ωY + δD−1(EI)−1J(EI)D

= ωY + δ(E−1F )−1(EI)−1J(EI)(E−1F )

= ωY + δ(FI)−1J(FI).

Now using equation (3.6)

Z = ωY + δY
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Using equation (3.7)

Z = (ω + δ)Y = γY

Lastly from equation (3.8), (3.10)

S ′a = H((m)2‖(Z)2)

= H((m)2‖(γY )2)

= Sa

The scheme is further illustrated with the help of an example given below:

Example Let us consider a matrices from GL2(Zn) over finite field and all the

calculations have been done under modulo n.

Step 1: Key Generation

1. Alice picks arbitrary prime numbers p = 7 and q = 11 and computes

n = p.q = 7× 11 = 77

2. Now picks two matrices E, F from the subgroup G of GL2(Z77) as

E =

7 3

3 7

 , F =

5 3

3 5

 mod 77

Now she calculates inverse of E.

E−1 = (det(E))−1Adj(E) mod 77.

(det(E))−1 is the modular inverse of det(E) mod 77.

As det(E) = 40 mod 77, then she calculates its inverse by using Extended

Euclidean Algorithm as given in Table 3.1



A Secure And Fast Modular Matrix Based Digital Signature 48

Q A1 A2 A3 B1 B2 B3

− 1 0 77 0 1 40

1 0 1 40 1 76 37

1 1 76 37 76 2 3

12 76 2 3 13 52 1

Table 3.1: Extended Euclidean Algorithm (40)−1 mod 77

So, (40)−1 = 52 mod 77

Inverse of E is given as:

E−1 = (40)−1

 7 74

74 7

 mod 77

E−1 = 52

 7 74

74 7

 mod 77

E−1 =

56 75

75 56

 mod 77

3. Compute D such that

D = E−1F mod 77

D =

43 4

4 43

 mod 77

4. n = 77, D =

43 4

4 43

 is considered to be master public key of Alice.

5. E =

7 3

3 7

 , F =

5 3

3 5

 is considered to be master private key of Alice.

Step 2: Digital Signature Generation

To sign the message m Alice will use some hash H and perform the following steps:
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1. Pick a matrix

I =

7 5

5 7

 ∈ G ⊂ GL2(Z77)

Also

J =

3 2

6 1

 ∈ GL2(Zn)

2. Picks modulo integers δ, ω ∈ (Z77) such that

δ = 5 ω = 8

3. δ = 5, ω = 8, I =

7 5

5 7

 , J =

3 2

6 1

 is considered to be session private

key of Alice

4. Alice computes:

EI =

7 3

3 7

7 5

5 7

 mod 77

=

64 56

56 64

 mod 77

(EI)−1 = (det(EI))−1Adj(EI) mod 77

det(EI) = 36 mod 77

(det(EI))−1 is the modular inverse of det(EI) mod 77. Now calculates the

modular inverse of 36 in mod 77 by using Extended Euclidean Algorithm as

given in Table 3.2

Q A1 A2 A3 B1 B2 B3

− 1 0 77 0 1 36

2 0 1 36 1 −2 5

7 1 -2 5 −7 15 1

Table 3.2: Extended Euclidean Algorithm (36)−1 mod 77
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(36)−1 = 15 mod 77

Therefore inverse of EI is given as:

(EI)−1 = (36)−1

64 21

21 64

 mod 77

(EI)−1 = 15

64 21

21 64

 mod 77

(EI)−1 =

36 7

7 36

 mod 77

Now compute

fEI(J) = (EI)−1J(EI) mod 77

fEI(J) =

36 7

7 36

3 2

6 1

64 56

56 64

 mod 77

fEI(J) =

10 58

27 71

 mod 77

Now,

FI =

5 3

3 5

7 5

5 7

 mod 77

FI =

50 46

46 50

 mod 77

det(FI) = 76 mod 77

(det(FI))−1 is the modular inverse of det(FI) mod 77. Now calculates the-

modular inverse of 76 in mod 77 by using Extended Euclidean Algorithm as

given in Table 3.3

Q A1 A2 A3 B1 B2 B3

− 1 0 77 0 1 76

1 0 1 76 1 −1 1

Table 3.3: Extended Euclidean Algorithm (76)−1 mod 77
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Inverse of FI is given as

