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Abstract

ElGamal like encryption and decryption using pseudoinverses is truly fascinating

with the great hope of advancing performance and security for high-end appli-

cations. It provides a high level of safety measures. A known-plaintext attack is

mounted on ElGamal like encryption/ decryption and proxy re-encryption scheme.

As a result, the common session key involved in the encryption of plaintext is

found. The ElGamal like encryption/ decryption and proxy re-encryption scheme

is modified by using pseudoinverses. The suggested improvement is multiplication

of pseudoinverse of shared secret key both in encryption and decryption. This

results in the improvement of security of the ElGamal like encryption and proxy

re-encryption scheme, the system of equation become non-linear, which would be

strong against the known plaintext attack. The working principle is based on

the pseudoinverse chosen by the communicating parties to secure key exchange,

encryption, and decryption. The projected approach is exclusively based on the

circulant matrices. Detailed examples of application of the proposed schemes for

key exchange protocol are presented. Further, security analysis of the modified

scheme is left for future work.
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Chapter 1

Introduction

Due to rapid development in the area of information technology, a secure com-

mercial and private communication is necessary. Therefore, the faster and more

efficient methods enable people to protect their valuable information. Adversaries

are also there to hack this secret information. The field of cryptography has played

a vital role for the secure transformation of important information between two or

more people. The main purpose of cryptography is to send information between

participants in such a way that the threats from adversaries can be avoided.

1.1 Background

There is a major need of secure channel for wireless networking and secret commu-

nication for decades, since the advancement of communication technology is influ-

encing the development of more reliable authentic cryptosystems. Over 2000 years,

shift ciphers based on alphabets have been used. Later on, many ciphers were in-

troduced for sending codes or secret messages. For example, mono-alphabetical

cipher [1], playfair cipher [2], four square cipher [1] and Hill ciphers [3] of different

orders etc. With the passage of time resistance to these cryptosystems has been

introduced, and there has been numerous attacks applicable on them. Cryptog-

raphy [4] actually gives us tools to conceal the sensitive information and transmit

1



Introduction 2

it confidentially over the susceptible communication channel. For this purpose

cryptography gives us basic structure known as cryptosystem. This system has

five major components named as plaintext, encryption algorithm, decryption al-

gorithm, ciphertext and key. Purpose of cryptography is not only encryption and

decryption but to provide safety for information and data. Cryptography gives

data confidentiality, authenticity, availability and integrity [5].

If we discuss about the security aspects, we note that the security of symmetric

or private key encryption schemes relies on the number of communication parties

involved in cryptosystem, because one shared secret key is used for encryption and

decryption. Handling these shared keys are easy for few communicating parties,

but it is very difficult to manage the shared key when there is large increasing

number of communicating parties.

In symmetric (private) key cryptography, only a single key is utilized for both

the data encryption and decryption. Both parties have to share the key with each

other for encryption and decryption. Data Encryption Standard (DES) [6], Double

Data Encryption Standard (2DES) [7], Triple Data Encryption Standard (3DES)

[8], Advanced Encryption Standard (AES) [9].

In 1976, Diffie and Hellman [10] proposed new idea in cryptography and this con-

cept was known as public key cryptography, and it is based on using two keys

(private and public). This concept helped to overcome the problems and weak-

nesses in secret key cryptography, many of public key cryptosystems were specified

as RSA [11], Diffie-Hellman key exchange protocol, ElGamal public key cryptosys-

tem [5, 12] and discrete logarithm problem [13] are considered secure. All the said

schemes, systems and methods used some number theoretical and pure algebraic

structures. For example, in the field of cryptography, many applications of groups

are discussed. Especially, we can say that RSA [11] generally depends upon the

structure of finite commutative groups, and it works on invertible elements (units)

of Zn such that n = pq, where p and q are randomly large prime numbers. How-

ever, the hard problem is to find these primes p1 and p2, because it depends on

the factorization problem known as Integer Factorization Problem [14].
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1.2 Proxy Re-encryption

Proxy re-encryption basically delegates the decryption process to a third party by

re-encrypting the ciphertext. Proxy re-encryption has become an important tool

in digital rights management schemes in cloud computing. In [15] the main contri-

bution is the application of circulant matrices in a new way for bidirectional proxy

re-encryption and decryption. It involves matrix multiplication and inversion in

Zp.

Xion et al. [16] proposed an application that is called “ atomic proxy re-encryption”,

in which a semi trusted proxy converts a ciphertext for Alice into ciphertext for

Bob without seeing the underlying plaintext. This fast and secure re-encryption

has become popular as a method for managing encrypted file system. Proxy re-

encryption (PRE) [17] allows (semi-trusted) proxy to transform an encryption of

M under Alice public key into another encryption of the same message under

Bob’s public key. The proxy, however, cannot learn the original message and in

this way the privacy of both parties can be maintained. Some of the applications

of proxy re-encryption are e-mail forwarding, securing distributed file system and

digital rights management.

Cryptanalysis is the art and science of breaking cryptosystems. Cryptanalysis has

huge importance because without it one cannot determine whether the scheme is

really secure or not. In this research the cryptanalysis of proxy re-encryption has

been done by applying known plaintext attack on encryption scheme.

1.3 Current Research

In this research, we have discussed Diffie-Hellman type key exchange, ElGa-

mal like encryption/decryption and proxy re-encryption using circulant

matrices discussed in [15] . It was proposed using circulant matrices from Zp.

The private keys of both parties are chosen as circulant matrices. The inverses

are found out by using pseudoinverses. Moreover, they used proxy server for re-

encyrption of encrypted data. Our research comprise the following tasks.
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1. The cryptanalysis of ElGamal like encryption/decryption and proxy re-encryption

is performed by known plaintext attack.

2. Using the left modular multiplication of pseudoinverse of common session

key K, we have given a modification of the [15] based on circulant matrices.

3. We have applied a known plaintext attack on the encryption scheme as

well as on proxy re-encryption using matrix inversion method, as a result

of this attack, we are successful to get the shared secret key involved in

encryption/decryption.

4. In this modification the main focus was to harden the feasibility of known

plaintext attack and brute force attack.

5. The security analysis of the modified scheme and future work is suggested.

The modified scheme seems to be resistant against the attack on the orignal

scheme of Rajarama et. al [15]. In fact, this type of attack when applied

on the modified scheme results in a complex system of non-linear algebraic

homogenious equations in many unknowns. The new system seems to be dif-

ficult to solve to best of our knowledge and the hardness of such cryptanalysis

depends on the paremeters of the scheme such as the order of matrices in-

volve and size of the field Zp. Therefore, the detailed analysis of the scheme

is left for future work.

1.4 Thesis Layout

The composition of the rest of thesis is as follows:

1. In Chapter 2, we will explain the fundamental ideas and definition of cryp-

tography. The Mathematical background, Algebra of matrices and Toeplitz

matrices are discussed.

2. In Chapter 3, Key exchange, encryption/eecryption and proxy re-encryption

is discussed.
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3. In Chapter 4, Cryptanalysis of the encryption/ decryption scheme given

in [15] is presented. Furthermore, to ellaborate the concepts on scheme

examples are given. To show the cryptanalysis effectiveness on a larger scale

an example of order 7× 8 is presented.

4. In Chapter 5, The modification of scheme introduced by Rajarama is pre-

sented. In this suggested work, we have multiplied left modular pseudoin-

verse of key with the original encryption scheme. The analysis of the scheme

and future work is suggested.



Chapter 2

Preliminaries

In this charter, we will discuss mathematical background, some cryptographic hard

problems, basic definitions and examples related to the thesis.

2.1 Cryptography [5]

Cryptography is the science of secure communication between two parties in the

presence of malicious entity over the public channel. It is a method of protect-

ing information and communications through the use of codes. More particularly,

cryptography is about the construction and analysis of protocols that block hackers

to access secret messages. This entire process of secure communication is carried

out by the help of a system named as cryptosystem. This system consists of five

components named as plaintext, ciphertext, encryption algorithm, decryption al-

gorithm and the key. Plaintext is the original message whereas, the encrypted

message is called ciphertext. The plaintext is concealed by ciphertext via the en-

cryption algorithm. The ciphertext is retrieved back to plaintext by the receiver or

an authenticated person via the decryption algorithm. Both sender and receiver

use a secret key to encrypt the original message. The whole security of this cryp-

tosystem is based on the key security, otherwise the secrecy is compromised. The

components of ceyptosystem are given below:

6
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1. P = Plaintext

2. C = Ciphertext

3. E = Encryption Algorithm

4. D = Decryption Algorithm

5. K = key

There are two types cryptosystem that are illustrated in the next section.

2.1.1 Symmetric Key Cryptosystem [18]

In this method, sender and receiver share a common secret key for both encryption

and decryption, which is known to the adversary. As a single secret key is used

for both Algorithms, it is called a secret key cryptography.

Definition 2.1.1. [19]

“Symmetric key encryption is a type of encryption in which sender and reciever

shares only one key (secret key) for both encryption and decryption. This scheme

consist of a map

E : K ×M → C

such that for each k ∈ K, the map

Ek : M → C

m→ E(k,m)

is invertible.”

Where, m ∈ M is a plaintext (also called messages). C is a ciphertext and the

elements k ∈ K are the keys. Ek is called the encryption function with respect to

the key k. The decryption function is an inverse function and represented as:

Dk := (Ek)
−1.
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The efficient algorithms to compute encryption algorithm and decryption algo-

rithm exist.

As defined in [20, 21], Symmetric key schemes are classified either as stream ci-

pher, or block cipher.

This scheme is useful because it is faster, easy to implement and requires less com-

puter resources. But the main drawback of this cryptosystem is key distribution

and its authentication.

Model of symmetric key cryptography is shown in the FIGURE 2.1

FIGURE 2.1: Symmetric Key

Data Encryption Standard (DES), Double Data Encryption Standard (2DES),

Triple Data Encryption Standard (3DES) and Advanced Encryption Standard

(AES) are the examples of symmetric key cryptography.

Since, secret key is to be shared among each party involved in communication,

it serves the main disadvantage of symmetric key cryptography. Electronic com-

munication used for this purpose is not secure way of exchanging keys because

anyone can trap communication channels. The only protected ways of switching

keys would be exchanging them personally but it could be a difficult task.
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2.1.2 Asymmetric Key Cryptography[22]

Definition 2.1.2. Asymmetric key cryptography also known as public key cryp-

tography is a cryptographic scheme in which pairs of keys are used that are: public

keys, which may be distributed widely and private keys, which are only known to

the owner. The generation of these keys depends on cryptographic algorithms

based on mathematical problems to produce one-way functions.

The model of assymetric key cryptography is shown in the FIGURE 2.2

FIGURE 2.2: Asymmetric Key

RSA cryptosystem, ElGamal cryptosystem are examples of asymmetric key cryp-

tography.

2.2 Cryptographic Applications [23]

The basic use of cryptography is transmitting the encrypted communication be-

tween us and another system. The most obvious objective of cryptography is

not providing confidentiality only, but it also gives the best solutions to other

problems. The applications of cryptography are given below,
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2.2.1 Confidentiality

Confidentiality means to keep the information secret from unauthorized parties.

2.2.2 Data Integrity

Data integrity refers to maintenance and security of the data, so that it could not

be altered during transmission by unauthorized user.

2.2.3 Authentication

This is a service which refers to the identification. The parties those are initiating

a communication should identify each other.

