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STARTING WITH FOUR BIG
PICTURES
What we have tried to create here is not an ordinary
book about statistics. Instead, it is a demonstration of
how statistics and research co-exist, explaining all of the
‘whys’ that accompany the ‘how to’ instructions that will
allow you to conduct psychological research of your own.
Years of experience tells us that knowing why is so much
more powerful than simply knowing how . Our book
intends to paint the big picture of psychological research:
if you can understand the big picture – the why – then
the details – the hows – are easy because they just
become a case of looking a little bit closer into the things
that you need. Really, the big picture comes from four
nested pictures together: imagine a Russian doll, if you
will.

A NEST OF BIG PICTURES
The first big picture is the sheer wonder of human
variability, not to mention other animals. That variability
sits right at the heart of this – it is, after all, why we are
here. Research, the process of systematic investigation,
is done to find knowledge that can help us to understand
as much of that variability as we can.
The second, slightly bigger, picture encapsulates the
first. The second big picture is a logical and
straightforward system of statistical analysis to protect us
from mere wishful thinking about psychology. Statistical
analysis is simply the processing of data: in the case of
this book, we will focus entirely on numeric data, called
quantitative statistics . We can envelop all the
fascinating variability of our subject in a system of logical
thinking about how people and situations vary and,
critically, how we can use statistics to turn information
from a small sample group of individuals into uncertain
ideas about the bigger population.
Once we grasp the second big picture – an
understanding of variability and the place of statistics –



then we are ready to expand outwards. The third big
picture is where data somehow hasn’t just happened: we
take active control. It is where we think ahead,
anticipating how the systematic logic of statistics will
work for our own specific interest. We design research
that will work well.
The final big picture is where we look right back to the
original big picture of the richness and complexity of
psychology, recognising how little we gain when we
reduce that complexity too far by picking out the bits and
pieces of variability that we want to investigate, and
relying on rather strict traditional statistics. The real big
picture is the point where we have gained enough
knowledge and ability to engage with the real richness of
psychology: where more powerful statistics allows
psychology to take precedence over numbers.
Just as with any scientific endeavour, being critical and
being disciplined are paramount. Statistics are tools. If
used uncritically, they can mislead. If used without
discipline, they will revert to wishful thinking. All the way
through this book, you will find that the real safeguards
are to understand what the tools are doing.



CHAPTER 1 WHY DO WE NEED STATISTICS? BEING
A RISK-TAKER MIGHT MAKE YOU MORE INTELLIGENT

1.1 Collecting Some Data 3

1.2 Describing the Data 4

1.3 Uncertainty in the Data 6

1.4 Variability 6

This chapter begins with an idea that we are interested in: do risk-takers do better or worse
in exams than non-risk-takers? Subsequently through this chapter, we will use this
question to illustrate why it is that we need statistics, so that you can understand from the

: 



start why it is important to learn what will be covered in this book. Although there are plenty
of details in statistics, they all fit inside a clear and simple big picture. Fundamentally, the
process of statistical analysis is useful to psychological research because it answers two
important questions that arise in all research: what does our evidence appear to mean, and
how certain can we be about our findings?
This chapter sketches out the whole research cycle, in order to demonstrate the
importance of those two research questions. Everything that we discuss here will be
explained fully in the subsequent chapters of this book.

WHERE TO BEGIN
We need to start this book at the innermost picture: human variability. We are going to use
one research question throughout this book to illustrate the principles that we discuss. And
we found it by looking at ourselves. The innermost picture is one where we see (and
celebrate) all the variability between people. The differences between us, the two authors,
are, as you would expect, a rich source of research inspiration. We found two or three
differences that appealed because they felt like fresh ground to examine.
Our chosen difference for this book is how we approach risk. Maybe we both think of
ourselves as risk-takers, but one of us happily steps out of planes and off high bridges, and
the other has no intention of stepping off or out of anything higher than a dining chair. He
does play the trumpet and wishes that could count instead. There is also a difference in
our academic record: the riskier one of us has high exam grades and top-grade
qualifications, and the other only studied psychology because his grades weren’t good
enough to do the things he wanted to (fortunately it has grown into a successful passion
…!).
So, our chosen research question is this:

Do risk-takers do better or worse in exams than non-risk-takers?

When we talk about this in the text, we’re going to write it out as ‘RiskTaker?’ and
‘ExamGrade’, so that the terms can easily be seen on the page. We use a ‘?’ at the end of
RiskTaker to say to the reader that the options are ‘yes’ – being a risk-taker – or ‘no’ – not
being a risk-taker. We’ll use this format again for other examples, so when you see a ‘?’ at
the end of a capitalised word, it simply means that there are only two options, called
values, which we’ll explain in Chapter 3 – yes or no.
Throughout this book we will use diagrams to show research questions. This example, in
its simplest form, is shown in Figure 1.1 .

Figure 1.1 Typical hypothesis diagram that we will use to show research
questions.



We have chosen this example because, to the best of our knowledge, no-one knows the
answer. It is simply something that interests us: any outcome is possible. At the end of this
book we won’t have told you whether risk-takers really do have an advantage or a
disadvantage in exams, but we will have told you how to go out and find out yourself.

1.1 COLLECTING SOME DATA
Before we can do anything statistical, we need data : evidence that we collect
systematically to provide information about our research question. For our specific piece of
research, imagine that we have decided to find 42 students at a university, classify each of
them as low or high risk-taking using a set of questions, and then obtain their exam grades
from the last semester. We then go off and do this, exactly as we planned. There is an
important detail here: we make a plan for gathering the data and stick with it. That way we
aren’t going to make the mistake of watching out for data that suits us. The data that we
obtain is in Figure 1.2 .
At a quick glance, it looks like it may be true that being a risk-taker relates to higher
grades: the group on the right-hand side of the graph shows some students with higher
grades than those in the group on the left-hand side. However, we need to recognise a
limitation: this is only our impression. Moreover, our impression will probably be influenced
by what we are hoping to see. How we perceive these results may be very different from
the impression formed by someone else: for example, a different observer might look at
the right-hand group of risk-takers and focus on the student in that group who has the
lowest exam grade of all 42 students together. Impressions are not helpful and what we
need is a rigorous way of describing what this set of data shows so that all audiences can
understand what we have done and why. That way, they will either agree with us, or have
to have a concrete reason for not agreeing.

 Description

Figure 1.2 Sample graph, comparing a sample of risk-takers and non-risk-
takers.
This graph shows the data that we obtained from our sample of 42 participants. Each dot is one
participant. The vertical location of the dot in the graph shows the exam grade for each participant. They
are split into two groups along the horizontal axis – one for each risk-taking category. This format of
graph, with one variable spread across the horizontal axis and the other across the vertical axis, gives
us a very simple way of seeing any patterns in the data. In this case, the data suggest that the risk-
takers may have higher exam grades.

We also need to recognise the limitation that we have only found something out about this
group of 42 people – our sample – and there are millions more students out there whom
we haven’t considered. A different sample of participants would lead to a different set of
data, and perhaps a different outcome. We can’t be certain about how similar our sample
is to other people that we haven’t measured.



We can think of what we do with the data as navigating past two traps. The first trap is to
rely on a subjective impression and therefore draw conclusions based on wishful thinking.
The second trap is to place too much belief in what the sample shows, and not consider
carefully enough what other samples could have shown. To overcome these two traps, we
can use statistics to:

(i) rigorously describe evidence: ‘what does our data appear to tell us?’

(ii) calculate the reliability of our conclusions: ‘how uncertain should we be?’

1.2 DESCRIBING THE DATA
Let’s start with question one: ‘what does our data appear to tell us?’ We can start with the
data shown in Figure 1.1 which gives us a nice illustration. But let’s go a bit further, using
simple statistics. We can summarise what we know from our 42 participants into just a few
numbers that will preserve the patterns we are interested in: here, this is the difference
between the two groups we have studied.
You may have heard the word ‘ average ’ before: it is just a commonly used way of
summarising a group of values with a single value, which we can also think of as being the
typical value of a group. For our example, we can take each group of participants (non-
risk-takers and risk-takers) and say that the people in each group have an overall typical
exam grade (one number that summarises the group), and their grades are spread either
side of that typical value (spread is also summarised with a number). We will go into this in
detail in Chapter 3 . But for now, what you need to know is that the first step in looking at
data sets is to describe them with a few numbers.
These numbers are examples of descriptive statistics and we use them to describe the
data set that we have collected, to identify patterns and provide the typical values that we
have just mentioned. Figure 1.3 shows what some common descriptive statistics look like:
the graph shows the average exam grade for each group as a dot, and the spread of
grades as the vertical lines.
The descriptive statistics for each group – a typical value and the spread around that
typical value – allow us to examine our original question by comparing typical values. The
original question was ‘Do risk-takers have higher exam grades?’. That question now
becomes ‘Is the typical exam grade for risk-takers higher than for the non-risk-takers?’. We
can go further and use the spread of grades to give a sense of how big the difference is. In
Figure 1.2 we can compare the difference in typical exam grades between the two groups
with the spread and see that, actually, the difference in typical exam grades is rather small
compared with the range of exam grades that were recorded. That gives us a visual
suggestion that the effect of risk-taking is small.

 Description



Figure 1.3 Descriptive statistics graph showing means and standard
deviations.
This graph shows two types of descriptive statistic, the typical grade and the spread of grades for each
group of risk-takers. It summarises the patterns found in the data from Figure 1.2 with a single typical
value for each group – shown as a dot – and vertical lines to indicate how spread out the values are
within each group. These vertical lines show the magnitude of 1 standard deviation in each direction.
The arrow ends to the lines are used to indicate that these are standard deviations. Elsewhere in the
book, lines with flat ends will be used to show something different. In Chapter 3 we will see that in this
particular situation, the typical value is called a mean and the spread shown in this graph is called the
standard deviation .

1.3 UNCERTAINTY IN THE DATA
The second question we have about our data (or any data) is ‘how certain can we be?’.
The answer to this is to understand the difference between a sample and a population .
Our 42 participants are a sample; the millions of students studying around the world could
be the population that we are interested in. When we say ‘how certain can we be?’, we
mean ‘how certain can we be that our sample tells us something reliable about the
population ?’. We’ll look at samples and populations in much more detail in Chapter 5 , but
one important thing to note here is that a population is the whole group we are interested
in: it can be everyone in the world, or it can be more specific (e.g. all university students).
We can be certain about our sample quite easily just by examining it, but that is usually not
very satisfying – especially if we want to build knowledge about the whole population of
interest. Our fundamental problem is that no two samples will ever be the same, as you
can see in Figure 1.4 , and they will all differ somewhat from the population, just because
of the random nature of how we selected our participants and their individual differences.
This randomness is called sampling error . We can’t avoid sampling and so we must live
with sampling error. Let’s think about why we should care about our sample being different
from a population.
It really boils down to one very important question: if the sample is always different from
the population, then how can we find out things about the population? This is where
statistics come in: we can calculate the uncertainty in our data so that we can make an
inference about the population using the information from a sample. An inference is a
conclusion that we recognise is always uncertain, and statistics enables us to measure
how much uncertainty there is in our findings. Just by looking at Figure 1.4 we can see that
six different samples from one population provide different glimpses of what might be
happening within that population. This means that one sample on its own is a fairly
uncertain source of knowledge.
Using inferential statistics , as they are called, in this manner is really about assessing
the amount of uncertainty to remind us of the limits of what we can infer from one sample
alone.

1.4 VARIABILITY
Central to everything we will learn is the idea of variability , which is most simply defined
as how spread out the values in a data set are; or the extent of the differences between
participants. It is often said that statistics focuses on the typical person, particularly
because the typical values we mentioned above in Section 1.2 are frequently used to
summarise data sets. When we only provide the typical value when describing a set of
values, then we are indeed treating everyone as if they were the same and ignoring all the
interesting differences between people: the variability.



 Description

Figure 1.4 Six different samples drawn from a single population to indicate
sampling error.
This figure shows what we might find if we collected six different samples of 42 students. These graphs
all differ from each other and show quite a lot of random variability (as explained in Section 1.4) due to
the samples they contain. This variability between samples illustrates sampling error.

Failing to include the differences between individuals is to fail to recognise the variability
between people and that would be wrong, because the differences between people are so
much more interesting than just knowing about the typical person.
In our original example here, we took 42 people who varied considerably in their exam
grades. Our analysis of risk-taking is an attempt to understand some of this variability in
exam grades: can some of the variability be attributed to the effects of being a risk-taker?
The results suggest that some of it can, because we can see a clear difference between
our two groups in Figure 1.2 and in Figure 1.3 . Our data can be described with a brief
formula:

Total variability in gradesTotal variability in grades = variability explained by risk
taking + unexplained variability due to other factors

By thinking about research in this way we can immediately be reminded of two important
things. The first is that our research is an attempt to explore, and hopefully understand and
explain, the variability in exam grades, and the second is that we are aware that there is
variability that we haven’t explored or explained yet: for example, student hunger at the
start of an exam, the number of hours they have spent studying, or which high school
qualifications they have. The amount of unknown variability is just as important as the
variability that we do measure when we make inferences from our findings.

 The Big Picture



This chapter is simply an explanation of why we need statistics in research. Each
concept we have covered here will be explained further ahead in the book. Table
1.1 summarises the two main roles of statistics.
Table 1.1 The two purposes of statistics: descriptive and inferential statistics.

This is a summary table with the most important two things that you need to know
about why we use statistics in research.

Role Overview Name

Description Statistics gives us an objective way to describe
patterns in data sets, in order to make sense of data
and explain it to audiences

Descriptive
Statistics

Uncertainty Statistics allows us to calculate precisely how much
uncertainty there is in the information we have
collected, so that we are aware of how much
knowledge we have gained about a population

Inferential
Statistics

 Your Turn
Answer these questions in the space provided.

1. What is data?
2. What is a population?
3. What is a sample?
4. What is variability?

Fill in the gaps to complete these sentences.

1. Descriptive statistics are used to describe ___________ in data sets.
2. We can calculate uncertainty using __________ statistics.

THE ANSWERS ARE AVAILABLE ONLINE

Your Space

 Reference and Further Reading
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Descriptions of Images and Figures
Back to Figure
The horizontal axis is labelled risk taker with a question mark and lists no and yes. The
vertical axis is labelled exam grade and ranges from 30 to 90 in increments of 10. All data
are approximate. The plots for no are scattered between 40 and 70. There is a bulge
around the plots with its widest part at 59. The plots for yes are scattered between 50 and
82. An outlier is at 37. There is a bulge around the plots with its widest part at 65.
Back to Figure
The horizontal axis is labelled risk taker with a question mark and lists no and yes. The
vertical axis is labelled exam grade and ranges from 45 to 80 in increments of 5. All data
are approximate. The plot for no is at 57.5 with arrows from the point extending to 50 and
66. The plot for yes is at 62.5 with arrows from the point extending to 50.5 and 73. The
plots are connected by a line.
Back to Figure
In all graphs, the horizontal axis is labelled risk taker with a question mark, listing no and
yes, and the vertical axis is labelled exam grade, ranging from 30 to 90 in increments of
10. All data are approximate. Each graph consists of a cluster of plots for no and yes with a
bulge around the plots.

In the first graph, the plots for no are between 40 and 75, the widest part of the bulge
for no is at 55, the plots for yes are between 41 and 80, and the widest part of the
bulge for yes is at 60.

In the second graph, the plots for no are between 40 and 70, the widest part of the
bulge for no is at 55, the plots for yes are between 50 and 78, and the widest part of
the bulge for yes is at 60.

In the third graph, the plots for no are between 45 and 79, the outliers for no are
between 28 and 32, the widest part of the bulge for no is at 62, the plots for yes are
between 45 and 80, and the widest part of the bulge for yes is at 60.

In the fourth graph, the plots for no are between 40 and 85, the outlier for no is at 28,
the widest part of the bulge for no is at 58, the plots for yes are between 45 and 72,
the outlier for yes is at 88, and the widest part of the bulge for yes is at 65.

In the fifth graph, the plots for no are between 40 and 82, the widest part of the bulge
for no is at 57, the plots for yes are between 45 and 81, and the widest part of the
bulge for yes is at 58.

In the sixth graph, the plots for no are between 45 and 72, the widest part of the bulge
for no is at 59, the plots for yes are between 48 and 88, the outliers for yes are at 38,
and the widest part of the bulge for yes is at 60.
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Let’s start with a reminder: all research begins with an idea . We established our idea right
at the beginning of this book and we are going to continue using it in this chapter: do risk-
takers do better or worse in exams than non-risk-takers?
In Chapter 1 , we used our idea to illustrate why we use statistics, focusing on what
happens when you have some data . Now that we have established the place of statistics
in research, we are going to take a step back and look at the whole research cycle, broken
down into three phases. Various different statistical concepts emerge during each phase,
and these will become clear as you read each chapter of this book. Our intention here is to
introduce you to research as a complete picture, before we examine each element in
detail. We’re going to avoid using too much technical language here as this is only an
introduction.

2.1 THE RESEARCH PROCESS
Once an idea has been established, the process of doing the research can be separated
into three distinct phases, illustrated in Figure 2.1 . Phase one consists of turning the idea
into a testable hypothesis and picking an appropriate design to collect evidence in the
form of data. This is the decision phase, where most of the important choices about what
to do and how to do it are made.
Phase two consists of data analysis to produce results. While most people associate data
analysis with lots of difficult decisions, analysis is usually already fixed by the decisions
you made in phase one. Moreover, although we can’t deny that there are lots of different
tests that are used to analyse data, we will be showing you how they all ultimately do the
same thing – and usually by the same method.

 Description

Figure 2.1 The research cycle, split into three phases.
This figure demonstrates the research process in three phases from left to right – Phase 1: hypothesis
and design. Phase 2: inference and analysis. Phase 3: presenting and persuading. The process begins
with an idea and ends with knowledge, and should then begin again with updated ideas, hypotheses
and design.

The third phase is the process of presenting results and using them to persuade others
that we have found new knowledge. This phase – not strictly the final phase, as research is
really more of an ongoing cycle than a single process – will then inspire new hypotheses,
and the whole research cycle will begin again.

2.2 PHASE 1: IDEAS, HYPOTHESES AND DESIGN
All research begins with an idea, and phase one of research concentrates on turning that
idea into something that can lead to a real piece of research. By developing an idea into an
explicit statement about what we are interested in investigating, the idea becomes a



testable hypothesis. We can then make a series of decisions about what and who to
measure, and how to go about gathering them and their data: the design.

2.2.1 Ideas
We have an idea here which we might develop into a testable hypothesis: risk-takers do
better in exams than non-risk-takers. It may be that I have known someone who I think of
as a risk-taker and that person usually does really well in exams. This is my idea: what I
see in that person may be more widely true of people in general. This is quite a bold claim,
and we can come up with many reasons as to why it might be true, and many as to why it
might be false – or maybe even why the opposite is true. If you, the reader, are a risk-taker,
then you will have a feeling about this hypothesis. If, on the other hand, you are not, then
you will have a different feeling. We, the authors, also have feelings about this idea
(secretly we hope it’s true). These feelings are just wishful thinking. We need to find out
what the real situation is.
There is a very important principle here. When we just said that we need to find out what
the real situation is, we are also saying clearly that we don’t know what the situation is.
Does risk-taking affect exam grades? We want to find out whether our idea is right or
wrong, and so we use research to systematically collect evidence that will guide us
towards an answer. Note that we are not exclusively looking for evidence that the idea is
right : we have to be even-handed about it at every stage in the process. Research, done
responsibly, is even-handed.
Ideas can come from many different places and they are the most difficult part of the whole
process to tie down. Very often research is based on existing knowledge and is devised to
clarify or challenge something about that knowledge. Sometimes, research is based on
some new observation that the researchers made and it has no obvious direct source in
existing knowledge. We give some examples in Table 2.1 , and at the end of this chapter
we will invite you to make a few ideas of your own.
Table 2.1 Observations, ideas and hypotheses.

Observations turned into ideas and then hypotheses. Note that the hypotheses are
clearly testable: for example, it is evident that hypothesis 3 requires two tests of reaction
time with a 5-minute gap and a glass of orange juice in the middle.

Source Observation Idea Possible hypothesis

A theory Dyslexia shares
symptoms with
stress

Mindfulness might
have an impact on
issues that dyslexic
learners face

Reading speed is increased by
mindfulness (compared to
control) in people with dyslexia,
but not in people without
dyslexia



Source Observation Idea Possible hypothesis

A journal
article

Short words
have a stronger
affective effect

Is this really an
effect of word
frequency (short
words are usually
common words)?

Affective effect of words is
stronger for common words than
rare words

Newspaper ‘10 ways to
avoid dementia’

Does orange juice
really have some
kind of impact on the
brain?

Reaction times on a computer
simulation are faster than
normal 5 minutes after drinking
a glass of orange juice

Social
media

People are only
friends with
people who
share their
political views

How similar are
people to their
friends on social
media?

Facebook users will have
significantly more friends who
share the same political
affiliation as them than friends
who differ

Of course, there are unlimited questions that we could research, but the real skill in
research is to be able to find questions that will make for good research. Broadly, research
falls into two categories: exploratory and confirmatory . Exploratory research is where
we may not have strong grounds for knowing what to expect: it explores new ideas without
any strong expectations of what might be true. Conversely, confirmatory research is where
the researcher has some knowledge of what effects are thought to exist and tests these to
see whether further evidence is supportive. Referring back to our idea that risk-takers get
higher grades, this is exploratory because we are not aware of any evidence or theory to
lead us. If we did have strong reasons for thinking they might, such as a theory, we would
be conducting confirmatory research to try to find evidence that supports our theory.
But where did our idea come from? And what makes a good idea? There are four rules:

1. Good ideas are precise .
2. Good ideas have many different plausible outcomes that are interesting .
3. Good ideas connect with what we already know.
4. Good ideas matter .

Good ideas are precise

If you have a precise idea, it is much easier to come up with sensible testable hypotheses
to match it. And so ‘risk-takers are more intelligent’ is more difficult to test than ‘risk-takers
get higher exam grades’ because intelligence can be measured in many ways – and
people disagree on how it should best be done. Table 2.2 illustrates different levels of
preciseness.
Table 2.2 Ideas ranked from vague to precise.

This table ranks some ideas by their precision. Ideas at the top are rather vague and
unsuitable; ideas at the bottom are very precise. It is clear to see that precise ideas will
make it much easier to design hypotheses.

Vague Being a peer-mentor is good for you

Peer-mentors have higher self-efficacy

Peer-mentoring statistics will increase your own confidence in statistics

Precise Teaching your peers how to do a t-test will enhance your heart rate variability



Good ideas have many plausible and interesting answers

If a piece of research realistically can only produce one outcome, then we won’t learn
much by doing it; if there are lots of possible outcomes, then finding out which one
happens would mean we have learned a lot. Think first about this idea: (i) getting a low
exam grade makes you unhappy . It is hard to see that it could be wrong – it is the only
realistic outcome of a study that looked at happiness as a function of passing or failing an
exam. Then think about this similar idea: (ii) getting a low exam grade makes people
temporarily more likely to take risks . It is easy to see that this idea could equally well be
right or wrong. That makes it a better idea for research.
Table 2.3 Table indicating plausible outcomes.

In this table we have graded some ideas by the number of plausible answers they have.
At the top, although in theory there are several answers, only one outcome seems
plausible. At the bottom, a number of different outcomes seem almost equally likely.

Only one plausible outcome Risk-takers frequently take risks

Risk-takers are happier when they are taking risks

Risk-takers have low perfectionism scores

All outcomes equally plausible Risk-takers do well in exams

Good ideas connect with existing knowledge

When people read about a piece of research, they automatically integrate it with what they
already know and that works best if there is a connection. Ideas can result in several
different changes to knowledge: they can add new knowledge; they can replace existing
knowledge; and they can remove existing knowledge (illustrated in Table 2.4 ).
Table 2.4 Connecting ideas to existing knowledge.

Here are some examples of how good ideas connect to existing knowledge. Please
note: none of these is a real research result.

Add new knowledge Risk-takers do better in exams

Replace existing knowledge Writing essays in short bursts works better than in
long sessions

Remove existing knowledge Caffeine doesn’t help concentration

Fails to connect to existing
knowledge

Saying the number ‘7’ repeatedly makes you smile



Good ideas matter

Psychology is a powerful subject: it reflects aspects of the world around us that really
matter to us: how we feel, how we and others behave, and so on. Although no single piece
of research can change something fundamental, research that has the potential to lead to
a positive change in the world around us is of particular value.
We have used for our examples throughout this book various ideas that concern the exam
grades that students achieve. If any of the ideas we have here were to produce strong
clear results, then those results would matter because keeping exams fair matters.

2.2.2 Hypotheses
Let’s move on to the key step in any piece of research: hypotheses. We have our idea
which involves two separate ways in which people differ: how much of a risk-taker they
are, and what their individual exam grades are. Ways in which people (or other types of
participant) differ are called variables . The term ‘variable’ captures the fundamental
purpose of psychology: to investigate and understand how and why we all vary (differ from
each other). If we look at our idea, our variables are exam grades and risk-taking, which
we’ll label ‘ ExamGrades ’ and ‘ RiskTaker ?’ to make them easy to spot in the text of this
book. Variables are covered in full detail in Chapter 3 .
The variability of people is fundamental to psychology: if psychology treated us all as the
same, research would be dull and usually incorrect. A variable is one specific way that
variability can be seen. We all vary in how tall we are and how much of a perfectionist we
are – there is a lot of variability among us in these regards. We formulate that variability
into two variables: height and perfectionism.
Our hypothesis concerns the relationship between the two variables from our idea. A
hypothesis is a formal way of saying that we believe/hope/expect/fear that one of those two
variables influences the other: being a risk-taker leads (somehow) to better exam grades.
We can use a simple diagram to state this hypothesis. Figure 2.2 uses short labels to
name the variables and an arrow to show the way we think the influence flows.

Figure 2.2 Typical hypothesis diagram.
Our idea is turned into a hypothesis that explicitly predicts that one variable will affect the other
(indicated by the arrow). We will consider this diagram and others like it in more detail in Chapter 3 . In
that chapter we will see that it is an important part of most hypotheses to identify which variable we
think is affecting which. RiskTaker? and ExamGrades are our two variables that we shall continue to
use in this book.

An important part of any hypothesis is a statement of how the individual values of the
variables will be represented. In this case, exam grades are easy: they are numbers that
already exist, potentially on a scale from 0–100. Risk-taking is slightly different as it does
not have an obvious way of being measured, and so in our research we have decided to
use categories derived from a simple test.



To measure risk-taking, each of our participants will be given a plate of chilies, spicy red
and mild green, and asked to eat one. Only risk-takers will choose red ones and so we can
categorise everyone as a risk-taker or not. The important point here is that we are using a
continuous scale (0–100) to describe the ways exam grades vary and a pair of discrete
categories (yes = red/no = green) to describe the ways that people’s risk-taking varies.
We’ll look at scales and categories again in Chapter 3 .
Finally, to complete our hypothesis we should decide how strong the effect is that we are
looking for (a relationship between risk-taker and exam grades). In this case, we think that
the relationship is not very strong because there are probably lots of other personal and
environmental variables that might also affect exam grade, so we give it a score of 0.2 (out
of a maximum of 1.0, where 0 is no effect at all). Chapter 4 will explain relationships
between variables and the values that we use to describe their strength.
So now we have a complete hypothesis, which is illustrated in Figure 2.3 .

‘Higher risk-taking, as measured by individual chilli-eating decisions, will have a
small effect on exam grades.’

We have made some important decisions in building our hypothesis. We will soon see
whether the hypothesis is supported by some real evidence. That evidence is going to be a
set of data: a record of risk-taking and exam grades for a set of participants.

 Description

Figure 2.3 Typical hypothesis diagram including more information about the
variables and a predicted effect size.
The complete hypothesis, including our small predicted effect of 0.2. We will explore effect sizes fully in
Chapter 4 .



2.2.3 Design
We can’t just jump straight in and start collecting data from anyone we can get our hands
on; we must come up with a research design . The design is a recipe for how we are going
to obtain the data. There are three main considerations: how many participants we need,
how we are going to recruit participants, and what we will ask them to do.
There are many ways to recruit participants into a study as a sample of the population .
We have decided to recruit 42 participants – this is our sample size, commonly denoted
using the label n , so n = 42 for our research . Later on, in Chapter 10 , we’ll go through the
formal way to decide on a sample size, but we’ve picked 42 here simply because it’s one
of our favourite numbers.
Next, we must choose a method for recruiting our 42 participants. The ideal way is to use a
wholly random process so that each member of the population has the same chance of
being recruited – this is called random sampling . A simple way to do this would be to
randomly select student email addresses from a database and send out a request to
participants. Doing this randomly means that we are trying to be as fair as possible, with
every student equally likely to be picked. There are many ways to recruit participants,
which will be explored in Chapters 8 and 10 .
When we have our 42 participants, we decide how to use them. Each one will only be
assigned to one risk-taker category (yes or no), because a person cannot be both. This
means that we are going to compare the exam grades between two different groups of
participants. If we were interested in the effects of doing, or not doing, a risky action, we
could have used each participant twice: once in each group, as they could participate in
both behaviours over different academic semesters. This would mean that we were
comparing results from two different situations, both experienced by the same set of
participants. However, our original RiskTaker? affecting ExamGrades idea will always use
two separate groups of participants (risk-takers and non-risk-takers) unless we say
otherwise.
Table 2.5 Summary of our chosen research design.

Research design will be covered in Chapters 8–10 in detail.

Research design

Sample size (total number of participants) 42

Sampling type (how we choose participants) Advert for sampling

How we will use participants Belong in one group or the other

These are our main decisions finished. Our design has three basic elements: sample size,
sampling type, and the way we will use participants, which are summarised in Table 2.5 .
These design decisions, along with our hypothesis decisions, will all affect our data, its
analysis and our results. Since the influence of these decisions has very considerable
influence over the quality and usefulness of the results we will get, we have three chapters
devoted to them later on (Chapters 8–10).
What follows is straightforward: we follow our design and collect our data.

2.3 PHASE 2: EVIDENCE, ANALYSIS AND INFERENCE

2.3.1 Analysis
This phase will look very familiar to you: we are using the same data that we had in
Chapter 1 , which you can see in Figure 2.4 . The raw data is on the left – it shows each
participant, placed according to their value for each of the variables. The graph on the right



shows a summary of the raw data: the typical grade for each group (in this case we use
the mean , which we’ll explain in more detail in Chapter 3 ). The axes on the two graphs
are different: the vertical scale in the graph on the right is zoomed in and covers a smaller
range compared to the graph on the left.
The first thing to do is just look at the raw data to see what we have and decide whether or
not it is encouraging. We can see that the lowest grades are in the non-risk-taker group
and the top few grades are within the risk-taker group. This suggests that we might have
found some evidence to support our hypothesis.
We then can compare the typical exam grades for the two groups and see whether there is
a noticeable difference. In Figure 2.4 we show the typical exam grade for each group as
the average grade for that group. We briefly touched on this in Chapter 1 and will explore
this in much more detail in Chapter 3 . The average grade for risk-takers (63.0) is definitely
higher than the average grade for non-risk-takers (57.5), as seen in the right-hand graph.
However, the left graph also shows that the grades for each group are quite spread out,
and there is considerable overlap between the two.

 Description

Figure 2.4 Sample graph and descriptive statistics graph side by side.
The left graph shows each participant as a small dot. The right graph shows the typical values
(descriptive statistics) for the yes and no RiskTaker? groups. In the right graph, the data in each group
is replaced by the typical, or average, exam grade for that group. The vertical lines, which show the
spread of the data set, are called error bars and show how uncertain we are about our average: if the
error bars are very long, then the average score is not a very reliable summary of our data set. The
horizontal bottom of the graph with ‘yes’ and ‘no’ plotted is one axis (x-axis), and the vertical left-side of
the graph with ExamGrade values plotted is the other axis (y-axis). Notice how important it is to check
the scales on the vertical axes: they differ here.

The difference in average grades between our two groups sounds quite large: 5.4 points.
But when we put it alongside the natural scatter in grades across the sample, which range
from less than 40 to greater than 80, then a difference of just 5.4 is maybe less compelling.
So, is the difference between risk-takers and non-risk-takers small or large? There is a
calculation we can do that helps with this question.
We can calculate a quantity known as the sample effect size . Much of Chapter 4 is
devoted to this, and for now all we will say is that the sample effect size is a number that
goes from 0 to 1 and measures the strength of relationship between any two variables. The
sample effect size gives us more information than just the typical values because it takes
into account both the difference in mean grades and the spread of grades. A big difference
in means and a small spread of grades in each group would lead to a larger effect size.
This particular sample has a small difference in means compared to the spread of grades
in each group, and we would calculate that it has a small effect size.

2.3.2 Inference
In simple, numerical terms, we have found the effect we hypothesised – remind yourself of
our hypothesis in Figure 2.3 . But …
To be clear, what we have found is a set of 42 people, for whom collectively our hypothesis
is correct. That is undeniable, and we can say it with complete confidence. But no-one else
is going to be interested in a conclusion that applies exclusively to our 42 participants: we
need to use our sample as a guide to the population. This is the inferential step that we
looked at briefly in Chapter 1 : going from the known (our sample) to the unknown (the
population).
So, before celebrating a new discovery, we need to ask the question ‘How uncertain
should we be in our inference?’. Before we jump to the conclusion that there is an effect of
risk-taking on exam grades, we must ask whether our result could just be the result of



chance. Our sample of participants is a random one, so how often would a random sample
produce this result or an even stronger one if there was no real effect in the population?
This process is formally called null hypothesis testing . Null hypothesis testing is covered
in detail in Chapter 6 . Note that while this is the most commonly used method of inferential
analysis, it is not the only option – we explore alternatives in more detail in Intermezzo 2 .
Imagine that, after conducting null hypothesis testing on our sample, it tells us that the
probability of our result or a more extreme one happening purely by chance is 0.13 (or
13% of the time). This is not a small enough probability for us to be confident that our
finding rules out the possibility that it happened by chance. So, our sample does not allow
us to safely infer that risk-taking leads to better exam grades in the population. We should
be very uncertain about inferring anything about our hypothesis in this case.

2.4 PHASE 3: RESULTS, PRESENTING AND
PERSUADING
Phase three is the presentation phase of research. There are several standard practices
for presenting the results of statistical tests in a formal way: there isn’t really a right or
wrong way. If you are a student in a university, your department may give you specific
guidelines; researchers have to use the format specified by the journal they are sending
their results to. The most common format used by psychologists is ‘APA’, developed by the
American Psychological Association (hence the name), which looks like this:

‘A small difference in exam grades was found between non-risk-takers and risk-
takers. A t-test found that the result was not statistically significant t(40)=1.54,
p=0.132.’

This brief statement has a description of the result (‘a small difference’) and finishes with a
series of numbers including the test-statistic (the ‘t’ value, in this case) and the p-value.
Typically, descriptive statistics are also included, which we will discuss in Chapter 3 and
later on in Chapter 7 . Test-statistics and p-values will be covered in detail in the coming
chapters too. For now, it is enough to know that there are various standard ways to present
results. Using these values in this layout makes it easy for a reader to find and understand
your results quickly.

2.4.1 Persuading others
In this case there is little to persuade others of, as we did not find a significant outcome
and our effect size is not very big. However, had our result turned out to be statistically
significant, we would have tried to persuade others that much of grade attainment can be
explained by the risk-taking element of someone’s personality. By getting caught up in the
excitement of getting a significant result, we might have been tempted to overlook other
factors that contribute to exam grade (such as how much work a student has done!).
By overlooking other factors, we are forgetting how much variability there is in a sample.
As we mentioned in Chapter 1 , variability means the differences between individuals.
Finding one significant outcome does not explain all of the differences between people,
because so many individual differences exist. What other factors may contribute to grade
attainment? We will look at how to measure more than one variable working together in
Chapter 11 .

2.5 BEING A RESPONSIBLE RESEARCHER
It is critically important for the health of the discipline that all research is done responsibly.
In the main, being responsible means ensuring that others are not misled by the way we
do and then describe our research. The fundamental issue is that we must do what we can
to ensure that the research is not biased towards a particular outcome. This is not easy. In
this chapter we have already talked about the research process in a way that embodies
best practice.
At the start of the research process, we are dealing with our idea. It is perfectly human to
hope that our idea is true. Someone else reading our research has to be told why that is
our idea. It then has to be clear to them that we have treated the idea as objectively as we
can. It is important to be clear from the start about whether our research is exploratory or
confirmatory, and then to plan our data collection and analysis based on that decision. It is
also important that the design of data collection should be finalised before the data



collection begins – and then it should be adhered to. Changing the design as data
collection proceeds invites a myriad of biases to creep in. In the same way, data analysis
should not be attempted before the data collection is complete. If the research is
confirmatory, then the data analysis should have been decided before the data is available.
Finally, the reporting of the research must be faithful to what the data actually says. This is
also very difficult. It has been the case for much of the history of research in psychology
that exciting, novel and significant results get published and attract attention, whereas
research that does not produce a good headline is much harder to publish. Human nature
is such that we all like to get our work published, so there is an undesirable temptation to
over-state what the results say.

 The Big Picture
The whole research cycle is as simple as this:

1. Start with an idea, turn it into a hypothesis (or multiple hypotheses), and make
decisions about the what/who/how of your research.

2. Collect data, analyse it using descriptive and inferential statistics.
3. Present information using common formats such as APA, illustrate your work

with graphs, and use your statistical evidence to persuade.

 Your Turn
Below, we have suggested two ideas. Use the space to turn them into a specific,
testable hypothesis.

Idea 1: Scottish smoked salmon increases thinking
power.
Does this idea meet the four rules?

□ precise

□ plausible & interesting outcomes

□ connect with existing knowledge

□ matter?

Idea 2: Being a runner makes you feel better.
Does this idea meet the four rules?

□ precise

□ plausible & interesting outcomes

□ connect with existing knowledge

□ matter?

THE ANSWERS ARE AVAILABLE ONLINE

Use the open space underneath to write out two testable hypotheses of your own,
based on the abstracts of two journal articles. You can find journal articles through



Google Scholar, by asking for recommendations from your lecturers if you are a
student, by looking at class reading lists, or through our online resources where we
have provided a few to get you started. Highlight, underline, capitalise, coat in glitter
or somehow otherwise indicate your variables within the hypotheses.

Your Space

 Reference and Further Reading
Popper, Karl R. (1959, 2005 revised edition) The Logic of Scientific Discovery . New
York: Routledge.
A philosophically technical read.

Descriptions of Images and Figures
Back to Figure
The phases are as follows:

Idea

Phase 1: Hypothesis design

Evidence

Phase 2: Inference analysis

Result

Phase 3: Presenting and persuading

Knowledge

Back to Figure
The bar graph is titled risk taker with a question mark. The horizontal axis lists no and yes.
The vertical axis is labelled frequency. The bars for no and yes are equal height. An arrow
labelled 0.2 leads to the distribution graph titled exam grade. The horizontal axis ranges
from 40 to 80 in increments of 20. The vertical axis is labelled frequency. The normal curve
peaks at 60.
Back to Figure
In both graphs, the horizontal axis is labelled risk taker with a question mark and lists no
and yes. All data are approximate. In the sample graph, the vertical axis is labelled exam
grade and ranges from 30 to 90 in increments of 10. The plots for no range from 40 to 70.
There is a bulge around the plots with its widest portion at 60. The plots for yes range from
50 to 80, with an outlier at 35. There is a bulge around the plots with its widest portion at
65. In the descriptive statistics graph, the vertical axis is labelled exam grade and ranges
from 54 to 68 in increments of 2. The plot for no is at 57.5 with lines from the plot extending



to 55.5 and 59.5. The plot for yes is at 63 with lines from the plot extending to 61 and 65.
The plots are connected.
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A central notion in psychology is that interesting things like a person’s behaviour, thoughts
and feelings have their roots in a complex combination of that person’s psychological
make-up and their situation. Their psychological make-up comes from long-term traits such
as their personality and short-term states such as their emotions, while their situation is
made up of other people, experiences and meaningful objects that shape and constrain
their behaviour. The first task in doing research is to break down all of this complexity into
something that is simple enough to study and ultimately to understand. We do that by
focusing on ways in which people and situations differ, and we describe the ways they
differ as variables .
Normally we encounter a person and all of their various qualities as one whole, but as a
researcher we have to reduce that whole to a few distinct concepts or moments. These
distinct entities become variables in research. For example, we might be interested in how
happy a person becomes when they receive an unexpected compliment. Their happiness
is a feeling or thought that they are experiencing and the compliment is an element of their
situation. In this situation, we are taking the whole person and reducing them to these two
parts – the compliment and their happiness – leaving everything else about them and their
situation unexplored.
It is important to recognise that we are examining a very selective part of the person and
their situation but the bits we aren’t exploring (most of the person and situation) might still
be very important.

3.1 WHAT ARE VARIABLES?
Let’s begin by specifically defining the term ‘variables’. Variables are key to everything that
follows in quantitative psychological research, and they come from two important sources.
Variables are ways in which:

1. People or objects vary (differ from each other).
2. Situations or occasions vary.

When we choose variables, we must always remember that we are engaging in a creative
process: we are splitting a whole down, and selecting parts of our own creating. There is
nothing really in statistics that can tell us whether a variable is a good choice or not. That is
not to say that decisions made about variables don’t impact statistics, because they do, as
you will learn over the course of this book. Instead, it is important to realise that this is the
first of many instances where we must learn that thinking like a psychologist is much more
important than thinking like a statistician.

3.1.1 Values
A variable is a way in which people or situations can differ. A value , on the other hand, is
a specific description of a variable for one person or situation. The values that we use try to
capture as much of the variability, the differences between individuals, as possible. For our
RiskTaker? variable, ‘yes’ and ‘no’ are possible values, as are specific numeric scores,
such as the number of skydives done. For ExamGrade, the values could be a number
between 0 and 100. If we studied a variable called ‘trial phase’, the values might be
‘before’ and ‘after’ treatment. If the trial is complicated, these might be two of many other
possible values.
There are two important properties of values:

1. For any given variable, each person has a value. No-one is left out without a value.
For the variable Smoker?, for example, we will all have a value that is either ‘yes’ or
‘no’. We might add a third value of ‘occasionally’, if that is thought to be more useful
for our research.

2. For any given variable, each person has just one value for it ( at any one time or in
any one situation). For the variable Smoker?, no-one is both ‘yes’ and ‘no’ at the same
time.



Some values are relatively fixed for each participant, such as their eye colour. So the
values for the variable eye colour are likely to be ‘green’, ‘grey’, ‘brown’ and ‘blue’, with an
‘other’ category to assign to people who don’t fit into the common colours. It is
straightforward to assign people to these categories just by looking at them.
Some values, however, change from time to time or in different circumstances. A person’s
value for the variable ‘hungry’ will depend on how long it has been since they have eaten.
Some different variables and potential values are listed in Table 3.1 .
Table 3.1 Variables and possible values.

Note that the last two are variables where the variable is a situation or occasion and the
values of the variable correspond to different groups. In these cases, we can choose
either to have separate sets of participants for each group or to use the same participant
for both situations.

Variable Potential values

Height Any value, usually measured in cm or inches

Perfectionism High to low, measured on a scale determined by researchers

Age Any value, usually measured in years or months

Birth order First born, middle child, youngest, only child

Smoker? Yes or no

Caffeine Before and after drinking a caffeinated drink

RiskTaker? Yes or no

TreatmentType Placebo or/and active

Intervention Before or/and after an intervention

3.1.2 Situations as variables
We are using the same concept of a variable to describe both different types of person and
different situations. This is a slightly unusual approach but, as we will see in Chapter 4 , it
makes talking about relationships between variables a very simple general concept.
A variable situation might be whether you are in an active treatment group or a placebo
control group (the term ‘placebo’ is used to describe a treatment or situation that has no
intended value, to act as a comparison to an active group). We could call the variable
TreatmentType, with the values ‘active’ and ‘placebo’. We’ve included this in Table 3.1 . We
have two ways of proceeding:

1. We can easily think of an experiment designed so that each participant is allocated to
one group or the other and we compare between the two groups of participants. This
is easy: each person has a single value for TreatmentType and also for Outcome.



When we ask, in Chapter 4 , whether there is a relationship between TreatmentType
and Outcome, we are asking whether the active treatment works.

2. It is easy also to think of an experiment where each participant is placed first in the
placebo group and then in the other group and we measure their outcome separately
in each situation. The logic is the same as before. All that has changed, logically
speaking, is that each person in our study now appears twice. Note that each person
still has only one value for each variable in any one situation . On their first
appearance, they have specific values for each of the two variables, TreatmentType
and Outcome, and on their second appearance they have different specific values for
those two variables, because the situation has changed.

Table 3.2 Values: one per participant or situation.

In the top example, each participant appears once (provides one data point) and has
only one value for each variable. In the bottom example, each participant appears twice
(provides two data points) and has just one value for each variable on each occasion.

 RiskTaker? ExamGrade

Participant 1 yes 69

Participant 2 yes 65

Participant 3 no 67

etc.   

 TestPhase ExamAnxiety

Participant 1 before 62

Participant 1 after 45

Participant 2 before 55

Participant 2 after 35

etc.   

There are more formal names for these different ways of allocating participants to groups:
when each participant exists only in one group, the arrangement is called a between-
participants design . When the same participants experience more than one situation and
therefore have more than one value for a variable (e.g. being in both the ‘before’ and ‘after’
groups), it is called a within-participants design . We will explain in detail the properties
of this in Chapter 10 . An example is given in Table 3.2 .



3.1.3 Experiments: Creating variables
Variables may just exist: people have personality variables and find themselves naturally in
different situations. However, a key insight in psychological research is that we can also
create variables. The commonest example is where we make specific novel situations and
place people in them to see what happens. The creation process is described as an
experiment. We can distinguish experimental variables from observational ones.
Observational variables describe characteristics and situations that already exist and we
merely measure them as they already are. For example, if we ask someone to fill in a
questionnaire about their stress level, then we have not created the stress variable: each
participant already has their own level of stress. We are observing their pre-existing stress
level. Our RiskTaker? example would be observational if we took a score of how risky each
participant naturally is.
Experimental variables are ones we cause to happen, such as when we put participants
into an experimental group or a control group. For example, the variable TreatmentType,
with values ‘experimental’ and ‘control’, is a variable that we have caused. Our Risk
variable would be experimental if we divided our participants into groups doing high- and
low-risk activities, instead of measuring their natural preferences.
This distinction is important because it underlies one of the clearest ways in which we can
establish causation in a psychological study. When we create an experimental variable,
we can explain exactly how each participant’s value for this variable happened – by
assigning them to a group. This is true, even if we used a random process to choose:
nothing else has caused their value. We will return to this topic in Chapter 9 .

3.2 VARIABILITY AND VARIABLES
Variability in our variables is where our information comes from. If all our participants have
the same value for a variable, then that variable is telling us nothing. If we only have non-
risk-takers in a sample, then we won’t find out anything about how differences in risk-taking
affect anything else, and our research is not a good use of time. So, when we make
decisions about our measurement, we are guided by the desire to capture as much
variability in our participants as possible with our variables. Let’s see how more variability
usually means more information.

3.2.1 Variability and information
In thinking about variables, it is important to understand that we make them to capture and
reason about specific types of difference among participants. The function of variables is to
represent those differences between participants. The more differences between
participants that a variable captures, the more information it provides for us.
Let’s use a familiar example: using an exam to find out how much statistics students have
learned. We can suppose that each student has learned a different amount and we really
want an exam that will capture this.
To start with, imagine we have used an exam with a single question, but because of how it
was designed everyone got the same grade (because it was too easy). This exam would
be of little or no value: it doesn’t distinguish between students. It provides no information
about any possible differences between the students.
Now think about a question designed to be more informative. It is designed so that those
who have studied will get it right and those who haven’t won’t. This question splits the
class into two groups, which is an improvement. With more questions of varying difficulty,
we can split the class with ever finer distinctions between students.
Eventually we have an exam where everyone has a chance to show the extent of their own
individual knowledge. We would then say that the exam distinguishes successfully
between students who have different levels of learning, and that it has captured that
variability. Such an exam gives us much more information about the students than ones
less carefully constructed, such as we began with. This is demonstrated visually in Figure
3.1 .
At the same time, we must be careful we don’t make distinctions between students which
don’t matter. Since we are not really interested in which particular facts students have
learned, only how many of them, any difference because our exam focuses on a few
specific facts is a meaningless difference: and we call this spurious variability .



 Description

Figure 3.1 Graph showing variability and information.
When we create a variable, we must decide how it will be measured. It is important that we make
choices that will capture as much information about the variable as possible.

 Description

Figure 3.2 Risk-taking questionnaire example.
We have invented an example risk-taking questionnaire. The purpose of this example is to show how
asking various different but related questions can help to produce a good measure. Notice first that Q2
has an opposite sense to the others and so its numbers are flipped around. Then we can see that the
responses our participants give to questions 1, 2, 4 are all quite closely related, but not identical. The
responses to Q3, on the other hand, are quite different. We would probably decide to remove Q3 from
the analysis. By allowing five different responses for each question, we have ensured that we get useful
variability from our participants. By asking about four (or three after the removal of one) topics, we have
ensured that we avoid spurious variability – for example, if we hadn’t asked Q1, then participant 2 would
look much more like participant 1 than they should.



3.2.2 Psychological variability
The same principles apply with a psychological measure: it is important to capture as much
information as possible and to avoid spurious variability. Many psychological measures,
such as a questionnaire, are designed to have many more than two possible responses: it
is common to present between five and seven response options. More possible responses
mean that the question splits participants into more groups to start with.
It is also usual to have a range of questions to cover different but equivalent experiences
so that each question should split participants slightly differently. For this reason, most
questionnaires have several questions to gather more of the important variability and
therefore more information about the variable we are interested in. Figure 3.2 shows an
example of this.
We must set considerable importance on and effort into capturing as much of the natural
variability as we can. Choosing measurements that give us a detailed picture of what we
are interested in – as much variability as we can – is important to really understand the
answer to our research question.
When a set of questions has been created, then it is reassuring to know how well they
work and, in particular, whether they make a coherent measure of a single variable: are
they internally consistent? A simple way of doing this involves a quantity called
Cronbach’s alpha , which is calculated from the responses to the questions, usually with
statistical software. Alpha is a number between 0 and 1, with higher values indicating
stronger internal consistency; statistically speaking, the calculation looks for a relationship
between the questions. Typically, a value of 0.8 or higher is considered desirable, although
it should always be taken with a pinch of salt because more questions (and so more
information being fed in) often lead to a higher value regardless of how coherent they
actually are.

3.3 MEASURING VARIABLES
Before we can obtain the value of a particular variable for a person/situation, we need to
determine how that variable will be measured. There are often many ways in which we can
measure a particular variable, and it is important we choose the way that will collect as
much useful information as possible. Of course, sometimes it is as easy as writing a list of
all the possible eye colours and assigning participants a label that puts them in one group
or another, but often the researcher has to think a lot harder.
Something that is very important to consider when we plan our measurements is this:
when we talk of variables, we often mean some internal state that we only have indirect
access to, which we cannot directly observe. A person’s willingness to take risks lies inside
their mind and beyond our reach. The thing we measure, on the other hand, of course has
to be observable – usually the result of some behaviour or activity of our participants, even
if it is only them ticking a box on a form.
If we wish to examine risk-taking, which is an internal and not directly observable quality of
the person, we must either use observable behaviour like eating chillies or a history of
skydiving, or rely on the person’s self-assessment of their general risk-taking by having
them answer a questionnaire. Watching someone take a risk or avoid it provides us with a
more direct insight into the internal state, at least at that moment. Using someone’s
answers to a questionnaire is of course much less direct and is heavily influenced by what
they wish were the case or what they want us to believe is the case.
An unobservable variable, such as an internal state, that we infer from things we can
measure is a type of latent variable. A latent variable is any variable that we didn’t directly
measure but that we extract from our data. In the example we just looked at, we can’t
directly measure someone’s willingness for risk-taking – it is a latent variable. We measure
things that we think it will influence so we can infer it.
When we use self-reporting measures to collect data, we ask lots of similar questions of
participants and hope that the answers are largely influenced by the internal state that we
are intending to examine. This is illustrated in Figure 3.3 . The answers our participants
make are also influenced by other unseen latent variables (that we aren’t interested in) and
we hope that these other influences are small. We have to make careful decisions about
the questions we use in order to keep our measurement close to the internal state we are
wishing to measure. We will examine this in more detail when we come to research design
in Chapters 8 and 9 .



 Description

Figure 3.3 Latent variables diagram.
Imagine RiskTaking as a numeric score version of our yes/no RiskTaker? variable. This score might
come from combining answers to questions that identify different elements of a risky personality. This is
a process of measuring an internal unobservable state with a set of six observable behaviours (using
responses to six questions in this example). Since the observable behaviours are all influenced to some
extent by other factors, each of them is a combination of the internal state (these are a type of latent
variable) of interest and these other factors. If the other factors affect some of the responses differently,
then the effects of the other factors are cancelled out to some extent when the responses are
combined. Any remaining consequence of the irrelevant internal states will create a measurement error.

3.3.1 Measurement error
There is always some random variability introduced between the internal state we are
interested in and the measurement we make of it. Any particular internal state can
generate lots of external behaviours and responses, and we must try to choose the most
appropriate ones for our research. However, each of these behaviours or responses that
we measure is also influenced by other internal states that we are not interested in, and so
our measure will be contaminated to some extent. This is the basic concept of
measurement error : the difference between the value we obtain and the real value of the
internal state. We can’t quantify the size of this error; instead, we must make the best
decisions we can when measuring our variables to keep it low. Figure 3.3 illustrates this
measurement error between what we are interested in and what we choose to measure.
An important way we can improve how we measure an intended internal variable is by
using multiple measurements. For example, there are many different ways of measuring
risk-taking. A common ploy in psychology is to ask people to imagine a scenario and then
to report how they think they would feel, or to recollect an occasion when something
happened and recall how they felt. If we do this, then we must be careful to include enough
different scenarios to be fairly sure we give everyone a chance. Scuba-diving on its own
won’t suffice; we need to add quite different examples of risk-taking. We could add in
playing lead trumpet, inventing a new theory, and so on. By combining more pieces of
information, we are more accurately measuring our variable of interest, and hopefully
reducing measurement error.

3.4 TYPES OF MEASUREMENT VALUE
Now that we have decided what variables we are interested in and how we are going to
measure them, we can look at how those measurements give us different types of value.
Recall that values are how we label the relevant characteristics of participants within a
variable: we have chosen our values for the variable RiskTaker? to simply be yes and no,
while our values for the variable ExamGrades are all the possible grades that a student
could get. The purpose of values is to allow us to see and work with differences: to
compare values.
The most fundamental comparison between values is whether they are the same or not the
same . This is a simple comparison. It will apply to all the different sorts of values that we
will encounter. If we ask people ‘which musical instrument would you like to learn?’, we will



get responses like ‘trumpet’ or ‘guitar’ or ‘fiddle’. The only comparison between two
responses that we can make is then to say whether they are (i) the same or not . The
values themselves are just labels.
The next most important comparison between values is whether one is more than or less
than the other. This comparison applies only when the values correspond to quantities. It
will apply to any values that we are able to place in an order or a natural sequence that can
be represented by a number. If we ask people how confident they are feeling about their
musical skill on a scale from ‘not at all’ through to ‘very’, then we can compare two
responses to say whether they are (i) the same or not and also whether one response is
(ii) more or less than another. We cannot make this second comparison for the previous
responses to the question ‘which instrument?’.
The final type of comparison that we can make between values concerns whether the
difference between them is also something we can order. If we ask people how many
hours of practice they do each week, then two responses can be compared (i) for same or
not and whether one practices (ii) more or less than the other. There is a third
comparison we can make: we can ask whether the responses from two people (a and b)
are (iii) closer or not than the responses of another two people (c and d). In this last case,
we are saying whether the difference between a and b is more or less than the difference
between c and d. We cannot make this comparison for the previous responses to ‘How
confident?’.
These three types of comparison correspond to three different types of value. If we can
only make same/not comparisons, then the values involved are just categories. If we can
additionally make more/less comparisons, then we have ordered values. The values in this
case are often a fixed, usually small set of values with no half-steps in between them. If we
can moreover make closer/not comparisons, then we have values that are quantities. The
values in this case are often continuous where there are always possible half-steps
between them.
The most important thing to learn here is that most of the time the types of value we use
for a variable are not predetermined: they are the result of the decisions of the researcher.

3.4.1 Categorical variables
Categorical variables are the most straightforward type of measurement value: the values
of a Categorical variable are categories (or groups). For example, when we divide our
RiskTaker? variable into a ‘yes’ (risk-taker) group and a ‘no’ (non-risk-taker) group, we are
making two values (the two categories) for the variable RiskTaker?, which makes it a
Categorical variable . Sometimes you’ll see Categorical variables referred to as nominal
variables . This is just a different word for the same thing.
There are some variables where the concept itself requires categories and no other
variable type would be suitable. Think about a variable, WhichRiskType, that captures the
different types of risk-taking behaviour that people undertake. There will be lots of different
categories, such as bungee jumping, sky diving, no risky activities, etc. The only way we
can describe different types is by giving them different labels. Categorical variables have
values that are labels. Because they are not amounts, we cannot place them in any logical
order or use numbers for values.

3.4.2 Ordinal variables
Now think about another example, where we give people their exam results using six
labels: ‘outstanding’, ‘very good’, ‘good’, ‘pass’, ‘fail’ or ‘catastrophe’. These are still labels
and categories, but now we can put the categories into a natural and clear order: it is better
to be ‘very good’ than ‘pass’ and ‘pass’ is better than ‘catastrophe’. This ordering means
that we are using another type of variable: an Ordinal variable . We can also use numbers
for the different categories, such as asking someone to rate themselves on a scale from 1
to 5, and so long as the numbers are really just a set of ordered labels, then it is still an
Ordinal variable. Notice that we can safely say that a person who is ‘outstanding’ has a
higher score than a person who is ‘very good’, but we can’t say by how much. And we
can’t compare the difference between them, which may actually be quite large, with the
difference between two people who score ‘pass’ and ‘fail’ whose difference might be quite
small.

