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Abstract

The effect of an inclined magnetic field on the flow of an electrically conducting

hybrid nanofluid via a nonlinear stretching sheet through a porous media with

frictional heating is investigated numerically in this work. The model of the flow

problem is a system of PDEs. These partial differential equations are transformed

into ordinary differential equation by the aid of similarity transformations. The

shooting method is then used to numerically solve the reduced equations. The in-

fluence of physical parameters such as nanoparticle volume fraction, permeability

parameter, nonlinear stretching sheet parameter, magnetic parameter, heat gener-

ation parameter, Prandtl number and radiation parameter on the velocity profile,

temperature distribution, skin friction coefficient and Nusselt number are studied

and presented in graphical and tabular forms. The findings show that increas-

ing the nanoparticle volume fraction and permeability parameter increases the

rate of heat transfer. The temperature distribution is also influenced by the pres-

ence of permeability parameter, magnetic parameter, Inclined magnetic angle and

nanoparticle volume fraction. This demonstrates how heat transfer and nanofluid

flow behaviours can be influenced by the volume fraction of nanoparticles.
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Chapter 1

Introduction

In reaction to an applied external force, a phase of matter known as a fluid, flows

or deforms. Fluids come in three different forms: liquids, gases, and plasma [1].

It is a material that has vanishing shear modulus or to put it another way, a ma-

terial that cannot tolerate any applied shear force. Since fluid is essential for life

and is important to many natural processes, the researchers from all around the

world are attempting to learn more about how fluids move. We analyse fluid flow

and how forces affect fluid movement in the area of fluid dynamics, a subfield of

fluid mechanics. It provides methods for understanding how the stars, the ocean,

the current, the tectonic plate, and the blood flow have evolved [2]. Archimedes

is credited for creating the Archimedes principle, which deals with the motion of

objects. The static behaviour of fluids is a fundamental premise of fluid dynamics.

Fluids can be further classified as Newtonian or non-Newtonian fluids depending

on the relationship between two physical parameters, specifically the relationship

between stress and strain. Non-Newtonian fluids are those that do not exhibit a

linear correlation between the shear stress and the rate of deformation. In other

terms, non-Newtonian fluids are fluids that contradict Newton’s viscosity law.

Blood, Ketchup, paint, shampoo, muck, and other liquids behave in ways that are

not Newtonian. Non-Newtonian fluid is used in many different industries, such as

oil recovery, filtration, polymer engineering, ceramic production, and petroleum

1
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production. In addition, it is crucial for the heating of geothermal energy, the

disposal of nuclear waste, and the construction of oil reservoirs [3].

Choi [4] initially used the term ”nanofluid” to describe a new form of fluid.

Nanofluid is a blend of conventional low thermal conductivity fluid with nanoparti-

cles with a size smaller than 100 nm. It can also be defined as “Tinny size particles

suspended in a base fluid are known as nanofluids”. The most commonly in use

nanoparticles are carbon nanotubes, carbides, metals, or oxides nanofluids. These

fluids are created synthetically to have better thermal conductivity than any basic

fluids. The thermal conductivity of nanofluids can be boosted by adding gold,

copper, silver, and other nanoparticles to the base fluid. Buongiorno [5] studied

the element that increased the thermal conductivity of nanofluids. He noticed that

a change in the fluid’s thermal conductivity is caused by both the thermophore-

sis effect and Brownian motion. In the heavy vehicle and information technology

industries, nanofluid can also be utilised as a coolant. In many industrial, biomed-

ical, and technical domains, nanofluid is a blessing.

In 2007, Tiwari and Das [6] created a model to examine heat and nanofluid trans-

port in a square cavity driven by a two-sided lid and examined the impact of

nanoparticle volume percentage. They focused on how important nanoparticle

volume fraction is for determining the effect of nanoparticles on fluid flow and

the rate of heat transfer. According to Yang et al. [7], the volume proportion of

nanoparticles and their various characteristics, such as diameter and shape, have

a significant impact on the thermal conductivity of nanofluid.

Khan and Pop [8] were the first to do an experiment utilising Buongiorno’s setup

that showed how nanofluid flow behaved over a stretching sheet. They got to

the conclusion that as the Brownain diffusion and thermophoresis parameters are

raised, the rate of heat transfer decreases. Khan and Pops [8] original experiment

was slightly modified over time by Rana and Bhargava [9]. Using the finite element

method, they concentrated on the steady flow of a viscous nanofluid over a non-

linear stretching sheet. The thickness of the thermal boundary layer was found to
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be improved by increasing the Brownain motion and thermophoresis parameters,

according to their research.

Magnetohydrodynamics is a branch of mechanics that examines conduction fluid

flow in the presence of an external magnetic field. Alfen [10], a Swedish scientist,

was the first to describe the MHD fluid. The petroleum industry, MHD power gen-

erators, crystal formation, etc. are just a few engineering scenarios where MHD

fluid flow through a heated surface has numerous critical applications. The MHD

natural convection flow of spinning fluid through a porous sheet was studied by

Mbeledogu and Ogulu [11]. They also studied the effects of radiation and heat

transport. Through MHD, the boundary layer structure can be altered, improv-

ing fluid flow in a particular direction. Several industrial operations, such as the

production of materials and metal casting, depend heavily on the application of

an external magnetic field. Chauhan and Agrawal [12] conducted an analysis of

the MHD flow and heat transfer across a channel employing a permeable sheet.

They discovered that two variables, such as the magnetic number and suction pa-

rameter, can control the cooling rate. They discovered that the magnetic number

and the suction parameter, respectively, can control the rate of cooling. Eftekhari

and Moradi used a vertical plate filled with nanofluid to illustrate the 2D mixed

convection MHD boundary layer stagnation point flow in the presence of thermal

radiation [13].

Numerous novel and anticipated studies on common electrically conducting flows

demonstrate that the introduction of a magnetic field dramatically changes their

heat transfer and transit characteristics. Heat transfer efficiency depends on how

well operating fluids like water (H2O), titanium dioxide (TiO2), copper (Cu) and

ethyl glycol (CH2OH)2 carry heat. As a continuation of their research on nanoflu-

ids, scientists have recently experimented with hybrid nanofluids, which are pro-

duced by suspending dissimilar nanoparticles in mixture or composite form. How-

ever, hybrid nanofluids represent a whole new class of nanofluid. In a nutshell,

hybrid nanofluids can be created by suspending (i) various types of nanoparti-

cles (two or more types) in base fluid and (ii) hybrid (composite) nanoparticles in



Introduction 4

base fluid. In order to deliver these properties in a homogenous phase, a hybrid

material must concurrently combine the physical and chemical properties of many

materials [14]. In-depth literature on hybrid nanofluids, such as magnetised hybrid

condensed nanofluid flow with radiation, hybrid nanofluid flow inside a microchan-

nel, and hydrothermal characteristics of magnetised TiO2−CoFe2O4 water-based

steady hybrid nanofluid flow, was described by Acharya et al. ([15], [16], [17]).

Considering its significance in the industrial processing of glass fibre, metal wires,

polymer sheets, paper production, and plastic films, the evaluation of heat trans-

fer across a boundary layer flow through a continuous stretched surface subject to

the prescribed heat flux and surface temperature has attracted considerable inter-

est. When making plastic and glass out of polymers, the cooling rate is greatly

influenced by the characteristics of the final product. Radiation effect on MHD

Casson fluid flow over an inclined non-linear surface with chemical reaction in a

Forchheimer porous medium has been discussed in [18].

In the material processing, fuel cell equipment, drying operations, geothermal en-

ergy, dribbling bed chromatography, oil recovery, and many other processes, the

flow across a porous media is extremely important. A proactive method to improve

thermal performance is the combined effect of mass and heat transfer associated

with the magnetohydrodynamic boundary layer flow of a nanofluid over a porous

material. In this context, Chamkha et al. [19] looked at how a porous medium

and natural convection affected the boundary layer flow across an inclined surface

in terms of thermal radiation and uneven porosity. The average Nusselt num-

ber and the flow structure are significantly influenced by the permeability of the

porous media, according to the mass and heat transfer experiment conducted by

Hadidi et al. [20] through a porous inclined enclosure. The heat transmission in

hybrid nanofluids over a stretching surface has been covered by S. U. Devi and S.

A. Devi, [21]. The hybrid nanofluids have far higher thermal conductivities than

nanofluids (Khnf ≥ Knf ), which contributes significantly to the improvement of

heat transfer coefficients and leads to improved results in terms of decreased ther-

mal energy loss and production costs [22], [23] and [24].
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1.1 Contributions to the Thesis

In this research, a review study of [25] has been presented and then the flow

analysis has been extended with MHD radiative hybrid nanofluid flow with in-

clined magnetic field. The main focus is to study the numerical analysis of MHD

nanofluid flow via a nonlinear stretching sheet saturated in a porous medium in

the presence of a inclined magnetic field, heat generation, and thermal radiation.

Through the use of similarity transformations, the proposed nonlinear PDEs are

transformed into a system of ODEs. The MATLAB software is utilized to construct

the table and graphs which illustrate the numerical results. In-depth discussion

is done by the effects of dimensionless factors on the velocity profile, temperature

profile, skin fraction coefficient and local Nusselt number. Tables and graphs are

used to present the results.

1.2 Plan of the Thesis

The information below gives a quick summary of the thesis contents. Chapter 2

covers some fundamental definitions, dimentionless parameters, governing laws and

the method which is used to obtained the numerical results of the flow problem.

Chapter 3 presents a review of “MHD radiative nanofluid flow in the porous

medium caused by a nonlinear stretching sheet”. Shooting technique is utilized to

find the numerical outcomes of the governing flow equations.

Chapter 4 extends the work of [25] by adding the impact of inclined magnetic

field with hybrid nanofluid. By utilizing similarity transformations we transform

the set of governing nonlinear PDEs into the nonlinear ODEs. Results for various

parameters are discussed through graphs and tables.

Chapter 5 gives the final remarks about the whole thesis.

References consulted for this thesis are listed in the Biblography.



Chapter 2

Preliminaries

This chapter covers some fundamental definitions, dimentionless parameters, gov-

erning laws and the method which are used to obtained the numerical results of

the flow problem.

2.1 Some Basic Terminologies

In this section we will discuss about some basic definitions which are very helpful

to understand the subsequent chapter.

Definition 2.1.1 (Fluid)

“A fluid is a substance that deforms continuously under the application of a shear

(tangential) stress no matter how small the shear stress may be.” [26]

Definition 2.1.2 (Fluid Mechanics)

“Fluid mechanics is that branch of science which deals with the behavior of the

fluid (liquids or gases) at rest as well as in motion.” [27]

Definition 2.1.3 (Fluid Dynamics)

“The study of fluid if the pressure forces are also considered for the fluids in mo-

tion, is called fluid dynamics.” [28]

Definition 2.1.4 (Fluid Statics)

“The study of fluid at rest is called fluid statics.” [27]

6
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Definition 2.1.5 (Viscosity)

“Viscosity is defined as the property of a fluid which offers resistance to the move-

ment of one layer of fluid over another adjacent layer of the fluid. Mathematically,

µ =
τ

∂u

∂y

,

where µ is viscosity coefficient, τ is shear stress and
∂u

∂y
represents the velocity

gradient.” [29]

Definition 2.1.6 (Kinematic Viscosity)

“It is defined as the ratio between the dynamic viscosity and density of fluid. It

is denoted by symbol ν called nu. Mathematically,

ν =
µ

ρ
.” [29]

Definition 2.1.7 (Thermal Conductivity)

“The Fourier heat conduction law states that the heat flow is proportional to the

temperature gradient. The coefficient of proportionality is a material parameter

known as the thermal conductivity which may be a function of a number of vari-

ables.” [30]

Definition 2.1.8 (Thermal Diffusivity)

“The rate at which heat diffuses by conducting through a material depends on the

thermal diffusivity and can be defined as,

α =
k

ρCp
,

where α is the thermal diffusivity, k is the thermal conductivity, ρ is the density

and Cp is the specifc heat at constant pressure.” [31]



Basic Terminologies 8

2.2 Types of Fluid

Fluid are divided into major two classes, one is Newtonian and other is non- New-

tonian, which are explained in the following definitions.

