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Abstract

Hybrid nanofluids are introduced as heat transfer fluids with greater surface sta-
bility, diffusion and dispersion capabilities compared to the traditional nanofluids.
In this thesis, flow, convective heat transport, mass concentration and volumet-
ric entropy generation in Cattaneo-Christov over Powell-Eyring hybrid nanofluid
including magnetic field effects are investigated. Hybrid nanofluid occupies the
space over the uniform horizontal porous stretching surface with velocity slip at
the interface. Effects of viscous dissipation and linear thermal radiation are also
included in the flow model. Mathematical equations for conservation of mass,
momentum, energy, mass concentration and entropy are simplified under the as-
sumptions of boundary layer flow of Powell-Eyring hybrid nanofluid. Similarity
solutions are obtained by transformation of governing partial differential equations
to ordinary differential equations, using similarity variables. Shooting method is
then adopted to find the approximate solutions of reduced ordinary differential
equations. The influence of various physical parameters on the velocity profile,
temperature distribution, concentration profile, skin friction coefficient, Nusselt
number, Sherwood number and entropy generation are studied and presented in
the graphical and tabular forms. The results obtained reveal that there is an
enhancement in the rate of heat transfer with a rise in the nanoparticle volume
fraction and permeability parameter. The temperature distribution is also influ-
enced by the presence of the relaxation time parameter, Eckert number, thermal

radiation and nanoparticle volume fraction.
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Chapter 1

Introduction

Hybrid nanofluids are a mixture of metal, polymeric or non-metallic nano-sized
strengths with base fluid (water, ethylene, glycol, oil and many others) used to
enhance the rate of heat transfer in a variety of applications. Hybrid nanofluid
has a higher heat transfer rate than pure fluid. Entropy generation is the quantity
of entropy that is usually produced during the irreversible process by the flow of
heat across thermal resistance and some other irreversible pocesses like diffusion,

chemical reaction, joule heating etc.

Some of the most important industrial applications of heat transfer by fluid flow are
solar thermal systems, food processing techniques, fabrication of composite mate-
rials, thermal insulation, oil recovery, and subterranean water transportation. On
a horizontal stretching sheet, the momentum and heat transfer in a laminar liquid
layer are analysed by Andersson et al.[1]. Under the effects of suction/injection,
viscous dissipation, and thermal radiation, an analysis of the steady non-linear vis-
cous flow of an incompressible viscous fluid across a horizontal surface of changing
temperature with a power-law velocity is provided by Cortell [2]. By utilizing
porous materials, Ali et al. [3] examined enhanced thermal characteristics and
heat transfer of phase change material. Extended surfaces, heat pipes, and the
inclusion of highly conductive nanoparticles can improve the heat transmission of
PCMs. Ghadikolaei et al. [4] examine the flow and heat transfer of a homogenous,
incompressible fluid over a strecthing sheet. To understand thermal as well as fluid

1



Introduction 2

flow analysis, readers are recommended to study [5-11]. These uses were expected
while manufacturing nanofluids by Choi [12] to improve the heat transmission ca-
pabilities of conventional fluids. Thermodynamics analysis, Newtonian and non-
Newtonian fluid models, different flow geometries, bounding surface conditions,
shape and type of nanoparticles, nanoparticle concentration and the effect of ex-
ternal forces etc. were all taken into consideration by researchers shortly after
the introduction of nanofluids. Qing et al. [13, 14] examine entropy generation on
porous medium across stretching /shrinking sheet using the MHD Casson nanofluid
model. Tausif et al. [15] calculated the melting heat transfer (MHT) boundary
layer emission of a Casson fluid containing suspended ZrO; nanoparticles of four
distinct shapes across a flat surface. Two distinct scenarios of controlling nanopar-

ticles (i.e active and passive control) have been taken into consideration.

Relevant research on nanofluid flow and heat transfer processes, particularly over
large moving surfaces can be found in [16-23]. Although it is important to con-
sider the concentration of nanoparticles, their form, size, and interactions with
one another, adding nanoparticles to a Newtonian fluid often results in a non-
Newtonian behaviour. Additionally, abrupt motion and temperature changes can

affect viscosity and thermal conductivity.

Suresh et al. [24] expanded the concept of nanofluids and introduced hybrid
nanofluids by incorporating two different types of nanoparticles into a base fluid.
Devi and Devi [25, 26] numerically examine the mathematical model of 3D
MHD flow of Cu-Al,O3/H,O Hybrid and conventional nanofluids over the sur-
face that is linearly extending in one direction. Comparison of the heat transfer
rates between hybrid and traditional nanofluids revealed that the rate of heat

transfer of hybrid nanofluid Cu-Al;/H,O is more as compare to nano-fluid Cu-

H, 0.

Afrand et al. [27] keeping up the same diretion and concentrating on the im-
pact of nanoparticle concentration on magnetite FezO4-Ag/Engine Oil hybrid
nanofluid. They came to the conclusion that shear rates cause the viscosities
of non-Newtonian samples to drop, indicating that the nanofluid samples exhibit

shear thinning behaviour. Hussain et al. [28] describe results for Cu-Al O3/Hy O
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hybrid nanofluid is flowing inside the blocked cavity. They acquire FEM for nu-
merical solutions and concentrated on physical factors and how they affected hy-
brid nanofluids heat transfer properties.

Acharya et al. [29] examined the impact of Hall current on the radiative trans-
port of the hybrid nanofluid over the rotating disc. For this numerical study they
considered Cu-Ti0Os/H, O hybrid nanofluid and utilizing the shooting method sim-
ilarity solutions are obtained. Temperature profiles are found to be higher when
compared to traditional nanofluid, hybrid nanofluid’s. Additionally, the Hall pa-
rameter reduces nanofluid temperature and increases radial skin friction at the
border. Maskeen et al. [30] discuss numerical soltions for the effects of heat trans-
fer and flow characteristics of Cu-Al,O3/H; O hybrid nanofluid flowing across an
expanding cylinder. They incorporated linear thermal radiation and Lorentz mag-
netic forces into their model. They demonstrated that the hybrid nanofluid is

more efficient than traditional nanofluids in heat transfer procedures.

Aziz et al. [31] numerical calculations are made for the hybrid Powell-Eyring
nanofluid flow, heat transfer, and total volumetric entropy analysis. Hybrid nanofl-
uids are made by adding copper and alumina nanoparticles to water. The water-
based hybrid nanofuid covers an infinitely porous flat surface, and the flow is
produced as a result of the surface being stretched. Velocity slip is also expected
to occur at the interface. Analysis of the combined effects of thermal radiation and
viscous dissipation on the system’s total entropy, flow and temperature profiles,

and rate of heat transfer is the main objective.

Ghadikolaei et al. [32] examin the thermophysical characteristics of 17%0,-Cu/Hy O
hybrid nanofliud with shape factor when Lorentz forces are present. Jamshed et
al. [33] the Cattaneo-Cahristov heat flux theory to study the flow, heat trans-
fer, and entropy formation of an electrically conducting non-Newtonian hybrid
nanofluid across a stretched surface. For the hybrid nanofluid, the Casson fluid
model is used combined with slip and convective boundary conditions at the sur-
face. The flow is created by nonlinearly stretching a porous horizontal surface,
and the flow is then subjected to a uniform magnetic field in the transverse direc-

tion. The mathematical formulation also incorporates the Cattaneo-Christov heat
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flux model and thermal radiation and the numerical results for the Copper Oxide
with base fluid Ethylene glycol CuO-EG and TiOs-CuO/EG hybrid nanofluid.
The influence of various shape factors parameters increases the temperature fluc-
tuation, and entropy of Casson hybrid nanofluid inside boundary layer.

Nazir et al. [34] numerical analysis is used to examine how hybrid nanostructures
might improve two-dimensional heat transport. Comparisons are made between

the results of pure Carreau-Yasuda fluid and fluid incorporating nanostructures.

1.1 Thesis Contributions

In this thesis, we provide a review study of Aziz et al. [31]. The present sur-
vey is focused on the numerical analysis of Cattaneo-Christov bases study of
Powell-Eyring hybrid nanofluid flow with magnetic field effect and chemical re-
action. Through the use of similarity transformations, the presented nonlinear
PDEs are transformed into a system of ODEs. Furthermore, the shooting ap-
proach is used to determine the numerical solutions of nonlinear ODEs.Utilizing
MATLAB, the numerically acquired findings are computed. The impact of sig-
nificant parameters on velocity distribution f’(n), temperature distribution 6(n),
concentration distribution ¢(n) and entropy generation NG ,skin friction coeffi-
cient C'f, local Nusselt number Nu, and local Sherwood number Sh, have been

discussed in graphs and tables.

1.2 Layout of Thesis

The following is a quick summary of the thesis’s contents.

Chapter 2 covers some fundamental terminologies and definitions that are essen-

tial to understanding the concepts discussed later.

Chapter 3 provides the proposed analytical evaluation ofentropy anaysis of Powell-

Eyring hybrid nanofluid with thermal radiation effect and shooting methodology
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is used to generate the numerical solutions of the governing flow model.

Chapter 4 extends the proposed model flow mentioned in Chapter 3 by includ-
ing the Cattaneo-Christov heat flux, Powell-Eyring hybrid nanofluid and magnetic
field effects.The shooting methodology is used to generate the numerical solutions

of the governing flow model.
Chapter 5 provides the thesis’s final remarks.

References used in the thesis are mentioned in Biblography.



Chapter 2

Preliminaries

This chapter mentions some basic definitions and governing laws which will be

helpful in later chapters.

2.1 Some Fundamental Terminologies

Definition 2.1.1 (Fluid )
“A fluid is a substance that deforms continuously under the application of a

shear (tangential) stress no matter how small the shear stress may be.” [35]

Definition 2.1.2 (Fluid Mechanics)
“Fluid mechanics is that branch of science which deals with the behavior of the

fluid (liquids or gases) at rest as well as in motion.” [36]

Definition 2.1.3 (Fluid Dynamics)
“The study of fluid if the pressure forces are also considered for the fluids in mo-

tion, that branch of science is called fluid dynamics.” [36]

Definition 2.1.4 (Fluid Statics)
“The study of fluid at rest is called fluid statics.” [36]
6



Preliminaries 7

Definition 2.1.5 (Viscosity)
“Viscosity is defined as the property of a fluid which offers resistance to the move-

ment of one layer of fluid over another adjacent layer of the fluid. Mathematically,

where p is viscosity coefficient, 7 is shear stress and g—; represents the velocity

gradient.” [36]

Definition 2.1.6 (Kinematic Viscosity)
“It is defined as the ratio between the dynamic viscosity and density of fluid. It

is denoted by symbol v called nu. Mathematically,

2 [36]

V=

ESERS

Definition 2.1.7 (Thermal Conductivity)

“The Fourier heat conduction law states that the heat flow is proportional to the
temperature gradient. The coefficient of proportionality is a material parameter

known as the thermal conductivity which may be a function of a number of vari-

ables.” [37]

Definition 2.1.8 (Thermal Diffusivity)
“The rate at which heat diffuses by conducting through a material depends on the
thermal diffusivity. It can be defined as,

where « is the thermal diffusivity, k£ is the thermal conductivity, p is the density

and C,, is the specifc heat at constant pressure.” [37]
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2.2 Types of Fluid

There are following types of fluid:

Definition 2.2.1 (Ideal Fluid)
“A fluid, which is incompressible and has no viscosity, is known as an ideal fluid.
Ideal fluid is only an imaginary fluid as all the fluids, which exist, have some vis-

cosity.” [36]

Definition 2.2.2 (Real Fluid)
“A fluid, which possesses viscosity, is known as a real fluid. In actual practice, all

the fluids are real fluids.” [36]

Definition 2.2.3 (Newtonian Fluid)
“A real fluid, in which the shear stress is directly proportional to the rate of shear

strain (or velocity gradient), is known as a Newtonian fluid.” [36]

Definition 2.2.4 (Non-Newtonian Fluid)

“A real fluid in which the shear stress is not directly proportional to the rate of

shear strain (or velocity gradient), is known as a non-Newtonian fluid.