2.2.4 Non-repudiation

This provides protection against denial by one of the entities involved in a com-

munication of having participated in all or a part of the communication.

2.3 Mathemtical Background

In this section, we will recall some tools that are used in the thesis.

Definition 2.3.1. [5]

“A group G sometimes denoted by (G, ·) is a set of elements with a binary opera-

tion denoted by “·” that associates to each ordered pair (a, b) of elements in G an

element (a · b) in G such that the following axioms are obeyed.

1. Closure: If a and b belongs to G, then a · b is also in G.

2. Associative: a · (b · c)=(a · b) · c for all a, b, c in G.
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3. Identity element: There is an element e in G such tha a · e = e · a for all

a in G.

4. Inverse element: For each a in G, there is an element a
′

in G such that

a · a′
= a

′ · a = e.”

The definition of a group is illustrated by following examples.

Example 2.3.1.

1. Set of integers Z is group with respect to addition of integers.

2. General linear group of order n that is GLn(R) is group of invertible matrices

under matrix multiplication.

3. Set of natural numbers N is not a group under multiplication.

Definition 2.3.2. [24]

A group G is called as abelian if it satisfies the following additional condition:

Commutative: m.n = n.m for all m,n in G.

Following are the examples of abelian group

Example 2.3.2.

Sets Z , R , C , Q are abelian under addition.

d by ab)

Definition 2.3.3. A non zero set R with two binary operations, addition (denoted

by p+ q) and multiplication (denoted by pq, such that for all p, q, r in R is known

as ring if it satisfies the following axioms:

1. p+ q = q + p.

2. (p+ q) + r = p+ (q + r).

3. There is an element 0 in R such that p+ 0 = p.
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4. There is an element −p in R such that p+ (−p) = 0.

5. p(qr) = (pq)r.

6. p(q + r) = pq + pr and (q + r)p = qp+ rp.

If the commutative property with respect to multiplication holds, that is for p, q ∈

R, pq = qp then such ring is called commutative ring. The examples of ring is

given as follows:

Example 2.3.3.

1. Z , Q , R and C defines a ring under usual addition and multiplication.

2. Mn(R) set of all n×n matrices over the ring R is also a ring under addition

and multiplication .

3. If p is a prime than the set Zp of integer mod p is a ring.

4. Set of odd integer is not a ring because it does not satisfies closure property

under multiplication.

Definition 2.3.4. A non empty set X is said to form a semigroup under the

binary operation“*”, if it satisfies the following two properties:

1. Closure law with respect to “*”.

2. Associative law with respect to “*”.

Definition 2.3.5. [1]

“A set S together with two binary operation addition and multiplication is called

the semiring if it satisfies the following conditions:

1. S is semigroup under addition.

2. S is semigroup under multiplication.

3. Multiplication is distributive over addition in either side. That is, for all

u, v, w ∈ S we have,
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u(v + w) = (uv) + (uw)

(u+ v)w = (uw) + (vw)

Following are the examples of semiring.

Example 2.3.4.

1. Every ring is a semiring therefore set of integers Z, rational number Q, real

number R and complex number C all are semirings.

2. Set of whole number W is a semiring.

3. Set of all non-negative integers, non-negative rational numbers and non-

negative real numbers are examples of semiring.

If the commutative property with respect to multiplication holds, then such semir-

ing is called as commutative semiring.

ab = ba ∀ a, b ∈ S.

Definition 2.3.6. [25] A ring R is said to be non-commutative if it does not hold

commutative property with respect to multiplication, that is for u and v ∈ R, such

that uv 6= vu.

Example 2.3.5. [25]

The set M2(Z) of 2× 2 matrices with integer enteries is a non commutative ring

with unity

1 0

0 1

.

Definition 2.3.7. [26]

“A nonempty set (F,+, ·) together with binary operations \+ ” and \ · ” is called

field F , if the following properties hold.

1. F is abelian under addition.

2. F forms an abelian group under multiplication (only nonzero elements).
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3. Multiplication is distributed over addition in F .”

Example 2.3.6.

1. Set of real and complex numbers with usual addition and multiplication

forms a field.

2. Set of integers Z is not a field as there are no multiplicative inverses in Z.

3. The set of all n×n matrices with entries of real numbers under the traditional

matrix addition and multiplication forms a field.

Definition 2.3.8. [27]

“The general linear group of order n over any field F (such as the complex numbers)

or a ring R(such as the ring of integers) is the set of n×n invertible matrices with

enteries from F or (R) with matrix multiplication as a group operation. Typical

notation is GLn(F ), GL(n, F ) or simply GL(n), if the field is understood.”

Definition 2.3.9. [28]

“A finite field whose order is the form of pn, where n is any integer and p is prime

number is called Galois Field denoted by GF (pn). In Galois field, elements are

defined as

GF (pn) = (0, 1, 2, ...., p−1)∪(p, p+1, p+2, ..., p+p−1)∪(p2, p2+1, p2+2, ..., p2+

p− 1) ∪ .... ∪ (pn−1, pn−1 + 1, pn−1 + 2, ..., pn−1 + p− 1).

The order of Galois field is given by pn while p is characteristics of field and the

degree of the polynomials in GF (pn) is less than n, while coefficients is at most

p− 1”.

Example 2.3.7.

GF (23)=(0, 1, x, x+ 1, x2, x2 + 1, x2 +x, x2 +x+ 1) consist 23 = 8, elements where

each of the polynomials have degree less than 3 and coefficients are less than 2.

Definition 2.3.10. [29]

A field that contains finite number of elements is known as finite field.

Following are the examples of finite field
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Example 2.3.8.

1. Z under mod p where p is prime is a field.

2. Galois fields are finite field. For example GF (52), GF (53) and GF (3).

Example 2.3.9.

Finite field F2 i.e., {0,1} with addition and multiplication is defined in TABLE 2.1

and TABLE 2.2 given below.

+ 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

TABLE 2.1: Addition

. 0 1 2
0 0 0 0
1 0 1 2
2 0 2 1

TABLE 2.2: Multiplication

2.4 Cryptographic Hard Problems [30]

In this section, we will explain some of cryptographic hard problems which are

related to our thesis as given below.

1. One-way function

A function h from Y to Z is called a one-way function if h(y) is easy to

compute for all y ∈ Y but for necessarily all elements z ∈ Image(h), it

figures impracticablly infeasible to find any y ∈ Y such that h(y) = z. In

other words, it is the function which is easy to compute on every input but

hard to invert it.
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2. Trapdoor one-way function

A trapdoor one-way function is a type of one-way function h : Y → Z with

the additional property that given some extra information (called trapdoor

information) it becomes feasible to find for any given z ∈ Image(h), an

y ∈ Y such that h(y) = z.

Definition 2.4.1. (Discrete Logarithm Problem) [31]

“Given x, y ∈ Zp such that

xn = y mod p

then finding n is known as discrete logarithm problem.”

Definition 2.4.2. (Integer Factorization Problem) [31]

An integer factorization problem is defined as, let m be a given number and m ∈ Z,

the problem of decomposition of m to the product of prime pβ and qβ such that.

m = pβqβ

Definition 2.4.3. (Symmetrical Decomposition Problem) [32]

“Given a, b ∈ G and m,n ∈ Z, find x ∈ G such that

b = xm.a.xn

then finding x is known as symmetrical decomposition problem”.

Definition 2.4.4. (Conjugacy Search Problem) [33]

“ Let G be a group and x, y ∈ G, whether or not they represent conjugate element

of G. That is, the problem is to determine whether there exist an element z of G

such that y = zxz−1 is known as Conjugacy Search Problem”.

Definition 2.4.5. (Matrix Decomposition Problem)

It is a factorization of matrix into a product of matrices. For A, B ∈ Zn, such

that

AX= B.

Then finding X ∈ Zn is known as matrix decomposition problem.
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2.5 Algebra of Matrices [23]

In this section we will discuss rules of addition, multiplication, subtraction, mul-

tiplication by a scalar, determinants and inversion of matrices.

Definition 2.5.1. A rectangular array arranged in n rows and m columns in a

square bracket is called an n×m matrix over a ring R and is given as

K=


k11 k12 . . . k1m

k21 k22 . . . k2m

. . . . . .

kn1 kn2 . . . knm


Matrices are usually denoted by using capital letters such as A, B and K etc. The

abbreviated notation of matrix K is given as: K = [kij]n×m , where kij denotes the

entry in the ith row and jth column of the matrix. The matrix which has n rows

and m columns is called “rectangular matrix ” of order n×m and if m = n, then

K is known as “square matrix ”. If each element of diagonal is an element k ∈ R

in a square matrix then it is known as “scalar matrix ” of order n, and is written as:


k 0 . . . 0

0 k . . . 0

. . . . . .

0 0 . . . k


Definition 2.5.2. Let us consider an n × m matrix C = [cij] and D = [dij] of

order n×m over a ring R, we can define addition of matrices as follows,

C +D = [cij + dij]

The order of C +D is n×m.

Remark 1. Set of all n×m matrices over a ring R makes an abelian group under

addition addition defined for matrices.
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Definition 2.5.3. Let A be an n × m matrix and k ∈ R, then we can define

nultiplication of matrix by a sacalar as follows,

kA = [kaij] = [aijk] = Ak.

Definition 2.5.4. If C = [cij] and D = [dij],

then,

P = CD = [cij][dij],

P = [pij],

where,

[pij] = ci1d1j + ci2d2j + · · ·+ cindnj.

Remark 2. In general, matrix multiplication does not commute with each other.

2.6 Toeplitz Matrices

In this section we will explain the definitions of Toeplitz matrices, circulant matrix,

properties of circulant matrix with the help of examples.

Definition 2.6.1. (Toeplitz Matrices)

“Teoplitz matrix is defined as a matrix, in which each declining diagonal from left

to right is constant is called a Toeplitz matrix [34]. It is also known as diagonal-

constant matrix and it is named after the German mathematician Otto Toeplitz”.

A Toeplitz matrix is not always a square matrix. If the (i, j)th element of K is

denoted Ki,j , then we have

Ki,j = Ki+1,j+1 = ci−j.

The general representation of a teoplitz matrix is given below, the first row of a

matrix is taken as (c0 c1 c2 c3 c4), successive row is given as (c5 c0 c1 c2 c3) and so

on. A 5× 5 teoplitz matrix is given below,
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A=



c0 c1 c2 c3 c4

c5 c0 c1 c2 c3

c6 c5 c0 c1 c2

c7 c6 c5 c0 c1

c8 c7 c6 c5 c0



2.6.1 The Circulant Matrices [23, 35]

A circulant matrix is a special kind of Teoplitz matrix. It is a square matrix in

which each row vector is rotated one element to the right, in this matrix only first

row is given, and the successive rows are obtained by cyclically right shifting the

present row by one element. Thus the jth row of the circulant matrix of size n×n is

obtained by cyclically right shifting the (j−1)th row by one position, for j = 2 ton,

given the first row. Let the first row be the row vector, [c(1), c(2).........c(n)]. Then

after right circular shift of first row by one element, the second row is obtained

as [c(n), c(1).........c(n− 1)], similarly this process will go on further and each row

is determined by right circular shift of a preceeding row. The generalized form

circulant matrix C is given as:

C =


c(1) c(2) . . . c(n)

c(n) c(1) . . . c(n− 1)

. . . . . .

c(2) c(3) . . . c(1)



2.6.2 Properties of Circulant Matrices

The properties of circulant matrices [23] are given as follows:

1. The circulant matrices, hold a surprising property that the complete matrix

can be determined by a single row.