(76)−1 = 76 mod 77

(FI)−1 = (det(FI))−1Adj(FI) mod 77

(FI)−1 = (76)−1

50 31

31 50

 mod 77

(FI)−1 = (76)

50 31

31 50

 mod 77

(FI)−1 =

27 46

46 27

 mod 77

fFI(J) = (FI)−1J(FI) mod 77

fFI(J) =

27 46

46 27

3 2

6 1

50 46

46 50

 mod 77

fFI(J) =

43 16

69 38

 mod 77

5. Now Alice computes digital signature(X,Sa):

X = δfEI(J) mod 77

X = 5

10 58

27 71

 =

50 59

58 47

 mod 77

Y = fFI(J) mod 77

Y =

43 16

69 38

 mod 77

ωY = 8

43 16

69 38

 =

36 51

13 73

 mod 77
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6. ωY =

36 51

13 73

 is considered to be session public key of Alice.

γ = δ + ω = 5 + 8 = 13 mod 77

γY = 13

43 16

69 38

 =

20 54

50 32

 mod 77

Sa = H((m)2 ‖ (γY )2)

where (m)2 is a bit string binary number representation of message m , (γY )2 is

a bit string got after shifting the matrix γY in a string of binary numbers. Using

8-bit format: 20‖54‖50‖32→ 00010100 ‖ 00110110 ‖ 00110010 ‖ 00100000

Step 3: Digital Signature Verification

After receiving the signed message (X,Sa), Bob will perform the following step.

1. Bob gets Alice’s master public key = 77 and D =

69 67

67 69

 and session

public key ωY =

36 51

13 73


2. Compute

Z = ωY + fD(X) mod 77

Z = ωY +D−1XD mod 77

Firstly Bob calculates the inverse of D

D−1 = (det(D))−1Adj(A) mod 77

As D =

43 4

4 43

 mod 77
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det(D) = 62 mod 77. (det(D))−1 is the modular inverse of det(D) mod 77.

Then he calculates inverse by using Extended Euclidean Algorithm as given

in Table 3.4

Q A1 A2 A3 B1 B2 B3

− 1 0 77 0 1 62

1 0 1 62 1 −1 15

4 1 -1 15 −4 5 2

7 -4 5 2 29 −36 1

Table 3.4: Extended Euclidean Algorithm (62)−1 mod 77

(62)−1 = 41 mod 77

D−1 = (62)−1

43 73

73 43

 mod 77

D−1 = 41

43 73

73 43

 mod 77

D−1 =

69 67

67 69

 mod 77

Z = ωY +D−1XD mod 77

Z =

36 51

13 73

 +

69 67

67 69

50 59

58 47

43 4

4 43

 mod 77

Z =

20 54

50 32

 mod 77

3. As Z = γY ,

Sa = H((m)2‖(γY )2) = H((m)2‖(Z)2)

Sa = S ′a



Chapter 4

Digital Signature Based On

Matrices Using Tropical Algebra

In this chapter, we will present and describe a modified form of the digital signa-

ture scheme proposed by Rososhek [35] . We have also aimed to use a new platform

known as “Tropical algebra”. So we have replaced the matrices over “usual al-

gebra” with the matrices over “tropical algebra” for the new modified scheme.

The key generation algorithm, the signature generation algorithm and the digital

signature verification algorithm for the new improved digital signature scheme is

discussed. Example is given to illustrate how the proposed scheme works.