Definition 2.2.5 (Magnetohydrodynamics)

“Magnetohydrodynamics(MHD) is concerned with the mutual interaction of fluid
flow and magnetic fields. The fluids in question must be electrically conducting
and non-magnetic, which limits us to liquid metals, hot ionised gases (plasmas)

and strong electrolytes.” [38]
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2.3 Types of Flow

The following types of flow are:

Definition 2.3.1 (Rotational Flow)
“Rotational flow is that type of flow in which the fluid particles while flowing along

stream-lines, also rotate about their own axis.” [36]

Definition 2.3.2 (Irrotational Flow)
“Irrotational flow is that type of flow in which the fluid particles while flowing
along stream-lines, do not rotate about their own axis then this type of flow is

called irrotational flow.” [36]

Definition 2.3.3 (Compressible Flow)
“Compressible flow is that type of flow in which the density of the fluid changes
from point to point or in other words the density (p) is not constant for the fluid,

Mathematically,
p 7k,

where k is constant.” [36]

Definition 2.3.4 (Incompressible Flow)

“Incompressible flow is that type of flow in which the density is constant for the
fluid. Liquids are generally incompressible while gases are compressible, Mathe-
matically,

p =k,

where k is constant.” [36]

Definition 2.3.5 (Steady Flow)

“If the flow characteristics such as depth of flow, velocity of flow, rate of flow at
any point in open channel flow do not change with respect to time, the flow is said

to be steady flow. Mathematically,
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where @ is any fluid property.” [36]

Definition 2.3.6 (Unsteady Flow)
“If at any point in open channel flow, the velocity of flow, depth of flow or rate of

flow changes with respect to time, the flow is said to be unsteady. Mathematically,
oQ
— #0
5 7 O

where @ is any fluid property.” [36]

Definition 2.3.7 (Internal Flow)

“Flows completely bounded by asolid surfaces are called internal or duct flows.” [35]

Definition 2.3.8 (External Flow)
“Flows over bodies immersed in an unbounded fluid are said to be an external

flow.” [35]

2.4 Kinds of Heat Transfer

There are following kinds of heat transfer:

Definition 2.4.1 (Heat Transfer)

“Heat transfer is a branch of engineering that deals with the transfer of thermal
energy from one point to another within a medium or from one medium to another
due to the occurrence of a temperature difference. For example, heat is transferred
from stove to the cooking pan.” [37]

Definition 2.4.2 (Conduction)

“The transfer of heat within a medium due to a diffusion process is called conduc-

tion. For example, a radiator is a good of example of conduction.” [37]
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Definition 2.4.3 (Convection)
“Convection heat transfer is usually defined as energy transport effected by the
motion of a fluid. The convection heat transfer between two dissimilar media is

governed by Newtons law of cooling.” [37]

Definition 2.4.4 (Thermal Radiation)

“Thermal radiation is defined as radiant (electromagnetic) energy emitted by a
medium and is solely to the temperature of the medium. Sometimes radiant en-
ergy is taken to be transported by electromagnetic wave while at other times it is

supposed to be transported by particle like photons. ” [37]

2.5 Dimensionless Numbers

There are different types of dimensionless numbers:

Definition 2.5.1 (Eckert Number)

“It is the dimensionless number used in continuum mechanics. It describes the
relation between flows and the boundary layer enthalpy difference and it is used

for characterized heat dissipation. Mathematically,

where C, denotes the specific heat.” [35]

Definition 2.5.2 (Prandtl Number)
“It is the ratio between the momentum diffusivity v and thermal diffusivity a.

Mathematically, it can be defined as

where o represents the dynamic viscosity, Cp denotes the specific heat and &

stands for thermal conductivity. The relative thickness of thermal and momentum
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boundary layer is controlled by Prandtl number. For small Pr, heat distributed

rapidly corresponds to the momentum.” [35]

Definition 2.5.3 (Skin Friction Coefficient)

“The steady flow of an incompressible gas or liquid in a long pipe of internal D.
The mean velocity is denoted by wu,,. The skin friction coefficient can be defined
as

27’0

=20
puz,

where 75 denotes the wall shear stress and p is the density.” [39]

Definition 2.5.4 (Nusselt Number)
“The hot surface is cooled by a cold fluid stream. The heat from the hot surface,
which is maintained at a constant temperature, is diffused through a boundary
layer and convected away by the cold stream. Mathematically,

qL

Nu = 22
YT

where ¢ stands for the convection heat transfer, L for the characteristic length and

k stands for thermal conductivity.” [40]

Definition 2.5.5 (Sherwood Number)
“It is the nondimensional quantity which show the ratio of the mass transport

by convection to the transfer of mass by diffusion. Mathematically:

here L is characteristics length, D is the mass diffusivity and k is the mass trans-

fer” coeffcient.” [41]

Definition 2.5.6 (Reynolds Number)

“It is defined as the ratio of inertia force of a flowing fluid and the viscous force
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of the fluid. Mathematically,
Re = —,
v

where V' denotes the free stream velocity, L is the characteristic length and v

stands for kinematic viscosity.” [36]

Definition 2.5.7 (Schmidt Number)
“It is the ratio between kinematic viscosity and molecular diffusionD. It is de-

noted by Sc and mathematically we can write it as:

1%
Se=2
=D

where v is the kinematic viscosity and D is the mass diffusivity.” [37]

2.6 Governing Laws

Definition 2.6.1 (Continuity Equation)
“The principle of conservation of mass can be stated as the time rate of change
of mass is fixed volume is equal to the net rate of flow of mass across the surface.

Mathematically, it can be written as

dp P
o5t V.(pu) = 0.7 [37]

Definition 2.6.2 (Momentum Equation)

“The momentum equation states that the time rate of change of linear momentum
of a given set of particles is equal to the vector sum of all the external forces acting
on the particles of the set, provided Newtons Third Law of action and reaction

governs the internal forces. Mathematically, it can be written as:

%(pu) + V.[(pu)u] = V.T + pg.” [37]
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Definition 2.6.3 (Energy Equation)
“The law of conservation of energy states that the time rate of change of the total
energy is equal to the sum of the rate of work done by the applied forces and

change of heat content per unit time.

9,
a—f%—V.pu:—V.q%—Q—l-cb,

where ¢ is the dissipation function.” [37]

Definition 2.6.4 (Conservation Equation)
“The principle of conservation of mass can be stated as the time rate of change
of mass is fixed volume is equal to the net rate of flow of mass across the surface.

Mathematically, it can be written as:

9p

pu=0
o T V=0

where ¢t is time, the fluid density is , and the fluid velocity is u.” [37]

2.7 Shooting Method

To estimate the solution of following boundary value problem by Shooting method.

9" (z) = ¢"(x) + g(x)g'(v)
g(0)=0, 4'(0)=1, g(h)=R

(2.1)

Introduce the following notations to reduce the order of the above boundary value

problem.
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As a result, (2.1) is transformed into the following system of first order ODEs.

/
21 = 22’
/
2’2 = 2’3’

!
Z3 = 23 + 2129,

2(0) =0 (2.3)
2(0) =1 (2.4)

where t is the missing initial condition which will be guessed.

The above IVP will be numerically solved by the RK-4 method. The missing

condition ¢ is to be chosen such that.

Zl(h, t) = R.

For convenience, now onward 2z (h,t) will be denoted by 2 ().

Let us further denote z1(t) — R by ¢(t), so that

() = 0.

(2.7)

The above equation can be solved by using Newton’s method with the following

iterative formula.

or

For azét(t), we introduce the following notations.

821 822 823

o T ok T o

= Z6-

(2.8)

(2.9)
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By using these notations Newton’s iterative scheme, will then get the following

form

z1(t,) — R

YW (2.10)

tn—‘rl =1, —

Now differentiate the system of first order ODEs (2.3)-(2.4) with respect to ¢, we

get another system of ODEs, as follows.

2y = 2s, z4(0) = 0. (2.11)
z = Zg, 25(0) = 0. (2.12)
26 = 26 + 2125 + 2422, 26(0) = 1. (2.13)

Writing all the four ODEs (2.3), (2.4), (2.10) and (2.11) together, we have the
following IVP.

7 = 2, 21(0) = 0.
zh = 23, 25(0) = 1.
zh = 23 + 2122, z3(0) = t.

2y = zs, 24(0) = 0.
2t = 26, 25(0) = 0.
26 = 26 + 2125 + 2422, 26(0) = 1.

The above IVP will be solved numerically by using Runge-Kutta method of order
four.

The stopping criteria for the Shooting method is set as,

| 21(t) = R<e

where € > 0 is an sufficiently small positive number.



Chapter 3

Entropy Amnalysis of
Powell-Eyring Hybrid Nanofluid
Including Effect of Linear
Thermal Radiation and Viscous

Dissipation

3.1 Introduction

In this chapter, we will perform numerical analysis of flow, heat transfer and
total volumetric entropy of hybrid Powell-Eyring nanofluids. The numerical so-
lution for this model was computed by Aziz et al. [31] by the Keller-Box method.
In the present chapter a review of this work is included by using the shooting
method. In this study, hybrid nanofluids are made by adding copper and alumina
nanoparticles to water. Water-based hybrid nanofluid occupies more space on an
infinite porous flat surface, and its flow is caused by the interface in surface ten-

sion and speed. The main purpose is to analyze the effect of viscous dissipation

17
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and thermal radiation on flow, temperature profile, heat transfer rate and the

general entropy of the framework set by Tiwari and Das [42].

3.2 Mathematical Modeling

Consider an unstable, laminar, stable, boundary layer flow of inviscid optically
thick hybrid nanofluid above infinite penetrable plate. The non-Newtonian Powell-
Eyring mathematical model is assumed for Hybrid nanofluids. Cartesian dimen-
sional coordinates are assumed with z-axis to have porous surface along it and
the y-axis normal to this. In current study, nanofluids are prepared by adding
copper (Cu) nanoparticles in pure water with the volume fraction ¢ also alumina
(Al O5) and copper (Cu) nanoparticles with volume fractions ¢; and ¢, are dis-
persed in the pure water to manufacture hybrid nanofuid. The nanoparticle vol-
ume concentration of hybrid nanofluid is defined as ¢p,; = ¢1+¢2. The constitu-
tive equations of Powell-Eyring fluid model are derived from the theory of liquids
and not from the empirical relationship as in the power-law model. The Powell-
Eyring fluid model reduces Newtonian flux at low and high shear rates. The

Cauchy stress tensor for Powell-Eyring fluid is given as [43]:

Tij = Mhnf (g—z;) + %Sinh1<

ia%), (3.1)

C* 8[Ej

where pp,r is the hybrid dynamic viscosity and 3, ¢* are material constants of
Powell-Eyring hybrid nanofluid. The stretching speed and porous surface temper-

ature are

cx cT
Ty(z,t) =T + ——.
1—wt’ () +1—wt

Up(z,t) = (3.2)

Here t is the time, ¢ is a +ve constant and T, the ambient temperature.
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FIGURE 3.1: systematic representation of physical model.