2. Circulant matrices are always the square matrices.
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3. The most important property of circulant matrices is that, they are multi-

plicatively commutative.

4. The inverse of non singular circulant matrices is again circulant.

5. The product and sum of two circulant matrices is again circulant.

6. The rank of n× n circulant matrix is n.

The multiplying and squaring algorithms of circulant matrices [23] is much faster

than the same size of a finite field, it is one dimmensional item used by its first

coloumn or row. While on the other hand matrix is two dimmensional item. For

example circulant matrix C of order 2 is

A =

a11 a12

a12 a11


can be stored as (a11 a12).

The second row is just the circulant shift of the first row. Note that,

A=

a11 a12

a12 a11

·
a11 a12

a12 a11



=

a211 + a212 2a11a12

2a11a12 a211 + a212


Hence multiplication of A by itself can be efficiently computed. Therefore com-

putation cost for squaring circulant matrix is much less than that of squaring

non circulant matrices. Precisely one has to compute the result of single row or

coloumn and the rest of rows or coloumn are just a circulant shift. Let us define

a representer polynomial for the circulant matrix C as,

φ(C) = c0 + c1x+ c2x
2 + ......+ cn−1x

n−1
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Under matrix multiplication and addition circulants become commutative ring

which is isomorphic to

R = F[x]/(xn−1)

following are the easily deducible characterizitions of operations of addition and

multiplication of circulant matrices in corresponding polynomial operations.

1. Addition

Let us consider two representre polynomials of circulant matrices C and D

over a field F as

φ(A) = a0 + a1x+ a2x
2 + ...+ an−1x

n−1, (2.1)

φ(B) = b0 + b1x+ b2x
2 + ...+ bn−1x

n−1. (2.2)

Then addition of Equation 2.1 and Equation 2.2 is defined as:

φ(A+B) = φ(A) + φ(B)

Where,

φ(A+B) = a0 + a1x+ a2x
2 + ...+ an−1x

n−1 + b0 + b1x+ b2x
2 + ...+ bn−1x

n−1

= (a0 + b0) + (a1 + b1)x+ (a2 + b2)x
2 + ...+ (an−1 + bn−1)x

n−1.

2. Multiplication

The multiplication of Equations (2.1) and (2.2) is defined as:

φ(AB) = φ(A)× φ(B),

φ(A) ·φ(B) = a0 +a1x+a2x
2 + ...+an−1x

n−1 · b0 + b1x+ b2x
2 + ...+ bn−1x

n−1
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φ(P ) = p0 + p1x+ p2x
2 + ....+ pn−1x

n−1 (2.3)

The main aim of multiplication is to find pk for k = 0, 1, 2, ..., n− 1, here we

note that if

xixj =
n∑
k=1

lkijx
k.

We can define n× n matrix Lk as [lkij]ij and it follows as ck = ALkB
l.

2.7 Modular Arithmetic [23]

The process of executing arithmetic in a finite set of integers is called as a modular

arithmetic. Let us give a brief definition of the modulo operation: Let us consider

the set of integers Z and let a, x, k ∈ Z and k ≤ 0. We write

a ≡ xmod k. (2.4)

If m divides b− r. Where, r is known as remainder and m is known as modulus.

The remainder r is chosen such that

0 ≤ x ≤ k − 1.

Usually, we select x from 0 ≤ x ≤ k − 1. Consequently, the element of an equiv-

alent class we use does not effect mathematically. By applying division algorithm

repeatedly, we can find out the greatest common divisor (gcd) of two positive in-

tegers a and b. Above described method is called Euclidean algorithm which is

defined as follows:

2.7.1 Eucledian Algorithm [23, 36]

The efficient method to compute the greatest common divisor (GCD) of two in-

tegers (numbers) is discussed above and termed as eucledian algorithm, that is

the highest number that divides both of the integers, the name is given after the
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name of ancient Greek mathematician Euclid. This algorithm is one of the oldest

algorithm in common use. It is helpful to reduce fractions into simplest form.

This algorithm is a part of many other cryptographic and number-theoratic cal-

culations. The division in modular arithmetic can be performed with the help of

eucledian algorithm.

The Algorithm

Algorithm 2.7.1. “Input: Two positive integers c and d

Output: GCD(c, d)

1. M ← c; N ← d

2. If N = 0 return M = GCD(c, d)

3. If T = M mod N

4. M ← N

5. N ← T

6. Go to Step 2.”

2.7.2 Modular Multiplicative Inverse [37, 38]

Extended Eucledian Algorithm

In this section we will explain how to find multiplicative inverses modulo some

integer n.

Definition 2.7.1. Given any two integer r and s, the problem is to find an integer

t such r · t ≡ 1 mod s and r−1≡ t mod s, where 1 ≤ t ≤ s− 1.

The multiplicative inverse of r mod s are relatively prime that is, gcd(r,m) = 1.

Algorithm 2.5.1 (Multiplicative inverse in finite field)

To find the multiplicative inverse in Zp, we can implement Euclidean Algorithm
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in the computer algebra system ApCoCoA.

Following is the method of finding the inverse of r mod s.

Input: An integer r and an irreducible integer s.

Output: r−1 mod s.

1. Initialize six integers Wi and Vi for i = 1, 2, 3 as

(V1, V2, V3) = (1, 0,m)

(W1,W2,W3) = (0, 1, r)

2. If W3=0, return V3=gcd(r, s); no inverse of r exist in mod s

3. If W3=1 then return W3 = gcd (r, s) and W2 = r−1 mod s

4. Now divide V3 by W3 and find the quotient Q when V3 is divided by W3

5. Set (P1, P2, P3) = ((V1 −QW1), (V2 −QW2), (V3 −QW3))

6. Set (V1, V2, V3) = (W1,W2,W3)

7. Set (W1,W2,W3) = (P1, P2, P3)

8. Go to step (ii)

Example of modular inverse is given in the following TABLE 2.3.

Q A1 A2 A3 B1 B2 B3

1 0 23 0 1 5
4 0 1 5 1 19 3
1 1 19 3 22 5 2
1 22 5 2 2 14 1

TABLE 2.3: Modular Inverse

The inverse of 5 is 14 under modulo prime 23 as shown below:

2.8 Cryptanalysis

The art of scrutinizing cryptographic schemes is called cryptanalysis, that includes

the understanding of working of these schemes and examining them that how these



Preliminaries 25

schemes can be broken. In other words we can say that to find the defects in the

implementation rather than algorithms. To understand the cryptography practi-

cably, cryptanalysis is a very important part because it gives the deep knowledge

about the encryption functions and also its weaknesses which exists in their im-

plementations. During past times, cryptanalyst only attacks to get the key which

involves in the encryption algorithm instead of decrypting a message. But now

the main concern of a cryptanalyst has been transferred from solving ciphers and

investigating the technique used in the encryption to rather solving difficult math-

ematical problems, to determine the efficient computationally effective method of

investigating a ciphertext. Throughout the years on cryptographic protocols and

primitives, various types of attacks have been recognized. How an attacker mount

these attacks are classified as follows: An attack in which attacker only observe the

communication channel is known as the “passive attack”. In this attack adversary

just threatens the data confidentiality.

In this attack, attacker tries to add, delete or change the transmission on the

channel in some other way is known as “active attack”. Adversary threatens au-

thentication, confidentiality and data integrity as well. To deduce the plaintext

from ciphertext, an active attack is divided into more specialized attacks which

are described in the next section.

2.8.1 Algebraic Attack [39]

The main idea of alegebraic attacks is to deduce the secret key by solving nonlinear

equations involving message, ciphertext and key bits.

2.8.2 Attacks on Encryption Schemes

We will discuss cryptographic attacks given in [23], these attacks are normally

categorised into different types that identifies the kind of information that the

cryptanalyst has accessible to mount an algebraic attack. The basic aim of crypt-

analyst is to be capable of decrypting new pieces of ciphertext, in all cases without
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having any additional information. The idea situation for an attacker is to extract

secret key.

• Total break Attack

In this approach, attacker’s main aim is to unveil the secret key or to model an-

other fake key so that he can decrypt the system successfully.

• Single break Attack

In this approach, attacker attempts to retrieve plaintext by using the available

knowledge on public forum. There are many known cryptographic attacks one

can found in the literature, some of them are discussed here.

2.8.3 Ciphertext Only Attacks

This is the type of an algebraic attack in which an adversary knows the encrypted

text and has some of the knowledge of encryption technique of scheme and he tries

to unveil the original text. For this purpose he will use occurance of frequency

of characters or any other. The retrievel of corresponding plaintext makes cipher

only text successful.

2.8.4 Known Plaintext Attacks

This is the kind of algebraic attack in which attacker has the knowledge of some

of the ciphertext as well as its corresponding plaintext. On the basis of this

knowledge, he tries to attemp all the logical attempts to recover the key back

that is used in encryption function or makes a logical algorithm to decode mpore

ciphertexts.

2.8.5 Chosen Plaintext Attacks

This is a type of attack, in which attacker choses the random plaintext and at-

tempts to obtain ciphertext. Now he will use the pair of plaintext and ciphertext

to recover the secret key.
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2.8.6 Chosen Ciphertext Attacks

In this type of attack, the attacker will choose the ciphertext, and he attempts to

recover the corresponding plaintext or tries to obtain as much information as he

can to hack the shared secret key used in encryption of the scheme.

2.8.7 Man in the Middle Attacks

In this type of attack, attacker stays in between the two secretly communicating

parties and tries to hack the communication from both ends.

To attempt man in the middle attack, attacker chooses two dummy keys and start

the communication with first party by using one of keys and when he establish

this channel with first party, he obtains the coded text and tries to decrypt with

his own keys. Then he encrypts or altered the received message using his keys and

transmits this to second party, when second party approaches him and establish

communication he dercypts their encrypted information using his keys. In this

way one can interrupt the whole communication by hiding its real identity from

both ends and compromise the security of the system.

2.8.8 Man at the End Attack

One of the form of active attack in security of a communication channel found

is a Man at the end attack, which is somewhat similar to man in the middle

attack. As in this attack, the malicious entity has a control over device which

allows him to amend or remove the message sent from one side of communication

channel. As the adversary is a human, therefore has much abilities of a human

mind. Although attacker has sanction and limitless access to the gadget and this

results in all security protections to go in vain for a specific period of time. Timing

has a great role in this attack as attacker must have to reciprocate and establish

the traffic of message the legitmate one. The need for a timing advantage make

this attack more difficult to be implemented.
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2.8.9 Brute Force Attack

In this type of attack, attacker tries to use every possible key in order to guess

the original message from ciphertext. With larger key extent, this attack is not

feasible anymore.

2.9 Hill Cipher Encryption [40]

In 1929, Laster Hill developed a hill cipher. The encryption algorithm takes n

successive plaintext letters and substitutes for them n ciphertext letters. The

substitution is determined by n linear equations in which each linear equation is

assigned a numerical value (a = 0, b = 1,....z = 26). The base of Hill cipher

is matrix multiplication, for example, if m = 3, the system can be described as

follows:

K1 = (C11P1+C12P2+C13P3) mod 27

K2 = (C21P1+C22P2+C23P3) mod 27

K3 = (C31P1+C32P2+C33P3) mod 27

This can be further expressed as:

K = CP

where K and P are coloumn vectors of lenght 3, where K ia a ciphertext and P is

representing the plaintext and C is 3×3 matrix, which is the encryption key. All

operations are performed under mod 27 here.