3.4.3 Interval variables
However, when we look at exam grades in a multiple-choice exam, there is usually a
simple relationship between the grade and the number of correct answers. Someone



(person A) who gets 70/100 has 10 more points than their friend (person B) who got
60/100, who has 20 more points than someone else (person C) with a score of 40/100.
Now we can say that the two people A and B are closer together (70 and 60) than the two
people B and C (60 and 40). By doing this, we are treating the difference between two
values as a meaningful measure of the difference between two people. A difference of 10
is more than a difference of 20. This happens in this case because all the grades come
from something we just count – the number of correct answers. Grades are said,
mathematically, to be additive : a total score of 60 is made up of the sum of 60 scores of 1
(1 for each correct answer, for example). It is this additive property that allows us to say
how close two scores are. This technical property means that the differences between
values are meaningful in mathematical terms. When values are additive, we are using an
Interval variable . As a counter-example, when we ask someone to rate themselves on a
scale from 1 to 5, the result is probably not an Interval measure. Despite it using numbers,
there is not necessarily a fixed difference between adjacent values.
This use of differences between values for an Interval variable has a very important
consequence: it allows us to use addition and subtraction with the values. So, these
mathematical processes are available to us when we use values from an Interval
measurement. This is very useful, as we shall see, because we can compare two numbers
by subtracting one from the other to look at the difference between them.
Another very useful consequence of using numbers in this way is that the values can then
be treated as being continuous. Ordinal values (labels, or numbers as labels, or levels) are
usually discrete: everyone has to belong to one of the available values. This means that
there are jumps along the scale from one category to the next. Interval values are
continuous: there are no jumps from one value to the next.
These two properties, (i) allowing addition and subtraction and (ii) being continuous, tend
to go hand in hand. If a numerical scale is continuous, then the values can usually be
treated as Interval values. Technically, a variable is continuous if there is always a possible
third value in between any two that we have. If we have the values 2 and 3 and are happy
that there is also a possible value of 2.5 (between them), then the values are continuous.
Real numbers (which include fractions) are continuous. Whole numbers (which don’t
include fractions) are discrete.

3.4.4 Summary
It is quite simple to determine the type of data we have or are choosing to collect using
these properties:

(i) Whether the possible values are ordered or not: can we determine whether one
value is more or less than another? If not, then the values are Categorical (and they
are usually labels).

(ii) If so, whether the differences between the possible values can be themselves
compared. If not, then the values are Ordinal (and they are usually discrete).

(iii) If so, then the values are Interval (and they are usually continuous).

Table 3.3 shows how these two properties can be used to determine variable type.
Table 3.3 The properties of values and how they relate to variable types.

Note that you can’t have values that are additive but not ordered, because being in order
is required for a set of numbers to be additive.

 Not additive Additive

Not ordered Categorical  



 Not additive Additive

Ordered Ordinal Interval

It is important to realise that variable type is rarely outside our control: we can usually
measure a variable using several different types. Table 3.4 provides examples.
Table 3.4 Measuring variables using different types of measurement.

Notice that some variables (the top ones) can be represented by all the types of value.
Others, such as car make, cannot because there is no plausible or useful quantity that
links them.

Variable Possible Interval
values Possible Ordinal values

Possible
Categorical
values

Weight Kg or pounds Clothes size (S, M, L, XL) Underweight,
healthy,
overweight

Exam result 0–100 Outstanding/very
good/good/pass/fail

Pass/fail

RiskTaking 0–10 Professional/amateur/hobby/none High/low

Perfectionism Score calculated
from a
questionnaire

How much of a perfectionist are
you on a scale from 1 to 7?

High or low
perfectionist

Degree class Final GPA score 1st, 2:1, 2:2, 3rd Pass or fail

Make of car   Toyota, Audi,
BMW, Volvo,
other

3.4.5 Ratio variables
While we examine different types of measures, we should briefly address a fourth variable
type: Ratio variables. A Ratio variable is an Interval variable with the added property that
the value zero corresponds to an absence of the thing being measured. A bank balance is
a Ratio variable: zero means it is empty. Note that Ratio variables, just like bank balances,
can be negative as well as positive, although negative values mean something different
from positive ones. For the deeply curious, Ratio variables allow us to use multiplication
and its close cousin, division. This type of variable allows a comparison of two numbers by
looking at their Ratio: dividing one by the other. However, from a statistical analysis
perspective, we treat Ratio variables in exactly the same way as Interval variables.



3.5 DISTRIBUTIONS OF VALUES
Now that we have established how to measure variables, we can move on to understand
what we learn about our data from these measurements. Different types of variables give
us different amounts and types of useful information.
Regardless of the type of the variable, the set of values that we obtain can be combined
into a distribution : a pattern that can be depicted on a graph showing how frequent the
different values are. This distribution of values contains a lot of useful information about the
variable and also has the virtue of being easy to describe or summarise. So when we treat
our set of values as being a distribution, we can move from seeing them just as a list of
numbers or labels, and instead describe the distribution that they collectively form.
We will use a very specific word to describe the relationship between the characteristics of
a sample and the population. We use characteristics of the sample to estimate the
corresponding characteristics of the population. Note that the word ‘estimate’ tells us that
the process involves some uncertainty about how accurate we are – which we cover in
Chapter 5 .
There are two important types of information we can get from the distributions of values.

3.5.1 Central tendency
The first step is to describe the single most typical value from all the values we have for a
particular variable. We have described this typical value so far as an ‘average’, but in more
statistical terms it is called the central tendency . The most familiar type of typical value is
called the mean. The central tendency is a descriptive statistic .

3.5.2 Dispersion
The second step is to describe the spread of the values. This is called the measure of
dispersion and is used to capture how widely the values in the data set differ from the
central tendency or typical value. Dispersion is another descriptive statistic.

3.6 INTERVAL VARIABLES
Interval variables have values that are numerical, ordered, additive (with meaningful
differences between values) and normally continuous. A graph showing the distribution of
values for an Interval variable is shown in Figure 3.4 . This graph shows the relative
frequency of each possible value. Because the variable is ordered, we can see that the
values plotted horizontally along the bottom (called the x-axis ) are numerical, and
because the variable has continuous values, the distribution is also smooth and
continuous.

Figure 3.4 The distribution of values for a typical Interval variable.



The graph shows how frequent or common each possible value is. In this case, the value of 10 is the
most common and values above 12 or beneath 8 are much less frequent.

In ‘How to Use This Book’, we included a table of all the common elements of
mathematical formulae, so if anything you see from here onwards looks a bit
confusing, it would be sensible to go back to the table and have a look.

3.6.1 Central tendency: Mean
We use the mean as a measure of central tendency for Interval variables. The mean can
be calculated for a set of values by adding the values together, and then dividing by the
number of values present. In mathematical terms, if x i stands for each member of a set of
values ( i goes from 1 to n so that x 3 is the 3rd data point in the set), then:

xmean =
sum(xi)

n

This formula is just a way of writing down the instructions: sum (add together) all the
values ( x i ) and then divide by the sample size, n .

There are two important reasons why we use the mean. Imagine we have a sample of
participants and for each we have their exam grade. Figure 3.5 shows this set of data
points and its mean. The figure also shows a thin vertical line drawn from each point to the
mean value. These vertical lines are the differences between the individual data points and
the mean itself – which we will call deviations from the mean. In later chapters we will also
call these residuals . These lines are only possible because an Interval variable is additive
and therefore has a meaningful difference between each value and the mean.

 Description

Figure 3.5 Sample from an Interval variable showing the mean and
deviations from the mean.
This figure shows a set of data points (dots). The mean for the set is drawn as a horizontal line through
the data points. None of the data points actually lies exactly at the mean and for each there is some
numerical difference between the data point value and the mean. The size of this deviation of a data
point from the mean is called a residual. The size of the difference is also shown by the shading of each
line itself.

Then the mean we obtain has these two properties:

1. The sum of deviations from the mean is zero.



Sum ( x i – x mean ) = 0

A deviation is the difference between each person’s own grade and the mean and can be
calculated by subtracting one from the other. The sum of these deviations for the whole
sample is zero. In Figure 3.5 , the mean is the thick horizontal line. The difference between
each individual value and the mean value is indicated with a thin vertical line. The total
length of all the vertical lines above the mean is equal to the total length of the vertical lines
below the mean.

2. The sum of squared deviations from the mean is minimum.

Sum (( x i – x mean ) 2 ) = minimum

Even though deviations can be positive or negative, when we square each person’s
deviation (squaring is when you multiply a number by itself) we make a positive number –
a negative number squared is like two negatives and they cancel out. The larger this
squared deviation is, the less useful the mean is as a guide to that individual’s particular
grade. We can add up these squared deviations from everyone in the sample to produce
the sum of squared deviations. The mean is then the value that, overall, produces the
smallest possible total sum of squared deviations.
These are the mathematical ways of showing the two reasons why the mean is a good
value to use as a central tendency. It isn’t biased up or down: there is as much deviation
above as beneath. It is the number that comes closest to matching each data point in the
set; any other value would lead to a higher sum of squared deviations.
Those steps aren’t strictly necessary to do, but they are a good way to understand why we
do this. Doing this also means that we can follow through very easily to learn about
measuring dispersion in Interval data.

3.6.2 Dispersion: Standard deviation
For an Interval variable, we use the standard deviation as a measure of dispersion. The
standard deviation only requires a little bit more work:

sd (x) = sqrt(
sum((xi−xmean)

2)

n
)

1. We divide the sum of squared deviations by the number of participants that we have.
This gives us a value called the variance , which will come in useful later on.

2. We then take the square root of the variance and call the result the standard deviation.
We use the square root because it gives us a sensible value which is in the same
units as the original data. In the previous figure ( Figure 3.5 ) the standard deviation is
shown as the thick vertical line at the right side of the diagram. It shows 1 standard
deviation away from the mean in each direction.

The standard deviation is a measure of dispersion, because it tells us how much our
values typically differ from our measure of central tendency (the mean). A small standard
deviation means that the values do not differ much and are therefore not very spread out,
and a large standard deviation means the opposite.

3.6.3 Estimates
We are usually interested in a sample because of what it tells us about the population we
took it from. So our sample mean and standard deviation can be used to estimate what the



population mean and standard deviation might be.

Population central tendency: the sample mean is the best estimate of the population
mean.

Population dispersion: the sample standard deviation is always a little bit smaller than
the population standard deviation, more so the smaller our sample size ( n ) is. We
can correct for this by replacing n in the calculation of standard deviation by ( n –1).

3.6.4 Distribution of values: The normal distribution
We can also look at the shape of the distribution of values. When we have Interval data,
these values often appear in a very specific shape: the normal distribution , which forms
a symmetrical bell curve, shown in Figure 3.6 . Any variable that is affected by a lot of
separate causes usually has a normal distribution. A person’s exam grade can be
influenced by many causes: their hours of sleep, how much they have studied, their diet,
their optimism, and so on. Taken together, this results in a distribution of grades that will
follow this normal pattern. Since nearly everything of interest in psychology has lots of
causes, normal distributions are very common. From looking at the normal distribution, it is
clear to see that most people have a grade somewhere in the middle of the range of
values, while much fewer people have grades in the top and bottom tails.
Why is this important to know? Well, because we can say a lot about our data with just a
very small set of numbers. The normal distribution itself can be completely described and
pictured by using just its mean and standard deviation: no other information is needed.
This is a fortunate outcome of mathematics, the first of several we will encounter.

 Description

Figure 3.6 Normal and skewed distributions.
Left: The bell-shaped distribution of values in this example is called a normal distribution. A normal
distribution is useful because it depends on only two numbers: its mean and its standard deviation. The
narrowest part of the graph at each end of a distribution is called a tail. A normal distribution as pictured
here has two equal tails. Right: a skewed distribution. This distribution has a negative skew – it has a
longer tail towards low values.

However, data does not always fall in this nice neat pattern. For example, the distribution
of exam grades may be quite different: the exam may be set up so that too many questions
are very difficult and most people will not get them right. The result of this will be a
distribution that is skewed: one ‘tail’ is longer than the other (as shown in Figure 3.6 ).
Skew often arises because the measurements we use are biased, due to how difficult it
can be to devise a very good measure that collects the intended information we are looking
for. Both the normal distribution and skew are explored in a little more detail in our online
resources, if you are interested in learning more.

3.7 ORDINAL VARIABLES
Ordinal variables have discrete values, with order, but are not additive so do not have a
meaningful distance between each value. Figure 3.7 illustrates the distribution of values for
a typical Ordinal variable.



Figure 3.7 The distribution of values for a typical Ordinal variable.
This figure shows the distribution of values for a typical Ordinal variable. There are seven discrete
values and the central values are more common than the extremes.

With Ordinal variables, we lose some of the mathematical opportunities that we just used
with Interval variables; specifically, we should not add or subtract values. If we calculated a
mean and standard deviation for an Ordinal variable (where the values are numbers), this
would involve adding and subtracting the values. Adding or subtracting Ordinal values is
not a safe process and so means and standard deviations calculated in this circumstance
might be misleading. It might take little to nudge a 3-level risk-taker up to level 4, while
taking an enormous amount to nudge a level 4 to a level 5. This means that the difference
between a value of 3 and a value of 4 may not be the same as the difference between a
value of 4 and a value of 5, and so treating those two differences as the same is
misleading.

3.7.1 Median
Consequently, we use the median as the measure of central tendency for Ordinal
variables, which is illustrated in Figure 3.8 . The median is simply the middle value of the
data set, when all of the values are put in order: to do this, we don’t have to add them up
as we do for the mean. The median may end up being a full value or being a value halfway
between the two in the middle, depending on whether we have an even- or odd-sized set
of data.
The median has the nice property that as many values lie below it as above it, which
means that any individual value is equally likely to be larger than or smaller than the
median. This is weaker than the equivalent for the mean where the summed deviations are
equal either side of the mean.

3.7.2 Inter-quartile range
Measuring dispersion in an Ordinal data set is trickier. We can say that a particular Ordinal
value is higher or lower than the median, but not by how much. However, we can state that
a particular value is so many places above or below the median. With this, we can divide
the data set into quarters. The difference between the value at the boundary of the first and
second quarters and the value at the boundary of the third and fourth quarters is the inter-
quartile range , which is illustrated in Figure 3.8 . The bigger this value is, the more
spread out the values are.



 Description

Figure 3.8 Sample from an Ordinal variable showing the median and inter-
quartile range.
The same data, presented twice. On the left the data is unsorted. On the right, the same data is shown,
but sorted by value. The central thicker line shows the median and the two thinner lines show the inter-
quartile range.

3.7.3 Estimates
Both the sample median and the inter-quartile range can be used as estimates of the
population without correction.

3.7.4 Distribution of values: Likert scale
The use of Ordinal measures in psychology is very common, although largely for an
uninteresting historical reason. The often-used Likert scale is a simple device: you ask a
question and provide an ordered set of possible answers and the participant is asked to
choose one. In the days of paper and pencil, it was the most convenient way of doing this
(it isn’t any longer, but old habits …). There would typically be five to seven possible
answers, resulting in an Ordinal variable.
Years of experience have shown that there is a typical distribution of values that this
produces – it isn’t as mathematically tidy as the normal distribution, but superficially looks
similar. Responses to the Likert scale tend to cluster around the middle and are fewer out
in the extremes.

3.8 CATEGORICAL VARIABLES
Categorical variables have values that are categories (groups). No additional detail is
provided; all that is known is whether a participant belongs to a group or not. Figure 3.9
illustrates the distribution for a simple Categorical variable.

3.8.1 Mode
With a Categorical variable, the only measure of central tendency that may be useful is the
mode – the value that appears the most times. This is simply the value that has the
highest count and is the most common. Sometimes when we have a Categorical variable,
such as trial phase or experimental condition, the mode will not tell us anything useful
because we have deliberately set the group sizes to be equal.



Figure 3.9 A Categorical variable with two groups.
There is no limit to the number of groups a Categorical variable can have: learn more about how to
choose sensible groups in Chapter 9 . In this case there are two groups, and both have the same
number of participants.

In the most straightforward terms, looking at the count for each category also tells us about
the dispersion of the data: are the categories roughly equally sized, in which case there is
a lot of dispersion, or is the distribution focused into a small number of the available
categories, in which case the dispersion is small? There is no spread within the categories,
as each person within the category has the same label.
Categorical data gives us the least amount of information about our sample.

3.9 BEING A RESPONSIBLE RESEARCHER
A responsible researcher needs to be highly self-reflective and critical in how they treat
measured variables. There are three fairly basic issues that require a responsible
approach.
The first issue concerns just what are counted as variables. It is important to bear in mind
that these are a construction that the researcher has made, and bias can easily creep in. In
our main book example, it is quite probable that we and everyone reading this will think of
high exam grades as being better than low exam grades. Being responsible would mean
recognising that potential bias and taking care that it doesn’t colour the way we talk about
the variable.
The second issue concerns how we measure the variables. We need to be open about
how we measure variables. We also need to be open about assumptions that we make
about how participants respond to our measurement processes. We researchers always
suppose that participants will try their hardest to be honest in their responses and that they
don’t deliberately manipulate what they do. Participants, however, often try hard to be
helpful and give researchers the answers they think are wanted. Provided that a
researcher is open about the method by which variables were measured, then it is possible
for other researchers to reach their own view about what is actually being measured.
The third issue is what we do with the data itself. It will have been costly to obtain – in time,
effort and perhaps resources. It is therefore valuable. Generations past of researchers
would guard both their data and their measurement decisions as important possessions.
However, to keep the data from others is also to hide it, and hiding it is not being very
responsible to the discipline itself. The best practice, wherever possible, is to make the
data and measurement materials available to anyone else so that they can see for
themselves.

 The Big Picture
The concept of variables is the most fundamental building brick for the whole of
statistics. When we choose which variables are of interest, we are choosing the



components of a person or situation that will matter for the research. We are
responsible for our variable choices.

Variables
1. Variables are distinct ways that people or situations vary.
2. Variables have values which can be numerical or labels.
3. Normally, each participant has one value for each variable:

a. In a between-participants design, participants only belong in one group of
a Categorical variable: they only have one value for this variable.

b. In a within-participants design, participants are allocated to every group of
a Categorical variable: they will have multiple values for this variable.

Variable types
1. We can choose how to measure our variables. The different types are

Categorical, Ordinal or Interval. While some variables only suit one type, most
can be made to work with any of the different variable types.

2. Different variable types provide different information about the thing they are
measuring. Ordinal and Interval provide ordering information. Interval also
provides information about differences in values.

Distributions of values
1. Across a population, the values of a variable form a distribution. It is useful to

be able to describe these distributions of values by their typical value (central
tendency) and their spread (dispersion).

2. The different variable types each have different measures of central tendency
and dispersion:

a. The three types of central tendency measure are the mean, median and
mode.

b. Dispersion can be measured using the standard deviation or the inter-
quartile range, or by comparing frequencies.

Important issue to think about
1. Variability plays a big role in choosing what variables to use and how to

measure them. We want to capture as much variability as possible without
letting unwanted spurious or unwanted variability creep in.

 Your Turn
Define these key terms in the space provided:

1. Latent variable
2. Mean
3. Standard deviation

Fill in the gaps in these sentences:

1. The median is the ___________ value in an ordinal data set.
2. The inter-quartile range can be used to measure dispersion in an

___________ variable.
3. The measure of central tendency for a Categorical variable is the

___________.

Identify the variable type for each of the variables in the following table:



Variable Method Type of measurement?
Interval/Categorical/Ordinal

Happiness Self-rated report using a Likert
scale

 

Dog Organised by breed  

Height Scale in centimetres  

Weather Mm of rainfall  

Caffeine
status

Measurements taken before and
after drinking coffee

 

Social
media

Hours spent on social media  

Pain Self-rated using a low–high set
of options

 

Top level of
education

Categorising from primary
school through to postgraduate

 

Your Space

 Reference and Further Reading
Rosnow, R.L. & Rosenthal, R. (1997) People Studying People: Artefacts and Ethics
in Behavioural Research . New York: Freeman and Co.
A classic text.
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Back to Figure
In all graphs, the horizontal axis is labelled ability, ranging from 0 to 100 in increments of
10, and the vertical axis is labelled frequency. All data are approximate.

In the first graph, the normal curve peaks at ability equals 60. All plots are under the
curve.

In the second graph, the normal curve peaks at ability equals 60. A vertical line is at
ability equals 50. Most plots are under the curve. The plots to the left of the line are
darker than the plots to the right of the line.

In the third graph, the normal curve peaks at ability equals 60. Vertical lines are at
ability equals 40, 50, 60, 70, and 80. Most plots are under the curve. The color of the
plots varies in each part.

Back to Figure

 

Q1. Imagine
standing at the
top of a tall
steep mountain.
How do you
feel?
0 = terrified
1 = a bit restless
2 = ok
3 = happy
4 = exhilarated

Q2. You are
sitting on a park
bench in warm
sunshine. How
do you feel?
4 = terrified
3 = a bit restless
2 = ok
1 = happy
0 = exhilarated

Q3. Imagine
waiting to go
into a
statistics
exam. How do
you feel?
0 = terrified
1 = a bit
restless
2 = ok
3 = happy
4 = exhilarated

Q4. Imagine
driving home
through a
blizzard. How
do you feel?
0 = terrified
1 = a bit
restless
2 = ok
3 = happy
4 =
exhilarated

Participant
1

0 0 3 1

Participant
2

3 1 2 1

Participant
3

4 3 1 3

Back to Figure
The internal states are as follows:

Sun-seeking

Claustrophobia

Risk taking

Extroversion

The questions are as follows:

Hill walking?

Exotic places?

M R I scan?

Scuba diving?



g
Performing music?

Taking exams?

The measured variable is risk taking.
The interconnections are as follows:

Sun-seeking leads to exotic places.

Claustrophobia leads to MRI scan.

Extroversion leads to performing music.

Risk taking leads to all questions.

All questions lead to the measured variable.

Back to Figure
The vertical axis is labelled exam grade and ranges from 35 to 85 in increments of 5. A
horizontal line is at 57.2. There are data points on either side of the horizontal line. These
points are connected to the line by vertical lines. Most points are at a value of 3.22 above
and below the horizontal line, while few points are farther away from the line.
Back to Figure
In both graphs, the horizontal axis is labelled exam grade, ranging from 40 to 80 in
increments of 20, and the vertical axis is labelled frequency. In the first graph, the normal
curve peaks at 60. In the second graph, the negatively-skewed curve peaks at
approximately 65.
Back to Figure
In both graphs, the vertical axis s labelled DV and ranges from 0 to 8 in increments of 1. In
the first graph, there are plots scattered horizontally for DV equals 2, 3, 4, 5, and 6. In the
second graph, the plots for DV equals 2, 3, 4, 5, and 6 are grouped on horizontal lines. The
line at DV equals 4 is thick. The plots for DV equals 2 are at the lower values of the
horizontal axis and the plots for DV equals 6 are at higher values of the axis.
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Recall that we began this book by establishing an idea that risk-takers do better in exams
than non-risk-takers, which involves two variables : risk-taking (which we have labelled
RiskTaker?) and exam performance (labelled ExamGrade). In the previous chapter we saw
how we can get values for our variables from a sample of participants capturing as much
as we can of the relevant differences between those participants. Each participant will
have one value for each variable, so in this case, that is two values because there are two
variables.

 Description

Figure 4.1 Our basic hypothesis diagram.
Our basic hypothesis: there is a relationship between RiskTaker? and ExamGrade. On the left, we show
our normal diagram for this. On the right, we see the full situation: we are studying RiskTaker? as one
among many other influences on ExamGrade that we aren’t considering. We have used ‘other vars’ to
stand in for all the influences that we are ignoring.

The sets of values that we have for each of our two variables do not on their own tell us
anything much. The mean exam grade for each group on its own may or may not be
interesting, but it doesn’t help with our question. We are really interested in looking at both
sets of values together, to see whether there is a relationship: the analysis phase of
research begins.
Our idea about the relationship between risk-taking and exam grades is schematically
illustrated in Figure 4.1 as a hypothesis : risk-taking scores affect exam grades. Of
course, we must recognise right from the start that many other variable s could also be
involved – this is certainly not an exclusive relationship. We aren’t saying that exam grades
depend solely on risk-taking. In a bigger picture, we should imagine that the influence of
risk-taking on exam grades works alongside the influence of many other variables also
shown in Figure 4.1 .
In this chapter we will focus on situations where there are just two variables, as this will
allow us to cover all the fundamental principles that we need to know for now. This is not a
real-world limit: it is perfectly normal to have more variables (we shall discuss this in
Chapter 11 ). A relationship between two variables is enough to see a number of important
characteristics that we are going to learn about in this chapter.

4.1 WHAT IS A RELATIONSHIP BETWEEN VARIABLES?
All psychological research methods are designed to explore relationships between
variables, whether those variables are characteristics or situations. A good starting point is
to think about relationships as being associations between the values of two different
variables. Getting slightly higher exam grades could be associated with being a high risk-
taker; or the association could go the other way – getting slightly lower exam grades is
associated with high risk-taking. Being ‘associated with’ just means ‘tends to occur with’.
Association is a good neutral word for a relationship.
When we say that we think risk-takers have higher exam grades, we don’t actually mean
that every risk-taker has a higher grade than every non-risk-taker. We mean that,
everything else being equal, we think it is more likely than not that a risk-taker will have
higher exam grades than a non-risk-taker. There is a tendency to describe results as ‘Risk-
takers do better in exams’, when what is meant is ‘Risk-takers have some amount of
advantage in exams’.



A person’s exam grade is the result of myriad different factors all coming together at that
moment. These factors, aspects of the person and their situation, are all potential
variables. If the exam had been a day later, then some of those factors would be different
and the exam grade would be different. In among all of those factors, there will be (tiny)
effects of almost everything that is happening in the person’s life. Any pair (or more) of
variables could have a relationship, and one could argue that every pair of psychologically
interesting variables are related in some sort of way.

4.1.1 Two questions about relationships
There are two questions we can ask about a relationship:

1. Does the relationship exist?
2. How strong or weak is the relationship?

The first question is common in psychology but is the less useful and interesting of the two.
The possible answers for the first question are ‘yes’, ‘not sure’ and ‘no’. The possible
answers to the second question are much more interesting because they could give us a
lot more information. As we shall see in Chapter 6 , the question of ‘does a relationship
exist?’ is always answered by saying how strong the relationship must be for us to accept
that we are not just seeing some kind of pattern by chance.

4.2 THE LOGIC OF RELATIONSHIPS
A relationship between two variables can mean many different things: ‘A is related to B’, ‘A
affects B’, or ‘A depends on B’. It might also mean that ‘A and B are both dependent on C’,
something we shall come to in Chapter 11 . All of these different meanings involve some
manner of statistical relationship between the variables.
Although we would usually prefer to think of relationships as having a direction – such as
‘A causes B’ – usually the statistical processes we use to examine the relationship do not
distinguish a direction, which could be ‘A causes B’ but could just as easily be ‘B causes
A’.
Instead, the psychology and the general logic of the situation may let us identify one of the
variables as affecting the other. Even if we are uncertain about our choice, it is often
reasonable to work as if we are going to use the value of one variable for predicting the
value of the other variable. This introduces a logical difference between the roles of the two
variables. The two variables are no longer interchangeable because one is predicting the
other and we can think of this difference as introducing an asymmetry: the relationship is
not balanced; one variable is being influenced by the other.
Asymmetry in the logic of a hypothesis is important, and there is some common
terminology used. The variable that affects or predicts is called the Independent variable
(IV); the variable that is affected or predicted is called the Dependent variable (DV).
Figure 4.2 demonstrates this logic where ‘RiskTaker?’ is the IV, affecting ‘ExamGrade’,
which is the DV. A hypothesis or research project can have multiple IVs and/or multiple
DVs.



Figure 4.2 Psychological thinking determines the asymmetry of a
relationship.
The basic logic of the relationship between two variables. On the left, the Independent variable (IV)
predicts or affects the Dependent variable (DV). The figure is drawn to show the asymmetry of role. It is
important to understand, right from the start, that data and statistics cannot be used to determine that
asymmetry: it is a matter of psychological thinking. Strictly speaking, the data and the statistics cannot
be used to determine which direction the influence flows and the diagram on the right is more
appropriate .

The IV is called independent because, so far as our study is concerned, it is independent
of everything we are interested in: we are not measuring any of its causes or predictors in
our work. Of course it does have causes, but we are not interested in them. In our
example, although the variable RiskTaker? will have lots of interesting causes, our study is
not considering them.
The DV, on the other hand, is thought to be dependent on the IV (hence the name). Our
hypothesis is that the value any one person has for the DV depends to a degree on the
value they have for the IV. In our example, we are asking whether risk-taking might be a
source of some of the differences in exam grades.
The statistics will say that there is a relationship between IV and DV, but never that we are
justified in treating one as IV and one as DV: this logic is a psychological decision.
Sometimes, situations exist where the variables are treated as equal in status and the
association between them is assessed without identifying any psychological asymmetry.
This is a practice that leads to dead ends: there is very little valuable knowledge to be
gained. Usually, not identifying asymmetry is used as a starting point for planning and
experimenting with research before it moves on to further, more interesting analysis.

4.2.1 Graphs to show relationships
Perhaps the easiest way to see and understand a relationship between two variables is to
illustrate it with a graph. The purpose of the graph will determine the form it takes, as you
will see in Figure 4.3 , but there are a few simple, fundamental rules behind every graph:

1. The values of the IV are plotted horizontally along the bottom of the graph, called the
x-axis ; the values of the DV are plotted vertically along the side of the graph, called
the y-axis . This will always be the case in this book. This is an important convention
because it means we will not have to say which is which.

2. The values for a variable are arranged along the corresponding axis. If the variable
has numerical values, then the convention is that values increase rightwards and
upwards.

3. Typically, a graph only has content where there would be corresponding data. If you
think of making a graph in terms of applying ink to paper, then there will only be ink
where there might be data.



We will encounter three main uses for graphs. In order to make these graphs easy to
distinguish as well as easy to read, in this book we give each type a specific form
throughout. The types are illustrated in Figure 4.3 .
Think of graphs as a language that has evolved to be highly effective for presenting
patterns in data. There are few, if any, concepts in this book that aren’t easily
demonstrated with a graph. It is important to become adept at reading a graph and also at
producing clear graphs: often they are the most vivid and immediate way of conveying a
pattern to an audience.

 Description

Figure 4.3 Examples for population, sample and descriptive statistics
graphs.
In this book, there are three basic purposes for a graph: to show a population, a sample or descriptive
statistics. This figure provides an example for each graph type. More examples for these three basic
purposes will be shown later as they become useful.

4.3 TYPES OF RELATIONSHIP
Each variable can be illustrated using a graph that shows the separate distribution for its
own set of values. However, this tells us nothing about the relationship between the
variables. Figure 4.4 shows both the separate distributions for two individual variables (on
the top and left of each panel) and their joint distribution. For this figure we have used two
Interval variables as this makes the effect particularly easy to see.
As Figure 4.4 shows, the differences between no relationship (middle), a negative
relationship (left) or a positive relationship (right) are only visible in the joint distribution of
both variables – where both variables are plotted together on a graph. The distributions of
the variables on their own separate graphs (these are called marginal distributions ) are



the same regardless of whether there is a relationship between them or not. The joint
distributions in this figure show the relationship.
In the central panel there is no relationship and the joint distribution is not oriented in any
obvious direction. The panel on the right shows something different: it shows that those
individuals whose value on the IV is high (to the right) also have higher values for the DV,
and vice versa for the panel on the left. These patterns indicate that a relationship exists.

 Description

Figure 4.4 Distributions of two variables plotted together.
In this figure we can see the appearance of three different relationships. The joint distribution is shown
in the centre of each panel with the distributions for the individual variables on the edges. For each of
them, the two individual variables (IV and DV) on their own show normal distributions. Looking at these
single distributions doesn’t show the relationship. It is only when they are put together that the
relationship emerges. In the middle panel, the value that DV has is unaffected by the value for IV. On
the left and right, the value that DV takes is related, in part, to the value of IV.

We can say that a relationship can be expressed as a pattern where the values of the DV
depend, to some extent, on the value of the IV. If the values of the DV depend strongly on
the values of the IV, the relationship between them is stronger. Look at the population
graph in the right panel of Figure 4.4 , where there is a positive relationship. Each person
is somewhere in this distribution. For just those people who have a high value for the IV
(on the right side of the distribution), their set of DV values is slightly higher than average.
Conversely, for those people with low values for the IV, their set of DV values is slightly
lower than average.

4.3.1 Relationships in populations
The way a relationship shows itself across the whole distribution in a population depends
on the variable types that are being used. For this first step, we just need the fundamental
distinction between discrete (Categorical) and continuous (Interval) variables. Ordinal
variables are, as always, a nuisance here. Depending on whether they are really discrete
or not, they will behave like either discrete or continuous variables.
If you look at the four different combinations of continuous and discrete variables in Figure
4.5 , you will see that the basic pattern is the same: in each case there are more
participants in the lower left and upper right corners. It is important to realise that these
four different cases reflect a single fundamental idea: the distribution (of people, in this
case) in the population. All of the four populations illustrated have the same pattern: more
people in the top right and lower left. The exact forms of the graphs reflect the difference
due to variable type.



 Description

Figure 4.5 Relationships between two variables as they appear in
populations.
Each variable can be discrete or continuous, and the four combinations of these two types give the
populations shown.

4.3.2 Relationships in descriptive statistics
The next step is then to describe that relationship. We can apply our knowledge of central
tendencies from Chapter 3 here, thinking now in terms of the central tendency of parts of
the population that share similar common values for their IV. A relationship between two
variables will usually manifest itself as a way in which the central tendency of the DV
depends, to some extent, on the specific value of the IV. Note the main point here: if we
change the specific value of the IV, we see corresponding changes in the central tendency
of the DV.
A relationship concerns changes in the central tendency of the DV. You may recall from
Chapter 3 that we described three different possible measures of central tendency.

For Interval DVs, the mean is suitable and we can use that same concept in this new
context of a relationship: when the DV is Interval, a relationship will show up as
different means depending on the specific values of the IV.

For Ordinal DVs, the median is used as a measure of central tendency and so we can
think of relationships where the DV is Ordinal as being cases where there are different
medians depending on specific values of the IV.

For Categorical DVs we need a bit more. The measure of central tendency of a
Categorical variable is the mode (commonest value). In this context of a relationship,
we will use the relative frequency of the different categories rather than the mode:
when the DV is Categorical, a relationship will show up as different relative
frequencies of the categories depending on the specific values of the IV. Switching
from mode to relative frequencies is done because the relative frequencies will change
much more than the mode might.

A relationship concerns the specific values of the IV. In practice, what matters about the IV
is whether it is ordered and continuous or not. Here the distinction between Ordinal and
Interval doesn’t matter: both are ordered and we can safely treat both as if they were
continuous.



An Interval or Ordinal IV has values that are continuous (or can be treated as such, for
the purposes of looking for a relationship) and so the values for the changes in DV
that we look for are also continuous.

A Categorical IV has values that are discrete and so the changes in the DV will also
be discrete.

Table 4.1 illustrates the different combinations of variable type and the change in central
tendency that they cause. You will see that we have considered all three types of variable
for the DV but only two for the IV. We are going to suppose that any Ordinal IVs are treated
as Interval.
Table 4.1 Variable combinations and relationships, part 1.

The various different variable combinations and what they mean for the way a
relationship between the variables will appear. Ordinal IVs can be treated as Interval.

 
Changes in the value of the IV are associated with

Categorical Interval

DV Categorical discrete changes in frequency continuous changes in frequency

Ordinal discrete changes in median continuous changes in median

Interval discrete changes in mean continuous changes in mean

4.3.3 Relationships when DV is Interval
When the DV is Interval, the measure of central tendency, as we have just mentioned, is
the mean. A relationship would manifest as the value of the IV having an influence on the
corresponding mean of the DV.
This is easy to apply when the IV is Categorical: the mean of the DV depends on the value
of the IV. The values of the IV are a set of categories, and the relationship shows itself as
different means for the DV in the different categories of the IV.
A graph that shows the effect directly is therefore a line graph with points showing the
mean DV value for each category of the IV (as seen in Figure 4.6 ). If the line joining those
points is not horizontal, then the mean DV varies from category to category and we can
say that there is a relationship between the IV and the DV in our sample.
With a little bit of imagination, we can use this approach when the IV is also Interval. We
can’t treat the IV as groups, each with its own mean, but we can do something similar. To
start with, imagine that we split the IV into three sections: low, mid and high, which can be
seen in Figure 4.7 . For each of these sections there is a corresponding mean value for the
DV for that section. Let’s call this a local mean – localised to one specific section of the IV
– to distinguish it from the global or overall mean. This is more conceptual than anything
else – you wouldn’t really split your sample up to calculate many local means, but it helps
to understand where the maths has come from. Now we think of a line that joins these
local means together: this is shown in the figure and is called the regression line . You
may also come across the regression line labelled as the line of best fit – which is quite a
self-explanatory name, as ideally it is the line that best fits all of these imaginary local
means.



 Description

Figure 4.6 The distribution of participants and a line graph showing the
effect of a Categorical IV on an Interval DV.

 Description

Figure 4.7 Illustration of the concept of a regression line.
Although the IV is continuous, we can think of it as having lots of small sections. For each of the small
sections (three are shown on the left, many more on the right), we can imagine calculating a local mean
of the corresponding DV values. These local means are shown as dots in the figure. The regression line
then joins up the local means.

Now imagine splitting the IV into a larger number of infinitesimally small sections (instead
of just three) and finding the local mean of the DV for all the data points in each tiny
portion. Again, we are interested in the question of whether there is an overall trend. Once
again, we link our local means using a regression line.
In practice, with a realistic sample size we can never have enough data points to actually
do that process of infinitesimal groups and draw a regression line. However, there is a
realistic way of achieving this same outcome that just builds very slightly on the work we
did in understanding the idea of the mean in the previous chapter .

The mean is the single (best-fitting) value that minimises the sum of squared
deviations in a sample.

The mean of a DV gives us an overall expected value for a DV.

The actual value of the DV for each individual data point has a deviation from this
best-fitting value.

The mean is the value that makes the sum of squared deviations minimum.



 Description

Figure 4.8 Scatter plot with the regression line showing the effect of an
Interval IV on an Interval DV.

The regression line is the (best-fitting) line that minimises the sum of squared
deviations in a sample.

The regression line gives us an overall value for a DV that depends on the value
of the IV.

The actual value of the DV for each individual data point has a deviation from this
line.

The regression line is the line that makes the sum of squared deviations
minimum.

This is illustrated in Figure 4.9 .
The regression line gives us an overall best-fitting line: a best-fitting value for the DV for
each possible IV.
Normally, psychology research restricts its interest to cases where that line is straight. If
the line is horizontal, then there is no relationship (the DV mean does not change as the IV
changes). If it is sloping one way or the other, then there is a relationship.
There are two simple principles in this section:

1. If the DV is Interval, then the relationship is seen as changes in the mean of the DV
with changes in the value of the IV.

2a. If the IV is Categorical, then the relationship is differences in a set of group means:
one for each category.

2b. If the IV is Interval, then the relationship is a continuous regression line showing
how DV mean value varies with the IV.



 Description

Figure 4.9 Illustration showing how the regression line reduces the sum of
squared deviations.
This figure shows how the regression line reduces the sum of squared deviations. On the left is the
pattern we have already seen in the previous chapter for the mean. The mean is the single value that
minimises the sum of squared deviations. On the right, the line centred on the mean is now rotated to
show that the deviations between the data points and the line are reduced further. The best-fitting
regression line is the one that achieves a minimum for the sum of squared deviations from the line.

4.3.4 Relationships when DV is Categorical
When the DV is Categorical, the central tendency is captured by looking at a count or
frequency : how many (counts) or what proportion (frequencies) of the whole
sample/population belong in each category. Relationships with a Categorical DV therefore
use frequencies: how often or how likely the DV is in one category, depending on the value
of the IV. Frequencies are proportions and so are limited to lie between 0 (none) and 1
(all).
When the IV is also Categorical, then the relationship appears as a change in the relative
frequencies of the DV categories when the IV category changes. If we measured both our
variables as Categorical, then a relationship between them would be that the relative
frequencies of high grades versus low grades was different for risk-takers than for non-risk-
takers, which is illustrated in Figure 4.10 . A convenient graph for showing relative
frequencies is a bar chart where the height of the bars corresponds to the frequency.
When the IV is Interval, then we do the same thing as before: we think of splitting the IV
into a large number of infinitesimal parts and finding the local relative frequency of the
different DV categories for each part. This becomes another regression line – but this time
it is a regression of frequencies. In this case, research in psychology is usually interested
in an S-shaped line called the logistic regression line, which can be seen in Figure 4.11 .
The line is S-shaped so that it remains within the frequency limits of 0 and 1 – because
less than 0 would suggest a category occurring less often than never, and above 1 would
mean a category occurring more often than always. We have some more information about
logistic regression in our online resources.

 Description

Figure 4.10 Bar chart showing the effect of a Categorical IV on a Categorical
DV.
This bar chart illustrates with simple counts on the left and relative frequencies on the right. The right-
hand graph shows, for each category of the IV, the frequency (proportion) of participants in the d2
category of the DV.



 Description

Figure 4.11 Bar chart showing the effect of an Interval IV on a Categorical
DV, with a logistic regression line.
The smooth S-shaped curve is the logistic regression line.

There are two simple principles in this section:

1. If the DV is Categorical, then the relationship is expressed as a variation in the
frequency of the different values of the DV.

2a. If the IV is Categorical, then the relationship is shown as a set of differences in
group frequencies.

2b. If the IV is Interval, then the relationship is shown as a continuous regression line
showing how DV frequency varies with the IV.

4.3.5 Relationships when the DV is Ordinal
It is almost possible to provide this section in one short sentence: ‘The same as when the
DV is Interval.’ Very often that is quite reasonable, provided we present our results with
careful consideration of how much less information an Ordinal variable has provided us
with. But …
A statistical purist would wish to see relationships as difference in medians, when the DV is
Ordinal. This is easy to do for a Categorical IV: we are looking at differences in median in
the different groups – exactly analogous to the differences in mean for Interval DVs.
Medians have to be either one of the values or a midpoint between two of the values. This
means that differences will have discrete values.
An Interval or Ordinal IV poses a more serious problem for the real purist. In these cases,
for an Interval DV we talked about continuous changes in the mean of the DV. For an
Ordinal DV we cannot, as purists, talk about continuous changes in the median – medians
don’t change continuously. So, we use a variety of logistic regression called ordinal logistic
regression. In essence, this uses the same ideas as we just saw for Categorical variable –
amended a little to allow for the fact that the multiple categories of the DV (the discrete
Ordinal values) are ordered.

4.3.6 Relationships Summary
Table 4.2 summarises these four typical ways that relationships appear, depending on how
we have chosen to measure the variables.
Table 4.2 Variable combinations and relationships, part 2.

The basic types of relationship between variables and how they depend on the type of
the variables. If the DV is Ordinal, then the effect can appear as either a change in
means (or medians) or as a change in frequencies, depending on whether we are
treating the DV as discrete or continuous.



 
IV

Categorical Interval

DV Categorical Difference in frequencies Regression of frequencies

Interval Difference in means Regression of means

The overall pattern can be seen: the DV determines whether we are looking at frequencies
or means; the IV determines whether we are using differences (discrete changes) or
regression (continuous changes).
There is a lot of detail here, but it is really important to keep the bigger picture: the overall
pattern is always the same. A relationship between two variables changes their joint
distribution but not their individual distributions. How we will see that relationship depends
(in the detail) on how the variables are measured.

4.4 THE STRENGTH OF A RELATIONSHIP: EFFECT
SIZES
Now that we have understood how different relationships appear between basic variables,
we can move on to the most important step. All relationships, regardless of the variables,
have two important elements: a strength and a sign (positive or negative). For example,
the relationship between RiskTaker? and ExamGrade probably has a weak strength,
meaning that whether you are a risk-taker or not would only have a small effect on your
grade. The relationship between RiskTaker? and ExamGrade might have a positive sign,
meaning that an increase in the value of RiskTaker? goes with an increase in ExamGrade.
If participants with a value of ‘yes’ for RiskTaker? tended to get poorer grades, then the
effect sign would be negative.
An effect size is a numerical description of the strength of the relationship, with a sign (+
or –) to show the sign of the relationship. Effect strength is at the heart of how
psychological and statistical results are presented, although sometimes you will notice that
it is neglected in published journal articles. Effect sizes are illustrated in Figure 4.12 and
Figure 4.13 .
When we talk about a relationship and its effect size, this is a property of the whole sample
or the whole population and not specific people in the sample or population. Since each
person only has one value for IV and one for the DV, we can’t see those variations in any
one person and so we can’t see the relationship.
A quick look at any of the graphs of effects shown above demonstrates that even in the
presence of a positive effect, there are plenty of individuals who are not risk-takers but get
high exam grades (this is seen best in Figure 4.12 ). They don’t seem to fit our hypothesis.
This is a key principle: understanding that our chosen IV is only a part of the variation in
the DV, which we illustrated back in Figure 4.1 . In our example, there are lots of other
reasons why exam grades might vary between people. The effect size is a measure of how
much of the variability in the DV can be attributed to the IV. When we put it like this, we
maybe shouldn’t often expect strong effects in psychological research.
Now that we have examined what different strengths of effect size look like, whether they
are positive or negative or non-existent, we can move on to another important detail: the
effect size form. Effect sizes can be represented in many different forms. So far, you have
seen us use a decimal number to describe our effect size predictions in Chapter 2 , where
we predicted a small effect of 0.2 (as seen in Figure 2.3 ). This is just one numerical form
that effect sizes can be expressed in, and there are plenty of others. They are all
interchangeable with various mathematical transformations. We will describe the three



most common forms here, plus one that was introduced quite recently but is useful. To do
this, we will use an example set of data, shown in Figure 4.14 .

 Description

Figure 4.12 Effect sizes when the DV is Interval.
The graphs on the right-hand side are formally called scatter plots .
• The sign of the relationship is given by whether the sample points rise from left to right (+ve) or fall (–
ve).
• The size of the effect is given by how much vertical scatter of data points there is over and above that
caused by the IV.

• Ordinal data will typically look the same as Interval data when plotted unless it is being treated as a set
of discrete categories.



 Description

Figure 4.13 Effect sizes when the DV is Categorical.
These graphs show the frequency of the second of two categories for the DV.

• The sign of the relationship is given by whether the frequency rises from left to right (+ve) or fall (–ve)
– which side of the graph has the tallest column.
• The size of the effect is given by how steep the rise is, indicated most clearly on the Interval–
Categorical diagrams with the curved lines.



 Description

Figure 4.14 Descriptive statistics for a sample.
This example data will be used to illustrate the different types of effect size. We have data from risk-
takers and non-risk-takers.

4.4.1 Natural effect sizes
Often it can be useful to provide a natural effect size : a measure of the strength of the
effect in the units of the variables themselves. Using our basic example with its Categorical
IV, it is straightforward to grasp an effect size that is a difference of 4.7 exam grade points
in favour of risk-takers. This would be a particularly sensible way to describe an effect if
your audience isn’t used to statistics but does regularly sit exams. The use of grade points
to express the effect of risk-taking on exam grades allows any audience that understands
exams to get a sense of how meaningful this effect is, because 4.7 is on a scale that they
will be familiar with. They will be able to understand whether a difference of 4.7 exam
grades points is important or not.
When the IV is Interval, there is an equivalent natural effect size. We could say that for
every increase of 1.0 in risk-taking score, the typical exam grade goes up by 2 grade
points. The natural effect size would be the increase in exam grade points for a change in
a risk-taking scale of 1 unit. This is still partly understandable, although an audience will
need to know how the risk-taking scale is constructed to find out whether 1 unit is a lot
(because the risk-taking scale only goes from –2 to +2) or is tiny (because the risk-taking
scale goes from –100 to +100).
Generally, however, natural effect sizes are of limited usefulness because the variables
involved in psychology tend to have arbitrary or not widely known scales.

4.4.2 Standardised effect sizes: Cohen’s d-family
Imagine that several different researchers are all looking into the question of risk-taking
and exam grades. This is a good idea, because the relationship may differ a bit from
university to university. The problem is that the different universities have different grading
scales, such as: 0–100, 0–25, 0–42.
This will make it very difficult to compare results with natural effect sizes. For this reason,
standardised effect sizes were devised. These provide a way to represent effect sizes on
a common scale regardless of what system of measurement is used for the DV.
A standardised effect size is one where the natural effect size is adjusted to remove the
effect of the scale of the DV. This adjustment is achieved by dividing the difference in
means by a quantity that is usually called the pooled standard deviation :



d = mean2−mean1

sdpooled

The pooled standard deviation is a misleading name, and before saying what it is, let us
say what it isn’t: it isn’t the standard deviation of the whole sample. The pooled standard
deviation is the typical standard deviation within the groups. Actually, we have learned
enough already to be able to use a better name for it: it is the standard deviation of the
residuals (a residual is the difference between one participant’s score and their group
mean score). We have included some mathematical information about the standard
deviation of the residuals in our online resources, if you are interested in some more
details.
In the example of Figure 4.14 , the two groups have standard deviations of 8.45 and 7.29
but the first group has 22 participants and the second has 20. So the pooled standard
deviation is not just the simple average of the two groups; we need to give a bit more
weight to the first (larger) group:

Applying this formula to the data in Figure 4.14 gives us a pooled standard deviation of 7.9.
Since the value for the pooled standard deviation depends quite directly on the scale for
the DV, dividing the difference in means by it removes the effect of the measurement scale.
The standard deviation we are using for this division is not the standard deviation of the
whole sample, just the standard deviation within the categories.
If we then put these numbers into the formula for the standardised effect size, we can
calculate that the standardised effect size is 4.7/7.9 = 0.59:

d = 60.9−56.2
7.9 d = 4.7

7.9 d = 0. 59

We have already said that the pooled standard deviation, the bottom part of the formula for
d , is the standard deviation of the residuals. We can add one more point here: the
difference in group means, the top of the formula for d , is the same as two times the
standard deviation of the group means. Our group means are 56.2 and 60.9. The standard
deviation of those two numbers is 2.35, and twice that is 4.7, which is the pooled standard
deviation we calculated before. So there is another way of calculating the standardised
effect size, which uses this formula:

sdpooled = √ n1×sd
2
1+n2×sd

2
2

n1+n2

sdpooled = √ 22×8.452+20×7.292

22+20

d =
2×sd(groupmeans)

sd(residuals)

sd (residuals) = sdpooled



The standardised effect size is twice the ratio of the standard deviation of the group means
to the standard deviation of the residuals. The importance of this will become apparent in a
minute.
Standardised effect sizes range from zero outwards to ±infinity. A standardised effect size
of +infinity is where the relationship between the variables is perfect. If all risk-takers got a
grade of 60 and all non-risk-takers got a grade of 40, then the standardised effect size
would be infinity (which is, of course, a very big effect) because the group standard
deviation is zero; divide anything by zero and, mathematically speaking, you get infinity.
In order to understand how the d-family works and why it is sometimes difficult to interpret,
think about this. Let’s suppose that our RiskTaker? Categorical variable gives us a 5-point
difference in exam grades. We are interested in how this compares with other factors, such
as whether you are a mature student or not. Mature students have a 10-point advantage in
exam grades. This is easy to interpret: 10 points is twice 5 points. If we represent these
two results with d-family effect sizes, then that nice feature is lost. The reason is that we
standardise the effect size by dividing by the group standard deviation, which is less when
the difference in means is more.
This means that these effect sizes can be quite difficult to use: on a scale of 0 to infinity, a
value of 100 and a value of 1000 are maybe not as much different as you might think,
whereas going from 1.0 to 1.5 is a considerable change in effect size.

4.4.3 Normalised effect sizes: r-family
Another family of effect sizes is even more useful to researchers. Normalised effect sizes
are effect sizes that range outwards from 0 to +1 or –1: a value of –1 means a full-strength
negative relationship; 0 means no relationship; and +1 means a full-strength positive
relationship. The meaning of the word ‘normalised’ in this context is just that the scale
ranges up to 1. This is known as the r-family of effect sizes (the most familiar use of it is
the correlation coefficient).
This effect size is easy to use because it is simple to understand a scale that goes
between –1 and +1. A reader can quickly understand that 0.2 is a fairly modest effect and
0.8 is a very strong effect. The normalised effect size in the example of Figure 4.14 is
calculated using a slightly different formula from the final one we showed for d ,
standardised effect sizes:

r =
sd(groupmeans)

sd(sample)

The standard deviation of the group means is 2.35 and the standard deviation of the whole
sample is 8.18 (still using the values found in Figure 4.14 ), so the normalised effect size is
0.29.
The r-family of effect sizes has all the same benefits that the d-family has, but it also has
the added benefit, thinking about our comparison of risk-taking with other factors, that r =
0.4 means twice as much benefit as r = 0.2. For example, if we found that energy drink
consumption has an effect of r = 0.4 on ExamGrade, then it would have twice as much
influence as our RiskTaker? variable.

4.4.4 Binomial effect size display (BESD)
This final measure of effect size is not yet common but is actually very useful. It works by
telling us how many members of the sample or population broadly follow the effect. If you
look at the scatter plot of ExamGrade as a function of our risk variable measured as an
Interval variable – perhaps RiskScore, or NumberofRisks – then you can see that everyone
who is in the left-bottom quadrant has lower than average risk-taking and lower than
average exam grade. Similarly, for the top right quadrant: higher than average risk-taking
and higher than average grade. We can say that these participants are following the effect.
If the relationship is perfect, then everyone will lie in one of those two quadrants. If there is
no relationship, then 50% of the sample or population will lie in one of those two quadrants.



 Description

Figure 4.15 Illustration of binomial effect size display (BESD) effect size.
We can see that an effect of the relationship between the IV and the DV here is to cause more of the
data points (participants) to lie in two of the quadrants (top right and bottom left). If there was no effect,
the four quadrants would all have equal numbers, so an interesting and sometimes really useful way of
describing the strength of the relationship is to calculate how the participants are split between the
quadrants.

Figure 4.15 shows the data split into four quadrants (the split is done at the median values
for IV and for DV). The percentage of participants in each quadrant is written in the table
beneath. If there was no effect, then we would expect the same number of participants in
each quadrant. If we compare the actual split 76:24 with the null effect 50:50, then we can
calculate that 26% of participants have been moved to another quadrant by the effect (the
difference between 50 and 76 is 26, and the difference between 50 and 24 is 26).
The BESD just gives the percentage of the sample or population in each of the four
quadrants – and by convention the % sign is left out. It is very nice because it gives us a
good intuitive sense of how strong a relationship is – and is something we can readily
compare with our expectations. Conveniently, it is very easy to convert the r-family effect
size to a BESD ( Table 4.3 ).
Table 4.3 The calculation of BESD from normalised effect sizes.

50 – r×50 50 + r×50

50 + r×50 50 – r×50

If a dandruff cure has a normalised effect size of 0.26, then it has a BESD of (50 –
0.26×50): (50 + 0.26×50) which = 37:63. This means the treatment only has a positive
effect on 13% of participants, because the difference between the observed count of 63
and a zero-effect count of 50 is 13.



4.4.5 Effect sizes as comparisons
There is another way of thinking about these effect sizes that will prove very useful soon.
Both the d-family and the r-family involved dividing one quantity by another. Division of this
sort is a basic mathematical way of comparing two quantities, and in that way they are both
comparisons.

Figure 4.16 Variability diagram.
Now we can see that the variability of ExamGrade attributed to RiskTaker? and shown by area a can be
compared to either the total variability in ExamGrade (a+b) or just the variability in ExamGrade
unaccounted for b. Note that as a increases, b decreases. Standardised effect sizes are related to a/b ;
normalised effect sizes are related to a/(a+b).

We can think of the effect as accounting for some of the variability in the DV. Some of the
variability between people in exam grades comes from the variability between people in
risk-taking. And, of course, the rest of the variability in exam grades doesn’t come from the
variability in risk-taking. Figure 4.16 shows this. The variability in ExamGrade caused by
RiskTaker? is a . The left-over variability in ExamGrade, b , is therefore caused by other
variables that we have not considered.

In the case of the d-family, we are comparing the variability in the DV that is due to the
IV with the variability in the DV that is not due to the IV. We are comparing a with b :

d = a

b

In the case of the r-family, we are comparing the variability in the DV that is due to the
IV with all of the variability in the DV. We are comparing a with ( a + b ):

r = a

a+b

4.4.6 Effect size: Summary
The way an effect size is described is critical for two different types of understanding: (i)
how important is the effect, and (ii) how does the effect compare with other effects? For the
first question, natural effect sizes are sometimes useful and the BESD is always useful.



For the second question, either d or r are good ways of comparing the effect sizes for
different situations.
Table 4.4 An effect size interpretation table.

There’s some more helpful information about effect sizes online. We use ‘Cat2’ as the
shorthand for a Categorical variable with two groups, such as our RiskTaker? variable.
The variable before the arrow (Cat2 here) is the IV and the variable after the arrow (Int
here) is always the DV.

Effect size
type Examples When? Possible

values Interpretation

Natural Difference
in means
Regression
line slopes

When scale of
DV (and IV) are
commonly
understood

Any
values
that match
the scale
of the
variable

Use the variable measure
as a guide to interpretation,
e.g. if DV is IQ, natural
effect size of IV may be 7
IQ points

Standardised Cohen’s d
Cohen’s f
Hedge’s g

Cohen’s d is
typically used
for the result of
a Cat2 → Int
hypothesis

–infinity to
+infinity

–inf is perfect negative
effect
0 is no effect
+inf is perfect positive effect

Normalised r Any situation –1 through
to +1

–1 is perfect negative effect
0 is no effect
+1 is perfect positive effect

4.5 BEING A RESPONSIBLE RESEARCHER
For a very long time, effect sizes were not even part of the ordinary debate in psychology
research. Researchers were only interested in whether there was an effect or not (in their
data). However, we should see straight away that there is a substantial difference between
saying ‘There is an effect of XXX on YYY’ and saying that ‘There is a small effect of XXX
on YYY’. That first approach of asking whether an effect exists or not can easily
exaggerate the importance of an effect. Calculating effect sizes is a first step towards
offering a more reasonable and more responsible account of a finding. The statement that
the therapy of your choice helps 20% of people is a much more responsible statement than
a statement that leaves the strength of the effect out.
So far, this discussion has left one important question unanswered: What sort of effect
sizes do we usually see in psychology? The answer is that we tend to see small to
medium-sized effects. In the terms that we have used so far, an effect size of r = 0.25



would seem to be roughly typical, although the range is probably quite wide around that
value. That means that there remains plenty of unexplored/unexplained variability and we
should not lose sight of this. In our examples in this book, and probably in most
psychological research, the amount of variability unexplained by the IV is much more than
the amount explained.
What does this mean for a responsible researcher? Well, a responsible researcher will be
quite clear about the effect size in the way they describe their findings.