The governing equations of the mathematical model for hybrid Powell-Eyring

nanofluid can be expressed as Aziz et al. [31]:

ou Ov
9 + 8_y =0, (3.3)

@Jru@ﬂ;@— Vi + Ou_ 1 (%)2@ (3.4)
ot oz oy T g B O 23C ppny Oy Oy '

oT oT oT . Rhnf 82T 1 3qT
5 Ty o o) (PC)ms ()
Vinf (@)2.
(PCp)hng \ Oy

(3.5)
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The associated BCs have been taken as:
0
w(x,0) = Uy + Uhny (a—Z>, v(x,0) = Vi,

oTr
— =) = — = 3.6
Hf<8y> hiyTy,—T), at y=0, (3.6)

u—0, T—1T,, as y— oo.

The radiative heat flux is given by

4o* OT*
= 3.7
¢ 3k* Oy (3.7)

where o* is the Stefan-Boltzman constant and k* is the absorption coefficient. If
the temperature difference is very small, then the temperature 7% can be expanded

about T, using Taylor series, as follows.
T =TL + 4T3 (T — Too) + 6T (T — Too)* + ...
Ignoring the higher order terms, we have

T =T + 4T3 (T — Ty
=To +4T3T — 4TS
= —3TL +4T2T

=4T3T - 3T2.

TABLE 3.1: Thermo-physical properties of Hybrid naonofluid

Feature Hybrid nanofluid Al Osz-Cu/Hy O
Viscosity (v) fnng = prp(1— d1) 722 (1 — ) 7
Density (p) Png = (1= ¢2) (1 — ¢1)ps + d1pp,) + P2p,
Heat Capacity (Pcp) (pcp)hnf =(1—¢9)[(1— ¢1)(pcp)f + ¢1 (pOp)m]
) + ¢2 (p0p>p2
. Khng _ | Bpgt(m=Dkns—(m=1)¢2(kns—HKp,)
Thermal conductivity (k) :nff = |, +(m_1{ﬁnf T (nif_ ,’;pQ 2 }

B _ [ EpyH(m=Drs—(m=1)¢1 (k1 —rp, )
Kf Kpy+(m—=1)kp4+d1(kp—Kp; )

$19p) +¢29py
. o 3( — —(#1+92))
Electrical conductivity (o) 2L = |1+ — 557 L
of (71@?%2)20;2 +2)—(HELI2TR e 2782 —(¢1+¢2))
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For convenience, the following notations have been introduced:

P, =(1—¢1)*(1 — ¢2)*°, (3.8)
_ . o pp1 ppz
=(1—¢2) ((1 ¢1) + 1= ) o;’ (3.9)
1 - ( Cp)ps (PCp)ps

Fe=(1-¢2) ((1 RRRSN7TeN ) e, (810

f
Koy & 2bing — 209 (Knf — Fip, ] y [ﬁpl + 265 — 201 (Ray — “pl)]. (3.11)

)
Py= |
Kpy + 2’inf + ¢2("€nf - ij) Kp, + 2’%1)” + le(’%f - ’im)

For the conversion of the mathematical model in the form of partial differential
equations (3.3)-(3.5) into the ODEs, the following similarity transformation was
used by Hayat et al. [44].

n(t
) l/f(l - wt

_T—Too
(@, y) 1—wt _Tw—TOO’

where 1) denotes the stream function.

(3.12)

The step-by-step process for transforming (3.3)-(3.5) into the dimensionless form

has been described below.

() o1

=— fmn). (3.14)
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ou 0 c ,
9~ or (1 ) )
o C / c //@
1 wt'l'f () + 1— wtxf Ox
c
"(n). d
) (3.15)
ou 0 c ,
oy Oy L—wt f(n)]
c c
" 1
1 —wt (1 —wt) v (3.16)
0*u ? ,,,
o (=D xf". (3.17)
ov 0 vsc
dy Oy ( 1 - wtf(n))
T oy
c
T 1—wtf() (1 —wt)
ov c
ov _ _ 1
) (3.18)
ou 0 c ,
o o <1 —t W)
= Ll + s (-
- — — — ' — (-
(1 — wt)? Tp— /V s (1 wt)
cx
(1 — wt)? 3t 2(1 — wt)? )2\ vy (3:19)
Equation (3.3) is easily satisfied by using (3.15) and (3.18), as follows
ou Ov c c
= "(n) — "(n) = 0. 2
o T oy o/ ) =0 (3.20)

Now, the dimensionless form of the momentum equation (3.4) can be obtained by

using equations (3.13) - (3.19) as follows,

ou ou ou 1

0%u

1

— +t U+ UV = (Vpps +
ot ox dy hnf

phnfBC* ay2 -

283 ppns

ou

[_

dy

|

20%u
2
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Cx Cc

= / " /‘ !/
(1— wt)2f A=\ oa ==y t)“rf =il
_ vec _ + 1 c? "
1- wt 1 — wt B hnf prn B¢ V(1 — wt)
2
"
26C*3ph s 1 —wt ] ve(l— wt)xf '

cx / 1 cw 1! 12 02 "
:>— — N
A= T2 on \/ A t)fo A=/
1

_ A 3 2 g
= |Vhns + [ f

Phn fﬁCJ Vf(l - Wf)w 25(*3Phnf vi(l — wt)®

w 1w c 1 1
SZ a2y R S = [+ —— | S
c’ 2 ¢ Vy(l-wt) PrngBCH vy
_ 1 031'2 _ fl/Qf///

2 (1 — wt)3phnsriBCe

[#2gr =54 1p”

a3

Vhnf 1 " 1
R P
Vi ViphnfBCH 2L(1 — @t )2 prn v B¢
wil, 1 c ,,]
“Zp s —S—yp] =0
c [f * 2\ ve(1 - wt)yf
03$3
N |:I/hnf + 1 _ ] mo_ [ 2(1—wt23 .
Vi VpppnsBC* 205 ppn g BCH

IR i

|7 = g2 pg

C

v(l — wt)

Since, v = £ | so
p

pr 1 Us
Phnf + _ "o n2 ennr 12 + 1"
( ok l;—;ﬂhnfﬁc*> I ((QC*2Vf$)(Phnf e ))f R

w / 1 ny
_Z<f+§ (1—m)yf>_0‘

HKhnf

. Panf fp(1 — 1) 725 (1 — ¢by) 255 1
) /;_; (1= @) (1 — ¢1)ps + G1pp,) + d2pp, PPy

png L = (((1 — 2)(1 = ¢1)ps + d1pyp,) + ¢2pp2> x B
P P

therefore, the dimensionless form of the momentum equation gets the form:

<Palp,, +%b)fm+ff”—f <f + f”) f”2f”’ = (3.21)
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The following dimensionless parameters are used in equation (3.21),

A=l

ppBCr? 2Pyt

b
I
o8
&
I

Now, for the conversion of energy equation (3.5), the following derivatives are

required.

o) = 7
S T =) (Ty —Too) + T
= 0(n) (Too + 1o — Too) + T
= 9(n)(1 fxwt) Tw
g_f - a%<1 jxwt o)
_ ( ¢ >e(n). (3.22)
1 —wt
3y = a0 () + 7
B <1 jxm>9,g_z
_ <1fxwt 0 =D (1C_m>. (3.23)
2 2
o = =) @2
Now, the time derivative of temperature is,
(o) )
= (D)
* 1jxwt % Vf(lc_m)(_ uf(1fwt)2 =)y
T C—th)Qe * %Vf(lc—wwt)?’ e c_ = v
0 C—xzty %(1 iZt)Q il - il (3:25)
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_do” o7
3k* Oy
40* 0
= ——— (4T3 T — 3T%
40* 0
= ——— (4T3 T
3k* 8y( ~T)
_160* 73 8_T
3k* 0y
* 2
N aq, _ _160 73 8_T
dy 3k* % Oy?

160* cx
= — /5N — 3.26
3k* (Vf(l — wt)2> (3:26)

The governing equation for the conservation of energy is

Also G =

2
oT N 8_T OT  Kpng <6 T) B : 1 (8%) (pg:;;nf <8u>2.

— tu +v— = —
ot 9z 9y (pCp)ns \ Oy? PCp)hns \ Oy Ay

cxw™ 1 cw c cx c
aF v () =)
~ (1 — wt)? * 2 (1 —wt)? Vf(l—wt)xy i 1—wtf 1 —wt ()
n <_ vec f> cx p c __ Khny ( x >9”
l—wt' /1 —wt \vi(l—wt) (pCp)ans \v¢(l — wt)?
1 _ 160* T8 (( *x : ) «9”)
(PCp)hns 3k vy(l —wt)
Y, ( Ao’ c ,,2>
(PCp)hns N1 — @t vy(l —wt)” /-
o 1w fwmg 1, 160% 1 1 .
= o sTog - fo = i g T
c o 2c (PCp)hng vy 36% (pCp)hns Vi
+ thf cx f/,2-

(PCp)nny v (1 — wt)

From Table 3.1,

K _ ["fpz + (m - 1)/<3nf - (m - 1)¢2(’<nf - "{pg)i|
hnf = Kpy + (M — D)fng + Ga(king — kp,)
y [le + (m = 1Dry — (m = 1)1 (k1y — Fupl)}
Kipy + (M — D)k + ¢1(ky — Kp,)

=  Khnf = Pdlif.

(0C,) iy = [(1 — $)[(1 = 1) (pCy) s + ¢1(pCh)p,] + ¢2(P0p)pz] X —Ezgz;z;

= PC(pCp)f'
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Pdlﬁlf 1 17 160* 1

w 1w
S —0+ ——nb' "0 — f0 = ——F——0 ——6’T3
" AT AR Fe(pCp)g vy 3k Pe(pCy)s vy
vy
P, Ccx 112
+ R I
P(pCy)s (1~ wi)
Pd Ry 1 1 160* TS
= —9+——779’+f9 10 = (s A S
P, (pC, )f z/f P. 3k* vi(pCp) ¢
1 A2 1l—-wt 1,
TREO-mp @ G
Py rp 1 1 160* T3
= —9+——779’+f6) 10 = (e A S
P (pCypvy  Pe 35" v5(pCh)y
+ 1 US} f”2-
PP (Op)f(Tw _TOO)
1 P 1 Nr E°
A _A / !/ _ / /! / 1/2.
N 0+ 540+ [0~ f0 = 550"+ 0+ o f
P E° 1
o Ll " A)— SA0 = [0+ 10" = 0.

P, Pr P TP
PrNr " P, / / U, E* | _
(1+ > )9 +Pro x(fe Iz A<0+29>+ ) =o.

d d PaPc
(3.27)

The dimensionless parameters used in equation (3.27) are:

A== = 5t Pr=2%
¢’ A= Gl "= ap
U3 160* T3
F= 7w _—— Nr = 2
(CP) ( Too) 3r* l/f(pCp)f

The final dimensionless form of the governing equations is

(Palpb - %,,) "5 A ) - %f’”f’” —0, (3.28)

2
PrNr 1" PC / n Q/ E* 2\ _
<1+ > )9 +Prpd><<f0 I A(9+29)+—f >_0. (3.29)

d

The related BCs are converted into the dimensionless form by the following pro-

cedure.
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1 —wt
vec
= f0)=S5
ou
u(z,0) = Uy(x )+Mhnf<a ) at  y=0.
cx / K //
t =0.
~ 1—wtf(n) 1—wt 1—wt 1—wt)Paf o
Ccx !/ ) "

1 t =0.
= 1o fm= +,/ 1_wtﬂf /7 at n=0
= flln)=1+ Ff”(n), at  n=0.