Decryption requires the inverse of matrix K. The inverse C−1 of matrix C is

defined by the following equation.

CC−1 = I, where I is an identity matrix.

Note: The inverse of a matrix doesnot always exist, when it does it satisfies the

proceeding equation.
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C−1 is computed to the ciphertext, and the plaintext is recovered. In general terms

we can write as follows:

Encryption: K = Ck
(
P
)

= Kp

Decryption: P = Dk
(
C
)

= K − 1C = K − 1Kp = P .

2.10 Diffie-Hellman Key Exchange Protocol[5]

Ralph Merkle gave the idea of public key protocols, afterwards Diffie and Martin

Hellman proposed this idea. Over the public networks, DH is used to transfer keys

safely. This key sharing not only support two parties but more than that. DH

is highly useful primitive because shared secret key can be helpful to establish a

session key secretly that is used in number of different symmetric cryptosystems.

The effectiveness of DH depends on the difficulty of computing discrete logrithms.

Briefly we can define discrete logrithm in the following way. Primitive root of a

prime number q as one whose power modulo q generate all the integers from 1 to

q − 1. That is if a is the primitive root of the prime number q, then the numbers

k mod q, k2 mod q, ..., kq−1 mod q

are distinct and consist of integers from 1 to q − 1 in some permutation. For any

integer a and k primitive root k of prime number q, we can find a unique exponent

such that

a = ki mod p 0 ≤ i ≤ (q − 1)

The exponent i is reffered to as discrete logrithm of a for the base k mod q.

2.10.1 The Diffie-Hellman Key Exchange Algorithm

For this scheme, there are two publically known numbers: a prime number q and

an integer a this is a primitive root of q. Suppose the user A and B wish to
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exchange a key. User A selects a random integer XA ≤ q and computes YA = aXA

mod q. Similarly user B independently selects a random integer XB ≤ q and

computes YB = aXB mod q. Each side keeps the X value private and make Y

value availabe publicly to the other side.

User A computes the key as K = (YB)XA mod q and user B computes the key as

K = (YA)XB mod q. These two calculations produce the identical results.

The result is that two sides have exchanged a secret value. Furthermore, because

XA and XB are private, an adversary only has the following ingredients to work

with: q, α, YA and YB. Thus, the adversary is forced to take a discrete logrithm

to determine the key. For example, To determine the private key of user B, and

adversary must compute.

XB = d logα,q(YB)

The adversary can then calculate the key K in the same manner as user B calcu-

lates it.

Example 2.10.1.

Suppose α = 6 and q = 17 Alice: choose a secret integer XA = 5

Bob: choose a secret integer XB = 7

Alice computes YA = 65 mod 17 = 7

Bob computes YB = 67 mod17 = 14

Now after the exchange of public key both will compute the common secret key

as follows:

Alice: KA = (YB)XA = 145 mod 7 = 12

Bob: KB = (YA)XB = 77 mod 7 = 12

Example 2.10.2.

Suppose α = 9 and q = 19 Alice: choose a secret integer XA = 7

Bob: choose a secret integer XB = 5

Alice computes YA = 97 mod 19 = 4

Bob computes YB = 95 mod19 = 16

Now after the exchange of public key both will compute the common secret key
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as follows:

Alice: KA = (YB)XA = 167 mod 19 = 17

Bob: KB = (YA)XB = 45 mod 19 = 17

Key agreement protocol between two users is shown in the FIGURE 2.3.

FIGURE 2.3: The Diffie-Hellman key Exchange Algorithm

2.11 The ElGamal Cryptosystem [41]

In 1985, a public key cryptosystem is presented by Taher ElGamal. In this type

of encryption, the Diffie-Hellman protocol is utilized so that it can be used as an

encryption decryption algorithm. In this cryptosystem, the decryption key is kept

private while encryption key is public. The underlying mathematical hard problem
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of this public key cryptosystem is discrete logarithm problem. For sufficiently large

prime modulus, ElGamal cryptosystem is considered to be secure.

Global Parameters

“A large prime p (atleast 512 bits) and generator of multiplicative group g mod p.

Alice generates the public/private key pair as follows:

Key Generation

1. Alice chooses any random integer b such that, b ∈ 1, 2, ...p− 2, and computes

A = gb mod p.

2. The public key of Alice is

(p, g, A),

and private key is b.

Encryption

Bob encrypts the plaintext m and sends to Alice

1. Bob gets Alice authentic public key (p, g, A).

2. Bob represents the plaintext as integers m in the range 0, 1, 2, ..., p− 2.

3. Then he selects any random integer k,

k ∈ 1, 2, ...p− 2.

4. Bob computes

c1 = gk mod p, and

c2 = m Ak mod p.

5. Finally Bob sends ciphertext

C = (c1, c2) to Alice.”
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Decryption

“Alice receives encrypted message C from Bob and follows the following steps to

get the original plaintext/message m.

1. Alice uses her private key b to compute

y = cb1 mod p

2. Finally Alice finds the plaintext m by computing

m = y−1c2 mod p.”

All the algorithms such as, RSA, Diffie-Hellman and ElGamal are based on number

theory (commutative groups). It is necessary to move towards the development

of new cryptosystems, that are thought to be secured on a quantum computer as

on a conventional computer (machine). The conjugacy search problem (CSP) is

a generalization of discrete logrithm problem DLP. The basic difference is that,

DLP is defined on integers while CSP is defined on groups. ElGamal suggested

braid groups as platform because CSP is meaningful in such problems.



Chapter 3

Key Exchange, Encryption

Decryption and Proxy

Re-encryption

In this chapter we will discuss“Deffie-Hellman type key exchange, ElGamal like en-

cryption/ decryption and proxy re-encryption using circulant matrices” presented

by C. Rajarama et al. in three steps.

1. In first step, Deffie-Hellman type key exchange protocol will be discussed

with the help of an example.

2. ElGamal like encryption/decryption.

3. In the last step proxy re-encryption will be discussed.

3.1 Introduction

The most popular key exchange technique over an unsecure channel is Deffie-

Hellman key agreement protocol that is discussed in [15, 41]. In this scheme, the

integer matrices are being used as parameters of a cryptosystem to make the size

34
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of keys effective and large with smaller sized integers as the elements of the key

matrices. The elements of matrices belongs to finite field Zp where all the enteries

are integers ranging from 0 to (p−1) and all the arithmetic operations are carried

out with respect to moduolo p, where p is a prime number. In this scheme the

Elgamal encryption/decryption is a public key cryptosystem where the cipher text

has two components and private keys used are circulant matrices.

This scheme includes matrix multiplication and inversion of square as well as

rectangular matrices. Inverse of rectangular matrices are obtained by using pseu-

doinverse which is discussed in the following section.

3.2 Pseudoinverse

Notation

In the following discussion, the following conventions are adopted that are given

in [42, 43].

• K will denote one of the fields of real or complex numbers, denoted R, C

respectively. The vector space m× n matrices over K is denoted by Km×n .

• For A ∈ Km×n, AT and A∗ denote the transpose and Hermitian transpose

(also called conjugate transpose) respectively. If K = R, then A∗ = AT .

• Finally, for any positive integer n, In ∈ Kn×n denotes the n × n identity

matrix.

Definition 3.2.1. For A ∈ Km×n, a pseudoinverse of A is defined in [44] as a

matrix A† ∈ Km×n satisfying all the following four axioms, known as the Moore-

Penrose conditions.

1. AA†A = A

2. A†AA† = A†

3. (AA†)∗ = AA†
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4. (A†A)∗ = A†A

A† exists for any matrix A, but when the A has full rank (that is, the rank of A is

min(m,n), then A† can be expressed as a simple algebraic formula, as given below:

1. If A has linearly independent columns (and thus matrix A∗A is invertible),

A† can be computed as A† = (A∗A)−1)A∗.

This particular pseudoinverse constitutes a left inverse, since in this case

A†A = I.

2. If A has linearly independent rows (matrix AA∗ is invertible), A† can be

computed as

A† = A∗(AA∗)−1.

This is a right inverse, as AA† = I.

3.2.1 Properties of Pseudoinverse

Existence and uniqueness [45, 46]

The pseudoinverse exists, and it is unique: for any matrix A, there is precisely one

matrix A†, that satisfies the four properties of the definition 3.2.1.

A matrix satisfying the first condition of the definition is known as generalised

inverse. If the matrix also satisfies the second condition, it is called a generalised

reflexive inverse. Generalized inverses always exist but are not in general unique.

Uniquness is a consequence of the last two conditions.

Pseudoinverse is proven to be unique and defined for the matrices with real or

complex entries both. It is also known as generalized inverse.

Basic properties [47]

• If A has real enteries so does A†.

• If A is invertible, its pseudoinverse is its inverse. That is A† = A−1.

• The pseudoinverse of pseudoinverse is the original matrix: (A†)†) = A.
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• Pseudoinversion commutes with transposition, conjugation and taking the

conjugate transpose.

(AT )† = (A†)T , (A)† = A†, (A∗)† = (A†)∗.

• The pseudoinverse of a scalar multiple of A is the reciprocal multiple of A†:

(αA)† = α−1A† for α 6= 0.

Identities [48]

The following identities can be used to cancel certain subexpressions or expand

expressions involving pseudoinverses.

A† = A†A†∗A∗

= A∗A†∗A†

A = A∗†A∗A

= AA∗A†∗

A∗ = A∗AA†

= A†AA∗.

Since, for invertible matrices the pseudoinverse equals the usual inverse, only ex-

amples of non-invertible matrices are considered below.

Example 3.2.1. [49]

• For A =

0 0

0 0

, the pseudoinverse is A† =

0 0

0 0

.

• For A =

1 0

0 1

, the pseudoinverse is A† =

1

2

1

2

0 0

.

• For A =

 1 0

−1 0

, the pseudoinverse is A† =

1

2
−1

2

0 0

.

• For A =


1 0

0 1

0 1

, the pseudoinverse is A† =

1 0 0

0
1

2

1

2

.
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• For A =

1 1

1 1

, the pseudoinverse is A† =


1

4

1

4

1

4

1

4
.



3.3 Key Exchange Protocol by C. Rajarama1 et

al. [15]

1. Private Keys

Private keys of user A and user B are A and B respectively which are cir-

culant matrices of size (n× n). Matrices A and B belong to GL(n, p). The

elements of the first rows of A and B are chosen so that the rank of both

A and B is n. The generator matrix for this DH system is G, which is a

rectangular matrix of size (n − 1) × n . The elements of G belongs to Zp.

The elements of the generator matrix G are so chosen that the Rank(G) is

(n− 1). That is, rank (G) = (n− 1).

2. Public Key of User A

The public key of user A is denoted by matrix U and it is generated as

U = GA

The size of U is ((n − 1) × n) × (n × n) = (n − 1) × n. By knowing U

and G, the private key A cannot be determined, because the left modular

multiplicative inverse of G does not exist. In our scheme, G and A are so

chosen that the rank of U = GA is (n− 1).