4.1 The Proposed Digital Signature Scheme

In this section, we will propose and explain a modified form of digital signature

scheme that was previously discussed in Chapter 3. Also in this section we will

employ tropical algebra on the modified digital signature scheme. The reason for

applying tropical algebra is that the linear algebraic attacks does not works on

the modified scheme, as solving the system of linear equations is computationally

infeasible.

Outline of the modified digital signature scheme based on matrices using tropical

54



Digital Signature Based On Matrices Using Tropical Algebra 55

algebra is explained as under:

Consider set of matrices Mn(Zmin) of order n × n with entries from the tropical

semiring Zmin, where Zmin = (Z ∪ {∞},⊕,⊗) is a tropical semiring having two

operations, tropical addition ⊕ and tropical multiplication ⊗. If Eij = [eij] and

Fij = [fij] are tropical matrices then Tropical operations in matrices are defined

and denoted as:

for all eij, fij ∈ Zmin

mij = eij ⊕ fij

[mij] = (ei1 ⊗ f1j)⊕ (ei2 ⊗ f2j)⊕ . . .⊕ (ein ⊗ fnj)

Assume Alice desires to send a signed message to Bob. She uses tropical matrices

with entries from tropical semiring Zmin with order n×n . After that Bob employs

verification algorithm to verify the message.

4.1.1 Global Parameters

i. The number n for the order of matrices.

ii. r, s ∈ Z+.

4.1.2 Key Generation

Alice will carry out the following steps:

1. Pick any two matrices E,F ∈M ⊂Mn(Zmin).

2. Where M be the set of n× n matrices :

M =




a1 a2 . . . an

an a1 . . . an−1

. . . . . .

a2 a3 . . . a1

 | a1, a2, . . . , an−1, an ∈ Zmin


3. Compute

D = E ⊗ F (4.1)
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4. D is considered to be Alice’s master public key.

5. (E,F ) is considered to be Alice’s master private key.

4.1.3 Digital Signature Generation

To sign the message m Alice will compute the signature S as follows:

1. Pick an arbitrary matrix I ∈M ⊂Mn(Zmin).

2. Pick arbitrary matrix J ∈Mn(Zmin).

3. Pick the arbitrary integers ω , δ ∈ Zmin.

4. (ω, δ, I, J) is considered to be Alice’s session private key.

5. Let fD, fE⊗I and fE⊗2⊗F⊗I be the automorphisms of the tropical matrix

semiring Mn(Zmin) defined as:

fD : A 7→ D⊗r ⊗ A⊗D⊗s (4.2)

fE⊗I : A 7→ (E ⊗ I)⊗r ⊗ A⊗ (E ⊗ I)⊗s (4.3)

fE⊗2⊗F⊗I : A 7→ (E⊗2 ⊗ F ⊗ I)⊗r ⊗ A⊗ (E⊗2 ⊗ F ⊗ I)⊗s (4.4)

for all A ∈Mn(Zmin) r, s ∈ Z+

6. Compute X, Y as:

X = δ ⊗ fE⊗I(J) (4.5)

Y = fE⊗2⊗F⊗I(J) (4.6)

γ = ω ⊕ δ (4.7)

7. Using the hash function H, compute Sa as:

Sa = H((m)2 ‖ (γ ⊗ Y )2) (4.8)
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where (m)2 is a bit string binary number representation of message m, (γ⊗

Y )2 is a bit string got after shifting matrix γ ⊗ Y in a string of binary

numbers. Using 8-bit format:

γ ⊗ Y 7→

t1 t2

t3 t4

 7→ t1‖t2‖t3‖t4

8. The session public key of Alice for authentication is set as (ω ⊗ Y ) and the

pair (X,Sa) is then transmitted to Bob.

4.1.4 Digital Signature Verification

After receiving the signed message (X,Sa), Bob will perform the following step.

1. Bob gets Alice’s master public key D and session public key ω ⊗ Y .

2. Compute

Z = (ω ⊗ Y )⊕ fD(X) (4.9)

3. Compute

S ′a = H((m)2‖(Z)2) (4.10)

4. If S ′a = Sa then the signature is valid and the message is authentic otherwise

discard it.