! A "
= F0) =145 7"0)
T
—/{f[ }—hf(T -T), at  y=0.
cr
= / -7) t =0
~ Kfl—wt Vfl—wt 1—wt ’ @
ve(l— wt) < cx )
T-T, t =0.
= 1_wt "(n) = oy T=Tw), a1
cx (1 — wt)
_ t =0.
R \/ (o o ®) at
= 0'(n)=-Bi(l—0(n at  n=0.
= 0'(0) = —Bi(1—6(0))
Similarly,
u — 0, as Yy — 00.
= f'(n) =0, as 1 — oo.
T — T, as Yy — oo.
= 6(n) — 0 as n— 00.
The associated BCs (3.6) in the dimensionless form are:
A
fO)=5 fO)=1+5/0), fn)—=0 as n— oo,
a (3.30)

§'(0) = —Bi(1 —6(0)), 6(n) =0, as n— .
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The skin friction coefficient, is given as follows,

Tw

C, = 2 3.31
T o2 (&3
where
0 1 Ou\3
Tw = (/Mmf > 4o ~_(_u> : (3.32)
e/ 0y 6BcE Ny )
Therefore
1 c c 1" 1 3 c " ’
- [(Wmf + 5_¢> 1wt/ Vf(l—wt)xf 66¢3 (1-wt)? <\/ Vf(l—wt)xf ) ]y=0
Cy = U2
f
_ 3
Iy /e U3 c "
_ ( + ﬂC*)U o/ wra=n @S e W<\/ o=/ ) Lo
= U2
i 3
B Ly 1 " 3 N —
_(NfPa + #fBC*>U = gy s UW(\/ =S ) ]yzo
py
(1 1 7 1 2 "3 —c
_ _<P_a + wﬁC*)f (0) - ORYISS Varra=n/ (O)] vi(1==t)
= 1
- Vf N
1 1 1 2 cT 3 c
- _<P_a + wﬁC*)fH(O)  6upBes UwVf(l—wt)wf” (O)] V V="
= Unz
- l/f
1 1 " 1 1 //3 €<
- _(P_a + #fﬁc*)f ( ) 3ﬂfﬂc* QC*fof ( ) fo(lfwﬂx
= Uyz
- Vf
1 1 " 11 //3 [ Uw
_ __<Pa + wﬁ(*)f (0) - 3 ppBCr 24*”fo (0 ) v
- Unz
- l/f
Ryas 1 ” 11 //3 Uy
_ _(Pa + #fﬂC*)f (0) - 3 s QC*Vf’““f (0 ) il
- Unz
vy
| (7 ) 10— 7 0)] VRe;
o Re,,
(2 +)r0 - 2570
o Re,, .
1 A
= CpRey = [ (5 +w) 110) - 217 0], (3:33)
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Here Re, = Ul%fx denotes the local Reynolds number.

Local Nusselt number is defined as follows.

Lw

Ny, = — 24w
b e (T — Toe)

(3.34)

The dimensionless form of Nu, is produced by the following steps:

Qu = —F«'hnf(l (3.35)

160*T3 aT
3k*vy(pCy )f> <3y>

ey (14 s, ) (5),

ki(Tw — Tw)

Rfffhnf( 3;5?1? pTCp)f> 1— wt \/ uf(l wt)

a Hfl wt
160* T3, cx
Fhnf (1 + 3k*Vf(pCp)f)9/(O) P =

_ -

= i NPV (0)y/ Res.

Ky
_1

= NuyRe,? = — (1 4 Np)O/(0). (3.36)

“f

Nu, = —

Here Re, = [{j”Tf: denotes the Reynolds number.

The entropy generation rate Ng is defined as:

T2 CQEG
Ny= 00" 7 )
G r (T — To)? (3.37)

The dimensionless form of Ng can be produced through the following steps:

*3
ro = (G S, G ) G o
(52 (B) + wti (5) ) + () e
o= 7T — To)?

Pd”f 14N 2z2) c___g» %ﬁ (c?z?) ) T2 2
(1+ T) e ey =rs LAl S g = 1 wt) PRt

lif(Tw — TOO)2




Entropy Analysis of Powell-Eyring Hybrid Nanofluid 30

2
— Pd(l + NT)@IQ 4 TOO:u’f Uw 2f//2 CcT 2
) vyx(

P, ki(Ty—Tw 1—wt)c
1 T, U2 U, c?
— | P(1+ NrO? + — s fYw 12 w
< N o T Ty my T =T) ) vy
1B
= Re| Py(1+ Nr)o2 + == . (3.39)
P, Q
where R, = ny;f, Br = m%—%, and ) = (TwT_ﬁw) denote the Reynolds number,

Brinkmann number and dimensionless temperature gradient respectively.

3.3 Numerical Method for Solution

The ordinary differential equation (3.28) has been solved numerically by using the

shooting technique.

" o Pan 2 " / Q "
P =1 hu— Paaym (f £ A+ 3 )) (340)

The following notations have been taken:
f:G17 f/:GllzGQ’ //:G{_(ZG,QZGS

The momentum equation is then transformed into the system of first-order ODEs

shown below.

Gy = G, G1(0) = S.

A
G} = G, G(0) = 1+ 5-G5(0).

) P,P, 1
Gy 1+ Pw— PwAGs <G2 GGy + (G2 2G3>> » Gs(0)=p

The above IVP will be numerically solved by the Runge-Kutta method of oder 4.

The domain of the problem is considered to be bounded i.e. [0, 7], Where 7, is a

+ve real number, for which the variation in the solution is ignorable after n = 7.
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The missing condition p is to be chosen such that.

GQ(T]ooap) = 0.

Newton’s method will be used to find p. This method has the following iterative

scheme.

GQ (77007 pn)
(G (110> P))p=pn

Pn+1 = Pn —
We further introduce the following notations:

oG, 9Gy 0G5
Ty =CGn Gr=Gs 5t=Gy

As a result of these new notations, the Newton’s iterative scheme gets the form:

Dosl =P _GQ(nooapn)
T G (Mo, Pn)

Now differentiating the last system of three first order ODEs with respect to p, we
get another system of ODEs, as follows.

Gi; — G57 G4(O) - O
, A
G = G, G5(0) = -
, Pan 2PawG3G6 2 n
g —_ A —_
G 1+ Pw — PwAG? (1 + Pw — P,wAG? <G2 GGy + (G2 + 2G3>>

+ (20305 GGy — G1 G + A<G5 + gGG)) ) , Go(0) = 1.

The stopping criteria for the Newton’s technique is set as:

| G2(7loo;p) |< €,

where € > 0 is a sufficiently small number, which has been considered as 1071,
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The ordinary differential equation (3.29) will be approximated by using the shoot-

ing technique and assuming f as a known function.

C

oo L ( _ Pr% X (fe’ — e — A<9 n ge) n %f”)). (3.41)

PrNr
1+ P, d
For this, we utilize the following notions:
QIHl, GIZH{:HQ

The energy equation (3.28) is then transformed into the system of first-order ODEs

shown below.

H{ = HQ, Hl(o) =4
1 P, n E¢
Hy = o | = Prif < (GuHy — Gotty — A(H, + 1 1,) 1) ).
2 1+P;er( rPdX G Hy 20 1ot +PaPC 3

H5(0) = —Bi(1 — Hy(0)).

The above IVP will be numerically solved by Runge-Kutta method of oder 4. The

missing condition ¢ is to be chosen such that.

Hl(noo7Q) = 0.

The above equation can be solved by using Newton’s method with the following

iterative formula.

Hl(nooa Qn>
(2 H1(10o: 4))g=gn

Gn+1 = Q4n —

We further introduce the following notations:



Entropy Analysis of Powell-Eyring Hybrid Nanofluid 33

As a result of these new notations, the Newton’s iterative scheme gets the form:

Gni1 = q Hl(nom%l)
n+l = 4n — 77\
H3(noo7Qn)

Now differentiating the system of two first order ODEs with respect to ¢, we get

another system of ODEs, as follows.

Hé — H4’ Hg(O) =0.
1 P, £
_Pd al c
H,(0) = —Bi.

The stopping criteria for the Newton’s method is set as:

| Hi(1oo, q) |[< 107,

3.4 Results and Discussion of Graphs and Tables

In this section, the effect of the dimensionless parameters of interest on the skin
friction coefficient Re% C't, Nusselt number Re, %N u, and Entropy generation Ng
has been thoroughly discussed through different graphs and tables. In Table 3.2,
Ty, and Ty, are the intervals for the choice of missing condition p while computing
the of skin friction coefficient for nanofluid and hybrid nanofluid respectively. It
is observed that for the computation of Nusselt number, there is great flexibil-
ity in the choice of the missing initial condition. Tables 3.3 and 3.4 explain the
effect of the material parameters w and A, unsteady parameter A, nanoparticle
volume fraction parameters ¢; and ¢, suction/injection parameter A, radiation
parameter Nr, Eckert number Ec¢, Biot number Bi with fixed Prandtl number
Pr = 6.2 and m = 3 on the fluid motion, temperature variation and the total vol-
umetric entropy generation of Powell-Eyring nanofluid and hybrid nanofluid. For
rising these values, the skin friction coefficient Re% C} , Nusselt number Re, %N Uy

increase. Figures 3.2-3.4 represents the value of w (which describes the effect of
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material fluid parameter) on Powell-Eyring nanofluids and hybrid nanofluids. For
w = 0.1,0.3,0.5, computations are carried out with nanoparticles volume fraction
of 1 = 0.09 and ¢ = 0.09. For different values of w, Figure 3.2 depicts variation
in the velocity profile. For increasing value of w, an ascending trend in the veloc-
ity profile is observed and this enhances the thickness of the momentum boundary
layer. As w is inversely proportional to the base fluid viscosity, an increase in
the positive values of w, enhances the stress rate within the boundary layer and
decreases the base fluid viscosity. Consequently, within the boundary layer, the

velocity of conventional and hybrid nanofluids, is increased.

In the Table 3.3, the effect of w on the viscosity of the base fluid can also be
seen through difference in values of the skin friction. The skin friction factor
at the boundary undertakes a move up trend. Furthermore, for alloted value of
w = 0.1, the thickness of momentum boundary layer for hybrid nanofluid is in-
creased whenever it is collated with the classical nanofluid. A reducing trend is
noticed in the temperature profile with an enlargement in the value of the param-
eter w as depicted in Figure 3.3. This illustrates a depletion in thickness of the
thermal boundary layer and an improvement in the rate of heat transfer inside
the boundary layer. In comparison, the thickness of the conventional nanofluid is
higher than that for the hybrid nanofluid. Hence, the rate of heat transport at the
boundary of Aly,O3 — Cu/H,0O hybrid nanofluid is higher. For both conventional
and hybrid nanofluids increasing trend in Nusselt number is also observed in from

Table 3.4.

Figure 3.4 illustrates the influence of the material parameter w on the volumetric
entropy generation of the conventional and hybrid nanofluids. It describes the an
increase in the values of the material parameter lessens the entropy of system near
the surface but an opposite impact can be seen away from the plate. It shows that
the irreversibility of Cu — HoO nanofluid is less than the AloO3 — Cu/H>0 hybrid

nanofluid.

Figures 3.5-3.7 depict the behavior of the fluid motion, temperature distribution
and entropy generation due to variation in the non-Newtonian fluid parameter A.