Definition 2.2.1 (Ideal Fluid)

“A fluid, which is incompressible and has no viscosity, is known as an ideal fluid.

Ideal fluid is only an imaginary fluid as all the fluids, which exist, have some vis-

cosity.” [27]

Definition 2.2.2 (Real Fluid)

“A fluid, which possesses viscosity, is known as a real fluid. In actual practice, all

the fluids are real fluids.” [29]

Definition 2.2.3 (Newtonian Fluid)

“A real fluid, in which the shear stress is directly proportional to the rate of shear

strain (or velocity gradient) is known as a Newtonian fluid. Mathematically, it

can be written as:

τxy ∝
(
du

dy

)
,

τxy = µ

(
du

dy

)
,

where µ = Dynamic viscosity, τxy = Shear stress exerted by the fluid, and
du

dy
=

Velocity gradient perpendicular to the direction of the shear.”

Water and alcohol are the common examples of Newtonian fluid. [29]

Definition 2.2.4 (Non-Newtonian Fluid)

“A real fluid in which the shear stress is not directly proportional to the rate of

shear strain (or velocity gradient), is known as a non-Newtonian fluid. Mathemat-

ical, it can be expressed as:

τxy ∝
(
du

dy

)m
, m 6= 1

τxy = k

(
du

dy

)m
,
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where k = Flow consistency coefficient,
du

dy
= Shear rate, and n = Flow behaviour

index.”

Some examples of non-Newtonian fluids are toothpaste, shampoo, and honey

etc. [29]

Definition 2.2.5 (Magnetohydrodynamics)

“Magnetohydrodynamics (MHD) is concerned with the mutual interaction of fluid

flow and magnetic fields. The fluids in question must be electrically conducting

and non-magnetic, which limits us to liquid metals, hot ionised gases (plasmas)

and strong electrolytes.” [32]

2.3 Types of Flow

To understand the true sense of any physical problem in fluid dynamics, we must

be clear about what type of flow is considered in the physical model.

Definition 2.3.1 (Rotational Flow)

“Rotational flow is that type of flow in which the fluid particles while flowing along

stream-lines, also rotate about their own axis.” [27]

Definition 2.3.2 (Irrotational Flow)

“Irrotational flow is that type of flow in which the fluid particles while flowing

along stream-lines, do not rotate about their own axis then this type of flow is

called irrotational flow.” [27]

Definition 2.3.3 (Compressible Flow)

“Compressible flow is that type of flow in which the density of the fluid changes

from point to point or in other words the density (ρ) is not constant for the fluid,

Mathematically,

ρ 6= k,

where k is constant.” [29]

Definition 2.3.4 (Incompressible Flow)

“Incompressible flow is that type of flow in which the density is constant for the
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fluid. Liquids are generally incompressible while gases are compressible, Mathe-

matically,

ρ = k,

where k is constant.” [27]

Definition 2.3.5 (Steady Flow)

“If the flow characteristics such as depth of flow, velocity of flow, rate of flow at

any point in open channel flow do not change with respect to time, the flow is said

to be steady flow. Mathematically,

∂Q

∂t
= 0,

where Q is any fluid property.” [29]

Definition 2.3.6 (Unsteady Flow)

“If at any point in open channel flow, the velocity of flow, depth of flow or rate of

flow changes with respect to time, the flow is said to be unsteady. Mathematically,

∂Q

∂t
6= 0,

where Q is any fluid property.” [29]

Definition 2.3.7 (Internal Flow)

“Flows completely bounded by a solid surfaces are called internal or duct flows.” [33]

Definition 2.3.8 (External Flow)

“Flows over bodies immersed in an unbounded fluid are said to be an external

flow.” [33]

2.4 Modes of Heat Transfer

Heat transfer phenomena deals with laws of thermodynamics. To grasp the com-

plete idea of the transfer we must be familiar with the modes of heat transfer.

Definition 2.4.1 (Heat Transfer)

“Heat transfer is a branch of engineering that deals with the transfer of thermal
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energy from one point to another within a medium or from one medium to another

due to the occurrence of a temperature difference.” [34]

Definition 2.4.2 (Conduction)

“The transfer of heat within a medium due to a diffusion process is called conduc-

tion.”

For example:

• Picking up a hot cup of tea and feeling heat,

• If a metal spoon is propped up in a pot of boiling water it will become hot,

• A radiator is a good example of conduction. [34]

Definition 2.4.3 (Convection)

“Convection heat transfer is usually defined as energy transport effected by the

motion of a fluid. The convection heat transfer between two dissimilar media is

governed by Newtons law of cooling.”

For example:

If meat is still frozen when its time to start cooking, it will defrost more quickly

when placed under running water than if it is immersed in water. The reason is

the convection, or movement of the water and its heat circulation, will transfer

heat more quickly into the frozen meat than if the meat sits immersed in water

and has to absorb heat energy through conduction. [34]

Definition 2.4.4 (Thermal Radiation)

“Thermal radiation is defined as radiant (electromagnetic) energy emitted by a

medium and is solely to the temperature of the medium.”

For example:

• Electromagnetic radiation, such as radio waves, microwaves, infrared, visible

light, ultraviolet, x-rays, and gamma radiation (γ).

• Particle radiation, such as alpha radiation (α), beta radiation (β), proton

radiation and neutron radiation (particles of non-zero rest energy). [34]
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2.5 Dimensionless Numbers

Dimentionless numbers are very useful numbers for describing the physical phe-

nomenon of the problem. Following are some basic dimentionless numbers, which

are necessary for our subsequent discussion.

Definition 2.5.1 (Prandtl Number)

“It is the ratio between the momentum diffusivity ν and thermal diffusivity α.

Mathematically, it can be defined as

Pr =
ν

α
=

µ
ρ

k
Cpρ

=
µCp
k
,

where µ represents the dynamic viscosity, Cp denotes the specific heat and k

stands for thermal conductivity. The relative thickness of thermal and momentum

boundary layer is controlled by Prandtl number. This number expresses the ratio

of the momentum diffusivity (viscosity) to the thermal diffusivity. It characterizes

the physical properties of a fluid with convective and diffusive heat transfers.” [33]

Definition 2.5.1 (Skin Friction Coefficient)

“It expresses the dynamic friction resistance originating in viscous fluid flow around

a fixed wall. The skin friction coefficient can be defined as

Cf =
2τw
ρU2

w

,

where τw denotes the shear stress on the wall, ρ the density and Uw the free-stream

velocity.” [35]

Definition 2.5.3 (Eckert Number)

“It is the dimensionless number used in continuum mechanics. It describes the

relation between flows and the boundary layer enthalpy difference and it is used

to characterized heat dissipation. Mathematically,

Ec =
u2

Cp∇T
,
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where Cp denotes the specific heat.∇T is differenc between wall temperature and

local temperature” [33]

Definition 2.5.4 (Nusselt Number)

“It is the relationship between the convective to the conductive heat transfer

through the boundary of the surface. It is a dimensionless number which was

first introduced by the German mathematician Nusselt. Mathematically, it is de-

fined as:

Nu =
qL

k
,

where q stands for convective heat transfer, L stands for characteristics length and

k stands for thermal conductivity.” [35]

Definition 2.5.6 (Reynolds Number)

“It is defined as the ratio of inertia force of a flowing fluid and the viscous force

of the fluid. Mathematically,

Re =
V L

ν
,

where V denotes the free stream velocity, L is the characteristic length and ν

stands for kinematic viscosity.” [29]

2.6 Governing Laws

In this section governing equations and fundamental laws are described which are

important in the study of different flow problems.

Definition 2.6.1 (Conservation of Mass)

“The principle of conservation of mass can be stated as the time rate of change of

mass in a fixed volume is equal to the net rate of flow of mass across the surface.

The mathematical statement and the prescribe results in the following equation

known as the continuity equation.

∂ρ

∂t
+∇.(ρv) = 0,
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where t is the time, ρ is the density of the medium, v the velocity vector, and ∇

is the nabla or del operator. If the fluid is an incompressible, the conservation of

mass will be expressed by

∇.v = 0.′′

Definition 2.6.2 (Conservation of Momentum)

“The momentum equation states that the time rate of change of linear momentum

of a given set of particles is equal to the vector sum of all the external forces acting

on the particles of the set, provided Newtons third Law of action and reaction

governs the internal forces. Mathematically, it can be written as:

∂

∂t
(ρu) +∇.[(ρu)u] = ∇.T + ρg.”

Definition 2.6.3 (Energy Equation)

“The law of conservation of energy states that the time rate of change of the total

energy is equal to the sum of the rate of work done by the applied forces and

change of heat content per unit time.

∂ρ

∂t
+∇.ρu = −∇.q +Q+ φ,

where φ is the dissipation function.” [34]

2.7 Shooting Technique

Shooting is a suitable numerical technique to solve the boundary value problem.

To elaborate the shooting method, consider the following nonlinear boundary value

problem.

g′′(x) = g(x)g′(x) + 2g2(x),

g(0) = 0, g(G) = J.

 (2.1)



Basic Terminologies 15

To reduce the order of the above boundary value problem, introduce the following

notations.

g = S1 g′ = S ′1 = S2 g′′ = S ′2. (2.2)

As a result, (2.1) is converted into the following system of first order ODEs.

S ′1 = S2, S1(0) = 0, (2.3)

S ′2 = S1S2 + 2S2
1 , S2(0) = t, (2.4)

where t is an approximation for the missing starting condition.

The Runge-Kutta method of order four is used to numerically solve the afore-

mentioned IVP. Choose the missing condition t in such a way that

S1(G, t) = J. (2.5)

For convenience, now onward S1(G, t) will be denoted by S1(t).

Let us further denote S1(t)− J by H(t), so that

H(t) = 0. (2.6)

The above equation can be solved by using Newton’s method with the following

iterative formula.

tn+1 = tn − H(tn)
∂H(tn)
∂t

,

or

tn+1 = tn − S1(t
n)− J

∂S1(tn)
∂t

. (2.7)
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To find ∂S1(tn)
∂t

, introduce the following notations.

∂S1

∂t
= S3,

∂S2

∂t
= S4. (2.8)

The Newton’s iterative method will acquire the following form as a result of these

additional notations.

tn+1 = tn − S1(t)− J
S3(t)

. (2.9)

To incorporate Newton’s method, we include the following two equations in our

system.

S ′3 = S4, S3(0) = 0. (2.10)

S ′4 = S3S2 + S1S4 + 4S1S3, S4(0) = 1. (2.11)

Eventually the following initial value problem arises when all four ODEs, (2.3),

(2.4), (2.10), and (2.11), are written together.

S ′1 = S2, S1(0) = 0.

S ′2 = S1S2 + 2S2
1 , S2(0) = t.

S ′3 = S4, S3(0) = 0.

S ′4 = S3S2 + S1S4 + 4S1S3, S4(0) = 1.

Runge-Kutta method of order 4 will be used to numerically solve the combined

system. This process will be repeated until the following criteria is met.

| S1(t)− J |< ε,

where ”ε” is an arbitrary small positive number



Chapter 3

Nanofluid Flow over a Non-Linear

Stretching Sheet

3.1 Introduction

This chapter provides a detailed review of the work presented by Jafar et al. [25].

The main focus is to study the numerical analysis of MHD nanofluid flow via

a nonlinear stretching sheet saturated in a porous medium in the presence of a

magnetic field, heat generation and thermal radiation. The controlling nonlinear

PDEs are converted into a system of dimensionless ODEs using the similarity

transformations. Using MATLAB, the shooting method is used to resolve ODEs.