 The Big Picture
All of the variability that distinguishes people is the basic material for statistics. We
capture the variability by choosing variables and look to explain the patterns of
variability by considering the existence of relationships between variables. The first
purpose of statistics is to objectively describe patterns of variability as relationships
between variables.

The logic of relationships between variables
1. Relationships between variables are the heart of psychological research

methods.
2. In a statistical relationship, we identify one variable as the Dependent variable

and one as the Independent variable:
a. Dependent variable (DV): is assumed to be the one that is affected by the

other variables. We are often seeking to understand the DV.
b. Independent variable (IV): is assumed to affect the DV. It is only affected

by things we are not interested in (in our study).
3. When you explore some data, always start by asking: what is the Dependent

variable (DV)? Think about the logic of the situation.

Forms that relationships can take
1. The form a relationship takes will depend on the choices made about how to

measure variables:
a. Type of the DV: determines whether the relationship will be a pattern of

changes in means (Interval DVs) or in frequencies (Categorical DVs).
b. Type of the IV: differences or continuous trends, i.e. what is the type of the

IV? Will it use means or frequencies, i.e. what is the type of the DV?
These decisions are made for us already.

Quantifying relationships
1. Relationships can be quantified by their strength (effect size) and the sign of

that effect (positive or negative):
a. On a graph, the strength of a relationship can be seen by inspecting how

scattered the data points are. The more scattered, the weaker the
relationship.

b. The sign of the relationship is shown by whether the effect goes up
(positive) or down (negative) as you look from left to right.

2. The strength of a relationship can be quantified using different types of effect
size:

a. A natural effect size can help translate an idea to an audience.
b. Standardised effect sizes are more suitable for comparing across studies

and range from 0 to infinity.
c. Normalised effects are also easier to compare, and range between –1 and

+1, with 0 indicating no effect.

 Your Turn
Define these key terms in the space provided:



1. Independent variable
2. Dependent variable
3. Effect size

Fill in the gaps in these sentences:

1. The horizontal axis of a graph is called the ___________.
2. The vertical axis of a graph is called the ___________.
3. A natural effect size is measured using the same scale as the ___________

variable.
4. The range of possible values for r is ___________.

THE ANSWERS ARE AVAILABLE ONLINE

Your Space
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Descriptions of Images and Figures
Back to Figure
A bar graph titled risk taker with a question mark leads to a distribution graph titled exam
grade. In both graphs, the vertical axis is labelled frequency. In an accompanying diagram,
risk taker with a question mark and other variables lead to exam grade.
Back to Figure
In all graphs, the horizontal axis is labelled IV, listing c 1 and c 2, and the vertical axis is
labelled DV. All data are approximate.



In the first graph, the vertical axis ranges from negative 2 to 2 in increments of 1. The
graph shows bulges for each IV value. The bulge for c 1 is from negative 2 to 1, with
its widest part at negative 0.5. The bulge for c 2 is from negative 1 to 2, with its widest
part at 0.5.

In the second graph, the vertical axis ranges from negative 4 to 4 in increments of 1.
The plots for c 1 are between negative 2 and 0.5, with outliers at negative 3 and 1.8.
There is a bulge around the plots with its widest part at negative 0.5. The plots for c 2
are between negative 1 and 2, with an outlier at 2.8. There is a bulge around the plots
with its widest part at 0.5.

In the third graph, the vertical axis ranges from negative 1 to 1 in increments of 0.5.
The plot for c 1 is at negative 0.5 with lines from the plot extending to negative 0.7 and
negative 0.3. The plot for c 2 is at 0.45 with lines from the plot extending to 0.2 and
0.6. The plots are connected.

Back to Figure
In all distribution types, IV is at the top and DV is on the left. Each variable is represented
by a normal curve.

In the first type, the distribution is elliptical that slopes downwards to the right.

In the second type, the distribution is spherical.

In the third type, the distribution is elliptical that slopes upward to the left.

Back to Figure
The data are tabulated below.

No data Categorical IV Interval IV

Categorical
DV

The horizontal axis is labelled IV,
listing c 1 and c 2, and the vertical
axis is labelled DV, listing d 1 and d
2. There are large rectangles at (c
1, d 1) and (c 2, d 2) and smaller
rectangles at (c 1, d 2) and (c 2, d
1).

The horizontal axis is labelled IV,
ranging from negative 3 to 3 in
increments of 1, and the vertical
axis is labelled DV, listing d 1 and d
2. All data are approximate. A
bulge at d 1 is between IV equals
negative 2.8 and 1.2. A bulge at d 2
is between IV equals negative 1
and 2.

Interval DV The horizontal axis is labelled IV,
listing c 1 and c 2, and the vertical
axis is labelled DV, ranging from
negative 3 to 3 in increments of 1.
All data are approximate. The bulge
for c 1 is between DV equals
negative 2 and 1. The bulge for c 2
is between DV equals negative 1
and 2.

The horizontal axis is labelled IV,
ranging from negative 3 to 3 in
increments of 1, and the vertical
axis is labelled DV, ranging from
negative 3 to 3 in increments of 1.
The distribution is an ellipse sloping
upward to the left.

Back to Figure
In both graphs, the horizontal axis is labelled IV and lists c 1 and c 2. All data are
approximate.

The first graph shows the distribution of participants. The vertical axis is labelled DV
and ranges from negative 4 to 4 in increments of 1. The plots for c 1 range from
negative 2.5 to 1. There is a bulge around the plots with its widest part at DV equals
negative 0.5. The plots for c 2 range from negative 1 to 2. There is a bulge around the
plots with its widest part at 0.5.



The second graph shows the DV for different IV values. The vertical axis is labelled
DV and ranges from negative 1 to 1 in increments of 0.5. The plot for c 1 is at negative
0.55 with lines extending from the plot to negative 0.8 and negative 0.3. The plot for c
2 is at 0.5 with lines extending from the plot to 0.4 and 0.6. The plots are connected by
a line.

Back to Figure
In both graphs, the horizontal axis is labelled IV, ranging from negative 3 to 3 in increments
of 1, and the vertical axis is labelled DV, ranging from negative 3 to 3 in increments of 1. All
data are approximate. A line slopes upward from (negative 2.9, negative 2.1) to (2.8, 2). An
elliptical distribution cloud is along the line, with its darkest portion at (0, 0).

In the first graph, there are vertical lines at negative 0.85 and 1. The line passes
through (negative 1.2, negative 1), (0, 0), and (1.5, 1).

In the second graph, there are vertical lines at negative 1.7, negative 1.1, negative
0.6, 0, 1.2, and 1.7. The line passes through (negative 1.2, negative 1), (negative 0.8,
negative 0.9), (negative 0.3, negative 0.2), (0.3, 0.1), (0.8, 0.5), and (1.5, 1).

Back to Figure
The horizontal axis is labelled IV and ranges from negative 3 to 3 in increments of 1. The
vertical axis is labelled DV and ranges from negative 4 to 4 in increments of 1. All data are
approximate. The plots are scattered along the regression line that slopes upward from
(negative 2.9, negative 1.9) to (2.9, 1.9).
Back to Figure
In both graphs, the horizontal axis is labelled IV and the vertical axis is labelled DV,
ranging from negative 3 to 2 in increments of 1. All data are approximate.

In the first graph, the horizontal axis ranges from negative 5 to 4 in increments of 1. A
horizontal line is at DV equals negative 0.262. There are data points on either side of
the horizontal line. These points are connected to the line by vertical lines. Most points
are at a value of 1.12 above and below the horizontal line, while few points are farther
away from the line.

In the second graph, the horizontal axis ranges from negative 4 to 4 in increments of
1. A regression line slopes upward from (negative 3.6, negative 3.1) through (3, 2).
There are data points on either side of the horizontal line. These points are connected
to the line by vertical lines. An expression on the side reads 0.262 plus or minus 1.12.

Back to Figure
In both graphs, the horizontal axis is labelled IV and lists c 1 and c 2.

In the first graph, the vertical axis is labelled DV and lists d 1 and d 2. There are plots
in square clusters at the following coordinates in the decreasing order of size: (c 2, d
2), (c 1, d 1), (c 2, d 1) and (c 1, d 2).

In the second graph, the vertical axis is labelled frequency of d 2 and ranges from 0 to
1.2 in increments of 0.2. All data are approximate. The frequency of c 1 is 0.15 with a
range of 0.75 to 0.25. The frequency of c 2 is 0.81 with a range of 0.68 to 1.

Back to Figure
In both graphs, the horizontal axis is labelled IV and ranges from negative 3 to 3 in
increments of 1. All data are approximate.

In the first graph, the vertical axis is labelled DV and lists d 1 and d 2. The plots for d 1
range from negative 2.2 to 1. There is a bulge around the plots with its widest part at



negative 0.5. The plots for d 2 range from negative 1 to 2. There is a bulge around the
plots with its widest part at negative 0.6.

In the second graph, the vertical axis is labelled frequency of d 2 and ranges from 0 to
1 in increments of 0.2. The graph consists of bars and an S-shaped regression line.
The data for the bars are as follows. Negative 1.8: 0.35. Negative 0.6: 0.15. 0.7: 0.55.
1.8: 0.85. The regression line rises through (negative 3, 0.05) and (3, 0.95).

Back to Figure
The data are tabulated below. The second column labelled categorical to interval shows
two bulges with plots inside. The third column labelled interval to interval shows plots
around a regression line.

Effect
size and
sign

Categorical to interval Interval to interval

Large
negative

The bulge of plots on the left is at a
higher level than the bulge of plots
on the right.

The plots are scattered close to the
regression line sloping downward.

Small
negative

The bulge of plots on the left is at a
slightly higher level than the bulge of
plots on the right.

The plots are scattered around a
regression line that slopes downward
with less steepness.

Zero or
close to
zero

The two bulges of plots are at the
same level.

The plots are scattered around a
regression line that is almost
horizontal.

Small
positive

The bulge of plots on the left is at a
slightly lower level than the bulge of
plots on the right.

The plots are scattered around a
regression line that slopes upward
with less steepness.

Large
positive

The bulge of plots on the left is at a
lower level than the bulge of plots on
the right.

The plots are scattered close to the
regression line sloping upward.

Back to Figure
The data are tabulated below. The second column labelled categorical to categorical
shows two bars with error lines. The third column labelled interval to categorical shows
bars and a regression line.

Effect
size and
sign

Categorical to categorical Interval to categorical

Large
negative

The bar on the left is taller
than the bar on the right.

The height of the bars decreases sharply from
left to right. An S-shaped regression line curves
downward.

Small
negative

The bar on the left is
slightly taller than the bar
on the right.

The height of the bars decreases gradually
from left to right. A regression line slopes
downward.

Zero The bars are of the same
height.

The bars are of the same height and the
regression line is almost horizontal.

Small
positive

The bar on the left is
slightly shorter than the
bar on the right.

The height of the bars increases gradually from
left to right. A regression line slopes upwards.

Large
positive

The bar on the left is
shorter than the bar on the
right.

The height of the bars increases sharply from
left to right. An S-shaped regression line curves
upwards.



Back to Figure
The horizontal axis is labelled risk taker with a question mark and lists no and yes. The
vertical axis is labelled exam grade and ranges from 54 to 68 in increments of 2. All data
are approximate. The plot for no is at 57.5 with lines extending from the plot to 55.5 and
59.5. The plot for yes is at 63 with lines extending from the plot to 61 and 65.
Back to Figure
The horizontal axis is labelled IV and ranges from negative 3 to 3 in increments of 1. The
vertical axis is labelled DV and ranges from negative 3 to 2 in increments of 1. All data are
approximate. Most plots are scattered between IV and DV values negative 1 and 1. The
distribution is shaped like an ellipse that slopes upward to the right.
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Now that we have begun to explore the relationships that may
exist between variables, we are going to pause and focus on

one specific type of relationship: correlations. Why are we
dedicating space to correlations when there are many types of

potential relationship between variables? Well, primarily
because correlations crop up over and over again in student
courses and in research, as the ‘easiest’ way to measure a

relationship between two sets of numbers. Too large to fit into a
text box and yet too small (and really not consequential enough)

to justify its own chapter, we have instead written this
intermezzo: a slight tangent from the timeline of the main book.

IM1.1 CORRELATION: WHAT IS IT?
A correlation is a type of relationship between two variables: if
they are correlated, then a linear relationship exists between
them. Linear in this context means that the relationship is easily
visualised as a straight line, shown in the left graph of Figure
Im1.1 .
The degree of correlation between two variables is calculated as
a value that ranges from –1 to 0 to +1, called a correlation
coefficient . The correlation coefficient is exactly the same as
the normalised effect size r , which we looked at in Chapter 4 .
Extreme values for the correlation coefficient are where the two
variables are perfectly associated; the central zero is where
there is no association, illustrated in the two graphs in Figure
Im1.1 . It is often accepted that anything from 0.5 to 1 or –0.5 to
–1.0 is a large effect, but really there is no conventional
agreement on what constitutes small, medium and large.
The term ‘correlation’ is a general term for a bivariate linear
relationship: bi means two, and so bivariate means between two
variables. There are several specific types of correlation,



although the most common one, often just given the blanket
label ‘correlation’, is properly called a Pearson correlation. It will
pop up again in Chapter 7 when we examine two-variable
hypothesis testing. All the different types of correlation rely on
the same mathematical formula, produce the same type of r-
family effect size, and measure the same type of relationship
between two variables. They differ only in what types of variable
are used. These differences are minimal, and we’ll touch on
them in a moment.

Description

Figure Im1.1 Another way of thinking about
correlations between two variables.
The left diagram shows a very strong positive correlation between
two variables: all the data points are in the lower-left or upper-right
quadrant. The right diagram shows no correlation between the two
variables: the data points equally occupy all four quadrants on the
graph.

We can calculate correlation coefficients between any two
variables that use ordered numbers for their values. The
calculation doesn’t, of itself, require that the variables are
Interval or conform to any particular distribution. We could
technically re-label a Categorical variable that has two
categories with values of 0 and 1 for each category (or any other
pair of numbers), then we can use those numbers in a
correlation. When this is done, the process is called point-
biserial correlation. If we replace the values of one or both
variables by their rank order, then the same process does a
Spearman’s rank correlation. All of these are just different labels
for what is effectively the same process.



Description

Figure Im1.2 A quadratic effect.
In this figure we show a type of effect known as a quadratic effect,
where the relationship between the IV and the DV is not a straight
line. Despite the fact that there is obviously a very strong relationship
between the IV and the DV, it has a correlation of zero because it is
not a straight line.

IM1.2 SOME FORMULAE FOR
CORRELATIONS
There are several formulae involved in the process of calculating
a correlation – although, of course, many statistical packages
will do this for you. However, let’s briefly examine the relevant
formulae in order to understand all of the theory that goes into a
correlation.
Let’s begin by considering one important formula. Variance is
the square of a standard deviation. It is a measure of the
dispersion of a distribution, which we learned about in Chapter
3 . The formula for a variance is the sum of squared deviations
divided by the sample size:



var (x) =
∑

i
(xi − x)2

n
=
∑

i
(xi − x) (xi − x)

n

where 

x

stands for mean ( x ).
Here we have given two versions of the formula. The second
version (at the right) of this is the same as the first version (in
the middle), but we have written the squared out long-hand.
Remember that we have included a handy table of formula
elements at the beginning of this book, if you need to check
what any of the symbols mean.
The next formula we need to calculate a correlation is for a
quantity called the covariance and is almost the same as the
second version of the formula for variance but with one critical
difference:

cov (x, y) =
∑

i
(xi − x) (yi − y)

n

In this formula one of the appearances of x from the second
formula for variance is replaced by a y (if you look at the top line
of the formula). Instead of calculating the variance for one
variable, we can calculate the covariance, which is the
dispersion of the two variables together, so x is values from our
first variable and y is values from our second variable. Note that
cov ( x, y ) means the covariance of x and y and is the same as
cov ( y , x ). It doesn’t matter which way round they are written.
Now we can take this formula for covariance and put it into a
formula for a correlation coefficient. This formula has covariance
(the bit that says cov ( x, y ) on the top row) divided by the
standard deviation of each variable:



corr (x, y) =
cov(x,y)

sd(x)sd(y)

The size of a covariance depends on the scales we are using for
the quantities x and y , just as variance does (look back at
Chapter 3 to go over this again). To produce a quantity that does
not depend on the measurement scales, we divide the
covariance by quantities that are related to those scales: the two
standard deviations.

IM1.3 CORRELATION AND
REGRESSION
In Chapter 4 of this book, we explained how relationships
between two variables can be thought of as situations where the
expected value for one variable, the DV, changes as the other
variable, the IV, changes. That made it easy to visualise the
regression line as a straight line that joined up a set of local
expected values at different places along the x-axis – an
expected value that continuously changes across a graph. That
is simple because it links the closely related ideas about
relationships between variables of different types as all being
changes in typical values in some way. And whereas regression
sits very well in that idea of a steadily changing local expected
value, correlation doesn’t fit so well.
However, there is a nice straightforward relationship between
correlations and regressions. We’ve included some maths here
to explain the relationship, but if you would rather just know the
most important information, jump to the last paragraph of this
section.
For our more curious readers: if the slope of the regression line
is written as b ( y , x ) where y is the DV and x is the IV, then the
correlation between x and y is given by:

corr (y,x) =
b (y,x) × sd (x)

sd (y)



For those readers who like tinkering with mathematics, it is easy
from this to produce a version that gives b ( y , x ) in terms of the
covariance of x and y and their individual variances:

b (y,x) =
cov(x,y)

var(x)

What we have shown here, even if the maths was of no interest
to you, is that these quantities – regression slope, covariance
and variance, and correlation – are all linked concepts. Since
they are all actually closely related, we don’t need all three.
When we get to Chapter 11 and beyond, dealing with
relationships between more than two variables, the one we need
most is b , the regression slope, which is why we have used it
here. And it will be useful to know that b can be found using the
cov ( x , y ) and var ( x ).

IM1.4 CORRELATION COEFFICIENT
AND VARIANCE EXPLAINED
In the main text, we have noted that the squared value of the
normalised effect size is the proportion of variance in the DV that
the IV explains. Here we will show how that happens, using this
to tie the ideas here together and then return us to the main text
again. The maths is a little heavier than usual and is only here
for any readers who are still curious. Otherwise you will lose
nothing by jumping to the final section of this intermezzo.
The formula of a simple regression line:

yfiti = a + b × xi

tells us how to calculate the fitted value for the DV ( yfit i ) for a
given value of the IV ( x i ).

The variance in the DV that the IV explains is the variance of yfit
in this formula. Notice that we can drop the subscript ( i ) now
since the variance is a property of all the values for yfit , not just
the one identified by i . So the variance explained is this:

var ( yfit ) = var ( a + bx )

Since the a part of this is not varying, and since it is added to
everything else, it doesn’t contribute to the variance of yfit and



we can remove it. At the same time, b doesn’t vary either, but
since it is multiplying something that does vary we can move it
outside the bracket. So we have:

var ( yfit ) = var ( a + bx ) = var ( bx ) = b 2 × var ( x )

Now, we already have this from earlier:

r = corr (y,x) =
b×sd(x)

sd(y)

which means when we square each side that we can write r 2 as
a simple ratio:

r2 =
b2 var(x)

var(y)

We only need one last step now. We notice that the top half of
this ratio is the same as var ( yfit ), and this leads us to this
formula:

r2 =
var(yfit)
var(y)

This says that r 2 is a ratio of the variance of the fitted values of
the DV (i.e. the variance in the DV explained by the IV) to the
total variance of the DV. So r 2 is the proportion of the variance
in the DV that is explained by the IV.

IM1.5 SUMMARY
Correlation is a term that typically has been used to describe the
strength of a relationship between two interval variables. Some
would see correlation as being central to the use of statistics in
psychology and may be puzzled that we haven’t said more in the
main text about it. The reason for this is that, used in that way, it



is too narrow a concept – it leads to a theory of statistics that is
made up of lots of specialised quantities and procedures.
To keep everything in a single coherent framework, we have
talked of all effects as being recognised as either changes in
(local) means for Interval DVs or changes in (local) frequencies
for Categorical DVs. The natural way to talk about the effect of
an Interval IV in an Interval DV is then linear regression.
In this brief intermezzo, we have shown you how these two
concepts – correlation and regression – can be related, via the
overarching concept of covariance. In this context, we have also
been able to show you how the square of the correlation
coefficient is the proportion of the DV that is explained by the IV.
We have used a much wider concept of the correlation
coefficient throughout this book: normalised effect sizes . We
prefer normalised effect sizes: the r-family, with its easy-to-
interpret values from –1 to +1. We like the observation that, on
top of this, r-family effect sizes can be thought of as a
comparison of the variance in a DV explained by a relationship
to the whole variance of that DV. That is a nice extra, and it
gives the r-family of effect sizes a very clear meaning.

Descriptions of Images and Figures
Back to Figure
In both graphs, the horizontal axis is labelled IV and ranges from
negative 3 to 3 in increments of 1. All data are approximate.

In the first graph, the vertical axis is labelled DV and ranges
from negative 5 to 5 in increments of 5. The plots show an
increasing trend from (negative 2.4, negative 2) to (2.1, 2).

In the second graph, the vertical axis is labelled DV and
ranges from negative 3 to 3 in increments of 1. The plots
are scattered between IV values negative 1.7 and 2 and
between DV values negative 2.5 and 2.

Back to Figure
The horizontal axis is labelled IV and ranges from negative 3 to
3 in increments of 1. The vertical axis is labelled DV and ranges
from negative 8 to 4 in increments of 2. All data are
approximate. The plots are scattered around a curve that passes
through (negative 3, negative 6.5), (0, 0.5), and (3, negative
6.5).



CHAPTER 5 UNCERTAINTY AFTER ALL THAT WORK,
YOU MIGHT BE WRONG ANYWAY

5.1 Why is Uncertainty Important? 98

5.2 What is Uncertainty? 99

5.3 Variability: Possible Samples from One Population 100

5.4 Uncertainty: Possible Populations with One Sample 109

5.5 Putting It Together 117

5.6 Being a Responsible Researcher 118

: 



Now that we have looked at the building blocks of research – variables and relationships
between them – it is time to look at the most fundamental principle: uncertainty . We know
how to identify and measure variables; we know what kinds of relationships might emerge,
and even how to assess the strength of those relationships. Now we need to know one
more thing: how certain can we be that any relationships we think we have found really
exist? How certain can we be that a sample effect size – calculated from one or more
samples of participants – is close to the population effect size in the full population that
we are interested in?
In this chapter, we will explore the uncertainty that is associated with inferences about
populations using samples . Once obtained, the sample itself is certain: we have it. But
we are using our sample to learn about the population: how can we determine our
uncertainty in doing so?
Let’s begin with a recap here: the population is the whole set of individuals who we are
potentially interested in. If we have a hypothesis , then that hypothesis will refer to a
population. Our hypothesis that risk-taking affects exam grades is a statement about the
population of all students – everywhere and always. If it wasn’t, our hypothesis would need
to be more specific. The population of interest is usually extremely large and well beyond
any possibility of studying as a whole, which is why we take a smaller sample from the
population. We hope that our sample is representative of the population and we put some
effort into our research design to ensure so (more in Chapter 8 ). Because our sample will
never be identical to our population, there will always be some uncertainty about what the
sample tells us about the population. In this chapter we shall examine uncertainty in more
theoretical detail; later chapters will concentrate on the practical matters used to minimise
it.
Because we are building an understanding of uncertainty in this chapter, there are lots of
diagrams and graphs that illustrate uncertainty using various formulae. These are not
something you would expect to produce for yourself: when we say ‘we can plot’, it is to
illustrate our points clearly rather than asking you to imagine them in your head. However,
if you are interested you will find details online.

5.1 WHY IS UNCERTAINTY IMPORTANT?
Psychology is a dangerous subject. What the discipline claims to know about mind and
behaviour can have the potential for great change in the world. It follows that research in
psychology is under an ethical obligation to think it might be mistaken, and to be clear
about how possible that is when presenting research results to the wider world. In this
chapter we see how to do that. The key concept is uncertainty. The uncertainty lies in the
word ‘could’ in this statement: the outcome we reach could be different if we had a different
sample.

A different sample will lead to different statistics, including a different sample effect
size, simply because everyone is different and every set of data is different in some
way.

That different effect size might cause us to reach a different inference about the
existence or strength of a relationship between our variables.

We have to be aware of how much the outcome could be different.

This is the crucial role of inferential statistics . Without this step of considering carefully
what our uncertainty is, research in psychology risks becoming just wishful thinking.

5.2 WHAT IS UNCERTAINTY?
We will repeat this many times during this chapter and in this book: our uncertainty is about
what the sample tells us about the population. We are interested in the population, but we
usually only have access to a smaller sample. Because different samples vary randomly,
their sample effect sizes vary randomly, even though the population has a fixed population
effect size. The difference between the sample and the population is illustrated in Figure
5.1 , which shows a population and a sample.



 Description

Figure 5.1 Illustration of a population and a sample.
This figure shows the population as the shaded area and the sample as discrete data points (the dots).
It shows how this sample and the population differ.

We have no uncertainty about the sample effect size – it is a fact: it is what we measured.
We can calculate the sample effect size with great precision and certainty. The uncertainty
comes in when we use the sample effect size as a guide to the population effect size. The
sample effect size is an uncertain estimate of the population effect size: no matter how
confident we are with our calculations about the sample, we will not have the same degree
of confidence in what we know about the population.

5.3 VARIABILITY: POSSIBLE SAMPLES FROM ONE
POPULATION
We’ll begin with a scenario that illustrates this uncertainty, demonstrated by the amount of
variability involved in taking a sample from a population.

5.3.1 An example: The possible samples from a population
This is a completely hypothetical situation that could never really exist, which may sound a
little unusual, but it’s a very helpful perspective to think about. Imagine we have built a
population and we are watching various researchers take samples from it. Let’s suppose
that in our population, the actual relationship between an Interval version of our main
Independent variable, which we’ll call RiskTaking here, and ExamGrade is r = 0.2 – a fairly
typical effect. So, with this knowledge in hand, we wait and see which outcomes various
researchers find in their different samples.
In Figure 5.2 , we show the samples and regression lines from the first four researchers
who report their results. The respective sample effect sizes (from top left clockwise) are
0.06, 0.24, 0.30 and 0.11. In this realistic – but very much imaginary – situation, we know
that the population effect size is 0.2 (we specified that from the beginning) and so none of
these sample effect sizes is really close. We might be tempted to think that researcher B,
with the sample effect size of 0.24, did their research in the ‘best’ way, to get a result so
close to the true population effect size. However, we also know this: each researcher did
exactly the same thing. They each took 42 participants at random from the same
population. If you went away and took your own sample from that same population, using
the same methods, you would get yet another different sample effect size. Although they
don’t know it, researcher B was simply the luckiest.
In Figure 5.3 we have an illustration of two different views of the four sample effect sizes.
The graph on the left shows what the researchers know: the values of the sample effect



sizes. This is the usual situation in research. The graph on the right shows what, from our
outside perspective, we also know, which adds in the value of the population effect size
they came from.

 Description

Figure 5.2 Four samples from one population.
These four samples are all taken from the same population in the same way. Each has 42 participants
chosen at random. The fact that they differ so markedly demonstrates how much variability there is from
one sample to another: the relationship between RiskTaking (the Interval version of our RiskTaker?
variable) and ExamGrade is unclear.

 Description

Figure 5.3 Left: four sample effect sizes placed together. Right: shown with
the population effect size.
The left panel shows our four sample effect sizes placed at their respective positions within a graph that
allows all possible effect sizes. We can see that they are clustered together. The right-hand panel
shows the outside perspective, where we can also see what population they have come from (the 0.2
line). The two graphs show the same thing, just from different perspectives.

Each researcher in this example has obtained their own sample effect size. If they each
claimed that their sample effect size was the population effect size, they would all be
wrong and would all disagree with each other. If, on the other hand, they were each to
claim that their sample effect size was within ±0.15 of the population effect size, then
actually they would all be right and they would all agree with each other – which we can
see from our outside perspective. That extra bit – the ±0.15 (which for now we have just
produced from thin air, but comes from real calculations that we’ll get into) – is how we
state the uncertainty of an outcome. It defines the limit on how accurate their knowledge is
about the population.



From our outside perspective, we know that researchers A and D have produced results
that underestimate the population effect size, and the others have overestimated it.
Individually, none of them knows whether they have underestimated or overestimated the
effect: they just know that they have each found their own one particular sample size, and
that other researchers using different samples will find different effect sizes. That is their
own individual uncertainty: none of them can say whether they have overestimated or
underestimated the population effect size. There is nothing any of them can do that can fix
this.

 Description

Figure 5.4 Four sample effect sizes plotted with their distance from the
population effect size.
In this figure, we have again plotted the sample effect sizes. Each dot is a sample effect size, with the
vertical line indicating where they sit in relation to the population effect size (marked with the solid
horizontal left to right line at 0.2). With the outsider view, we can see that they are all slightly wrong, but
lie within ±0.15 of the real answer (shown by the dotted lines).

From our outside perspective, which we’ve shown in Figure 5.4 , we can see that they are
all within the range of ±0.15 of the population effect size and that this figure is a good
measure of the researchers’ uncertainty. If there was a method for each of them to
calculate that 0.15 range just by using their knowledge of their own sample, then each
researcher would be able to say how uncertain they are. That method does exist and we
will cover it in Section 5.4 , but we’ll start by covering the relevant theory first so that
everything makes sense.

5.3.2 Sampling error and sample variability
In our hypothetical, imaginary example, we know the population effect size. This isn’t
something that we can know in the real world, unless our population is small enough to
measure every participant; if it was, we wouldn’t need to worry about uncertainty. We know
that the sample effect size will differ from one sample to another, despite coming from the
same population. This variability means that a sample only provides an estimate of the
effect size of the relationship between the variables in the population: it is an uncertain
guide.
The difference between what we have – the sample effect size – and what we are
interested in – the population effect size – is known as sampling error . Sampling error is
a result of the random nature of sampling. It isn’t an error in the colloquial sense of being a
mistake; it is simply the unavoidable random difference between sample and population
which a researcher should always be aware of. If we can understand sampling error, we
can then better understand uncertainty. We’ve illustrated sampling error in Figure 5.5 .



 Description

Figure 5.5 Illustration of sampling error.
The population side of this graph indicates the true population effect size for this example: 0.2, marked
with a thin line. The sample effect size is seen with the thick vertical line with a small dot at each end to
make it visible. If the sample effect size was the same as the population effect size, it would fall on the
dotted line. The thick blue line shows the difference between the sample effect size and the population
effect size: the sampling error. It will help with later diagrams in this chapter to understand now that
sampling error is illustrated as a difference along the sample axis as shown.

Because we only know our sample effect size, and not the population effect size, we can
never really know what our exact sampling error is. All might seem hopeless at this stage.
We are saying that when we take a sample, and calculate the sample effect size, we are
going to get a number that is wrong: it isn’t the same as the population effect size. Not only
is our sample effect size probably wrong, we don’t know how far wrong our sample effect
is, because we can never exactly know the real population effect size – or even whether
our sample effect size is more or less than the population effect size. However, there is a
way of calculating a range of possible values for our sampling error. Doing this is an
important step because it leads naturally and easily to ways that we can use to describe
the uncertainty that we have about our sample.

5.3.3 The theory: The sampling distribution
To learn how to calculate a range of values for our sampling error, first we should consider
the concepts that are involved. Begin by considering the complete set of all possible
samples that could come from the population we are interested in using one specific
sampling method (e.g. every possible study taking 42 random participants) – what we have
just seen with four samples, but on a much bigger scale. This set of potential samples is
infinite. In this set, each sample would have its own sample effect size, which means that
across all the samples there will be a distribution of these values. Using the single most
important piece of maths for statistics – the Central Limit Theorem – we can say that the
distribution of sample effect sizes is quite tightly constrained – with more falling close to the
population effect size and fewer away from it. This is illustrated in Figure 5.6 . We’ve also
included some more detail about it online.



 Description

Figure 5.6 Illustration of the distribution of sample effect sizes.
Clockwise from top left: effect sizes from 20 samples, 100 samples, 1000 samples. The samples are all
taken with the same sample size from a single population. As the number of samples grows, it becomes
clear that they are all coming from a constrained distribution, centred on the population effect size.

 Description

Figure 5.7 Four samples shown on a sampling distribution.
This figure shows the four samples as before on the sampling distribution they came from. They are all
placed with the population effect size of 0.2. Each dot (attached to a line to make it clear to see where
the value falls on the probability scale) indicates one sample effect size. As they are all quite near the
peak of the curve, they are all quite probable. The dotted lines on the floor of the graph indicate the
standard error: the standard deviation of the sampling distribution. It can be seen that the standard error
is quite narrow, and so big effect sizes, such as 0.5 or higher, are unlikely.

This distribution of all possible sample effect sizes is called the sampling distribution .
The standard deviation of the sampling distribution (how spread out all of those possible
values are) is called the standard error . The two terms, sampling distribution and
standard error, are illustrated in Figure 5.7 .

5.3.4 Quantifying sample variability: The standard error
In our first example, we created a population with a known effect size of 0.2 and then
watched researchers take samples. That means that we can look at each sample and
actually say what the true sampling error was for each, which you can see in Table 5.1 .



Table 5.1 Sampling error from the samples taken from our first example.

This is simply the population effect size of 0.2 subtracted from the found sample effect
sizes.

Sample effect size Sampling error

0.06 –0.14

0.24 +0.04

0.3 +0.10

0.11 –0.09

We can think of these sampling error numbers as being samples from a distribution
containing all possible sampling errors. Once we have that thought, we can easily go one
step further and calculate that their standard deviation is 0.1 (just as we learned to do in
Chapter 3 ). This standard deviation of the sampling errors is an indication of the spread of
sampling errors we might expect to see.
This has helped us to understand what the sampling error is, but it is artificial. Since
sampling error is the difference between population effect size and sample effect size, we
can only calculate it when we know both quantities. Normally we don’t know what the
population effect size is, so we can’t calculate the sampling error. Each of our four
aforementioned researchers has a sample effect size which is an estimate of the
population effect size. None of them knows what the population effect size is and so none
can say what the actual sampling error for their study is. Even if they got together and
pooled their findings, they still couldn’t find out what the sampling error on each study is
because they still wouldn’t know what the population effect size is.
There is one thing we can notice just now. In this artificial situation where we know the
population effect size, we found that the standard deviation of the set of sampling errors
was 0.1. Actually, if we calculate the standard deviation of the set of sample effect sizes ,
we will get exactly the same result. So the standard error , defined as the standard
deviation of all possible sampling errors , is also the standard deviation of sample effect
sizes.

5.3.5 In practice: Estimating the standard error
The standard error is the standard deviation of sample effect sizes from a population – so,
a measure of the dispersion of all the possible sample effect sizes we can expect to see –
and is a way of saying what the variability is for a sample effect size. If we had enough
samples we could estimate the standard error from them, but getting enough samples is
hard work. So here’s the miraculous bit: we can use our one, single, actual sample to get
an estimate of the standard error. Doing this will tell us what the spread of other results
from the same population should look like.
Calculating the standard error for effect sizes can involve quite complex formulae and we
use computers now to do such things. We will illustrate the process with a simple example
of the calculation.
Suppose that we just want to estimate the mean for a population from our sample: the
mean exam grade, for example. An estimate of the standard error of a sample mean is
given by the sample standard deviation divided by the square root of sample size:



se (mean) = sd(sample)

√n

where n = number of participants. Note that this is an estimate of the standard error. It is,
however, usually a very good one.

 Description

Figure 5.8 A sample set of data used for calculating standard errors.
We show the data points on the left and the graph of group means on the right. The thin vertical lines
with a flat end at the top and bottom are known as error bars and are showing the standard error for
each mean.

Since many different types of sample effect sizes are built up from combinations of means
(such as differences in means of different groups or the travelling mean of a regression
line), it is possible to build up formulae from this simple one to calculate the standard error
for all the different types of effect size.
For an example, consider the set of data shown in Figure 5.8 . It shows some data for the
effect of RiskTaker? (this time measured in our typical Categorical type) on ExamGrade.
Our two groups are RiskTakers?=Yes and No. The basic statistics for each group are
shown in Table 5.2 .
Table 5.2 A calculation of the standard errors for group means.

We’ve included the standard error calculations in the bottom row.

 Yes group No group

Mean(ExamGrade) 60.9 56.2

SD(ExamGrade) 7.29 8.45

Number of participants 20 22

SE(Mean) 7.29/sqrt(20) = 1.63 8.45/sqrt(22) = 1.80

5.3.6 Estimated standard error of natural effect size
The natural effect size is (60.9 – 56.2), which we can now write as (60.9±1.63) –
(56.2±1.8), to include the uncertainty that we have calculated as the standard error in Table
5.1 . Simple subtraction can be used to combine the two means: 60.9 – 56.2. The answer
is 4.7. Combining the standard errors is a bit more complicated:



se (m1 − m2) = √se(m1)
2 + se(m2)

2

where m 1 and m 2 are the two group means.

This formula gives a combined standard error of sqrt(1.9×1.9 + 1.8×1.8) – anything
squared is just multiplied by itself. The answer is 2.62. So the natural effect size is 4±2.62.
Remember that the standard error is the standard deviation of the distribution of all
possible sample effect sizes. If it is large, then that would mean our uncertainty was also
large.

5.3.7 Estimated standard error for standardised effect size
If we wanted instead to use the standardised effect size, which is d = 0.56, we would need
to use a different formula to calculate its standard error. The formula is:

se (d) = sqrt(( n1+n2

n1×n2
+ d2

2(n1+n2−2) ) × ( n1+n2

n1+n2−2 ))

where d is the effect size and n 1 , n 2 are the numbers of participants in each group.

Using this formula, we discover that the standardised effect size is 0.56±0.32.

5.3.8 Estimated standard error for normalised effect size
Another formula is used for the calculation if you are using the normalised effect size :

se (r) = sqrt( 1−r2

n−2 )

where r is the effect size and n is the sample size.
Using this formula, we find that the normalised effect size is 0.278±0.152.
We have included more information about standard errors in our online resources for
Chapter 5 , where we have more space to go into detail.

5.4 UNCERTAINTY: POSSIBLE POPULATIONS WITH
ONE SAMPLE
The previous section has shown how one population with a particular population effect size
will produce samples with a range of different sample effect sizes, and we have learned
how to think about the uncertainty of our sample compared to other potential samples.
Now, by reversing the logic, we can explore how any given sample, with a particular
sample effect size, could come from a wide range of different potential population effect
sizes. Let’s consider the uncertainty of our single sample compared to the true population
value. We can start by looking at the theory behind the practical methods that we can use
to describe uncertainty about our possible population.
In the previous section we were starting with a population and asking what possible
samples it could produce (in the future); in this section we are starting with a sample and
asking what possible populations it could have come from (in the past). In the first case, we
talk about the probability of future events ; in the second case, we talk about the likelihood
of past events .

5.4.1 An example: The possible populations for a sample
In the first example at the start of this chapter, we had created a population and then
watched several researchers taking samples and saw that all the samples were different.



Now we want to turn this upside down.
This time we only have one researcher with a sample they have made from the population
they are interested in. They have calculated its sample effect size ( r = 0.12 ) and now
want to know what this tells them about the population. They are aware that the population
effect size could, and probably will, be different from this: many different population effect
sizes may be viable candidates.
Let’s imagine that they have measured RiskTaker? and ExamGrade in a sample of
participants. They are being closely watched by two student societies: the Paragliding
society and the Cross the Road Safely Society. If their sample can be understood to show
a benefit for RiskTaker?, then the Paragliders will be happy and the Cross the Road Safely
Society might feel disadvantaged. If it goes the other way, the two societies will have the
opposite reactions.
The sample effect size is slightly positive, at 0.12, which suggests that risk-takers have the
advantage. We know that this single sample will have a sampling error, and so we know
that we can’t just reach a definite conclusion – another sample might tell another story.
What our researcher needs here is a way of using what they know about possible sampling
error to calculate their uncertainty about the effect size in the population. In the rest of this
section, we will see how this is done.

5.4.2 The theory: Sampling error and population likelihood
We have a real sample, with an effect size of 0.12, and we have recognised that a lot of
different potential population effect sizes could have produced this sample effect size. We
are now thinking about these two things:

1. Our actual sample effect size.
2. The full set of possible population effect sizes: where could our sample have come

from?

In the previous section we saw the idea of the sampling distribution: the set of all the
possible sample effect sizes that can come from a single population effect size. This is a
way of describing how the single population effect size gives rise to a spread of sample
effect sizes. Now, we think of a whole set of possible population effect sizes. The relevant
theory is called likelihood theory. Likelihood is a way of measuring how likely it is that a
given sample came from a particular population. We will produce a likelihood function ,
which is a graph that shows how likely each potential population effect size is as the
source of our sample (which has r = 0.12 ).
Likelihood theory allows us to think about a possible population and ask how likely is it that
our sample came from that population. We can then do the same for another possible
population, and so on. Eventually we will have worked out, for all the potential populations,
how likely each is as the source of our sample.
Let’s use a simple example to illustrate likelihood, using two different possible population
effect sizes: –0.25 and +0.25. There is no special reason for choosing just two or for
choosing these particular values – it’s just a place to start. Moreover, we will suppose that
the two possible populations are equally likely ‘a priori’ (a formal way of saying ‘before we
began’). The sampling distributions for each population are plotted in Figure 5.9 –
remember, these are graphs that illustrate the distribution of the potential sample effect
sizes from the two possible population effect sizes we have chosen. Because the two
populations are equally likely, a priori, these two sampling distributions have equal areas.
The actual sample effect size of 0.12 is indicated on each of those two sampling
distributions. We can see straight away that our sample effect size is much more likely to
have come from a population with an effect size of +0.25, compared to –0.25 (note the
position of the dot right near the tails for the –0.25 distribution, where the frequency of that
sample effect size occurring is low).



 Description

Figure 5.9 Comparing our sample to two different possible populations.
This graph shows the sample effect size for our example sample (0.12) alongside two sampling
distributions for populations with an effect size of –0.25 and +0.25. We assume that the two populations
are a priori equally likely, so their sampling distributions have equal areas. The height of the dot on each
sampling distribution gives an indication of the likelihood that our sample came from a population with
that population effect size.

As you can see from Figure 5.9 , the vertical axis now denotes the likelihood of a sample
effect size coming from a particular population. This is because we are now looking back
from the sample data that we have to see what happened in the population it came from,
which is a likelihood. In the previous section , when we were looking at the potential future
samples we might collect, we were looking forwards at a probability . The words
‘likelihood’ and ‘probability’ are sometimes used interchangeably but, as we have just
explained, there is a very useful difference.
Our graph in Figure 5.9 shows us the likelihood of two different potential population effect
sizes, allowing us to identify which one, from these two, would be more likely given our
data. However, we are not limited to two: we simply picked two potential population effect
sizes to keep things simple and plotted their sampling distributions. In reality, the relevant
mathematics can cover every possible population effect size at once, so that we can see
the likelihood of all of them at once. This is illustrated in Figure 5.10 . On the left of the
figure, we have shown 11 different sampling functions and drawn a dot for the value of
each at our sample effect size of 0.12. Once again, we suppose that they are equally likely,
a priori. On the right, we have replaced the 11 potential population effect sizes with all
possible effect sizes – so dense that they make a surface rather than a series of individual
sampling functions. The line is still there, following the surface.
Now we can concentrate on just the likelihoods for our sample effect size (shown as the
line in Figure 5.10 , which is every possible relevant individual likelihood joined up). To
make it easier to see, we have extracted it from everything else and shown just this line in
Figure 5.11 . We can see that it has the form of another distribution – similar to the
sampling distributions themselves, but lined up at right angles to them. This distribution of
the likelihood for every possible population effect size is called the likelihood function .
Remember that this function starts with the assumption that all possible population effect
sizes are equally likely. This is often seen as the safest, most neutral assumption. It is an
important and unavoidable assumption. If it were known that all possible population effect
sizes were not a priori equally likely, then that could be taken into account.

 Description



Figure 5.10 Sampling functions for several different possible population
effect sizes, forming a likelihood distribution.
This now shows sampling functions for several different possible (equally likely) population effect sizes.
The likelihood of our sample for each is shown as a dot, and we can see how that dot varies across the
different possible population effect sizes. The dots are joined up with a line. This line is the likelihood
distribution.

 Description

Figure 5.11 The likelihood function for a sample with a sample effect size of
0.12.
The graph shows for each possible population effect size how likely it is that our sample, with its sample
effect size of 0.12, came from that population effect size. The peak of the distribution is called its
maximum. It is placed at the population effect size that has the (highest) maximum likelihood of being
the source of our sample. The solid line drawn underneath it shows us what population effect size has
the maximum likelihood. The dotted lines show the range of population effect sizes that include between
them the population effect sizes that, taken together, are 95% likely to hold the real population effect
size.

The likelihood function provides something very useful: a scan of all the possible
population effect sizes to see how likely each is in turn to produce our sample. Notice how
this is very similar to the sampling distribution in Figure 5.7 , except the distribution lies at
right angles compared with the sampling distribution.
The likelihood function shows us the likelihood of our sample as a function of population
effect size, obtained from multiple sampling distributions. In reality, the likelihood function is
produced using various formulae instead of the long-winded explanation of the process we
have just given.
There is one important limitation to this. In calculating the likelihood function in Figure 5.11
, we have supposed that before we began, each possible population effect size was itself
equally likely. The sample effect size changes this – we go from supposing that all possible
population effect sizes are equally likely to now knowing that some (roughly those between
r = –0.2 and r = +0.4) are more likely than the others.
We suppose that, in the absence of any specific information, all different population effect
sizes are equally likely until we analyse a sample of data. We need to make some
assumption about this and this one is the easiest to justify: that all possible situations are
equally likely. This is a powerful assumption and it seems most probably to be untrue
(experience suggests that small effect sizes are more common in general than large ones),
but we will stay with it for now and revisit it later at the end of Chapter 6 .

5.4.3 Quantifying uncertainty with likelihood
As the likelihood function depends only on the actual sample we have and not on any
specific hypothetical population, it encapsulates our knowledge about the population. We
know that the population effect size, whatever it is, is somewhere inside that distribution.
We don’t know where it is inside that distribution, just that it is there somewhere. There will
be one population effect size that has the highest likelihood among all of them of producing
our sample. This highest likelihood is called the maximum likelihood . Saying something



has the highest likelihood is equivalent to saying it is the most likely. So, the effect size with
the maximum likelihood is our best estimate of the population effect size on the basis of
the information in our sample. Happily, it is usually exactly the same as the sample effect
size in the situations we are concerned with when we make the equally likely starting
assumption. For the example we have been using, the population effect size that has the
maximum likelihood of being the source of our sample has a value of 0.12 – which is the
same as the sample effect size.
Someone at this point asked us: ‘So our sample effect size is most likely to be the
population effect size? Really, then all the likelihood stuff is unnecessary?’ And they
deserve an answer. The answer is no, because the real point of the likelihood approach is
to tell us how much uncertainty we have about the population effect size, which is what we
shall look at next. The fact that our sample effect size is the best estimate of the population
is just a nice outcome of all the maths involved – which can be found in our online
resources, if you are keen to see it.
Since the likelihood function covers a range of populations, the spread of that range will tell
us how much uncertainty we have. If the spread of likely populations is narrow, then we
have little uncertainty; if the spread is wide, then our uncertainty is great.
The likelihood distribution that this process produces is spread out across the population
effect sizes, shown in Figure 5.11 . It has a dispersion that we can describe with a standard
deviation. When we did that for the sampling distribution ( previous section ), we called that
standard deviation the standard error and used it to say how widely distributed different
samples from the same population might be.
We can’t really use the standard deviation of the likelihood function here. We can quite
tangibly imagine making lots of real samples and so it makes sense to talk of their
standard deviation; but there is only one real population effect size and so it does not really
have a standard deviation. It simply exists, and we want to evaluate how confident we are
about knowing it.

 Description

Figure 5.12 Likelihood functions for three different sample effect sizes (on
the left) and for three different sample sizes (on the right).



In each case, it is easy to see how the confidence limits are affected. In the left-hand column, they
shrink but also become more asymmetric. In the right-hand column, they also shrink – we have more
knowledge about the population as we have more participants, so the spread of likely options gets
smaller.

Instead, we will do something different. The likelihood distribution shows us how likely
each population effect size is. We can be 100% confident that the real population effect
size lies somewhere inside the distribution: somewhere between –1 and +1 (when using
normalised effect sizes). But that says nothing useful: we knew that the population effect
size had to be between –1 and +1 before we began. Although just possible, it is very
unlikely that the real effect size is out in the tails of the distribution where likelihoods are
very low. So, we could drop them without losing much of that 100% confidence. In practice,
we drop enough of the two tails so that we are still 95% confident that the real population
effect size lies in the range of values which remains. The value of 95% is just an arbitrary
choice. The range of population effect sizes that is left is called the 95% confidence
interval . The extremes of the range are called the confidence limits .
We should add a brief explanation of this word ‘confident’. It has a familiar colloquial
meaning that works just fine here. We can be confident in that casual sense that, whatever
the population effect size actually is, it would be found to lie in that range. However, strictly
speaking, what we are saying when we say that is actually something a bit more specific.
Imagine lots of researchers all following the same procedure and calculating this
confidence interval but for their own individual set of data. Each of them is going to be 95%
confident that the true population effect size lies within their specific confidence interval.
Many of them will be right, but some of the researchers will be wrong: their confidence
interval does not include the population effect size (because of sampling error). Notice that
for each individual researcher, they are either right in their confidence interval or wrong.
There is no intermediate state: no-one is 95% right. In total, 95% of the researchers have a
confidence interval that includes their population mean. When each of them says that they
are 95% confident that the population effect size lies in their confidence interval, what they
mean is that there is a 95% chance that they are one of the researchers whose confidence
interval does include the population value. In the simplest terms: 95% of all calculated
confidence intervals will contain the population effect size. And, to underline this, we don’t
know which are the 5% that don’t. That is still an uncertainty.
That is all quite technical. Figure 5.12 shows something rather more immediate and
understandable. It shows the likelihood functions and their associated 95% confidence
intervals for different sample effect sizes and for different sample sizes. Notice how the
width of the likelihood function narrows with increasing sample size – this shows us that
the uncertainty about what the population effect size could be is reduced as the sample
size is increased.

5.4.4 Confidence intervals
Confidence intervals can really be calculated for anything that we estimate about a
population from a sample. We will look briefly at two typical cases: estimating the mean of
a population and estimating the effect size of a population.
When we are estimating the mean of a population, the likelihood function is a normal
distribution. This is convenient because it is known that for all normal distributions, 95%
lies within the range of 1.96 times the standard deviation either side of the mean. Since our
likelihood function is a normal distribution, this applies to that. Moreover, since the
standard error is the standard deviation of the likelihood function, then we can say that the
confidence interval for the estimate of a population mean is the sample mean ±1.96 times
the standard error.
Calculating a confidence interval for an effect size is more complex and involves a
mathematical process called Fisher’s z-transformation. This isn’t a piece of maths that you
would do by hand: it’s a function included with typical pieces of statistical software and
online calculators. We’ve included some information in our online resources section, so
you can see how it works and calculate your own.
Look back at the likelihood function in Figure 5.11 and you will see it has the 95%
confidence limits drawn on it. As can be seen, the range they cover is quite wide, indicating
that we have quite a lot of uncertainty in this result.
Given that the choice of 95% is arbitrary, it is natural to ask what would happen if we
changed it. Suppose we decided to quote 90% confidence limits instead of 95%. Two
things are changed by doing this: (i) the size of the confidence interval (the range of values
that it covers) is reduced, which might be a good thing, but (ii) we are now only 90%
confident that that range contains the true population value, which is a bad thing.



Specifically, this means that we have a one in ten chance of being wrong, instead of a one
in twenty chance.
When including a confidence interval in a set of results, the two confidence limits (lower
and upper) are written in brackets next to the relevant value. For the sample we showed in
Figure 5.8 , we have found that the sample effect size is 0.278 and the standard error is
0.152. This then means that the population effect size is estimated to be 0.278 and the
95% confidence limits are [–0.015, 0.527].

5.5 PUTTING IT TOGETHER
Just to consolidate this, we finish with Figure 5.13 , which shows the two fundamental
distributions we have been describing. The sampling distribution, running left to right, is
what samples may appear in the future from a specific population; the likelihood function,
running front to back, is which populations may have been the source of the sample that
we have already taken in the past. In the next chapter we will continue using this diagram
for one common way of dealing with uncertainty.

 Description

Figure 5.13 Graph combining sampling distribution and likelihood
distribution.
The likelihood function is blue and parallel to the population axis; the sampling distribution is white and
parallel to the sample axis.

So what do we have to say to the two student societies, Paraglider and Cross the Road
Safely? We tell them that we are 95% confident that the effect size lies between –0.015
and +0.527. We can’t rule out the possibility that there is no effect, or even a tiny negative
effect, but the most likely effect size is reasonably positive.

5.6 BEING A RESPONSIBLE RESEARCHER
A responsible researcher is always aware of the weakness in the relationship between
their sample and the population that they are interested in. They can calculate any
properties of the sample they wish with high accuracy, but these properties are always an
uncertain guide to the corresponding properties of an unknown population. In discussing
results, this distinction between properties of the sample and what they mean about the
population should always be kept absolutely clear. A responsible researcher must treat the
uncertainty in their results with respect.

 The Big Picture
There is always uncertainty in statistical decisions. The second purpose of statistics
is to quantify and understand this uncertainty.



Uncertainty is unavoidable
1. Uncertainty occurs when we use a sample to make an inference about a

population.
2. Uncertainty is the result of randomness and chance in samples: any sample

could contain any set of participants, and each sample from the same
population will differ. This difference by chance is called sampling error.

3. We must never forget that uncertainty sets an absolute limit on what we can
claim to know.

Exploring uncertainty
1. There are two core procedures for exploring uncertainty, which are

summarised in Table 5.3 :
a. The sampling distribution is the distribution of all possible samples that will

come from any specific population and research design. It shows us the
uncertainty about the samples that a population will produce.

b. The likelihood function shows us the uncertainty about which population a
given sample could have come from.

Measuring uncertainty
1. The standard error is defined as the standard deviation of the sampling

distribution. It is therefore the spread of all possible sample effect sizes:
a. The standard error corresponds to the standard deviation of all possible

sampling errors.
2. Confidence intervals from the likelihood function are a way to quantify the

uncertainty about a population given what we know from the sample:
a. A confidence interval is the range of values which, given our sample, are

likely to contain the true population value (such as the population mean or
effect size).

b. Typically, confidence intervals are set to 95% confidence, so it is 95%
likely that we are correct when we say that the true population value falls
inside the two confidence limits.

Table 5.3 Two key concepts from this chapter.

It is helpful to think of these as looking in different directions in time. The
sampling distribution tells us what will happen when in the future we make
samples; the likelihood function tells us what population in the past may have
produced our sample.

Outcome Uses To calculate Tense

Sampling
distribution

Hypothetical
population effect
size

Sample variability: the set of
possible samples

In the
future

Likelihood
function

Actual sample Population uncertainty: the set of
possible population values

In the
past

Working with uncertainty



1. If a confidence interval includes zero (e.g. the limits are –0.13 and +0.162),
then this would mean that the true population effect size could be zero, as well
as any other effect size within the interval.

2. In the real world, the population effect size should be somewhere in the middle
of the sample effect sizes that different researchers find when investigating the
same topic:

a. If we have access to an unbiased range of studies of a particular effect,
then they will contain overestimates and underestimates of the population
effect.

b. If we only have access to significant results, then we will see a biased
selection that will tend to contain only overestimates of the population
effect.

This all means something very practical. When you do your own piece of research,
sampling error, that same chance process, will apply. The sample effect size you
get could be large (good luck) or it could be small (bad luck).

 Your Turn
Define these key terms in the space provided:

1. Sampling error
2. Standard error
3. Likelihood distribution
4. Confidence interval

Fill in the gaps in these sentences:

1. 5. The likelihood function shows the likelihood of different ___________ effect
sizes for a given ___________ effect size.

2. 6. When all possible sample effect sizes are plotted as a distribution, they are
called the ___________.

THE ANSWERS ARE AVAILABLE ONLINE

Your Space
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Descriptions of Images and Figures
Back to Figure
The horizontal axis is labelled IV and ranges from negative 3 to 3 in increments of 1. The
vertical axis is labelled DV and ranges from negative 2 to 2 in increments of 1. All data are
approximate. Most plots are scattered between IV values negative 1 and 1 and between
DV values negative 2 and 2. An elliptical distribution cloud slopes upward and to the right.
The darkest portion of the cloud is at (0, 0).
Back to Figure
In all graphs, the horizontal axis is labelled IV, ranging from negative 3 to 3 in increments
of 1, and the vertical axis is labelled DV. All data are approximate.

A. The vertical axis ranges from negative 3 to 3 in increments of 1. The plots are
scattered around a line that slopes upward from (negative 3, negative 0.1) to (3, 0).

B. The vertical axis ranges from negative 4 to 3 in increments of 1. The plots are
scattered around a line that slopes upward from (negative 3, negative 1.3) to (3, 1).

C. The vertical axis ranges from negative 5 to 5 in increments of 5. The plots are
scattered around a line that slopes upward from (negative 3, negative 1) to (3, 0.5).

D. The vertical axis ranges from negative 3 to 3 in increments of 1. The plots are
scattered around a line that slopes upward from (negative 3, negative 0.6) to (3, 0).

Back to Figure
All data are approximate.

In the first graph, the horizontal axis is labelled sample effect size and ranges from
negative 1 to 1 in increments of 0.2. There are vertical lines at 0.06, 0.12, 0.23, and
0.3.

The second graph is a three-dimensional graph. One of the axes is labelled population
and ranges from negative 0.2 to 0.6 in increments of 0.2. The other axis is labelled
sample and ranges from negative 1 to 1 in increments of 0.5. For a population of 0.2,
there are vertical lines for sample negative 0.4, negative 0.3, negative 0.1, and 0.