3. Public Key of User B

The public key of user B is denoted by matrix V , and is generated by

computing B with generator matrix.

V = GB.
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The size of V is ((n − 1) × n) × (n × n) = (n − 1) × n. By knowing V

and G, the private key B cannot be determined, because the left modular

multiplicative inverse of G does not exist. In our scheme, G and A are so

chosen that the rank of V = GB is (n− 1).

4. Shared Secret Key of User A

User A sends matrix U to user B and user B sends matrix V to user A

over the unsecured channel. User A calculates the common secret key KA

as given below,

KA = V A.

The size of KA is((n− 1)× n)× (n× n) = (n− 1)× n.

5. Shared Secret Key of user B

User B calculates the common key KB by computing its private key with

the public key of user A as follows,

KB = UB.

The size of KB is ((n− 1)× n)× (n× n) = (n− 1)× n.

Example 3.3.1. Let n = 4. The value of p is taken as 23. Matrix G be the

generator matrix, order of G is 3 × 4 .A and B are private keys of user A and B

respectively, the order of A and B is 4× 4.

G =


10 4 11 3

7 9 11 10

3 6 8 0

 , A =


10 1 3 3

3 10 1 3

3 3 10 1

1 3 3 10

 and B =


3 15 6 3

3 3 15 6

6 3 3 15

15 6 3 3


U and V are calculated as given below:

U = GA.
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U =


10 4 11 3

7 9 11 10

3 6 8 0




10 1 3 3

3 10 1 3

3 3 10 1

1 3 3 10

 mod 23

=


148 92 153 83

140 160 170 159

72 87 95 35

 mod 23

=


10 0 15 14

2 22 9 8

3 18 3 12

 mod 23

Since, V=GB.

V =


10 4 11 3

7 9 11 10

3 6 8 0




3 15 6 3

3 3 15 6

6 3 3 15

15 6 3 3

 mod 23

=


153 213 162 228

264 225 240 270

75 87 132 165

 mod 23

=


15 6 1 21

11 18 10 17

6 18 17 4

.

Now user A will send his public key to user B

KA = GBA = V A

KA =


15 6 1 21

11 18 10 17

6 18 17 4




10 1 3 3

3 10 1 3

3 3 10 1

1 3 3 10

 mod 23
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=


192 141 124 274

211 272 202 267

169 249 218 129

 mod 23

=


8 3 9 21

4 19 18 14

8 19 11 14

 mod 23

KB = GAB = UB

KB =


10 0 15 14

2 22 9 21

3 18 3 2




3 15 6 3

3 3 15 6

6 3 3 15

15 6 3 3

 mod 23

=


330 279 147 297

441 249 432 336

261 180 333 1

 mod 23

=


8 3 9 21

4 19 18 14

8 19 11 14

 mod 23.

3.4 Encryption and Decryption by Rajarama1 et

al. [15]

Suppose M be a message matrix whose elements belongs to set of integers and

their range is 0 to (p − 1). The elements of M belong to Zp , and its size is

(n− 1)× (n− 1). User A encrypts M and sends it to user B. Matrices A, B, G,

U , V and scalar p are same as given in Example 3.3.1

We suppose that user B has sent V to user A that is already being recieved by
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user A. User A will do encryption by generating two crypto terms U and W are

given as:

U = GA

W = MVA. (3.1)

From Section 3.3.1 we have

W = MGBA = MGAB (3.2)

Using Equation 3.1, Equation 3.2 becomes, Since, KB = GAB = GBA

W = MKB (3.3)

KB is not a square matrix because its size is (n − 1) × n , its direct inverse does

not exist but 3.3 can be solved for M by using pseudoinverse of KB as

M = WK†B (3.4)

Here (KB)† is a pseudo right modular inverse of KB and is defined as

(KB)† = KT
B(KBK

T
B)−1. (3.5)

Crypto-parameters G, A and B are chosen in such a way that KB is a full rank

matrix. The encrypter will send the pair (U,W ) to intentional decryptor User B.

3.4.1 Decryption at User B

User B will recieve the pair (U,W ) and then calculates KB by using KB = UB,

now he find out (KB)† by using Equation 3.5 and hence recovers M out of Equation

3.4. All operations are being performed under modulo p.

We will illustrate this in the following example,

Example 3.4.1. Now we will illustrate the example to show decryption at user

B. User A choose the message matrix M , A is the private key of user A, U and
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V be the public key of user A and user B, where G be the generator matrix and

p is prime number that is taken as 23, as given below:

M =


9 10 10

9 7 6

10 6 2


Matrices A , B , G , U , V and p are same as in Example 3.3.1. M is taken

as 3× 3 matrix, A, B, being the private keys of user A and user B, where U and

V are public keys of user A and user B, p = 23 and G be the generator matrix,

now we will calculate W and (KBK
T
B) as follows

U =


10 0 15 14

2 22 9 8

3 18 3 12

 , V =


15 6 1 21

11 18 10 17

6 18 17 4

 and KAB =


8 3 9 21

4 19 18 14

8 19 11 14


As,

W = MKAB.

W =


9 10 10

9 7 6

10 6 2




8 3 9 21

4 19 18 14

8 19 11 14

 mod 23

=


72 + 40 + 80 27 + 190 + 190 81 + 180 + 110 189 + 140 + 140

72 + 28 + 48 27 + 133 + 114 81 + 126 + 66 189 + 98 + 84

80 + 24 + 16 30 + 114 + 38 90 + 108 + 22 210 + 84 + 28

 mod 23

=


192 407 371 469

148 274 273 371

120 182 236 322

 mod 23

=


8 16 3 9

10 21 20 3

5 21 6 0

 mod 23.
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3.4.2 Decryption

M = W (KB)† (3.6)

Where K†B is pseudoinverse of KB that is calculated as follows:

K†B = KT
B(KBK

T
B)−1 (3.7)

Where, KT
B is the transpose of a matrix KB.

As KB =


8 3 9 21

4 19 18 14

8 19 11 14

 , KT
B =


8 4 8

3 19 19

9 18 11

21 14 14



KBK
T
B =


8 3 9 21

4 19 18 14

8 19 11 14




8 4 8

3 19 19

9 18 11

21 14 14

 mod 23

=


20 16 8

16 0 5

8 5 6

 mod 23

(KBK
T
B)−1 =


7 12 19

12 11 17

19 17 22

 mod 23

Using KT
B and (KBK

T
B)−1 in Equation 3.7, we get

K†B =


3 0 5

12 16 16

5 10 6

6 0 2

 mod 23
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Now putting the values of W and K†B in Equation 3.6

W (KB)† =


8 16 3 9

10 21 20 3

5 21 6 0




3 0 5

12 16 16

5 10 6

6 0 2

 mod 23

=


24 + 192 + 15 + 54 256 + 0 + 0 + 30 40 + 256 + 18 + 18

30 + 252 + 100 + 18 336 + 0 + 0 + 200 50 + 336 + 120 + 6

15 + 252 + 30 + 0 0 + 336 + 60 + 0 25 + 336 + 36 + 0

 mod 23

=


285 286 332

400 536 512

297 396 397

 mod 23

=


9 10 10

9 7 6

21 5 6

 mod 23.

3.5 Proxy Re-encryption by Rajarama et al. [15]

Proxy re-encryption described in [50] is the process of re-encoding a given cipher

text so that now, it can be decoded by another receiver other than the original

one. The process is so defined that the re-encrypter itself cannot recover the plain

text or it can not get hold of a private keys of the concerned parties.

Consider the model shown in the FIGURE 3.1. Here, A, B, G, U , V , M , W , KA

and KB are same as described in Section 3.3. C is a circulant matrix of size n×n.

3.5.1 Common Secret Key between User B and User C.

Now the DH type common secret key between user B and user C is decided to

have the size n× (n+ 1) that is large in size relative to KA or KB. The common

key of bigger size is obtained as given below.
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1. Choose another generator matrix H, and its size is chosen as n× (n+ 1).

2. The elements of H belongs to Zp.

3. User B and user C adopt additional private keys chosen to be circulant

matrices B2 and C2.

4. The size of B2 and C2 is (n+ 1)× (n+ 1).

5. The corresponding public keys are HB2 and HC2 respectively, the private

keys such that B2 and C2 cannot be evaluated by knowing H , HB2 and

HC2 because H does not have left inverse.

6. User C calculates common secret key between user B and user C using HB2

that is given below.

LC = (HB2)C2 (3.8)

Likewise user C will calculate common secret key between user B and user C given

by:

LB = (HC2)B2 (3.9)

Since, B2C2 = C2B2

LB and LC are given as

L = LB = LC (3.10)

L = HC2B2 = HB2C2

The size of L is n× (n+ 1).

3.5.2 Encryption

Encryption done by user A is same as described in Equation 3.4. User A generates

the two matrices U and W as given below.

U = GA. (3.11)
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W = MVA = MGBA.

= MGAB.

User A sends the encrypted data (U,W ) to user B and the proxy server B → C.

Using Equation 3.5,

M = W (UB)†. (3.12)

User B can decrypt ciphertext (U,W ) using equation 3.8.

FIGURE 3.1: Proxy Re-encryption and decryption

3.5.3 Re-encryption at Proxy Server B → C

User B or user C will request Proxy Server B→C (PSBC) to send the same data

M to user C with proper re-encryption so that user C can decode it correctly.
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PSBC has to translate the ciphertext intimated for user B to a new pattern such

that translated ciphertext can be decoded by user C. The working of PSBC is

given as follows:

PSBC accepts (U,W ) as the input and re-encrypts using the same encryption

scheme to generate (UBC , WBC) that is then sent to user C. WBC is formulated in

such a way that only user C can decrypt it. Moreover Proxy server itself is unable

to retrieve M , B or C. During initiation user B and user C sends (BL) and (CL)

to PSBC respectively. The size of (BL) and (CL) is defined to be n× (n+ 1).

3.5.4 Formulation of UBC and WBC at PSBC

For the purpose of re-encryption. PSBC formulates UBC and WBC from U and W

as,

UBC = U = GA (3.13)

WBC = W (CL)(BL)†. (3.14)

Here (BL)† is a right modular inverse of (BL). The size of (BL) is n × (n + 1),

By definition,

(BL)† = (BL)T [(BL)(BL)T ]−1 (3.15)

(BL)† = LTBT (BLLTBT )−1 (3.16)

(BL)† = LTBT (BT )−1(LLT )−1B−1 (3.17)

(BL)† = LT (LLT )−1B−1. (3.18)

Using definition of pseudoinverse,

LT (LLT )−1 = L†. (3.19)

Using Equations 3.15 and 3.16

(BL)† = L†B−1. (3.20)
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Pluging Equation 3.17 in 3.10, we get,

WBC = W (CL)L†B−1. (3.21)

As L† is a pseudoinverse of L, above equation becomes

WBC = WCB−1. (3.22)

C and B−1 are multiplicatively commutative because they are circulant matrices,

so Equation (3.20) becomes

WBC = WB−1C. (3.23)

From Section (3.5.2) substituting the value of W .

WBC = (MGAB)B−1C. (3.24)

As B and B−1 cancel each other, above equation become

WBC = MGAC. (3.25)

Hence, we have eliminated the private key of User B that is B and plugged in the

private key C in its place. The proxy server PSBC sends (UBC ,WBC) to user C.

Now user C decrypts WBC given in Equation 3.23.