At the conclusion of this chapter, the numerical solution is used to describe the

influence of various physical parameters over velocity and temperature profile. The

generated numerical findings are examined using tables and graphs.

3.2 Mathematical Formulations of Model

A two dimentional MHD flow of nanofluid over a non-linear stretching sheet is

considered under the effects of viscous dissipation, thermal radiation and heat

generation. To the flow, Tiwari and Das model [6] is employed. Water is utilized

17
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as base fluid and copper as nano particle. The variable stretching velocity, the

variable magnetic field, and the variable permeability of the porous medium of the

nanofluid flow are

Uw(x) = axn, B(x) = B0x
n−1
2 , k(x) = k0x

n−1,

where n is the stretching sheet parameter, a is the stretching constant, k0 is the

permeability constant and B0 is the constant of magnetic field. The surface of

the stretching sheet is also held at a temperature of Tw = T∞ + bx2n−1, where n

is the parameter for surface temperature, b is a positive constant and T∞ is the

ambient temperature of the nanofluid. The geometry of the flow problem can be

seen through Figure 3.1. The two dimentional model of the flow is given as: [25]

Figure 3.1: Systematic representation of physical model.
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∂u

∂x
+
∂v

∂y
= 0, (3.1)

ρnf

(
u
∂u

∂x
+ v

∂u

∂y

)
= µnf

(
∂2u

∂y2

)
− µnf
k(x)

u− σnfB2(x)u, (3.2)

u
∂T

∂x
+ v

∂T

∂y
=

µnf
(ρCp)nf

(
∂u

∂y

)2

+ αnf

(
∂2T

∂y2

)
− 1

(ρCp)nf

(
∂qr
∂y

)
+

q

(ρCp)nf
(T − T∞). (3.3)

where x denotes the direction of the sheet, y denotes the direction normal to the

sheet, and u and v denote the horizontal and vertical velocities in the xy-plane,

respectivly.

The corresponding boundary conditions have been taken as,

u = Uw(x) = axn, v = 0, T = Tw = T∞ + bx2n−1, at y = 0,

u→ 0, T → T∞, as y →∞.

 (3.4)

ρnf , µnf , (ρCp)nf , βnf , σnf , k(x), αnf =
knf

(ρCp)nf
, knf and q are respectivly the effec-

tive density, coefficient of viscosity, heat capacitance at constant pressure, thermal

expansion, electrical conductivity, variable permeability, thermal diffusivity, ther-

mal conductivity of the nanofluids and heat generation constant respectivly. The

radiative heat flux qr is formulated as,

qr = −4σ∗

3k∗
∂T 4

∂y
, (3.5)

where k is the mean absorption coefficient and σ∗ is the Stefan-Boltzman constant.

The temperature T 4 can be expanded by the Taylor series about T∞ as follows:

T 4 = T 4
∞ + 4T 3

∞(T − T∞) + 6T 2
∞(T − T∞)2 + ...

By ignoring the higher order terms, the T 4 can be expressed as,

T 4 ≈ T 4
∞ + 4T 3

∞(T − T∞),
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T 4 ≈ 4T 3
∞T − 3T 4

∞.

The thermophysical characteristics of nanofluid are stated as follows: [6, 36, 37]:

αnf =
kf

(ρCp)nf
,

ρnf = (1− φ)ρf + φρs,

µnf =
µf

(1− φ)2.5
,

(ρCp)nf = (1− φ)(ρCp)f + φ(ρCp)s,

knf
kf

=
(ks + 2kf )− 2φ(kf − ks)
(ks + 2kf ) + φ(kf − ks)

,

σnf
σf

= 1 +
3
(
σs
σf
− 1
)
φ(

σs
σf

+ 2
)
−
(
σs
σf
− 1
)
φ
,

where φ, ρf , ρs, µf , βf , βs, (ρCP )s, σf , σs, kf and ks are respectivly the nanoparti-

cles solid volume fraction, the density of the pure fluid, the density of the nanopar-

ticles, the effective viscosity of the base fluid, the thermal expansion coefficient of

the fluid, the thermal expansion coefficient of the nanoparticles, the heat capac-

itance of the fluid, the heat capacitance of the nanoparticles, the electrical con-

ductivity of the fluid, the electrical conductivity of the nanoparticles, the thermal

conductivity of the base fluid and the thermal conductivity of the solid friction.

3.3 Similarity Transformations

The following similarity transformations are employed to convert the mathematical

model (3.1)-(3.3) into the system of ODEs. [25]

ψ(x, y) =

√
2νfa

n+ 1
x

n+1
2 f(η),

η = y

√
a(n+ 1)

2νf
x

n−1
2 ,

θ(η) =
T − T∞
Tw − T∞

,


(3.6)
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where ψ stands for the stream function. The step-by-step process for converting

(3.1)-(3.3) into the dimensionless form has been covered here. The conversion of

continuity equation (3.1) is considered first. The following calculations will help

us to show how continuity equation is satisfied. For this purpose, the follwoing

derivatives are elaborated below.

u =
∂ψ

∂y
, v = −∂ψ

∂x
.

From (3.6),

u =
∂

∂y

(√
2νa

n+ 1
x

n+1
2 f(η)

)
,

=

√
2νa

n+ 1
x

n+1
2 f ′(η)

∂η

∂y
,

=

√
2νa

n+ 1
x

n+1
2 f ′(η)

√
a(n+ 1)

2ν
x

n−1
2 ,

= axnf ′(η). (3.7)

v = − ∂

∂x

(√
2aν

n+ 1
x

n+1
2 f(η)

)
,

= −
(√

2aν

n+ 1

∂

∂x
x

n+1
2 f(η) +

√
2aν

n+ 1
x

n+1
2
∂

∂x
f(η)

)
,

= −

(√
2νa

n+ 1

n+ 1

2
x

n−1
2 f(η) +

√
2νa

n+ 1
x

n+1
2 f ′(η)

∂η

∂x

)

= −
√

2νa

n+ 1

(
n+ 1

2
x

n−1
2 f(η) + x

n+1
2 f ′(η)y

√
a(n+ 1)

2ν

(
n− 1

2

)
x

n−3
2

)
,

= −
√

2νa

n+ 1

(
n+ 1

2
x

n−1
2 f(η) + x

n−1
2 ηf ′(η)

(
n− 1

2

))
,

= −
√

2νa

n+ 1
x

n−1
2
n+ 1

2

(
f(η) + ηf ′(η)

(
n− 1

n+ 1

))
,

= −
√
νa(n+ 1)

2
x

n−1
2

(
f(η)− ηf ′(ξ)

(
n− 1

n+ 1

))
,

= −
√
νa(n+ 1)

2
x

n−1
2

(
f(η)− ηf ′(η)

(
n− 1

n+ 1

))
. (3.8)
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Differentiating (3.7) w.r.t. x, we get

∂u

∂x
=

∂

∂x
(af ′(η)xn) ,

= a
∂

∂x
(f ′(η)xn) ,

= a

(
nxn−1f ′(η) + xnf ′′(η)

∂η

∂x

)
,

= a

(
nxn−1f ′(η) + xnf ′′(η)y

√
a(n+ 1)

2νf

(
n− 1

2

)
x

n−3
2

)
,

= a

(
nxn−1f ′(η) + xn(η)f ′′(η)

√
2ν

a(n+ 1)
x

1−n
2

√
a(n+ 1)

2ν

(
n− 1

2

)
x

n−3
2

)
,

= axn−1
(
nf ′(η) +

(
n− 1

2

)
(η)f ′′(η)

)
,

= axn−1nf (η) + axn−1
(
n− 1

2

)
(η)f ′′(η). (3.9)

Diffirentiating (3.8) w.r.t. y, we get

∂v

∂y
=

∂

∂y

[
−
√

(n+ 1)νa

2
x

n−1
2

(
f(η) + ηf ′(η)

(
n− 1

n+ 1

))]
,

= −
√

(n+ 1)νa

2
x

n−1
2

[
∂

∂y
f(η) +

(
n− 1

n+ 1

)(
∂

∂y
f ′(η) + η

∂

∂y
f ′(η)

)]
,

= −
√
a(n+ 1)ν

2
x

n−1
2
∂η

∂y

[
f ′(η) +

(
n− 1

n+ 1

)
(f ′(η) + ηf ′′(η))

]
,

= −
√
a(n+ 1)ν

2
x

n−1
2

√
(n+ 1)a

2ν
x

n−1
2

[
f ′(η) +

(
n− 1

n+ 1

)
(f ′(η) + ηf ′′(η))

]
,

= −(n+ 1)a

2
xn−1

[
f ′(η) +

(
n− 1

n+ 1

)
(f ′(η) + ηf ′′(η))

]
,

= −a
2
xn−1

(
(n+ 1) f ′(η) + (n− 1) (f ′ + ηf ′′(η))

)
,

= −a
2
xn−12nf ′(η)− a

2
xn−1(n− 1)ηf ′′(η),

= −axn−1nf ′(η)− axn−1
(
n− 1

2

)
ηf ′′(η). (3.10)

By using (3.9) and (3.10), we get

⇒ ∂u

∂x
+
∂v

∂y
= axn−1nf ′(η) + axn−1

(
n− 1

2

)
(η)f ′′(η)− axn−1nf ′(η)
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− axn−1
(
n− 1

2

)
ηf ′′(η) = 0

= 0. (3.11)

The following calculations are useful to convert the momentum equation (3.2) into

the dimentionless form.

u = axnf ′(η)

⇒ ∂u

∂y
=

∂

∂y
(axnf ′(η)),

= axnf ′′(η)

√
a(n+ 1)

2ν
x

n−1
2

= ax
3n−1

2

√
a(n+ 1)

2ν
f ′′(η). (3.12)

⇒ ∂2u

∂2y
=

∂

∂y

(
ax

3n−1
2

√
a(n+ 1)

2ν
f ′′(η)

)
,

= ax
3n−1

2

√
a(n+ 1)

2ν

∂

∂y
f ′′(η),

= ax
3n−1

2

√
a(n+ 1)

2ν
f ′′′(η)

∂η

∂y
,

= ax
3n−1

2

√
a(n+ 1)

2ν
f ′′′(η)

√
a(n+ 1)

2ν
x

n−1
2 ,

= a2x2n−1
(
n+ 1

2ν

)
f ′′′(η),

⇒ µnf
∂2u

∂2y
= µnfa

2x2n−1
(
n+ 1

2ν

)
f ′′′(η).

From (3.9), we know that

∂u

∂x
= axn−1nf ′(η) + axn−1

(
n− 1

2

)
ηf ′′(η).

⇒ u
∂u

∂x
= u

(
axn−1nf ′(η) + axn−1

(
n− 1

2

)
ηf ′′(η)

)
= a2x2n−1nf ′(η) + a2x2n−1

(
n− 1

2

)
ηf ′(η)f ′′(η).
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From equation (3.12), we know that

∂u

∂y
= ax

3n−1
2

√
a(n+ 1)

2ν
f ′′(η).

⇒ v
∂u

∂y
= vax

3n−1
2

√
a(n+ 1)

2ν
f ′′(η),

= −
√
aν(n+ 1)

2
x

n−1
2

(
f(η) + ηf ′(η)

(
n− 1

n+ 1

))
(
axnf ′′(η)

√
a(n+ 1)

2
x

3n−1
2

)
,

= −
√
aν(n+ 1)

2
x

n−1
2

(
f(η) + ηf ′(η)

(
n− 1

n+ 1

))
(
axnf ′′(η)

√
a(n+ 1)

2
x

3n−1
2

)
,

= −
√
aν(n+ 1)

2
x

n−1
2 f(η)axnf ′′(η)

√
a(n+ 1)

2ν
x

3n−1
2 ,

−
√
aν(n+ 1)

2
x

3n−1
2 f ′(η)(η)

(
n− 1

n+ 1

)
axnf ′′(η)

√
a(n+ 1)

2ν
x

3n−1
2 ,

= −a
2(n+ 1)

2
x2n−1f(η)f ′′(η)− a2(n+ 1)

2
x2n−1f ′(η)f ′′(η)η

(
n− 1

n+ 1

)
.