Back to Figure
One of the axes is labelled population and ranges from negative 0.2 to 0.6 in increments of
0.2. The other axis is labelled sample and ranges from negative 1 to 1 in increments of 0.5.
All data are approximate. For two samples equals negative 0.15, the population is 0.1 and
0.15. For two samples equals 0.15, the population is 0.25 and 0.35.
Back to Figure
One of the axes is labelled population and ranges from negative 0.1 to 0.3 in increments of
0.1. The other axis is labelled sample and ranges from negative 0.2 to 0.4 in increments of
0.1. All data are approximate. A vertical line is at population equals 0.2 and sample equals
0. A dotted line is from sample equals 0.4 to sample equals negative 0.15 and population
equals negative 0.1. A thick line extends from sample equals 0 and population equals 0.2
to sample equals 0.1 and population equals 0.2.
Back to Figure
In all graphs, one of the axes is labelled sample, ranging from negative 1 to 1 in
increments of 1, the second axis is labelled population, ranging from negative 0.2 to 0.6 in
increments of 0.2, and the third axis is labelled probability, ranging from 0 to 1 in
increments of 0.5. All data are approximate. In all graphs, the normal distribution is along a
population of 0.2 and peaks at 0.8 at sample 0.



In the first graph, there are few plots between probability 0 and 0.2.

In the second graph, there is a dense cluster of plots between probability 0 and 0.2.

In the third graph, the region under the curve is covered by plots.

Back to Figure
One of the axes is labelled sample and ranges from negative 1 to 1 in increments of 0.5.
The second axis is labelled population and ranges from negative 0.2 to 0.6 in increments
of 0.2. The third axis is labelled probability and ranges from 0 to 1 in increments of 0.2. All
data are approximate. The normal distribution is along a population of 0.2 and peaks at 0.8
at sample 0. There are four vertical lines under the curve at sample equals 0, 0.1, 0.35,
and 0.45.
Back to Figure
In both graphs, the horizontal axis is labelled risk taker with a question mark, listing no and
yes, and the vertical axis is labelled exam grade. All data are approximate.

In the first graph, the vertical axis ranges from 30 to 90 in increments of 10. The plots
for no range from 40 to 75. There is a bulge around the plots with its widest part at 55.
The plots for yes range from 40 to 70. There is a bulge around the plots with its widest
part at 60.

In the second graph, the vertical axis ranges from 52 to 64 in increments of 2. The plot
for no is at 55.5 with lines extending from the plot to 52.8 and 57.8. The plot for yes is
at 60 with lines extending from the plot to 58 and 62.

Back to Figure
One of the axes is labelled sample and ranges from negative 1 to 1 in increments of 0.5.
The second axis is labelled population and ranges from negative 0.5 to 0.5 in increments
of 0.5. The third axis is labelled likelihood and ranges from 0 to 1 in increments of 0.2. All
data are approximate.

The data corresponding to the first distribution are as follows. Sample: 0.25.
Population: 0.3. Likelihood: 0.95.

The data corresponding to the second distribution are as follows. Sample: Negative
0.3. Population: Negative 0.2. Likelihood: 0.95.

Back to Figure
In both graphs, one of the axes is labelled sample, ranging from negative 1 to 1 in
increments of 0.5, the second axis is labelled population, ranging from negative 0.5 to 0.5
in increments of 0.5, and the third axis is labelled likelihood, ranging from 0 to 1 in
increments of 0.2. All data are approximate.

The first graph shows multiple distribution curves along different population and
sample sizes. All distributions peak at likelihood 1. A distribution curve is along sample
0 and peaks at population 0.

The second graph shows a three-dimensional distribution diagonally along the graph
through different population and sample sizes. The distribution peaks at likelihood 1.

Back to Figure
One of the axes is labelled sample and ranges from negative 1 to 1 in increments of 0.5.
The second axis is labelled population and ranges from negative 0.5 to 0.5 in increments
of 0.5. The third axis is labelled likelihood and ranges from 0 to 1 in increments of 0.2. All
data are approximate. The distribution is at sample 0.12 and peaks at population 0.2 at
likelihood 0.8.
Back to Figure



In all graphs, one of the axes is labelled sample, ranging from negative 1 to 1 in
increments of 0.5, the second axis is labelled population, ranging from negative 1 to 1 in
increments of 1, and the third axis is labelled likelihood, ranging from 0 to 1 in increments
of 0.5. The distributions are along different samples, and peaks at different population
values for a particular likelihood. All data are approximate.

r equals 0.8. Sample: 0.75. Population: 0.75. Likelihood: 0.9.

n equals 84. Sample: 0. Population: 0. Likelihood: 0.8.

r equals 0.4. Sample: 0.4. Population: 0.3. Likelihood: 0.8.

n equals 42. Sample: 0. Population: 0. Likelihood: 0.75.

r equals 0. Sample: 0. Population: 0. Likelihood: 0.75.

n equals 21. Sample: 0. Population: 0. Likelihood: 0.75.

Back to Figure
One of the axes is labelled sample and ranges from negative 1 to 1 in increments of 0.5.
The second axis is labelled population and ranges from negative 0.5 to 0.5 in increments
of 0.5. The third axis is labelled likelihood and ranges from 0 to 1 in increments of 0.2. All
data are approximate. One of the distributions is along sample equals 0.1. It peaks to a
likelihood of 0.8 at population equals 0.2. The other distribution is along population equals
0.2. It peaks to a likelihood of 0.8 at sample equals 0.1.
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In Chapter 5 , we looked at quantifying uncertainty using two fundamental approaches: the
standard error and confidence intervals . In this chapter we’re going to turn to a more
traditional approach to uncertainty: it is widely used, but frequently problematic, which we
will explain later on in this chapter. It is called null hypothesis significance testing (often
shortened to NHST). You may have heard of ‘ p-values ’ or ‘ statistical significance ’,
both of which are part of this same process.
Null hypothesis testing intends to measure uncertainty, but in reality it is a mixture of
quantifying uncertainty and measuring effect size strength. For this reason, it is often
misunderstood. Let’s look at what it is, and why it has problems.

6.1 THE LOGIC OF NULL HYPOTHESIS TESTING
The logic of NHST is very strict, and we will look at it on its own before going any further.
The logic involves a hypothesis and some evidence. What we will see is that the logic can
allow us to reject the hypothesis as being unlikely, but can never allow us to accept the
hypothesis as being likely or correct.

The starting point is a hypothesis (which is hypothetical) and some evidence (which is
real).

If the two are inconsistent, then one of them must be wrong. The evidence is real and
cannot be wrong; the hypothesis is hypothetical and could therefore be wrong. So, if
the evidence is inconsistent with the hypothesis, we reject the hypothesis.

If the two are not inconsistent, then they could both be correct, and we cannot reject
the hypothesis.

If the evidence and hypothesis are consistent with each other, this doesn’t mean that the
hypothesis is correct; it means that it could be correct, along with many other hypotheses
that are also consistent with the evidence.
When we find an inconsistency we can do something decisive, but when we don’t find any
inconsistency we cannot do anything further.

6.1.1 The null hypothesis
We shall begin with an explanation of the null hypothesis (commonly written as H 0 ) as
this is central to the procedure – hence the name. The null hypothesis states that there is
no effect of our Independent variable (IV) on our Dependent variable (DV), which means
that the population effect size would be zero. So, the null hypothesis is a hypothetical claim
that the effect size within the population is zero. In this way of doing things, our actual
hypothesis is called the alternative hypothesis . The sampling distribution for the null
hypothesis can be calculated using the concepts of the previous chapter , and is shown in
Figure 6.1 .
Why would we be considering the null hypothesis that no effect exists when that’s the
opposite of what we are interested in? We are usually doing research to pursue some
particular hypothesis that there is a relationship between our IV and our DV. The reason
that we need to consider the null hypothesis is because we are going to test it: we are not
going to test the alternative hypothesis. This probably sounds quite odd. But if you recall
that we can only logically reject a hypothesis, then testing the null hypothesis makes some
sense: we hope that our evidence will be inconsistent with the null hypothesis, allowing us
to reject it. The intention of null hypothesis testing is to try to find enough evidence to reject
the null hypothesis as being false. In the previous chapter , we saw that there will always
be some residual uncertainty, and so even if we do reject the null hypothesis, we cannot be
sure we are right to do so. However, this is just an accepted part of this type of uncertainty
testing – and part of the reason it has problems.



 Description

Figure 6.1 Graph showing a sampling distribution for the null hypothesis.
If there is no effect in the population for the variables we are studying, then any sample we get will be
somewhere in this distribution (see that the distribution is aligned with 0 on the population effect size
scale).

 Description

Figure 6.2 Graph showing the sampling distribution for the null hypothesis
and two actual samples.
Two sample effect sizes are shown superimposed on the sampling distribution from Figure 6.1 (using
lines and dots). This graph shows us that the left sample would be much more consistent with the null
hypothesis than the right one, because it is much more probable (using the scale on the y-axis).

Figure 6.2 illustrates this approach. It shows the same sampling distribution from the null
hypothesis as before. This time it shows two possible samples we might have: one has a
sample effect size of –0.05 (the one on the left) and one has a sample effect size of +0.22
(the right hand one). The figure shows us that the first example sample is produced more
often by the population with zero effect size and so is potentially more consistent with that
population than is the second one.

6.1.2 The test
The basic test is simple. We have two propositions: (i) the null hypothesis that the
population effect size is zero; and (ii) an actual sample with a sample effect size that is
0.22 (or whatever we found). Null hypothesis testing asks a simple question: are these two
propositions consistent with each other? If they are, then we cannot rule out the null



hypothesis: that the population effect size is zero. If they are not consistent with each
other, then one of the two propositions must be false. Since our sample must be true
because we can see it for ourselves, it has to be the other proposition – the null hypothesis
– that is false. So, if our sample effect size is not consistent with a population effect size of
zero, we would infer that the population effect size is not zero.
Let’s pause for a minute and consider an example. We could be looking at a sample of
giraffes and predicting that the more hours of rainfall there are, the more food they will eat.
We have two hypotheses:

Our alternative hypothesis: there is a relationship between hours of rainfall and giraffe
food consumption in the population.

Null hypothesis: there is no relationship between rainfall and giraffe food consumption
in the population.

We test the null hypothesis hoping to find that our evidence from a sample of giraffes
means that the null hypothesis can be rejected.
The logic of null hypothesis testing isn’t quite as firm and safe as we have made it sound.
Null hypothesis testing asks the question: are the null hypothesis and our sample
inconsistent with each other? Is the behaviour of our sample of giraffes inconsistent with
the null hypothesis that no effect really exists in the wider giraffe population? This is a
question that is quite difficult to answer because of sampling error and uncertainty. We can
never say categorically that the sample is inconsistent with the null hypothesis: there is
always some possibility that the two may be consistent.
Because of the uncertainty in our sample, we must use a weaker (and therefore less
satisfying) question: what is the probability that the null hypothesis would produce a
sample with an effect size that is at least as big as the effect size we have found in our
sample? Supposing the null hypothesis is actually true, what is the probability of getting a
sample with our sample effect size or one that is even more extreme – stronger? This is
shown in Figure 6.3 for the two example samples we had in the previous figure. The
shaded area in each case contains all the samples that the null hypothesis might produce
that have an effect size that is at least as large as our actual one. So, the proportion of the
sampling distribution that is shaded is the probability we are interested in.

 Description

Figure 6.3 Graphs showing how the sampling distribution for the null
hypothesis is used to calculate a p-value.
The probability of obtaining a sample effect size at least as large as our actual sample effect size is the
proportion of the sampling distribution that is shaded. Each graph shows the distribution for a population
where the null hypothesis is true. On the left, where the actual sample effect size is small (–0.05), the
probability of it occurring in the null hypothesis population is high. On the right, where the actual sample
effect size is larger (0.22), the probability is much smaller.

6.1.3 The procedure
We start with our null hypothesis, specifying that the population effect size is zero. We can
then use the sampling distribution theory from Chapter 5 to visualise the range of sample
effect sizes that could come from a population with an effect size of zero, to see how
probable it is that this population could produce our sample effect size or a stronger one.
This can be illustrated using the same diagrams as we have seen before, as you can see
in Figure 6.3 .
The figure shows the sample effect size we have (0.22 in this case) and has shaded the
parts of the sampling distribution that are for sample effect sizes, positive and negative,



that have a larger magnitude than this. The proportion of the whole distribution that is
shaded gives us the probability of getting our sample effect size or stronger from this
sampling distribution.
The probability of getting our sample effect size or stronger is so commonly used that it is
nearly always shortened to p , or p-value . The value for p is used as an indication of how
consistent our sample is with the null hypothesis. The smaller the value for p , the less
consistent they are (meaning that it is more likely that we have found a true effect).
If the p-value is very small, meaning that a population with zero effect size would rarely
produce our sample effect size or an even stronger one, then this is judged to indicate
inconsistency between the null hypothesis and our sample. When our sample is
inconsistent with the null hypothesis, we can say that we reject the null hypothesis .
If the p-value is not very small, meaning that a population with zero effect size would
sometimes produce our sample effect size or stronger, then we do something that is very
irritating. We cannot judge that there is an inconsistency. That double negative really
matters. When this happens, we say that we have failed to reject the null hypothesis . We
haven’t actually accepted the null hypothesis; we have only reached a point where we
cannot reject it, based on the evidence that we have.
The logic of null hypothesis testing is this:

We start with two propositions:

(i) the null hypothesis describes our population

(ii) our sample came from that population

and then, third, make a calculation:

(iii) the probability of the null hypothesis producing a sample with an effect size at least
as large as our sample.

The value of p is treated as a measure of how consistent these two propositions are
with each other.

If p is very low, then we can conclude that the null hypothesis and our sample are not
consistent with each other: one must be false. Since our sample is not false (assuming
we didn’t cheat), the null hypothesis can be rejected .

If p is not very low, then we cannot conclude that the null hypothesis and our sample
are not consistent with each other. We say that we have failed to reject the null
hypothesis. Please be aware that every word in these two sentences matters. The key
to understanding this is that ‘we cannot conclude …’, and that is where we reach –
unable to conclude. This indeterminate result is one of the problems with null
hypothesis testing.

The decision at the centre of this – about the consistency of the two propositions – is a
judgement we reach by asking whether the p-value is less than an agreed arbitrary level,
conventionally set to 0.05. That value of 0.05 is called alpha (α) . What that really means is
that researchers have agreed that a 5% (0.05 = 5%) chance of getting the wrong outcome
is acceptable, because we can never really be completely certain. This sounds like a
strange thing to accept, but it is entirely arbitrary – it is just a matter of convention. Table
6.1 shows a summary of the decision process.
Table 6.1 Two possible outcomes of null hypothesis testing.

The outcomes of a statistical test of the null hypothesis, how we must report them and
what they mean.



Outcome Decision Meaning Implication

p < 0.05. Reject the
null
hypothesis
‘result is
statistically
significant’

There is evidence that the null
hypothesis does not reasonably
account for our data

The effect
probably exists

p ≥ 0.05 Fail to reject
the null
hypothesis
‘result is not
statistically
significant’

There is no evidence that the null
hypothesis does not reasonably
account for our data

We don’t know
whether the
effect exists

If we reject the null hypothesis, then conventionally we say that the result is statistically
significant . This sounds like a definite, certain statement, but it is important to realise that
it isn’t certain at all. The technical term ‘statistically significant’ must be understood to
mean ‘uncertainty about the existence of the effect is low’.
If we fail to reject the null hypothesis, then conventionally we say that the result is not
statistically significant. This also sounds quite definite, but it isn’t; it is in fact why we use
the term ‘fail to reject’. We don’t accept the null hypothesis (say that no effect exists);
instead, we just don’t have enough evidence for anything else yet. There are many other
effects that might exist, that we haven’t yet investigated. Failing to reject the null
hypothesis leaves the idea open for further development. In fact, the technical term ‘not
statistically significant’ must be understood to mean ‘we don’t know anything new’. This is
important: when p > 0.05, we are saying ‘there is no evidence that …’ and the absence of
evidence for an effect isn’t the same as evidence for the absence of an effect.
Figure 6.4 shows the relationship between the actual sample size and the decision to
reject or not the null hypothesis. It shows the familiar sampling distribution for the null
hypothesis. The shaded areas are drawn to contain exactly 5% of the distribution so that
any actual sample with a sample effect size that falls in these areas would be considered
statistically significant.



 Description

Figure 6.4 The basic rule of null hypothesis testing.
The figure shows the sampling distribution for the null hypothesis. The population effect size is 0 for the
null hypothesis. The area of darkest blue regions on the tails of the sampling distribution add up to 5%
of the whole area. That means that samples drawn from the null hypothesis have only a 5% probability
of falling in one of these regions. The heavy lines, which are drawn to line up with these regions, divide
the range of sample effect sizes into three groups: those (paler) in the middle where we would say that
the sample effect size is not inconsistent with the null hypothesis; and those (darker) outside where we
could say that the sample and the null hypothesis were inconsistent with each other. By chance, 5% of
samples from the null hypothesis will fall in the darker area. Note that the actual population we are
studying does not appear in this diagram – neither as a real population nor as a hypothetical one. Null
hypothesis testing is only a comparison of the sample with the null hypothesis.

6.1.4 Comment
The first thing to notice about null hypothesis testing is that the question that it asks is not
the most obvious one to ask and so the result is a little more complicated to interpret. We
would expect to ask a question about our actual hypothesis, not a hypothetical null
hypothesis. We would also expect to be asking a question about what the sample tells us
about the population, not what the null population tells us about the sample.
This is all a slightly odd way of proceeding, and the reason for using it is that it is the best
that can be done with pencil and paper. Because of that, it has been a standard approach
for nearly a century – since long before we had statistical software to examine our data for
us. It leads us to a conclusion: we either reject the null hypothesis or we don’t. But we are
making that apparently definite statement on the basis of uncertain information. If we reach
a conclusion only on the basis of facts supplied, then we are making a deduction. In this
case, we are going beyond the facts supplied by involving a null hypothesis, and that
means we are making an inference .
It is vital to understand that the conclusion we reach is a conclusion about the null
hypothesis. It is not a conclusion about the alternative hypothesis – which is what we
should really be interested in – because we have only asked a question about the null
hypothesis. We are really only reaching a conclusion when we reject the null hypothesis:
when we fail to reject it, we are saying nothing at all. We hope this strikes you as weird: we
spent the whole of Chapters 1–4 developing and working with our so-called ‘alternative’
hypothesis, and then we go off and test a different hypothesis. If you do find that to be
strange, then the rest of this chapter is going to feel surreal. Stick with it.

6.1.5 Two examples
Let’s imagine two possible outcomes of a study where we explored the relationship
between risk-taking and exam grades. We are going to invite you to think about the
outcomes we are about to provide in two ways: (i) as a member of the Paragliding Club or
the Cross the Road Safely Club (you choose which suits you best); and (ii) as a
psychology researcher.
The outcomes:



Our first possible outcome is that we used 42 participants and, to our delight, we found
a sample effect size of 0.29, which is quite big.

Our second possible outcome is that we used 4200 participants and, to our
disappointment, we found a sample effect size of just 0.029, which is tiny.

Looking at this as someone for whom the result might personally matter, the first result
seems important and the second seems unimportant. In the usual colloquial sense of the
word, the first outcome looks as if it is significant. Then looking at this as a psychology
researcher we have to ask for the p-values. The first outcome, with an effect size of 0.29,
has found p > 0.05 and so we fail to reject the null hypothesis: the result is not statistically
significant. The second outcome, despite having a much smaller effect size of 0.029, has
found p < 0.05 (because it has a much larger sample size) and so we can reject the null
hypothesis: the result is statistically significant.
These two different reasons for looking at the result produce opposite consequences in
this (slightly provocative) scenario. For significance as the practical value, then the first
outcome is the one that is the more interesting. For the statistical significance, it is the
second outcome that matters.

6.2 LIKELIHOOD FUNCTIONS AND NULL HYPOTHESIS
TESTING
The sample we have comes from the population that we are studying, but that population
hasn’t actually featured anywhere in null hypothesis testing. As well as looking at the
sampling distribution for the null hypothesis, which is, strictly speaking, all we need for null
hypothesis testing, we can look at the sampling distribution for the population our sample
might have come from.
Figure 6.5 shows a fairly typical scenario. Once again, we are viewing this from the
outside, seeing both the sample that might be visible to a researcher and also the
population it came from (which isn’t visible to the researcher). The sampling distribution
towards the back is the null hypothesis and the regions shaded blue are where a sample
has to be to allow us to reject the null hypothesis. The sampling distribution towards the
front is the one we are actually sampling from. The shaded area on this is also where the
sample has to come from to allow us to reject the null hypothesis. The same single sample
is shown, superimposed on both sampling distributions. The sample results in a failure to
reject the null hypothesis because it isn’t far enough out in the tails of the null hypothesis
sampling distribution – although, as we can see, the sample effect size is very close to the
population effect size and so the sampling error is actually rather small.

 Description

Figure 6.5 Comparing likelihoods of a null hypothesis population and true
effect population.
This figure shows a possible situation that a researcher could find themselves in. Unknown to them,
they are sampling a population (n = 42) with an effect size of r = 0.3. Their sample effect size is 0.22.



The figure shows the likelihood for the null hypothesis and for the population with an effect size of r =
0.3. This tells us that likelihood is twice as high for the population r = 0.3 than it is for the null
hypothesis. Nonetheless, the sample falls into the middle space where the null hypothesis cannot be
rejected. The figure also shows that a significant result can only be obtained in this scenario when the
sample effect size is greater than the actual population effect size. In the previous chapter we were
quite relieved to find that sampling errors have a mean of zero, meaning no bias. Here, the sampling
errors for a statistically significant result are all positive: there is very considerable bias.

In light of the work we did in the previous chapter learning about likelihood functions, you
should be feeling cheated now. Null hypothesis testing not only doesn’t use likelihood, it
wilfully ignores it. Either we made you work hard for nothing (no, we didn’t), or you can now
appreciate that null hypothesis testing involves ignoring a great deal of information in the
sample.
The truth is that despite failing to reject the null hypothesis, the null hypothesis is by no
means the most likely population in this example. This is a salient example of why failing to
reject the null hypothesis cannot be treated as if it means that the null hypothesis is
accepted. Here we have failed to reject it, but our evidence is nonetheless less consistent
with the null hypothesis than it is with many other population effect sizes.

6.3 THE CONSEQUENCES OF NULL HYPOTHESIS
TESTING
The outcome of a null hypothesis test is a decision about whether to reject the null
hypothesis or not. Because we are making that firm decision about the population on the
basis of uncertain information from the sample, the uncertainty becomes converted into a
chance that we have made the wrong decision: we have made an error.

6.3.1 If we reject the null hypothesis?
If the probability of obtaining our sample or one with a larger effect size from the null
hypothesis is less than 0.05, then by convention we reject the null hypothesis. Usefully, the
distribution of p-values that we would get for samples from the null hypothesis itself is
unifor each possible p-value between 0 and 1 is equally probable. So, 5% of all samples
drawn from the null hypothesis will have p < 0.05. This means that if the null hypothesis is
actually correct, then the probability that we will be rejecting the null hypothesis wrongly is
given by alpha, 0.05. We have a probability of wrongly rejecting the null hypothesis of 0.05
and so in the long run we will do so 5% of the time.
When this so-called ‘false positive’ scenario occurs, we call it a Type I error . When we
reject the null hypothesis, there is always a chance that we have made a Type I error: we
can never know whether or not we have made one. This is why relying on a single piece of
research is not a sensible practice. The uncertainty of going from our known sample to an
unknown population still exists; it has now become an uncertainty about whether we have
made a Type I error or not.
If we want to be mindful of the uncertainty that still exists, then we can say something
more. Either we have made a Type I error or we haven’t. We can’t really talk about the
probability that we have made a Type I error because that probability is either 1.0 (we did)
or 0.0 (we didn’t). Instead we can use the idea of a likelihood: looking back, what is the
likelihood that we have made a Type I error? That likelihood that we have made a Type I
error normally has just the same value as the p-value we have calculated.
Here is an important distinction. Before we have data (or before we have analysed it) and
looking to the future of what that data may be, we have a 5% future probability that we will
make a Type I error. After we have analysed our data, and looking back to what may have
happened in that process, the past likelihood that we have made a Type I error is given by
the p-value we calculate. See Table 6.2 for a summary of this.
Table 6.2 Prospective and retrospective Type I errors.

The two ways of thinking about Type I errors.



 When? Asking about? What? How
much? When? Asking about? What? How
much?

Prospective Type I errors Before Forwards to the
future

Probability alpha

Retrospective Type I
errors

After Backwards to the
past

Likelihood p-value

6.3.2 If we fail to reject the null hypothesis?
If our p-value is not less than 0.05 (alpha), then we fail to reject the null hypothesis and can
conclude nothing much at all. That is always unsatisfactory, not least because it might be
unfair: the population may have an effect and our sample was just unlucky for us. When
we fail to reject the null hypothesis, it may be that there is no effect in the population or it
may be that the sampling error (recall, the error caused when the sample doesn’t represent
the population well) associated with our sample has caused us to reach the wrong
outcome. If there is an effect in the population and we have missed it because of sampling
error, then we are making a Type II error .
A Type II error is a miss (a ‘false negative’): we missed the finding that was there to be
made. If we have failed to reject the null hypothesis, we can never say whether we have
made a Type II error or not.
Unlike Type I errors, when considering Type II errors it is not straightforward to calculate
the prospective probability that we will make one, or the retrospective likelihood that we
have made one. Type I errors depend on the behaviour of the population of the null
hypothesis, which is an invention we can be sure about. Type II errors depend on the
behaviour of the actual population we are studying and that we cannot be sure about.
Table 6.3 Prospective and retrospective Type II errors.

The two ways of thinking about Type II errors.

 When? Asking about? What? How
much?

Prospective Type II errors Before Forwards to the
future

Probability ?

Retrospective Type II
errors

After Backwards to the
past

Likelihood ?

It is worth saying that the future probability or the past likelihood of Type II errors are not
related at all to the p-value we have obtained. In Table 6.3 , we have placed question
marks in the cells for How much? In Chapter 8 , we will return to this and show how we can
sometimes calculate an estimate of the values for these two cells. However, in general, it is
accepted that Type II error rates are usually unknown.

6.3.3 Inferential errors considered together
You may think that a 5% probability that we will make a Type I error is quite high and then
be wondering why we don’t set alpha lower. If we set alpha to 0.01 and so use p < 0.01 for
our arbitrary rule, then there would only be 1% of Type I errors. We now consider why. The
problem is that if we set the criterion to 0.01, then Type II errors are increased much more
than Type I errors are decreased.
Null hypothesis testing has at its heart this unavoidable trade-off between Type I and Type
II errors. Recent thinking is beginning to suggest that researchers actively engage with this
trade-off rather than simply accept the convention of alpha = 0.05. The suggestion is that a



specific value for alpha is declared ( before the data has been collected!) that takes into
account what is already known.
Type I errors are very serious: once a result has made its way into our understanding of
psychology, it can be hard to eradicate if it turns out to be mistaken. We need to keep
those very much under control for the integrity of our science. At this point, it would be
good to be able to show you a famous example of a piece of psychology that turned out to
be based on data that had a Type I error. We can’t. Just as a researcher cannot know
whether they have made a Type I error because of the uncertainty in their results, nor can
we as readers of their research. The closest we can come to this is to replicate their study
a few times, and if each replication fails to reject the null hypothesis, then the likelihood
that they made a Type I error increases. Because of this, Type I errors and correct results
are difficult to distinguish without a lot of replication . Everyone knows that there must be
Type I errors in the literature, we just don’t know where.
Type II errors are also problematical. When we fail to reject the null hypothesis, we are
saying we have learned nothing new. All the effort involved in collecting data from
participants is wasted when we get a Type II error and so we appear to have made no
progress.
Finally, it is worth pointing this out: before you have data, looking forwards to what
outcomes you might expect, you must consider that you may make a Type I error and that
you may make a Type II error. After you have data, looking back to what may have
happened, you can only have made one of those two errors – which you should consider
depends on whether p < 0.05 or not.
Table 6.4 How data analysis changes how we think about Type I and II errors.

The situation before and after data analysis.

  Type I error Type II error

Looking forwards : No test yet: p unknown Maybe Maybe

Looking backwards : Test done: p < 0.05. Maybe No

Test done: p ≥ 0.05 No Maybe

6.4 A CONVERSATION ABOUT TESTING FOR NULL
EFFECTS
Two paragraphs back we said something quite shocking: when a Type II error occurs, then
time has been wasted. We said it with a great deal of deliberation, and it prompted an
impassioned response from a reader that we want to share. Perhaps you share that
reader’s perspective.

6.4.1 The question
The reader didn’t like our statement that a non-significant result means that the research
was just wasted time. They quoted the immense importance of null results in some
circumstances – their example was the absence of a gender difference in intelligence. We
can readily agree that this is important, and using our running example in this book, point
to something very similar of real concern: whether there is a gender difference in exam
grades.

6.4.2 The issue
What we have said about null hypothesis testing is unfortunately correct. When we fail to
reject the null hypothesis, all those negatives are there to remind us that we have made no



progress – within the framework of null hypothesis testing . The fundamental logic of null
hypothesis testing is that we need an inconsistency between two propositions so that we
can reject one of them – the hypothetical one. That logic is inextricably built into statistical
testing.

6.4.3 A sort-of-solution
So null hypothesis testing is unsuited to show that there is no gender difference in exam
grades. We will hold, for now, onto the logic of (hopefully) creating an inconsistency, but we
will use it differently. We sit down and decide that, for all practical purposes, an effect size
relating gender to exam grades that was less than 0.2 would be tolerable, but an effect
size greater would be very awkward: it would make exams quite an unfair way to test
students.
We ask the question: is our sample inconsistent with a population effect size greater than
0.2? We have replaced the null hypothesis with this ‘testing hypothesis’. We calculate the
probability of getting our sample effect size or one further from the testing hypothesis. If
that probability is low enough (less than 0.05), then we have our (hoped for) inconsistency
and we can reject the testing hypothesis that the effect size is greater than 0.2.
This can be done – there is nothing wrong with it. Except, perhaps, that most software
doesn’t do it. Plus, it would take endless university committee meetings to decide on the
value of 0.2 for the testing hypothesis.

6.4.4 A good solution
Actually, we already have a better answer: confidence limits , which we looked at in
Chapter 5 . We take a sample of exam grades, calculate the sample effect size for gender
and its confidence limits or even better the whole likelihood function. Suppose that we had
the exam results from 120 students and we calculated the effect size for gender, then we
would get a likelihood function similar somehow to that shown in Figure 6.6 . We can
convert the upper limit normalised effect size of 0.27 to the BESD effect size we looked at
in Chapter 4 to see what impact it is having.
Using the BESD formula:

50 – (0.27 × 50) : 50 + (0.27 × 50)
36.5 : 63.5

What this means is that, despite having a normalised effect size as large as 0.27, gender
affects the exam grades of probably no more than 13.5% of students: the difference
between the observed count of 63.5 and the expected ‘null hypothesis of no effect’ of 50 is
13.5.
In truth, we would wish to see much more data than 120 exam grades and a
correspondingly smaller range of possible population effect sizes to satisfy ourselves that
there was no effect of gender (or that there was). The point here is simple, though: we use
confidence limits to say that our data causes us to restrict the size of any possible effect.
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Figure 6.6 Sample showing the effect of gender on exam grades.
This graph illustrates some data showing the effect of gender on exam grades. The top half of the figure
shows the sample graph and the descriptive statistics graph, where the effect can be seen. The effect is
weak (it has an effect size of –0.103) with a small advantage to females. Beneath is the likelihood
function for this sample. The central 95% comfortably includes 0, which means that a population effect
size of 0 is quite plausible as an account of this data. The confidence limits bracket the range: [–0.27 to
+0.07].

6.4.5 The question again
We have just reached this point: that a sample that fails to reject the null hypothesis can be
used to set an upper limit on how big the population effect could be. Under strict null
hypothesis testing, that is irrelevant. In practice, it is how researchers have managed to
answer these no-effect questions. It isn’t often appreciated that doing so means coming
out of the null hypothesis testing system.

6.5 AN EVEN BIGGER PICTURE
We conclude this chapter with a quick look back at null hypothesis testing. The story is told
in Figure 6.7 .
The key point of Figure 6.7 is that by choosing 42 participants, we have created a situation
where our sample needs an effect size of at least 0.3 to be statistically significant. If the
population effect size is small, that is unlikely; if the population effect size is large, that is
likely.
It is important to see the bigger picture here. Sampling a population creates a sampling
error, which cannot be known and cannot be avoided, and which we are characterising as
an uncertainty in what we know about the population. We use statistics to estimate the
magnitude of that uncertainty. However, it seems that collectively researchers cannot cope
with that idea of uncertain conclusions, so then we have to bring in a new step – null
hypothesis testing – to convert that uncertainty that exists into a definite (i.e. not uncertain)
decision about what our data means. If that strikes you as being just slightly weird, then
you are one of a growing band of researchers.
The consequence of null hypothesis testing is that for any given design (such as sample
size), there is a fixed sample effect size that a sample effect size must exceed in order to
yield a statistically significant result. The larger the sample size, for example, the smaller
the sample effect size required to achieve statistical significance. So, the larger the sample
effect size, the more uncertainty we are ignoring when we make a decision to reject the
null hypothesis.
The shortcomings of null hypothesis testing are becoming apparent in psychology as the
massive convenience it had in pre-computer days is lost. We really want a logic that has



these features:

(i) It uses the likelihood function: what a sample tells us about the likely population.

(ii) It makes inferences about the hypotheses we are interested in, not artificial ones
we are not interested in.

 Description

Figure 6.7 The basic action of null hypothesis testing.

6.6 BEING A RESPONSIBLE RESEARCHER
There are three very basic concerns that a responsible researcher will hold in mind as they
perform null hypothesis testing.
The first and most important concern is to remember that the outcome of the test appears
to be black or white (significant or not significant), but actually still contains the uncertainty
that we saw in the previous chapter . Always remember that another sample will lead to a
different p-value (potentially very different) and possibly a different result. The uncertainty
has been converted into the likelihood that an inferential error has been made.
The second concern is to understand if one does ten tests, then the chances of one of
them containing an inferential error are much higher than if one only does one test. This is



inescapable. It is traditional to focus on the increasing chances of making a Type I error
and frequently researchers will reduce alpha to manage that increased chance. However,
reducing alpha will simultaneously increase the chances of the other type of inferential
error – a Type II error. There is no simple answer.
Finally, a responsible researcher will precisely report the data and the test that they
performed exactly and in a way that allows any other researcher to perform the same test
on the same data, obtain exactly the same outcome and thereby verify the result.

 The Big Picture
A common approach that partly deals with the uncertainty in statistical inference is
called null hypothesis testing.

What is null hypothesis testing?
1. Null hypothesis testing calculates the probability that the sample effect size

(that we actually have) or one that was even stronger could have come from a
(completely hypothetical) population with an effect size of zero.

2. Typically, the null hypothesis can be rejected when p (the probability value) is
less than 0.05. The value of 0.05 is called alpha.

3. When p is greater than 0.05, we have failed to reject the null hypothesis.

Inferential errors in null hypothesis testing
1. When we reach a conclusion with null hypothesis testing, we may have made

one of two different errors because of sampling error:
a. Type I error: a false positive when we reject the null hypothesis even

though there is no effect in the population.
b. Type II error: a false negative when we fail to reject the null hypothesis

even though there is an effect in the population.
2. Neither Type I nor Type II errors can be identified. It is not possible to know

whether we have made an error or not. They are risks that are always taken
with null hypothesis testing.

Probability of making an inferential error
1. Before we begin a piece of research we could be about to make either a Type I

or a Type II error:
a. We can expect that there is a 5% chance of making a Type I error.
b. We cannot know what the chance of making a Type II error is.

2. After we have done a piece of research, we can only have made either a Type
I error or a Type II error, never both:

a. The likelihood that we have made a Type I error is the p-value from our
test.

b. We cannot know the likelihood that we have made a Type II error: it would
require knowledge of the whole population, which we almost never have.

It is a test of the existence of an effect, not the
strength of an effect

1. The first point to be clear about is the question that null hypothesis testing
answers. The question, in its broadest sense, is about the existence of a
relationship between two or more variables. We use the word ‘effect’ as
shorthand for the existence of a relationship between variables. Null
hypothesis testing asks: ‘Can we be fairly sure that there is an effect?’

It is only a test of the null hypothesis, not our
chosen alternative hypothesis



1. Null hypothesis testing considers the view from the population, not the view
from a sample.

2. It focuses on just one specific hypothetical population: the population of the null
hypothesis, where no effect exists, so where the population effect size is zero:

a. It is the opposite of the hypothesis we are really interested in, which is that
there is a relationship (in statistical terms, this is called the alternative
hypothesis). This is the point to be clear about: we are testing the null
hypothesis, not our alternative hypothesis.

The answer is still uncertain, even though it
appears definite

1. Up until this point, we have been talking about the uncertainty that comes with
a sample:

a. Suddenly, we are making a black or white decision. Think of it as a method
that exists because researchers cannot tolerate the idea of uncertainty
and the somewhat indeterminate results that means.

b. Therefore, various statisticians decided to define a completely arbitrary
rule to provide a definite outcome.

c. The uncertainty is still there: we may have made a Type I or Type II error
and we cannot know. But the rule allows us to hide the uncertainty. We
hope you think this is unsatisfactory.

Only one of the two possible outcomes is an
answer

1. Null hypothesis testing leads to two outcomes: reject or fail to reject the null
hypothesis:

a. Reject the null hypothesis: we are making an inference.
b. Fail to reject the null hypothesis: we are not making an inference. The

word fail is correct here: we have failed to infer anything.

 Your Turn
Define these key terms in the space provided:

1. Null hypothesis
2. p-value
3. Type I error
4. Type II error

Fill in the gaps in these sentences:

1. If you find a statistically significant result, using the most common value for
alpha, your p-value must be less than ___________.

2. If you do not find a statistically significant result, you cannot ___________ the
null hypothesis.

ANOTHER ACTIVITY AND ANSWERS ARE AVAILABLE ONLINE

Your Space
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The second axis is labelled population and ranges from negative 0.5 to 0.5 in increments
of 0.5. The third axis is labelled frequency and ranges from 0 to 1 in increments of 0.5. All
data are approximate. A distribution curve is along population equals 0 that peaks at
sample equals negative 0.1 to a frequency of 0.7. The regions to the left of sample equals
negative 0.4 and to the right of sample equals 0.25 are shaded.
Back to Figure
One of the axes is labelled sample and ranges from negative 1 to 1 in increments of 0.5.
The second axis is labelled population and ranges from negative 0.5 to 0.5 in increments
of 0.5. The third axis is labelled likelihood and ranges from 0 to 1 in increments of 0.2. All
data are approximate. The first distribution curve is along population equals 0 that peaks at
sample equals 0 to a likelihood of 0.8. A sample is at sample equals 0.2. The regions to



the left of sample equals negative 0.4 and to the right of sample equals 0.25 are shaded.
The second curve is along population equals 0.4 that peaks at sample equals 0.25 to a
likelihood of 0.8. A sample is at sample equals 0.2. The region to the right of sample
equals 0.25 is shaded.
Back to Figure
All data are approximate.

In the first graph, the horizontal axis is labelled gender, listing female and male, and
the vertical axis is labelled exam grade, ranging from 5 to 30 in increments of 5. For
females, there is a cluster of plots between 9 and 25. There is a bulge around the
plots with its widest part at 17. For male, there is a cluster of plots between 9 and 19,
with an outlier at 25.

In the second graph, the horizontal axis is labelled gender, listing female and male,
and the vertical axis is labelled exam grade, ranging from 5 to 30 in increments of 5.
The plot for female is at 17, and the plot for male is at 15.

In the third graph, one of the axes is labelled sample, ranging from negative 1 to 1 in
increments of 0.5, the second axis is labelled population, ranging from negative 0.4 to
0.2 in increments of 0.2, and the third axis is labelled likelihood, ranging from 0 to 1 in
increments of 0.2. A distribution curve is along sample equals negative 0.2 that peaks
at population equals negative 0.05 to a likelihood of 0.8.

Back to Figure
All data are approximate.

The first graph is a three-dimensional graph. One of the axes is labelled sample and
ranges from negative 1 to 0.5 in increments of 0.5. The second axis is labelled
population and ranges from negative 0.5 to 0.5 in increments of 0.5. The third axis is
labelled likelihood and ranges from 0 to 1 in increments of 0.5. A distribution curve is
along population equals 0 that peaks at sample equals 0 to a likelihood of 0.8. The
regions to the left of sample equals negative 0.4 and to the right of sample equals 0.25
are shaded.

The second graph is a three-dimensional graph. One of the axes is labelled sample
and ranges from negative 1 to 0.5 in increments of 0.5. The second axis is labelled
population and ranges from negative 0.5 to 0.5 in increments of 0.5. The axis graph is
labelled likelihood and ranges from 0 to 1 in increments of 0.5. There are two
distribution curves. The first distribution curve is along population equals 0 that peaks
at sample equals 0 to a likelihood of 0.8. The regions to the left of sample equals
negative 0.4 and to the right of sample equals 0.25 are shaded. The second
distribution curve is along population equals 0.45 that peaks at sample equals 0.45 to
a likelihood of 0.8. The region to the right of 0.25 is shaded.

The third graph is a three-dimensional graph. One of the axes is labelled sample and
ranges from negative 1 to 0.5 in increments of 0.5. The second axis is labelled
population and ranges from negative 0.5 to 0.5 in increments of 0.5. The axis graph is
labelled likelihood and ranges from 0 to 1 in increments of 0.5. There are multiple
distribution curves along different populations peaking at different sample values to a
likelihood of 0.8.

The horizontal axis is labelled population effect size and ranges from 0 to 1 in
increments of 0.2. The vertical axis is labelled probability of significant result and
ranges from 0 to 1 in increments of 0.2. A curve rises through (0, 0.05) and peaks at
(0.6, 1). The area under the curve is shaded.
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We have learned in Chapter 6 what the p-value in a null hypothesis test actually is: the
probability of the null hypothesis producing the effect size in our result or a stronger one.
The smaller the p-value, the less likely it is that the null hypothesis did give rise to the
sample . The actual calculations of the p-value done by various pieces of statistical
software use some short cuts that are useful to know about.
Note: we have not included step-by-step procedures for conducting these tests using
statistical software, partly because different readers will have different software
preferences, and partly because we think it more important to understand what is being
done than learning one specific application. Instead, our Chapter 7 online resources
contain clear instructions for you.

7.1 THE LOGIC OF A STATISTICAL TEST
Before computers, it was impossible to write down a formula that directly converted a
sample effect size into a p-value. However, there is a way round this that is still used. We
can convert the effect size, and its associated standard error , into a new quantity called a
test-statistic . That test-statistic can be more easily converted into a p-value, taking the
sample size into account.

7.1.1 An example
We are going to use our basic hypothesis to demonstrate the theory behind statistical
testing, using these specific variable types: RiskTaker? as a Categorical variable and
ExamGrade as an Interval variable , pictured in Figure 7.1 .

 Description

Figure 7.1 A reminder of our basic hypothesis, treating RiskTaker? as a
Categorical variable.
On the right of the figure, we show the sampling distribution for the null hypothesis, and beneath it the
corresponding distribution of expected t-statistic values.

Imagine taking a sample from the population where the null hypothesis is true and
calculating two quantities: the sample effect size and its standard error. Both of these are
familiar concepts already. Then, in a new step, divide the effect size by its standard error
and call the result a t-statistic (‘t’ simply stands for ‘test’). Take note here that this
particular t-statistic is one of several that are used in different situations. Its use here is the
consequence of the variable combination we have in our hypothesis: other variable
combinations will produce their own named test-statistics (most creators of statistical tests
were a little more creative than just abbreviating the word ‘test’). Other test-statistics will be
covered in Section 7.2 . All the possible expected values of this new quantity, t , that are
drawn from the null hypothesis population (where there is no difference between the two



groups) would have a specific distribution called the ‘Student’s t distribution’. There’s no
real reason for the ‘Student’ element of the name – this particular statistical test isn’t
reserved for students. It was just created by someone who decided to use Student as his
pseudonym.
Now we can convert our actual sample effect size and its standard error to a t-statistic in
just the same way. Then, instead of asking how often the null hypothesis produces our
sample effect size or stronger, we are going to ask how often the null hypothesis produces
our t-statistic or larger. Apart from the quantity involved, t-statistic rather than the effect
size, this process is exactly as we have described in the previous chapter . The only
reason for using t is pre-computer convenience: the student’s t distribution was easier to
work with.

7.1.2 The general process
What matters here is a simple principle: dividing the sample effect size by its standard
error produces a t-statistic. The t-statistic is a balance involving both the estimated strength
of the effect and the estimated uncertainty: the bigger the effect size, the larger the value
of the t-statistic; the smaller the standard error, also the larger the value. A large t-statistic
indicates a large effect size and a small uncertainty and then a smaller p-value. While we
will see several different test-statistics, only this specific calculation provides the test-
statistic that is simply called ‘ t ’.

 Description

Figure 7.2 The basic sequence of operations that go from a sample through
to the p-value for null hypothesis testing.
The exact nature of the test-statistic and the degrees of freedom depend on the variable types that are
in use. It is always the case that the p-value becomes smaller as the effect size or the sample size
increases.

A t-statistic is converted to a p-value with the use of degrees of freedom (abbreviated to ‘
df ’). The degree of freedom is a count of how much explaining we have left available to us.
If our sample only has two participants, one in each category, then the two group means
completely describe the sample and we would say that there are no degrees of freedom
left or the degrees of freedom equal zero. If our sample had four participants, two in each
group, then the two group means (on their own) no longer completely describe the sample.
To do that we would need to know two more numbers (such as the smallest value from
each group) and we say that there are two degrees of freedom.
Specifically for our RiskTaker? → ExamGrade idea, if we have n (remember that n =
number of participants) and we have so far explained them as two different group means,
then we have ( n – 2) degrees of freedom left.
The sequence of operations to reach the p-value is always the same, subject to minor
differences to suit different variable types. It is shown in Figure 7.2 . This sequence is used
in all the statistical tests that we look at in this chapter and the next. The test-statistic may
instead be a chi-square statistic , or an F-statistic , depending on the variable types
involved and each with its own degrees of freedom, but the logic is essentially the same.
You can think of the t value and the degrees of freedom inside this as a bit of the
machinery: it isn’t very important to us, except that when we report a statistical test, we are
expected to say what the value of the test-statistic and the degrees of freedom are
(primarily for historical reasons).
The most common way to report the outcome of a statistical test in psychology is using
APA format , which is simply a standardised style that makes results easy for all
researchers to understand. We very briefly mentioned it in Chapter 2 , and you will find
examples in this chapter in each test section, and online. APA stands for American
Psychological Association, and the intention behind the APA format is to ensure that all
research publications in psychology have enough details about the statistical analysis and
results. It is an evolving format, as notions of what statistics are most important to report
are changing.



7.2 THE SPECIFIC STATISTICAL TESTS
As we saw in Chapter 3 , there are three fundamentally different types of variable (
Categorical , Ordinal or Interval ). The case of Ordinal variable is slightly anomalous. If
the Independent variable (IV) is Ordinal, then it is perfectly safe to treat it as if it were an
Interval variable. It is only when the Dependent variable (DV), the variable we are trying to
explain, is an Ordinal that we need to take it into account.
Therefore, there are 2×3 different combinations of two variables, shown in Table 7.1 . Each
of these leads to a different measure of central tendency, a different set of graphs and, as
we see now, a different statistical test. However, there is still a simple unity in the system.

If the DV is Interval, then the IV has the role of predicting the mean value of the DV.

If the DV is Ordinal, then the IV has the role of predicting the median value of the DV.

If the DV is Categorical, then the IV has the role of predicting which category is most
likely.

Now, we just need to look at the different cells in Table 7.1 and see what the name of the
test is for each combination of variables. Each test follows very simple rules.
Table 7.1 Variable combinations and statistical tests.

There are five typical statistical procedures or tests that are used for two variable
hypotheses, plus extras for Ordinal DVs. Cat2 is used as shorthand for Categorical
variable with two groups. Cat3+ is used as shorthand for Categorical variable with three
or more groups.

 
IV

 Categorical  Interval

DV Interval t-test ( Cat2 )
ANOVA ( Cat3+ )

Between or
within
Between or
within

Pearson
correlation

Ordinal Mann-Whitney U ( Cat2 )
Wilcoxon signed rank ( Cat2
)
Kruskal-Wallace ( Cat3+ )
Friedman ( Cat3+ )

Between
Within
Between
Within

Spearman
correlation

Categorical Chi-square test of
independence

 Logistic regression

7.2.1 Categorical (two categories) ➔ Interval (t-test)



First, we consider the case of a Categorical variable (with two categories) predicting an
Interval variable. All the details that are needed are placed in Table 7.2 . This is the test
that suits our RiskTaker? → Exam Grade example in Section 7.1 .
Table 7.2 The details for a t-test.

Note that n = sample size. Results should also quote the mean (M) and standard
deviation (SD) for each group.

Categorical (2 categories)→Interval

 Description

test name t-test

test-statistic t

degrees of freedom (n – 2)

APA test description t(df) = ttt, p = ppp

also quote (M1,SD1), (M2,SD2)

most common effect size Cohen’s d



When the Categorical IV has only two different categories, the route to the p-value is via
the t-statistic and the degrees of freedom. This procedure is called a t-test.

Example

For our RiskTaker? ➔ExamGrade idea, imagine we are looking back at our sample with 42
participants, and with the result of effect size r = 0.12, t = –0.47, p = –0.64. To present this
in the typical APA format, it should be written in a similar form to this:
An independent samples t-test found no significant difference of exam grades between
non-risk-takers (M = 66.7, SD = 7.18) and risk-takers (M = 65.6, SD = 7.38), t(40) = –
0.473, p = 0.639 .
Note that the APA specifies that the p-value is given without the first zero (i.e. p = .639).
We find this an unnecessary confusion.

What is the t-statistic?

We saw that the t-statistic is a combination of the sample effect size and the standard error
of that effect size. The normal way to do this is to use the difference in means for the two
groups as the effect size (this is the natural effect size). The difference in means is twice
the standard deviation of the group means. The standard error of the effect size is found
from the standard deviation within the groups (differences between each data point and its
respective group mean) and the square root of the number of data points.
So, the t-statistic is

difference in means

se (difference)

which becomes:

sd(group means)
sd(residuals) × sqrt (n)

This new formula for t-statistic will be useful later on. It involves a ratio of two standard
deviations: the top one being the effect of the IV, and the bottom one being what is left over
in the data.
The beauty of the t-statistic, especially before there were computers, is that it is practical to
convert the t value and the degrees of freedom to a null hypothesis probability. It is
possible to write down what the distribution of t values will be when samples are taken
from the null hypothesis.

Notes on t-tests

The t-test is used when you have a Categorical IV with two groups. However, recall that
with a Categorical IV we can divide participants into two separate groups (a between-
participants design ), or sometimes we can use all participants in both groups (a within-
participants design ). For example, our typical RiskTaker? hypothesis uses a between-
groups design with a ‘yes’ group and a ‘no’ group. This is a small thing to take note of
when doing a t-test, as the procedures differ very slightly. When using statistical software,
opt for the independent t-test if there are two separate groups, and the paired t-test if you
are comparing data from the same participants tested in both situations. The paired t-test
takes into account the reduced unknown variability (individual differences) of using the
same participants in each group in its calculations.
Table 7.3 The details for a one-way ANOVA.

Note that n = sample size; ng = number of groups. Results should also quote the mean
(MN) and standard deviation (SD) of each group. See that the test creates a test-



statistic, which has been given its own unique name of ‘F’. This isn’t a maths thing; it’s
named after Sir Ronald Fisher, who came up with the test in the first place.

Categorical (3+ categories)➔Interval

 Description

test name one-way ANOVA

test-statistic F

degrees of freedom (ng –1, n-ng)

APA test description F(df1,df2) = fff, p = ppp

also quote (MN1,SD1), (MN2,SD2), (MN3,SD3),…

most common effect size eta 2

7.2.2 Categorical (3+ categories) ➔ Interval (one-way
ANOVA)



Now we consider the case of a Categorical variable (with more than two categories)
predicting an Interval variable. All the details that are needed are shown in Table 7.3 . This
would suit our RiskTaker? example if we used three possible values for RiskTaker?: yes,
no, or sometimes.
For the case where the IV has more than two categories or groups, the t-test isn’t helpful
because it is designed to compare two groups. In theory, we could do t-tests between each
possible pair of groups in the data. That is unsatisfactory, partly because it is just too much
effort and partly because each time we do a t-test we have a fresh chance of making a
Type I error (getting a false positive). If we have four groups, then there are six different
combinations of groups that we could test using t-tests. On each of those six tests there is
a separate chance that we will make a Type I error. So the chance that that there is a Type
I error somewhere in among those six tests is much higher than 0.05. In fact, it is 0.265 –
more than five times as high.
To avoid multiple t-tests, we do an omnibus test of the null hypothesis that all group
means are the same. It is called an omnibus (‘for all’) test because it is a test that looks at
all the group means together. If that test turns out to be statistically significant, meaning
there is a significant difference somewhere, then we can go back and do individual t-tests
to see which group means are different from which. These are called post hoc tests: they
are typically just an additional output you can choose when using statistical software.
We’ve got more information about post hoc testing in our online resources.
The procedure for the omnibus test is called a one-way ANOVA (analysis of variance). As
with the t-test, there is a computationally convenient route to the p-value. This time the test
statistic is called the F-statistic, to distinguish it from the t-statistic of a t-test.

What is the F-statistic?

We can see the data points in our sample as a product of two types of effect: one due to
the group mean for the group they belong to (and therefore due to the IV) and one due to
random factors within their group (i.e. the residual ). In doing this, we are splitting the
variance of the whole sample into two independent types: part of the variance that we can
attribute to the IV and the part that we cannot.
Variance is the square of the standard deviation, which we very briefly mentioned in
Chapter 3 – so it is a measure of how much variability there is. Variance is also the sum of
squared deviations divided by the number of data points. If we have two or more
independent sources of variance (variability) combined in our sample or population, then
their joint effect has a variance that is just the sum of the separate variances.
At its heart, the ANOVA is just a comparison of those two parts of the variance in the DV,
taking into account how many participants there are and how many different groups they
are split into. If our variance that is attributed to the IV is high, then we have a strong effect,
a large value for our F-statistic and, depending on our sample size, perhaps a small p-
value.
To understand how we compare these types of variance, consider these three points:

1. Total variance: the set of data points we have in our sample have a variance. This is
called the total variance.

2. Variance explained: imagine that each data point is set to the value of its group mean:
these new data points have a new variance, which will be less than the original data
points. This new variance is the variance explained by the effect of the IV.

3. Variance unexplained: now we can look at just the difference between these new data
points and the original data. This set of values has a variance, which is also less than
the variance of the original data points. This third variance is the variance
unexplained, which is also called the variance of the residuals .

The F-statistic is proportional to the ratio of variance explained divided by variance
unexplained. There is a corresponding F distribution that shows how the values of F are
distributed for the population of the null hypothesis, in the same way there is a t
distribution. This F distribution can be used to find the p-value. To convert the F-statistic to
a p-value we need two different degrees of freedom (number of groups – 1, number of
participants – number of groups).
Recall from the previous section that the t-statistic involved the ratio of two standard
deviations: due to IV and residuals. If we squared the t-statistic, it would involve the same
ratio of variances as is the F-statistic .

Notes on one-way ANOVA



The one-way ANOVA is used when there is a Categorical IV with three or more groups. In
the same manner as t-tests, there are slightly different tests for a between-participants
design versus a within-participants design. A within-participants design is called a one-way
repeated measures ANOVA.
The most commonly used effect size for a Categorical IV (three or more categories, or
Cat3 in shorthand) → Interval DV situation is η 2 (pronounced eta squared: η is a Greek
letter). It is equivalent to the normalised effect size squared and so gives a simple
proportion of the amount of variance explained by the IV. Typically, anything less than 0.04
suggests a very small effect (low variance explained) and anything above 0.36 suggests a
large effect (more variance explained). Sometimes a cousin, partial η 2 , is quoted. This is
a version of η 2 that is closer to the standardised effect size.

7.2.3 Interval ➔ Interval (correlation)
There is one more case where the DV is an Interval variable: where the IV is also Interval.
All the details are summarised in Table 7.4 .
As with the t-test and ANOVA, there is a computationally convenient route to the p-value.
This time the test-statistic is called the r-statistic and the procedure is called Pearson
correlation (which is often shortened to correlation, but there are actually many different
types of correlation).
Table 7.4 The details for a Pearson correlation.

Note that n = sample size. Results should also quote the mean (M) and standard
deviation (SD) of each variable.

Interval→Interval



Interval→Interval

 Description

test name Pearson correlation

test-statistic r

degrees of freedom (n – 2)

APA test description r(df) = rrr, p = ppp

also quote IV: (M,SD), DV: (M,SD)

most common effect
size

r (typically reported as the test-statistic, because well, just
because)

What is the r-statistic?

We saw that the ANOVA split the variance in the data into some due to the IV and some
left over (the variability within the groups). The same idea can be used here, just with a
modification because the IV is continuous: the regression line allows us to calculate an
expected value for each participant based on the value of their IV. The variance of these
predicted values is the variance explained by the IV.
As we think about the variance in our sample, we have again our three familiar quantities:
total variance; variance explained from the value predicted by the IV; and variance
unexplained by the prediction from the overall mean. We could therefore calculate F or t in
the same way as we did for a Categorical IV and get our value of p . By convention,
however, we do something a little different, but the idea is similar. Instead of comparing
variance explained with variance unexplained, we compare it with the total variance. The
ratio of variance explained to total variance is a quantity that goes from zero (no variance
explained, i.e. no relationship) to one (all the variance is explained). The square root of this
quantity is called the correlation coefficient and is given the symbol r .
If you have been following the pattern so far, you will be expecting an r distribution to go
along with the t distribution and the F distribution. There isn’t one. The r-statistic isn’t
actually the test-statistic; it is converted to t , which is then used as the real test-statistic. It
is converted to t by dividing it by its standard error. However, conventionally r is reported as
the final outcome – just one of those traditions.