3.5.5 Decryption by User C

After recieving UBC and WBC by User C. Fron Equation 3.23. M is recovered.

Using Equation 3.13 in Equation 3.25, we have

WBC = M(UBC)C. (3.26)

Therefore user C will take right modular pseudoinverse of shared secret key.

M = WBC(UBCC)†. (3.27)



Key Exchange, Encryption Decryption and Proxy Re-encrption 50

(UBCC)† is the right modular inverse of (UBCC), where (UBCC) is the shared

secret key of the proxy server PSBC.

Example 3.5.1. The values of G, A, B, U , V ,M , W and p are same as in Exam-

ple 3.4.1. The values of C, H, B2 and C2 are taken as, C is to be taken as circulant

matrix of order 4×4, order of H is 5×4, order of B2 is 5×5 and order of C2 is 5×5.

C =


9 15 9 6

6 9 15 9

9 6 9 15

15 9 6 9

 , H =


2 9 7 8 18

15 9 14 11 19

2 16 5 4 9

14 7 22 1 15

 , B2 =



13 21 3 5 17

17 13 21 7 5

5 17 13 21 3

3 5 17 13 21

21 3 5 17 13



and C2 =



9 12 8 1 2

2 9 12 8 1

1 2 9 12 8

8 1 2 9 12

12 8 1 2 9



U1 = HB2.

V1 = HC2.

U1 =


2 9 7 8 18

15 9 14 11 19

2 16 5 4 9

14 7 22 1 15





13 21 3 5 17

17 13 21 3 5

5 17 13 21 3

3 5 17 13 21

21 3 5 17 13


mod 23

=


616 372 512 594 502

850 782 698 862 920

524 382 520 368 330

729 809 567 321 555

 mod 23
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=


18 4 6 19 19

22 0 8 11 15

18 14 14 0 8

16 4 15 16 3

 mod 23.

V1 =


2 9 7 8 18

15 9 14 11 19

2 16 5 4 9

14 7 22 1 15





9 12 8 1 2

2 9 12 8 1

1 2 9 12 8

8 1 2 9 12

12 8 1 2 9


mod 23

=


323 271 221 266 327

483 452 396 392 454

195 254 270 244 189

350 396 411 373 358

 mod 23

=


1 18 14 13 5

0 15 4 1 17

11 1 17 14 5

5 5 20 5 13

 mod 23.

User B and user C will compute their private keys with public keys of other,

shared secret key of both user is defined as:

K = KBC = UBCC.

L is calculated as follows,

L = HC2B2 = HB2C2

L =


4 21 4 9 4

14 20 9 17 7

1 20 9 15 4

9 22 1 10 7

 mod 23.
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3.5.6 Encryption and Decryption

KBC is found as KBC = (UBCC)

BL =


2 20 20 11 1

8 3 19 18 20

20 1 1 1 1

13 9 6 13 20

 mod 23

BL† and CL is found to be

BL† =



14 11 8 8

18 19 11 13

11 16 20 12

7 20 6 6

6 1 11 16


mod 23

CL =


10 19 5 2 12

16 22 19 16 3

11 14 2 8 12

20 8 20 8 3

 mod 23.

WBC and (UBCC) is calculated as WBC = MKBC ,

WBC =


7 18 9 18

14 10 3 5

7 22 13 22

 mod 23.

UBCC =


21 21 10 20

17 11 3 5

20 11 5 11

 mod 23

UBCC
† is calculated as,

UBCC
† =


2 9 18

8 13 9

10 9 14

11 0 21

 mod 23.
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Finally M is calculated as,

M = WBC(UBCC)†

M =


9 10 10

9 7 6

10 6 2

 mod 23.



Chapter 4

Cryptanalysis

In this chapter, we will show that encryption/ decryption scheme of C. Rajarama

et al. [15] is vulnerable to Known plaintext attack. We will first recall the nature

of attack.

4.1 Known Plaintext Attack

In this section, we will recall known plaintext attack as discussed in Subsection

2.8.4. In this category attacker has an apprehension of some of the ciphertext as

well as its corresponding plaintext, On this basis, he attempts to recover the key

or makes a logical algorithm to decode any further ciphertexts.

Note that the ciphertext W for plaintext M is as follows

W = MK (4.1)

and decryption is done as

M = WK†. (4.2)

Attacker has the knowledge of both M and W , so from the Equation 4.1

M−1W = K. (4.3)

54
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Therefore, the given scheme is not secure for any consequent encryption. We will

further illustrate the attack by applying it on the example given in section 3.4.1.

Example 4.1.1.

W = MK


8 16 3 9

10 21 20 3

5 21 13 0

 =


9 10 10

9 7 6

10 6 2



k11 k12 k13 k14

k21 k22 k23 k24

k31 k32 k33 k34

mod 23.

After reducing this system of matrices into system of equations we get a linear

system of 12 equations and 12 unknowns as follows:

9k11 + 10k21 + 10k31 = 8

9k12 + 10k22 + 10k32 = 16

9k13 + 10k23 + 10k33 = 3

9k14 + 10k24 + 10k34 = 9

9k11 + 7k21 + 6k31 = 10

9k12 + 10k22 + 10k32 = 21

9k13 + 10k23 + 6k33 = 20

9k14 + 10k24 + 6k34 = 3

10k11 + 6k21 + 2k31 = 5

10k12 + 6k22 + 2k32 = 21

10k13 + 6k23 + 2k33 = 13

10k14 + 6k24 + 2k34 = 0.

Now, we will find the value of K using the matrix inversion method and euclidean

algorithm under modulo 23 as given below,


k11 k12 k13 k14

k21 k22 k23 k24

k31 k32 k33 k34

 =


9 10 10

9 7 6

10 6 2


−1

8 16 3 9

10 21 20 3

5 21 13 0

mod 23 (4.4)
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Inverse of M would be calculated by using the formula given below, working under

modulo we will find inverse of (det M) under modulo 23.

M−1 =
AdjM

detM
= AdjM(detM)−1 (4.5)

AdjM =


1 7 13

19 10 13

7 0 19

mod 23 (4.6)

det(M) = 62 mod 23 = 16

det(M) = 16 (4.7)

Now by using Extended eucledian algorithm we have

(detM)−1 mod 23 = 16−1 mod 23 = 13 mod 23

det(M) = 13 (4.8)

Now, using Equation 4.7 and Equation 4.8 in Equation 4.5, we have

M−1 =


13 14 8

17 15 8

22 0 17


Using the value of M−1 in Equation 4.9


k11 k12 k13 k14

k21 k22 k23 k24

k31 k32 k33 k34

 =


13 14 8

17 15 8

22 0 17




8 16 3 9

10 21 20 3

5 21 13 0

 mod 23

K =


284 670 423 159

326 755 455 198

261 709 287 198

 mod 23
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K =


8 3 9 21

4 19 18 14

8 19 11 14

 mod 23.

Hence, shared secret key between Alice and Bob is vulnerable against known plain-

text attack.

4.2 Cryptanalysis Of Proxy Re-encryption

In Section 3.5, we have described the algorithm of proxy re-encryption. In this

algorithm shared secret key of the proxy server BC is KBC = UBCC used for

encryption and its inverse is used for decryption, where UBC = U and C be the

private key of user C. Re-encryption is given as,

WBC = MKBC (4.9)

and decryption is done as

M = WBC(KBC)†. (4.10)

Attacker has the knowledge of both M and WBC , so from the Equation 4.9

M−1WBC = KBC . (4.11)

Therefore the given scheme is again vulnerable for any consequent encryption. We

will further illustrate the attack by applying it on the Example 3.5.1 given in.

Example 4.2.1.

WBC = MKBC
7 18 9 18

14 10 30 5

7 222 13 22

 =


9 10 10

9 7 6

10 6 2



k11 k12 k13 k14

k21 k22 k23 k24

k31 k32 k33 k34

 mod 23
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
k11 k12 k13 k14

k21 k22 k23 k24

k31 k32 k33 k34

 =


9 10 10

9 7 6

10 6 2


−1 

7 18 9 18

14 10 30 5

7 222 13 22

 mod 23

As in Example 4.1.1

M−1 =


13 14 8

17 15 8

22 0 17

 mod 23

Putting this value of M−1 in above equation, we compute KBC as follows


k11 k12 k13 k14

k21 k22 k23 k24

k31 k32 k33 k34

 =


13 14 8

17 15 8

22 0 17




7 18 9 18

14 10 30 5

7 22 13 22

 mod 23

KBC =


343 550 641 480

385 632 707 557

273 770 419 770

 mod 23.

KBC =


21 21 10 20

17 11 3 5

20 11 5 11

 mod 23.

Hence, shared secret key at proxyserver BC is vulnerable against known plaintext

attack.

Now we will present another example to show the cryptanalysis of the scheme

when value of n is set to be higher as n = 8. Illustrative example is given below

Example 4.2.2.

We suppose n = 8 and p = 11 then order of G is 7× 8, The private keys of Alice

and Bob are said to be A and B, G be the generator matrix of order 8× 7. M be
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the plaintext of order 7 × 7, where A and B are chosen to be circulant matrices.

The orders of A and B are taken to be 8× 8. Matrices G, A and B are given

G =



1 2 3 4 5 6 7 4

3 1 4 8 6 9 10 3

4 2 4 3 2 5 3 2

5 1 0 3 1 4 0 1

10 9 8 7 6 4 3 0

1 2 3 4 5 6 8 5

3 2 1 5 4 2 1 1


, A =



10 0 4 3 4 1 2 3

3 10 0 4 3 4 1 2

2 3 10 0 4 3 4 1

1 2 3 10 0 4 3 4

4 1 2 3 10 0 4 3

3 4 1 2 3 10 0 4

4 3 4 1 2 3 10 0

0 4 3 4 1 2 3 10



,

B =



3 4 6 3 1 2 3 4

4 3 4 6 3 1 2 3

3 4 3 4 6 3 1 2

2 3 4 3 4 6 3 1

1 2 3 4 3 4 6 3

3 1 2 3 4 3 4 6

6 3 1 2 3 4 3 4

4 6 3 1 2 3 4 3



and M =



1 2 3 4 5 6 7

3 5 2 4 7 6 1

8 3 2 1 2 5 7

9 2 1 3 5 9 2

2 1 2 3 5 6 3

1 9 3 7 8 7 6

2 4 6 9 10 2 8


Public key

of Alice is calculated by computing G and A, while public key of Bob is found by

computing G and B.