⇒ u
∂u

∂x
+ v

∂u

∂y
= a2x2n−1nf ′2(η) + a2x2n−1

(
n− 1

2

)
ηf ′(η)f ′′(η)

− a2(n+ 1)

2
x2n−1f(η)f ′′(η)

− a2(n+ 1)

2
x2n−1f ′(η)f ′′(η)η

(
n− 1

n+ 1

)
,

= a2x2n−1nf ′2(η)− a2(n+ 1)

2
x2n−1f(η)f ′′(η),

= a2x2n−1nf ′2(η)− a2(n+ 1)

2
x2n−1f(η)f ′′(η),

= a2x2n−1
(
nf ′2(η)− (n+ 1)

2
f(η)f ′′(η)

)
.

⇒ ρnf

(
u
∂u

∂x
+ v

∂u

∂y

)
= ρnfa

2x2n−1
(
nf ′2(η)− (n+ 1)

2
f(η)f ′′(η)

)
.

⇒ u

k(x)
=
µnf

k(x)
u =

axnf ′(η)

k0x1−n
=
ax2n−1f ′(η)

k0

= µnf
a2x2n−1f ′(η)K

νf
. (3.13)

⇒ σnfB
2(x)u = σnfB

2
0x

n−1
2 axnf ′(η)

= σnfax
2n−1B2

0f
′(η).

(3.14)
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By using required values in (3.2), we get

ρnfa
2x2n−1

(
nf ′2(η)− (n+ 1)

2
f(η)f ′′(η)

)
= µnfa

2x2n−1
(
n+ 1

2ν

)
f ′′′(η)

− µnf
a2x2n−1f ′(η)K

νf
− σnfax2n−1B2

0f
′(η).

⇒ ρnfa
2x2n−1

(
n+ 1

2

)[(
2n

n+ 1

)
f ′(η)− f(η)f ′′(η)

]
= µnfa

2x2n−1
(
n+ 1

2ν

)
[
f ′′′(η)−

(
2ν

n+ 1

)(
K

ν
+
σnf
µnf

B2
0

a

)
f ′(η)

]
.

⇒ ν
ρnf
µnf

(
n+ 1

2

)[(
2n

n+ 1

)
f ′(η)− f(η)f ′′(η)

]
= f ′′′(η)−

(
2

n+ 1

)
f ′(η)

[
K + ν

σnf
µnf

B2
0

a

]
.

⇒ −(1− φ+ φ
ρs
ρf

)(1− φ)2.5
(
f(η)f ′′(η)− 2n

n+ 1

)
= f ′′′(η)−

(
2

n+ 1

)
f ′(η)

[
K

+M(1− φ)2.5
(

1 +
3
(
σs
σf
− 1
)
φ(

σs
σf

+ 2
)
−
(
σs
σf
− 1
)
φ

)]
.

⇒ f ′′′(η) + (1− φ+ φ
ρs
ρf

)(1− φ)2.5
(
f(η)f ′′(η)− 2n

n+ 1

)
−
(

2

n+ 1

)
f ′(η)

[
K

+M(1− φ)2.5
(

1 +
3
(
σs
σf
− 1
)
φ(

σs
σf

+ 2
)
−
(
σs
σf
− 1
)
φ

)]
= 0 (3.15)

The derivation of some useful derivatives for the conversion of energy equation (3.3)

into a dimentionless form is shown below:

η =

√
a(n+ 1)

2ν
yx

n−1
2 , θ =

T − T∞
Tw − T∞

, T = T∞ + bx2n−1θ.

⇒ ∂η

∂x
=

(
n− 1

2

)(η
x

)
.

⇒ ∂η

∂y
=

√
a(n+ 1)

2ν
x

n−1
2 .

⇒ ∂T

∂x
= b(2n− 1)x2n−2θ + bx2n−1θ′

∂η

∂x

= b(2n− 1)x2n−2θ + bx2n−1θ′
(
n− 1

2

)(η
x

)
.
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⇒ u
∂T

∂x
= axnf ′

(
b(2n− 1)x2n−2θ + bx2n−1θ′

(
n− 1

2

)(η
x

))
= ab(2n− 1)x3n−1f ′(η)θ + abx3n−1

(
n− 1

2

)
ηθf ′(η).

⇒ ∂T

∂y
= bx2n−1θ′

∂η

∂y

= bx2n−1θ′
√
a(n+ 1)

2ν
x

n−1
2 .

⇒ v
∂T

∂y
= −

√
aν(n+ 1)

2
x

n−1
2

(
f(η) + ηf ′(η)

(
n− 1

n+ 1

))
[
bx2n−1θ′

√
a(n+ 1)

2ν
x

n−1
2

]
= −abx3n−2n+ 1

2
θ′ − abx3n−2

(
n− 1

2

)
ηθ′f ′(η).

By using all values, the left side of (3.3) will be:

u
∂T

∂x
+ v

∂T

∂y
= ab(2n− 1)x3n−2f ′(η)θ + abx3n−2

(
n− 1

2

)
ηθ′f ′(η)

− abx3n−2n+ 1

2
θ′ − abx3n−2

(
n− 1

2

)
ηθ′f ′(η),

= abx3n−2
[
2n− 1f ′(η)θ − n+ 1

2
θ′f(η)

]
.

⇒ ∂2T

∂y2
= bx2n−1

√
a(n+ 1)

2ν
x

n−1
2 θ′′

∂η

∂y

= bx3n−2θ′′
√
a(n+ 1)

2ν

√
a(n+ 1)

2ν

=
ab(n+ 1)

2ν
x3n−2θ′′.

⇒ αnf
∂2T

∂y2
= αnf

ab(n+ 1)

2ν
x3n−2θ′′.

Using (3.11),

∂u

∂y
= ax

3n−1
2

√
a(n+ 1)

2ν
f ′′(η).

⇒
(
∂u

∂y

)2

=

(
ax

3n−1
2

√
a(n+ 1)

2ν
f ′′(η)

)2
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=
a3(n+ 1)

2ν
f ′′

2
x3n−1.

⇒ µnf
(ρCp)nf

(
∂u

∂y

)2

=
µnf

(ρCp)nf

a3(n+ 1)

2ν
f ′′

2
(η)x3n−1.

From (3.5),

qr = −4σ∗
3k∗

∂T 4

∂y
.

⇒ ∂qr
∂y

= − ∂

∂y

(
4σ∗
3k∗

(
∂

∂y

(
4T 3
∞T − 3T 4

∞
))

,

= −16σ∗
3k∗

T 3
∞
∂2T

∂y2
,

= −16σ∗
3k∗

T 3
∞
ab(n+ 1)

2ν
x3n−2θ′′.

⇒ 1

(ρCp)nf

∂qr
∂y

=
1

(ρCp)nf

16σ∗
3k∗

T 3
∞
ab(n+ 1)

2ν
x3n−2θ′′.

By using all values in (3.3), we get

abx3n−2
[
2n− 1f ′(η)θ − n+ 1

2
θ′f(η)

]
= αnf

ab(n+ 1)

2ν
x3n−2θ′′

+
µnf

(ρCp)nf

a3(n+ 1)

2ν
f ′′

2
(η)x3n−1

− 1

(ρCp)nf

16σ∗
3k∗

T 3
∞
ab(n+ 1)

2ν
x3n−2θ′′ − q

(ρCp)nf
(T − T∞)

⇒ (2n− 1)f ′(η)θ − n+ 1

2
θ′f(η) =

knf

(ρCp)nf

n+ 1

2v
θ′′

− 1

(ρCp)nf

16σ∗
3k∗

T 3
∞

(n+ 1)x

2ν
θ′′ +

µnf
(ρCp)nf

a3(n+ 1)x

2νb
f ′′

2
(η)− q(ρCp)nfx1−nθ.

⇒ θ′′ +
16σ∗
knf3k∗

T 3
∞θ
′′ +

µnfa
2

knfb
xf ′′ − 2(2n− 1)

n+ 1

(ρCp)nf
knf

νf ′θ

+
(ρCp)nf
knf

νf ′θ +
2qνx1−n

knfa(n+ 1)
θ = 0.

⇒ θ′′ +
4R

3
θ′′ +

µnfa
2x

knfb
f ′′ − 2(2n− 1)

n+ 1

(ρCp)nf
knf

νf ′θ +
(ρCp)nf
knf

νf ′θ

+
2qνx1−n

knfa(n+ 1)
θ = 0.

⇒ θ′′
(

1 +
4R

3

)
+

νρa2x

knfb(1− φ)2.5
(f ′′)2 +

(
fθ′ − 2(2n− 1)

n+ 1
f ′θ

)
ν

α

α(ρCp)nf
knf

+
2

n+ 1

qx

knf (ρCp)f
ν(ρCp)fθ = 0.
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⇒ θ′′
(

1 +
4R

3

)
+

k

knf

ν

α

a2x2n−1

(ρCp)fb(1− φ)2.5x2n−1
(f ′′)2

k

knf

(
fθ′

−
(

2(2n− 1)

n+ 1

)
f ′θ

)
ν

α

(ρCp)nf
(ρCp)f

+
k

knf

(
2

n+ 1

)
qx

(ρCp)faxn
ν

α
θ = 0.

⇒ θ′′
(

1 +
4R

3

)
+

kf
knf

Pr

(
Ec

(1− φ)2.5

)
(f ′′)2 +

kf
knf

(
fθ′

−
(

2(2n− 1)

n+ 1

)
f ′θ

)
Pr

(
1− φ+ φ

(
(ρCp)s
(ρCp)f

))
+

kf
knf

(
2

n+ 1

)
Qθ = 0.

⇒ knf
kf

(
1 +

4R

3

)
θ′′ + Pr

(
Ec

(1− φ)2.5

)
(f ′′)2

(
fθ′

−
(

2(2n− 1)

n+ 1

)
f ′θ

)
Pr

(
1− φ+ φ

(
(ρCp)s
(ρCp)f

))
+

(
2

n+ 1

)
Qθ = 0. (3.16)

To transform the relevant BCs into their non-dimensional form, the following cal-

culations are implemented:

u = Uw(x) = axn, at y = 0.

⇒ u = af ′(η)xn.

⇒ af ′(η) = axn,

⇒ f ′(η) = 1, at ξ = 0.

⇒ f ′(0) = 1.

v = 0, at y = 0.

⇒ − x
n−1
2

√
2νfa

n+ 1

(
n+ 1

2

)
f(η)− axn−1y

(
n− 1

2

)
f ′(η) = 0,

at η = 0.

⇒ − x
n−1
2

√
aνf (n+ 1)

2
f(0) = 0, at η = 0.

⇒ f(0) = 0.
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T = Tw, at y = 0.

⇒ θ(η)(Tw − T∞) + T∞ = Tw,

⇒ θ(η)(Tw − T∞) = (Tw − T∞),

⇒ θ(η) = 1, at η = 0.

⇒ θ(0) = 1.

u→ (0), as y →∞.

⇒ af ′(η)xn → (0),

⇒ axnf ′(v)→ (0),

⇒ f ′(η)→ (0), as η →∞.

⇒ f ′(∞)→ 0.

T → T∞, as y →∞.

⇒ θ(η)(Tw − T∞) + T∞ → T∞,

⇒ θ(η)(Tw − T∞)→ 0, as η →∞.

⇒ θ(η)→ 0, as η →∞.

⇒ θ(∞)→ 0.