4.1.5 Correctness

The correctness of the scheme follows from the following steps:

We know that

Z = [ω ⊗ Y ]⊕ fD(X)
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Using equations (4.1), (4.2), (4.5) in (4.9)

Z = [ω ⊗ Y ]⊕ [δ ⊗D⊗r ⊗ (E ⊗ I)⊗r ⊗ J ⊗ (E ⊗ I)⊗s ⊗D⊗s]

= [ω ⊗ Y ]⊕ [δ ⊗ (E ⊗ F )⊗r ⊗ (E ⊗ I)⊗r ⊗ J ⊗ (E ⊗ I)⊗s ⊗ (E ⊗ F )⊗s]

= [ω ⊗ Y ]⊕ [δ ⊗ E⊗2r ⊗ F⊗r ⊗ I⊗r ⊗ J ⊗ E⊗2s ⊗ F⊗s ⊗ I⊗s]

= [ω ⊗ Y ]⊕ [δ ⊗ (E⊗2 ⊗ F ⊗ I)⊗r ⊗ J ⊗ (E⊗2 ⊗ F ⊗ I)⊗s].

Now using equation (4.4), (4.7)

Z = (ω ⊗ Y )⊕ (δ ⊗ Y )

= (ω ⊕ δ)⊗ Y

= (γ ⊗ Y ).

Lastly from equation (4.8), (4.10)

S ′a = H((m)2‖(Z)2)

= H((m)2‖(γ ⊗ Y )2)

= Sa.

Example Consider given the tropical matrices from Mn(Zmin) and taking r = 2

and s = 4

Step 1: Key Generation

1. Alice Picks any two arbitrary circulant matrices E, F ∈M ⊂Mn(Zmin)

E =

9 4

4 9

 , F =

6 8

8 6

 ∈Mn(Zmin)
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2. Now computes

D = E ⊗ F

=

9 4

4 9

⊗
6 8

8 6


=

12 10

10 12

 .

3. D =

12 10

10 12

 is considered to be Alice’s master public key.

4. E =

9 4

4 9

 , F =

6 8

8 6

 is considered to be Alice’s master private key.

Step 2: Digital Signature Generation

To sign the message m Alice will compute the signature Sa as follows:

1. Pick an arbitrary matrix I ∈M ⊂Mn(Zmin)

I =

13 3

3 13


2. Pick an arbitrary matrix J ∈Mn(Zmin)

J =

4 3

1 7


3. Pick the arbitrary integers ω , δ ∈ Zmin

ω = 11, δ = 7

4. ω = 11, δ = 7, I =

13 3

3 13

, J =

4 3

1 7

 is considered to be Alice’s

session private key
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5. Alice computes

fE⊗I(J) = (E ⊗ I)⊗2 ⊗ J ⊗ (E ⊗ I)⊗4

First she computes matrix E ⊗ I

E ⊗ I =

9 4

4 9

⊗
13 3

3 13


=

 7 12

12 7



fE⊗I(J) =

 7 12

12 7

⊗2 ⊗
4 3

1 7

⊗
 7 12

12 7

⊗4

=

14 19

19 14

⊗
4 3

1 7

⊗
28 33

33 28


=

46 45

43 48

 .

Now she computes

fE2⊗F⊗I(J) = (E⊗2 ⊗ F ⊗ I)⊗2 ⊗ J ⊗ (E⊗2 ⊗ F ⊗ I)⊗4

But first she computes matrix E⊗2 ⊗ F ⊗ I

E⊗2 ⊗ F ⊗ I =

9 4

4 9

⊗2 ⊗
6 8

8 6

⊗
13 3

3 13


=

 8 13

13 8

⊗
6 8

8 6

⊗
13 3

3 13


=

19 17

17 19

 .
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fE⊗2⊗F⊗I(J) =

19 17

17 19

⊗2 ⊗
4 3

1 7

⊗
19 17

17 19

⊗4

=

34 36

36 34

⊗
4 3

1 7

⊗
68 70

70 68


=

105 105

103 105



6. Compute X, Y as:

X = δ ⊗ fE⊗I(J)

= 7⊗

46 45

43 48


=

53 52

50 55

 .