U = GA

U =



1 2 3 4 5 6 7 4

3 1 4 8 6 9 10 3

4 2 4 3 2 5 3 2

5 1 0 3 1 4 0 1

10 9 8 7 6 4 3 0

1 2 3 4 5 6 8 5

3 2 1 5 4 2 1 1





10 0 4 3 4 1 2 3

3 10 0 4 3 4 1 2

2 3 10 0 4 3 4 1

1 2 3 10 0 4 3 4

4 1 2 3 10 0 4 3

3 4 1 2 3 10 0 4

4 3 4 1 2 3 10 0

0 4 3 4 1 2 3 10



mod 11
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U =



4 4 3 2 9 2 9 6

8 1 3 8 9 1 4 10

4 0 4 0 4 0 2 1

6 4 5 9 2 8 5 3

0 5 4 0 1 4 4 8

8 0 10 7 1 7 0 5

6 1 0 2 8 3 1 2


mod 11

Now shared secret key of Alice and Bob is found as KA = GAB and KB = GBA

KA =



2 8 5 10 6 8 10 8

8 8 2 2 3 5 9 7

0 8 9 5 4 3 6 3

3 7 7 2 0 3 8 6

2 9 5 1 9 7 3 2

0 0 6 5 5 7 10 9

2 1 8 9 5 10 9 4


mod 11

KB =



134 129 115 120 116 129 142 129

129 162 156 123 124 159 163 128

44 52 53 49 48 47 50 47

135 128 139 134 143 146 127 138

101 97 71 78 86 73 80 90

110 132 138 115 137 128 109 119

157 67 85 75 60 76 97 81


mod 11

KB =



2 8 5 10 6 8 10 8

8 8 2 2 3 5 9 7

0 8 9 5 4 3 6 3

3 7 7 2 0 3 8 6

2 9 5 1 9 7 3 2

0 0 6 5 5 7 10 9

2 1 8 9 5 10 9 4


mod 11.

Now Alice will send encrypted message to Bob using Encryption scheme that
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is W = MK.

W =



1 2 3 4 5 6 7

3 5 2 4 7 6 1

8 3 2 1 2 5 7

9 2 1 3 5 9 2

2 1 2 3 5 6 3

1 9 3 7 8 7 6

2 4 6 9 10 2 8





2 8 5 10 6 8 10 8

8 8 2 2 3 5 9 7

0 8 9 5 4 3 6 3

3 7 7 2 0 3 8 6

2 9 5 1 9 7 3 2

0 0 6 5 5 7 10 9

2 1 8 9 5 10 9 4



W =



10 7 5 3 2 10 7 4

8 7 7 5 7 3 0 7

6 4 2 1 0 9 4 9

2 10 9 8 10 3 8 8

4 10 4 1 3 0 2 2

2 0 9 0 6 6 5 5

0 4 8 3 1 3 0 10


.

Now Bob will decrypt the message using right modular pseudoinverse of K and

get the plaintext M as M = WK†.

As,

K† = KT (KKT )−1

so, K† is found to be

K† =



4 10 2 4 10 7 3

4 8 5 5 9 3 6

8 9 3 4 4 4 3

4 2 2 5 8 10 9

8 7 4 2 4 9 3

8 6 9 0 1 1 9

8 0 5 5 1 1 2

1 10 9 5 1 7 9



mod 11



Cryptanalysis 62

Decryption will be carried out as follows,

M =



10 7 5 3 2 10 7 4

8 7 7 5 7 3 0 7

6 4 2 1 0 9 4 9

2 10 9 8 10 3 8 8

4 10 4 1 3 0 2 2

2 0 9 0 6 6 5 5

0 4 8 3 1 3 0 10





4 10 2 4 10 7 3

4 8 5 5 9 3 6

8 9 3 4 4 4 3

4 2 2 5 8 10 9

8 7 4 2 4 9 3

8 6 9 0 1 1 9

8 0 5 5 1 1 2

1 10 9 5 1 7 9



mod 11.

4.2.1 Known Plaintext Attack

The encryption scheme is given by

W = MK

Adversary has the knowledge of plaintext and some of the ciphertext. In this case

the key will be obtained by left modular multiplication of M that is M−1 with W

as given below

M−1W = K.

By using Extended euclidean algorithm, we have found the inverse of matrix M

that is given below,

M−1 =
adjM

detM

M−1 =



0 0 10 0 9 8 8

8 9 10 10 0 3

9 9 9 1 5 2 7

9 5 3 3 2 3 3

9 10 9 8 2 9 1

1 10 1 9 1 7 7

2 8 8 2 6 9 7


mod 11.
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K =



0 0 10 0 9 8 8

8 9 10 10 0 3

9 9 9 1 5 2 7

9 5 3 3 2 3 3

9 10 9 8 2 9 1

1 10 1 9 1 7 7

2 8 8 2 6 9 7





10 7 5 3 2 10 7 4

8 7 7 5 7 3 0 7

6 4 2 1 0 9 4 9

2 10 9 8 10 3 8 8

4 10 4 1 3 0 2 2

2 0 9 0 6 6 5 5

0 4 8 3 1 3 0 10


mod 11.

K =



2 8 5 10 6 8 10 8

8 8 2 2 3 5 9 7

0 8 9 5 4 3 6 3

3 7 7 2 0 3 8 6

2 9 5 1 9 7 3 2

0 0 6 5 5 7 10 9

2 1 8 9 5 10 9 4


mod 11.

In the above example, we have applied known plaintext attack on the bigger

system. Hence, we have found that given scheme is vulnerable against the known

plaintext attack. We can conclude that this scheme is vulnerable for all n ∈ Zp.



Chapter 5

Conclusion and Future Work

Suggestion

5.1 Conclusion

In this section we will discuss the strengths and weaknesses of encryption scheme

based on circulant matrices using pseudoinverses presented by C. Rajarama et al.

Private keys are to be taken from the subgroup of GL(Zn, p) of circulant matrices.

In this scheme mentioned above Diffie-Hellman type key exchange protocol using

circulant matrices as the private keys is presented. The public keys U and V are

obtained by the modular multiplication of generator matrix of order (n − 1) × n

with the private keys of user A and B. Encryption is presented as ElGamal type

encryption and decryption using the pseudoinverse of common session key K.

The use of circulant matrices in the above mentioned scheme helped in key gener-

ation as well as in encryption/ decryption and served the purpose of less computa-

tional cost. Circulant matrices are also used as keys to provide multi-stage proxy

re-encryption. In the given scheme modular multiplication is used to manipulate

private and public keys that has made the scheme faster as compared to modular

exponentiation, furthermore vulnerability of circulant matrices is observed. In a

circulant matrix, first row is to be chosen independently but the succeeding rows

64
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can be obtained by the circular shift of preceeding rows as discussed in Section

2.6.1. Hence the author has used the effective key length of matrices. For example

the key length of a matrix of size n × n is n × n ×m, where m is the length of

individual element in bits. The main advantage of these matrices is that they help

in utilizing the less memory space. In Chapter 4, we have successfully done the

cryptanalysis of the given scheme using right modular inverses. Hence it is proved

that the given scheme is vulnerable against known plaintext attack.

In the next section, we will suggest the future work that will describe how we

upgrade the level of hardness against plaintext attack and brute force attack in

the given encryption scheme that is W = MK.

5.1.1 (Modified Work)

Modified work of this scheme is discussed below:

5.1.2 Key Generation Algorithm

1. Let G be the public generator matrix, rank of G to be chosen (n− 1).

2. A and B are circulant matrices of order n×n being the private keys of Alice

and Bob chosen from GL(n, p).

3. Alice will compute Public key as

U = GA.

4. Bob will compute Public key as

V = GB.

Here U , V , G, n and p are public while A, B are held to be private.

Now Alice will generate its common session key by computing its private key with

public key of Bob and vice versa.
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Alice :

KAB = GAB.

Since, A and B are circulant matrices, they are being commutative such that,

AB = BA

Bob:

= GBA = KBA.

K = KAB = KBA.

Therefore, we will use K as a common session key in further calculations, such as

for encrypting a plaintext, to decrypt a ciphertext.

5.1.3 Encryption and Decryption Algorithm

With the help of common session key K. Alice performs encryption in a way as

follows:

1. Alice computes pseudoinverse of K of order m× n as K†.

2. Alice will compute ciphertext as:

W = K†MK. (5.1)

3. Bob accepts ciphertext and decrypt it by taking pseudo inverse of common

session key K. Decryption will be taken out as:

KW = KK†MK.

KWK† = IMKK†.

KWK† = IMI.

Hence,

M = (K†)†WK†.
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Since,

(K†)† = I.

KWK† = M.

5.1.4 ALgorithm for Proxy Re-encryption

In this subsection we will discuss Proxy re-encryption carried out by proxy server

B → C as described in section 3.5. A and B are private keys of Alice and Bob, U

and V are public keys, (UBC) is a public key sent by Alice to PSBC.

1. Alice will compute its Public key as

UBC = U = GA.

2. Alice will encrypt the text as

W = MVA.

3. Alice will send (U,W ) to user B and to Proxy server B → C

4. Bob will decrypt the encrypted data (U,W ) as

M = W (UB)†.

5. Proxy serve B → C will re-encrypt the encrypted text W as WBC such that

it can be decoded by user C only.

WBC = MGAC.

WBC = M(UBC)C.

6. As per the suggested future work for the given scheme, proxy re-encryption

by PSBC is carried out as given below.



Improvement in Encryption Decryption and Proxy Re-encryption 68

WBC = (UBCC)†M(UBCC). (5.2)

7. Decryption by user C is carried out as

M = ((UBCC)†)†WBC(UBCC)†.

M = (UBCC)WBC(UBCC)†. (5.3)

Hence, we have obtained M by taking right modular pseudoinverse of UBCC.

5.1.5 Correctness

The correctness of above mentioned asymmetric cipher can be recognized by the

help of following demonstration

From Section 5.1.3 we have

W = K†MK

Wn×n = K†n×n−1Mn−1×n−1Kn−1×n.

Multiplying Kn−1×n on both sides, we get

Kn−1×nWn×n = Kn−1×nK
†
n×n−1Mn−1×n−1Kn−1×n.

Kn−1×nWn×n = In−1×n−1Mn−1×n−1Kn−1×n.

Right multiplication of K†n×n−1 will give us,

Kn×mWn×nK
†
n×n−1 = In−1×n−1Mn−1×n−1Kn−1×nK

†
n×n−1.

Kn−1×nWn×nK
†
n×n−1 = In−1×n−1Mn−1×n−1In×n.

Hence,

Mn×n = Kn−1×nWn×nK
†
n×n−1.
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5.1.6 Illustrative Examples

Let us consider some examples to demonstrate the proof of W = K†MK and

W = (U †BCC)M(UBCC) using the parameters given in the scheme proposed by

C.Rajarama et al.

Example 5.1.1. Let n = 4 The value of p is taken as 23. Matrices G, A and B

are chosen as in Example 3.3.1

G =


10 4 11 3

7 9 11 10

3 6 8 0

 , A =


10 1 3 3

3 10 1 3

3 3 10 1

1 3 3 10

 , B =


3 15 6 3

3 3 15 6

6 3 3 15

15 6 3 3



KB =


8 3 9 21

4 19 18 14

8 19 11 14

, and M =


9 10 10

9 7 6

10 6 2



Encryption:

From Equation 5.1 we have,

The encryption of our suggested future work will be conducted as follows:

W = K†MK. (5.4)

Here K† is computed as described in Equation 3.6

K† = KT (KKT )−1.

From Equation 3.4.2

K† =


3 0 5

12 16 16

5 10 6

6 0 2


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Putting values of K† , M and K in Equation 5.2

W =


3 0 5

12 16 16

5 10 6

6 0 2




9 10 10

9 7 6

10 6 2




8 3 9 21

4 19 18 14

8 19 11 14

 mod 23

=


77 60 40

412 328 248

195 156 122

74 72 64




8 3 9 21

4 19 18 14

8 19 11 14

 mod 23

=


8 14 17

21 6 18

11 18 7

5 3 18




8 3 9 21

4 19 18 14

8 19 11 14

 mod 23

=


226 613 511 602

336 519 495 777

216 508 500 581

196 414 297 399

 mod 23

=


3 15 5 4

14 13 12 18

9 2 17 6

12 0 21 8

 mod 23.