The final dimensionless form of the governing model is

f ′′′(η) + (1− φ+ φ
ρs
ρf

)(1− φ)2.5
(
f(η)f ′′(η)− 2n

n+ 1

)
−
(

2

n+ 1

)
f ′(η)

[
K +M(1− φ)2.5

(
1 +

3
(
σs
σf
− 1
)
φ(

σs
σf

+ 2
)
−
(
σs
σf
− 1
)
φ

)]
= 0, (3.17)

knf
kf

(
1 +

4R

3

)
θ′′ + Pr

(
Ec

(1− φ)2.5

)
(f ′′)2

(
fθ′ −

(
2(2n− 1)

n+ 1

)
f ′θ

)
Pr

(
1− φ+ φ

(
(ρCp)s
(ρCp)f

))
+

(
2

n+ 1

)
Qθ = 0. (3.18)

The corresponding BCs in the dimensionless form are gievn below:

f(0) = 0, f ′(0) = 1, θ(0) = 1.

f ′(∞)→ 0, θ(∞)→ 0.

 (3.19)
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The primes denotes the derivatives of the function f with respect to η, φ is the

nanoparticle volume fraction, n is the non-linear stretching parameter, M is the

magnetic parameter, K is the permeability parameter, R is the radiation param-

eter, Pr is the Prandtl number, Ec is the Eckert number, and Q is the heat

generation parameter which are formulated as:

M =
σfB

2
0

ρfax−1
, K =

νf
ak0

,

R =
4σ∗T 3

∞
knfk∗

, P r =
νf
αf
,

Ec =
U2
w

(cp)f (Tw − T∞)
, Q =

qx

(ρcp)fUw
.


To find the dimentionless form of skin friction coefficient the following calculation

are considered.

Cf =
τw|y=0

ρfU2
w(x)

, (3.20)

τw = µnf

(
∂u

∂y

)
y=0

.

where,

∂u

∂y
= axnf ′′(η)

√
a(n+ 1)

2ν
x

n−1
2 .

∂u

∂y
= axnf ′′(η)

√
a(n+ 1)

2ν
x

n−1
2 .

⇒ Cf =
µnf
ρfu2w

axnf ′′(η)

√
a(n+ 1)

2ν
x

n−1
2 ,

=
µf

ρfu2w(1− φ)2.5
ax

3n−1
2 f ′′(η)

√
a(n+ 1)

2ν
,

=
ρfν

ρfa2x2n(1− φ)2.5
ax

3n−1
2 f ′′(η)

√
a(n+ 1)

2ν
,

=
v

1
2

(1− φ)2.5a
1
2x

n+1
2

f ′′(η)

√
(n+ 1)

2
,

=
1

(1− φ)2.5Re
1
2
x

f ′′(η)

(
n+ 1

2

)
,

⇒ CfRe
1
2
x =

1

(1− φ)2.5
f ′′(η)

(
n+ 1

2

)
.
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Here Rex is the Reynolds number which is formulated as follows:

Re =
a

ν
x

n+1
2 .

The dimentional form of the local Nusselt number is formulated as follows,

Nux =
xqw

kf (Tw − T∞)
, (3.21)

where

qw =

(
−
(
knf +

16σ∗T 3
∞

3k∗

)(
∂T

∂y

))
y=0

As computed earlier,

∂T

∂y
= (Tw − T∞) θ′(η)

√
a(n+ 1)

2ν
x

n−1
2

⇒ Nux = −
x
(
knf + 16σ∗T 3

∞
3k∗

)(
∂T
∂y

)
y=0

kf (Tw − T∞)
,

= −
x
(
knf + 16σ∗T 3

∞
3k∗

)
kf (Tw − T∞)

(Tw − T∞) θ′(η)

√
a(n+ 1)

2ν
x

n−1
2 ,

= −knf
kf

(
1 +

4

3
R

)
x

n+1
2 θ′

(
a(n+ 1)

2ν

) 1
2

,

= −knf
kf

(
1 +

4

3
R

)
θ′
(
n+ 1

2

) 1
2
(
axn+1

2ν

) 1
2

,

= −knf
kf

(
1 +

4

3
R

)√
n+ 1

2
θ′(η)Re

1
2
x ,

⇒ Re
−1
2
x Nux = −knf

kf

(
1 +

4

3
R

)(
n+ 1

2

) 1
2

θ′(η).

3.4 Solution Methodology

One can observe that (3.15) is independent of θ ,so it can be solved first. The

ordinary differential equation (3.15) is solved using the shooting technique. The

notations listed below have been considered in order to transform the momentum
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equation into the system of first order ODEs.

f = Y1, f ′ = Y ′1 = Y2, f ′′ = Y ′′1 = Y ′2 = Y3, f ′′′ = Y ′3 .

Y ′1 = Y2, Y1(0) = 0.

Y ′2 = Y3, Y2(0) = 1.

Y ′3 = −(1− φ+ φ
ρs
ρf

)(1− φ)2.5
(
Y1Y3 −

2n

n+ 1
Y 2
2

)
−
(

2

n+ 1

)
Y2

[
K +M(1− φ)2.5

(
1 +

3
(
σs
σf
− 1
)
φ(

σs
σf

+ 2
)
−
(
σs
σf
− 1
)
φ

)]
, Y3(0) = s.

The aforementioned IVP will be solved by Runge-Kutta method of order four

using numbers. Furthermore, the missing condition s is selected in such a way

that the following condition must hold:

Y2(η∞, s) = 0.

The Newton’s method will be used to determine s. This approach has the following

iterative structure which is used to find the value of the missing condition s in a

systematic manner.

sn+1 = sn − Y2(η∞, s)
∂
∂s
Y2(η∞, s)

Let us introduce new notations which will be fruitful to develop a complete first

order initial value problem that will be solved using shooting technique.

∂Y1
∂s

= Y4,
∂Y2
∂s

= Y5,
∂Y3
∂s

= Y6.

These new notations lead to a change in the shape of Newton’s iterative scheme

as follows:

sn+1 = sn − Y2(η∞, s)

Y5(η∞, s)
.
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By differentiating the system of three first order ODEs with respect to the missing

condition s, we now obtain another system of ODEs.

Y ′4 = Y5, Y4(0) = 0.

Y ′5 = Y6, Y5(0) = 0.

Y ′6 = −(1− φ+ φ
ρs
ρf

)(1− φ)2.5
(
Y1y6− 2n

n+ 1

)
2Y2Y5

−
(

2

n+ 1

)
Y5

[
K +M(1− φ)2.5

(
1 +

3
(
σs
σf
− 1
)
φ(

σs
σf

+ 2
)
−
(
σs
σf
− 1
)
φ

)]
, Y6(0) = 1.

The following expression is the stoping criteria of Newton’s method,

| Y2(ξ∞, s) |< ε,

where ε > 0 is an arbitrarily small positive number. From now onward ε has been

taken as 10−10.

The shooting method will be used to numerically solve the equation (3.16), by

assuming that f is a known function.

Let us consider the following notations.

θ = Z1, θ′ = Z ′1 = Z2, θ′′ = Z ′2.

Consequently, the energy equation (3.16) is transformed into the system of first

order ODEs shown below.

Z ′1 = Z2, Z1(0) = 1.

Z ′2 =
kf

knf
(
1 + 4

5
R
)[− Pr( Ec

(1− φ)2.5

)
(f ′′)2

−
(
fθ′ −

(
2(2n− 1)

n+ 1

)
f ′Z2

)
Pr

(
1− φ+ φ

(
(ρCp)s
(ρCp)f

))
−
(

2

n+ 1

)
QZ1

]
, z2(0) = t.
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The Runge-Kutta method of order four is used to numerically solve the aforemen-

tioned initial value problem (IVP). The missing condition t in the aforementioned

initial value problem must meet the following relation.

Z1(η∞, t) = 0.

The Newton’s iterative formula given below will be used to solve the equation,

tn+1 = tn − Y1(η∞, t)

Y ′1(η∞, t
.

Let us consider the following notations,

∂Z1

∂t
= Z3

∂Z2

∂Z
= Z4. (3.22)

We now obtain a separate system of ODEs by differentiating the system of two

first order ODEs with regard to t.

Z ′3 = Z4, Z3(0) = 0.

Z ′4 = − kf

knf
(
1 + 4

5
R
)[− Pr( Ec

(1− φ)2.5

)
(f ′′)2

−
(
fθ′ −

(
2(2n− 1)

n+ 1

)
f ′Z2

)
Pr

(
1− φ+ φ

(
(ρCp)s
(ρCp)f

))
−
(

2

n+ 1

)
QZ1

]
, Z4(0) = 1.

The stoping condition of shooting method is defined as

| Z1(η∞, t) |< 10−10.

3.5 Representation of Tables and Graphs

In this section, the numerical findings for the momentum and energy equation

are discussed using tables and graphs. The numerical information displayed in

the tables and graphs is actually based on the variation of different dimentionless
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parameters employed in the ODEs. The effect of dimensionless parameters on the

skin friction coefficient and local Nusselt number has been thoroughly discussed

in Table 3.1 and 3.2. At the end of this section, graphical visualization of the

impact of various dimentionless parameters on velocity and temperature profile is

explained in detail.

3.5.1 Skin Friction Coefficient

Table 3.1 shows the effect of the nonlinear stretching parameter, magnetic parame-

ter, nanoparticle volume fraction, and permeability parameter on the skin friction

coefficient. The following findings have been noted.

• With rising values of the magnetics parameter, the skin friction coefficient

drops.

• The skin friction coefficient decreases with an increasing values of the nanopar-

ticle volume fraction.

• Due to the rising values of permeability parameter, the skin friction coeffi-

cient falls.

• The skin friction coefficient decreases as the nonlinear stretching parameter’s

values increase.

Table 3.1 includes the interval If for initial guesses that direct us toward a con-

vergent numerical solution.
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Table 3.1: Numerical results of (Rex)
1
2Cf for different parameters

M φ K n (Rex)
1
2Cf If

2.0 0.1 0.25 2.0 -2.701788 [-1.0, 1]

2.2 -2.749483 [-0.5, 1]

2.4 -2.796382 [-0.5, 1]

2.6 -2.842521 [-1.0, 1]

0.2 -3.540462 [-0.5, 1]

0.3 -4.635428 [-1.0, 1]

0.4 -6.157362 [-0.5, 1]

0.35 -2.732914 [-0.5, 1]

0.45 -2.763698 [-1.0, 1]

0.55 -2.794150 [-1.0, 1]

2.1 -2.737339 [-1.0, 1]

2.2 -2.772433 [-1.0, 1]

2.3 -2.807088 [-1.0, 1]

3.5.2 Local Nusselt Number

The impact of different dimentionless parameters on the local Nusselt number is

thoroughly discussed in Table 3.2. The following observation have been made from

table.

• The Nusselt number shows a decreasing behaviour due to an increasing Eck-

ert number.

• As radiation parameter values grow, the Nusselt number rapidly increases.

• The Nusselt number exhibits a quick increase as a result of rising non linear

stretching parameter.

• Due to an increase in the values of magnetic parameter, the Nusselt number

decreases.
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• The Nusselt number shows decreasinf pattern due to an increase in Prondtl

number.

• An increase in heat generation parameter results a sudden decrease in Nusselt

number.

The Iθ in Table 3.2 is the interval for initial guesses that direct us toward a

convergent numerical solution.