Y = fE⊗2⊗F⊗I(J)

=

105 105

103 105

 .

7. For session public key Alice computes

γ = ω ⊕ δ

γ = 11⊕ 7

= 7

ω ⊗ Y = 11⊗

105 105

103 105

 =

116 116

114 116


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γ ⊗ Y = 7⊗

105 105

103 105

 =

112 112

110 112



Sa = H((m)2 ‖ (γ ⊗ Y )2)

where (m)2 is a bit string binary number representation of message m ,

(γ ⊗ Y )2 is a bit string got after shifting the matrix γ ⊗ Y in a string of

binary numbers. Using 8-bit format:

112‖112‖110‖112 7→ 01110000‖01110000‖01101110‖01110000

8. The session public key of Alice for authentication is ω ⊗ Y =

116 116

114 116


and (X,Sa) is the digital signature of the message m from Alice.

Step 3: Digital Signature Verification

1. Bob gets Alice’s master public key D =

12 10

10 12

 and session public key

ω ⊗ Y =

116 116

114 116

.

2. Compute

Z = ω ⊗ Y ⊕ fD(X)

=

116 116

114 116

⊕
12 10

10 12

⊗2 ⊗
53 52

50 55

⊗
12 10

10 12

⊗4

=

116 116

114 116

⊕
20 22

22 20

⊗
53 52

50 55

⊗
40 42

42 40


=

116 116

114 116

⊕
112 112

110 112


=

112 112

110 112


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3. As Z = γ ⊗ Y ,

So therefore (Z)2 = (γ ⊗ Y )2

H((m)2‖(Z)2) = H((m)2‖(γ ⊗ Y )2)

This implies Sa = S ′a.

It means that the message is from authentic sender.



Chapter 5

Security Analysis And Conclusion

In this chapter we represent security analysis of our proposed modified digital

signature scheme by applying different state of the art cryptanalysis techniques.

Then we discussed advantage of tropical scheme over classical scheme and finally,

the chapter is closed with the conclusion of our work.

5.1 Introduction

In this section we will present security analysis of our proposed modified digital

signature scheme. As the solution of our proposed scheme is based on min-plus

system of linear equations, so therefore solution of these systems are based on

the complexity classes of NP
⋂
co − NP [74]. In our scheme, matrix D is the

only public parameter and all other parameters are kept secret that is why an

attacker cannot recover the secret keys. Also with symmetrical decomposition

problem (SDP) and matrix decomposition problem (MDP) for a large key space it

is computationally and practically infeasible to recover the secret keys. Hence the

security of proposed modified digital signature scheme is much more increased.

64
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5.1.1 Key-Recovery Attack

In this attack an adversary Eve does not know the sender’s master private key

corresponding to his master public key of sender and tries to recover the private

key from given sufficient information.

In our proposed scheme the attacker needs to solve the equation

D = E ⊗ F

Where only matrix D is known and matrices E, F are kept secret. This is equiv-

alent to solving the decomposition problem (DP). Thus security of the proposed

scheme is therefore depends on the difficulty in solving the DP , for which there

is no polynomial time probabilistic time algorithm is known to solve this kind of

problem.

In particular, matrix decomposition problem is a problem to find circulant ma-

trices E, F

such that D = E ⊗ F where matrix D is known.

Let matrices E and F are given as:

E =

e1 e2

e2 e1

 , F =

f1 f2

f2 f1



In equation D = E ⊗ F , the matrix D =

d1 d2

d2 d1

 is known to attacker.