7.2.4 Categorical ➔ Categorical (chi-square test of
independence)



We now switch to the situation where the DV is a Categorical variable. This brings an
important difference to the situation. With an Interval DV which has scale values, we could
work in terms of the difference between the value for each individual and the mean value
or regression value. Now, we think in terms of frequencies.
Table 7.5 The details for a chi-square test of independence.

Note that df = (ng1–1) × (ng2–1) and ng1 = no groups in IV; ng2 = no groups in DV. The
contingency table (an example is given in this section) should also typically be provided.

Categorical➔Categorical

 Description

test name chi-square test of independence

test-statistic chi square (chi 2 or χ 2 )

degrees of freedom (ng1–1) × (ng2–1)

APA test description chi(df, n = nnn) = vvv, p = ppp



Categorical➔Categorical

also quote contingency table

most common effect size Chi 2 (chi-square value is a measure of effect size)

The procedure for null hypothesis testing a Categorical → Categorical hypothesis is called
a chi-square test. This time the test-statistic is called the chi-square statistic (typically just
referred to as the chi-square, or chi-square value, and often given as the Greek symbol χ 2
).
The null hypothesis is that there is no effect of the IV on the DV. Converted into
frequencies, this says that the relative frequencies of the different categories of the DV are
the same in all the different categories of the IV: we wouldn’t expect to see a noticeable
pattern if we plotted a graph if the null hypothesis was true.
Let’s use a concrete example: IV=RiskTaker? and DV=Pass?, both with values yes or no.
We are asking the question: is the proportion of people who pass the exam different
among risk-takers than it is among non-risk-takers? Note that we are not asking anything
about the proportion of people who pass, just about whether that proportion depends on
whether you are a risk-taker or not.
If there is a relationship between the IV and the DV, then the relative frequencies of the
various categories of the DV will be different for different categories of the IV. If we treat
our two variables as Categorical (RiskTaker? and Pass?), then a relationship between
these two would result in a higher proportion of people in the yes RiskTaker? category
belonging to the yes Pass? category than is found in the no RiskTaker? category. Visualise
this as a set of cells with the count of participants in each – see Table 7.6 . This table of
cells is called a contingency table . In this case it is 2×2, but it would have other sizes if
either of the variables had more categories.
Table 7.6 Contingency table 1.

This table has the counts for each combination of the categories of the two variables. It
is called a contingency table. For this example , n = 63.

Observed data RiskTaker? no RiskTaker? yes

Pass? yes 17 31

Pass? no 8 7

The null hypothesis is that the proportions of exam passes in the two columns are the
same – both at 76%, which is how many students passed the exam regardless of their
value for the IV. That means that we can calculate a new table that has the counts we
should expect if the null hypothesis is exactly true. This is shown in Table 7.7 .
Table 7.7 Contingency table 2.

This is a contingency table for expected data (to be distinguished from the observed
data in Table 7.6 ). These values come from the percentage calculated above: if the null
hypothesis was true, 76% would be expected to pass from each group of RiskTaker?:
76% of non-RiskTakers is 19, and 76% of yes RiskTakers is 28.9. While physically you
can’t have 28.9 of a person, mathematically speaking, this is what the calculations
require.



Expected data RiskTaker? no RiskTaker? yes

Pass? yes 19 28.9

Pass? no 6 9.1

Then the question becomes this: are the observed frequencies ( Table 7.6 ) sufficiently
different from the expected frequencies ( Table 7.7 ) that we should reject the null
hypothesis? As before, we can use a computationally convenient route, this time with a
chi-square statistic.

What is the χ 2 statistic?

The χ 2 -statistic compares the observed counts in the contingency table with the counts
we would expect if the null hypothesis were true (so very often the expected value is
simply equal counts per category), using this formula:

χ2 = ∑
(observed−expected)2

expected

The bigger this number, the stronger the effect is. If everyone is in the top right or bottom
left cell, then the theoretical maximum value of χ 2 is reached, which is just the number of
participants (when they are evenly divided in the individual categories).
The χ 2 value that we calculate from our sample is then compared with the distribution of χ
2 values that are expected from the null hypothesis and a value for p is obtained. To make
this comparison we have to say how many degrees of freedom are left. When we are
dealing with counts, then what matters for the degrees of freedom is the number of
categories, not the number of participants. We have two categories for RiskTaker?, and so
we only need to say how many one of the two categories has.
The degrees of freedom for a contingency table and a chi-square test are as follows

( number of rows – 1 ) × ( number of columns – 1 )

The chi-square test needs the χ 2 value, the degrees of freedom and the total number of
participants – then it can calculate a p-value. When we report a chi-square test, we must
give all of these quantities: for example, in APA format, chi-square(1,n = 42)= 6.11, p =
0.0134.
Although the details are quite different, especially in that we are using counts not means,
the process is a direct parallel to the process for a t-test.

7.2.5 Interval ➔ Categorical (logistic regression)
The final case we must attend to is an extension of the ideas in Categorical → Categorical,
but for an Interval IV.
When the IV is Interval and the DV is Categorical, the null hypothesis test is called logistic
regression . The test-statistic is once again χ 2 . Logistic regression is a blanket term for
Interval → Categorical testing, and you will find some variations on the internet for different
numbers of categories (all of which contain logistic regression in the name somewhere).



We use the term here to describe a Categorical DV with any number of categories (two or
more).
Table 7.8 The details for a logistic regression.

Note that k = (n2–1) and n2 = no groups in DV.

Interval→Categorical

 Description

test name logistic regression

test-statistic chi square (chi 2 or χ 2 )

degrees of freedom (k)

APA test description chi(df,n = nnn) = vvv, p = ppp

also quote counts of each DV category

most common effect size no common effect size agreed

In the Categorical ➔ Categorical section previously, we compared a set of observed and
expected frequencies. We used a chi-square test to reveal whether or not the proportion
varied significantly between categories of the IV. In this case, we have an Interval IV which



is continuous. The idea is the same in principle: we are interested in the proportion of
participants falling in different categories of the DV – and specifically whether that
proportion varies with the IV. Logistic regression uses the IV to predict the probability that
the DV is one or the other category. So, although it may have been that a person had a
75% chance of passing the exam because of their relatively high risk-taking score, the only
thing we can observe is whether they did pass or not.
It is still possible to find a best-fitting S-shaped line for the data. That best-fitting line is
compared with the null hypothesis by using the χ 2 again. The line tells us what the
expected frequency of each category should be for any value of the IV we need. Our data
tells us what the observed frequency is for the values of the IV in our sample. So, we have
expected and observed counts as before and we use these two to get χ 2 as before. And
we report it in just the same way.

7.2.6 Notes on Ordinal tests
We have now covered the most commonly used tests in detail. These are typically called
parametric tests, due to assumptions that sometimes only certain distributions of data
were appropriate – particular ‘parameters’ were required. We have some more information
about assumptions and testing in our online resources.
Tests designed for ordinal data, or data that does not fit typical patterns of distribution, are
historically known as non-parametric tests. We have included the names of the most
common ones in Table 7.1 , which gives you enough information about them to get started.
They all rely on medians instead of means, as medians are the typical value for an ordinal
data set. And just like parametric tests, they all produce test statistics and p-values. Our
online resources will direct you to our favourite website which provides step-by-step
instructions and explanations for non-parametric analysis, alongside parametric analysis
guides.
It has sometimes been a concern that the parametric tests (the ones we have described
here) rely heavily on the t distribution and the F distribution. These are guaranteed to be
correct only when the distribution of residuals in the data is a normal distribution. If the
residuals do not have a normal distribution, then the t-statistic, F-statistic and p-value might
all be misleading. Because of this, it has been thought wise to use non-parametric tests if
there is a risk that the residuals in a particular sample do not have a normal distribution.
This is a shame, because non-parametric tests typically give a larger p-value than
parametric tests when given the same data.
Actually, in practice the effects of a non-normal distribution of residuals rarely has any
noticeable consequence and the advice is nearly always a little too cautious. Moreover,
since the distribution of values for the residual depends much more on the distribution of
values for the DV than it does on the IV, it is really only the DV that needs some attention.
And, it is quite possible for the DV itself to be skewed or not normal in some other way, but
the residuals to be perfectly normal. If you are considering a non-parametric test because
you are concerned about distributions of values, then you may find it is actually fine to
choose a parametric option.

7.3 TAILS — ONE, TWO OR MANY?
If you take data that would normally go into a t-test and by accident (or on purpose) put
them into an ANOVA, you will get the right p-value. Why? Because the F-statistic is just the
t-statistic squared.
We saw in Chapter 6 that the sampling distribution for a population with zero effect size
allows us to know what the distribution of hypothetical sample effect sizes should be, if the
null hypothesis were true. We then say that if our actual sample effect size is far enough
out into the tails of this distribution of null hypothesis effect sizes (and therefore making it
unlikely to have come from this population where the null hypothesis is true), we can reject
the null hypothesis. The default approach is where we just require our sample effect size to
be far enough out to be satisfied with the result.

7.3.1 Tails and t-statistic
Some combinations of variables result in a t-test. In these cases, the sample effect size is
converted to a t-statistic and that is compared with the Student’s t distribution to calculate
the p-value. If the t-statistic lies in the extreme 5% of the distribution, then we can reject
the null hypothesis. We will call this 5% area of the distribution the critical 5%. This
happens in two specific cases that we have looked at so far:



1. IV is a Categorical variable with two categories, DV is Interval.
2. IV is an Interval variable, DV is Interval.

Recall that despite two Interval variables commanding a Pearson correlation, the r
outcome technically becomes a t -statistic – people just don’t report this step. For both of
the combinations of variables listed above, both the effect size and the t-statistic will have
a clear and unambiguous sign: positive or negative.
The Student’s t distribution has two tails, corresponding to the two signs that t can have. In
the default approach, called two-tailed testing , if the t-statistic we calculate from our
sample lies far enough out in either tail, then we reject the null hypothesis. This means that
the t-statistic must lie in either the most extreme 2.5% of the positive tail or the most
extreme 2.5% of the negative tail.

 Description

Figure 7.3 The Student’s t distribution.
This figure shows the Student’s t distribution for the case where the sample size is 42. On the left, it is
set up so that the critical 5% covers both tails (two-tailed testing); on the right, it just covers the positive
tail (one-tailed testing).

Sometimes, we can have good reason for not expecting and not being interested in one of
the two effect size signs. We may have strong reasons for expecting that the effect we are
studying will have an effect size with a positive sign. We may have a hypothesis that only
makes sense for a negative effect size. In these cases, we can decide to switch to one-
tailed testing before we collect the data . When we do this, we move all of the critical 5%
into the relevant tail of the distribution. When we do this, we are committing ourselves to a
very particular situation. If we use a one-tailed test for a positive sign and our sample effect
size is strongly negative, so negative that with a two-tailed test we would get a tiny p-value,
then we must now regard it as a failure to reject the null hypothesis.
This is exactly like betting: you have your 5% and you can go for the relatively non-
committal two-tailed test (where an outcome in either direction is acceptable) or you can be
specific and go for a one-tailed test. In the one-tailed case, we place the whole 5% where
we expect the sample effect size to lie, increasing our chances of getting a significant
result if our expectations are right.

7.3.2 Tails and F-statistic
If we have a Categorical IV with three or more categories, then it is not so clear what would
count as a positive or a negative effect. To have a sign of effect size here we need to find a
way of ordering the categories. The F-statistic that we calculate in this situation has no
sign: it is just a measure of how different the group means are, not which is the largest or
smallest. This is why the F-test in an ANOVA is called an omnibus test: all possible
patterns of effect are treated equally. It is the equivalent to a two-tailed test. As a side note,
the F distribution only has one tail anyway ( Figure 7.4 ), so we can’t pick our preferred tail.



 Description

Figure 7.4 The F distribution.
The extreme 5% is shaded. Any result falling in this region would be considered statistically significant.

This suggests that the benefits of one-tailed testing are not available for hypotheses that
involve Categorical variables with three or more categories. In the next section , we will
see how that can be overcome.

7.3.3 Contrasts: Directional tests as correlations
One way of thinking about the one-tailed t-test is that it determines a specific direction that
the effect should go in. For example, a one-tailed test might test the hypothesis that risk-
takers do better than non-risk-takers in exams. We would call this a directional hypothesis:
we are saying what direction the effect is hypothesised to go in. With this thought, we can
see that there are only two directions when the Categorical IV has only two categories: the
effect is either positive or it is negative, and the two tails of the t distribution correspond to
these two directions. One-tailed testing is directional testing.
We can start with a Categorical variable with two categories, which we will call C1 and C2.
Now look at this expression:

mean(DV | IV = C1) > mean(DV | IV = C2)

where the vertical line can be read as ‘when’. So, in plain language this says:

the mean value of DV when the IV equals C1
is greater than (>)
the mean value of DV when the IV equals C2

This is a one-tailed hypothesis, spelled out very laboriously. We are going to massively
abbreviate it to:

C1 > C2

now that we have explained what it means. Now the two possible directions or tails can be
written down as:

C1 > C2
C2 > C1



This way of thinking can be applied to Categorical IVs with three or more categories.
Consider the case with three categories. If we call the three categories C1, C2 and C3,
then there are six possible directions:

C1 > C2 > C3
C1 > C3 > C2
C2 > C1 > C3
C2 > C3 > C1
C3 > C1 > C2
C3 > C2 > C1

It is as if this hypothesis, where the IV has three categories, has six possible tails.
However, the F-test is essentially directionless and the F distribution only has one tail to
start with. So we need to do something to modify our data first.
Let’s suppose that the direction we are interested in is specifically this one (just chosen
randomly):

C2 > C1 > C3

Now let’s imagine that in our data we replace the occurrences of the value C2 with the
number 3, C1 with the number 2 and C3 with the number 1. To make it clear:

C2 = 3
C1 = 2
C3 = 1

Before doing this, the value for each participant was one of C1, C2, C3. Now, after we
have done this, the values are one of 2, 3, 1. The numbers we are substituting in are just
the order we expect the group means to follow, with the highest value assigned to the
group that we think has the highest mean. Notice that we have converted our Categorical
IV into a numeric DV by turning the categories into ordered numbers based on how we
expect their effect on the DV to be ranked. C2 gets a 3 because we expect it to have the
greatest effect on the DV, and so on.
We can then do something very simple. We just do a correlation between this new variable
and the DV and subject the outcome to a one-tailed test. If the correlation is positive and
that test is significant, we can reject the null hypothesis. If the order of the means for the
different categories is different from the one we are interested in, the correlation won’t be
strongly positive. This conversion and correlation process is called a contrast test and it is
how we do a directional test when we don’t have a t-test.

7.3.4 Summary
Sometimes we have a good reason for expecting the effect we are studying to go in one
specific direction. In that situation, we can build a directional hypothesis: one that includes
the effect sign. When we do so, we are duty bound to treat any result that doesn’t conform
to the direction as a failure to reject the null hypothesis, even if it would be wildly
significant.
The benefit of one-tailed testing is quite dramatic: the p-value is halved. The reason for this
is simply that we are able to ignore one of the tails. Let’s say, for example, we have an
effect size of 0.3. When we do a two-tailed test, then we are asking what the probability is
of the null hypothesis producing sample effect sizes that are either (i) greater than +0.3 or
(ii) less than –0.3. When we do a one-tailed test we are only asking about one of the two –
so half the probability.
We can do this when we are using the t-test but not when we are using the F-test.
However, we can always convert a Categorical variable into an Interval or Ordinal one by
choosing a direction for the effect. Then we can use correlation (which is based on the t
distribution) to achieve the same benefit as one-tailed testing.



7.4 A LITTLE EXTRA KNOWLEDGE
If you take data that would normally go into a t-test and by accident (or on purpose) put it
into an ANOVA, you will get the right p-value. Why? Because the F-statistic is just the t-
statistic squared.
Actually, if you code the two categories in the IV for a t-test as two different numbers (say
42 and 65), then a correlation between a column of those 42s or 65s and a column with the
DV values will also give you the right p-value. Why? Because correlation uses the t-
statistic behind the scenes.
You will also see that in every table for a statistical test we have included the most
commonly reported effect size. We are still of the opinion that r is the most useful effect
size, and the other values provided could all be converted to r to make results easier to
compare and translate to a wider audience.

 The Big Picture
We have kept the details in this chapter to a minimum for you to understand. Once
upon a time, researchers had to calculate all these test values by hand or use
books of tables to get there. Those days are gone now and we can rely on software
to do all the work. So, it is now much more important to understand what a t-test is
(for example), so you will know what it tells you.

Selecting a test is easy
1. Use the IV versus DV 2×2 table to look it up: we have included the most basic

one below (see Table 7.9 ), or you can refer back to Table 7.1 earlier in this
chapter.

2. This is not a decision that requires any kind of work: the type of your variables
completely determines what test to do. It is just a case of looking it up. Literally.

3. Often non-parametric tests are the result of over-cautiousness: even if your
data does not look normally distributed, often the pattern of the residuals still is.

Doing a test is easy
1. We need a test-statistic (such as t , F , χ 2 ). This is just an intermediate

calculation to get to the p-value.
2. We also need the degrees of freedo

a. Degrees of freedom are a count of how much explaining of the data
remains. To start with, we have n data points to explain. Each time we
calculate a new statistic, such as a group mean, we have done one piece
of explaining and the degree of freedom goes down by 1.

Reporting results is easy
1. In psychology the ‘APA’ style is normally used. We have included the relevant

resources here, which can also be found all over the internet.
2. It should be said that we, the authors, think that the APA have actually got this

wrong and that it is more important to write down what should be the r-family
effect size, the sample size and (maybe) the p-value. However, it is
straightforward enough to include effect sizes with your results, alongside an
APA-style write-up of your null hypothesis tests, to keep everyone happy until
psychology moves forwards …

Table 7.9 Cheat sheet for two-variable tests – a summary of the specific details for the tests for each type of
two variable hypothesis.



 
 IV

 Categorical Interval

DV Categorical Bar chart
Contingency table
chi-sqr independence
chi2(dof,n = ??) = ??, p = ??

Bar/line hybrid
logistic coefficients
logistic regression
chi2(dof,n = ??) = ??, p = ??

Interval Line graph
Group means and sds
t-test or ANOVA
t(dof) = ??, p = ??
or
F(dof1,dof2) = ??, p = ??

Scatter plot
regression coefficients
correlation
r(dof) = ??, p = ??

 Your Turn
Fill in the gaps in these sentences:

1. A Pearson correlation is used when the IV is ___________ type and the DV is
___________ type.

2. A t-test compares two ___________.
3. An F-statistic is the result of a ___________.
4. A Categorical IV (3 categories) and a Categorical DV lead to a ___________

test.
5. APA format is used to ___________.

ANOTHER ACTIVITY AND ANSWERS ARE AVAILABLE ONLINE

Your Space
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Descriptions of Images and Figures
Back to Figure
Risk taker with a question mark is a bar graph which leads to a distribution graph titled
exam grade. There are two distribution curves corresponding to null hypothesis. In both
graphs, the vertical axis is labelled frequency and ranges from 0 to 1 in increments of 0.2.
All data are approximate.

In the first graph, the horizontal axis is labelled sample effect size and ranges from
negative 0.5 to 0.5 in increments of 0.5. A normal curve starts at (negative 0.3, 0),
peaks at (0, 1), and ends at (0.3, 0).

In the second graph, the horizontal axis is labelled t-statistic and ranges from negative
4 to 4 in increments of 1. A normal curve starts at (negative 2, 0), peaks at (0, 1), and
ends at (2, 0).

Back to Figure
The diagram flows as follows:

Raw data

Sample effect size standard error leads to test-statistic, which in turn leads to p-
value.

Sample size leads to degrees of freedom, which in turn leads to p-value.

Back to image
The horizontal axis is labelled IV and lists c 1 and c 2. The vertical axis is labelled DV and
ranges from negative 1.5 to 1.5 in increments of 0.5. All data are approximate. The plot for
c 1 is at negative 0.4 with an error range of negative 0.5 to negative 0.1. The plot for c 2 is
at 0.25 with an error range of 0 to 0.5.
Back to image
The horizontal axis is labelled IV and lists c 1, c 2, and c 3. The vertical axis is labelled DV
and ranges from negative 1.5 to 1.5 in increments of 0.5. All data are approximate. The
plot for c 1 is at negative 0.6 with an error range of negative 0.9 to negative 0.4. The plot



for c 2 is at 0.5 with an error range of 0.25 to 0.7. The plot for c 3 is at 0.1 with an error
range of negative 0.25 to 0.4.
Back to image
The horizontal axis is labelled IV and ranges from negative 4 to 4 in increments of 2. The
vertical axis is labelled DV and ranges from negative 4 to 3 in increments of 1. All data are
approximate. The plots are scattered around a line that slopes upward from (negative 4,
negative 2) to (3.8, 1.8).
Back to image
The horizontal axis is labelled IV and lists c 1 and c 2. The vertical axis is labelled p of DV
and ranges from 0 to 1.2 in increments of 0.2. All data are approximate. The data for c 1 is
0.3 with an error range of 0.05 to 0.52. The data for c 2 is 0.7 with an error range of 0.4 to
1.
Back to image
The horizontal axis is labelled IV and ranges from negative 3 to 3 in increments of 1. The
vertical axis is labelled frequency DV equals d 2 and ranges from 0 to 1 in increments of
0.2. All data are approximate. The data for bars are as follows. Negative 1.4: 0.15.
Negative 0.2: 0.45. 1: 0.75. 2.1: 0.81. An S-shaped curve rises from (negative 3, 0.05) to
(3, 0.95).
Back to Figure
In both graphs, the horizontal axis is labelled t, ranging from negative 5 to 5 in increments
of 5, and the vertical axis is labelled frequency, ranging from 0 to 0.4 in increments of 0.1.
All data are approximate. A normal curve peaks at (0, 0.4).

In the first graph, the regions to the left of t equals negative 0.25 and to the right of t
equals 0.25 are shaded.

In the second graph, the region to the right of t equals 0.25 is shaded.

Back to Figure
The horizontal axis is labelled F and ranges from 0 to 10 in increments of 2. The vertical
axis is labelled frequency and ranges from 0 to 1 in increments of 0.2. All data are
approximate. A curve falls in a concave up manner from (0, 1) to (8, 0). The region under
the curve to the right of F equals 0.32 is shaded.
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This intermezzo will have slightly more mathematics than the
others. However, you should be able to skip through any maths
and still get an overview of the story we are telling here. All the

maths is placed in boxes outside the main text. The first one just
introduces the notation we will be using, much of which will

already be familiar.

How to Do the Maths 1
There is nothing mathematically advanced in this
Intermezzo, although occasionally the way things are
written down looks complicated because it uses concise
notation to make things shorter on the page. In this first
How to Do the Maths box, we just explain the notation.
Here is the normal p-value from NHST as a sentence and
then as a formula using all the notation we will need. The
notation has the benefit of being compact.

Sentence : ‘ p is the probability that samples with an
effect size of 0.3 or greater will be produced by the
null hypothesis’

Notation : p ( r s ≥ 0.3 | r p = 0)

There are three parts to the notation.

1. We use subscripts to identify specific versions of
something. When we write r p , we mean the
population ( p ) version of effect size ( r ). So r p is
‘population effect size’ and r s is ‘sample effect size’.



2. We want a compact way of writing ‘samples with
effect sizes greater than or equal to 0.3’. We will do
this with the mathematical symbol for ‘greater than or
equal to’: r s ≥ 0.3.

3. We are only interested in the samples r s ≥ 0.3, when
r p = 0 (i.e. when the population effect size is zero).
We will use this symbol ‘|’ to express the ‘when’: ( r s
≥ 0.3 | r p = 0).

4. Finally, the probability part is just this: p ( r s ≥ 0.3 | r
p = 0).

To start with, Figure Im2.1 shows a space that we can use to plot
any combination of a sample effect size ( r s ) and whatever

population effect size ( r p ) it came from. In the figure, we show
a sample that came from a population with an effect size of r p =

0.4, with a sample effect size of r s = 0.3 . Of course, we
normally don’t know the population effect size and so this figure

is always going to be hypothetical.



Description

Figure Im2.1 A space that contains all possible
samples.
Every sample has a sample effect size (plotted left-right) and comes
from a population with a population effect size (plotted top-bottom). A
single sample is shown as a white dot.

We can use the same two-dimensional space to show all the
samples that come from a null hypothesis. These will all lie on

the horizontal line that runs through r p = 0 and extends from r s
= –1 to r s = 1. There are more samples towards the middle

(where r s = 0.0 – remember, this is the null hypothesis so there’s
no effect in the true population) and very few out on each tail.

Figure Im2.2 shows this, although instead of looking down from
above onto the space, we are now looking at it from the side. It

should be familiar as we have already seen it in Chapter 5 .



Description

Figure Im2.2 The null hypothesis.
This is the distribution of samples that a particular design (n = 42 )
will produce from a null population (r p = 0 ). The dark area to the
right shows all of the samples that have a sample effect size greater
than 0.3. The area of this dark part compared to the area of the
whole is the probability that the null hypothesis will produce a sample
effect size greater than or equal to 0.3.

IM2.1 WHY DO WE NEED
ALTERNATIVES TO NHST?
NHST is the most commonly used form of inferential analysis in
psychology. But it is neither the most intuitive nor perhaps the
most useful way to analyse data. While NHST has many
limitations, we will focus on two of the most important ones here.

Im2.1.1 NHST asks an unhelpful question
NHST attempts to answer a question that is not really natural: ‘
What is the probability of our data, assuming the null hypothesis
is correct? ’
This is weird given that we have the data in front of us. Instead
of this, there are two more intuitive questions we would naturally



ask:

‘What is the probability of the null hypothesis (or any other
hypothesis), given my data?’, and

‘Is it more probable that my data came from population x or
population y ?’

These two questions are the starting point for the Bayesian
approach to inferential analysis, and beyond that, the Likelihood
approach. Both are featured in this Intermezzo.
On the face of it, it is surprising that anyone still does NHST,
given how appealing those two Bayesian questions are. The
reason is found inside the mathematics. Neither question can be
answered without a critically important piece of information. That
information is the a-priori probability of the hypotheses involved.
We have to either know, estimate or guess that before we begin.
Since we rarely know that information, we will have to guess it
and that introduces a whole new range of uncertainty into the
process. Many would say that this new uncertainty is also
subjective: your guess will be different from mine.

Im2.1.2 NHST only considers a single
population effect size
NHST can only consider whether to reject a single hypothetical
population effect size. Moreover, that hypothetical population
effect size is not the one we are interested in.
In the null hypothesis testing approach, we refer to a range of
sample effect sizes ( r s ≥ 0.3) but only one population effect size
( r p = 0). We can calculate p ( r s ≥ 0.3 | r p = 0) = 0.03. However,
at best, hypothesis testing like this only allows us to say that the
population effect size (probably) isn’t r p = 0.0. But it could be
literally anything else – we haven’t obtained any evidence about
any particular effect that we are curious about.
We can change the population effect size that we test to some
other value (although this is never done) and calculate a p-value
for that single hypothetical population effect size, hoping perhaps
to reject that hypothesis. For example, we could calculate p ( r s
≤ 0.3 | r p = 0.5) = 0.07 if we wished. With this result, we can’t
even say that the population effect size isn’t 0.5.
Why can’t we use hypothesis testing to say that the population
effect size isn’t more than 0.5 ? We cannot because ‘more than
0.5’ refers to a range of hypothetical population effect sizes, not



a single one. When we calculated that p ( r s ≥ 0.3 | r p = 0.5) =
0.07, that refers to a world where the only population effect size
is r p = 0.5. This is not the same as calculating how often our
sample might come from a world that has many different
population effect sizes ranging from 0.5 upwards.

IM2.2 THE BAYESIAN APPROACH TO
INFERENTIAL ANALYSIS
The Bayesian approach allows us to ask more natural questions
about possible populations. We will look at just one, although
there are many other possibilities. Let’s focus on the question:
‘How probable is the null hypothesis, given that my sample is
true?’ This is not the same question as the one in NHST, and in
fact, historically, this new probability was called the inverse
probability . It is the opposite of the familiar NHST probability.
The Bayesian approach can answer this question, but with one
potential problem, which is that we need extra information about
the possible populations before we begin. We need to know how
probable a population effect size is before we can ask how
probable it is that our sample came from that population. We will
work carefully through this now.
Imagine a world where the population effect sizes are all either r
p = 0 or r p = 0.5. Moreover, imagine that in this world 75% of the
populations are ones with r p = 0, so 25% have r p = 0.5. This
imaginary world is illustrated in Figure Im2.3 .



Description

Figure Im2.3 Two sampling distributions are shown.
The further one has r p = 0 and accounts for 75% of all populations,
so it has an area of 0.75. The nearer one has r p = 0.5 and accounts
for 25% of all populations, so it has an area of 0.25. Taken together,
the two distributions have a joint area of 1.0. The frequency with
which a sample effect size of 0.3 is produced by each population
effect size is shown as a vertical black line on those distributions.
Despite 0.3 being closer to 0.5 than to 0.0, it is produced more
frequently by r p = 0 because that population effect size is so much
more common.

Our first step is that we make a hypothesis in this world. We
don’t know what the population effect size is for this hypothesis,
but at the start we know it has a 75% chance of being r p = 0. If
forced to guess, we would say that our hypothesis is most likely
to have a population effect size of zero. Our next step is that we
get a sample of data to find out a bit more about our hypothesis.
We calculate that it has a sample effect size r s = 0.3. Recall that
NHST gave us p ( r s ≥ 0.3 | r p = 0) = 0.03, and with this we
would reject the null hypothesis (because 0.03 is less than the
cut-off of 0.05).
Now let’s look at the Bayesian approach. We will provide the
calculations below in the next subsection and the mathematics in
a How to Do the Maths box for those who are interested. To
jump to the result, the Bayesian calculation of inverse probability



in this imaginary world gives this: p ( r p = 0 | r s = 0.3) = 0.59.
Please let this difference shock you – it should. Let’s write them
again:

NHST: p ( r s ≥ 0.3 | r p = 0) = 0.03

Bayes: p ( r p = 0 | r s = 0.3) = 0.59

With NHST analysis, we reject the hypothesis that r p = 0. With
the Bayesian analysis, we conclude that r p = 0 is the most likely
explanation for our sample. Gulp!
Why such a big difference between NHST and Bayes? Well,
don’t forget that we have made a very improbable imaginary
world. Beyond that there are two reasons. First, the NHST
approach does not take into account that r p = 0 is very common
in this imaginary world we are dealing with, but the Bayesian
approach does. Second, the Bayesian approach allows us to
consider the different parts, r p = 0 and r p = 0.5, of the
hypothetical world separately. NHST cannot do this because it is
limited to a single population effect size.

Im2.2.1 The Bayesian calculation
described
We want to show you what the Bayesian calculation does. To do
this, we will stick with the imaginary world of our example.
Imagine that, in that world, we have randomly chosen a
hypothesis. This hypothesis has an unknown but fixed
population effect size. We run a study and get a sample of data
from that population with a sample effect size r s = 0.3. Although
this is a thought experiment, we will call this sample the ‘real
sample’ because in real life it would be. We want to use this
sample to calculate how probable it is that we chose a
population with a population effect size r p = 0 in this hypothetical
world.
Our imaginary world has an unlimited number of populations and
75% of them have r p = 0. We can imagine simulating our
procedure of choosing a hypothesis and getting a sample in this
world. We would do this:

1. We take a random population from that world.
2. We take a random sample from that population.
3. We calculate what the sample effect size is.



In this simulation (but not in real life), we can actually notice what
the population effect size was for our randomly chosen
population. That means that we can record this simulation as a
point on our two-dimensional diagram. This is shown on the left
of Figure Im2.4 .
Now we can do this whole simulation repeatedly, accumulating
more and more outcomes as a combination of a randomly
chosen population effect size and sample effect size, adding
each one to the plot in Figure Im2.4 . Eventually, repeated
enough times, this process will give us the same distribution of
population and sample effect sizes as we have already seen in
Figure Im2.3 . That is the end of the simulation; now we turn to
see what the simulation tells us. Note that as we do this, each
simulation has a potentially different randomly chosen
population.
We are only interested in simulation samples that have the same
sample effect size as our real sample. The populations that
these simulated samples came from will tell us something about
where our real sample could have come from. We can count
what proportion of those specific simulated samples with an
effect size the same as our real sample came from the
population ( r p = 0). This proportion would be the probability that
our real sample came from that population. So the inverse
probability is this fraction:

probability that rs = 0. 3 from rp = 0

probability that rs = 0. 3 from any rp



 Description



Figure Im2.4 The three stages in the simulation
process.
In the first is the real sample itself, plotted with its population effect
size and its sample effect size. In the second, 100 simulations have
been run and the results are shown. We would be interested in the
samples that fall between the two vertical white lines. The bottom
shows the process after 1000 simulations. At this point, of the
samples with a sample effect size close to 0.3, 73% have a
population effect size of r p = 0. With more samples, this proportion
will converge on 59%.

How to Do the Maths 2
We should find a way of calculating the Bayesian inverse
probability that doesn’t involve actually running a
simulation.

1. Think first about the population r p = 0. How often
does it produce a sample with an effect size r s =
0.3? This can be calculated, but here we will just
write it down as:

p ( r s = 0.3 | r p = 0)

which is a variant of the way we wrote the ordinary
probability from NHST (here we have replaced the ≥
with an =).

2. In our imaginary world, we have specified the
probability of the population being r p = 0:

p ( r p = 0) = 0.75

3. So, the probability of getting a real sample that (i)
has r s = 0.3 and (ii) has r p = 0 is those two
probabilities multiplied together:

p ( r p = 0) × p ( r s = 0.3 | r p = 0)



This isn’t yet the probability that we want but it is
halfway there. This is the proportion of all the
samples that this world produces that meet our
conditions. We want the proportion of only those
samples that have r s = 0.3 that meet our conditions.

4. We need to compare the proportion of samples
that meet the two conditions ( r s = 0.3 and r p = 0)
with the proportion of samples that have r s = 0.3.
Let’s write the probability that a sample has r s = 0.3,
regardless of what population effect size it came fro

p (r s = 0.3)

although we haven’t yet said how to calculate that.
Nonetheless, using that allows us to say that the
probability we want, the Bayesian inverse probability,
is this:

p (rp=0) × p (rs=0.3 | rp=0)

p (rs=0.3)

which looks a little tidier like this:

p (rp = 0|rs = 0. 3)=
p (rp=0)

p (rs=0.3)
× p(rs = 0.3|rp = 0)



This formula is known as the Bayes Rule, having
been first established by Rev. Thomas Bayes. It
shows how we can invert a probability and what we
need to know in order to be able to do that.

5. Finally, we can add in this as the way to calculate
the probability p ( r s = 0.3). It is the sum of those
produced from each possible population effect size.

P ( r s = 0.3) = p ( r p = 0) × p ( r s = 0.3 | r p = 0)
+ p (r p = 0.5) × p ( r s = 0.3 | r p = 0.5)

which is a little inelegant but everything in it can be
calculated.

Im2.2.2 Bayes terminology
The Bayesian approach has some terminology that helps us
here. In our example world, before getting our sample, we knew
something about the world. We knew that there were two
population effect sizes and we knew their relative frequencies.
Before getting the sample, we could say that the probability that
the sample would come from r p = 0 was 75%. This advance
knowledge is called the prior and it can be knowledge or a belief
about the situation. We then got our sample, which we think of
as evidence. The Bayesian process combines this evidence with
the prior to produce as an outcome a new knowledge or belief
about the situation. This outcome is called the posterior . That
posterior could subsequently be used as the prior for the next
sample we obtain and we would then have a new posterior. In
this way, the Bayesian approach is a system for updating what
we know in the light of new evidence. But it has to start with
something – even if that is a pure guess.
We can use our figure to show these elements of the Bayesian
approach. Figure Im2.5 (left) is a repeat of Figure Im2.3 with one
important addition – we have drawn the relative probabilities for
the two populations effect size as vertical lines on the far right-
hand wall of the plot. This is the Bayesian prior. There are also
vertical lines drawn on the two sampling distributions themselves
at the sampling effect size r s = 0.3. These form the Bayesian
posterior. For comparison, the figure also shows on the right
another situation where the r p = 0.5 is commonest. The
posterior for r s = 0.3 is now quite different.



Description

Figure Im2.5 The effect of two different distribution of
population effect sizes.



At the top, there are three times as many r p = 0 as there are r p =
0.5. In the lower graph, the situation is reversed. These distributions
are shown on the right-hand wall of the graphs and are called the
priors in the terminology of Bayesian analysis. The vertical lines on
the two sampling distributions in each graph show the relative
probability of the two possible population effect sizes. In Bayesian
terminology these are the posteriors.

Im2.2.3 Limitations with the Bayesian
approach
Now we must turn to the issues with this approach. There are
two really: one is conceptual and one is technical. Both concern
the prior, the relative probabilities of all the possible population
effect sizes. Both were avoided in our example above by the way
we declared that the relative probabilities of the only two
possible population effect sizes were 75% and 25%. Normally
you wouldn’t be able to do that with such exact confidence.
However, Bayesian statistics does require you to have some
kind of prior knowledge about what you are studying. In fact, the
Bayesian approach is an approach that only updates what we
already know. This is inescapable and if we know nothing we are
in trouble. It would be sensible to find a neutral prior, called an
uninformative prior , one that doesn’t really say anything. Often
it is supposed that the closest to neutrality is to assume that all
possible populations are equally likely – that certainly sounds as
if it would be neutral. Unfortunately, it is not neutral and probably
wrong. It is often said that the initial prior doesn’t matter much
because as evidence begins to accumulate, the evidence will
outweigh the original prior.
The technical issue relates to probabilities. For any situation, if
we add up the probabilities of all the different possible outcomes,
the sum must come to exactly 1. That was easy in our example
in a world with just two population effect sizes. It is more difficult
in a world with an infinite number of different population effect
sizes. If we add up an infinite set of numbers, we are likely to get
either zero or infinity. Neither of these is a 1. If our prior is
continuous, say between –1 and 1, then there is an infinite
number of possible population effect sizes. So, mathematically
our prior cannot add up to 1, which means it cannot be a
probability. In some situations, but not all, there is a technical
way around this using a probability density function (this is
explained in How to Do the Maths 3). In other situations, such as
if we were using standardised effect sizes that range from 0 to
infinity, that technical way round doesn’t work and there is a real
problem.
There is a final approach to inferential analysis – very close
actually to what we already have in Chapter 5 – that does
something to avoid this issue with probability completely.



How to Do the Maths 3
No matter how many samples we imagine taking in our
simulation, the number that have a sample effect size that
is exactly r s = 0.3 will be tiny. In theory, the probability p (
r s = 0) is zero.

1. To deal with this, we must look for samples that are
within a small range either side of 0.3: for example,
sample effect sizes such that 0.2999 < r s < 0.3001.

2. If we write the small range as δ r then there is a nice
mathematical way of doing this. We use the
probability density function at r s = 0.3 and multiply
this by δ r , so that we have this:

p(0. 3 − δr
2 < rs < 0. 3 + δr

2 ) = pdf (rs = 0. 3) × δr

The probability density function is what the sampling
distribution becomes when it is continuous. Instead of
simple probability, it shows how much probability is given
by each possible sample effect size.

3. This is quite safe provided δ r is small: as close to
zero as possible.

4. That means that, strictly speaking, we should
replace p ( r s = x ) by pdf ( r s = x ) × δ r wherever it
appears in this Intermezzo. That would undoubtedly
be tedious.

5. We can skip doing so, because the inverse
probability that we have been interested in is a
fraction that would then have a δ r on the top and
another δ r on the bottom. So they cancel each other
out. We only need the δ r in order to get to the point
where it cancels out. You’ve got to admire maths
sometimes.



IM2.3 THE LIKELIHOOD APPROACH
When we say that the probability that p r = 0 is 0.75, we are
saying something very precise. Sometimes that is very useful.
But the word ‘probability’ locks us into a set of constraints that
creates problems. For example, if we say that the probability is
3.9, then we have made a mistake somewhere.
Contrast that with when we say that the likelihood that p r = 0 is
3.9. This statement has no meaning: we are saying nothing at
all. Likelihoods on their own are unhelpful. Now consider when
we say that the likelihood that p r = 0 is twice the likelihood that p
r = 0.5. This statement does have a meaning: it tells us which
hypothesis to prefer and by how much to prefer it.
We can use the same Bayesian updating logic, but using
likelihoods instead of probabilities, and a comparison of two
hypotheses will work well. We need the prior relative likelihood
instead of the relative probabilities. This time, if it seems
appropriate, we can set the likelihood for each population effect
size to be 1.0.
By being less stringent about what an individual likelihood
means, we can side-step the issue with probabilities. So, if we
want a prior that covers the range of effect sizes from 0 to
infinity, for example, and sets every value in that range to the
same prior likelihood, then we can set them all to 1, or 3.9 or 42
or anything we like. This change, to likelihoods from
probabilities, means that we can only compare different possible
population effect sizes (and choose the most likely).
We will finish this discussion with one more example, shown in
Figure Im2.6 . We have a sample with r s = 0.3, as before. This
time we consider two different priors that are continuous, rather
than discrete, as in the example before. Because the priors are
continuous and are non-zero everywhere, this corresponds to a
situation where any population effect size is possible. We would
look for the population effect size that has the highest likelihood.
On the left of the figure is the familiar case where we suppose
that the distribution of r p is uniform (this would be the so-called
uninformative prior). In this case, the maximum likelihood
estimate for the population effect size is the same as the actual
sample effect size r s (0.3). On the right is an alternative, and
likely more realistic, distribution, where larger effect sizes are
less common than smaller ones. In this case, the maximum
likelihood estimate of the population effect size, given the
sample effect size of r s = 0.3, is actually r p = 0.22. This shows
how the issue of the prior, uninformative or not, is not neutral.



Description

Figure Im2.6 The likelihood approach with
continuous prior distributions.



The two graphs have different prior distributions as shown on the
right-hand wall of the plots. In each case, the evidence (r s = 0.3) is
the same as shown on the far-back wall. The posterior, the
distribution towards the centre of the plot, is different in the two cases
and the maximum likelihood estimate of the population effect size is
also different. In the top graph it is 0.3, but in the bottom graph it is
0.22.

IM2.4 SUMMARY
We have seen three different approaches and each has
strengths and weaknesses.
Null hypothesis testing, and what we have called ordinary
probabilities, works well for a single sample. It evaluates how
probable our sample is, given a single hypothesis, and allows us
to consider whether we can reject a single hypothesis – usually
the null one. It does not use any knowledge that we might
already have about the population in question. However, it does
not tell us anything about possible alternative hypotheses that
we are interested in.
The Bayesian approach, using inverse probability, on the other
hand, evaluates the probability of a hypothesis, given a sample.
This is undoubtedly a more intuitive question to try to answer. It
also explicitly involves any knowledge or beliefs we may hold
about the population. And that is both its strength and its
weakness. It doesn’t merely involve such knowledge; it requires
such knowledge. If we don’t have any knowledge, then we have
to invent it. This introduces unknown uncertainty into our
conclusions.
The likelihood approach does not evaluate a probability at all. It
can tell us nothing about a specific hypothesis. What it does is
tell us the relative likelihood of different hypotheses. We can
then choose the most likely hypothesis, the one that has the
highest likelihood. In Chapter 5 , we showed likelihood functions
and suggested that the peak of that function – the place where it
is highest – is the best estimate for a population effect size. Now
we see why.
In that chapter, we also said in passing and without explanation
that we were supposing that all population effect sizes were
equally likely. Now we have seen why we had to say that. Of
course, it is very unlikely that all population effect sizes are
equally common in our discipline; it is much more likely that
small effect sizes are much more common. The contents of this
Intermezzo will allow you to have some sense of what that might
mean. Our example, with r p = 0 being three times as common
as r p = 0.5, was enough to make it considerably more likely that
a sample effect size of 0.3 came from the r p = 0 than from the r p
= 0.5, which is actually closer to 0.3.
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(0.85, 0.5).
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(0.85, 0.5).
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When we are trying to answer a research question, we must use evidence – for our
purposes that is data. A sample doesn’t simply happen and give us data: we need to go
out and actively get it. In order to collect that data and make sure that it answers our
research question, we use a research design to plan the process. The research design is a
set of decisions that we make about how to obtain our data.
It may seem like we are coming to the question of how to obtain data quite late in the day:
after all, the data we were analysing in the previous chapters had to come from
somewhere. However, in order to create a good design, it is important to understand how
the decisions we must make matter. All the previous chapters provide key building blocks
that we will use now to explore how they shape research design.
In Chapter 5 , we examined the concept of uncertainty in research: the gap between the
knowledge about our sample and the knowledge it gives us about the population. As we
saw, uncertainty always exists when we take a sample and use it as a guide to the
population, and we use statistics to estimate that uncertainty. The amount of uncertainty is
strongly influenced by the way in which we get our data: our research design.
Once we have data, the outcome is fixed: there is nothing further we can do to reduce the
uncertainty. For that reason, it is very important to develop the research design carefully
before beginning to collect data. We will look at research design in depth in this chapter
and the next two chapters. Just like Chapter 5 , this chapter begins with theory that will
help you understand why your research decisions are important.
There is really only one new idea in this chapter. We have already seen in Chapter 5 how
we can calculate how much uncertainty a result has. We are now going to take that a step
further and compare the uncertainty that would be produced by different research designs,
before we do the research, to see which design is likely to lead to the lowest uncertainty.
Because we are building a further understanding of uncertainty in this chapter and the next
two, just like Chapter 5 there are lots of diagrams and graphs that illustrate uncertainty
using various formulae. These are not something you would expect to produce for yourself.
However, if you are interested, you will find details online.

8.1 A BRIEF RECAP OF UNCERTAINTY
The purpose of doing research is to find out something new and useful, and then to
persuade others to accept it. We know that the process of using a sample from a
population introduces an unavoidable uncertainty – called sampling error – and that
uncertainty can, if large enough, mean that either we don’t succeed in finding out
something new and useful, or we fail to persuade others. This is the fundamental reason it
is important to care about research design: it is how we manage the uncertainty as much
as possible.
For example, suppose we had done the research and we had found that there is a 50–60%
chance that risk-taking affects exam grades. This would mean that there is a 40–50%
chance it doesn’t. With high uncertainty, we are very unlikely to persuade anyone else that
we have found something that is worth knowing. We would probably be looking at our data
with hindsight saying ‘if only …’ about all the things we could have done better. So, we
need to approach the research with an understanding of which decisions we can make to
help avoid such an uncertain outcome.
Even before we do any research, we can explore the range of possible outcomes to refine
how we do our research. By doing this, we will make sure that our result is not more
uncertain than necessary. It’s quite like having the hindsight before the event. A bit of
careful thought and planning can considerably improve our chances of having a clear
result that will persuade others.

8.2 PLANNING AHEAD: PREDICTIONS
The first and most important ingredient we need to make a research design is a good
prediction. Let’s start with our RiskTaker and ExamGrade scenario. In Chapter 5 we simply
said that the population had an effect size of 0.3 and explored what that would mean for
samples. This time we are going to make a prediction about the relationship between the
variables RiskTaker and ExamGrade: we predict that the effect size will be 0.25 and we will



call this the predicted effect size. Prediction is just a formal word for our expectation of
what may turn out to be true. We may have reached this prediction because of a string of
published research that leads us to it, or it may be a wild guess. The difference between
making a prediction and what we were doing in Chapter 5 isn’t very much. Before, we were
just saying what the population effect size was; now we are saying what we predict it is.
Much more importantly, in Chapter 5 we just said that the design for the sample was going
to be 42 participants obtained randomly from the population (for no particularly good
reason). Now, we are going to ask what design would be best. To do that, we will look at
uncertainty just as in Chapter 5 , but for the purpose of finding out what design gives us the
best outcome. This is using our prediction to plan ahead: to make sure that whatever result
we get is as good as we can feasibly achieve.
Table 8.1 Two different types of research question.

Research asks two different sorts of question and the approach to uncertainty and
design reflects the differences. For both questions, our principle objective must be to find
an accurate and correct answer. Although null hypothesis testing often generates a
desire to get a statistically significant result, we must try to avoid being controlled by that
desire – even if that means our p-value isn’t below 0.05.

 Effect existence? Effect strength?

Two types
of question

Research commonly asks a question about whether an
effect exists or not (does RiskTaking? affect
ExamGrade?).

It’s much more interes
variable affects anoth

Two types
of answer

This is answered with null hypothesis testing to say
whether the sample effect size is large enough.

The sample effect size
effect size.



 Effect existence? Effect strength?

Two types
of
uncertainty

We saw in Chapter 6 that the uncertainty in our result is
whether we have made a Type I or Type II error.

We saw in Chapter 5 
likelihood function is.

Two types
of tool

Description

Sampling distributions shows us what samples we
should expect from a population.
The sampling distribution from the null hypothesis
population (behind) and the real population (in front),
combined, show us what to expect.
The null hypothesis distribution divides the full range of
sample effect sizes into two: significant (shaded) and not
significant (unshaded).
A Type I error is when our sample falls in the shaded area
of the back distribution. A Type II error is when our sample
falls in the front shaded area.
Our uncertainty in this case corresponds to the combined
shaded areas in the two sampling distributions.

Description

Likelihood functions s
given us our sample.
The likelihood function
Our uncertainty in this
distribution.

We start with our prediction and then explore what research design will give us the lowest
amount of uncertainty in our result. This means that our focus is now not on what the
uncertainty will be, as it was in Chapter 5 , but on what we can do to reduce it.

8.2.1 Uncertainty about effect strength
If we are asking a question about the strength of an effect, then we are interested in the
sample effect size and the amount of uncertainty associated with that as an estimate of the
population effect size. Once we have a sample, we can use it to make a likelihood function
that shows us how likely different population effect sizes are: it encapsulates all the
information we have in our sample about the population effect size. Our uncertainty here is
measured by the spread of the likelihood function: a wide function would mean much
uncertainty about the population, like the left panel of Figure 8.1 , whereas a narrow
function would mean little uncertainty, like the right panel.
Recall that the standard error is the standard deviation (width) of the sampling
distribution: the wider the sampling distribution, the larger the standard error. Because the
likelihood function is built up from many sampling distributions, the size of the standard
error also determines how wide the likelihood function is: a bigger standard error would
result in a wider range of potential population effect sizes and more uncertainty.
A good design will try to keep the width of the likelihood function small by making decisions
that will lead to a small standard error. In the next two chapters, we will be exploring
specific decisions about research design that influence the size of the standard error and
therefore the width of the likelihood function.



 Description

Figure 8.1 Two examples of likelihood functions with very different widths.
The right version has much less uncertainty than the left version. There is less uncertainty because we
have tried to minimise the standard error by using a larger sample size.

How can we make the standard error smaller? When we are using normalised effect sizes
(the r-family), as we do throughout this book, the standard error of a sample effect size has
a simple formula that applies in most cases:

se (r) = sqrt( 1−r2

n−2 )

where r is the sample effect size and n is the sample size (number of participants).
Don’t worry about this formula: it’s only here so that we can use it to understand how to
reduce our standard error by looking at the various elements of it. These are the important
things about the formula:

The first thing is that we can ignore the square root part of it. Anything that makes a
number smaller also makes its square root smaller. This means we can just focus on
the bit inside the brackets.

Inside the brackets there is a fraction with a top (1– r 2 ) and a bottom ( n –2).

There are two ways we can make a fraction smaller: we can make the top smaller (1/3
is smaller than 2/3) or the bottom larger (1/10 is smaller than 1/3).

So, if we want to make the standard error smaller (meaning our uncertainty is reduced), we
must try to make the top part of the fraction smaller or the bottom part larger.

Making the top part smaller would mean making r 2 larger but r , the sample effect
size, isn’t really under our control in any direct way. We can, however, certainly try to
ensure that we don’t inadvertently make it smaller than it should be – that we don’t
underestimate the effect size by making poor design choices.

Making the bottom part larger means making n , the sample size, larger.

Uncertainty for effect size estimation is reduced if we happen to get a larger sample effect
size, but we can’t usually plan for that; it is also reduced if we use a larger sample size that
we can plan for. The effectiveness of each of these for reducing the standard error is
shown in Figure 8.2 , which shows that sample size has a bigger impact than the effect
size.
From this, we can choose our priorities for a good research design. A high priority is to use
a suitably large sample size – this is explored in detail in Chapter 10 . For the sample
effect size, it is less clear-cut. Our priority regarding the effect size is to make sure that our
design choices don’t lead to a sample that underestimates the population effect size. For
example, imagine we are interested in whether risk-takers are more confident about their
exam grades, so we have a variable ExamConfidence. If our ExamConfidence is



measured so that each person chooses one of three categories (‘certain to fail’, ‘neutral’,
‘certain to get full marks’), then nearly everyone is going to choose the middle category.
This will mean a sample effect size near to zero, regardless of how strong the effect is in
the population, which in turn would mean a large standard error. We will look at all the
issues like this in Chapter 9 .

 Description

Figure 8.2 Standard error of the effect size is altered by changes in the
sample size (left) and effect size (right).

Table 8.2 Minimising uncertainty for effect size estimation.

This is a simple summary of the factors that are involved in minimising uncertainty for
effect size estimation. We want to choose a design that won’t lead us to a sample effect
size that is smaller than what really exists.

Parameter Minimise SE

Sample effect size Avoid underestimation

Sample size Increase

8.2.2 Uncertainty about effect existence
The other possible question we might be asking is whether the effect exists or not in the
population we are interested in, which would require the process of null hypothesis testing
to get an answer. This leads us to make the binary significant/not significant decision and
we are open to the chance that our decision will lead us to a conclusion that is at odds with
reality. Table 8.3 reminds us of the outcomes from null hypothesis testing.
Table 8.3 A reminder of the outcomes from null hypothesis testing.

 Population has effect Population has no effect

p > 0.05 Type II error (false negative) Correct

p ≤ 0.05 Correct Type I error (false positive)

A Type I error is the situation where we get a statistically significant result even though we
should not (a false positive). A Type II error is the opposite scenario, where we get a result
that is not statistically significant even though the population has the effect we were looking



for (a false negative). The uncertainty we have with regard to the effect’s existence or not
is just how likely it is that we have made either a Type I or a Type II error once we have
done our null hypothesis test.

 Description

Figure 8.3 Sampling distributions and Type I/Type II errors.
Minimising uncertainty in null hypothesis testing involves the issue of how likely it is that we will make a
Type I or Type II error. This means that we are really considering two possible populations: the two
shown in this figure, which are the null hypothesis (effect size = 0, shown as the back distribution) and
the real population (shown as the front distribution). Type I errors correspond to the shaded areas on
the sampling distribution behind and Type II errors correspond to the shaded area on the sampling
distribution at the front. The figure shows how reducing the width of the sampling distributions can
reduce the chance of a Type II error but leave the chance of a Type I error unchanged.

At this planning stage, before we have data and a test outcome, we must be aware that
when we come to examine our result we could make either a Type I or Type II error. We
can be confident about what our result tells us about the existence of an effect if we have
built a design that will result in suitably low probabilities of making Type I or Type II errors.
Figure 8.3 shows what would help to reduce Type I and Type II errors. A Type I error
happens when the population has an effect size of zero (so our sample comes from the
back-sampling distribution in the figure) and the sample effect size is far enough left or
right to lie in the shaded tails of that distribution. Those tails always contain 5% of all the
possible samples regardless of the width of the sampling distribution itself: on the right of
the figure is a narrower sampling distribution but the (narrower) tails are still 5% of that
(narrower) distribution. This means that normally the chances of us making a Type I error
are 5% and are not affected by anything we do. If, however, we pretend we have more
participants than we really have, or do something that leads to an overestimated effect
size, then the chance of making a Type I error is increased, so we should avoid anything
that might do these. It is important to notice here that increasing the sample size does not
change the chances of making a Type I error.
Table 8.4 Summary of minimising uncertainty.

A simple summary of the factors that are involved in minimising uncertainty for effect
size estimation and minimising inferential errors in null hypothesis testing.

Parameter Minimise SE Minimise Type I
errors

Minimise Type II
errors

Sample effect
size

Avoid
underestimation

Avoid overestimation Avoid underestimation

Sample size Increase Count accurately Increase

A Type II error happens when the population has an effect (so our sample comes from the
front sampling distribution), but the sample effect size lies inside the unshaded central 95%
of the null hypothesis sampling distribution (the back distribution): the effect size isn’t large
enough to allow us to reject the null hypothesis. Figure 8.3 now allows us to see how to
reduce the chances of a Type II error: we just need to get as much of the front sampling



distribution out of the unshaded area as possible. If we ask what can achieve these, then it
comes down to three things:

(i) Making the width of the null hypothesis sampling distribution small.

(ii) Making the width of the sampling distribution that the sample comes from small.

(iii) Making the effect size of the sample large.

The first two of these are easy: we can reduce the width of the sampling distributions by
taking steps to reduce the standard error, which we explored in Section 8.2.1 . This time
there is a double gain from increasing the sample size: the width of the null hypothesis
sampling distribution shrinks, and the width of the actual sampling distribution also shrinks,
so the overlap between them is much reduced. The third way to reduce Type II errors,
increasing the sample effect size, is out of our control, although just as above, we should
avoid anything that will cause us to underestimate it.

8.3 USING EXPECTED OUTCOMES TO CHECK A
DESIGN
Once we have produced a design and a prediction, we can use these to see whether the
design is good or not. This can be done for both questions of ‘How strong is the effect
really?’ and ‘Does the effect really exist in the population?’.
We are going to use our specific prediction in this section as an illustration, r = 0.25, plus a
specific design ( n = 42, random sampling). We already know from Chapter 5 that the
sampling distribution shows us the range of samples that we expect from our predicted
effect size and this design. It is shown in Figure 8.4 .

8.3.1 How strong is the effect? Expected standard error
For effect size estimation, the example design we started with ( n = 42, random sampling)
leads to a wide range of potential sample effect sizes, and therefore a wide range of over-
or underestimates of effect size. Figure 8.4 shows that 50% of samples will have a
sampling error greater than 0.1. Using the formula that we gave above in Section 8.2.1 ,
we can calculate that the standard error for sample effect sizes for this design is 0.15. If we
judge this to be adequate, then we can proceed. ‘Adequate’ sounds like a bit of a cop-out.
Unfortunately, just like many other things in research, there isn’t one hard-and-fast rule and
it is more a matter of judgement. Is it a fairly small number? If yes, and you’ve made other
sensible design choices, then get stuck into your research. If you wish to have a smaller
standard error for lower uncertainty, then you must reconsider elements of your research
design to see what can be changed.