Table 3.2: Results of −(Rex)
−1
2 Nux when φ = 0.5 and K = 1.0

Ec R n M Pr Q −(Rex)
−1
2 Nux Iθ

0.2 0.5 2.0 2.0 6.2 0.1 0.652650 [-0.9,1.0]

0.3 -0.860422 [-0.9,1.0]

0.4 -2.373495 [-0.9,1.0]

0.5 -3.886568 [-0.9,1.0]

0.6 0.713863 [-0.9,1.0]

0.7 0.773891 [-0.9,1.0]

0.8 0.832802 [-0.9,1.0]

2.5 1.190183 [-0.9,1.0]

3.0 1.638368 [-0.9,1.0]

3.5 2.026851 [-0.9,1.0]

2.5 0.585093 [-1.0,1.0]

3.0 0.517789 [-1.0,1.0]

3.5 0.450743 [-1.0,1.0]

5.0 0.671614 [-1.0,1.0]

5.5 0.664855 [-0.9,1.0]

6.0 0.656423 [-1.0,1.0]

0.3 0.392177 [-0.8,0.9]

0.5 0.101935 [-1.0,1.0]

0.7 -0.228809 [-1.0,0.8]
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3.5.3 Velocity and Temperature Profiles

The behaviour of the velocity and temperature profile for different values of the

nanoparticle volume fraction φ with and without the magnetic field M is shown in

Figures 3.2, 3.3, 3.4, and 3.5. Increase in φ causes increase in horizontal velocity

and the thickness of the momentum boundary layer also increases. Similar to this,

the temperature profile is boosted as the volume percentage of nanoparticles is

increased.This is caused by the fact that when more solid particles are suspended

in the base fluid, the thermal conductivity of the fluid increases by increasing the

heat transmission. The thickness of the thermal boundary layer also increases as

a result of the change in temperature profile. Additionally, it can be seen from

these figures that, for the same values of φ, the effect of the magnetic field on the

nanoparticle volume fraction is greater when compared the temperature profile

with velocity profile.

The impact of the permeability parameter K on the velocity field and temper-

ature distribution is shown in Figures 3.6 and 3.7. An increase in K reduces the

thickness of the momentum boundary layer by strength the porous layer, and K

also improves the temperature distribution in the boundary layer region. Physi-

cally, Darcians body force is moving the heat from the solid wall to the flow region.

The effect of the nonlinear stretching sheet parameter n on the velocity and tem-

perature profile is depicted in Figures 3.8 and 3.10.The velocity profile is increased

as n is increased and the momentum boundary layer thickens. In contrast, a rise

in n causes a reduction in the temperature profile, which causes the heat transfer

to increase.

The variation of several values of the heat generation parameter Q on the tem-

perature profile is shown in Figure 3.11. The thermal boundary layer produces

heat whenever Q rises in a positive direction. This process thickens the thermal

boundary layer, which suggests that heat energy is released and thus raises the

temperature of the fluids.
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Figure 3.12 shows that the temperature profile increases as the Eckert number in-

creases. High Eckert number in nanofluids generates thermal energy more quickly

and intensely, which enhances the temperature distribution and, as a result, thick-

ens the thermal layer. This is because nanofluids is viscosity absorbs heat energy

from the flow which intansly the heat energy by frictional heating and transforms

it into internal energy, which then heats the nanofluid thermal energy gain.

The temperature distribution is affected by thermal radiation, as seen in Figure

3.13. It has been noted that the temperature distribution widens as the thermal

radiation parameter R rises. The fluid releases heat energy from the flow region in

response to an increase in the radiation parameter, which raises the temperature of

the nanofluid and cools the system as a result. When the radiation parameter has

a high value, the system produces more heat, which eventually raises the fluid’s

temperature and lengthens the thermal boundary layer.

Figures 3.14 and 3.15 illustrate that how the magnetic parameter M affects the

velocity and temperature. Unexpectedly, a larger magnetic force increases the

resistance to nanofluid flow. The thickness of the momentum boundary layer

decreased due to this reduction in velocity profile, however the thickness of the

thermal boundary layer increased, due to the Lorentz force created by the higher

values of M .

The effect of the Prandtl number on the temperature profile is depicted in Figure

3.9. The graph demonstrates that when the values of Pr rise, the temperature

profile is dropping. The graph clearly shows that an increase in Pr causes the

temperature distribution to decrease and reduced the thickness of the thermal

boundary layer. This suggests that the heat will spread quickly with higher values

of prandtl parameter.
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Figure 3.2: Impact of φ on f ′(η) when M=2

Figure 3.3: Impact of φ on f ′(η) when M=0
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Figure 3.4: Impact of φ on temperature profile when M=2

Figure 3.5: Impact of φ on temperature profile when M=0



MHD Radiative Nanofluid 42

Figure 3.6: Impact of K on f ′(η)
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Figure 3.7: Impact of K on temperature profile



MHD Radiative Nanofluid 43

Figure 3.8: Impact of n on f ′(η)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-0.2

0

0.2

0.4

0.6

0.8

1

s=0.38, kf=4.18, Q=0.1, Ec=0.2,

Cpf=4179, Cp s f=997.1,

s f=1.1, R=0.5

Pr=6.0, 6.4, 6.8, 7.2

Figure 3.9: Impact of Pr on the temperature profile.
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Figure 3.10: Impact of n on the temperature profile

Figure 3.11: Impact of Q on temperature profile
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Figure 3.12: Impact of Ec on the temperature profile
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Figure 3.13: Impact of R on the temperature profile
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Figure 3.14: Impact of M on f ′(η)
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Figure 3.15: Impact of M on temperature profile



Chapter 4

MHD Radiative Hybrid

Nanofluid Flow with Inclined

Magnetic Field

4.1 Introduction

This chapter extends the work of [25] by including hybrid nanofluid with an in-

clined magnetic field. The similarity transformations are used to turn the control-

ling nonlinear PDEs into a system of dimensionless ODEs. Applying the numeri-

cal method known as the shooting method yields the numerical solution of ODEs.

The final results for important parameters affecting f ′(η) and θ(η) .Tthe detailed

discussion of these tables and graphs, appears at the end of this chapter.

4.2 Mathematical Modeling

This section is dedicated to analyse the two-dimensional, MHD flow of hybrid-

nanofluid past a porous medium and nonlinear stretching sheet. The Titanium

TiO2 and Copper Cu are considered as hybrid nanoparticles and water as base

fluid. The area y > 0 was occupied by the flow. A magnetic field of force B

47
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is applied with the horizantal axis inclined at a γ angle. Additionally, the flow

direction is considered as the x-axis and the y-axis is normal to it (See Figure 3.1).

4.2.1 The Governing Equations

The governing model for the above problem is

∂u

∂x
+
∂v

∂y
= 0, (4.1)

ρhnf

(
u
∂u

∂x
+ v

∂u

∂y

)
= µhnf

(
∂2u

∂y2

)
− µhnf
k(x)

u− σhnfB2(x) sin2(γ)u, (4.2)

u
∂T

∂x
+ v

∂T

∂y
= αhnf

(
∂2T

∂y2

)
+

µhnf
(ρCp)hnf

(
∂u

∂y

)2

− 1

(ρCp)hnf

(
∂qr
∂y

)
+

q

(ρCp)hnf
(T − T∞). (4.3)

alongwith the following boundary conditions;

u = Uw(x) = axn, v = 0, T = Tw, at y = 0.

u→ 0, T → T∞, as y →∞.

 (4.4)

4.2.2 Similarity Transformations

The following similarity transformations will be used to transform (4.1)-(4.4) into

a system of ODEs:

ψ(x, y) =

√
2νfa

n+ 1
x

n+1
2 f(η),

η = y

√
a(n+ 1)

2νf
x

n−1
2 ,

θ(η) =
T − T∞
Tw − T∞

,


(4.5)

where ψ stands for the stream function, η denotes the similarity independent

variable, f ′ and θ are the dimensionless velocity and temperature profiles. The
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thermophysical properties of hybrid nanofluid are stated as follow [38]:

ρhnf =

[
(1− φ2) ((1− φ1)ρf + φ1ρs1)

]
+ φ2ρs2,

µhnf =
µf

(1− φ1)2.5(1− φ2)2.5
,

(ρCp)hnf = (1− φ2) ((1− φ1)(ρCp)f + φ1(ρCp)s1) + φ2(ρCp)s2,

khnf
kf

=
ks2 + 2knf − 2φ2(2knf − ks2)
ks2 + 2knf + 2φ2(2knf − ks2)

.
ks1 + 2kf − 2φ1(2kf − ks1)
ks1 + 2kf + 2φ1(2kf − ks1)

,

σhnf
σf

= 1 +

3

[
σs1φ1+σs2φ2

σf
− (φ1 + φ2)

]
(

2 + σs1+σs2
σf

)
−
(
σs1φ1+σs2φ2

σf

)
+ (φ1 + φ2)

,

αhnf =
khnf

(ρCp)hnf
.

where φ1, φ2, ρs1, ρs2, ρhnf , µhnf , (ρCP )s1, (ρCP )s2, (ρCP )hnf , khnf , ks1, ks2, αhnf

are respectivly the nanoparticles solid volume fraction of Titanium, nanoparticles

solid volume fraction of Copper,the density of the solid nanoparticles of Titanium,

the density of the solid nanoparticles of Copper, the density of hybrid nanofluid,

the viscosity of hybrid nanofluid, the heat capacitance of Titanium nanoparticles,

the heat capacitance of Copper nanoparticles, the heat capacitance of hybrid-

nanofluid, the thermal conductivity of the hybridnanofluid, the thermal conduc-

tivity of the Titanium nanoparticles and the thermal conductivity of the Copper

nanoparticles and the thermal diffusivity of the hybrid nanofluid.

4.3 Transformation of PDEs into ODEs

4.3.1 The Governing Equation

Here, the transformation of (4.1)-(4.3) into a system of ODEs using the similar-

ity transformation will be discussed. The verification of the continuity equation

through similarity transformation is already discussed in chapter 3. Now, the

conversion of (4.2) into the dimensionless form will be discussed. The required
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derivatives are already calculated in chapter 3. By using those values:

ρhnfa
2x2n−1

(
nf ′2(η)− (n+ 1)

2
f(η)f ′′(η)

)
= µhnfa

2x2n−1
(
n+ 1

2ν

)
f ′′′(η)

− µhnf
a2x2n−1f ′(η)K

νf
− σhnfax2n−1 sin2 γB2

0f
′(η).

⇒ ρhnfa
2x2n−1

(
n+ 1

2

)[(
2n

n+ 1

)
f ′(η)− f(η)f ′′(η)

]
= µhnfa

2x2n−1
(
n+ 1

2ν

)
.[

f ′′′(η)−
(

2ν

n+ 1

)(
K

ν
+ sin2 γ

σhnf
µhnf

B2
0

a

)
f ′(η)

]
.

⇒ ν
ρhnf
µhnf

(
n+ 1

2

)[(
2n

n+ 1

)
f ′(η)− f(η)f ′′(η)

]
= f ′′′(η)−

(
2

n+ 1

)
f ′(η)[

K + sin2 γν
σhnf
µhnf

B2
0

a

]
.

⇒ f ′′′(η) + (1− φ1)
2.5(1− φ2)

2.5

[
(1− φ2)

(
1− φ1 + φ1

(
ρs1
ρf

)
+ φ2

ρs2
ρf

)]
(
f(η)f ′′(η)− 2n

n+ 1

)
−
(

2

n+ 1

)
f ′(η)

[
K +M sin2 γ(1− φ1)

2.5(1− φ2)
2.5

(
1 +

3

[
σs1φ1+σs2φ2

σf
− (φ1 + φ2)

]
(

2 + σs1+σs2
σf

)
−
(
σs1φ1+σs2φ2

σf

)
+ (φ1 + φ2)

)]
= 0.

⇒ f ′′′(η) = −(1− φ1)
2.5(1− φ2)

2.5

[
(1− φ2)

(
1− φ1 + φ1

(
ρs1
ρf

)
+ φ2

ρs2
ρf

)]
(
f(η)f ′′(η)− 2n

n+ 1

)
+

(
2

n+ 1

)
f ′(η)

[
K +M sin2 γ(1− φ1)

2.5(1− φ2)
2.5

(
1 +

3

[
σs1φ1+σs2φ2

σf
− (φ1 + φ2)

]
(

2 + σs1+σs2
σf

)
−
(
σs1φ1+σs2φ2

σf

)
+ (φ1 + φ2)

)]
.