By solving the equation D = E ⊗ F we get,

d1 d2

d2 d1

 =

e1 e2

e2 e1

⊗
f1 f2

f2 f1


=

e1 ⊗ f1 ⊕ e2 ⊗ f2 e1 ⊗ f2 ⊕ e2 ⊗ f1
e1 ⊗ f2 ⊕ e2 ⊗ f1 e2 ⊗ f2 ⊕ e1 ⊗ f1


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By solving above equation we get

d1 =1 ⊗f1 ⊕ e2 ⊗ f2 (5.1)

d2 = e2 ⊗ f1 ⊕ e1 ⊗ f2 (5.2)

d2 = e1 ⊗ f2 ⊕ e2 ⊗ f1 (5.3)

d1 = e2 ⊗ f2 ⊕ e1 ⊗ f1 (5.4)

From equations (5.1) , (5.2) , (5.3) and (5.4) we have following equations

d1 = e1 ⊗ f1 ⊕ e2 ⊗ f2 (5.5)

d2 = e2 ⊗ f1 ⊕ e1 ⊗ f2 (5.6)

Clearly, there are four unknowns and two equations which implies that there are

infinitely many solutions. Therefore , recovering the master private keys E and F

from corresponding master public key D is not practically possible. For example

consider the example that we illustrated earlier in chapter 4 we have D = E ⊗ F

where D =

12 10

10 12

 is considered to be Alice’s master public key.

Then 12 10

10 12

 =

e1 e2

e2 e1

⊗
f1 f2

f2 f1


By solving above equation we get

e1 ⊗ f1 ⊕ e2 ⊗ f2 = 12 (5.7)

e2 ⊗ f1 ⊕ e1 ⊗ f2 = 10 (5.8)

e1 ⊗ f2 ⊕ e2 ⊗ f1 = 10 (5.9)

e2 ⊗ f2 ⊕ e1 ⊗ f1 = 12 (5.10)
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From equations (5.7), (5.8), (5.9) and (5.10) we get following equations

e1 ⊗ f1 ⊕ e2 ⊗ f2 = 12 (5.11)

e2 ⊗ f1 ⊕ e1 ⊗ f2 = 10 (5.12)

From both above equations it is very clear that there are four unknowns and

two equations which implies that there are infinitely many solutions. So finding

matrices E and F is an intractable problem and is practically infeasible , so the

modified scheme is computationally secure against key recovery attack.

5.1.2 Forgery Attack

In this attack an adversary Eve has obtained the master private keys E and F ,

yet she will not be capable of recovering the digital signature. In proposed scheme

the signature is (X,Sa) and session public key is ω ⊗ Y . She could try to forge,

for this purpose she has to solve the following equations.

X = δ ⊗ (E ⊗ I)⊗r ⊗ J ⊗ (E ⊗ I)⊗s (5.13)

Y = (E⊗2 ⊗ F ⊗ I)⊗r ⊗ J ⊗ (E⊗2 ⊗ F ⊗ I)⊗s (5.14)

γ = ω ⊕ δ (5.15)

Sa = H((m)2 ‖ (γ ⊗ Y )2) (5.16)

where (m)2 is a bit string binary number representation of message m, (γ ⊗ Y )2

is a bit string got after shifting matrix γ ⊗ Y in a string of binary numbers.

As I, J , δ and ω are unknown to Eve, so solving the above equations is intractable

problem. In our scheme the matrices I and J are unknown matrices. In our

scheme ω and δ both are unknown. Adversary cannot recover Y and γ as all

above parameters are not publicly known. Suppose that she wants to forge Alice’s

Signature, for this she computes
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X ′ = δ′ ⊗ (E ⊗ I ′)⊗r ⊗ J ′ ⊗ (E ⊗ I ′)⊗s

where I ′, J ′ ∈Mn(Zmin) and δ′ ∈ Zmin

She computes X ′ = δ′ ⊗ (E ⊗ I ′)⊗r ⊗ J ′ ⊗ (E ⊗ I ′)⊗s from Z = (ω ⊗ Y )⊕D⊗r ⊗

X ′ ⊗D⊗s. For this purpose she needs (ω ⊗ Y ) which is considered as public key

of Alice and multipliers of matrix (ω⊗ Y ) can not be known to the adversary. As

there is no information about ω and Y so she must restrict herself for a random

choice of I ′, J ′ and δ′, therefore for choosing these parameters from a large key

space is less efficient practically.