 Description

Figure 8.4 Sampling distribution for a sample with n = 42 and random
sampling for a predicted population of r = 0.25.
This is the distribution of expected sample effect sizes that is produced from that population and design.
In this case, the distribution is quite spread out: 50% of samples will be outside the 0.15–0.35 range.

8.3.2 Does the effect exist? Expected Type I and Type II
errors
Given a prediction and a design, we can calculate what range of p-values we should
expect (just like the sampling distribution is the range of sample effect sizes we should
expect). The distribution of expected p-values for our prediction of an effect size of 0.25,
and a design of 42 participants randomly recruited, is shown in Figure 8.5 as an example.
If our prediction is correct, then the distribution of expected p-values in this example shows
us that:

(i) we have a 36% chance of a significant result (despite knowing that our predicted
population has an effect)

(ii) we can reasonably expect both quite large p-values and very small p-values.

 Description

Figure 8.5 Distribution of expected p-values for our hypothesis (left) and the
null hypothesis (right).
In this figure we show two distributions for expected p-values with n = 42. On the left is our hypothesis
and on the right is the null hypothesis. Note how spread out these distributions actually are. This
indicates what a wide range of p-values can come from a fixed population and separate random
samples.



The distribution of expected p-values is surprising the first time you see it. It tells us that
the same population and the same design (in other words, the same set of decisions) can
lead to very different outcomes just by chance. In terms of uncertainty, this observation
should be worrying. It also reiterates the limited value of the p-value as a measure of
uncertainty: the range of expected p-values is very large.
The important feature of this distribution is not its spread but how much of it lies beneath
alpha (0.05, marked with a line). If the population we are studying really does have the
effect that we predicted, then any outcome with a p-value above 0.05 (where we failed to
reject the null hypothesis) would be an error. Our design decisions will be focused on trying
to create a situation where, if there is an effect in the population, we are likely to obtain a
low p-value (and not if there isn’t an effect in the population).
The expected p-value distribution in Figure 8.5 shows a 36% chance of a significant result.
This means that there is a 64% chance (100% minus 36%) of not getting a significant
result – of making a Type II error (if our prediction is correct). Remember that this is only
because we are predicting that the effect really exists in the population we are examining,
and that allows us, for now, to suppose that a non-significant result could be called an
error. We are making a prediction and working out what to expect if that prediction is
correct. We could be wrong in our prediction about a relationship existing in the population,
which would mean that not getting a significant result would be a perfectly accurate
conclusion.
To calculate the probability of making a Type I error, with this design, we need to get the
equivalent distribution of p-values but for the null hypothesis population, not our predicted
population. This is also shown Figure 8.5 . If the null hypothesis were true, it would result in
a p-value that is less than 0.05 on 5% of occasions. Normally, provided all is done properly,
the chance of a Type I error is going to be the same as the alpha criterion for statistical
significance: 5%.
To minimise the uncertainty of a study, when we are using null hypothesis testing, our task
is to find the research design that reduces the probability of a Type II error but leaves the
probability of making a Type I error at 5%: alpha .
In practice, we calculate the probability of each type of error and then determine whether
that is adequate. Is a 64% probability of making a Type II error acceptable? It doesn’t
sound great, so we might well rethink our design (illustrated in Figure 8.6 ).

 Description

Figure 8.6 Comparison of expected p-values.
In this figure we show two more distributions for expected p-values, this time with n = 100. On the left is
our hypothesis and on the right is the null hypothesis. Notice that the distribution on the left has many
more significant results than Figure 8.5 . The null hypothesis distribution, however, is unchanged by
changing the sample size.

The prediction and design we have been using as an example ( r = 0.25, n = 42) are fairly
typical for psychology, so it seems many researchers are content to live with a 64% chance
of a Type II error. If that strikes you as odd – you didn’t know that psychology researchers
were such gamblers with their findings – then all you need to know is that to reduce that
chance of a Type II error to, say, 20% (which sounds better), the number of participants
you need goes up from 42 to 121, which is nearly three times as many. We’ll look at how to
work out how many participants you need for this in Chapter 10 .
Now here’s the really interesting bit: consider two different strategies for a population with
an effect size of 0.25. In both cases we have 120 participants at our disposal, but we can
only use each person once.
Strategy 1 ( low uncertainty):

We use all 120 together.



We have an 80% chance of getting a significant result with our one study (calculated
using the maths we’ll cover in Chapter 10 ).

 Description

Figure 8.7 Illustration of what happens to Type I and Type II errors when we
change alpha , the criterion value for calling a p-value significant.
This graph is a type we will use several times in this chapter and the next two. The probability of a Type
I error (mid-blue) is shown upwards from the base of the graph; the probability of a Type II error (dark
blue) is shown downwards from the top of the graph. In both cases a larger area means more
probability of an error. Overall, less grey means more chance of making an error. This graph shows that
making alpha smaller than 0.05 does indeed lead to fewer Type I errors, but disproportionately leads to
higher Type II errors.

Strategy 2 ( high uncertainty):

We split the 120 into three parts and try three times using 40 participants each time.

We have a 36% chance for each time (calculated by that same maths), but we get
three separate attempts. Over all, that gives us a 72% chance of getting at least one
significant result from those three attempts.

It also gives us a 30% chance of getting at least two significant results.

And a 5% chance of getting three significant results.

Now suppose that we play these two strategies 100 times. Strategy 1 (low uncertainty) will
lead on average to 80 significant results. Strategy 2 (high uncertainty) will lead on average
to 110 significant results.
And maybe even worse, if the real population has no effect and any significant results are
Type I errors , then on average 100 uses of strategy 1 leads to five significant results but
strategy 2 leads to 15 significant results. In principle, from the point of view of science,
strategy 1 is always best. From the point of view of a researcher wanting significant results
at all costs, strategy 2 is always best. Null hypothesis testing, in this sense, rewards
working with higher uncertainty. We hope you find that more than a bit disorienting after all
we have just learned about reducing uncertainty.

8.3.3 Balancing Type I and Type II errors
It may seem a little odd that we are not looking for ways to reduce the probability that we
will make a Type I error. There is a good reason: there is a balance between Type I and
Type II errors. In practice, the only way we can reduce Type I errors is by reducing alpha,



the criterion p-value. If we set alpha to a lower value to reduce Type I errors, then we
automatically make Type II errors more likely. An illustration of this is shown in Figure 8.7 .
As things stand, alpha is set to provide very strong protection against Type I errors. This
reflects an unstated opinion that it is much more serious to claim that an effect exists when
it doesn’t than failing to find that effect. Of course, this is an opinion even if it is unstated,
and can be challenged. There are a few authors who are now asking for some
consideration to be given, as part of the research design, to selecting an appropriate value
for alpha.

8.4 DESIGN FOR CAUSATION
As well as designing to minimise uncertainty, there is one type of design that is used for a
different reason: to allow us to reach conclusions about causation. This design is called an
experiment (look back at Section 3.1.3 for our brief comparison of experiments and
observations). One of the main reasons for doing experimental research is that it helps to
simplify arguments about causality. This is because we can state with full certainty how the
values for the experimental variable were caused: we allocated participants to the different
groups that form that variable.
The existence of a relationship between an IV and a DV is a necessary condition for
causation, but not a sufficient condition. It is necessary but not enough on its own. If there
is a relationship between an IV and a DV, then there are three explanations:

1. IV causes the DV.
2. DV causes the IV.
3. Something else causes both the IV and the DV.

The first and third specify how the DV is caused; the second and third specify how the IV is
caused. If we know already for some other reason exactly how the IV is caused, then that
would mean that the second and third explanations were invalid – leaving us only the first.
Usually it is impossible to know exactly how a variable is caused. Knowing some of the
causes of a variable is not enough; we need to know the full, exact cause of the variable.
There is really only one way to be sure: we deliberately cause the variable ourselves. In
this situation, we can then make inferences about causation.
It is important to understand that the critical step here is randomly assigning participants to
groups. It makes sense to have the two groups different in some way (such as by giving
them different treatments), but the difference is not what matters; it is the random
allocation that allows the inference about causation.

8.5 BASIC DESIGN ELEMENTS
A research design is like a recipe for how we will get our evidence: the data. It has two
basic elements, each covering a small cluster of related decisions that we make when
designing a piece of research. They are listed in Table 8.5 . All are decisions we make
before we collect our data. In the next few pages, we will see that these decisions have
consequences for the amount of uncertainty that our result will have.
Table 8.5 Design decisions.

These are the decisions we must make when we design a piece of research. Each of
these decisions will influence the outcome. We can make decisions that balance
practicalities with the desire to minimise uncertainty.



 Design
parameter Question Design
parameter Question

Measuring
variables

Variable types Does the variable have a natural ordering for its
values?

Variable values How many categories?
What scale?

Sampling
participants

Sample size How many participants?

Sampling
method

How are they obtained?

Sample usage How do we use each participant?

Some of these decisions can be made easily; some of them can only be done with a
degree of guesswork (or hindsight). Variable types are often dictated to us by the nature of
the variable or the way we plan to measure it. The ideal sample size, at least when we are
doing null hypothesis testing, depends on us making an educated prediction about what
effect size we are likely to find. In the coming chapters, we will examine measurements
and sampling in more detail.
We go on next to explore the consequences of each of these decisions in more detail. Our
plan is to see how important those consequences are and the guidance they suggest. We
aren’t going to tell you how to collect data: we are instead providing all the knowledge and
understanding that will guide you towards making the best choices for yourself. It is up to
you whether you run a laboratory experiment, deliver questionnaires, observe participants
in a natural setting, and so on. You will find lots of inspiration in published papers relevant
to your work, and the theory that you need to make educated decisions, in the next two
chapters.

8.6 A GENERAL FRAMEWORK FOR DESIGN
DECISIONS
This chapter has looked at the reasons why a researcher should examine their design
decisions before they collect their data. While there is quite a lot of information in this
chapter, really it comes down to this:

Our sample gives us information about the population.

The best outcomes arise when we have information that has high quality and is of
sufficient quantity.

8.6.1 Quality of information
This is about getting data that is as precise as possible. The more precise our evidence is,
the greater the quality of our information. In Chapter 9 we will look at how we should plan
to make measurements to ensure we have the best quality of information we can.

8.6.2 Quantity of information
This is about getting data from as many independent sources (participants) as possible.
The more independent sources we have, the greater the quantity of information. In Chapter
10 we will look at how to design research to ensure an adequate quantity of information.

8.7 BEING A RESPONSIBLE RESEARCHER
With this chapter, we can reflect on another type of responsibility that researchers have. It
revolves around the idea that research is costly and should be planned so that it is as



effective as possible. The responsible researcher will devote much thought to planning
their research.
Sensible, practical planning is a responsible thing to do for many reasons. There are two
focuses for these. First, good planning and design will make sure that the research actually
works. Ideally, a substantial piece of research is tried out with just a few participants in a
pilot version of the study. When possible, this is a very good way of finding any problems
with the research. Those few participants will often have insights into the way it worked as
well. If the use of a pilot study is impractical, then it should always be possible to simulate
a piece of research to produce pretend data. That will allow a researcher to establish that
the proposed methods of analysis will work.
The second major benefit to responsible planning is not quite as tangible, but perhaps
more important. Think about a piece of research that was planned out ahead, conducted
as planned and then found a result that was interesting, exciting or controversial compared
with a situation where that result was apparently stumbled on by accident. Like it or not,
the planned approach is more persuasive – it looks much less like a trawl through random
data hoping to find something good.

 The Big Picture
In this chapter, we have seen the start of something that changes everything. We
have seen the possibility of taking control of the inevitable uncertainty by careful
design.

Uncertainty can be minimised
1. Uncertainty is unavoidable, but careful design decisions can minimise it.
2. The standard error depends on the sample effect size and the sample size:

a. Larger effect sizes mean smaller standard errors.
b. Larger sample sizes mean smaller standard errors.
c. Smaller standard errors mean less uncertainty.

3. Accurate estimates of the standard error are crucial:
a. These require accurate estimates of the effect size.
b. Accurately counting the number of independent participants is important.

Design for null hypothesis testing
1. The probability of Type I errors is unaffected by any design decisions. They are

affected when something has gone wrong .
2. The probability of Type II errors is affected by almost every design decision.
3. Changing alpha, the criterion for significance, changes the probability of Type I

and Type II errors in opposite directions.

Practical matters
1. It may sound like we have provided a set of rules for you to follow in your

research, but that is not true: it all comes down to adequate quality and
quantity of information as a result of sensible forward planning.

2. Research is where the idealised world of hypotheses and theories meets up
with the messy, complex world of realities.

3. Understanding what type of compromise is involved in using various types of
measurement or sampling method, on the other hand, creates a researcher
who can adapt a design to match what reality will allow, with awareness of
what compromise costs.

 Your Turn
Select the correct word/set of words in these sentences:

1. Null hypothesis testing investigates whether or not an effect size exists/is very
big in a population.



2. The probability of a Type I/Type II error is not affected by sample size.
3. To reduce uncertainty, the standard error should be increased/decreased.

THE ANSWERS ARE AVAILABLE ONLINE

Your Space

 Reference and Further Reading
Cohen, J. (1988) Statistical Power Analysis for the Behavioural Sciences . New
York: Psychology Press.
The classic text on power analysis.
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Now that we have seen just how important it is to minimise uncertainty through design, we
can look at one of the practical ways of doing so: measurement decisions. This chapter is
about variables and how the decisions we saw in Chapter 3 affect the results we will get.
As we plan a piece of research, we are making decisions about which variables to
measure and how to measure them. Choosing what variables to measure is determined by
our question and the hypothesis we are investigating, while choosing how to measure
them is something we must always consider. Decisions about how to measure variables
are essentially about what type of variable to use (Interval, Ordinal or Categorical) and,
given that, what categories or scale to use. These decisions have small influences on the
uncertainty in our result.
When we use experimental variables, then it is obvious that we have decisions to make
about what values the categories will take. With observational variables, we should be
aware that even though the variability we are measuring already exists, we have to make
active decisions about how to capture that variability. There is nothing passive about
measuring observational variables.

9.1 DECISION 1: MEASUREMENT TYPE
The choice of variable measurement type has implications for the amount and type of
information we will be able to use in our data analysis. An Interval variable has the most
information; an Ordinal variable type has less because it doesn’t allow us to do more than
rank values; a Categorical variable has less still because it only allows us to find
differences between categories. Saying that someone is 50 years old (Interval type) says
more than saying that they are the third oldest in the class (Ordinal type) and even more
than saying they belong to a ‘middle-aged’ group (Categorical).
The key to understanding this is to recognise what the different variable types record about
the differences between participants. All of them register the most basic information – the
existence of differences: we can say that participant X has a different value from
participant Y. With Categorical data, all that we know is that one participant is in the same
category as or a different category from another. Interval and Ordinal also record the
ordering of participants along a dimension: participant X has a higher value than participant
Y. Interval data then has the added benefit of recording the amount of difference in a way
that allows us to interpret how big a difference is between two participants: more
information still.
The amount of uncertainty that we have in a result is reduced by having more information.
This means that Interval measures, which have the most information, are also going to
lead to the lowest uncertainty. Categorical measures, with the least information, lead to the
highest uncertainty. This is demonstrated in Figure 9.1 , which shows how the probability of
Type I and Type II errors depends on the variable type of the Independent variable (IV).
There is a small advantage in Type II errors for the Interval variable type.

 Description

Figure 9.1 Effect of IV type on the probability of Type I and Type II errors.



Recall from Chapter 8 that the probability of a Type I error (pale blue) is shown upwards from the base
of the graph; the probability of a Type II error (dark blue) is shown downwards from the top of the graph.
In both cases a larger area means more probability of an error. This graph shows the effect of the type
of the IV (where i = Interval, o5 = Ordinal with five levels, and c3 = Categorical with three groups) on the
probability of Type I and Type II errors for a hypothesis with an Interval IV and an Interval DV. Similar
effects are found with different types of measure for the DV. The results illustrate the benefits of using
Interval variables wherever possible.

9.2 DECISION 2: MEASUREMENT VALUES
Once we have chosen what variable type we are going to use for each variable, then we
can move on to consider what values we will use to describe our participants.

9.2.1 Categorical variables
When we choose to make a variable Categorical, we have to consider how many
categories to use. This may be determined by the need to have a category that each
participant can belong to, but sometimes we may have a choice.
In general, the more the categories, the greater the uncertainty in a result, as shown in
Figure 9.2 . The main reason for this is that more categories will mean fewer participants in
each category, unless we also increase the number of participants, and fewer participants
means more uncertainty about that category.

 Description

Figure 9.2 Effect of number of categories (for Categorical IV) on Type I and
Type II errors.
Generally, fewer groups is better. This is mostly because each group will typically have fewer
participants in it as the number of groups increases.

When considering the categories for a Categorical variable, there are two things we need
to watch out for:

1. There must be a category for everyone. If we have two categories, such as dog-lover
and cat-lover, then someone who doesn’t like pets will end up in a category that
doesn’t really reflect them.

2. The categories mustn’t overlap. Someone who has both cats and dogs will also end
up in a category that doesn’t really represent them.

9.2.2 Ordinal variables
If you are going to use an Ordinal variable, then you only really have one important
decision to make. The choice is between an odd number of levels (e.g. low, mid, high) or
an even number (e.g. very low, slightly low, slightly high, very high). Unfortunately, no-one



has the right answer to this decision. The question revolves around the psychology of what
people do when there is or isn’t a middle – neutral – level. If it is available, it is very easy to
be non-committal and use the middle level. If there isn’t a middle level, then people are
forced to go one way or the other. All of which is avoided with a slider leading to an Interval
measure (something we prefer using whenever we can) … just saying.

9.2.3 Interval variables
When we measure an Interval variable with a scale of values, although we may not think of
it, we make a whole range of decisions about the scale. Many of them are completely
irrelevant. It makes no difference to effect sizes or to uncertainty what units we use. We
could measure exam grades on a 100-point scale; we could also use a 25-point scale, or a
200-point scale. The numbers for the values of this variable and the descriptive statistics
that we calculate would differ, but the relationship with risk-taking and the uncertainty of a
sample would be entirely unchanged.
One important choice we do make, nearly always without realising it, is whether to use a
linear scale or not. A measure of risk-taking that counted up how many times a person
undertook a risky activity would be an example of a linear scale. Linear just means that the
score involves counting a standard unit. Nearly all common scales are linear because
counting is so easy.
However, linear scales aren’t always best for our purposes. We want differences on the
scale to correspond to some consistent meaning. Think of a participant’s age as a variable:
a linear scale would just be how many years old they were, which is easy to calculate (by
counting). However, the change in a person between the ages of 8 and 16 (8 years
difference) is much greater than the change in that person between the ages of 40 and 48
(also 8 years difference). We could argue that for some variables, the meaning of a
difference of 8 is not consistent. That would mean that age on a linear scale is not ideal.
Ideally, we would want a scale that aligned more closely with the consequences of age. In
this situation, we might choose a scale that treated every doubling of age as the same – so
the change between age 8 and 16 (a difference of times two) is the same as the change
between 16 and 32 (also a difference of times two). This scale is not a linear scale – we
can’t get it by counting years – but it is potentially more useful to us because it recognises
that as you get older things change more slowly.
Table 9.1 Comparison of a linear scale and a logarithmic scale.

A linear scale for age and a logarithmic scale compared. Many who are old enough to
look back over long time scales would be inclined to agree that less changes as you get
older (until bits start packing up and dropping off). The consequence of this is that time
seems to pass quicker. You have been warned.

Ages Linear step Log(Ages) Log step

16–24 8 4–4.6 0.6

24–36 12 4.6–5.2 0.6

36–54 18 5.2–5.8 0.6

This scale is called a logarithmic scale , which only matters because it has the useful
property of stretching the differences between low values and compressing the differences
between large values. Logarithm is a mathematical transformation: it gives us a new value
to replace the old one for each participant. It is used in this case so that the values make
more sense to interpret. Table 9.1 shows an example for age; we have split age up into
three ranges on the left and beside them we have their linear (ordinary) steps from one
range to the next, which increase steadily. The logarithmic age is shown next and, beside
that, the steps in this scale, which are now equal because of the log transformation.



Because this is quite important, but also quite unusual, we will look at another example,
which helps us to understand more. To measure someone’s value on a risk-taking variable,
we could count up the number of risks they have taken. This linear measure of risk-taking
sounds sensible: the more risks you take, the higher your score. However, that scale may
well result in a distribution of values that were strongly skewed: a few people with very high
values compared to the majority. This skew means that the mean value is not quite as
representative of the population as we might desire. The distribution we have in mind is
shown in the left panel of Figure 9.3 .

 Description

Figure 9.3 How a logarithmic scale can reduce or remove skew.
Here are two possible measures of risk-taking. Both are a count of number of risks taken, and each has
a mean of 10. In the left case, we use a linear scale and the distribution of values is highly skewed. In
the right case, we use a logarithmic scale and the distribution is much more normal. In both cases, the
actual number of risks each person takes is the same, but the application of different scales leads to
distributions that have different shapes. Notice that, on the right, equal spaces along the x-axis
correspond to a doubling of the number of risks taken: this is the effect of the logarithmic scale.

The measurement we are making of risk-taking is our choice and could be different.
Imagine that we had a reason for thinking that every increase in the internal, natural
tendency to take risks resulted in a doubling in the number of risks taken. Just like with the
age example above, this circumstance would lead us to consider that the relationship
between the internal tendency, which is what we are really interested in, and the number of
risks taken is not linear. In this situation, just like age above, we might choose to use a
logarithmic scale of the number of risks because we think it might be more meaningful. The
distribution this would lead to is shown in the right panel of Figure 9.3 . If you’d like to learn
a little bit more about logarithms, you’ll find some information in our online resources.
While we have presented logarithms as a way to remove skewed values, it is actually
important to tell you now that the skew doesn’t really matter for uncertainty about the
relationship between variables. The only thing that skew impacts is the measures of central
tendency: the mean of a skewed distribution probably isn’t a very useful typical value – it
certainly isn’t the most common value. Let us go on a brief tangent to discuss skew – stick
with us if you’re interested or skip to Section 9.3 if you so wish.
The basic statistical tests (for example, t-test and one-way ANOVA) work by comparing a
measure of effect size with the size of the residuals . This is the same as comparing the
variability in the Dependent variable (DV) that is explained by the IV (the effect) and the
remaining variability that isn’t explained by the IV (the residuals). When these tests were
developed, it was necessary to prove that they work properly – that the p-value they
calculate is correct. To do this, mathematicians found it necessary to assume that the
residuals formed a normal distribution and not, for example, a skewed one; they couldn’t
make the proof work without this assumption. When mathematicians make assumptions,
these are required to help their work along but aren’t necessarily to be taken as strict
conditions by ordinary users. In this case, mathematicians are fairly comfortable with users
ignoring skew. In their language, the t-test and F-test are robust to skew. Furthermore, note
that the issue concerns the residuals, not the values of the DV or the IV themselves.
We have run simulations of situations where the DV has various different amounts of skew
and we have looked to see how this affects Type I and Type II errors. We have used a
sample size of 42 and a population effect size of 0.3, both very characteristic of
psychology. The result is shown in Figure 9.4 , and as you can see, skew doesn’t
noticeably affect either type of error.



 Description

Figure 9.4 Effect of increasing skew (left to right) on the probability of Type I
or Type II errors.
Essentially there is no effect. The result shown here was produced by computer simulation of the
statistical process, which is explained in more detail in Chapter 10 where it is used more frequently.

9.3 ACCURACY OF MEASUREMENTS
Once we have decided on variable type and values, we need to make sure our measures
are as accurate as possible. Any inaccuracy in measurements we make will result in
smaller sample effect sizes and higher uncertainty. It is sensible to keep inaccuracies to a
minimum.
Let’s start by supposing that there is a real internal variable (a latent variable ) inside each
person and we are trying to make an external measurement of it based on self-report : we
ask each participant to tell us about themselves.
Self-report is a key method in psychology. We can’t readily observe someone’s mental
state, and so we ask them to report it to us. It is easy to see that self-report can be
susceptible to all sorts of biases. Some of these will be conscious on the part of the
participant, but others will be quite involuntary. Participants usually comply with requests
for self-report, of course, otherwise we would not be able to do much psychological
research. But they do more than that. They will usually try to fulfil the researcher’s wishes,
maybe without even realising it, and this distorts the measurement.
Think about asking someone to ‘Please think of a time when, as a child, your parents were
proud of you. Indicate, using the scale below, how happy you felt’. That isn’t a normal thing
to ask a person, especially if we don’t know them. It probably pushes them to consider how
much they are willing to reveal about themselves, which will depend on how they view the
intention of the researcher.
Many researchers hide the true intention of their research – while providing as much
information as possible and minimising participant risks as far as possible – to try to obtain
the most honest set of responses they can find.

9.3.1 Issue 1: Bias
If we ask participants how much they enjoy taking risks, and we are standing on the roof of
a very tall building, there is probably a higher chance that they will say they don’t like risks,
because we may be putting them in an uncomfortable situation that is influencing what
they say. This is a bias. In this case, it would be a bias towards disliking risks.



 Description

Figure 9.5 An illustration of bias.
This figure illustrates bias. On the left, the measurements correspond closely to the internal states. On
the right, however, there is a negative bias: measured values are systematically lower than the internal
states. However, all participants appear to have been influenced by bias equally in this example, which
causes less problems when looking for an effect.

There are plenty of situations that can lead to bias; for example, asking people about their
self-esteem just after they have spent two hours trying on clothes that don’t fit; or asking
people to meditate in a room full of brightly coloured posters and distracting photographs of
a busy Times Square in New York City. Neither of these scenarios would give us a very
accurate measure of what we are interested in. For the former case, the bias arose
because we didn’t plan our timing well enough; with the latter, the bias arose as the result
of us not taking care of our research environment. Bias coming from any influence should
always be minimised.
Fortunately, bias is often irrelevant for research; for example, by asking participants to
participate in one simple activity, such as eating hot chillies to determine a risk score, and
then collecting all their exam grades, the bias that may creep in will affect everyone equally
and won’t change the effect of risk-taking on exam grades. This is illustrated in Figure 9.5 .

9.3.2 Issue 2: Random variability
If we ask that same risk-taking question again, but instead of being on one roof our
participants are spread across different roofs of varying height, with varying levels of safe-
looking walls and fences around the edges, then each person will be personally biased but
to a different extent from everyone else. This will amount to a random variability in the
sample we have taken, shown in Figure 9.6 . For some people, our measure of RiskTaking
will provide an accurate value, and for others, their answer would be wildly different from
their real attitude to risk.
Random bias leading to random variability will reduce the sample effect size and this will
increase uncertainty. Anything we can do to ensure that random variability in the
measurement process is avoided will be very beneficial. Note that this is not the same as
the real variability in the things we are measuring.



 Description

Figure 9.6 An illustration of random variability in a sample.
The consequences of random variability in the sample is that the relationship between the internal state
and the measurement that we make becomes weaker.

The best way to handle random variability is to minimise the irrelevant differences between
participants: for example, using the same research environment for all of them, including
as many factors as we think important. Of course, if you are delivering a questionnaire
online, there is very little that you can really do to minimise random variability.

9.3.3 Issue 3: Suppression
There is a third issue for measurement accuracy. It is due to the way in which participants
have a tendency to avoid using extreme values in self-report. If we ask people how much
they are enjoying themselves, they will feel a degree of preference to use moderate rather
than extreme responses, even if they are having an extreme time. We call this
suppression: participants tend to suppress extreme values for self-report. We’ve provided
an illustration in Figure 9.7 .
We can think of suppression as a variable bias: the bias shown depends on the internal
state. Where it exists, there is the chance that any effect size we measure will be reduced
and uncertainty increased.
The basic problem with suppression is that participants need some encouragement to use
the extremes of a scale. This isn’t restricted to Likert scales – it applies to sliders too. A
scale measurement that has end values that are clearly for extreme cases but that has
plenty of opportunity for participants to provide different responses without (usually) using
the extreme values would usually work well. An example of a good scale and a bad one is
shown Table 9.2 .



 Description

Figure 9.7 An illustration of suppression.
Participants often have a preference to avoid extreme response values. This means that the
measurements that we make might be closer to the central value than the extremes of the scale.

Table 9.2 Two possible measurement scales.

The top one is very poor and will lead to lots of suppression. The lower one is much
better: although people will still avoid the extremes, there is room for them to indicate a
range of feelings.

How are you
feeling?

very bad OK very good

How are you
feeling?

very bad bad slightly bad OK slightly good good very
good

9.4 ETHICS OF MEASUREMENTS
Something that we haven’t given any attention to yet in this book is ethics, and this is a
good place to fit it in. Whether your participants are people or animals, the number one rule
of research is to protect them from harm. That may sound very easy, such as not making
them run across busy motorways, or not asking them to ingest strange liquids, but there
are finer details in measurement decisions that also require ethical consideration. Really,
the relationship between ethics and uncertainty is that ethics are in place to make
participants comfortable (to as great an extent as possible), and comfortable participants
will be more helpful and honest: you will get much better and much more accurate data this
way.
In terms of how to be ethical in your measurements, do this: every time you design a study,
go back and read it again. Are you asking a participant to invoke memories that might be
distressing? Are you asking them to report on something that makes them uncomfortable?
Have you used any language that might be upsetting in some way? Make sure you provide
resources such as helplines and disclaimers if your research strays into particularly
uncomfortable territories.



9.5 BEING A RESPONSIBLE RESEARCHER
The important issue that we have to keep uppermost in our minds when we think about the
measurements that we make is simple but critical. What do the measurements that we
make really correspond to?
Maybe we just ran a study where we asked people to self-report how interesting they think
they are to other people. Strictly speaking, what we have measured here is how each
person responds to the question we asked, but that may not be even slightly related to how
interesting they actually are.
As a responsible researcher we must recognise that there is quite a leap between what we
have measured, filtered by the participant’s self-awareness, and what we wished to
measure, and then take account of that measurement gap.
Are we safer avoiding self-report? Perhaps, but not much safer. There are things that we
can measure about people that don’t require self-report. A reaction time for a button press
to a stimulus appearing on a screen would seem to be a good candidate for a measure
that isn’t filtered through self-awareness. In theory, there is nothing subjective here: there
are apparently no self-awareness issues. However, there are. Some participants might
want to be always right and will wait until it is obvious what has happened. Others will have
a more relaxed approach.
In both of these cases, and probably in all of psychology, we are measuring a very
complex mix of the variable we are interested in and all the stages that sit in between that
variable and the data that we collect. Being a responsible researcher is just a simple,
overriding requirement to understand and reckon with the difference between what we
wished to measure and what we did measure. There is always a difference.

 The Big Picture
Although the choices that we make about variables do not have a large effect on
the outcome, they are nonetheless important.

Design choices about variables
1. Decide what sort of information is available about a variable:

a. If we can only identify differences between people, then we use categories
as values and a Categorical variable.

b. If we can place people in an order by their differences, then we use a
scale for values and an Interval or Ordinal variable.

2. We make our measurements so that they capture differences between people
that might matter for our hypothesis:

a. If we are using categories, make sure they are suitable ones and that
everyone can go into one of the categories. Categories that end up empty
are not helpful and variables where everyone goes into the same single
category are also not helpful.

b. If we are using scales, then we should make sure that the values we get
are well distributed across the scale.

 Your Turn
Define the following key terms:

1. Biased measurements
2. Suppression
3. Skew

Fill in the gaps to complete the sentences.

1. With Categorical variables, more categories increases Type ___________
errors.

2. The presence of skew usually ___________ Type I errors.
3. Random variability in a measurement ___________ the measured effect size.

THE ANSWERS ARE AVAILABLE ONLINE



Your Space
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Descriptions of Images and Figures
Back to Figure
The horizontal axis is labelled type IV and lists i, o 5, and c 3. The left vertical axis is
labelled p of type 1 error and ranges from 0 to 1 in increments of 0.2. The right vertical axis
is labelled p of type 2 error and ranges from 1 to 0 in decrements of 0.2. The approximate
data from the graph are tabulated below.

IV type p of type 1 error p of type 2 error

i 0.07 0.5

o 5 0.07 0.6

c 3 0.07 0.68

Back to Figure
The horizontal axis is labelled type IV and ranges from 2 to 7 in increments of 1. The left
vertical axis is labelled p of type 1 error and ranges from 0 to 1 in increments of 0.2. The
right vertical axis is labelled p of type 2 error and ranges from 1 to 0 in decrements of 0.2.
The approximate data from the graph are tabulated below.

IV p of type 1 error p of type 2 error

2 0.07 0.5

3 0.07 0.6

4 0.07 0.7



5 0.07 0.73

6 0.07 0.77

7 0.07 0.79

Back to Figure
In both graphs, the vertical axis is labelled frequency. All data are approximate.

The first graph is titled number risks. The horizontal axis ranges from 0 to 20 in
increments of 20. The right-skewed distribution curve in the graph peaks at 5 and then
decreases.

The second graph is titled log of number risks. The horizontal axis ranges from 5 to
20. The normal curve peaks at 10.

Back to Figure
The horizontal axis is labelled skew or DV and ranges from 0 to 1 in increments of 0.2. The
left vertical axis is labelled p of type 1 error and ranges from 0 to 1 in increments of 0.2.
The right vertical axis is labelled p of type 2 error and ranges from 1 to 0 in decrements of
0.2. All data are approximate. The probability of type 1 error is constant at 0.07 as the
skew increases. The probability of type 2 error is constant at 0.5 as the skew increases.
Back to Figure
In both graphs, the horizontal axis is labelled internal and ranges from negative 3 to 3 in
increments of 1. All data are approximate.

In the first graph, the vertical axis is labelled measurement and ranges from negative 3
to 3 in increments of 1. A line slopes upward from (negative 3, negative 2.9) to (3,
2.8). A narrow elliptical distribution is along the line between (negative 2, negative 2)
and (2, 2).

In the second graph, the vertical axis is labelled measurement and ranges from
negative 4 to 2 in increments of 1. A line slopes upward from (negative 3, negative
2.9) to (2.1, 2). A narrow elliptical distribution is between (negative 2, negative 3) and
(2, 1).

Back to Figure
The horizontal axis is labelled internal and ranges from negative 3 to 3 in increments of 1.
The vertical axis is labelled measurement and ranges from negative 3 to 3 in increments of
1. All data are approximate. A line slopes upward from (negative 3, negative 3) to (3, 3). A
wide ellipse is along the line between (negative 2, negative 1.5) and (2, 1).
Back to Figure
The horizontal axis is labelled internal and ranges from negative 3 to 3 in increments of 1.
The vertical axis is labelled measurement and ranges from negative 3 to 3 in increments of
1. All data are approximate. A line slopes upward from (negative 3, negative 2.9) to (3,
2.8). The S-shaped distribution is through (negative 2, negative 1), (0, 0), and (2, 1).
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We need participants for our research, to provide us with data, but where do we find them?
A sample doesn’t just happen: we have to actively recruit the participants. If some thought
is given to designing how to obtain and use participants, then the results of a study will
benefit considerably. There are only three decisions to be made, but each of them can
have strong consequences for how much uncertainty we are left with.
We will now look at how the decisions we make about sampling will affect the uncertainty
in our results. We will assess uncertainty by changes in the standard error of an effect size
and the probability of making a Type I or Type II error. Rather than just presenting these
effects of sampling as bald statements, we will provide some understanding of why each
decision affects uncertainty and indicate just how much impact various sampling decisions
can have. Many of the figures are derived by simulating the statistical processes involved
thousands of times on a computer. Check our online resources for videos of this.
There are three decisions involved in research design that relate to sampling. They are:

1. How we will recruit our participants.
2. How we will use them.
3. How many we will recruit.

In each case, what we will find is that we must reach a compromise between what is
theoretically best and what is actually practical.

10.1 DECISION 1: RECRUITING PARTICIPANTS
The first decision we must make is the sampling method: how to recruit our participants.
Recall that sampling error arises because of the difference between our sample and the
population. Our intention when recruiting participants is therefore to reflect as many
characteristics of the population as possible in our sample.
It is usually best to suppose that we don’t know anything about the population. For
example, we know that the distribution of IQ values has a mean of 100 and a standard
deviation of 15 (because that is how it is defined by the inventors of the scale). However, if
we are specifically interested in whether IQ scores affect exam grades, then we need to
consider who takes exams and whether their IQ scores are distributed the same as the
general population – and they are probably not. In this situation, it is better to suppose that
we don’t know anything about how IQ is distributed.

10.1.1 Random sampling
In random sampling , shown in Figure 10.1 , we identify the whole population and then
select our participants by an entirely random process. Random sampling is a form of
sampling that is blind: we choose participants without any regard to what their
characteristics might be. While this sounds counter-intuitive, as we want to know we have
captured the characteristics of the population, it is actually a very good way to collect a
representative sample. More than that, all of the methods of calculating p-values in the
tests in Chapter 7 make the assumption that sampling is random. If sampling isn’t random,
the p-value calculated may be inaccurate.



Figure 10.1 An illustration of random sampling.
We are interested in the variables of the left to right and bottom to top dimensions – and these are
shown as the pale dots on the back of the graph. Random sampling gives a good spread in these
variables and in any others.

Random sampling is difficult to achieve. We don’t have practical access to every member
of the population, so not all members are equally likely to be recruited. Any participant who
opts not to be selected breaks the randomness: our sample is then comprised only of
willing participants and this may mean that the sample is not representative of the
population.
Random sampling, when done correctly, is reliable: it is least likely to introduce problems
that will have an impact on uncertainty.

10.1.2 Opportunity sampling
Random sampling is usually impractical because we don’t have access to the whole
population, and even if we did it would require participants always to say yes when asked.
Therefore, it is very common to use a compromise which is called opportunity sampling
(or convenience sampling). The idea here is that we attempt to preserve some degree of
random selection, but only within the participants we have ready access to and who are
willing to volunteer. That means that opportunity sampling is a compromise between the
ideal of random sampling and the practicality of the availability of participants.



 Description

Figure 10.2 A non-representative sample.
Imagine our population is all the students attending a particular university, shown as the whole of the big
blue shape. We use a method of opportunity sampling: we wait in a corridor and approach each person
who passes by. At the time we are doing this, the majority are psychology students going to a lecture
around the corner from us and philosophy students leaving the same lecture theatre. We get plenty of
participants, but their characteristics are likely to be rather clustered and not representative of the whole
university student population.

 Description

Figure 10.3 Too many connected participants in a sample.
Recruiting participants with opportunity sampling via social media can lead to a sample of participants
who share far too many similarities. This diagram represents the effect of using social media to recruit.
Each person is invited by somebody that they are connected to (shown by the pale lines) who was also
invited. Overall, nearly everybody in this sample is connected to at least two other people in the sample.

Obviously, there are risks here in that the groups we have access to may not be entirely
characteristic of the population we are studying. For example, if we only have access to



university students, what we conclude with them may not apply to non-students. If the
sample is not representative of the wider population because it is a specific subset, as
illustrated by Figure 10.2 , that will be a problem. Later on in this chapter we will look at the
consequences of patchy coverage of this type.
There is a second problem with opportunity sampling, which is that the participants are
quite possibly not entirely independent of each other. Although we would be careful not to
recruit the same participant twice, there is the chance that our participants will be more
closely related in some respects than would be desirable, as illustrated in Figure 10.3 .
This type of non-independence is serious, as we will see later in the chapter.

10.1.3 Other sampling strategies
Beyond these two, there are several other methods of sampling that can be very useful,
but that rely on us already knowing something about the population and the effect we are
studying. In all these cases, participants are deliberately selected to match population
characteristics. This comes close to a real danger: we might be pre-selecting our
participants by what they may mean for our hypothesis. So, a safe rule is that we select
participants only on the basis of their value on one or more Independent variables (IVs)
and we never select using the Dependent variable (DV).
The most common sampling method that falls into this category is stratified sampling .
This is where we choose people by their values on one or more IV, aiming to reproduce the
distribution of values we know the IV to have. An example would be where we choose
people so that we have equal numbers in our two groups: risk-takers or non-risk-takers.
Another might be where we select people so that we get a normal distribution of values for
IQ, or where we select the same spread of ages that we know exists in the population.
Stratified sampling is safe, as we are trying to produce the most representative sample
possible, and in some circumstances is worth the effort.

10.1.4 Controlling for extraneous variables
Imagine that we are examining the effect of an experimental variable RiskTaken? (simply
an experimental version of our observational variable RiskTaker?) on ExamGrade.
Unknown to us, diligence has a big effect on exam grades. If there happens to be a
difference in diligence between our two groups for RiskTaken?, just by chance, this would
lead to a difference in exam grades between the two groups but we would be misled into
thinking that the difference was because of RiskTaken?. Diligence, this variable that we are
not researching and is having an unknown influence on our DV, is an extraneous variable
and we need to find a way of removing its possible effect on our result. We call the process
of removing its effect controlling for extraneous variables .
If extraneous variables are likely to be a problem, then recruiting a sample that neutralises
their effect is important. One way of doing this, appropriate in an experimental design, is to
ensure that the different groups do not differ in terms of the extraneous variable. In our
example, we might make sure that the range of diligence scores was the same in the two
groups so that it cannot have any effect of its own.

10.2 DECISION 2: HOW TO USE PARTICIPANTS
Once we have our recruitment method, we may have a decision to make about how to use
our participants.

10.2.1 Observational or experimental research
Our starting hypothesis may lend itself best to an observational study, where we just let
events take their course and effectively eavesdrop on what happens to our participants –
the people we choose to observe. Here there are no decisions to make about how to
allocate our participants. Our RiskTaking and ExamGrades study is an observational study.
We have a sample and we are just looking to see whether there is a pattern in the data.
However, we can also conduct an experimental study where we create a Categorical IV
and allocate participants to the different categories for that IV. Our example from Section
10.1.4 , RiskTaken?, with values yes and no, could fall into this category. The yes group
are asked to do something (mildly) risky; the no group are kept away from all risks. We
then wait and see what their exam grades look like. In this situation, we need to make a
decision about how to allocate our participants to the two Risk groups. The best allocation



is rando we allocate each participant to one or another group before we know anything
about them. This way, the cause of the variable is known to us.
As well as having implications for uncertainty, as we will see, the way we allocate
participants has important consequences for what we can conclude about causation .

10.2.2 Intention to Treat Analysis
There is one very important point to be understood here. The experimental method is a
widely recognised route to inferring causation. But it only works if it is done properly. The
logic is that it works because the IV value (which group) for each participant is completely
determined (caused) by the experimenter. If any other factor is allowed to creep in, then
the logic of experimental method is lost.
A widespread use of this is for experiments that compare treatment with non-treatment
(control) conditions. We randomly allocate participants to one of these two conditions and
then we can infer that any difference in outcome must be due to the treatment. That is
correct. The issue arises with people who subsequently decline treatment, or don’t adhere
to the treatment properly. They would seem, after the event, to belong to the non-treatment
group and there is the temptation to move them into that group. Leaving them in the
treatment group, despite the fact they weren’t treated, is likely to reduce the effect size. But
the temptation to move them must be avoided to keep the causation logic in place. If we
move participants who didn’t take the treatment from the treatment group to the control
group, then the cause of values for our IV is partly determined by a participant’s willingness
to take the treatment. Any effect of the treatment might be caused by the treatment itself
or, very problematically, by being willing to be treated.
So, we must keep values for the IV according to our original allocation, regardless of what
participants actually did. This is called Intention to Treat Analysis.

10.2.3 Between or within design
With our experimental design, which has a Categorical IV, we can also decide whether to
allocate participants to just one group or to all the different groups in turn. We can place
each participant into one of the groups so that each group contains a different set of
participants. This design is a between-participants design (because the comparisons we
are going to make are between different sets of participants).
We can allocate every participant to each group in turn so they all do all the different
conditions of our experiment. If we do this, each group contains the same set of
participants. This is a within-participants design (because we can make the comparison
within a single set of participants).
For example, if we were interested in the effect of caffeine on memory, we could use either
of these options. By splitting the sample in half and giving one half a strong energy drink
and the other water, we would utilise a between-participants design. However, if we gave
each participant water first and gave them a test, then gave them all a strong energy drink
and did another test, we would be utilising a within-participants design.
A within design leads to more precise estimates of effect size and to lower rates of Type II
error. There are two reasons why a within design is better:

1. With the same number of participants, a within design has more data from each
participant.

2. Extraneous variables will have (almost) the same values in the different groups: we
don’t know any more about them, but we know, by using the same people in a within
design, that their effects are minimised.

When there are more experimental IVs, then the same basic idea applies separately to
each one. It is possible to have all IVs set up as a within design, or just some, or none. In
the situation where there are several experimental IVs, the within design is sometimes
called repeated measures . If only some of the IVs are set up as a within design, then we
call the design mixed measures .

10.2.4 Order effects
Despite the attractiveness of a within-participants design there is one serious proble order
effects . Participants have memories and the order that they do different experimental
conditions matters. The effects of first being the ‘yes’ group for RiskTaken? will persist and
affect what happens when we subsequently place them in the ‘no’ group. That is an IV
order effect.



There is also a DV order effect: when we make them sit the exam for the second time, they
will probably have learned something from their first exam and their score may well be
naturally higher anyway. There are many ways in which order effects can happen, such as
participants being more relaxed the second time around, or more bored and less engaged
with the task they have been given.
Order effects can be dealt with to a degree by counterbalancing : by having different
participants do the different conditions in different orders. Counterbalancing will remove
any bias that might arise from everyone doing the conditions in the same order, but still
leaves the contamination in place so that it weakens any effect. For example, half the
participants could participate in the RiskTaken? yes group first, while the other half could
participate in the RiskTaken? no group, then swap. Really, there is no other sensible way
to handle this except counterbalancing and a degree of critical thinking when you consider
your results.

10.3 DECISION 3: HOW MANY PARTICIPANTS?
Once various decisions have been made about how to recruit participants and what to do
with them, a final decision must be made: the sample size. Sample size is the number of
unrelated participants in the sample. They have to be unrelated: you cannot use the same
participant twice in exactly the same condition, but you can use the same participant in
multiple different conditions (in a within-participants design).
Despite it being the last of the three decisions, the size of our sample is the most obvious
decision that we must make. Using a larger sample size means that we have more
information about the population. Having a larger sample size leads to a narrower
distribution of sample effect sizes: a smaller standard error. Here is the formula for the
standard error for a sample effect size as a reminder:

se (r) = sqrt( 1−r2

n−2 )

where r is the sample effect size and n is the sample size (number of participants).
The important part of this for our discussion now is the bottom part of the fraction: this tells
us how standard error varies with sample size. Standard error is reduced as sample size
increases, as shown in Figure 10.4 .
There is a real benefit in obtaining a large sample size wherever practical. However, the
standard error depends on the square root of the sample size and this means a law of
gradually diminishing returns: the gain in going from 42 to 62 is greater than the gain in
going from 62 to 82. This is illustrated in Figure 10.4 , where we can see that the difference
each additional participant makes gets smaller and smaller.



 Description

Figure 10.4 An illustration of how the standard error changes as sample size
is increased.
Notice that there is a law of diminishing returns: the function flattens off to the right, indicating that there
is less benefit gained from increasing the sample size further.

In null hypothesis testing, similar observations apply, but with perhaps more impact. There
is one important exception. The probability of making a Type I error (a false positive) does
not depend on sample size: if the null hypothesis is true, then you have a 5% chance of it
with a sample size of 10 and a 5% chance of it with a sample size of 10 million. So,
increasing the sample size does not give us any additional protection against making a
Type I error.
A larger sample size does lead to smaller Type II error rates, alongside those unchanged
Type I error rates (shown in Figure 10.5 ). The benefit of larger samples to reduce Type II
errors is more pronounced for small population effect sizes. Although a larger sample
doesn’t change the probability of a significant result when the population effect size is zero,
it does increase the chance of a significant result for a small population effect size.
Because we have a bigger proportion of the population, we have lower uncertainty and we
are more likely to find a small effect.

 Description

Figure 10.5 The effects of sample size on Type I and Type II errors.



Increasing sample size reduces Type II errors (the dark area) but leaves Type I errors unchanged.

So why shouldn’t we use extremely large samples? In principle, the more the better.
However, there are some important practical considerations. Compare what you are asking
the second participant and 2000th participant to do. They both give up their time and effort
equally. The second participant massively increases what you know; the 2000th participant
probably doesn’t change your result even at the third decimal place (go back to Figure 10.4
and look at how small the differences become). If the 2000th knew that, they probably
wouldn’t want to spend their time helping you with your research.

10.3.1 Power analysis
Before we move on, we’ll look at a common method used to determine sample size using
statistics. It’s called power analysis and is just a calculation that determines how many
participants would be sufficient to expect a statistically significant result on 80% of attempts
with a predicted effect size, if it really exists in the population. This is called 80% ‘power’,
and it is directly tied to Type II errors in NHST: if your study has 80% power, then there is a
20% chance of a Type II error. The 80% figure is arbitrary, recommended by most
researchers. It’s really ‘just enough without being too much work’. We’ll provide an
overview of it here, and you can find out more about power and power analyses in
Intermezzo 3 .
To calculate the number of participants that would give us a power of 80%, we have to
make a prediction about the population effect size. The calculation is weak because the
number of participants is only enough if the effect really exists and we have predicted its
effect size accurately .
Power analyses can be calculated in most popular statistical packages and require a
prediction of effect size based on anything from a wild guess to a well-educated, published
paper-derived prediction. The basic relationship between population effect size and sample
size for 80% power is shown in Figure 10.6 .
Of course, power analysis is an analysis of a design as applied to the population. Here lies
the same inherent concern that we have had to work with throughout this book:
uncertainty. If we know the population, then power analysis will give us the correct answer.
If we know the population only as an uncertain inference from a sample effect size, then
we can be sure that uncertainty will affect the power analysis. The same uncertainty lies
inside it – and frequently gets amplified by it. We deal with this in more detail in Intermezzo
3 .

 Description

Figure 10.6 The sample size required to have a 50% chance of a significant
result as the population effect size varies.
This figure shows the sample size required to have a 50% chance of a significant result as the
population effect size varies. Notice how steeply the curve rises for small population effect sizes. And as
we have previously mentioned, effect sizes in psychology are usually not very big. We suspect that
most research in psychology falls well under this curve: a situation that is described as under-powered.



10.4 PITFALLS IN SAMPLING DESIGN
Now that we’ve looked at all the decisions that we should consider, let’s look at some of
the pitfalls that can appear in samples. These are all difficult to diagnose.
We will use a specific example where the IV and DV are both Interval variables. Imagine
that we have now chosen to measure RiskTaking as an Interval variable alongside our
typical (Interval) ExamGrade DV. This choice makes it very easy to see the effects we will
explore, but it doesn’t mean that the effects we are talking about are limited to this
particular combination of variables.

10.4.1 Patchy coverage of the IV
The regression line through a set of data points will always pass through their centre – the
place where the value for each variable equals the sample mean for that variable. The
slope through that point is determined by the data points: it is calculated to fit as closely as
possible all of the data points. The discrepancies between the data points and the
regression line are called the residuals and the line is chosen to keep the residuals as
small as possible.
Look at Figure 10.7 , which shows the same data set three times with three different
possible regression lines. The thin vertical lines show the residuals between each line and
the data points. Focus first on the data points that have IV values that are close to the
centre of the graphs. Rotating the possible regression line clockwise or anticlockwise (i.e.
the different graphs) makes almost no difference to the size of the residuals for these data
points. That means that they make very little contribution to the calculation of the slope of
the regression line: they are nearly equally happy with any slope.
Now concentrate on points out to the extreme left or right. Here, those rotations of the
regression line have very large consequences for the sizes of the residuals, which means
that these more extreme points have a disproportionately large effect on the slope of the
regression line. Participants with more extreme values on either side of the mean for their
IV will typically be more useful than participants closer to the centre.
More extreme points are more valuable, so the overall width of the distribution of IV values
in our sample matters. The wider the spread of IV values, the more accurate the estimate
of the effect size. For this reason, it is important for a sample to cover as wide a range of
the IV as possible. A wide sample and a narrow sample are shown in Figure 10.8 ; it is
easy to see how the wider sample constrains the slope of a regression line more than
would the narrow sample.



 Description

Figure 10.7 Comparison of regression lines.
This figure shows the same set of data with three possible regression lines drawn through it. In each
case the lines pass through the centre of the data points, marked by a blue square, but each has a
different slope. The size of the residuals for data points that are placed towards the centre of the
horizontal axis are relatively unaffected by the regression lines. The size of the residuals for data points
that are towards the extreme left or right, on the other hand, are very strongly affected by the direction
of the rotation. Because of this, points out here will have a strong effect on the calculation of the
regression line.



 Description

Figure 10.8 Random versus opportunity sample illustration.
This figure shows a simple population where there are two Interval variables and an effect size of 0.3.
On the left is shown a random sample to demonstrate how most of the population can be covered. On
the right is a hypothetical opportunity sample which has a much narrower range of participants. This is
quite an extreme example. A considerable amount of the population is missing from the sample in this
case and the slope of a regression line is much more uncertain.

Patchy coverage of the IV has consequences for uncertainty. A narrow range of values for
the IV will result in a slightly raised standard error ( Figure 10.9 ). In null hypothesis testing,
the effects are more marked because of the underestimation of the effect size. The Type I
error rate remains at 5%, but the Type II error rate can be dramatically increased.
While proper random sampling is unlikely to suffer from patchy coverage of the IV (and
would only do so by chance), it is probably a frequent consequence of opportunity
sampling. Given the ubiquity of opportunity sampling in psychology, this set of
consequences is quite worrying.

 Description

Figure 10.9 The consequences of narrow sampling on the IV.
The upper row of the figure shows the sample effect size (left) and standard error (right). There is a
small increase in the size of the standard error at narrow widths; there is a much larger drop in sample
effect size. The bottom row shows the consequences for Type I and Type II errors.

10.4.2 Non-independence of participants
All statistics works on the assumption that each data point we have – each participant – is
quite independent of the others in our sample. This is important because it allows us to say
how much information we have – two quite separate participants bring quite separate
information into our study and together they give us twice as much information as just one
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of them. But this assumption of independence isn’t always true. The classic case of non-
independence is where we use a participant twice or we use identical twins. It also
happens if we recruit participants who are connected, such as several close family
members or close friends on social media (as we illustrated in Figure 10.3 ).
Connections between participants mean that they probably share similar life experiences
and are more closely alike than two random people will be. This in turn means that our
sample will have less natural variation in it than we would expect and is therefore less
informative about the population. It can be quite difficult to establish whether participants
are independent of each other or not. Figure 10.10 shows two example samples: the left
sample is made up of independent participants; the right has quite a high degree of non-
independence visible as little clusters of participants.
Before proceeding to understand why this is a problem, we can just remind ourselves that
the size of standard error, which is at the heart of uncertainty, depends on the sample size.
Its role in that formula is as a measure of how much information we have. If we think that
our participants are giving us more information than they actually are (because they are all
too similar to each other), then we get a standard error that is too small: an underestimate
of our uncertainty. This is what happens with non-independence. This is very bad: we are
underestimating our uncertainty, meaning that we will be more certain than we should be.

 Description

Figure 10.10 Independent versus non-independent samples.
The left-hand scatter plot is a sample of independent participants. The scatter plot on the right, on the
other hand, has a high degree of non-independence. This results in the participants forming little
clusters.

Let’s start with considering the most extreme case where we mistakenly use the same data
point twice. Putting a data point into the sample a second time doesn’t introduce any fresh
information and its real value to the sample is zero. However, when we count up how many
data points we have, we will be treating that repeated data point as if it did introduce fresh
information, resulting in a discrepancy between how much information we think we have
and how much we actually have. This is exactly the same as if we had just entered ( n + 1)
instead of ( n ) into the formula for the standard error: it makes the standard error smaller
than it should be.



 Description

Figure 10.11 The consequences of non-independence in a sample.
As non-independence rises, the probability of a Type I error increases considerably; the probability of a
Type II error changes slightly. The increase in Type I errors is particularly serious given the importance
attached to getting a significant result.

Using a data point multiple times leads to an underestimate of the real standard error, and
an underestimate of the standard error leads in turn to smaller p-value than is really
correct. If the null hypothesis is true, then we now have a situation where the probability of
a Type I error is greater than 5%. This is one of a very few rare situations where this
happens.
Now, of course, we don’t usually use the same participant twice. But another example will
make this much less far-fetched and easier to recognise. Imagine that we are recruiting
participants for our study of risk-taking and exam grades. We want to get lots of
participants, so we ask each participant to come along to do the study, and to bring a friend
. That will certainly double the number of data points that we get. Since friendships work
best when the people involved share similar risk-taking and academic performance, the
friends brought along to the study are not actually bringing much new information.
When a participant is recruited into the study because they have a connection to someone
else who was also recruited, then those two participants are potentially not independent
samples and their non-independence is a serious threat to the validity of the study.
Whether they are independent, for the purposes of our study, or not depends on the nature
of the connection between them. Let’s look at two extreme examples to see how the
connection matters, using our risk-taking and exam grades study again.

Example 1: each participant is instructed to bring along another person whose name
has the same initials as them. In this case, the connection really has no plausible
psychological meaning: we have no reason to suppose that risk-taking or exam
grades depend in any way on a person’s initials. It would be reasonable to treat these
participants as independent.

Example 2: each participant is instructed to bring along their partner. Here the
connection has a very plausible meaning: the pair will match on a whole range of
different psychological dimensions, many of which may affect risk-taking and/or exam
grades.

Think of the issue in this way: we need to avoid a situation where, somehow, our sampling
process means we are likely to recruit as the next participant someone who is connected
to a previous participant. This is not to say that the next participant cannot be similar to an
already existing participant, just that we mustn’t create a situation where it is likely. The
sampling process should find someone completely at random for the next participant – so
anyone in the population could get chosen.



Non-independence is a serious defect: in fact, it is quite possibly the most serious defect
there is in sampling and statistics. In practice, we can think of non-independence as being
the same as having fewer participants than we think. We may have obtained 42
participants, but because there is some non-independence they are only providing as
much independent information as 30 independent participants would. If we overestimate
the amount of information in our sample (the number of independent participants), we
underestimate the standard error and get a smaller p-value than we really should. This
means that we are running a higher probability of making a Type I error than we think
(higher than 5% for example). So, a method of sampling that introduces any participant
non-independence increases our Type I error rate and is highly undesirable.