Let

A =

[
(1− φ2)

(
1− φ1 + φ1

(
ρs1
ρf

)
+ φ2

ρs2
ρf

)
.

B =

(
1 +

3

[
σs1φ1+σs2φ2

σf
− (φ1 + φ2)

]
(

2 + σs1+σs2
σf

)
−
(
σs1φ1+σs2φ2

σf

)
+ (φ1 + φ2)

)
.

⇒ f ′′′(η) = −(1− φ1)
2.5(1− φ2)

2.5A

(
f(η)f ′′(η)− 2n

n+ 1

)
+

(
2

n+ 1

)
f ′(η)

[
K +M sin2 γ(1− φ1)

2.5(1− φ2)
2.5B. (4.6)
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Now, for the procedure for the conversion of equation (4.3) into the dimensionless

form useful derivatives are picked from chapter 3 to plug in the following manner.

abx3n−2
[
2n− 1f ′(η)θ − n+ 1

2
θ′f(η)

]
= αhnf

ab(n+ 1)

2ν
x3n−2θ′′

+
µhnf

(ρCp)hnf

a3(n+ 1)

2ν
f ′′

2
(η)x3n−1 − 1

(ρCp)hnf

16σ∗
3k∗

T 3
∞
ab(n+ 1)

2ν
x3n−2θ′′

− q

(ρCp)hnf
(T − T∞) .

⇒ (2n− 1)f ′(η)θ − (
n+ 1

2
)θ′f(η) =

khnf
(ρCp)hnf

n+ 1

2v
θ′′

− 1

(ρCp)hnf

16σ∗
3k∗

T 3
∞

(n+ 1)x

2ν
θ′′ +

µhnf
(ρCp)hnf

a3(n+ 1)x

2νb
f ′′

2
(η)

− q(ρCp)hnfx1−nθ.

⇒ θ′′ +
16σ∗
knf3k∗

T 3
∞θ
′′ +

µhnfa
2

khnfb
xf ′′ − 2(2n− 1)

n+ 1

(ρCp)hnf
khnf

νf ′θ

+
(ρCp)hnf
khnf

νf ′θ +
2qνx1−n

khnfa(n+ 1)
θ = 0.

⇒ θ′′ +
4R

3
θ′′ +

µhnfa
2x

khnfb
f ′′ − 2(2n− 1)

n+ 1

(ρCp)hnf
khnf

νf ′θ +
(ρCp)hnf
khnf

νf ′θ

+
2qνx1−n

khnfa(n+ 1)
θ = 0.

⇒ θ′′
(

1 +
4R

3

)
+

µfa
2x

khnfb(1− φ−1)2.5(1− φ2)2.5
(f ′′)2

+

(
fθ′ − 2(2n− 1)

n+ 1
f ′θ

)
α(ρCp)hnfν

khnfα
+

(
2

n+ 1

)
qxν

khnfaxn
θ = 0.

⇒ θ′′
(

1 +
4R

3

)
+

νρa2x

knfb(1− φ1)2.5(1− φ2)2.5
(f ′′)2

+

(
fθ′ − 2(2n− 1)

n+ 1
f ′θ

)
ν

α

α(ρCp)hnf
khnf

+
2

n+ 1

qx

knf (ρCp)f
ν(ρCp)fθ = 0.

⇒ θ′′
(

1 +
4R

3

)
+

k

khnf

ν

α

a2x2n−1

(ρCp)fb(1− φ1)2.5(1− φ2)2.5x2n−1
(f ′′)2

+
k

khnf

(
fθ′ −

(
2(2n− 1)

n+ 1

)
f ′θ

)
ν

α

(ρCp)hnf
(ρCp)f

+
k

khnf

(
2

n+ 1

)
qx

(ρCp)faxn
ν

α
θ = 0.

⇒ knf
kf

(
1 +

4R

3

)
θ′′ + Pr

(
Ec

(1− φ1)2.5(1− φ2)2.5

)
(f ′′)2

+

(
fθ′ −

(
2(2n− 1)

n+ 1

)
f ′θ

)
Pr

(
(1− φ2)

(
1 + φ1 + φ1

(ρCp)s1
(ρCp)f

+ φ2
(ρCp)s2
(ρCp)f

))
+

(
2

n+ 1

)
Qθ = 0.
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⇒ θ′′ =

(
kf
knf

)
1(

1 + 4R
3

)[Pr( Ec
(1− φ1)2.5(1− φ2)2.5

)
(f ′′)2

+

(
fθ′ −

(
2(2n− 1)

n+ 1

)
f ′θ

)
Pr

(
(1− φ2)

(
1 + φ1 + φ1

(ρCp)s1
(ρCp)f

+ φ2
(ρCp)s2
(ρCp)f

))
+

(
2

n+ 1

)
Qθ

]
.

Let

C =

(
(1− φ2)

(
1 + φ1 + φ1

(ρCp)s1
(ρCp)f

+ φ2
(ρCp)s2
(ρCp)f

))
.

⇒ θ′′ = −
(
kf
knf

)
1(

1 + 4R
3

)[Pr( Ec
(1− φ1)2.5(1− φ2)2.5

)
(f ′′)2

−
(
fθ′ −

(
2(2n− 1)

n+ 1

)
f ′θ

)
PrC +

(
2

n+ 1

)
Qθ

]
. (4.7)

The dimensionless form of the governing model is

⇒ f ′′′(η) + (1− φ1)
2.5(1− φ2)

2.5A

(
f(η)f ′′(η)− 2n

n+ 1

)
−
(

2

n+ 1

)
f ′(η)

[
K +M sin2 γ(1− φ1)

2.5(1− φ2)
2.5B

]
= 0. (4.8)

⇒ θ′′ +

(
kf
knf

)
1(

1 + 4R
3

)[Pr( Ec
(1− φ1)2.5(1− φ2)2.5

)
(f ′′)2

+

(
fθ′ −

(
2(2n− 1)

n+ 1

)
f ′θ

)
PrC +

(
2

n+ 1

)
Qθ

]
= 0. (4.9)

The detailed discussion for the transformation of (4.5) into the dimentionless form

have been done in Chapter 3. Hence utilizing those as follows:

f(0) = 0, f ′(0) = 1, θ(0) = 1.

f ′(∞)→ 0, θ(∞)→ 0.

 (4.10)

For, the conversion of dimentional physical parameter into non dimentional some

necessary derivations are given below. The dimentional form of skin fraction cof-

ficient is,

Cf =
τw|y=0

ρfU2
w(x)

.
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The steps listed below can help to achieve the dimensionless form of Cf .

Since

τw = µhnf

(
∂u

∂y

)
y=0

.

⇒ Cf =
µhnf
ρfu2w

(
∂u

∂y

)
y=0

.

⇒
(
∂u

∂y

)
= axnf ′′(η)

√
a(n+ 1)

2ν
x

n−1
2 .

⇒ Cf =
µhnf
ρfu2w

axnf ′′(η)

√
a(n+ 1)

2ν
x

n−1
2 ,

=
µf

ρfu2w(1− φ1)2.5(1− φ2)2.5
ax

3n−1
2 f ′′(η)

√
a(n+ 1)

2ν
,

=
ρfν

ρfa2x2n(1− φ1)2.5(1− φ2)2.5
ax

3n−1
2 f ′′(η)

√
a(n+ 1)

2ν
,

=
v

1
2

(1− φ1)2.5(1− φ2)2.5a
1
2x

n+1
2

f ′′(η)

√
(n+ 1)

2
,

=
1

(1− φ1)2.5(1− φ2)2.5Re
1
2
x

f ′′(η)

(
n+ 1

2

)
.

Hence, the dimentionless form of the skin friction cofficient is,

⇒ CfRe
1
2
x =

1

(1− φ1)2.5(1− φ2)2.5
f ′′(0)

(
n+ 1

2

)
, (4.11)

where Re denotes the Renold number which is defind as Rex = xux(x)
νf

.

Now the dimentionless form of local Nusselt number will be derived.

Nux =
xqw

kf (Tw − T∞)
.

qw =

(
−
(
knf +

16σ∗T 3
∞

3k∗

)(
∂T

∂y

))
y=0

.

⇒
(
∂T

∂y

)
= (Tw − T∞) θ′(η)

√
a(n+ 1)

2ν
x

n−1
2 .
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⇒ Nux = −
x
(
khnf + 16σ∗T 3

∞
3k∗

)(
∂T
∂y

)
y=0

kf (Tw − T∞)
.

= −
x
(
khnf + 16σ∗T 3

∞
3k∗

)
kf (Tw − T∞)

(Tw − T∞) θ′(η)

√
a(n+ 1)

2ν
x

n−1
2 ,

= −khnf
kf

(
1 +

4

3
R

)
x

n+1
2 θ′

(
a(n+ 1)

2ν

) 1
2

,

= −khnf
kf

(
1 +

4

3
R

)
θ′
(
n+ 1

2

) 1
2
(
axn+1

2ν

) 1
2

,

= −khnf
kf

(
1 +

4

3
R

)√
n+ 1

2
θ′(η)Re

1
2
x .

Hence, the Nusselt number in non dimentional form will be:

⇒ Re
−1
2
x Nux = −khnf

kf

(
1 +

4

3
R

)(
n+ 1

2

) 1
2

θ′(0),

where Reynolds number Re is represented by the equation Rex = xux(x)
νf

.

4.4 Solution Methodology

The shooting method has been applied for the solution of the ordinary differential

equation (4.8). The following notations have been taken into account:

f = Y1, f ′ = Y ′1 = Y2, f ′′ = Y ′′1 = Y ′2 = Y3, f ′′′ = Y ′3 .

The momentum equation is then transformed into the system of first order ODEs

as shown below.

Y ′1 = Y2, Y1(0) = 0.

Y ′2 = Y3, Y2(0) = 1.

Y ′3 = −(1− φ1)
2.5(1− φ2)

2.5A

(
Y1Y3 −

2n

n+ 1
Y 2
2

)
−
(

2

n+ 1

)
Y2

[
K +M sin2 γ(1− φ1)

2.5(1− φ2)
2.5B

]
, Y3(0) = s.
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where,

A =

[
(1− φ2)

(
1− φ1 + φ1

(
ρs1
ρf

)
+ φ2

ρs2
ρf

)
.

B =

(
1 +

3

[
σs1φ1+σs2φ2

σf
− (φ1 + φ2)

]
(

2 + σs1+σs2
σf

)
−
(
σs1φ1+σs2φ2

σf

)
+ (φ1 + φ2)

)
.

Runge-Kutta method of order 4 have been used to solve the aforementioned IVP.

Choose the missing condition s in such a way that:

Y2(η∞, s) = 0.

To determine s, Newton’s method will be applied. The iterative structure for this

method is as follow:

sn+1 = sn − Y2(η∞, s)
∂
∂s
Y2(η∞, s)

We also introduce the following notations.

∂Y1
∂s

= Y4
∂Y2
∂s

= Y5
∂Y3
∂s

= Y6.

The form of the Newton’s iterative scheme changes as a result of these new nota-

tions.

sn+1 = sn − Y2(η∞, s)

Y5(η∞, s)
.

We now obtain three more of ODEs by differentiating the system of three first

order ODEs with w.r.t. to s.

Y ′4 = Y5, Y4(0) = 0.

Y ′5 = Y6, Y5(0) = 0.

Y ′6 = −(1− φ1)
2.5(1− φ2)

2.5A

(
Y1Y6 −

2n

n+ 1

)
2Y2Y5

−
(

2

n+ 1

)
Y5

[
K +M sin2 γ(1− φ)2.5(1− φ2)

2.5B

]
, Y6(0) = 1.
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Following threshold is set for the approximation of numerical results.

| Y2(ξ∞, s) |< ε,

where ε is an arbitrarily small positive number. The value ofε is takes been 10−10

throughout this chapter.