For the increasing values of A, Figures 3.5 and 3.7 show a decreasing trend in the
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velocity profile f/(n) and entropy generation Ng whereas Figure 3.6 depicts that

the temperature profile 6(n) is increased.

Figure 3.8 shows the impact of A. For the increasing values of A, the veloc-
ity profile f’(n) is decreased. Figures 3.9-3.11 focus on the impact of ¢. The
graphs are produced for velocity, temperature and entropy generation profiles.
Computations are carried out for fixed value of ¢; = 0.09, and analysis is carried
for variation in the parameter ¢,. For the increasing values of ¢, Figure 3.9 de-
picts that initially the velocity profile f’(n) decreases due to a rise the value of ¢.
As 7 increases, the velocity profile increases and asymptotically approach to zero.
Figure 3.10 depicts that the temperature profile 6(n) rises due to higher thermal
conductivity of solid particles which raises the overall thermal conductivity of the
nanofluid. For different value of ¢, Figure 3.11 depicts the entropy generation Ng

increase.

Figures 3.12-3.14 depict a decreasing trend in the fluid motion movement, volu-
metric entropy generation, and temperature for positive increase in the slip param-
eter A. For the increasing values of A, the velocity profile f'(n) and temperature
profile 6(n) and entropy generation Ng decrease. Figures 3.15-3.16 show the im-
pact of Nr. For the increasing values of Nr, the temperature profile 6(n) and the
entropy generation N¢ increase. Figures 3.17-3.18 show the impact of Fc. For the
increasing values of Fe, the temperature profile 6(n) and the entropy generation
Ng increase. Figures 3.19-3.20 show the impact of Bi. For the increasing values
of Bi, the temperature profile §(n) and the entropy generation Ng increase. The
shape factor of nanoparticles is an important factor to consider while analysing
the system’s thermal performance. The shapes of the nanoparticles in the current
work include spherical, hexahedron, tetrahedron, column, and lamina. Figures
3.21-3.22 show the impact of m. For the increasing values of m, the tempera-
ture profile #(n) and the entropy generation Ng increase. The effect of Reynolds
number Re and Brinkmann number Br on the total volumetric entropy genera-
tion rate is depicted in Figures 3.23 and 3.24. In Figure 3.23, it can be observed
that the increasing values of Re, the entropy generation Ny increases. In Figure

3.24, it can be observed that the increasing values of Br, the entropy generation
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N¢ increases.

1
TABLE 3.2: Missing conditions of RezC for Pr = 6.2, m = 3.

w A A ¢ o2 A T}, Ty,
0.1 02 0.2 003 0 0 [-1.21, -0.80] S
0.3 [-1.10, -0.78] [-1.14, -0.75]
0.5 [-1.00, -0.78] [-1.00, -0.71]
2.0 [-1.30, -1.00] [-1.29, -1.10]
4.0 [-1.50, -1.20] [-1.46, -1.00]
0.3 [-1.20, -0.90] [-1.20, -1.00]
0.4 [-1.20, -1.00] [-1.20, -1.10]
0.06 [-1.20, -0.91] [-1.26, -0.88]
0.09 [-1.32, -0.97] [-1.30, -0.92]
0.03 R [-1.21, -0.80]
0.06 S [-1.20, -0.79]
0.09 S [-1.10, -0.78]
0.1  [-1.00, -0.72] [-0.90, -0.70]
0.3  [-0.81, -0.56] [-0.79, -0.55]
1
TABLE 3.3: Results of RezCy for Pr =6.2, m = 3.
w A A ¢ ¢ A ReC; ReiC;
(Cu-H,0) (Al O5-Cu/H,0)
0.1 0.2 02 0.03 0 0 1.3504 R
0.3 1.4521 1.5457
0.5 1.5479 1.6641
2.0 1.3237 1.4180
4.0 1.2848 1.3811
0.3 1.3900 1.4865
0.4 1.4290 1.5283
0.06 1.5326 1.6268
0.09 1.7180 1.8137
0.03 - 1.4442
0.06 S 1.5433
0.09 S 1.6484
0.1 1.1531 1.2200
0.3 0.9037 0.9439
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_1
TABLE 3.4: Results of Re, ? Nu, for Pr = 6.2, m = 3.

w A A & ¢ AN Nr Ec Bi Re;:Nu, Res®Nu,

(OU—HQ 0) (AZQ Og—CU/HQ O)

0.1 0.2 0.2 0.03 0 0 02 02 0.2 0.2145 ----

0.3 0.2174 0.2341
0.5 0.2197 0.2366
2 0.2132 0.2296

4 0.2111 0.2324

0.3 0.2152 0.2317

0.4 0.2157 0.2324

0.06 0.2286 0.2460

0.09 0.2431 0.2615

0.03 ---- 0.2309

0.06 ---- 0.2480

0.09 ---- 0.2658

0.1 0.2184 0.2358

0.3 0.2225 0.2408

0.5 0.2615 0.2818

0.8 0.3065 0.3305

0.4 0.1905 0.2030

0.6 0.1665 0.1750

0.1 0.1123 0.1210

0.3 0.3079 0.3311
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FIGURE 3.2: Velocity profile against w on f/(n) for Pr = 6.2.
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FIGURE 3.3: Temperature profile against w on f/(n) for Pr = 6.2.




Entropy Analysis of Powell-Eyring Hybrid Nanofluid

20 T T T T T
18 w=0.1
Cu-H,0 w=0.3
\ w=0.5
16 B
14 F\\ -~ w=05
=0.1,0.3,0.
ol w=0.1,0.3,0.5
G L
=z 10 A=0.2,A=0.3,Pr=6.2
st (251:0.09, ¢2=0.09,
A=0.3,5=0.1,m=3
6 Nr=0.2,Ec=0.2,Bi=0.2, |-
Br=5.0,Re=5.0,2=1.0
4+
2 -
0 1 1 1 S —— e
0 0.5 1 1.5 2 2.5
7
FIGURE 3.4: Entropy profile against w on Ng for Pr = 6.2.
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FIGURE 3.5: Velocity profile against A on f'(n) for Pr = 6.2.
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FIGURE 3.6: Temperature profile against A on 6(n) for Pr = 6.2.
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FIGURE 3.8: Velocity profile against A on f/(n) for Pr = 6.2.
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FIGURE 3.9: Velocity profile against ¢ on f’(n) for Pr = 6.2.
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FIGURE 3.11: Entropy profile against ¢ on Ng for Pr = 6.2.
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FIGURE 3.13: Temperature profile against A on (n) for Pr = 6.2.
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FIGURE 3.14: Entropy profile against A on Ng for Pr = 6.2.
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FIGURE 3.15: Temperature profile against N7 on 6(n) for Pr = 6.2.
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FiGURE 3.18: Entropy profile against Fc on Ng for Pr = 6.2.
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FIGURE 3.19: Temperature profile against Bi on 6(n) for Pr = 6.2.
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FiGURE 3.20: Entropy profile against Bi on Ng for Pr = 6.2.
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FI1GURE 3.22: Entropyprofile against m on Ng for Pr = 6.2.
60 T T T T
‘ Re=5.0
Cu-H,0 Re=10
50 [ Re=15 | -
~——— Re=50
Al Oy CuH,0| 27
———— Re=15
40 A
o
° 30

20

10

Re=5.0,10,15

0] 0.5

A=0.2,A=0.3,Pr=6.2
¢,=0.09,¢,=0.09,
A=0.3,S=0.1,m=3
Nr=0.2,Ec=0.2,Bi=0.2,
Br=5.0,Re=5.0,02=1.0

F1cURE 3.23: Entropy profile against Re on Ng for Pr = 6.2.



Entropy Analysis of Powell-Eyring Hybrid Nanofluid

60 .

50

40

20

Br=5.0,10,15
0 Il

Cu-H 2O

Alzos'CU/Hzo

Br=5.0
Br=10
Br=15 | -
———— Br=5.0
———— Br=10
———— Br=15

A=0.2,A=0.3,Pr=6.2
¢,=0.09,¢,=0.09,
A=0.3,S=0.1,m=3
Nr=0.2,Ec=0.2,Bi=0.2,
w=0.1,Re=5.0,02=1.0

0 0.5

FI1GURE 3.24: Entropy profile against Br on Ng for Pr = 6.2.



Chapter 4

Cattaneo-Christov based Study of
Powell-Eyring Hybrid Nanofluid
Including Effect of Magnetic field

and Viscous Dissipation

4.1 Introduction

The model analyzed in Chapter 3 has been is expanded in this chapter by taking
aligned magnetic field into account in the momentum equation. The temperature
equation additionally accounts for the Cattaneo-Christov heat flow. Along with
the chemical reaction, the concentration equation is also taken into consideration.
In this chapter, we will perform numerical analysis of the flow, heat transfer and
total volumetric entropy of the Powell-Eyring hybrid nanofluid. The governing
nonlinear partial differential equations are transformed into a system of dimen-
sionless ODEs by utilizing the similarity transformations. The numerical solution

of ODEs is obtaind by using numerical method known as shooting technique.

50
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4.2 Mathematical Modeling

Consider an unstable, laminar, two dimensional, boundary layer flow of invis-
cid optically thick hybrid nanofluid above an infinite penetrable plate. The non-
Newtonian Cattaneo-Christov heat flux over Powell-Eyring mathematical model is
assumed for hybrid nanofluids. Cartesian dimensional coordinates are assumed
with z-axis to have porous surface along it and the y-axis normal to this. In
current study, nanofluids are prepared by adding copper (Cu) nanoparticles in
pure water with the volume fraction ¢ also alumina (AlsO3) and copper (Cu)
nanoparticles with volume fractions ¢, and ¢, are dispersed in the pure water to
manufacture hybrid nanofluid. The nanoparticle volume concentration of hybrid
nanofluid is defined as ¢pnr = ¢14+¢2. The constitutive equations of Powell-Eyring
fluid model are derived from the theory of liquids and not from the empirical
relationship as in the power-law model. The Powell-Eyring fluid model reduces
Newtonian flux at low and high shear rates. The Cauchy stress tensor for Powell-

Eyring fluid is given:

8ui 1 . 1 1 Guz
Tij = Hhnf (8:vj) + Esmh <58:1:j> : (4.1)

where i, is the hybrid dynamic viscosity and 3, ¢* are material constants of

Powell-Eyring hybrid nanofluid.

A uinform magnetic field of strength is

By
B(t) = ——— (4.2)

applied in the transverse direction to the flow and the induced magnetic field is

considered negligible. The stretching speed and porous surface temperature are

cx cx
= Ty(z,t) =T .
1 —wt’ (,2) +1—wt

(4.3)

Here t is the time, ¢ is a +ve constant and T, the ambient temperature.
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different Nanoparticles

y
.‘ Cu H>0
Cu-H>0
S | 4ARO;  Cu-H0
3 i
5“3 % Cu- ALOYH:0
0 00—
T |7 S |\ prmm—m—m
‘B('l Sheet

FIGURE 4.1: systematic representation of physical model.

The governing equations of the flow model can be expressed as:

ou Ov

ou _ OV _ 4.4
5z oy 0, (4.4)
ou ouou 1 Netw 1 (o)
ot oz Oy T et BC ] OV 23C%3 s \ Oy | 02
2
_M, (4.5)
Phnf

T T 9T  wy [O°T 1 (g AN
T e = S| - TR
ot~ 9x 0y (pCp)uns \ Oy (PCp)hng \ Oy (PCp)nng \ Oy

Oxr Ox dy Oy oz dy Oy Ox
o*T o*T 0*T
2074 o071
+u 97 +wv 352 + 2%33:8?/)’ (4.6)
oC oC 0*C
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The associated BCs have been taken as.