Let us consider equation (5.13) in the form of M = N⊗r ⊗ J ′ ⊗N⊗s

M =

n11 n12

n12 n11

⊗r ⊗
j11 j12

j21 j22

⊗
n11 n12

n12 n11

⊗s (5.17)

In example 4.1.1 we have r = 2 and s = 4 so equation 5.17 becomes

M =

n11 n12

n12 n11

2

⊗

j11 j12

j21 j22

⊗
n11 n12

n12 n11

4

(5.18)

By solving equation (5.18) using matrix tropical algebra we have the following

system of equations.

m11 = [(n2
11 ⊕ n2

12)⊗ j11 ⊕ (n11 ⊗ n12)⊗ j21][(n2
11 ⊕ n2

12)
2 ⊕ (n11 ⊗ n12)

2] (5.19)

m12 = [(n2
11 ⊕ n2

12)⊗ j12 ⊕ (n11 ⊗ n12)⊗ j22][(n2
11 ⊕ n2

12)⊗ (n11 ⊗ n12)] (5.20)

m21 = [(n11 ⊗ n12)⊗ j11 ⊕ (n2
11 ⊕ n2

12)⊗ j21][(n2
11 ⊕ n2

12)
2 ⊕ (n11 ⊗ n12)

2] (5.21)

m22 = [(n11 ⊗ n12)⊗ j11 ⊕ (n2
11 ⊕ n2

12)⊗ j21][(n2
11 ⊕ n2

12)
2 ⊕ (n11 ⊗ n12)

2] (5.22)

(5.19), (5.20), (5.21) and (5.22) forms the system of bi-quadratic equations with

Number of unknowns > number of equations. As we increase the value of inte-

gers r, s it will become much more harder for an attacker to find the solution.

Cryptanalysis of proposed scheme is based on the solution of non linear system
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of equations which is NP-complete [75, 76]. So, finding exact solutions of (5.19),

(5.20), (5.21) and (5.22) therefore it is impossible for an attacker to solve the above

system of equations. Hence it is impractical for an attacker to generate digital sig-

nature Sa shown in (5.16). Hence the modified scheme is computationally secure

against any forgery attack.

5.1.3 Algebraic Attack

In algebraic attack an adversary uses publicly known information of scheme to

reveal the hidden secret information. In this attack, an attacker reduces the prob-

lem into system of linear equations and then by any algebraic technique solves the

problem.

In ordinary situation an adversary Eve can solve a system of linear equations that

makes it vulnerable to a linear algebraic attack. But in the case of tropical algebra

any algebraic attack fails because tropical algebra gives min-plus linear equations

system which is impractical to solve and such system belongs to the type of com-

plexity classes of NP
⋂
co−NP [74].

In our proposed scheme D = E ⊗ F

Let matrices E ans F are given as:

E =

e1 e2

e2 e1

 , F =

f1 f2

f2 f1



the matrix D =

d1 d2

d2 d1

 is known to attacker.

By solving the equation D = E ⊗ F we get,d1 d2

d2 d1

 =

e1 e2

e2 e1

⊗
f1 f2

f2 f1


It implies

d1 = min(e1 + f1, e2 + f2) (5.23)
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d2 = min(e2 + f1, e1 + f2) (5.24)

If she wants to break the scheme then she has to solve the above system of equations

which involve one-sided min-plus linear equations system. As matrix E and F

are unknown so attacker has to guess e1, e2, f1 and f2 and for a large key space

it is quite impossible to guess these values. In example we have D = E ⊗ F

whereD =

12 10

10 12

 is considered to be Alice’s master public key.