10.4.3 Recruitment via social media
Recruitment of participants via social media is becoming fairly widespread. We are giving it
a section all of its own here because it embodies both of these pitfalls, with who knows
what consequences for the validity of the results that are generated. We use it here as a
way of tying all of this together into a single big pitfall.
First, let’s just make the observation that, for most people, the experience of social media
is positive – otherwise we wouldn’t persist with it. It is mostly positive because of the way
social media works: we are typically interacting with people who do not irritate us. That is
because most of our contacts (and their contacts …) are selected by us. It is clear to me
(RW) from my social media experience that nearly everyone in the world enjoys a good old
statistical problem, enjoys gardening and posts photos of lovely landscapes, while it is
clear to me (EC) that nearly everyone in the world likes cute puppies, holidays in far-away
destinations and taking photographs of their food …
Really, we all live in our own little social media bubbles that keep us in contact with people
who match us well and rarely if ever let us glimpse the people who don’t match us. This
means that using my contacts as a sample – as I do when I share an invitation to
participate in my questionnaire on a social media platform – will result in very patchy
coverage of some potentially key variables.
The counter-claim would be that it only takes each of my contacts to share the invitation,
each of theirs to do so, and so on, and then very soon we have reached well outside my
own particular bubble. That is true, but it doesn’t help as much as you might think. Even if
the invitation to participate does get shared widely enough to break into a world far beyond
(i.e. independent of) my own, there is still a problem. Although the people it eventually
reaches are not at all connected to me, each one of them is directly connected to at least
one other person in the chain and probably a few more.
Limiting my research to a narrow social media bubble is likely to be a great example of
both patchy coverage of key variables and non-independence of participants.

10.5 OUTLIERS
A quick word about outliers. Outliers are data points that appear to be well beyond every
other data point in a distribution. Many researchers will remove outliers they detect and
there are various different arbitrary rules for determining what might count as an outlier.
However, this isn’t a simple topic and we would recommend that outliers are potentially too
important to remove without good reason.
We can think of three simple ways in which participants appear to be outliers in a data set:

1. They are a measurement error (the number 4.2 was recorded somehow as 42).
2. They are participants who don’t belong to this population.
3. They are perfectly correct extreme values, as will happen from time to time.

If it is possible to say without much doubt that a given outlier is a real error and not just a
valid extreme value, then it is quite proper to remove it. The decision depends on
something other than just their extreme value.
Let’s think further. We saw in Figure 10.7 that data points generally have little influence on
a sample effect size if their value is close to the centre of the IV distribution. Removing
them will make no real difference. This is true regardless of what their value for the DV is.

Points with typical values for the IV are relatively uninformative, so outlying values for
the DV here don’t matter.



We also saw that data points that have more extreme values for the IV are very influential
and contribute most to the effect size. If we remove them, we lose something important: we
reduce the range of the IV, which automatically reduces our effect size (see Figure 10.9 ).

Points with outlying values for the IV are the most informative, so the values of the DV
here do matter.

The only outliers that might be worth removing are those where the value for the IV is
extreme. Since these points generally are the most informative, there is a considerable risk
of a loss of information by removing them. Unless we have a good way of distinguishing
true outliers (i.e. that don’t belong to the population) from points that are rightly in the tails
of the distribution, then we should probably respect outliers.

10.6 PRACTICAL MATTERS — OR HOW (NOT) TO
CHEAT

10.6.1 Good practice
Decisions 1 and 2 (how to recruit and use the participants) need to be made before you get
started, otherwise you will not get very far. Decision 3 (how many to recruit) should also be
made before starting, and then adhered to. Good practice is to determine the size of the
sample before beginning, using power analysis, and then stick to it.

 Description

Figure 10.12 Examples of bad practice (cheating).
In this figure, we see some bad practices. In each case the true population effect size is zero, so each
example is a Type I error deliberately caused by bad practice. On the left is an illustration of growing a
sample, adding additional participants until a significant result is obtained: following an original 42
participants, fresh participants are added one at a time until p < 0.05 is reached. On the right is an
example of being picky with participants. It only takes the replacement of two in this case to change a
non-significant result into a significant one.

10.6.2 Bad practice
Sample size can be a decision that some researchers don’t quite adhere to. There is
always a temptation to add a few more participants if the result isn’t quite what was
desired, but that really must be resisted.

10.6.3 Growing a sample
Adding more participants – growing your sample – until you reach a point where p < 0.05 is
bad practice and is also a bad idea. It is a bad idea for two reasons. First, it is quite
ineffectual as a way of converting a non-significant result into a significant one. There is
every chance that adding additional participants will make the sample effect size weaker,
not stronger: it could just be a waste of time. Second, if this is done systematically, you are
setting up a situation where you are deliberately engineering samples with higher sample
effect sizes by waiting until you get a suitably high sample effect size. This means that the
sample effect size you end up with is artificially high and the p-value is artificially low. An
example is shown in Figure 10.12 (left).
Please note that this process, incrementally adding participants up to a maximum of say
100, is radically different from just recruiting 100 participants. Increasing participants



involves multiple calculations of p , stopping when we get a favourable one; just going for
100 to start with only has one calculation. Multiple tests always increase the chance of a
Type I error, because each test has a 5% chance of one in the first place.

10.6.4 Being picky with participants
Another plan might be to recruit 42 participants and do the test; if the result isn’t significant,
we can look and see whether there is a participant who doesn’t quite seem to fit the pattern
and replace them with a new participant. Replacing participants until p < 0.05 is a very bad
idea. It is not difficult to make a dramatic difference to the p-value by removing or replacing
participants who don’t quite fit. But if you do so, then the sample effect size you end up
with and the p-value it leads to will be grossly misleading.

10.6.5 Looking for the subgroup that fits
Trying different subgroups (everyone under 25, females, whatever) in your data until you
find a subgroup that has a statistically significant effect between your variables is also not
recommended. The previous two cases were relatively clear-cut. This is trickier. Taking
your data and seeing what the effect size and p-value are for a subgroup of participants
will give you accurate effect sizes and valid p-values for those portions of your data. In a
sense, doing this doesn’t have to be misleading … provided you report all the effects that
didn’t produce p < 0.05 so that anyone following your research can see what has to be
explained. If we find that our dandruff cure only works for females under 25 who have IQs
greater than 104, then we have to explain why it doesn’t work for all other groups. That
explanation has to be complete, otherwise we are disregarding most of what the data
actually says.

10.7 BEING A RESPONSIBLE RESEARCHER
This chapter is the one that presents the biggest challenge to the responsible researcher
because it concerns important considerations where we have limited information. For
example, we can never really know whether our sample size is big enough or not. Big is
always better in terms of reduced uncertainty about the population effect size. But if we are
only really interested in a significant result, then a very large sample opens up the
possibility of finding a positive outcome but with a tiny (and possibly meaningless) effect.
So, a responsible researcher does two really important things. In both cases, they exercise
judgement to achieve a reasonable adequacy of their design. And then, in both cases, they
carefully and fully reflect on the remaining inadequacies.
The first thing a responsible researcher does is to decide what sample size they need,
before collecting the data, and then tries to stick to this decision. Perhaps the most
responsible thing to do is to set up a design and follow it, living with whatever the outcome
is.
The second thing a responsible researcher does is to examine critically how they recruited
their sample. All of the problems that a sample can have, such as non-independence, arise
from the sampling method. Since the only completely valid sampling method is random, it
follows that all samples are less than fully valid. So, the responsible researcher asks
probing questions about what part of the population they have actually sampled and how
randomly they have sampled that part. These limitations will always have an effect on the
meaning of a piece of research.

 The Big Picture
The decisions we make about obtaining our sample are profoundly influential.
Because the ideal design is nearly always impractical, the art of design is to find
good compromises between what is ideal and what is practical.

Sample size
1. Choose an adequate sample size: larger for smaller expected effect sizes:

a. Sample size affects the standard error: a bigger sample size results in a
smaller standard error.

b. Sample size affects Type II errors.
c. Sample size does not affect Type I errors.



Sampling method
1. Aim for as close to random sampling as you can get and be aware of any

compromises you make:
a. Avoid patchy coverage of the IV: put an emphasis on making sure you

have a representative range of values for any IVs.
b. Avoid non-independence of participants: put an emphasis on making sure

that no-one is recruited because of some connection they have with
another potential participant.

2. Opportunity sampling might be OK, but it runs the risk of patchy coverage and
non-independence. Of these two, non-independence is the most serious.
Social media is an attractive sampling method, but really guarantees non-
independence of participants.

Sample allocation
1. A within design for a Categorical variable provides more precise estimates of

population effect size and reduces the likelihood of a Type II error.

 Your Turn
Define the following key terms:

1. Opportunity sampling
2. Stratified sampling
3. Between-participants design
4. Within-participants design
5. Extraneous variables

Fill in the gaps to complete the sentences.

1. ___________ is the name of the method used to control for order effects.
2. A participant whose data is quite different from the other data points could be

called an ___________.
3. If two friends participate in a piece of research together, it could create an

issue called ___________.
4. Patchy coverage of the IV could increase the ___________.
5. The calculation used to determine a suitable number of participants is called

___________.

THE ANSWERS ARE AVAILABLE ONLINE

Your Space

 Reference and Further Reading
Cohen, J. (1988) Statistical Power Analysis for the Behavioural Sciences.
New York: Psychology Press.
The classic text on power analysis.



Descriptions of Images and Figures
Back to Figure

Three sets of plots are located within, on the side, and below an elliptical figure
extending across different planes in the 3D plot.

There are two clusters for each set.

Back to Figure

Three sets of plots are located within, on the side, and below an elliptical figure
extending across different planes in the 3D plot.

The plots within the ellipse are connected to multiple plots in their vicinity.

The plots below the elliptical figure lie along a line parallel to the axis labelled
diligence.

Back to Figure

The horizontal axis is labelled sample size and ranges from 0 to 100 in increments of
10.

The vertical axis is labelled se of effect size and ranges from 0 to 0.6 in increments of
0.1.

All data are approximate.

The curve decreases in a concave up manner through (5, 0.57), (15, 0.28), and (100,
0.12).

Back to Figure

The horizontal axis is labelled number of participants and ranges from 0 to 250 in
increments of 50.

The left vertical axis is labelled p of type 1 error and ranges from 0 to 1 in increments
of 0.2.

The right vertical axis is labelled p of type 2 error and ranges from 1 to 0 in
decrements of 0.2.

All data are approximate.

The area for type 1 errors remains constant at 0.06 with an increase in the number of
participants. The area for type 2 errors decreases from 0.9 to 0.02 with an increase in
the number of participants.

Back to Figure



The horizontal axis is labelled population effect size and ranges from 0.1 to 0.9 in
increments of 0.1.

The vertical axis is labelled required sample size and ranges from 0 to 200 in
increments of 20.

All data are approximate.

The curve decreases in a concave up manner through (0.14, 200), (0.25, 60), and
(0.87, 5).

Back to Figure

In all graphs, the horizontal and vertical axes range from negative 2.5 to 2.5 in
increments of 0.5. All data are approximate. The centre of the data points is marked at
(0, 0). The plots are distributed on either side of the regression line, and a vertical line
connects the data points to the regression line.

In the first graph, the regression line is drawn at 0 on the vertical axis and is parallel to
the horizontal axis.

In the second graph, the regression line slopes downwards from (negative 2.5, 0.7) to
(2.5, negative 0.9).

In the third graph, the regression line slopes upwards from (negative 2.5, negative 1.4)
to (2.5, 1.3). 

Back to Figure

In both graphs, the horizontal axis is labelled IV and ranges from negative 3 to 3 in
increments of 1. The vertical axis is labelled DV. All data are approximate. There is a
shaded titled elliptical region centred at (0, 0).

In the first graph, the vertical axis ranges from negative 3 to 3 in increments of 1. The
plots are distributed within the elliptical region with a few outliers.

In the second graph, the vertical axis ranges from negative 3 to 4 in increments of 1.
The plots are clustered close to the centre of the elliptical region.

Back to Figure

In all graphs, the horizontal axis is labelled sample width and ranges from 0 to 2 in
increments of 0.5. All data are approximate.

In the first graph, the vertical axis is labelled sample effect size and ranges from 0 to
0.5 in increments of 0.1. The curve increases through (0, 0), (1, 0.3), and (2, 0.42). A
dashed line parallel to the horizontal axis is drawn at 0.45.

In the second graph, the vertical axis is labelled standard error and ranges from 0.14
to 0.16 in increments of 0.005. The curve decreases through (0, 0.158), (1, 0.15), and
(2, 0.143).

In the third graph, the left vertical axis is labelled p of type 1 error and ranges from 0 to
1 in increments of 0.2. The right vertical axis is labelled p of type 2 error and ranges
from 1 to 0 in decrements of 0.2. The area for type 1 errors remains constant at 0.06
with an increase in the sample width. The area for type 2 errors decreases from 0.9 to
0.2 with an increase in the sample width.

Back to Figure



In both graphs, the horizontal axis is labelled IV and ranges from negative 3 to 3 in
increments of 1. The vertical axis is labelled DV. All data are approximate. There is a
shaded titled elliptical region centred at (0, 0).

In the first graph, the vertical axis ranges from negative 3 to 3 in increments of 1. The
plots are distributed within the elliptical region with a few outliers.

In the second graph, the vertical axis ranges from negative 2 to 2 in increments of 1.
There are several clusters of plots within the elliptical region, with a few outliers.

Back to Figure

The horizontal axis is labelled participant non-independence and ranges from 0 to 0.5
in increments of 0.1.

The left vertical axis is labelled p of type 1 error and ranges from 0 to 1 in increments
of 0.2.

The right vertical axis is labelled p of type 2 error and ranges from 1 to 0 in
decrements of 0.2.

All data are approximate.

The area for type 1 errors increases from 0.06 to 0.22 with an increase in participant
non-independence. The area for type 2 errors decreases from 0.5 to 0.48 with an
increase in participant non-independence.

Back to Figure

In both graphs, the horizontal axis is labelled no participants. The vertical axis is
labelled p subscript 0 value and ranges from 1e-05 to 1.0. All data are approximate.

In the first graph, the horizontal axis ranges from 40 to 100 in increments of 10. Three
types of plots are distributed between (42, 0.2) and (68, 0.05). A line parallel to the
horizontal axis is drawn at 0.05.

In the second graph, the horizontal axis ranges from 38 to 46 in increments of 2.
Three plots lie on or close to (42, 0.05). A line parallel to the horizontal axis is drawn at
0.05.
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Now that we have covered the fundamental elements of research design, we are going to
pause for another intermezzo. This time, we are going to go on a little tangent that relates

to the uncertainty that arises when we use a sample to make an inference about the
population it came from.

In Chapter 10 ( Section 10.3.1 ) we mentioned power analysis as a procedure to decide
what sample size we should use. If we had the exact value for a population effect size, r p ,
we could calculate the probability that a random, independent sample of size n will produce

a statistically significant result. This probability is called statistical power, usually
abbreviated to power. Power depends on both a design and a population. Each of these
factors has uncertainty: our sampling will not be random and independent but we do not

know how far from ideal it will be; and we must unfortunately use an uncertain estimate of
the population effect size in order to calculate power.

Nonetheless, the concept of power is appealing because it allows us to formulate an
expectation for what our study should show. That in turn seems to afford us the opportunity

to compare what does actually happen when we run the study with what we expected.
Here we will explore this in more depth. We are going to deal with power analysis in a one-
tailed situation. In order to do any power calculation, you need to know (or pretend that you
know) what the population effect size is. If you know or pretend you know its size, you will

certainly also know the sign of the effect, so a one-tailed regime is appropriate.
This Intermezzo will use How to Do the Maths boxes to provide the mathematical details

for those who wish to follow them. The main text will give every reader the main ideas
without the maths. The only thing you will need to know is that for a massive convenience,

in this Intermezzo we will use a slightly different version of effect sizes, z .

How to Do the Maths 1

1. Throughout this Intermezzo, we will use a new version of effect size, known as
Fisher’s z-transformed effect size. Fisher’s z is related to normalised effect
sizes, r , by this transformation:

z = tanh –1 ( r )

The value of this version of effect sizes is that we can easily write down the
sampling distribution for a given effect size and sample size. The sampling
distribution for a population effect size of z p and a sample size of n is
approximated very closely by a normal probability density function:

density ( z s ) = normpdf ( z s , mean = z p , sd = 1 / sqrt ( n – 3))

2. There is one important quantity we will want to take from the sampling
distribution. We want to know the probability of getting a sample effect size that
is at least, for example, 0.3 (which we can write as z s ≥ 0.3). This is the same
as the probability of getting any sample effect size at all minus the probability
of getting a sample effect size that is less than 0.3 ( z s < 0.3). The first



probability is 1.0 and the second is given by the cumulative density function
normcdf ( z ). This function produces values that range from zero to one and
takes an effect size and converts it to a probability. So we have:

p ( z s ≥ 0.3 | z p ) = 1 – normcdf (0.3, mean = z p , sd = 1 / sqrt ( n – 3))

3. There is one more function, norminv ( p ), that does the opposite of normcdf
( z ). This function takes a probability and converts it to an effect size. These
two statements are always true for any z and any p :

norminv ( normcdf ( z )) = z

normcdf ( norminv ( p )) = p

4. With these, we can say that:

4.1 the sampling distribution for the null hypothesis is:

density ( z s ) = normpdf ( z s , mean = 0, sd = 1 / sqrt ( n – 3))

4.2 the probability of getting a sample effect size greater than 0.3 is:

p ( z s ≥ 0.3 | zp = 0) = 1 – normcdf (0.3, mean = 0, sd =1 / sqrt ( n – 3))

4.3 the sample effect size, z crit , that would give us a probability of exactly α =
0.05 is:

Z crit = norminv (1 – α, mean = 0, sd = 1 / sqrt ( n – 3))

IM3.1 THE BASICS OF POWER ANALYSIS
Recall from Chapter 5 that we need to draw a distinction between the two different ideas of
a sampling distribution and a likelihood function. Both occur in figures like that shown in
Im3.1. Sampling distributions, sample effect sizes that a given population effect size will
produce, run from left to right; likelihood functions, population effect sizes that could have
produced a given sample effect size, run from back to front. Recall also that whereas
sampling distributions are fixed and known, likelihood functions require us to make an
assumption about the a priori distribution of possible population effect sizes. That
assumption is often treated as being unifor all possible population effect sizes are equally
likely.

Im3.1.1 Step 1: The null population
We start with n, our fixed sample size, and work out what the critical sample effect size, z
crit , is that will just give us a significant result.



When we choose a sample size, we are also determining the smallest value that our
sample effect size will have to be if it is going to be statistically significant. In the first How
to Do the Maths box, we show how this critical sample effect size can be calculated. It is
done by looking at the null population itself. The null population, in combination with our
chosen design, has a fixed sampling distribution. We are going to say that any sample size
that sits out in the far extreme tail of this distribution will be statistically significant. If we
choose α = 0.05, then any sample effect size that is in the extreme right 5% of the area of
the sampling distribution will be significant. That area corresponds to sample effect sizes
that are equal to or greater than some specific value z crit :

z crit = norminv (1 – α, mean = 0, sd = 1 / sqrt (n – 3))

This is the result we need for the next step section. Any sample effect size, z samp , that is
greater than z crit will be significant.

Im3.1.2 Step 2: The non-null population
Now we take a specific known population effect size, z p , and the same sample size, n.
We work out the probability of getting a sample effect size z s that is greater than the
critical sample size, z crit .

Now we take the population we are actually studying, which we will call the non-null
population. This population has a population effect size, z p , and our design with a sample
size of n will produce a sampling distribution for this population. Our plan is to find out what
proportion of the samples in that sampling distribution will be equal to or larger than the z
crit that we got from the null population. That proportion is the probability of getting a
significant result. This probability is the statistical power of our design, n , given the
population effect size, z p . We will write statistical power as w ( z p , n ):

w ( z p , n ) = 1 – normcdf ( z crit , mean = z p , sd = 1 / sqrt ( n – 3))

where:

z crit = norminv (1 – α, mean = 0, sd = 1 / sqrt ( n – 3))

Notice that we only need three quantities to calculate power: the population effect size, z
pop , the sample size, n , and α. This is explained in the How to Do the Maths 2 box.

How to Do the Maths 2

1. We can write down a formula for the sampling distribution for a population, z p ,
and sample size, n , like this:

density ( z s | z p ) = normpdf ( z s , mean = z p , sd = 1 / sqrt ( n – 3))

Notice that this is very similar to the equivalent for the null hypothesis above but
has a different mean.

2. This time we want to know what the probability is of producing a sample that
has a p < 0.05. This is the same as the probability of producing a sample effect
size z s ≥ z crit . We can write that down using the normcdf ( z s ) function
(which converts an effect size to a probability):

p ( z s ≥ z crit ) = 1 – normcdf ( z crit , mean = z p , sd = 1 / sqrt ( n – 3))



This is the probability of getting a significant result with a sample size of n given a
population effect size of z p . It is also the statistical power.

Im3.1.3 Step 3: The sample size power calculation
If we can calculate the power, given a sample size and a population effect size, then we
can change things around and work out a sample size, given a power and a population
effect size.
A power calculation is often used to find a suitable value for n , given a population effect
size and a desired power, such as w = 80%. All we need to do this is a way to find the
value of n that will make w = 0.8 (or whatever we choose). We could do that by a trial and
error search, trying lots of values of n until we find one that gives us the power we desire.
Fortunately, there is a way of writing down a formula to do that:

n = ( norminv(1−α)−norminv(1−w)
zp

)
2

+ 3

How to Do the Maths 3

1. Now we want to rearrange the formula for power so that it allows us to
calculate n , given a target power w and a population effect size z p .

2. First, there is a property of the norminv ( p ) and normcdf ( z ) functions that
helps:

normcdf ( z , mean , sd ) = normcdf (( z – mean ) / sd , mean = 0, sd = 1)

norminv ( p , mean , sd ) = norminv ( p , mean = 0, sd = 1) × sd + mean

3. This means that we can write this:

w ( z pop , n ) = 1 – normcdf (( z crit – z p ) × sqrt ( n – 3))

z crit = norminv (1 – α) / sqrt ( n – 3)

4. Then with some rearranging:

z p × sqrt ( n – 3) = norminv (1 – α) – norminv (1 – w )

5. From which we get:



n = (
norminv(1−α)−norminv(1−w)

zp
)

2

+ 3

Im3.1.4 Two-tailed power
In the calculations we have only considered one tail of the null distribution by only
calculating the probability that our design would produce a sample effect size that is
greater than the critical sample effect size: p ( z s ≥ z crit ). The equivalent two-tailed
situation is almost the same, mathematically, but we would need to consider the other tail
of the distribution where the null hypothesis produces sample effect sizes that are more
extreme than minus the critical effect size: p ( z s ≤ – z crit ).

IM3.2 POWER AS A DESIGN TOOL: A PRIORI POWER
Power analysis is an important practical matter. Many funding bodies and journals ask for
power analyses to be conducted before a study is started in order to ensure that the study
will have sufficient power to be worth undertaking. In Section 10.3.1 we introduced power
as a way of estimating the sample size that would be needed to have a certain probability
of a significant result. We have now seen how power can be calculated, provided we have
a population effect size. And, of course, we never do have a value for the population effect
size, only an estimate of it. Is this a problem? Well, here’s how to approach this question.
An existing sample effect size can provide an uncertain estimate of the underlying
population effect size. We can use this so long as we keep this uncertainty in mind. This
means that even if we use a power analysis to say ‘our study will have 80% power’, we
must remember that this is only an estimate, and we are unlikely to perfectly achieve 80%
power even if we stick to our planned sample size. To explore this uncertainty further, we
can use confidence intervals (which you first encountered in Chapter 5 ).
For example, suppose that our existing estimate for the population effect size is r p = 0.35
which corresponds to z p = 0.365. The sample size required for 80% power (therefore a
20% chance of Type II error) for this population effect size would be n w =80 = 62. Based on
this information, we would therefore use 62 participants for our new study. If the population
effect size actually were z p = 0.365, then we would have 80% power.

Suppose further that this estimate comes from a previous sample that had a sample size n
= 42. That means that the estimated population effect size has 95% confidence limits of z
p:low = 0.052 and z p:high = 0.679. Let’s take these confidence limits as being reasonable
estimates of how small or large the population effect size might be. What power would we
really have if the real population effect size was either of those, were we to go ahead with
our proposed sample size of n w=80 = 62? The answer is that the power could be as low as
6.8% (not 80%) or it could be as high as 99.9%.
Let’s summarise this example, because the result is rather shocking. In this example, if we
use the sample effect size as the population effect size, then despite expecting 80%
power, we could have an actual power of any value between 6.8% and 99.9% (and 5% of
the time this procedure would result in it being outside that range even). We are 95%
confident that the true power will lie between 6.8% and 99.9%.
That is the effect of the uncertainty that arises from the original sample of size n = 42. Just
to take this a little further, let’s repeat this but suppose this time the original sample size
was n = 420. Now we can calculate the power analysis including new narrower confidence
limits on the population effect size taking the larger sample size into account. This will give
us 95% confidence that the actual power lies between 54% and 94%. This is narrower than
the previous example because the existing estimate for the population effect size was
based on a larger sample size and had lower uncertainty. But it is still rather wide.
This demonstration of how the original sample and its uncertainty affects the actual power
is important: a power analysis based on an estimated effect size cannot escape the
uncertainty associated with the estimate of population effect size. We won’t go over the
proof here, but the range of values for power that will apply actually only depend on the p-
value for the original sample. This is the formula:

(



w = 1 − normcdf (
norminv (cl)

norminv (p)
× (norminv (wtarget) − norminv (α)) − n

where w target is the target power (e.g. 0.8) and cl is the confidence percentile.

Figure Im3.1 shows the uncertainty we have about the actual power as a function of the p-
value of the original sample. The effects of uncertainty are considerable.

 Description

Figure Im3.1 The effect of sample size on power uncertainty.
This plot shows the actual power that results from power analysis (target of 80% power) once the
uncertainty of inferring population effect size from a sample effect size is taken into account. The
darkest band shows the 25% confidence limits for actual power, then 50%, then 75% and finally 95%.

IM3.3 POWER AS AN ANALYSIS TOOL: POST HOC
POWER
There is another version of power analysis that has been used on occasions. It is called
post hoc power and is an attempt to look at a given sample to try to establish what was the
actual statistical power of the design that produced the sample. It is a mistake.
When the result of a study is a failure to reject the null hypothesis (a non-significant result),
then in principle nothing can be inferred about the population. That is the strict logic.
However, it would be nice to be able to extend this logic a little and to say that not only was
there a failure to reject the null hypothesis, but also that if the effect really existed, then it
should have been possible to do so. It is tempting to look for a conclusion like ‘despite
having high statistical power, it was not possible to reject the null hypothesis’, with the
implication that therefore the effect in question does not exist. Similarly, it might be nice to
say ‘we did not find a significant result because we did not have sufficient statistical power,
but it could have been there’.
This version of a power calculation does not generate a suggested sample size. Instead, it
turns the calculation around to use the actual study sample size, measured sample effect
size, and alpha (typically 0.05) to calculate the ‘actual study power’. However, this is
problematic. Think about a result that is not significant – we have failed to reject the null
hypothesis. That means that we have decided that we cannot rule out that the population
effect size is zero. If the population effect size is zero, then the value we calculate for the
power of our design was 5% and, most importantly, was not affected by the sample size .
This is really a meaningless situation – and post hoc power is itself meaningless because
of that.
Moreover, the value for this post hoc power is also just determined by the p-value of the
original sample. Once again, we won’t give the proof, but here is the formula:



w post = 1 – normcdf ( norminv ( p ) – norminv (α))

So, this version of post hoc power adds nothing beyond the p-value itself. In fact, a non-
significant result will always appear to have a post hoc statistical power that is less than
50% (when p is greater than α).
There is a second proposed power analysis tool that attempts to reach a similar logical
point. It is called a sensitivity analysis and is a calculation intended to show how sensitive
the design used should have been to an effect in the population – if it was there. The idea
is that it would be useful to say that a non-significant result with a suitably large sample
size must rule out the presence of a large population effect size. The issue of uncertainty
remains. If we have a non-significant result from a sample of size 42, then we can argue
correctly that in order to be significant, the sample effect size would have needed to be 0.3
or greater. But we can’t say the same thing about the population effect size .
We can make a statement about the population effect size, but it has to respect the
uncertainty in the result. So, what we can say is that our design (sample size) gave us a
particular chance of finding a significant result for any given population effect size we
choose. For example, Figure Im3.2 shows the probability that we will get a significant result
with a sample size of 42 and of 100 as a function of population effect size. Please note that
in doing this, we are messing with the tenses a bit. We are talking about something that
has happened, our new sample, but speculating with it in the context of all the outcomes
that could have happened (but didn’t).

 Description

Figure Im3.2 The probability of a significant result as a function of
population effect size.
This plot shows the actual power that a design would have had, depending on what the population
effect size might have been. Two functions are shown for two different sample sizes.

IM3.4 A SUMMARY AND THE MORAL OF THE STORY
In this brief Intermezzo we have explored power analysis and how it works in practice. We
have seen two basically different propositions: a priori forward-looking power and post hoc
backward-looking power. Both are tempting parts of a logical argument, especially one that
will rationalise a failure to reject the null hypothesis. However, both of them are nearly
always based on a sample effect size, not a population effect size. Therefore, the value of
them is much reduced once we take into account all the uncertainty that exists in using that
sample effect size as an estimate of the population effect size.
The moral here is simple: don’t forget the uncertainty.
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We have now reached the stage where we have explored all of the basic statistical
understanding required to plan and carry out research by collecting data and analysing the
results. We have seen how to turn ideas into specific, testable hypotheses that involve two
variables, make educated decisions about the variables to include, come up with an
optimum design and sampling strategy, and then analyse data with descriptive and
inferential statistics to examine our sample and relate it to the population we are interested
in.
This chapter now takes us on the next step forwards: what happens with more than one
Independent variable (IV)? In this chapter, we will look at how multiple IVs work together.
We will explore the way such systems behave, rather than the practical details of how to
analyse data, which we will come to in Chapter 12 .
Examples of the use of multiple IVs are shown in Figure 11.1 : here we can see our original
IV, RiskTaking, alongside other variables that could also explain ExamGrade. Our purpose
now is to get you, the reader, to the point where you are looking at data, thinking about
diagrams like these, and focusing on what the meaning of the diagrams is: what could the
(underlying) statistical analysis tell us about psychological processes?

 Description

Figure 11.1 Much richer exploration using multiple IVs.
This figure shows a much richer exploration of various influences on ExamGrade, including our original
RiskTaking variable. In this chapter, we will focus on the principles and issues when we are assessing
the effect of multiple IVs simultaneously on a DV. The situation shown in the left panel is an example
where several IVs are considered together. On the right, we can see the variables feeding into each
other.

In principle, we could just analyse each link between variables in Figure 11.1 separately as
a two-variable hypothesis, repeating the process over and over again to explore lots of
different influences on, say, exam grades. Typically, however, it is better to explore several
IVs at once. So, while we are asking each person about their risk-taking, we could ask their
age, measure their self-efficacy, and so on. Any of these – or any other variable you could
imagine – might have influences on exam grades. In this chapter we explore the effect of
multiple IVs simultaneously influencing a Dependent variable (DV). Working with multiple
IVs together can lead to a much richer and more interesting understanding of the
underlying psychology than we would find by examining IVs separately.
The increase from one IV to many IVs is straightforward. There are three new ideas that
need to be understood, each of which concerns ways in which the IVs work together. In
this chapter we will work through the first two new ideas, and in Chapter 12 we shall see
the third new idea.

11.1 THE BASIC STRUCTURE
The structures in Figure 11.1 are easy enough to understand on a psychological level.
Each arrow shows a direct relationship between two variables. Their overall pattern shows
how influence flows between variables, whether that is in a simple direct connection or with
a more complex route. For now, though, this diagram is more complicated than we need it
to be. We can explore all the new concepts that are relevant to multiple-IV hypotheses with
a simplified set-up of just two IVs and a single DV, which is shown in Figure 11.2 .
Despite being simpler than the structures of Figure 11.1 , the use of two IVs creates a
more complex structure than we have seen in previous chapters: the single relationship
when we only had one IV influencing one DV is replaced now by four relationships
(indicated by the variety of arrows in the second part of Figure 11.2 ) that form a triangle of
two IVs influencing one DV. The triangle isn’t any kind of a fancy statistical concept that
you need to learn about – it’s just a very simple way to visualise this scenario that we have
designed.



 Description

Figure 11.2 Typical diagrams for one-IV and two-IV hypotheses.
On the left, there is the familiar diagram of a two-variable hypothesis: one IV affecting one DV. On the
right, we show a new diagram with three variables: two IVs affecting one DV. In this new situation, there
are three relationships between the IVs and the DV to consider, each marked by an arrow. The centre
arrow has a slightly more complex shape because it involves all three variables.

In this new three-variable scenario, there are three different relationships between the IVs
and the DV. By common convention these relationships are called effects . We will
mention them all here, and then explore each in detail.

The separate effects that flow directly from each IV to the DV are called main effects :
these are very much like the effect that exists between one IV and a DV in a simple
two-variable hypothesis. These are the simple arrows on the left and right of Figure
11.2 . Main effects describe how IVs work separately.

Then there is a more complex relationship where both IVs in combination affect the
DV: this is called an interaction effect . This is easiest thought of as a switch: the
value of IV2 changes (switches) the effect of IV1 on the DV. It can equally be
described the other way round: the value of IV1 changes the effect of IV2 on the DV.
This is shown as the merging arrow in the centre of Figure 11.2 . Interactions describe
how one IV can alter the relationship between another IV and the DV.

Finally, there is also the possibility for a relationship between the two IVs themselves –
we will call this a covariation effect . If there is such a relationship, then it has
consequences for how we measure the effect sizes for the main effects. This is shown
as the double-headed arrow at the top of Figure 11.2 . A covariation causes the IVs to
overlap in their effects on the DV. Covariation is covered in Chapter 12 .

11.1.1 Variable types
In this chapter, we will limit ourselves to exploring the following situations:

1. The DV is an Interval variable .

The principles we will learn here also apply when the DV is Ordinal or Categorical , but
with the additional complication of involving logistic regression. So for now, we are keeping
things simple. The particulars that relate to these other variable types are covered in
Chapter 13 .

2. The IVs are either Interval or Categorical .

It is always statistically safe to treat an IV that has a numerical ordering (i.e. Interval or
Ordinal) as Interval, provided that interpreting results is done with care over the true
amount of information that you have (as we mentioned in Chapter 3 , Ordinal data provides
less information about participants than Interval data can). Treating data like this allows the
statistical processes to benefit from the inherent ordering of numerical variables.



11.1.2 A new diagram
The material from here to the end of the book is easiest to understand if we introduce a
new version of our typical figure to show the different types of effect size. When there is
only one relationship, we don’t need a detailed diagram to show the effect size – it is, after
all, just one number. However, as we will see, things are a little more interesting now and a
different diagram will help.
In Figure 11.3 we show the new diagram, first with just one IV. The amount that is blue in
the DV shows us how much influence flows in from the IV. Think of this diagram as being
part of a set of tanks connected by pipes that the influence flows through. Each tank shows
us how much of the influence of other variables it contains. As we move on to two IVs, the
diagram will allow us to illustrate how the IVs work together.

 Description

Figure 11.3 Hypothesis diagram including variance explained.
This is a schematic diagram of the effect between an IV and a DV. It shows the familiar diagram with an
arrow showing the relationship between the IV and the DV. The box for the DV now has a blue area to
indicate how much of the variance of the DV is explained by the IV. The proportion of variance that is
explained by the DV is the same as the effect size squared (r 2 ). In this example, the IV is explaining
30% of the variance of the DV, which is a large effect: if r 2 = 0.3, then r = 0.55. The grey area is the
residual variance of the DV that is unexplained by the IV. In this chapter, we are exploring how that
residual area can be examined for the influence of further IVs.

11.2 IDEA 1: MAIN EFFECTS — SEPARATE
RELATIONSHIPS FOR EACH IV
Let’s think back to Chapter 4 where we looked at relationships between variables. We saw
that the value of the DV for each participant can be thought of as the combination of an
amount from the effect of the IV plus a second amount, which we called the residual ,
which is made up of all the other unmeasured influences on the DV. The residuals arise
from all the other possible variables that are affecting our DV that we haven’t considered or
don’t know about. This starting point is already illustrated in Figure 11.3 , which shows how
the variance of a DV can be split into the part that is explained by an IV and the remainder:
the residual variance.
With our three-variable scenario, we are starting to think about how some of that unknown
residual influence may be due to a second IV. When we introduce a second IV, we are
building a hypothesis where the DV is affected separately by each of two IVs. These two
separate effects of the two IVs are called main effects . We can see this situation in two
ways:

Variables and their effects: there are two relationships to consider: IV1→DV and
IV2→DV.

Participants: the value for the DV for any participant is given by the sum of a
contribution due to their value for IV1, a contribution due to their value for IV2 and a



residual made up of all the remaining unknowns.

There is nothing to stop us adding further IVs (so we have three, four or however many we
wish), but we’ll stick with just two in this chapter as it is sufficient to explain all of the
relevant principles clearly.

11.2.1 Example 1
We have already considered the effect of RiskTaking on ExamGrade. Now imagine we
have done an experiment. Half of our participants have been asked to undertake 30
minutes of mindfulness meditation the evening before the exam. The remaining half of the
participants are asked to go for a brisk walk round the university loch, also taking 30
minutes. Just in passing, notice how making an experiment had led us into a situation
where there are considerable ethical implications: we wouldn’t be doing this if we thought it
might have detrimental effects on any of our participants.
We have created a new Categorical variable which we will call RelaxType – it has two
conditions, mindfulness and walking. There is an important detail here: we randomly
allocate participants to the two experimental groups. With a random allocation, we ensure
that this new variable RelaxType can have no relationship with the other IV, RiskTaking:
whether you are a risk-taker or not has no bearing on which experimental group for
RelaxType you will be assigned to. We can say that the two IVs are independent of each
other . That means we can use the diagram shown in Figure 11.4 .

 Description

Figure 11.4 The hypothesis for our first example.
This figure shows the hypothesis for our first example. We are expecting that there will be a separate
effect of each IV on the DV and that the two IVs are independent. m = mindfulness and w = walking.

11.2.2 Variables and effects
Our first new principle is relatively straightforward. Provided the two IVs are independent of
each other, then their two relationships with the DV will operate quite separately. If the two
IVs are related to each other, then things are a little different, as we will see in Chapter 12 .
Let’s start with the effect of RiskTaking on ExamGrade on its own. This works in precisely
the same way as we have learned in previous chapters. The effect size for this
relationship, using the r-statistic as we have done throughout, can be anything from –1
through 0 to +1. The process of finding the effect size of the relationship splits the value of
each data point into two parts: the part due to the effect of the IV and the residual which is
the part not due to the effect of the IV.
Now we bring in our second IV, RelaxType. We have made the two IVs independent
through our design choices, which means that the variability in ExamGrade that is due to



RiskTaker? cannot simultaneously be due to RelaxType. If the two variables are not
related, they cannot cause related effects in ExamGrade. Any effect of our second IV will
be found only in the residual left after looking at how much of our DV is explained by the
first IV. With the schematic diagram, this is easy to illustrate: Figure 11.5 shows the
situation now.

 Description

Figure 11.5 Schematic diagram for two independent IVs affecting one DV.
This is a schematic diagram for two independent IVs affecting one DV. Since the IVs are independent,
they explain separate proportions of the variance in the DV. In this case, the second IV affects the DV to
a slightly smaller degree. The grey area is reduced by including the second IV in the analysis because
the second IV is explaining separate variance in the DV. The leftover grey space is the residual.

Even with the inclusion of a second IV, there will be a remaining unknown residual, which
consists of other variables that we haven’t considered. The residual is smaller than when
we had only one IV because our second IV will have explained some of the original
residual. Adding even more IVs at this point just carries that process further: potentially we
explain more and more of the residual with each additional IV. This schematic graph
approach allows us to see how the process works. For any IV in this process, the larger
the area of the DV that it fills, the larger the effect size relating that IV to the DV and the
more influential that IV is in the DV.

11.2.3 Participants
We now turn to think about individual participants in this process. We have invented some
data for this. We have already seen how to visualise the relationships between pairs of
variables in graphs. We can do that now for this new situation. First, we can look at the two
IVs quite separately and use familiar graphs for that purpose. These are shown in Figure
11.6 : on the left is the scatter plot showing the relationship between RiskTaking and
ExamGrade; on the right is the equivalent plot of group means for the relationship between
RelaxType and ExamGrade. The slope of the regression line and the difference in group
means illustrate the respective effect sizes.

 Description

Figure 11.6 Simulated data demonstrating main effects.



This figure shows some simulated data for our first example. The two different panels show the two
different main effects arising from the two IVs. Since the two IVs are independent of each other, these
are a good representation of the data.

Looking at the graphs in Figure 11.6 gives us two different ways of explaining each
participant’s grade. The graphs say that each participant’s ExamGrade is made up of:

(i) the effect of their own risk-taking value plus their residual, which is everything else
except risk-taking

(ii) the effect of their own RelaxType value plus their residual, which is everything else
except RelaxType.

The two residuals here are different: one participant may have a tiny residual in the left
graph and a large residual in the right graph, or vice versa. We now move to a single graph
which shows these two effects simultaneously, and this allows us a way of combining the
two variables. That single graph is shown, in two different forms, in Figure 11.7 .
The figure is a simple extension of the graphs we already know about, except that we have
plotted the participants from two RelaxType groups in different shades (and different
depths on the right). The two regression lines have the same slope (warning: we will
change this in the next section ) and that slope is the main effect of RiskTaking. The two
regression lines are separated by a difference in ExamGrade, and that difference is the
main effect of RelaxType. So the single graph shows both main effects.
The left graph in Figure 11.7 shows us how any participant’s grade is now seen in a third
different way. Each participant is still just one dot, coloured and positioned dependent on
which RelaxType group they were placed in. Each participant now has one residual which
is the vertical distance from their dot to the line associated with their RelaxType group. So
the left graph in Figure 11.7 shows that the ExamGrade for each participant is given by:

(iii) the effect of their own risk-taking value plus the effect of their own RelaxType
value plus a residual.

This combined way says that each participant’s grade is formed by adding up the main
effect of each IV and an overall residual. That overall residual is smaller than either of the
two previous ones.

 Description

Figure 11.7 Extending one-IV knowledge to two-IV hypotheses.
This figure shows how we can extend our understanding about a single IV to the case where there are
two independent IVs. On the left, you can see a set of data, plotted to show ExamGrade as a function of
RiskTaking score with the two conditions of a second IV, RelaxType, shown by different shades. Beside
this, the same data is shown but in a three-dimensional plot where the two groups of RelaxType are
distinguished by colour, but also by being separated in depth. The two horizontal axes are the two IVs
and the vertical axis is the DV. For this set of data, the three-dimensional graph adds very little to our
ability to see the structure in the data, but in other cases it will be very useful.

In this example, where the two IVs are independent, this combined approach using the two
IVs together leads to nothing different from what we find by treating each IV separately on



its own. Our hypothesis that DV is affected by IV1 and independently by IV2 is just the
same as two hypotheses that DV is affected by IV1 and that DV is affected by IV2 .

11.2.4 Other variable types
Although our example has illustrated the concept with an Interval and a Categorical IV,
there is no limitation on the use of different variable types for three variable hypotheses.
The relationships and main effects that are created will depend simply on the type of each
IV and the DV – and will follow exactly the same pattern as we saw for a single IV in
Chapter 4 .
Keeping the DV to an Interval variable, there are three basic types of three variable
hypotheses (both IVs are Categorical; one IV is Interval and one is Categorical; both IVs
are Interval). The way the data looks for each of these is shown in Figure 11.8 .
There is one last point to observe here and this point will lead us into the next idea in
Section 11.3 . If we look at the final graph in Figure 11.8 , we can see that the combination
of the two IVs is a tilted but flat surface. Technically, a flat surface is called a plane and it is
the next step in a simple sequence: we can begin with a point; then we can spread points
out into a line; and then we can spread lines out into a plane. The surface is flat, which
means that any lines running across it from left to right are straight lines all with the same
fixed slope. The slope of the line at any particular value of RelaxType is always the same.
This means that, in this scenario, the effect of RiskTaker on ExamGrade is always the
same, regardless of the value for the second IV, RelaxType. And vice versa: the effect of
RelaxType on ExamGrade is always the same, regardless of the value of RiskTaker. The
effect of RelaxType is the same for participants with low or high RiskTaker values. All the
other three-dimensional graphs in Figure 11.8 have the same property and this is the
fundamental limitation of main effects. Each main effect applies, regardless of the
particular values of any other main effects.

 Description

Figure 11.8 The various combinations of variable types in hypotheses with
two IVs.



There is a fundamental similarity to these graphs and their appearance is just altered to reflect which, if
any, IVs are Categorical. Remember that Ordinal data can look similar to Interval data or Categorical
data when plotted, depending on the nature of the data.

Now look at the (simulated) data in Figure 11.9 . Simply looking at the graph shows us that
the effect of RiskTaking on ExamGrade is not the same regardless of which RelaxType
group you are in: the effect of RiskTaking is almost zero in the mindfulness group, as seen
by the almost flat line. This data cannot be adequately described by just two separate main
effects, and we need now to move on to our second new principle: interactions.

 Description

Figure 11.9 Comparison of main effects and data with an interaction.
Here are some hypothetical data where a description of the patterns in the data using just main effects
is inadequate. The two graphs show the same data. On the left, the regression lines have the same
slope: the analysis uses just main effects. On the right, the regression lines are different: the effect of
RiskTaking on ExamGrade is allowed to be different in the two different groups of RelaxType. This is
called an interaction.

11.3 IDEA 2: INTERACTIONS — ONE IV SWITCHES THE
EFFECT OF ANOTHER
When there are two (or more) IVs, there is the possibility for a completely new type of
pattern in the data: the way in which one of the IVs affects the DV could depend on the
value of the other IV. We have already seen this effect in the data shown in Figure 11.9 . It
is called an interaction . We are going to start exploring interactions with an example
where the two IVs are both Categorical.

11.3.1 Example 2
For our second example, we will keep very close to the example in the previous section
and just make one change: we use the Categorical variable RiskTaker?. Interactions are
not limited to situations where the IVs are Categorical, but this is easier to understand to
start with. In this second example, we are actively interested in the possible presence of an
interaction, and the hypothesis diagram, shown in Figure 11.10 , has a new arrow to
indicate this: a slightly more complicated arrow which links both the IVs together and then
to the DV.



 Description

Figure 11.10 A new arrow to illustrate interactions.
The possibility of an interaction is shown in this diagram by the more complicated arrow in the middle,
which connects both IVs to the DV. Note that RiskTaker is now a Categorical variable for the purposes
of illustrating interactions.

If you look at Table 11.1 , you will see a table that illustrates an interaction in this second
example. We can see two patterns in this hypothetical situation:

1. There are no main effects . There is no overall effect of RiskTaker?: the different
effects of the other IV (Mindfulness and Walking) cancel each other out across each
row. Equally, there is no overall effect of RelaxType: the different effects of the other IV
(Yes and No) cancel each other out down each column.

2. There is an interaction . In the top row of Table 11.1 , Walking leads to a higher exam
grade than Mindfulness, whereas in the bottom row, the opposite is found. So, while
each variable separately does not have a main effect, something happens when the
different groups of each variable get split apart: they interact. Hence the name
interaction effect. Table 11.1 illustrates a relationship that is not the simple
combination of main effects – because both main effects are zero. This new type of
relationship is characterised by needing to specify the value of IV1 and IV2 to describe
it.

Table 11.1 A basic interaction.

Whether there is a benefit for exam grades depends on the specific combination of
values for the two IVs. The benefit exists for anyone who is either RelaxType = M and
RiskTaker? = No or RelaxType = W and RiskTaker? = Yes. The hallmark of this
interaction is the need to use the word and to state which combination of IV values gives
which outcome for the DV.

  RelaxType



  Mindfulness Walking  RelaxType

  Mindfulness Walking

RiskTaker? Yes ExamGrade lower ExamGrade higher

No ExamGrade higher ExamGrade lower

This example shows that we can have an interaction when there are no main effects:
interactions and main effects are quite separate.
There are several conventional ways of describing an interaction, but none is entirely
helpful. Traditionally, it is just called an interaction and, for the more mathematically
inclined, is explained as a multiplication. More recently, it has also been described as a
moderation. While the effect we are looking at certainly involves two variables interacting
with each other, the term ‘interaction’ doesn’t give much of a hint as to what happens, and
grasping the idea of multiplying values for RiskTaker and RelaxType together takes some
effort. To say that one variable moderates the effect of another comes much closer to
something we can readily understand, and we will return to this in a few paragraphs.

11.3.2 Interaction as a switch
We are going to introduce interaction as a switch, because that is an easy object to
understand and there is no need to make things more complicated than they have to be.
The interaction can also be thought of as a way in which one of the IVs switches the effect
of the other IV. In our example in Table 11.1 , the effect of RiskTaker? is negative when
RelaxType is Mindfulness and is positive when RelaxType is Walking. So, the value of
RelaxType switches the effect of RiskTaker? on ExamGrade from negative to positive . If
you look at Figure 11.11 , you will be able to see that describing the interaction as a switch
can be done both ways: RelaxType switches the effect of RiskTaker? and equally we can
say that RiskTaker? switches the effect of RelaxType.
The first example in Figure 11.11 is also a ± switch. This happens when the two main
effects are both zero, or close to it. In the second example, the interaction can switch the
IV1 effect on or off. This happens when the two main effects both have the same
magnitude of effect size as the interaction.

 Description

Figure 11.11 A way of visualising interactions as switches.

11.3.3 Interaction as moderation



We think of switches as being all-or-none devices. When the IVs are Categorical, that is a
useful analogy. A broader concept is the idea of a moderator: the effect of an IV is adjusted
by another IV. So instead of on or off, it might be that IV2 reduces the effect of IV1 by a
certain amount. The word ‘moderation’ catches this nicely.
The concept of moderation also makes it easier to see what an interaction that involves
Interval variables would be. The second row of Figure 11.12 shows this case. In order to
make the interaction easy to see, we have switched here to the three-dimensional graph.
The interaction means that the lines running left to right across the RiskTaking dimension
now have slopes that change depending on where they are placed from front to back (i.e.
what the value of RelaxAmount is). Although the surface now looks curved, in fact all of the
lines that run parallel to either axis (i.e. lines where one or another IV has a fixed value)
are still straight lines.

 Description

Figure 11.12 A way of visualising interactions as moderators.
This is just another way to visualise interactions.

11.3.4 Interaction as a separate variable
Although the interaction involves the two IVs, its effect is independent of the two main
effects. This means that an interaction behaves exactly as if it were just another IV.
This is easiest to see when the two variables are both Categorical and each has two
categories: this new ‘Interaction’ variable is also Categorical, with four categories. The
number of categories is the product of the number of categories for the two IVs (2×2). This
is shown in Figure 11.13 .
It is important to understand that the interaction really does just work as another variable.
We can add it into the schematic diagram as a separate entity that explains variance in the
DV independently (i.e. not overlapping with the main effects). This is shown in Figure 11.14
.



 Description

Figure 11.13 Interaction as another variable having an effect on the DV.
This table shows interaction as another variable having an effect on the DV. There are four possible
combinations that may lead to different outcomes of the DV in this example.

 Description

Figure 11.14 Schematic diagram showing how the interaction is a separate
effect from the two main effects.
This schematic diagram shows how the interaction (the darker colour in the middle) is a separate effect
from the two main effects – and explains a different proportion of the variance of the DV from either of
the main effects.

11.3.5 Interactions between other variable types
As with the main effects, there are no limitations on what variable types can be involved in
an interaction. Take a look at Figure 11.15 for more information.



 Description

Figure 11.15 Example data sets with interactions between different variable
types.

11.4 PUTTING IT ALL TOGETHER
We have left behind the simple world of a single effect linking two variables. Now we have
seen how multiple IVs can affect a DV in a richer pattern of ways. The pattern so far is
made up of two basic types of effect linking IVs to the DV: main effects and interactions.
With these different types of effect, we can build hypotheses that are sophisticated and
that can make quite complex predictions.
Nothing we have covered so far should be discarded. The variables we are talking about
here are the same concept as we had back in Chapter 3 . When we talk about all the
effects involved and their effect sizes, we are talking about relationships between variables
that are not different from the relationships we looked at in Chapter 4 ; and they are subject
to sampling error and the resultant uncertainty just as we explored in Chapter 5 . We can
apply null hypothesis testing to these effects, following exactly the logic of Chapter 6 . We
will no longer need the different specific tests of Chapter 7 – in Chapter 13 we will see how
they are all incorporated into just two fundamental procedures. And we can design
research that has multiple variables to minimise uncertainty using all the same ideas that
were in Chapters 8–10.

11.4.1 Limitations on effect sizes
The effect size relating a single IV to a DV can range from 0 up to 1 using our preferred
normalised type of effect size. This is still true when there is more than one IV, but with an
important qualification: the combination of all the different effects relating IVs to the DV
cannot exceed 1. So, for example, if the effect size of one single IV was actually 1, then all
the others would have to be 0. Recall that the square of the effect size is the proportion of
DV variance explained by the effect of the IV . Taken all together, the various effects of our
IVs cannot explain more than 100% of the DV variance. So, if we have one IV with an
effect size of 0.5, then the effect size of an independent second IV cannot be greater than
0.87. This is explained with examples in Table 11.2 .
Table 11.2 How independent effect sizes are combined.

This table only applies to the situation where the two IVs are independent. The first two
columns have the individual effect sizes. The third column shows the proportion of
variance in the DV that each IV is explaining. These figures are the square of the
individual effect sizes. The fourth column adds the proportion of variance explained by
each IV to find a total proportion of variance explained. The final column shows that we
can convert that back to a combined effect size by taking the square root.



IV1 effect
size

IV2 effect
size

DV variance
explained

Total DV variance
explained

Combined
effect size

0.5 0.87 0.5 2 = 0.25
0.87 2 = 0.75

0.25 + 0.75 = 1.00 sqrt(1) = 1

0.3 0.3 0.3 2 = 0.09
0.3 2 = 0.09

0.09 + 0.09 = 0.18 sqrt(0.18) = 0.42

0.4 0.14 0.4 2 = 0.16
0.14 2 = 0.02

0.16 + 0.02 = 0.18 sqrt(0.18) = 0.42

11.5 BEING A RESPONSIBLE RESEARCHER
In this chapter we have opened up a whole new world of possibilities. With the thought of
multiple IVs, there is almost no limit on what data can be collected and analysed if you
have time and patience. But that freedom comes with some important responsibilities. We
will approach these from two different directions. In each case we must ask ourselves
whether it is responsible to measure and use lots of variables.
First, and maybe most immediately important, let’s look at this from the perspective of a
participant. For each variable we researchers decide to measure, the participant is being
asked to disclose more about themselves. We use the word ‘disclose’ here very
consciously. Most of the things that psychologists are deeply interested in are also quite
personal and private. The responsible researcher does not ask their participants to
disclose more about themselves than is necessary. Whether it is anonymous or not is a
side issue: from the participant’s point of view, they are still being asked to share
something about themselves.
Second, let’s look from the perspective of the researcher. What counts more than anything
for a successful piece of research is a clear focus on a concrete hypothesis or question. A
scatter-gun approach to finding out as much as possible in the hope that something will
emerge really isn’t wise. Each additional variable reduces the research focus. Perhaps the
most obvious temptation here is just to let the data lead the hypothesis. Whatever turns out
to be statistically significant among so many possible analyses can so easily replace the
original question.

 The Big Picture
Moving on to consider the situation when we use more than one IV at a time marks
the start of the last big step forward in our thinking.

Multiple IVs
1. It is possible to use multiple IVs simultaneously to explain the variance in a DV.

Looking at more than one IV is a way of learning more about the residuals left



over when only one IV is examined.

Main Effects
1. Each IV may have its own separate main effect on the DV. If the IVs are

independent, then these main effects explain different variance in the DV.

Interactions
1. Two IVs may interact (an interaction effect) where the strength of the

relationship between one IV and the DV depends on the value of the second
IV:

a. Think of this as a switch mechanism.
b. It can also be thought of as moderation.
c. Interaction operates in the same way as a third Independent variable.
d. Any types of variables can interact: it is not restricted to just Categorical

variables.

Important constraints
1. All the principles that we have explored so far, such as uncertainty and errors,

still apply to scenarios with two or more IVs.
2. All the effect sizes found working together must add up to a maximum of 1, as

explained in Table 11.2 .

 Your Turn
Cross out the wrong word in each sentence:

1. The effect of each IV independently on the DV is called a main
effect/interaction effect.

2. An easy way to think about interactions is to think of them as an addition/a
switch.

3. When added together, IVs can explain up to 100%/50% of the variance of a
DV.

Fill in the table with the missing values. You may find it useful to look back at
Section 11.4 .

IV1 effect
size

IV2 effect
size

DV variance
explained

Total DV variance
explained Effect size

0.15 0.6 0.15 2 =
0.6 2 =

(0.15 2 + 0.6 2 ) = sqrt(0.15 2 +
0.6 2 ) =

0.3 0.1    

–0.25 0.4    

THE ANSWERS ARE AVAILABLE ONLINE



Your Space

 References and Further Reading
Flora, D.B. (2018) Statistical Methods for the Social & Behavioural Sciences.
London: Sage.
A good general text that uses some mathematics with helpful explanations.
Hayes, A.F. (2013) Mediation, Moderation and Conditional Process Analysis . New
York: Guilford Press.
The section on moderation is relevant to this chapter.

Descriptions of Images and Figures
Back to Figure

In the left diagram, the following variables influence exam grade.

Age.

Gender.

Birth order.

Self eff.

Risk taking.

Age has a positive effect, while the others have a negative effect.

In the right diagram, the links between the variables are as follows.

Age has a positive effect on self eff and risk taking.

Gender has positive and negative effects on risk taking and self eff, respectively.

Birth order has negative effects on self eff and risk taking.

Self eff has positive and negative effects on attendance and exam grade,
respectively.



Risk taking has a negative effect on attendance and exam grade.

Exam grade and attendance have a positive effect on module grade.

Back to Figure

In the left diagram, an arrow pointing from the IV to the DV indicates the relationship
between the variables.

In the right diagram, the relationship between the variables is indicated by several
arrows.

A double-headed arrow points to IV1 and IV2.