0
u(:v,O):ijLthf[a—z], v(z,0) =V, )
or
nf[ay] hi(Ty—T), C=Cy at y=0, (4.8)
u—0, C—Cysx T—>T,, as y— oo.

For convenience, the following notations have been introduced:

Py = (1= 61)2%(1 — 62)>*, (4.9)
b, = (1_¢2)((1—¢1)+¢1@) +¢2@, (4.10)
Py Py
(pcp)pl (pcp)pz
Fe=(1- 1- : 411
(1—¢2) (( ¢1) + ¢ (0Cy); ) + @2 (0Cy); (4.11)
_ [Bpy + 2Rpy — 202(Kng — Kpy) Kp, + 265 — 201(K1f — Kp,)
Fa= [ Kpy + 26nf + G2(Knf — Kp,) ] % [ Kipy + 2617 + O (kg — Fipy) ] (4.12)
Po= |1+ 3BT — (1 + ) (4.13)
6 (e +2) = (27252 — (61 + 6)) | |

For the conversion of the mathematical model in the form of partial differential
equations (4.4)-(4.7) into the ODEs, the following similarity transformation is

used:

Cc vgc

Y Y(z,y) = (

1_—wt)ﬂ?f(77)7

ty) =] ———
n(t,y) =

T-T, C—-Cx
0(n) = T, — T o(n) = Co—C'

(4.14)

where v denotes the stream function and 7 is the similarity variable.
The identical satisfaction of (4.4) is already discussed in chapter 3. Now, the pro-
cedure for the conversion of (4.5) into the dimensionless form has been presented

below. From the previous chapter, we will consider the following expressions:

u:( ¢ )xf/ (4.15)

0= 2 s, (110
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ou c
— = "(n). 4.1
) (117)
ou c c
Ou _ " 4.1
oy 1—wt\ vp(l-— wt)a:f (4.18)
0%u c? w
R = zf". (4.19)
ov
e 0. (4.20)
o) (1.21)
oy  1—wt - '
Qu_ _cr 1 c@ C _ayf” (4.22)
ot - (1—w2) T2 —w2\ v —wt) '

Now, the dimensionless form of the momentum equation (4.5) can be obtained by

using equations (4.15)-(4.22) as follows,

ou ou w1 Notw 1 fou)’
ot or oy " ot BC ] OV 2BC%3 s \ Oy

_ O'}me2 (t)u
Phnf .

CT , 1 cw c " C /
:>(1 - wt)Qf * 2(1 — wt)? \ vp(1— wt)xyf + <1 — wt>$f 11— wt
"o 1
)xf (thf + PhnfBCk)

2
X —2:1? n _ 1 c C xf// J
ve(l — wt) 2B¢*3ppny \ 1 — @t \| v4(1 — wt) v (

veC C C

'1—wt Vf(l—wt

_ Ohnf cx f B2
Prng \ 1 —w@t” | (V1 —wt)?

cr , 1 cw c ” c? 9
= = -
(1-— wt)zf i 2(1—wt)?\ vy (1 - wt)xyf * (1-— wt)Qxf

2

c "no__ 1 c? "
~ et = e+ | o

1 cd Opnf — CT

3 12 pin 2
- — x’fof B§.
2B¢*3 ppny V(1 — wt)? prng (1 —wwt)? "
w 1l @ c 1
SZf D = g ——— | —
¢ 2 ¢ Vv(l-wmt) Phns BC*
1 Aax? B?

Ohnf Do 4
- _ f//Qf///___f-
2 (1 — wt):”phnfujgﬁg*?’ Phnf C

‘/L‘f///
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33

j[thf + 1 _ *:|f”/ [ (1—wt)3 — :|f//2f/// f/2+ff”
Vi ViphnsBC 202 Py B¢
w 1

S AR T b L s

Since, v = £ | s0

B

Bing ) »
Pan + _ "o w n2 e pr2 4 I
( o %ph”fﬁg*> ! <(2C*2Vf93)(Phnf PHSE: )> =

w 1 Ohnt B2
W f,+_ —yf" . hf_Of/:O‘
¢ 2\ vs(1 —wt) Phnf €

HKhnf

i (1= 61) 72 (1 — ¢) >y
B [T = 02) (L= 60)ps + G10m] + G2’
1
T PR

Phnf/;_; = [((1 — @) (1 — 1)py + d1pp,) + ¢2pp2] X ﬂ,

Pt
3(—%%1;;@%2 — (1 + ¢2))
1+

Ohnf = 10py T$20p $10p, +¢20p x af
(ﬁ—l—% (—f2_ (61 + ¢2))
= PeO'f,
1 w " 1" ( //) 12 e P, Uf 0
(gt )"+ ir =17 =A(f + 51 f S Tl

Finally, the dimensionless form of the momentum equation gets the form:

1
( )fl// + ff// f <f + f//) f//2fl// . Mf _ 0 (423>
P, Pb
The following dimensionless parameters are used in equation (4.23):

—= 1 __u _ o83
A=% W ae A= 20 2vpa? M= cpf
Now, include below the procedure for the conversion of equation (4.6) into the

dimensionless form. The following expressions are equations already derived in

Chapter 3.

0
G_Z - (1 —th

)9(n). (4.24)
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0T
— =0. 4.2
ax2 0 (4.25)
c
y <1 > vi(l—wt) (4.26)
2
a T = < )9” (4.27)
I/f 1 — wt
' 4.2
8x5’y 1—wt\ v(1— wt)0 (4.28)
aT crw 1 cw c ,
o 0w T m\ i (429)
gy, 160*, 4 c*x
=— T 0", 4.
dy 3k* (Vf(l - wt)Q) (4.30)

The governing equation 4.6 for the conservation of energy is

8_T+ 6_T+ 8T Rhnf 82T _ 1 % + Vhnyf % ’
ot dr 0y (pCp)ns \ Oy (PCp)mny \ Oy (PCp)hny \ Oy

- A 8u8T+U@8_T+U@0_T+U@8_T+ 82T+ o1
Yor ox dy Oy oz Jy Jy Ox 0x? 8 2

Cr™w cCw

+ 2uv FT
axay '

1 c cr c
—6 - 9/ /
:>(1—wt)2 +2(1—wt)2 l/f(l—wt)xy +<1—wtf)<1—w

t)9(n)

N ; c _ oy Az o
1- wt 1- wt vi(l—wt)  (pCp)ans \ V(1 — wt)?

N 1 160*T3 ix g o Vs c2a? c Iz
(PCp)mns \  3k*  vy(l — wt)? (PCp)hng \ (1 = wt)? v(1 — wt)

) /\<1 = —thfll T T T vs(1 - wt)
V- wtf 1—wt\ (1 C_ m)f"'l _cwte +0+ ifcwtf?yf(lcixm)zeu
+2<1jxwtf/>.(_ vsc f) (1_th Vf(lc—wt)y))'
e e e s
2 ' ')-
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w lw Khng 1 ., 160" 1 1, s
=—0+—-—nb' + f'0— 0 = ——1—— — 07T
c  2c (0Cp)hny vy 35% (0Cp)nny vy

Vhnf Cx

"2 Cc 2 L . -
AT _)\1——Wt<f 0= 110 —ff 9+f9>.

Since
tinng = Patiy, (pCpling = Pe(pCp)ys A= Xo(1 — wt),
S0,
A + %Ae’ + [0 f0' = %%9" + N?:e’ + %f”
— Aoc < %0 — f£'0 — ff"0 + f29“> .
N <1+P7“Z:77">9//+P7»%>< <f9/—f'9—A(9+ggl>+%fu2

_ g( 20— 0 — £10 + f20”>> —0.  (4.31)

The dimensionless parameters used in equation (4.31) are:

_ @ — _nf _ by —
A=2Z ay= CeArE Pr—af, &= \oc,
us 160* _ T3
E° = w Nr = %0

(Cp)p(Tw—To)’ 3k* vy(pCyp)s

Now, for the conversion of concentration equation (4.7), the following derivatives

are required.

C—-Cx
o(n) = o .
= C=Cx+(Cy—Cx)o(n)
oC
% —0 3 (4.32)
— / Ui
B (Cw — Coo)9'( >8_y
= (Co = C)0 [ 5 (4.33)
0?C y c
a_yg = (Cw — Cs)8" () =) (4.34)
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The governing equation (4.7) for the conservation of concentration is

oC oC 02C
u% + ’Ua—y = Dhnfa_yZ — kl(C — Coo)
= Ty/7 if;tf(ﬁ)(cw — C)¢/(eta) m
/! C
= Dpns(Cow — Cx) 9 v =) k1(Coo + (Cw — Cc)(1) — Css).
¢ ;o . 1 ¢
= - (Cw - Coo)l_—wtf(n)¢ - (Cw Coo) (Dhnf¢ I/f(l — wt) + k1¢) .
C ; " C
= - 1—wtf(n)¢ = Dhnso m+k‘1¢-
= e = Dt U2F
Vg C
= Doy T i
f C
Since Dy = (1 — ¢1)*5(1 — ¢2)** Dy, so
D¢P, , ki(1— ,
L
f Cc
n __ Vf kl(l_Wt> Vy /
= ¢ =D, . ¢—Dfpaf(77)¢-

S S
= = TKie— S ).

Therefore, the dimensionless form of the concentration equation gets the form:

Se Sec

¢+ Faf(UW/ - EKI¢ = 0. (4.35)

The following dimensionless parameters are used in equation (4.35):

_ vy _ ki1(l—wt)
Sc= D; K1 = -

The related BCs are converted into the dimensionless form by the following pro-

cedure.

v(z,0) =V, at  y=0.
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= — ve f(n) =V, at n=0.
1 —wt
1 —wt
= fn)=- : at 1 =0.
VfC
= f0)=5
ou
uw(x,0) = Uy(z) + tihny [a—y} , at  y=0.
cx cr cr c L
= = t =0
~ 1—wtf(n) l—wt 1-—wt\ v(l—wt) Paf (n): o
cr cr c "
— t =0.
~ 1—wtf(n) 1—wt[ * l/f(l—wt)”f]f ’ ao
A
= [y =1+ 5", at 1=0.
/ A 1
= [0)=1+5["(0)
oT
—ﬁf[a}—hf( T), at  y=0.
cx
— T -T t =
= I{fl—wt\ll/fl—wt C>O+1—wt )’ at =0
, ve(l— wt) cx B
- 1—wt9() (1—wt (- T)>’ at - n="0
cT (1 — wt)
~ 1—wt \/ 1—wt 1—wt0(n>>’ at-n=0
= 0'(n)=-Bi(l — ), at  n=0.
= 0'(0) = —Bi(1—6(0)).
C = Cy, at y=0.
= (C=Cx+(Cy—Cx)o(n), at  n=0.
Cp—Cy _
= @5(77)——%_000, at  n=0.
= o) =1, at  n=0.
= ¢'(0)=1.
Similarly,
u — 0, as Yy — oo.

= f'ln) =0,

as 1 — 00.
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= f'(c0) =0, as n— oo.

T — Ty, as Yy — o0.

= 6(n) =0, as n— 0.

= 6(o0) = 0, as n— 0.

C — Cy, as Yy — 00.
= ¢(n) =0, as 1n — 00.
= ¢(o0) =0, as 1 — oo.