Then 12 10

10 12

 =

e1 e2

e2 e1

⊗
f1 f2

f2 f1


By solving above equations we get

min(e1 + f1, e2 + f2) = 12 (5.25)

min(e2 + f1, e1 + f2) = 10 (5.26)

It implies e1 + f1 = 12 or e2 + f2 = 12

and e2 + f1 = 10 or e1 + f2 = 10

To solve equation (5.25) and (5.26) there are following four cases:

Case 1

If equation e1 +f1 = 12 and e2 +f1 = 10 are true, then unknown in these equation

are e1, e2 and f1.

Case 2

If equation e1 +f1 = 12 and e1 +f2 = 10 are true, then unknown in these equation

are e1, f1 and f2.

Case 3

If equation e2 +f2 = 12 and e2 +f1 = 10 are true, then unknown in these equation

are e2, f1 and f2.

Case 4

If equation e2 +f2 = 12 and e1 +f2 = 10 are true, then unknown in these equation

are e1, e2 and f2.

In each of these case number of unknown > than number of equations. So it is
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computationally impractical to find the key therefore attacker cannot recover the

secret key and our proposed platform makes the modified scheme invulnerable to

the linear algebraic attack.

5.1.4 Brute Force Attack

Brute force attack is a classical cryptanalysis technique in which an attacker Eve

tries every possible key until she finds a correct key. The feasibility of brute force

attack depend only on the key space. by trying many times there is a possibility

that the secret information becomes useless.

In our proposed scheme

D = E ⊗ F (5.27)

So, master private key based on tropical algebra in equation (5.23) gives a large

key space when computations are done with higher order matrices. For instance,

choose elements of circulant matrices E and F of 64-bit size. If matrix E are

considered to be of order 2 × 2 then we have key space of size (264)2 = 2128.

Similarly for matrix F the key space is 2128. Checking all the these possible key

takes too much time, so the brute force attack does not works on proposed modified

scheme.

5.2 Advantage of Tropical Scheme over Classical

Scheme

5.2.0.1 Enhanced Efficiency

A main advantage of tropical algebra over usual algebra is that it enhances the

efficiency. As tropical multiplication is actually a usual addition and there is no

usual multiplication at all so that is why tropical addition and multiplication is

very fast and much more rapid then the usual addition and multiplication. It
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reduces the computational cost of the scheme as compared to the usual algebra

that is why tropical Scheme is better then the classical scheme.

5.2.0.2 Improved Security

As algebraic attack does not works on min-plus equations so tropical scheme have

also increased the security of our modified scheme. Mounting algebraic attack in

the setting of tropical ring is completely infeasible as explained in section 5.1.3.

5.3 Conclusion

In this thesis we were interested in digital signature scheme. The original scheme

was proposed by S. K. Rososhek. We have reviewed the research paper Fast And

Secure Modular Matrix Based Digital Signature proposed by S. K. Rososhek. This

scheme is based on matrices defined over the finite field Zn and the hard problem

was conjugacy search problem (CSP). We have proposed a modified scheme by

introducing two modifications on the scheme. First we have modified the scheme

by changing its hard problem from conjugacy search problem (CSP) to symmetric

decomposition problem (SDP) and matrix decomposition problem (MDP). Sym-

metrical decomposition problem (SDP) gives more security to scheme by increasing

the value of r, s in X = δ ⊗ (E ⊗ I)⊗r ⊗ J ⊗ (E ⊗ I)⊗s an attacker has to solve

higher order equations and in D = E ⊗ F it is hard to find matrices E and F if

only matrix D is known. After that on proposed scheme we have employed a new

platform tropical algebra. It increases both security and efficiency of the scheme

because it fails the algebraic attack and also reduces computational cost. we have

solved an example to show how the proposed scheme works. At the end we have

shown security analysis of our modified scheme by applying different state of the

art cryptanalysis techniques. For future research purpose one can apply matrix

power function (MPF) on this scheme.
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