Decryption:

From Equation 5.1 we can get M as

M = KBW (KB)† (5.5)

Now putting values of W , (KB) and (KB)† in Equation 5.3
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M =


8 3 9 21

4 19 18 14

8 19 11 14




3 5 15 4

14 13 12 18

9 2 17 6

12 0 21 18




3 0 5

12 16 16

5 10 6

6 0 2

 mod 23

=


399 177 670 308

608 343 848 578

557 389 749 552




3 0 5

12 16 16

5 10 6

6 0 2

 mod 23

=


8 16 3 9

10 21 20 3

5 21 13 0




3 0 5

12 16 16

5 10 6

6 0 2

 mod 23

=


9 10 10

9 7 6

10 6 2

 mod 23.

Hence the obtained message is same as sended by Bob.

5.1.7 Proxy Re-encryption

The encryption and decryption of the scheme is defined in Equation 5.2 and 5.3,

we will further prove the working of suggested future work for proxy re-encryption

by the following illustrative example.

Example 5.1.2. The values of n, p, G, A and B will be taken same as in Equation

5.1.1 shared secret key between user B and user C is given in Section 3.5.5 as

UBCC =


21 21 10 20

17 11 3 5

20 11 5 11


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Pseudoinverse of UBCC is given as

(UBCC)† =


2 9 18

8 13 9

10 9 14

11 0 21


Encryption:

From Equation 5.2

WBC = (UBCC)†M(UBCC)

Putting the values of M , (UBCC) and (UBCC)† in above equation

WBC =


2 9 18

8 13 9

10 9 14

11 0 21




9 10 10

9 7 6

10 6 2




21 21 10 20

17 11 3 5

20 11 5 11

 mod 23

=


279 191 110

279 225 176

311 247 182

309 236 152




21 21 10 20

17 11 3 5

20 11 5 11

 mod 23

=


3 7 18

3 18 15

12 17 21

10 6 14




21 21 10 20

17 11 3 5

20 11 5 11

 mod 23

=


542 338 141 293

669 426 159 315

961 670 276 556

592 430 188 384

 mod 23
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WBC=


13 16 3 17

2 12 21 16

18 3 0 4

17 16 4 16

 mod 23.

Decryption:

From Equation5.2, we have

M = (UBCC)WBC(UBCC)† (5.6)

To find out the value of plaintext we will put the values of WBC , shared secret

key that is (UBCC) and right modular pseudoinverse of shared secret key that is

(UBCC)† in above equation,

M =


21 21 10 20

17 11 3 5

20 11 5 11




13 16 3 17

2 12 21 16

18 3 0 4

17 16 4 16




2 9 18

8 13 9

10 9 14

11 0 21

 mod 23

=


835 938 584 1053

382 493 302 557

559 643 335 712




2 9 18

8 13 9

10 9 14

11 0 21

 mod 23.

=


7 18 9 18

14 10 3 5

7 22 13 22




2 9 18

8 13 9

10 9 14

11 0 21

 mod 23.

=


446 378 792

193 283 489

562 466 968

 mod 23.
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M =


9 10 10

9 7 6

10 6 2

 mod 23.

Finally Alice recieved the original message sent by Bob.

5.2 Security Analysis and Future Work

In the above section we have suggested the future work that will transform the

linear system of equations into complex and non-linear system of equations. In

this section we will show that plaintext attack is infeasible on suggested work.

First of all we will recall the public key cryptosystem given in the above mentioned

research paper, that is W = MK. Here in this scheme we have applied known

plaintext attack and retrieved the shared secret key K. The shared secret key of

a proxy server (PSBC) is also found vulnerabale against known plaintext attack.

The encryption of PSBC is given by WBC = M(UBCC), by knowing M and

W , we have calculated KBC = UBCC by using matrix inversion method that is

described in section 4.1. Our suggested future work is presented as W = K†MK,

we suggested left modular multiplication of matrix K† that is pseudoinverse of a

rectangular matrix K with the original scheme that was given as W = MK. The

security of proposed modified work against different attacks is discussed below.

5.2.1 Algebraic Attacks

Algebraic attacks is a kind of cryptanalysis in which attacker reduces the whole

system of matrices into system of equations.

1. Known Plaintext Attack:

In this attack, the attacker has knowledge about ciphertext and its corre-

sponding plaintext. On the basis of this data he will try to recover the shared

secret key K.
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Example 5.2.1. Consider the plaintext, ciphertext pair (M,W ) of Example

5.1.1 that is

M =


9 10 10

9 7 6

10 6 2

 and W =


3 15 5 4

14 13 12 18

9 2 17 6

12 0 21 8




3 15 5 4

14 13 12 18

9 2 17 6

12 0 21 8

 =


k

′
11 k

′
12 k

′
13

k
′
21 k

′
22 k

′
23

k
′
31 k

′
32 k

′
33

k
′
41 k

′
42 k

′
43




9 10 10

9 7 6

10 6 2



k11 k12 k13 k14

k21 k22 k23 k24

k31 k32 k33 k34

.

Above system of matrices will be reduced into system of equations as follows,

(9k
′

11 + 9k
′

12 + 10k
′

13)k11 + (10k
′

11 + 7k
′

12 + 6k
′

13)k21 + (10k
′

11 + 6k
′

12 + 2k
′

13)k31 = 3

(9k
′

11 + 9k
′

12 + 10k
′

13)k12 + (10k
′

11 + 7k
′

12 + 6k
′

13)k22 + (10k
′

11 + 6k
′

12 + 2k
′

13)k32 = 15

(9k
′

11 + 9k
′

12 + 10k
′

13)k13 + (10k
′

11 + 7k
′

12 + 6k
′

13)k23 + (10k
′

11 + 6k
′

12 + 2k
′

13)k33 = 5

(9k
′

11 + 9k
′

12 + 10k
′

14)k14 + (10k
′

11 + 7k
′

12 + 6k
′

13)k24 + (10k
′

11 + 6k
′

12 + 2k
′

13)k34 = 4

(9k
′

21 + 9k
′

22 + 10k
′

23)k11 + (10k
′

21 + 7k
′

22 + 6k
′

23)k21 + (10k
′

21 + 6k
′

22 + 2k
′

23)k31 = 14

(9k
′

21 + 9k
′

22 + 10k
′

23)k12 + (10k
′

21 + 7k
′

22 + 6k
′

23)k21 + (10k
′

21 + 6k
′

22 + 2k
′

23)k32 = 13

(9k
′

21 + 9k
′

22 + 10k
′

23)k13 + (10k
′

21 + 7k
′

22 + 6k
′

23)k23 + (10k
′

21 + 6k
′

22 + 2k
′

23)k33 = 12

(9k
′

21 + 9k
′

22 + 10k
′

23)k14 + (10k
′

21 + 7k
′

22 + 6k
′

23)k24 + (10k
′

21 + 6k
′

22 + 2k
′

23)k34 = 18

(9k
′

31 + 9k
′

32 + 10k
′

33)k11 + (10k
′

31 + 7k
′

32 + 6k
′

33)k21 + (10k
′

31 + 6k
′

32 + 2k
′

33)k31 = 9

(9k
′

31 + 9k
′

32 + 10k
′

33)k12 + (10k
′

31 + 7k
′

32 + 6k
′

33)k22 + (10k
′

31 + 6k
′

32 + 2k
′

33)k32 = 2

(9k
′

31 + 9k
′

32 + 10k
′

33)k13 + (10k
′

31 + 7k
′

32 + 6k
′

33)k23 + (10k
′

31 + 6k
′

32 + 2k
′

33)k33 = 17

(9k
′

31 + 9k
′

32 + 10k
′

33)k14 + (10k
′

31 + 7k
′

32 + 6k
′

33)k24 + (10k
′

31 + 6k
′

32 + 2k
′

33)k34 = 6

(9k
′

41 + 9k
′

42 + 10k
′

43)k11 + (10k
′

41 + 7k
′

42 + 6k
′

43)k21 + (10k
′

41 + 6k
′

42 + 2k
′

43)k31 = 12

(9k
′

41 + 9k
′

42 + 10k
′

43)k12 + (10k
′

41 + 7k
′

42 + 6k
′

43)k22 + (10k
′

41 + 6k
′

42 + 2k
′

43)k32 = 0

(9k
′

41 + 9k
′

42 + 10k
′

43)k13 + (10k
′

41 + 7k
′

42 + 6k
′

43)k23 + (10k
′

41 + 6k
′

42 + 2k
′

43)k33 = 21

(9k
′

41 + 9k
′

42 + 10k
′

43)k14 + (10k
′

41 + 7k
′

42 + 6k
′

43)k24 + (10k
′

41 + 6k
′

42 + 2k
′

43)k34 = 8,

where, we can get values of k
′
11, k

′
12, ..., k

′
43 as K† = KT (KKT )−1.
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Above system of equations clearly depicting that on converting the system

of matrices into system of equations, we get 12 unknowns and 16 equations

that is number of unknowns are less than number of equations and in the

result this system of equations will yield a non linear homogeneous system.

Thus the suggested work would make it difficult to hack the key due to non

linear complex system of equations with raised power of p.

Therefore our proposed future work is comparatively better than the previous

one because that was easily breakable by using right modular pseudoinverses.

After the application of new encryption scheme we get a complex system of

non linear equations, that makes hard for adversary to solve system of non

linear equations. Hence the key is relatively secured and in consequence of

this the known plaintext attack would not be feasible. To prove our claim

we will present a simplest possible case that is given below.

In general the scheme is presented as follows:

Let K be the unknown key of order 3× 4

K =


k11 k12 k13 k14

k21 k22 k23 k24

k31 k32 k33 k34

k41 k42 k43 k44

 mod 23

With its pseudoinverse K† given as

K† =


k

′
11 k

′
12 k

′
13

k
′
21 k

′
22 k

′
23

k
′
31 k

′
32 k

′
33

k
′
41 k

′
42 k

′
43

 mod 23

and W = K†MK mod 23

Wn×n = K†n×mMm×mKm×n,

where m,n ∈ Zp. In this system of non-linear equations, number of un-

knowns are m × n, number of equations are n2 and degree of the system is
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claimed to be 2n.

Recall that

K† = KT (KKT )

So all K
′
ij depends on Kij. Hence the above system is clearly a non-linear

system of equations of degree 6 in 12 unknowns. We tried to solve this sys-

tem of equations by using ApCoCoA without any success.

As the working field is Z23, we believe that there will be almost 23 possibil-

ities for each Kij(i = 1, 2, 3, j = 1, 2, ., .4). Since the system is homogenous,

the number of possible solutions for K will be almost 12(23) = 276. The

next step will be to find true K from all the possible solutions.

This is clearly hard to find K when the size of the field is very large such

that of the order 264 (for example).

2. Brute Force Attack:

In this attack, attacker would try to guess every feasible guess for the key. As

for the simplest possible case under modulo prime 11, attacker would have to

guess 20 pairs of key out of which only 8 will satisfy that given homegenous

equations. To make this attack infeasible we can take the large key length as

p × q. When we will increase the value of modular prime number he might

have guess larger number of pairs that is infeasible for example for p = 2128

would make the guess for pairs of keys with length (n − 1) × n and larger

value of n infeasible. This will result the failure of Brute force attack.
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