The final dimensionless form of the governing model, is

1 w " " !/ / 77 1 CL)A 1 " Pe !
(g )" 1 =1 = A 4 50 =5 = pME = 0. (4:36)

B,
PrNr " PC , , n ., Ee .
<]_‘|‘ 3 >6 +PTFdX<f0—f0—A<0+§0)+mf2
—¢(120- 10— 10+ 207)) = 0. (437)
1" Sc ’ Sc -
¢ +Faf(77)¢ _FGK1¢_O' (4.38)

The associated BCs (4.8) in the dimensionless form are:

£(0) = 5, f'<o>=1+%f"<o>, Fn) = 0.

0'(0) = —Bi(1 —6(0)), 6(n) — 0. (4.39)
¢'(0)=1, ¢(n) — 0.

The skin friction coefficient and Local Nusselt numbers are the same as discussed

in Chapter 3. So,

CrRe s = — ((% + w) £7(0) — % f”3(0)>, (4.40)
NugRes® = — "0 (1 4 Nvyo/(0) (4.41)

Ky
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The local Sherwood number is defined as:

TGm
Sh, = ) 4.42
Dhnf(cw - Coo) ( )

The dimensionless form of Nu, can be produced through the following steps:

oC
—Dp, .

qm hf<8y>
y=0

2Dpng (Coo = Coo) [ @ (0)
Shy = —

= —Re2¢'(0)

¢'(0)
—  ShyReZ = —¢(0). (4.43)

Here Re, = LL”T;Q denotes the Reynolds number.

The entropy generation rate Ng is defined as:

To20 02 EG

Ng = — ¢
T k(T — Too)?

(4.44)

The dimensionless form of Ng can be produced through the following steps:

2 2
E.— Rhnf 8_T +E 160'*T§O 8_T 4 ,u;mf ou
Cm 2 \\ oy ) T 33k v(pCy)s \ Oy ay
O'}me2(t)u2
+—Too

2 2 2 2
Kant | (8T 16 160*T3  (orT Bhns [ du Thnf B2 (t)u 2 2
<T§o <<8y> + 3 3k*l/f(pCp) <8y> ) + Too <3y> + Too TOOC
Ng =

k(T — Two)?
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— Pdﬁf (1 + NT) (02‘7:2) c 0/2 + I;D_i (CQSEQ) ¢ fl/2
T2 (1 —wt)?vs(l — wt) T (1 —wt)?vs(1 — wt)

1
12 T2 2
Too( 1- Wt)Q (1 - Wt)2f > S Hf(Tw - Too)2

Toolt U? cx
— | P.(1+ Nr)o? o f w my & 9
< G NN A sl LA Dy peery
n Twc*P.o; B2 c*z? e
Ki(Ty — T)?(1 — wt) (1 — wt)?
1 Too ,LLfU2 2 vaC2
= | Py(1+Nr)§? + — w____
( P, (Ty —Tx) k(T — Tio) VT
1 TOO O'fBg ,U/ng) % UwCQf,Q
(Tw = T) pre kp(Tw —T) vy
1 B BrP.M
= Ng=Re| Py1+Np)o?+ ——lpr2y 210e2 g ) (4.45)
P, Q Q
where R, = ({/wa, Br = Ml}i—%’ O = (TUJT—%OO) denote the Reynolds number,

Brinkmann number and dimensionless temperature gradient respectively and M =

B2 . .
Ucfp—fo is the magnetic parameter.

4.3 Numerical Method for Solution

The ordinary differential equation (4.36) has been sloved numerically by using the

shooting technique.

f/// _ Pan
1+ P,w — PwAf"?

! " ! n " Pe !
(fz_ff +A(f +§f)+Fbe>' (4.46)

The following notations have been taken:

f:Gh
f/:GllzG%
"Gl =Gl =G
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The momentum equation (4.46) is then transformed into the system of first-order

ODEs shown below.

Gy = G, G1(0) = S.
A
Gl = Gs, G(0) = 1+ -Gs(0).
PP,

P,
el (Gg eNe A(G2 v gG3> v —MG2>, G4(0) = p.

" 1+ Puw— PwAGE 2

The above IVP will be numerically solved by the Runge-Kutta method of oder 4.

The domain of the problem is considered to be bounded i.e. [0, 7], where 7, is a
+ve real number, for which the variation in the solution is ignorable after n = 7.

The missing condition p is to be chosen such that.

G2(77<>o>p) = 0.

Newton’s method will be used to find p. This method has the following iterative

scheme.

s = G2 (Moo, Pr)
n+l — Mn T .
(532G (110> D)) p=pn

We further introduce the following notations:

%: 4, @: 5 %—GG

dp dp

As a result of these new notations, the Newton’s iterative scheme gets the form:

Dol = Pn — GZ(nooapn)
m " G5(77007pn)

Now differentiating the last system of three first order ODEs with respect to p, we
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get another system of ODEs, as follows.

G = Gs, Ga(0) = 0.
G = G, @@:%.
Go = 1+ PawPiP;awAGQ (1 + ;iiGJiiAGg (Gg — GG A<G2 + gG?’)

+ ]]Zb MGy) +2G5Gs — GaGy — Gr G + A(Gs + gG6) + %M@) ,

Gg(0) = 1.
The stopping criteria for the Newton’s technique is set as:

| Ga(00, D) |< €,

where € > 0 is a sufficiently small number, which has been considered as 107!°. The
ordinary differential equation (4.37) will be approximated by using the shooting

technique and assuming f as a known function.

E C
PP

/!

f//2

1 P / ! 77 /
T F( Pﬁzxweim—A@+2Q+

— (20— f10 — ff”9>>> . (4.47)

For this, we utilize the following notions:
0 =H,, ¢ =H]=H,.

The energy equation (4.47) is then transformed into a system of first-order ODEs

as shown below.

H{ :HQ, Hl(O):q

1 P, n
1+P7"N7" gPT&G2< PTFd X <G1H2_G2H1_A<Hl+§H2>

H) =

Y5 a@m—Q@m—Gﬁm@>,m@:—ma—m@y
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The above IVP will be numerically solved by Runge-Kutta method of oder 4. The

missing condition ¢ is to be chosen such that.

Hl(nomq) = 0.

The above equation can be solved by using Newton’s method with the following

iterative formula.

H, (77007 Qn)
(a%Hl (Mo0s @) g=gn

Gn+1 = Q4n —

We further introduce the following notations:

o, - I OH,
Jdq

As a result of these new notations, the Newton’s iterative scheme gets the form:

Gl = Gn — Hl(nom%l)
S " H3(7700?qn>

Now differentiating the system of two first order ODEs with respect to ¢, we get

another system of ODEs, as follows.

Hé = H4, H3<0) == 0
’_ 1 _ple _ _ "
Hy= ey ez Prg x <G1H4 GoHsy A(Hg, v 2H4>
d d
— f(GgHg — G1G2H4 — G1G3H3))> , H4(O) = —Bi.

The stopping criteria for the Newton’s method is set as:
| Hi(ne, ) |< 10719

The ordinary differential equation (4.38) will be approximated by using the shoot-

ing technique assuming f as a known function.

Se

o = (Ko = 1d). (4.48)
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For this, we utilize the following notions:

p=Y), ¢=Y =Y,

The concentration equation (4.48) is then transformed into the system of first-

order ODEs shown below.

Y] = Vs, Yi(0) = 1.
Sc
vi = 2 (K - Gia), ¥a(0) = 1.

a

The above IVP will be numerically solved by Runge-Kutta method of oder 4. The

missing condition 7 is to be chosen such that.

Yi(noo7 T) = 0.

The above equation can be solved by using Newton’s method with the following

iterative formula.

Y1 (1o, )
(%Yl(noov 7))r=rn

Tnel = Tn —

We further introduce the following notations:

oY, Y,
Iy,
or 8 or

As a result of these new notations, the Newton’s iterative scheme gets the form:

Y1(Moos Tn)

Tnel = Tn — )
i Y5(Noosn T)

Now differentiating the system of two first order ODEs with respect to r, we get

another system of ODEs, as follows.

Yi =Y Y3(0) = 0.
S
Y/ = FC(Km—Gln), Y,(0) = 1.
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The stopping criteria for the Newton’s technique is set as:

| }/1(77007T) |< €.

where € > 0 is a sufficiently small number, which has been considered as 107,

4.4 Representation of Graphs and Tables

In this section, the effect of the dimensionless parameters of interest on the skin
friction coefficient Reé C, Nusselt number Re, %N Uy, Sherwood number Sh and
Entropy generation Ng has been thoroughly discussed in the graphs and tables. In
Table 4.1, T}, and T}, are the intervals for the choice of missing condition ¢ while
computing the skin friction coefficient for nanofluid and hybrid nanofluid respec-
tively. It is observed that for the computation of Nusselt number and Sherwood
number, there is a great flexibility in the choice of the missing initial condition.
Tables 4.2, 4.3 and 4.4 explain the effect of the material parameters w and A,
unsteady parameter A, nanoparticle volume fraction parameters ¢; and ¢, suc-
tion/injection parameter A, magnetic parameter M, relaxation time parameter &,
radiation parameter Nr, Eckert number Ec¢, Biot number Bi, Schmidt number
Sc and chemical reaction parameter K; with fixed Prandtl number Pr = 6.2
and shape factor m = 3 on fluid motion, temperature variation, mass concen-
tration and the total volumetric entropy generation of Powell-Eyring nanofluid

and hybrid nanofluid.

For rising these values the skin friction coefficient Re% C'¢, Nusselt number Re;Tl Nu,
and Sherwood number Sh increase. Figures 4.2 -4.4, show the impect of w on ve-
locity profile f’(n), temperature profile 6(n) and entropy profile Ng respectively.
For w = 0.1, 0.3, 0.5, computations are carried out with nanoparticles volume frac-
tion of ¢1 = 0.09 and ¢ = 0.09. For different values of w, Figure 4.2 depicts
variation in the velocity profile. For increasing value of w, an ascending trend in

the velocity profile is observed and this enhances the thickness of the momentum
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boundary layer. As w is inversely proportional to the base fluid viscosity, an in-
crease in the positive values of w, enhances the stress rate within the boundary
layer and decreases the base fluid viscosity. Consequently, within the boundary

layer, the velocity of the conventional and hybrid nanofluids, is increased.

In Table 4.2, the effect of w on the viscosity of the base fluid can also be seen
through difference in values of the skin friction. The skin friction factor at the
boundary undertakes a move up trend. Furthermore, for alloted value of w =
0.1, the thickness of momentum boundary layer for hybrid nanofluid is increased
whenever it is collated with the classical nanofluid. A reducing trend is noticed
in the temperature profile with an enlargement in the value of the parameter w
as depicted in Figure 4.3. This illustrates a depletion in thickness of the thermal
boundary layer and an improvement in the rate of heat transfer inside the bound-
ary layer. In comparison, the thickness of the conventional nanofluid is higher than
that for the hybrid nanofluid. Hence, the rate of heat transport at the boundary of
AlyO3 — Cu/Hy0 hybrid nanofluid is higher. For both conventional and hybrid

nanofluids increasing trend in Nusselt number is also observed in from Table 4.3.

Figure 4.4 illustrates the influence of the material parameter w on the volumetric
entropy generation of the conventional and hybrid nanofluids. It describes the an
increase in the values of the material parameter lessens the entropy of system near
the surface but an opposite impact can be seen away from the plate. It shows that
the irreversibility of Cu — HoO nanofluid is less than the AloO3 — Cu/H>O hybrid

nanofluid.