After obtaining the numerical solution for f , equation (4.9) is solved by incoprating

the shooting technique again .Since, in equation (4.9) θ is coupled with f here we

utilize the previously obtained numerical solution .Following notations are used

for this purpose.

θ = Z1, θ′ = Z ′1 = Z2, θ′′ = Z ′2

As a result, the energy equation (4.9) is converted into the following system of

first order ODEs.

Z ′1 = Z2, Z1(0) = 1.

Z ′2 =
kf

khnf
(
1 + 4

5
R
)[− Pr( Ec

(1− φ)2.5(1− φ2)2.5

)
(f ′′)2

−
(
fθ′ −

(
2(2n− 1)

n+ 1

)
f ′Z2

)
PrC −

(
2

n+ 1

)
QZ1

]
, Z2(0) = t.

where,

C =

(
(1− φ2)

(
1 + φ1 + φ1

(ρCp)s1
(ρCp)f

+ φ2
(ρCp)s2
(ρCp)f

))
.

The above initial value problem (IVP) will be numerically solved by RK-4 tech-

nique. The missing condition t in the aforementioned starting value problem must

meet the following relation.

Z1(η∞, t) = 0.



Hybrid Nanofluid Flow with Inclined Magnetic Field 57

The Newton’s iterative method will be used to find the missing initial condition

for convergent numerical results.

tn+1 = tn − Y1(η∞, t)

∂Y1(η∞, t)

∂t

.

We further introduce the following notations,

∂Z1

∂t
= Z3

∂Z2

∂Z
= Z4.

Following two ODEs are obtained by differentiating the system of two first order

ODEs with regard to t.

Z ′3 = Z4 Z3(0) = 0

Z ′4 = − kf

khnf
(
1 + 4

5
R
)[− Pr( Ec

(1− φ1)2.5(1− φ2)

)
(f ′′)2

−
(
fθ′ −

(
2(2n− 1)

n+ 1

)
f ′Z2

)
PrC −

(
2

n+ 1

)
QZ1

]
Z4(0) = 1.

The stoping criteria for shooting method’s is defined as following:

| Z1(η∞, t) |< 10−10.

4.5 Representation of Graphs and Tables

The main goal of this study is to investigate the effect of various parameters on

velocity and temperature profile as well as on the skin fraction coefficient and

Nusselt number. Through graphs and tables, the effect of variation of various

dimentionless parameters are depicted, including nonlinear stretching parameter,

magnetic parameter, thermal radiation parameter and nanoparticle volume frac-

tion. Table 4.1 and 4.2 display the numerical results for the skin friction coefficient

and local Nusselt number for various values of dimentionless parameters.
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4.5.1 Skin Friction Coefficient

The influence of the nanoparticle volume friction, magnetic parameter, nonlinear

sheet parameter and permeability parameter on the skin friction coefficient is

shown in Table 4.1. The following discoveries have been made.

• As the nanoparticle volume friction φ1 and φ2 increases, so does the skin

friction coefficient.

• The skin friction coefficient decreases as the magnetics parameter’s values

increase..

The interval If for an initial guess that point us in the direction of a convergent

numerical solution is included in Table 4.1.

Table 4.1: Results of (Rex)
1
2Cf when γ = π/3

φ1 φ2 M n K (Rex)
1
2Cf If

0.1 0.1 2.0 2.0 1.0 -2.644797 [-1.0, 0.8]

0.2 -2.457452 [-1.0, 0.8]

0.3 -2.256823 [-1.0, 0.5]

0.4 -2.051066 [-1.0, 0.7]

0.2 -2.583704 [-1.0, 0.5]

0.3 -2.450344 [-1.0, 0.3]

0.4 -2.266126 [-1.0, 0.3]

2.5 -2.713690 [-1.0, 0.5]

3.0 -2.780913 [-1.0, 0.3]

3.5 -2.846573 [-1.0, 0.5]

2.5 -2.803630 [-1.0, 0.4]

3.0 -2.953928 [-1.0, 0.5]

3.5 -3.096941 [-1.0, 0.1]

1.5 -2.800148 [-1.0, 0.8]

2.0 -2.947443 [-1.0, 0.8]

2.5 -3.087776 [-1.0, 0.5]
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4.5.2 Local Nusselt Number

In Table 4.2, the effects of several dimensionless parameters on the local Nusselt

number is covered in detail. From the table, the following observation has been

made.

• Due to a rising Eckert number, the Nusselt number exhibits a declining

behaviour.

• The Nusselt number drops as the values of the magnetic parameter grow.

• The Nusselt number rises as the values of the radiation parameters do.

• Due to a rise in the Prondtl number, the Nusselt number exhibits a modest

increase.

• An abrupt decrement is noticed in Nusselt number due to minner increment

in the nanoparticle volume fraction.

• Nusselt number somewhat decreases as heat generating parameter increases.

The Iθ in Table 4.2 is the interval for initial guesses that direct us toward a

convergent numerical solution.
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Table 4.2: Results of −(Rex)
−1
2 Nux when γ = π/3, n = 2.0, K = 1.0

Ec M R Pr φ1 Q φ2 −(Rex)
−1
2 Nux Iθ

0.4 2.0 0.1 6.2 0.1 0.1 0.1 1.928239 [-1.7, 0.7]

0.5 1.206224 [-1.5, 0.7]

0.6 0.484208 [-0.7, 0.7]

0.7 -0.237807 [-0.7, 0.7]

2.5 1.804006 [-0.8, 0.6]

3.0 1.681066 [-0.7, 0.7]

3.5 1.559417 [-0.7, 0.7]

0.2 2.082397 [-0.8, 0.7]

0.3 2.229345 [-1.1, 0.7]

0.4 2.370025 [-0.7, 0.7]

6.6 1.964722 [-0.7, 0.7]

7.0 1.998955 [-0.7, 0.7]

7.4 2.031164 [-0.7, 0.7]

0.2 1.223656 [-0.7, 0.7]

0.3 0.514362 [-0.7, 0.7]

0.4 -0.282648 [-0.7, 0.7]

0.2 1.782450 [-0.7, 0.7]

0.3 1.629594 [-0.7, 0.7]

0.4 1.468571 [-0.7, 0.7]

0.2 0.918531 [-0.8, 0.7]

0.3 -0.436449 [-0.7, 0.7]

0.4 -2.400721 [-0.8, 0.7]

4.5.3 Velocity Profile

The effect of permeability parameter on the velocity profile is depicted in Figure

4.1. From the graph, it can be seen that due to a slight increment in the value of

K, the velocity profile behaves opositly. This occurs because a rise in K amplifies
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the porous layer and consequently thins the momentum boundary layer.

The effect of the magnetic parameter is exbited in figures 4.2. The velocity pro-

file declines with increasing values of M . It’s interesting to note that a stronger

magnetic force increases the flow resistance of a nanofluid. The velocity profile

shrinks, which decreases the thickness of the momentum boundary layer.

The velocity profile grows as the values of nanoparticle volume fraction φ1 and

φ2 are increased, as can be seen through Figures 4.3 and 4.4. Physically speaking,

it means that as the volume fraction of nanoparticles increases, the flow is weak-

ened and the thickness of the momentum boundary layer decreases.

Figure 4.5 shows the relationship between velocity profile and the inclined mag-

netic angle. From graph it is clear that the inclined magnetic angle in inversally

proportion to that of velocity profile. Physically, as the inclination angle decreases,

the Lorentz forces decreases. This causes the velocity profile to rise.

The effect of nonlinear stretching parameter on the velocity distribution can be

seen in figure 4.6. The velocity distribution has an increasing trend by increasing

the values of n. Larger values of n are what cause this increase in the non-

dimensional stretching velocity, which tends to cause more deformation in the

liquid. This phenomena demonstrates that as the values of n increase, the related

momentum boundary layers become thicker.
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Figure 4.1: Influence of K on the velocity profile
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Figure 4.2: Influence of M on the velocity profile.
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Figure 4.3: Influence of φ1 on the velocity profile.
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Figure 4.4: Influence of φ2 on the velocity profile.
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Figure 4.5: Influence of γ on the velocity profile.
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Figure 4.6: Influence of n on the velocity profile.
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4.5.4 Temperature Profile

The effect of the magnetic parameter on the temperature profile is depicted in Fig-

ure 4.7. The temperature profile grows with increasing values of M . Physically,

when M increases, the Lorentz force in the magnetic field gets greater, increasing

the thickness of the thermal boundary layer.

Figures 4.8 and 4.9 display the impact of φ1 and φ2 on the temperature distri-

bution. By rising the values of φ1 and φ2 the temperature distribution show the

increasing behavior.

The temperature distribution for decreasing values of inclination angle shows de-

creasing behaviour and this phenomenon can be seen in Figure 4.10. Physically,

decreasing the angle of inclination increases the Lorentz force, which produces

more heat and lowers the temperature profile.

The effect of nonlinear stretching parameter on temperature distribution is seen

in Figure 4.11. The temperature distribution is lowered as n is increased.

The effect of the radiation parameter on the temperature distribution is depicted

in Figure 4.12. The temperature distribution is improved by raising the values of

R. Greater values of the radiation parameter add more heat to the system, which

eventually raises the fluid’s temperature and thickens the thermal boundary layer.

Figure 4.13, shows the impact of the Prandtl number on the temperature distribu-

tions. Since Pr is directly proportionate to the viscous diffusion rate and inversely

related to the thermal diffusivity, so the thermal diffusion rate suffers a reduction

for the larger values of Pr and subsequently, the temperature of the fluid drops

significantly. Moreover, a decrement in the thermal boundary layer thickness has

been noted.

The impact of heat generation on the temperature profile can be seen in Figure

4.14. It is observed that for an increasing values of Q more heat is generated,

because of this temperature and thermal boundary layer thickness increases.
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Figure 4.7: Impact of M on the temperature profile.
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Figure 4.8: Impact of φ1 on the temperature profile.
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Figure 4.9: Impact of φ2 on the temperature profile.
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Figure 4.10: Impact of γ on the temperature profile.
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Figure 4.11: Impact of n on the temperature profile.
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Figure 4.12: Impact of R on the temperature profile.
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Figure 4.13: Impact of Pr on the temperature profile.
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Figure 4.14: Impact of Q on the temperature profile.



Chapter 5

Conclusion

In this thesis, Jafar et al [25] work is examined and expanded on in light of

the impact of an inclined magnetic field and hybrid nanofluid. First of all, us-

ing appropriate similarity transformations, momentum and energy equations are

transformed into ODEs. Numerical solutions to the modified ODEs have been

discovered using the shooting technique. The results are presented as tables and

graphs for velocity, temperature profiles as well as for skin friction cofficient and

Local Nusselt number using various values of the governing physical parameters.

The following is the summary of the present research:

• The velocity profile falls as the permeability parameterK values rise, whereas

the temperature profile rises.

• The velocity profile decreases while the temperature distribution increases,

as the magnetic parameter M increases.

• Both the velocity and temperature profile rise with the rising values of φ1

and φ2.

• The velocity profile shows an increasing behaviour as a result of decreasing

values for inclined magnetic angle γ.

• The decreasing values of inclined magnetic angle γ cause a decrease in the

Nusselt number.

70
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• While increasing the values of nonlinear stretching parameter n causes a

decrease in the temperature profile but an increase in the skin friction coffi-

cient.

• The temperature profile decreases as the Prondtl number Pr increases.

• The numerical values of the temperature profile θ(η) are raised as a result

of the ascending values of radiation parameter R.

• Due to the ascending values of heat generation parameter Q, the value of

Local Nusselt number Nux is increased.
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