Figures 4.5-4.7 depict the behavior of the fluid motion, temperature distribution
and entropy generation due to variation in the non-Newtonian fluid parameter
A. For the increasing values of A, Figures 4.5 and 4.7 show a decreasing trend in
the velocity profile f’(n) and entropy generation Ng whereas in Figure 4.6, it can
be observed that the increasing values of A, initially the entropy profile Ng in-
creases. As 7 increases, the entropy profile decreases and asymptotically approach
to zero.

Figures 4.8-4.10 focus on the impact of ¢. The graphs are produced for velocity,

temperature and entropy generation profiles. Computations are carried out for
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fixed value of ¢ = 0.09, and analysis is carried for variation in the parameter
¢o. In Figure 4.8, it can be observed that the increasing values of ¢, initially the
velocity profile f'(n) decreases due to a rise the value of ¢. As 7 increases, the
velocity profile increases and asymptotically approach to zero. Figure 4.9 depicts
that the temperature profile 6(n) rises due to higher thermal conductivity of solid
particles which raises the overall thermal conductivity of the nanofluid. In Figure
4.10, it can be observed that the increasing values of ¢, the entropy generation Ng

increases.

Figures 4.11-4.13 depict a decreasing trend in the fluid motion movement, volu-
metric entropy generation, and temperature for positive increase in the slip pa-
rameter A. For the increasing values of A, the velocity profile f’(n) and tempera-
ture profile 6(n) and entropy generation N decrease. Figures 4.14 -4.16 show the
impact of M. For the increasing values of M, the velocity profile f'(n) decreases
and temperature profile 6(n) and entropy profile Ng increases. Figures 4.17 ,4.18
show the impact of . For the increasing values of £, the temperature profile 6(n)

is decreases and entropy profile N is increases.

Figures 4.19-4.20 show the impact of Nr. For the increasing values of Nr, the
temperature profile 6(n) and the entropy generation Ng increase. Figures 4.21-
4.22 show the impact of Eec. For the increasing values of Ec¢, the temperature
profile 6(n) and the entropy generation Ng increase. Figures 4.23-4.24 show
the impact of Bi. For the increasing values of Bi, the temperature profile 6(n)
and the entropy generation N increase. The shape factor of nanoparticles is an
important factor to consider while analysing the system’s thermal performance.
The shapes of the nanoparticles in the current work include spherical, hexahe-
dron, tetrahedron, column, and lamina. Figures 4.25-4.26 show the impact of m.
For the increasing values of m, the temperature profile (7)) and the entropy gen-
eration N¢ increase. The effect of Reynolds number Re and Brinkmann number
Br on the total volumetric entropy generation rate is depicted in Figures 4.27
and 4.28. In Figure 4.27, it can be observed that the increasing values of Re, the
entropy generation Ng increases. Figure 4.28 shows the impact of Re. For the

increasing values of Br, the entropy generation Ng increases.
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In Figure 4.29, it can be observed that the increasing values of Se¢, the increas-
ing values of Sc the concentration profile is decreased. In Figure 4.30, it can be

observed that the increasing values of K7, the increasing values of K the concen-

tration profile is decreased.

TABLE 4.1: Missing conditions of Re Cy for Pr=6.2, m = 3.

w A A b1 P2 A M Tﬁ sz
0.1 0.2 02 003 0 0 0.1 1.2, -1.0] ----
0.3 1.1, -1.0] 1.1, -0.9]
0.5 1.1, -0.8] 1.1, -0.9]
2.0 1.3, -1.1] 1.3, -1.1]
4.0 1.6, -1.3] 1.5, -1.3]
0.3 1.2, -1.1] 1.2, -1.0]
0.4 1.2, -1.1] 1.3, -1.2]
0.06 [-1.3, -1.0] [-1.3, -1.0]
0.09 [-1.3, -1.0] 1.3, -1.1]
0.03 - [-1.2,-0.9]
0.06 - [1.2,-0.9]
0.09 S 1.2, -0.9]
0.1 1.0, -0.8] -1.0, -0.8]
0.3 -0.8, -0.7] -0.8, -0.6]
0.2 [-1.3,-1.0] 1.3, -1.0]
0.3 [1.3,-1.1] [-1.3, -1.0]
TABLE 4.2: Results of ReéCf for Pr=62,m=3
w A A §Z51 gbg A M ReECf Regng
(CU-HQ O) (AZQ Og-CU/HQ O)
0.1 0.2 0.2 0.03 0O 0 0.1 1.3995 ----
0.3 1.5047 1.6031
0.5 1.6039 1.7026
2 1.3698 1.4686
4 1.3242 1.4259
0.3 1.4378 1.5388
0.4 1.4756 1.5792
0.06 1.5836 1.6828
0.09 1.7715 1.8728
0.03 ---- 1.4979
0.06 ---- 1.6021
0.09 ---- 1.7129
0.1 1.1531 1.2624
0.3 0.9037 0.9738
0.2 0.9037 1.5496
0.3 0.9037 1.5995
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_1
TABLE 4.3: Results of Re, 2 Nu, for Pr =6.2, m =3

1 1
w A A ¢ o A M &  Nr Ec Bi Reg?Nu, Rey?>Nu,

(CU‘HQ O) (Alz Og-CU/HQ 0)

0102020030 0 010.01020.20.2 0.2129 ----
0.3 0.2159 0.2323
0.5 0.2183 0.2349
2 0.2114 0.2274
4 0.2087 0.2248
0.3 0.2136 0.2298
0.4 0.2142 0.2306
0.06 0.2266 0.2437
0.09 0.2408 0.2589
0.03 ---- 0.2289
0.06 ---- 0.2457
0.09 ---- 0.2631
0.1 0.2171 0.2343
0.3 0.2215 0.2396
0.2 0.2113 0.2272
0.3 0.2099 0.2254
0.2 0.2096 0.2252
0.3 0.2078 0.2231
0.5 0.2596 0.2796
0.8 0.3042 0.3278
0.4 0.1873 0.1992
0.6 0.1617 0.1694
0.1 0.1114 0.1200
0.3  0.3054 0.3282
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TABLE 4.4: Results of Sh for Pr =6.2, m =3

w A A ¢ P

A M Sc Kl

Sh

Sh

(CU—HQ 0) (AZQ O3‘CU/H2 O)

0.1 02 02 003 0

0.3
0.5
2
4
0.3
0.4
0.06
0.09
0.03
0.06
0.09

0 02 02 02

0.1

0.3

0.5

0.8

0.4

0.6

0.1

0.3

0.5955

0.6065

0.6160

0.5920

0.5867

0.5933

0.5910

0.6191

0.6472

0.5729

0.5410

0.5903

0.5855

0.9813

1.3649

0.8332

1.2894

0.6368

0.6461

0.6228

0.6178

0.6238

0.6214

0.6524

0.6832

0.6161

0.6600

0.6975

0.6004

0.5648

0.6207

0.6155

1.0316

1.4336

0.8706

1.3428
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FIGURE 4.3: Temperature profile against w on 6(n) for Pr = 6.2.
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FIGURE 4.5: Velocity profile against A on f'(n) for Pr = 6.2.
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FIGURE 4.6: Temperature profile against A on 6(n) for Pr = 6.2.
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FIGURE 4.7: Entropy profile against A on Ng for Pr = 6.2.
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FIGURE 4.8: Velocity profile against ¢ on f’(n) for Pr = 6.2.
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FIGURE 4.9: Temperature profile against ¢ on 6(n) for Pr = 6.2.
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FIGURE 4.10: Entropy profile against ¢ on Ng for Pr = 6.2.
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FIGURE 4.11: Velocity profile against A on f/(n) for Pr = 6.2.
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FIGURE 4.12: Temperature profile against A on 6(n) for Pr = 6.2.
70 T T
\
\ A=0.0
\ A=0.1
Cu-H,O
60\ 2 A=0.3
-———— A=0.0
AlLO,-CuH,O| A—0.1
50 - A=03
40
=° A=0.0,0.1,0.3 Bi=0.2,A=0.2,b=0.1,
0 A=0.2,¢ =0.09,
¢,=0.09,M=0.1,
20 ' S=0.1,m=3,Nr=0.2
£=0.01,Ec=0.2,
Re=5,Br=5,02=1

10

FIGURE 4.13: Entropy profile against A on Ng for Pr = 6.2.
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FIGURE 4.15: Temperature profile against M on 6(n) for Pr = 6.2.
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FIGURE 4.17: Temperature profile against £ on 6(n) for Pr = 6.2.
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FIGURE 4.21: Temperature profile against Fc on 6(n) for Pr = 6.2.
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FIGURE 4.22: Entropy profile against Ec on Ng for Pr = 6.2.
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FIGURE 4.23: Temperature profile

against Bi on 0(n) for Pr = 6.2.

83



Cattaneo-Christov based Study of Powell-Eyring Hybrid Nanofluid

45 T T T
\ Bi=0.1
40 CuH.O Bi=0.2|
\ 2 Bi=0.3
L ———— Bi=0.1| |
35 A0y CuM0 270
———— Bi=0.3
30 r A
25¢ :
S
=2
20 | A=0.1,A=0.2,w=0.1,|
A=0.2,4 =0.09,
15+ ¢,=0.09,M=0.1, T
S=0.1,m=3,Nr=0.2
101 £=0.01,Ec=0.2, i
Re=5,Br=5,2=1
5 -
0 1 1 e —
0 0.5 1 1.5 2
7
FIGURE 4.24: Entropy profile against Bi on Ng for Pr = 6.2.
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FIGURE 4.25: Temperature profile against m on 6(n) for Pr = 6.2.
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FIGURE 4.26: Entropy profile against m on Ng for Pr = 6.2.
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FIGURE 4.27: Entropy profile against Re on Ng for Pr = 6.2.
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Chapter 5

Conclusion

In the current study, computational results for entropy generation and heat trans-
fer resulting from Powell-Eyring hybrid nanofluid flow are reported. The nanofluid
occupies the space over an infinite porous stretching surface. The boundary layer
region is included in the mathematical model along with the effects of viscous dis-
sipation, boundary slip, nanoparticle form, magnetic effects and thermal radiation.
Numerical computations are carried for copper water Cu-H;O nanofluid and alu-
minacopper water Al O3-Cu/H,O hybrid nanofluids. To the best of researcher’s
knowledge, no studies on entropy analysis due to Cattaneo-Christov based study of
Powell-Eyring hybrid nanofluid flow have been published so far. The model under
consideration here uses a physical mechanism to examine the impact of diffusivity
on non-Newtonian hybrid nanofluid flows. The following are the key results of the

current work:

e It has been shown that the hybrid Powell-Eyring nanofluid Al Os-Cu/Hy O
conducts heat more effectively than the traditional Powell-Eyring nanofluid

O’LL-HQ O .
e The heat transfer rate rises with the higher concentration of nanoparticles.

e Entropy of the system is observed to rise and fall with a rise in the values

of the material parameters w and A.
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e Entropy of the system is examined to increase with an increase in the nano-
particle volumetric concentration parameter ¢ and ¢y, s, relaxation time pa-
rameter £, magnetic parameter M, thermal radiation parameter Nr, local
Eckert number E¢, Biot number B, Brinkman number Br and Reynolds number

Re but reduces with an increase in the velocity slip parameter A.

e The heat transfer rate rises for the larger shape factor m in the bound-

ary layer.

e An increment is noticed in the temperature distribution by rising the values

of Eckert number Ec.

e The highest temperature in the boundary layer is found for lamina-shaped
particles, whereas the lowest temperature is found for spherical nanoparti-

cles.

e Mass concentration of the system is observed decline with a rise in the values

of Schmidt number Sc¢ and chemical reaction number K;
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