An arrow from IV1 and an arrow from IV2 point to DV.

A line from IV1 and a line from IV2 merge to form an arrow that points to DV.

Back to Figure
The relationships between the variables are indicated by arrows.

An arrow from a rectangle labelled IV and an arrow from a rectangle labelled other
unexplored variables point to a rectangle labelled DV.

A rectangular portion of the rectangle labelled DV is labelled IV, and the remaining
portion of the rectangle labelled DV is labelled other unexplored variables.

Back to Figure

The relationships between the variables are indicated by arrows from risk taking and
relax type pointing towards exam grade.

The frequencies of risk taking and exam grade are represented by bell curves that
peak at 30 and 60, respectively.

There are two relax types: m and w. The frequencies of the two types are indicated by
bars of equal height.

Back to Figure
The relationships between the variables are indicated by arrows.

An arrow from a rectangle labelled risk taking and an arrow from a rectangle labelled
relax type point to a rectangle labelled exam grade.

A rectangular portion of the rectangle labelled exam grade is labelled risk taking. A
smaller rectangular portion of the rectangle labelled exam grade is labelled relax type.

Back to Figure

In both graphs, all data are approximate.

In the scatterplot, the horizontal axis is labelled risk taking and ranges from 15 to 45 in
increments of 5. The vertical axis is labelled exam grade and ranges from 20 to 90 in
increments of 10. The plots are distributed on either side of the regression line sloping
upwards from (13.5, 42) to (45.5, 73). A small region above and below the line is
shaded.



In the graph, the horizontal axis is labelled relax type and lists m and w. The vertical
axis is labelled exam grade and ranges from 20 to 100 in increments of 20. A cluster
of plots is around the point (m, 52). Another cluster of plots is around the point (w, 68).
The points (m, 52) and (w, 68) are connected by a line.

Back to Figure

In both graphs, all data are approximate.

In the scatterplot, the horizontal axis is labelled risk taking and ranges from 10 to 50 in
increments of 5. The vertical axis is labelled exam grade and ranges from 20 to 90 in
increments of 10. The plots corresponding to m and w are distributed on either side of
the respective regression line sloping upwards. The regression line corresponding to
w slopes above the regression line corresponding to m. A small region above and
below each line is shaded.

In the graph, the first horizontal axis is labelled relax type and lists w and m. The
second horizontal axis is labelled risk taking and ranges from 10 to 50 in increments of
10. The vertical axis is labelled exam grade and ranges from 20 to 100 in increments
of 20. Two lines slope upwards. The plots corresponding to w are distributed close to
the mid-region of the first line. The plots corresponding to m are distributed close to
the mid-region of the second line.

Back to Figure

In all graphs, the vertical axis is labelled exam grade and ranges from 20 to 100 in
increments of 10. All data are approximate.

Row 1, column 2: The first horizontal axis is labelled relax type and lists w and m. The
second horizontal axis is labelled risk taker and lists n and y. The plots are located
close to four ellipses. The centres of the ellipses coincide with the vertices of a
rectangle, which extends across different planes.

Row 2, column 2: The first horizontal axis is labelled relax type and lists w and m. The
second horizontal axis is labelled risk taking and ranges from negative 4 to 2 in
increments of 2. The plots are distributed close to two upward-sloping lines.

Row 3, column 2: The first horizontal axis is labelled relax type and ranges from 2 to
negative 2 in decrements of 2. The second horizontal axis is labelled risk taking and
ranges from negative 2 to 2 in increments of 2. The plots lie within a rectangle that
extends across different planes in the graph, with a few outliers.

Back to Figure

In both graphs, the horizontal axis is labelled risk taking and ranges from 15 to 45 in
increments of 5. The vertical axis is labelled exam grade. All data are approximate. A
small region above and below each line is shaded.

In the first graph, the vertical axis ranges from 20 to 90 in increments of 10. The plots
for w are distributed on either side of the regression line sloping upwards from (12, 44)
to (50, 69). The plots for m are distributed on either side of the regression line sloping
upwards from (12, 55) to (50, 79).

In the second graph, the vertical axis ranges from 0 to 100 in increments of 20. The
plots for w are distributed on either side of the regression line sloping upwards from
(12, 24) to (50, 82). The plots for m are distributed on either side of the regression line
sloping upwards from (12, 70) to (50, 60).

Back to Figure



The relationships between the variables are indicated by three arrows. The first and
second arrows point from risk taker and relax type, respectively, to exam grade. The
third arrow is formed by merging lines from risk taker and relax type and points
towards exam grade.

The risk takers are categorized as n and y. The frequencies of n and y are indicated
by bars of equal height.

There are two relax types: m and w. The frequencies of the two types are indicated by
bars of equal height.

The frequency of exam grade is represented by a bell curve that peaks at 60.

Back to Figure

Rows 1 and 2, column 2: Diagrams with graphs represent the interactions between the
variables.

The relationships between the variables are indicated by three arrows. The first
and second arrows point from risk taker and relax type, respectively, to exam
grade. The third arrow is formed by merging lines from risk taker and relax type
and points towards exam grade. In row 1, the first and second arrows are labelled
0, while the third arrow is labelled 0.5. In row 2, each arrow is labelled 0.5.

The risk takers are categorized as n and y. The frequencies of n and y are
indicated by bars of equal height.

There are two relax types: m and w. The frequencies of the two types are
indicated by bars of equal height.

The frequency of exam grade is represented by a bell curve that peaks at 60.

Rows 1 and 2, column 3: Dot plots with error lines plot exam grade versus risk taker
for relax types m and w.

In both graphs, the horizontal axis is labelled risk taker and lists n and y. The
vertical axis is labelled exam grade. The approximate data is presented in the
format, risk taker, relax type: exam grade, minimum, maximum.

Row 1, column 3: The vertical axis ranges from 50 to 70 in increments of 5. The
data are as follows. n, w: 55, 53, 58. n, m: 65, 63, 68. y, m: 55, 53, 58. y, w: 65,
63, 68.

Row 2, column 3: The vertical axis ranges from 50 to 80 in increments of 10. The
data are as follows. n, w: 55, 54, 56. n, m: 55, 54, 56. y, m: 55, 54, 56. y, w: 75,
74, 76.

Back to Figure

Rows 1 and 2, column 2: Diagrams with graphs represent the interactions between the
variables.

The relationships between the variables are indicated by three arrows. The first
and second arrows point from risk taker and relax type, respectively, to exam
grade. The third arrow is formed by merging lines from risk taker and relax type
and points towards exam grade. In rows 1 and 2, the first and second arrows are
labelled 0.5, while the third arrow is labelled negative 0.25.

The risk takers are categorized as n and y. The frequencies of n and y are
indicated by bars of equal height.



There are two relax types: m and w. The frequencies of the two types are
indicated by bars of equal height.

The frequency of exam grade is represented by a bell curve that peaks at 60.

Row 1, column 3: A dot plot with error lines plots exam grade versus risk taker for
relax types m and w.

The horizontal axis is labelled risk taker and lists n and y. The vertical axis is
labelled exam grade and ranges from 40 to 70 in increments of 10. The
approximate data is presented in the format, risk taker, relax type: exam grade,
minimum, maximum. n, m: 47, 45, 49. n, w: 63, 61, 65. y, m: 63, 61, 65. y, w: 67,
65, 69.

Row 2, column 3: A 3D plot depicts the relationship between exam grade, relax
amount, and risk taking.

The first horizontal axis is labelled relax amount and ranges from 8 to 2 in
decrements of 2. The second horizontal axis is labelled risk taking and ranges
from 20 to 40 in increments of 10. The vertical axis is labelled exam grade and
ranges from 30 to 90 in increments of 10. The graph depicts a grid within a
rectangle that extends across different planes in the graph.

Back to Figure

Interaction variable (Categorical)

category 1 RiskTaker? = n & RelaxType = walking (w)

category 2 RiskTaker? = n & RelaxType = meditation (m)

category 3 RiskTaker? = y & RelaxType = w

category 4 RiskTaker? = y & RelaxType = m

Back to Figure
The relationships between the variables are indicated by arrows.

An arrow from a rectangle labelled risk taker, an arrow from a rectangle labelled other
relax type, and an arrow from a rectangle representing the interaction between risk
taker and relax type point to a rectangle labelled exam grade.

The rectangles inside the rectangle representing exam grade in decreasing order of
their respective size are as follows: risk taker, interaction, and relax type.

Back to Figure

In all graphs, the vertical axis is labelled exam grade. The first horizontal axis is
labelled relax type. The second horizontal axis is labelled risk taker. All data are
approximate.

Row 1, column 1: The first horizontal axis lists w and m. The second horizontal axis
lists n and y. The vertical axis ranges from 20 to 100 in increments of 10. The plots are
located close to four ellipses. The centres of the ellipses coincide with the vertices of a
rectangle, which extends across different planes.

Row 1, column 2: The first horizontal axis lists w and m. The second horizontal axis is
labelled risk taking and ranges from negative 4 to 2 in increments of 2. The vertical



axis ranges from 20 to 100 in increments of 10. The plots corresponding to w are
distributed close to a line that extends parallel to the second horizontal axis. The plots
corresponding to m are distributed close to an upward-sloping line.

Row 1, column 3: The first horizontal axis ranges from 2 to negative 2 in decrements
of 2. The second horizontal axis ranges from negative 2 to 2 in increments of 2. The
vertical axis ranges from 30 to 90 in increments of 10. The plots are enclosed by three
lines that extend across different planes, with a few outliers.
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In the previous chapter we began our exploration of what happens when we use several
different Independent variables (IVs) at the same time. In that chapter we saw that the
influences on a Dependent variable (DV) are of two basic types: main effects , which link
individual IVs to the DV, and interactions , which are where one IV can switch or
moderate the effect of another IV on the DV.
Now we turn to something that is going to be more dramatic in its consequences. It is often
a possibility that the two IVs are themselves related. When this happens, the relationship
between the IVs is called covariation ( Figure 12.1 ). They are said to covary (‘co-’ means
‘together’, so they vary together), and this has important effects for both the statistics and
the understanding of what the statistics are telling us.

 Description

Figure 12.1 Illustration of covariation.
This diagram shows the effect of covariation. Covariation is marked by the double-headed arrow
between the two IVs. The arrow is double-headed to indicate that the relationship can work in both
ways. It causes an overlap of the DV variance explained by the two IVs: their shared effect.

We are going to start with using our usual research idea. Let’s suppose that we have
already established that there is a relationship between RiskTaking and ExamGrade. Now,
our next question is whether being a musician or not has an effect on exam grade. We add
into our analysis a second IV, Musician?.
From here onwards, the effect sizes we draw on arrows in these types of diagram will be
called direct effect sizes to distinguish them from two other types of effect size that we
will meet soon: total and unique. Direct effect sizes show how much influence flows from
one variable to another through that arrow. They work in the same way we have seen
throughout this book.

12.1 STEP 1: TOTAL EFFECT SIZES
If we take our IVs quite separately using each one on its own and ignoring any covariation
it may have with other IVs, the effect size we obtain is called the total effect size . It is the
sum total of all the information that flows from the IV to the DV. This approach is illustrated
in Figure 12.2 . In two-variable hypotheses like these, the total effect sizes are the same as
the direct effect sizes on the arrows because there are only single arrows.



 Description

Figure 12.2 Illustration of total effect sizes.
Total effect sizes are the effect sizes we measure when we look at just one IV and one DV. These two
here show the total effect sizes for our example. There are strong effects of both IVs on the DV.

12.1.1 Relation to direct effect sizes
We have found a strong, positive effect of Musician? on ExamGrade. But perhaps
musicians are simply very good at managing their nerves and using anxiety to maximise
performance: maybe, for the purposes of our study, being a musician is no different from
being a scuba diver. By thinking like this, we are splitting the concept of our variable
Musician? into two parts: a risk-taking part and everything else, which we will call
MusicNotRisk. The total effect size between Musician? and ExamGrade that we measured
could be mostly due to the risk-taking part of being a musician and hardly at all due to
MusicNotRisk. Our positive effect of Musician? may really only be because it is related
strongly to risk-taking habits.
To see this graphically, look now at Figure 12.3 . Focus on Musician? and how it can
influence ExamGrade. There are two routes for that influence: a direct one and an indirect
one via RiskTaking. The total influence of Musician? on ExamGrade is the combination of
the influences carried by each route. We have supplied some direct effect sizes that
produce the phenomenon we are describing. The direct effects from each IV to the DV are
now rather different, although the total effect sizes will be the same. We must explore why
this is.



 Description

Figure 12.3 Illustration of direct effect sizes.
This diagram introduces a double-headed arrow between the two IVs to indicate the presence of
covariation. The diagram shows the direct effect sizes between the three variables in this example.

Two rules allow us to calculate total effect sizes from direct effect sizes.

1. Combining a sequence of steps : the effect size for any single whole route is
calculated by multiplying together the direct effect sizes for the individual steps. In
doing this, we must be careful with effect signs.

2. Combining parallel routes from the same IV to the same DV: the effect sizes of the
routes are added together.

We can apply these two rules to the example in Figure 12.3 , using Rule 1 to calculate the
indirect route and then Rule 2 to combine the direct and indirect routes. The calculations
are shown in Table 12.1 . The two total effect sizes are the same as those in Figure 12.2 ,
so we know that the new diagram in Figure 12.3 is consistent with that old one.
Table 12.1 Calculations of total effect sizes from direct effect sizes.

IV Direct route Indirect route Total effect size

Musician? 0.133 0.5 × 0.433 = 0.217 0.133 + 0.217 = 0.35

RiskTaking 0.433 0.5 × 0.133 = 0.067 0.433 + 0.067 = 0.5

12.2 STEP 2: UNIQUE EFFECT SIZES
Now we will go one more step and look at unique effect sizes . Unique effect sizes
measure the effect of an IV that doesn’t overlap with any other IVs. It is what is left when
any overlapping effects are simply removed. In our example, the unique effect of
Musician? is what is left after the overlap with RiskTaking is subtracted from it, as shown in
Figure 12.4 .



 Description

Figure 12.4 Unique effects come from removing overlap in variance
explained.
This schematic diagram shows how the unique effects of each IV can be found by removing any overlap
between them. In this situation, we are underestimating the amount of variance in the DV that our
variables are accounting for because we are ignoring a portion of it.

12.2.1 Relation to direct effect sizes
The variable Musician? in our example can be thought of as having two parts: the risk-
taking part and everything else. These two parts are variables: one of them, RiskTaking,
we already have, but the other (MusicNotRisk) is new. We can illustrate this with an
extension to the diagram, as shown in Figure 12.5 .
The variable we have labelled as (MusicNotRisk) represents all of the causes of Musician?
except for those which overlap with RiskTaking. We have drawn the name of this variable
in brackets and italics to show that it is not a variable we have measured: it is a latent
variable. The direct effect size between it and Musician? is calculated to explain all of the
remaining variance in Musician? after RiskTaking is taken into account. Its value is given
by:

sqrt (1 – 0.5 2 ) = 0.87

where the 0.5 is the direct effect size linking RiskTaking to Musician?.



 Description

Figure 12.5 Hypothesis including a latent variable.
This is an elaboration of Figure 12.3 , where we have added in a latent variable (MusicNotRisk) that
corresponds to everything that contributes to the IV Musician? except risk-taking. The two variables
(MusicNotRisk) and RiskTaking now explain all the variance of Musician?. For simplicity we have left out
the link from RiskTaking directly to ExamGrade.

To find the unique effect of Musician? on ExamGrade, we must remove the effect that it
shares with RiskTaking. In Figure 12.5 , this is very easy to see: the unique effect of
Musician? is the effect of (MusicNotRisk) on ExamGrade via Musician?. The unique effect
of Musician? on ExamGrade is equivalent to the total effect of (MusicNotRisk) on
ExamGrade. There is only one route between these two variables: an indirect route. Using
Rule 1, we calculate the effect size for this indirect route by multiplying the direct effect
sizes together: 0.87 × 0.133 = 0.12. This means that the unique effect size for Musician? is
0.12, which is the effect of being a musician on exam grade after the risk-taking
component of it is removed.
We can do the same calculation for RiskTaking: find the unique effect size of this variable.
This unique effect size for RiskTaking is the effect of risk-taking on exam grade after the
Musician? component of it is removed.

12.3 THE TWO MEANINGS OF COVARIATION
When there is no covariation between the IVs, then the three sorts of effect size – direct,
total and unique – are all the same. We have just seen that when there is covariation
between the IVs, then they are not the same. This matters for how we interpret any results
that we get: what they mean. Up until now, interpreting a relationship between two
variables, an effect, has been simple. But unlike most of the material so far, we now have
to think quite carefully about the meaning of the different effect sizes.
There are two types of meaning we can understand. First, we will look at the statistical
meaning: how the different relationships and routes work together in these diagrams. That
will be the easier part of this. Then we will look and see what the psychological meaning of
this all is. Both of these might seem a little trickier to grasp, but we’ll get there.



12.3.1 Statistical meaning
The statistical meaning of the situation that arises with covariation is actually
straightforward. There are three ways we can describe the situation: (i) using direct effect
sizes (as in Figure 12.3 ), or converting these to (ii) total effect sizes or (iii) unique effect
sizes. The values for these are shown in Table 12.2 . Looking at this table, we can see
easily that it is no longer possible to simply talk about the effect size of an IV on a DV.
There are three different ways of describing it and we need to think about which we should
use.
Table 12.2 Calculations of unique effect sizes from direct effect sizes.

IV Direct effect size Total effect size Unique effect size

Musician? 0.133 0.133 + 0.217 = 0.35 0.87 × 0.133 = 0.115

RiskTaking 0.433 0.433 + 0.067 = 0.5 0.87 × 0.433 = 0.375

Figure 12.6 Covariation as overlap of total effects.
This is an extract from Figure 12.1 , showing just the lower part. The total effects that each of the two
variables Musician? and RiskTaking now explain are shown as rectangles. The covariation between
these two variables results in those rectangles overlapping. The unique effect of each variable is now
smaller because of that overlap.

To see the situation, look at Figure 12.6 , which is just the lower part of Figure 12.1 . Then
look at Table 12.2 , which shows the calculations of the effect sizes. When we interpret
these effect sizes we will need to take these various considerations into account:

Total effect sizes in all the examples here have turned out to be potentially misleading.
If we just combine them, they will give us an over estimate of how much variance in
the DV we have explained. This is because the overlap area in Figure 12.6 gets
counted twice.

The direct effect sizes have the benefit that they are complete: they say everything
that we know about the effects of these variables. They provide a correct estimate of
how much variance in the DV we have explained. Compared to the other two,
however, they are actually quite hard to interpret.



Unique effect sizes are not complete: they leave out any overlap because of
covariation between IVs. They are easier to interpret than the other effect sizes.

Ultimately, this is a choice to be made depending on the purpose of the research. It is
important to bear in mind that neither total effect sizes nor unique effect sizes on their own
provide a full picture.

12.3.2 Psychological meaning
Once we have identified the covariation and its statistical consequences, then we have to
think about what it means. If we use the unique effect size of an IV to characterise the
relationship, then we have removed part of the IV (that overlaps with the other IV) and are
using only what remains. We should work out how to describe that remaining part. Once
we take risk-taking out of being a musician, what is left?
The starting point is to realise that (looking at Figure 12.5 ) the unique effect size is really
the relationship between the variable (MusicNotRisk) and ExamGrade. So, although we
talk of it being the unique effect of Musician?, that is really just a shorthand way of avoiding
having to spell out the latent variable.
When we analyse both IVs at the same time, the process finds their separate contributions
to the exam grade. Specifically, the presence of the RiskTaking variable means that the
meaning of the unique effect of the Musician? variable is changed to something that
doesn’t involve risk-taking. We call this controlling for the second variable: our analysis of
Musician? has controlled for (i.e. removed) the effects it shares with RiskTaking. The effect
we see, after controlling for RiskTaking, is the effect of a specific subset of the components
of being a musician: the ones that aren’t related to the willingness to take risks. Perhaps
playing music requires great skill at recognising scales and arpeggios and these are what
remain – in which case we could have discovered that these characteristics are not helpful
in an exam. That makes sense.
The point here is that the meaning of each IV is changed when our analysis includes their
covariation to reveal their unique contributions to the DV. That leaves us with the important
task of working out what the variables now mean. There is no statistical answer to that: the
answers are all psychological. This is a clear example of how statistics can be thought of
as a tool that allows us to see inside the data to a rich underlying psychology. You may feel
that you want to be skilled at statistics, but really the key skill to aim for is the ability to think
like a psychologist about what statistics shows you.

12.4 ANOTHER EXAMPLE OF COVARIATION
This principle of covariation is so important that we are going to look at another example.
We have chosen a puzzling finding. Imagine we have measured the effect of the amount of
time a student plans to spend preparing for exams on their exam grade. We would do this
with the intention of using some real data to persuade students to plan out their
preparation for exams by being able to demonstrate vividly the actual benefits.
We are looking at two new IVs, from which we hope to give students some sensible
advice. The variable we are most interested in is the number of hours that participants plan
to spend preparing for their exam; we will call it PlannedTime. Our main hypothesis is
therefore that PlannedTime affects ExamGrade. We feel sure you will agree that this is a
very sensible hypothesis but, like everything that is sensible, it is rather dull and obvious.
To make it more interesting we have also measured participants’ attitudes towards exams.
Let’s call that ExamAttitude.

12.4.1 The data: IVS separately for total effect sizes
We show some simulated data for the effect of PlannedTime in Figure 12.7 . The result
looks clear-cut: planned preparation time has a strong influence on exam grades and the
total effect size is 0.29. Using this, we begin to formulate the advice we will offer students.
The result tells us that every hour of planned preparation time, on average, increases a
student’s exam grade by 5.5 points. That seems like a very useful piece of evidence to use
to persuade students of the value of preparation.



 Description

Figure 12.7 Hypothesis diagram and related scatter plot.
Our hypothesis is that the amount of time participants plan to spend preparing for their exam has a
strong positive effect on their exam grade. We have placed a scatter plot of our data beside the
hypothesis: it is clear that there is a strong positive relationship between the two variables.

 Description

Figure 12.8 Second example including hypothesis diagram and related
scatter plot.
This is our second example, after we have also measured ExamAttitude. There is, as expected, a
positive relationship between attitude to exams and performance on exams.

Before committing to the simple advice, we return to the data and analyse our second IV,
the students’ attitude to exams. This hypothesis is shown in Figure 12.8 along with the
simulated data for the effect. The total effect size for the effect of ExamAttitude on
ExamGrade, obtained by just analysing those two variables on their own, is 0.18: a positive
but rather modest effect. A positive attitude leads to a small increase in exam performance.

12.4.2 The data: IVs together
Now we take the two IVs and put them both into a single hypothesis, which is shown in
Figure 12.9 .
When we examine the data with the two IVs together to get their direct effect sizes, the first
thing we discover is that there is still, not surprisingly, a positive relationship between exam
attitude and exam grade: participants with a positive attitude to exams do better than those
with a negative attitude. The direct effect size for this relationship is 0.61, much higher
than the total effect of 0.18 that we saw above.
Table 12.3 The different effect sizes for this example.



IV Total effect size Direct effect size Unique effect size

PlannedTime +0.29 –0.22 –0.123

ExamAttitude +0.18 +0.61 +0.34

 Description

Figure 12.9 Hypothesis where two IVs are both included.
This figure shows the hypothesis when the two IVs are both included. We have every reason to expect
that there will be covariation between the two IVs, so we have included an arrow for that.

However, there is also a big unwelcome surprise. We now find that by including
ExamAttitude in the analysis, the direct effect size for PlannedTime is –0.22, which is quite
strongly negative. By adding more information into our analysis, the effect of PlannedTime
we initially saw has changed radically. This would seem to mean that there is a reduction in
exam grade of –2.4 for each hour planned for revising. To be clear, there are no mistakes
in this: that is exactly what the data says. So what advice should we now be telling
students? We clearly can’t say that they should avoid preparing for exams because it
reduces their exam grade.
We need to work through the two meanings of this data: the statistical and then the
psychological.

12.4.3 Statistical meaning
The statistical meaning of this is straightforward. The total effect of PlannedTime on
ExamGrade is the sum of the various routes (a direct route and one indirect route here).
The direct route has a negative effect size of –0.22; the indirect route has a positive effect
size of 0.83 × 0.61 = 0.51. The sum of these two is –0.22 + 0.51 = 0.29.
So, overall there is a positive total effect size of 0.29. The statistics have shown us that this
total effect size is made up of two parts: (i) the direct route has a medium negative effect
size (–0.22) and (ii) the indirect route has a strong positive effect size (+0.51).

12.4.4 Psychological meaning



The psychological meaning of this is less straightforward. It hinges on what we think the
variable PlannedTime means after we have removed the part of it that relates to
ExamAttitude. One possibility is that if you remove attitude to exams from the amount of
time people plan to spend preparing for exams, what you have left is a measure of how
much they are being over- or under-ambitious in their plans. If the thought of exams fills
you with horror, then planning to spend eight hours per day, five days per week for four
weeks is quite possibly a bad idea. Making such a plan would mean for me that either (i) I
am going to spend most of that time in a panic convincing myself that I cannot do it, or (ii) I
am going to fail to keep it up and end up feeling guilty, with a strong aversion to revision.
Neither outcome is great.
Disclaimer: None of this is real advice by the way: the data is simulated just to make
the point.
The variable PlannedTime has been changed in its psychological meaning by including
ExamAttitude into the analysis. The negative unique effect of planned preparation time on
exam grades, after attitude to exams has been taken into account, is now a measure of
how far our plan is realistic for us. If we are planning more revision time than we will
achieve, then that will be bad for us, as the data shows.
The advice? The advice would seem to be that students should prepare while that is
productive, but if the preparation becomes a negative experience, then stop.
This is still not real advice by the way … although there may be some wisdom in it.

12.4.5 The lessons of this example
The first lesson is that the statistics side of things is very simple: multiply effect sizes along
a sequence of steps; add effect sizes where different parallel routes starting at the same
original variable join up again. Bookmark these pages to come back to them or find
additional examples in our online resources to get some more practice.
The second lesson is that the psychology side of this is perhaps quite complicated.
Essentially, we have seen how the direct and unique effect size that joins an IV and a DV
is changed every time we add in a new additional IV. There is nothing wrong in that, it is
just that the meaning of the effect is itself also changed – and that is where the hard work
will often lie: working out the new meaning of our variables.
However, there is a little bit of comfort here. To make the whole thing clear, we had to use
very large effect sizes along the indirect route in our example. If they had been 0.25 each,
which is certainly more likely generally, then the indirect effect size would be 0.25 × 0.25 =
0.06, which is so small as to be negligible.
It is sometimes possible to make two IVs to be completely independent of each other, such
as our first example in Chapter 11 , where we could randomly assign participants to groups
of the second IV, which means that they have a relationship with a zero effect size. In this
situation, the direct, total and unique effect sizes from an IV to the DV all have the same
value.

12.5 PUTTING IT ALL TOGETHER
Covariation is common in psychology, probably more common than is realised. When we
have understood how it happens, then there is nothing much more in statistics for us to
learn.
The analysis of covariation has many different names. Mathematicians call this process
conditioning because the analysis will look for any effects of Musician? after the condition
of RiskTaking is fixed. Sometimes, psychologists call a partial version of it controlling for
the second IV. By this they mean that it allows them to look at the purer effect of being a
musician, after the risk-taking aspect of that has been controlled for – that is, removed.
Another partial version of it can also, in some circumstances, be called mediation analysis,
where the analysis would focus on whether the effect of being a musician on exam grades
is mediated by (carried by) the effect of risk-taking. We will examine mediation briefly in
Chapter 14 .
We have seen how the existence of covariation creates a much richer picture of the
psychology of a situation than we could see by looking only at total effects – by looking at
each IV separately. That richer picture has a relatively straightforward statistical meaning,
but it can require considerable thought to understand the psychological meaning.

12.5.1 Effects and effect sizes



We are now quite used to two key concepts of descriptive statistics: the idea that there are
relationships between variables and that those relationships have a strength that we call
the effect size.
In the topics we are now covering, the term effect is commonly used to describe a
relationship: does RiskTaking have an effect on ExamGrade? Now we have multiple IVs,
there are three different types of effect:

(i) Main effects

(ii) Interactions

(iii) Covariations.

The strength of an effect can be presented in three different ways:

(i) Natural effect sizes

(ii) Standardised effect sizes

(iii) Normalised effect sizes.

In this more complex situation of more than one IV, there are three different types of effect
size:

(i) Total effect size

(ii) Direct effect size

(iii) Unique effect size.

12.6 BEING A RESPONSIBLE RESEARCHER
In many respects this chapter presents the most difficult challenge to the researcher. The
challenge is not statistical, it is psychological. It is about trying to find words to describe
what any potential covariations might mean. The statistics are relatively straightforward,
and diagrams that show overlapping effects of predictors on response variables (IVs on
DVs) help to make that clear. But all they do is to draw to the researcher’s attention the
need to explain carefully what the variables really mean. This is an area where short-cuts
are available but must be refused. It is very easy to choose whichever effect, total or
unique, is the more helpful for the point that the research seeks to make, present that
effect and disregard the other. But doing that is to also disregard something important that
the data says.
Covariation is often seen as an unnecessary complication and one that is to be avoided
wherever possible. What we have tried to do in this chapter is show how covariation can
be used to refine the way we describe the effects that we see in data. If you like,
covariation can be thought of as revealing variables that we hadn’t explicitly thought of, but
that the data points to.
A responsible researcher will acknowledge all of the covariation they find, will reflect on
what they can learn from covariation where it occurs, and will shape their conclusions
appropriately.

 The Big Picture
Covariation is when there are relationships between IVs. It can have consequences
for the effect sizes that we measure. When we use multiple IVs, there is a high
chance that there will be some covariation.

Variables and routes



1. We can think of the links that connect variables as being like pipes along which
information flows. The variables are like tanks that hold that information.

2. The presence of covariation leads to there being multiple routes between IVs
and the DV:

a. Direct routes: any link that connects two variables without an intervening
variable.

b. Indirect routes: a sequence of direct links.

Ways of describing effect sizes
1. Covariation means that there are three different ways of describing the sizes of

effects:
a. Total effect size: the effect size you would see if you just used a single IV.

It is the sum of all the different routes from an IV to a DV.
b. Unique effect size: the effect size seen when all overlap between IVs is

removed.
c. Direct effect size: the effect size that determines the flow of information

through a direct link.
2. When there is a single IV, or the multiple IVs are all independent of each other,

the total, unique and direct effect sizes are all the same.
3. When multiple IVs covary, the effect sizes are all different and may even have

different signs.

Meaning
1. There are two rules for combining effect sizes:

a. Sequence of links: multiply the direct effect sizes together.
b. Set of parallel routes between the same two variables: add effect sizes.

2. The presence of covariation often requires us to change our understanding of
the psychological meaning of IVs. The unique effect size is that part of the
effect of an IV that it doesn’t share with any other IVs.

 Your Turn
Define the following key terms in the space provided:

1. Covariation
2. Total effect size
3. Unique effect size

Fill in the gaps to complete the sentences.

1. In a route that is a sequence of steps, the direct effect sizes are ___________
together to give the effect size for the route.

2. When there are multiple routes between an IV and a DV, the route effect sizes
are ___________ together to give the total effect size.

THE ANSWERS ARE AVAILABLE ONLINE

Your Space
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Descriptions of Images and Figures
Back to Figure
The relationships between the variables are indicated by arrows.

An arrow from a rectangle labelled risk taking and an arrow from a rectangle labelled
musician point to a rectangle labelled exam grade.

A double-headed arrow between risk taking and musician points to both variables.

A rectangular portion of the rectangle labelled exam grade is labelled risk taking.
Another rectangular region in the rectangle labelled exam grade overlaps the
rectangle labelled risk taking and is labelled musician.

Back to Figure
The effects are indicated through arrows.

An arrow labelled 0.5 points from risk taking to exam grade.

An arrow labelled 0.35 points from musician to exam grade.

The frequencies of risk taking and exam grade are represented by bell curves. The
bell curve for risk taking peaks at 30. The bell curves for exam grades peak at 60.

Bars of equal height represent the frequencies for no and yes corresponding to the
variable musician.

Back to Figure
The effects and covariance are indicated through arrows.

An arrow labelled 0.433 and an arrow labelled 0.13 point from risk taking and musician
to exam grade. A double-headed arrow labelled 0.5 between risk taking and musician
points to both variables.

The frequencies of risk taking and exam grade are represented by bell curves. The
bell curve for risk taking peaks at 30. The bell curve for exam grade peaks at 60.

Bars of equal height represent the frequencies for no and yes corresponding to the
variable musician.



Back to Figure
The effects are indicated by arrows.

An arrow from a rectangle labelled risk taking and an arrow from a rectangle labelled
musician point to a rectangle labelled exam grade.

A double-headed arrow between risk taking and musician points to both variables.

A rectangular portion of the rectangle labelled exam grade is labelled risk taking.
Another smaller rectangular region in the rectangle labelled exam grade is labelled
musician.

Back to Figure
The links are represented by arrows.

An arrow labelled 0.5 from risk taking and an arrow labelled 0.87 from music not risk
point to musician.

An arrow labelled 0.13 from musician points to exam grade.

The frequencies of risk taking, music not risk, and exam grade are represented by bell
curves. The bell curves for risk taking and music not risk peak at 30. The bell curve for
exam grade peak at 60.

Bars of equal height represent the frequencies for no and yes corresponding to the
variable musician.

Back to Figure

In the illustration, an arrow labelled 0.29 points from planned time to exam grade. A
skewed bell curve peaking at 4.5 represents the frequency of planned time. A bell
curve peaking at 60 represents the frequency of exam grade.

In the graph, the horizontal axis is labelled planned time and ranges from 2 to 8 in
increments of 1. The vertical axis is labelled exam grade and ranges from 20 to 100 in
increments of 20. All data are approximate. The plots are distributed on either side of
a regression line sloping upwards from (2, 42) to (8, 78). A small region above and
below the line is shaded.

Back to Figure

In the illustration, an arrow labelled 0.18 points from exam attitude to exam grade. A
bell curve peaking at 0 represents the frequency of exam attitude. A bell curve
peaking at 60 represents the frequency of exam grade.

In the graph, the horizontal axis is labelled exam attitude and ranges from negative 3
to 3 in increments of 1. The vertical axis is labelled exam grade and ranges from 20 to
100 in increments of 20. All data are approximate. The plots are distributed on either
side of a regression line sloping upwards from (negative 3, 38) to (3, 82). A small
region above and below the line is shaded.

Back to Figure
The relationship is indicated through arrows.

An arrow from planned time and an arrow from exam attitude point to exam grade. A
double-headed arrow between planned time and exam attitude points to both
variables.



A skewed bell curve peaking at 4.5 represents the frequency of planned time. A bell curve
peaking at 0 represents the frequency of exam attitude. A bell curve peaking at 60
represents the frequency of exam grade.
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In the previous two chapters we have examined the three fundamental ways in which
Independent variables (IVs) can work together: main effects , interactions and then
covariations . In this chapter we will now explore how to analyse data that has come from
hypotheses with multiple IVs.
There are two fundamental methods of analysing data that has multiple IVs. These
methods of analysis are going to be somewhat familiar to you as we have already seen
scaled-down versions of them in Chapter 7 : regression and analysis of variance
(ANOVA). In the past, there were many more approaches that were all treated as distinct
but are now seen as falling into these two fundamental methods. We will close this chapter
with a brief look at those so that you will understand them if you encounter them.

13.1 DIFFERENT WAYS TO DESCRIBE EFFECT SIZES
If two or more IVs are completely independent, then each explains a separate amount of
variance in the Dependent variable (DV). If they are not independent and there is
covariation between the IVs, then the variance of the DV that is explained by them has two
parts:

There is variance in the DV that is only explained by one IV.

There is variance in the DV that is simultaneously explained by two or more
overlapping IVs.

In Table 13.1 we list the three basic effect sizes that can be used when there is overlap
between two IVs. In the previous chapter we saw how these different ways of describing
an effect work. In this chapter we will see how these can be estimated from data.
Table 13.1 The possible ways of dealing with the overlap between IVs when there is covariation.

Ignore overlap:
total effect sizes

Report each total effect size separately.

Remove overlap:
unique effect sizes

Report only the unique effects of each IV on the DV. This
produces a measure of the unique effect of each IV.

Partition overlap:
direct effect sizes

The overlap can be split between the IVs. This results in what
we have been calling the direct effect of each variable.

13.2 GENERAL LINEAR MODEL
The first procedure for analysing data with more than one IV is called a General Linear
Model , which is a close cousin of regression. It also happens to work perfectly well for
data when there is only one IV and will produce the same results as tests like the t-test (in
a slightly different way). However, it hasn’t really caught on in psychology yet for single IV
testing: the older tests that we looked at in Chapter 7 persist in analyses, probably
because they are more familiar.
The process builds a model – a General Linear Model – of what the data tells us using
principles we have already covered, so although it is a new name, most of the details will
be familiar. We are going to use some formulae in this section because they are good
ways of explaining what General Linear Models are. We will explain each formula as we go
along – and none of them involves more than adding and multiplying. Even if you don’t like



maths, this is going to be simple. Remember that we have included a table of common
formulae meanings in the ‘How to Use This Book’ section.

13.2.1 Formulae
Look at the following formula. The right side of it (to the right of the =) is a recipe for
calculating the left side where each letter stands for a number:

y i = a + e i

y = DV value, a = constant number, e = variable number, the subscript i denotes any
specific participant.
This formula says, in mathematical notation, that the value of a variable y for participant i
(the bit that says ‘ y i ’) is made by:

(i) taking a constant value ( a ) – ‘constant’ means it is the same for all participants

(ii) adding a variable extra amount ( e i ) which has a different value for each
participant i .

The right-hand side of the formula is said to have two terms, separated by the + sign.
These terms correspond to the steps in the calculation. Notice also that the right-hand side
of the formula has two types of number: one that doesn’t depend on the particular
participant ( a ) and one that does depend on the individual ( e i ). The first term in the
formula does the same thing for everyone, which is why a is called a constant ; the
second term has a different consequence for each participant.
So far, this formula will work for any value of a that we choose. The set of values for e i are
just adjusted so that when we add a to each we get the corresponding y i . In fact, we set a
= 0 and then the values for e i are exactly the same as the values for y i . Doing that is
neither interesting nor helpful. What is useful is to set the value for the constant a to the
mean value of the DV. This would mean that each e i is the difference between the
participant’s value y i and the mean – and we have already called this the residual. So this
formula would say that we can calculate the individual value of the DV for participant i by
adding the mean of the DV plus the individual residual for that participant ( e i ).

When we introduce an IV as well as the DV, then we add a new term to the formula ( bx i ),
which means b times x i . We could have written b × x i but it is conventional (and
convenient) to miss out the multiplication sign in formulae):

y i = a + bx i + e i

a and b = constants, x i = value of IV, y i = value of DV, e i = value of residual.

This formula is very similar to the previous one, it just has one more term. It says that y i ,
the value for the DV for participant i , is made by:

(i) taking the constant a

(ii) adding the constant b times x i (the value of the IV for participant i )

(iii) then adding e i (the residual for this participant.)

There are still some numbers in this formula that apply to all participants ( a and b ) and
numbers that do not ( y , x and e ). The numbers of the formula that apply to everyone ( a
and b ) are now going to be called coefficients . This formula is slightly more complex
than the previous one. It calculates the DV value for a participant with two coefficients ( a
and b ) instead of one.



13.2.2 Models
The formula we have been looking at tells us how to calculate the specific value of the DV
for a given individual. Now we are going to drop the term e i so that what we have left is a
formula that tells us what the general pattern in the population is:

y i = a + bx i

This is now a model : it is a statement about the overall effect in the population. It is
possible to think of the model as being a formula that allows us to make a prediction of
what value of DV ( y ) we should expect given a value for the IV ( x ). In this case, it is a
statement that says ‘the predicted value of y for any participant or other member of the
population i is a plus b times x i ’. This is a model in the sense that it captures what we
think of as the important information (the coefficients) and disregards the specific details
(the residuals); because of this, it now works for the whole population.
In this model, the coefficient, a , has a special name: it is called the intercept . Its value is
the same as the value of y when x is zero, because when x is zero the second term in the
model is also zero. Usually the intercept is not of any interest.
With more than one IV, we can just continue adding coefficients to the model. So, with two
IVs, we can have a model that contains the effects of both IVs:

y = a + b 1 x 1 + b 2 x 2

x 1 = IV1 value for that participant, x 2 = IV2 value for that participant b 1 = coefficient for
IV1, b 2 = coefficient for IV2.

This time, just to avoid having a formula that is difficult to read, we have left out the
subscripts (the i bit) to show which participant we are describing. That means that we have
to understand that some of the quantities are coefficients (constants) that are the same for
everyone, and some are variables whose values differ between individuals. The rule is that
variables in these formulae are given letters from the end of the alphabet ( x , y ) whereas
constants are given letters from the start of the alphabet.
The procedure for estimating the regression line when we had just one IV involved finding
values for the coefficients ( a and b ) that resulted in the smallest possible sum of squared
deviations. Since the deviations are residuals, we can describe the process as finding
values for the coefficients ( a and b ) that produce the minimum (smallest) sum of squared
residuals.
The model with two IVs is just a simple extension of the model with one IV. So, although
mathematically it is a bit more complex, we can again estimate the values for the
coefficients by finding a combination of values for them that minimises the sum of squared
residuals. As a result of doing this, we might find that our model becomes this:

ExamGrade = 60 + 5 × RiskTaking + 2 × Musician?

This formula tells us that the exam grade for any person is predicted by the model to be a
combination of a constant 60, plus five times their RiskTaking score plus two times their
Musician? score. This is useful:

(i) It shows us that a person’s exam grade goes up by 5 (on average) for every
increase in their RiskTaking score of 1.

(ii) It shows us how much benefit (on average) a person gets for being a musician (2
extra grade points).

13.2.3 Coefficients and variable types
Look at this model again:

y = a + b 1 x 1 + b 2 x 2



x 1 = IV1 value for that participant, x 2 = IV2 value for that participant, b 1 = coefficient for
IV1, b 2 = coefficient for IV2.

In simple regression involving only Interval variables, it is easy to see how the individual
values for the IVs can be used as x in the model and multiplied by the coefficients, b . With
Categorical IVs, the values are not numerical and it doesn’t really help us to talk of
multiplying the category labels by coefficients (e.g. two times ‘Yes’).
The model we saw at the end of the last section implicitly assumes that if you are a
musician, then that variable has a value of 1, and if you aren’t, then it has a value of 0.
That works nicely: if you are a musician, then you get two extra grade points (two times 1
is 2), and if you aren’t, then you get 0 extra grade points (two times 0 is 0). It would have
been more complete to write the formula like this:

ExamGrade = 60 + 5 × RiskTaking + 0 × (Musician? = No) + 2 × (Musician? =
Yes)

which then makes explicit what we are doing. This way, we can also deal with a different
version of the variable Musician? which has three categories (No, Amateur, Professional).
Then the formula might look like:

ExamGrade = 60 + 5 × RiskTaking + 0 × (Musician? = No)

+ 1.5 × (Musician? = Amateur)

+ 2.5 × (Musician? = Professional)

This formula has split the variable Musician? into its three different categories and
estimated a separate coefficient for each possible value. The categories are all mutually
exclusive, so each participant gets one and only one of the list of three possible
coefficients. So the above formula means that if you fit into the professional category, you
would have a value of 0 for ‘Musician? = no’ because you don’t fit that category, and a
value of 0 for ‘Musician? = amateur’ because you don’t fit that category, but a value of ‘1’
times 2.5 for ‘Musician? = professional’. So, written out again, we have:

ExamGrade = 60 + 5 × RiskTaking + 0 × (0)

+ 1.5 × (0)

+ 2.5 × (1)

ExamGrade = 60 + 5 × RiskTaking + (0 × 0) + (1.5 × 0) + (2.5 × 1)

We can always set the coefficient for one of the categories (by default, it’s always the first)
to zero. Then we can simplify the formula by dropping the term that is zero because it is
unnecessary to write a part of a formula that means ‘if this is true, then add zero’. The
remaining two coefficients then show us the difference between those two categories and
the missing category. So, an amateur musician scores, on average, 1.5 grade points
higher than a non-musician and a professional scores 2.5 points higher than a non-
musician. So, we can write:

ExamGrade = 60 + 5 × RiskTaking + 1.5 × (Musician? = Amateur) + 2.5 ×
(Musician? = Professional)

This business of splitting a Categorical variable with g categories and creating ( g – 1)
coefficients to show the differences between the first category and the other categories is
called creating dummy variables . Once we have done this, then all the values are
numerical: for the dummy variable they are always 0 or 1. What we have here are now two
dummy variables: one for being an amateur or not, and one for being a professional or not.



13.2.4 Usefulness of the General Linear Model
The General Linear Model makes two very important contributions.
The first contribution is that the coefficients that we estimate are measures of the direct
effect size of the variables concerned. The coefficients themselves give us direct effect
sizes in natural effect size units, as they are expressed in units of the variables: the 5 in
the formula above is 5 grade points (DV units) for an increase of 1 in the RiskTaking score
(IV1 units).
It is possible to convert these direct effect sizes from natural units to normalised units. A
simple formula does this:

R2(unique effect of IV1)

(1 − R2(model without IV1))

where r 1 is the normalised effect size for the first IV, r 2 is the normalised effect size for the
second IV.
The second contribution of a General Linear Model is that it represents everything we
know about the DV from our sample. Any possible overlap between IVs, like we looked at
in Section 12.1 , is included (but not duplicated) in the coefficients for those DVs. The
whole model can have its own effect size, which then tells us how much of the variance of
the DV is explained by the model as a whole. We will call this the model effect size .
To calculate the model effect size, the right-hand side of the model formula can be thought
of as a recipe of how to combine the various IVs into a new single combined IV. For each
participant, we can apply this formula and get a new value for them. If we had a participant
with a RiskTaking score of 0.5 and who was an amateur musician, then the formula would
give us this value as the model prediction for the

60 + 5 × 0.5 + 1.5 = 64.

Their actual value for ExamGrade might be 71, and the difference is their residual. We can
get a predicted value for each participant in this way and in so doing we have created a
new variable, which is the value predicted by the model for each participant. We can write
down the formula like this, where model i is the value of this new variable for each
participant:

y i = model i + e i

where e i is the residual.

This new formula leads to a simple regression line (it uses a new Interval variable, model ,
predicting an Interval variable, y ) and we can calculate a normalised effect size for the
relationship between the new variable model and the original DV.

r1 = b1 ×
sd(IV 1)

sd(DV )

r2 = b2 ×
sd(IV 1)

sd(DV )



Adding up the total effect sizes of each IV includes any overlap between them multiple
times and will overestimate the amount of variance in the DV they jointly explain. Adding
up the unique effect sizes of each IV omits any overlap between them and will
underestimate the amount of variance in the DV they jointly explain. The model effect size
for a General Linear Model properly estimates the amount of variance in the DV explained.
In that way it is a substantially better description of what our data tells us than the sum of
either the total or unique effect sizes.

13.2.5 Uncertainty and General Linear Models
There is one more thing that we need to explore before moving on: uncertainty . In
Chapter 5 we saw that uncertainty arises when we estimate a population effect size from a
sample. That is equally true here for General Linear Models. Each estimated (sample)
coefficient has an associated uncertainty about the value of the coefficient in the
population. It is normal to express these uncertainties as standard errors , just as we
discussed in Chapter 5 . As we saw in Chapter 6 , a common way of examining the
uncertainty is to use null hypothesis testing . There we saw that, to do this, we convert
an effect size and its associated standard error into a t-value and then convert the t-value
with its degrees of freedom into a p-value. We can do all of this for the coefficients of a
General Linear Model in exactly the same way.
Table 13.2 shows simulated results for the General Linear Model we were considering
above in a format that is similar to the output of most commonly used statistical software.
Each row in the table shows us an analysis of one of the coefficients in the model, so the
variable Musician? has two rows – one for each dummy variable.

Estimated value: the estimated value for the coefficient.

SE: the standard error for that estimated coefficient.

t: the t-statistic . You can check that the t-value is just the estimated value of the
coefficient divided by its standard error.

df: the degrees of freedom . This is the sample size ( n ) minus the number of
coefficients estimated for the whole model (including the intercept).

Table 13.2 is a straightforward replacement for the APA statement that we saw in Chapter
7 (e.g. t(40) = 2.67, p = 0.011). The table has the same information, plus a bit more, for
each coefficient. This table would be reported in its entirety to show the results of this
analysis. It would also be expected that the conclusions reached about the different
coefficients (which of them are significant, for example) would be reported.
Table 13.2 The full analysis of a General Linear Model.

This table is an example of the full analysis of a General Linear Model. It shows for each
variable (note that there are two dummy variables for the Categorical variable
Musician?) the estimated value of each coefficient, the standard error of that estimate,
the value for t and degrees of freedom for the coefficient, and then the p-value for the
null hypothesis that the population value for that coefficient is zero. The df = 38 because
we have three coefficients and the intercept, and n = 42. The degrees of freedom are n
minus the number of estimated coefficients, so 42 – 4 = 38.

Coefficient Estimated value SE t df p-value



Coefficient Estimated value SE t df p-value

Intercept 60 10    

RiskTaking 5 2 2.5 38 0.017

Musician=Amateur 1.5 1.05 1.43 38 0.16

Musician=Profess 2.5 0.94 2.67 38 0.011

The analysis behind the General Linear Model has given us the two different types of
measure of uncertainty: standard errors as a means of understanding how wide the
likelihood function is and also p-values for null hypothesis testing. These p-values are
tests of the null hypotheses that each coefficient in turn is drawn at random from a
population with zero coefficients. A p-value that is significant for any given coefficient
would indicate that we can reject the corresponding null hypothesis, which is that the
population value of that coefficient is zero. Notice that the Categorical variable, which gives
rise to two coefficients in this case because there are three categories, has two null
hypothesis tests.
The model effect size for the whole model will have an associated standard error and can
be compared with the null hypothesis that the sample whole model is drawn from a
population where the whole model has a zero effect size.

13.3 ANOVA
ANOVA is the acronym for analysis of variance, and we first encountered it back in
Chapter 7 with the one-way ANOVA. What we learned there is that an ANOVA is used to
compare the effect of a Categorical IV on an Interval DV – it looks to see whether the
various group means of the DV are all the same or not. It achieves that by calculating and
comparing:

(i) the variance in the DV that is explained by the IV

(ii) the variance in the DV that is unexplained.

In that case, the IV is also the model. Exactly the same procedure can be done by looking
at the variance in the DV that is explained by a more complex model involving multiple IVs.
Where ANOVA differs from General Linear Model is in its treatment of overlap: General
Linear Model looks for a combination of IVs that will include all the variance in DV that is
explained, whereas ANOVA examines the variance in the DV that is uniquely explained by
each IV. Any overlap is disregarded. ANOVA works on unique effect sizes.
There is nothing special about Categorical IVs, and the ANOVA procedure is one that we
can use with Interval as well as Categorical IVs to identify the unique effects of each
variable in the model.
It is easiest to think of the process like this. An ANOVA starts with the amount of variance
in the DV explained by the whole model. Then it takes one IV and removes it from the
analysis and fits the new model without this variable to the data. The only thing that is
removed by doing this is the unique effect of that IV, as any covariation or overlap it has
with other IVs is still in the model – that is, covered by them. So the difference between the
new model and the full model can tell us the unique effect of the IV we removed:
If the model with one IV removed shows a large reduction in variance explained compared
to the full model, then the IV that has been removed must have a strong unique effect size.
The proportion of variance in the DV that a model explains is the square of the r-family
version of the model effect size and is usually written as R 2 . We can find the value of R 2
for the full General Linear Model and then the value for a model without a specific IV. The
difference in R 2 between the two models is an R 2 measure of the unique effect of the IV
in question.

R 2 (unique effect of IV1) = R 2 (full model) – R 2 (model without IV1)



By doing this for each variable in turn (and when we say ‘by doing this’, we mean ‘when a
chosen piece of software runs these calculations’), we can produce a table of effect sizes
with one for each IV.

13.3.1 Unique effect sizes, η 2 and partial η 2
Often an ANOVA analysis is reported with an effect size called ƞ 2 (pronounced eta
squared). This quantity is just the square of the unique effect size, as we have described it
(i.e. using normalised effect sizes). It is also sometimes called a semi-partial effect.
A related quantity that ANOVA software can provide is partial ƞ 2 . This quantity is the
square of the standardised effect size version of the unique effect size. The formula is:

R2(unique effect of IV1)

(1 − R2(model without IV1))

13.3.2 Unique effect sizes and variable types
An ANOVA finds the variance in the DV uniquely explained by each IV. It does that for one
IV by comparing the variance explained by a full model and by a model with that IV
removed. This process does not depend on what the variable types are. A consequence of
this is that, although the full General Linear Model potentially has more coefficients than
variables (recall that every dummy variable created will have its own coefficient), the
ANOVA has the same number of results as the number of variables.

13.3.3 Usefulness of the ANOVA
The ANOVA makes two important additional contributions to the analysis of data with
multiple IVs. The first contribution is that the effect sizes that an ANOVA produces are the
unique effect sizes for each variable. Recall from earlier that these are a measure of any
effect a variable might have that does not overlap with any of the other variables.
In a situation where we are aware of a confounding variable, then it makes sense to try to
remove that variable. Sometimes we can do this by design: choosing our sample carefully
to avoid it. If we thought that there might be an effect of Musician? on ExamGrades but
wanted to remove any possibility of that being due to a tendency among our musicians to
take risks, then we might try to set up two groups, musicians and not, but ensure that the
two groups had very similar distributions of risk-taking, so that it couldn’t influence the
results. This can be very difficult to achieve sometimes, and usually there is no need to
because if we measure risk-taking as a second variable, then we can allow the statistical
analysis to remove its influence. An ANOVA allows us to look for the unique effect of
Musician? alongside RiskTaking.
The second contribution is that a unique effect size assessed by an ANOVA often provides
the most persuasive answer to a question about the existence of an effect. In this
circumstance, the most persuasive answer arises not when we ask a question about the
total effect of a variable (which, as we have seen, could be contaminated with influences of
other variables), but instead when we ask a question about the unique effect of a variable:
is there anything in our second variable that is explaining otherwise unexplained variance
in the DV?

13.3.4 Uncertainty and ANOVA: Null hypothesis testing
Normally, the end result of ANOVA is a null hypothesis test which compares the unique
effect of each variable with the null hypothesis that the population unique effect of that
variable is zero. This is achieved by an F-test (the same F-statistic that we saw in Chapter
7 ).
In practice, although this is the logic of what is done, it is usually reported slightly
differently. R 2 is the same thing, as the proportion of variance explained. To be more
precise, we can write a simple formula:



R2 =
variance(due to variable)

variance(DV )

R 2 is the variance in the DV that is due to the variable divided by the total variance of the
DV.
The standard practice in ANOVA is to use a slightly different quantity:

F =
variance(due to variable)/df(variable)

variance(DV )/df(unexplained)

Instead of comparing the variance in the DV that is explained by the model to the total
variance of the DV, this formula produces an F-statistic by comparing the variance due to
the model with the unexplained variance. This F-statistic is the same as the one we
encountered in Chapter 7 where we were also looking at it as a route to null hypothesis
testing. In the same way as then, it leads easily to a p-value.
There is a common approach to reporting an ANOVA. An example is shown in Table 13.3 .
The table lists the different IVs with a row for each plus a row marked error – this
corresponds to the quantity e in the formulae for General Linear Models above and is the
residual for the model: the difference between what the model predicts for each participant
and their actual value. It is also therefore unexplained variance.
For each variable, the results table gives:

SumSq: the sum of squared deviations that are due to the corresponding variable (and
the error number is just what is left over).

df : the degrees of freedom associated with that variable. It is actually the number of
coefficients in the General Linear Model associated with that variable. For an Interval
variable, this is just 1; for a Categorical variable it is the number of different categories
minus 1 (which is the number of coefficients needed for the dummy variable). The total
count of degrees of freedom must equal the number of observations, and so the Error
row has a value for df that is n (the sample size) minus all the other df values.

MeanSq: SumSq divided by df (just provided for convenience).

F : the F-statistic, calculated as the SumSq divided by the df for each variable divided
by the SumSq for Error divided by its df .

p : the result of a null hypothesis test using the F-statistic for that variable.

Table 13.3 would be reported in its entirety to show the results of this analysis. It would
also be expected that the conclusions reached about the different coefficients (which of
them are significant, for example) would be reported.
Table 13.3 A typical ANOVA output.

Here is a typical ANOVA output reported as a table of values. SumSq = sum of squares;
df = degrees of freedom; MeanSq = sum of squares divided by degrees of freedom; F =
F-statistic (test-statistic for ANOVA as seen in Chapter 7 ); p = p-value. If you wish, you
can check that the numbers in this table are consistent with each other – that the
MeanSq numbers are the SumSq numbers divided by df, and that the F values are
MeanSq divided by MeanSq(Error).



Variable SumSq df MeanSq F p

RiskTaking 3.47 1 3.47 3.16 0.084

Musician? 1.05 2 0.526 0.478 0.624

Error 41.8 38 1.1   

13.4 GENERALISED LINEAR MODEL
You may have just read this section header and gone ‘well hang on a minute, we’ve
already done General Linear Models’. And you would be correct. But this section is actually
about the similarly named but slightly different General ised Linear Models.
Back in Chapter 4 we explained how linear regression only works for a continuous DV, and
that we need to use logistic regression for a Categorical DV. Logistic regression is based
on similar logic to linear regression, but since the DV has category values not numerical
values, logistic regression predicts the relative probability of a particular category
occurring, depending on the value of the IV. The same logic applies here. A General Linear
Model works for a continuous (Interval) DV, but if the DV is Categorical, then we have to
use its close cousin the Generalised Linear Model . Although the details are more
complex, at a conceptual level we can think of it as being essentially the same process. If
our DV was ExamPass? with values Yes and No, then the Generalised Linear Model would
be something that meant this:

logit(ExamPass? = Yes) = 0.8 + 0.1 × RiskTaking + 0.024 × (Musician? = Yes)

There are many different ways of providing that left-hand part of the formula and we will
leave the details of this for your further reading. As with all other types of analysis, a
Generalised Linear Model can be calculated using most common statistical software
packages.

13.5 THE HISTORICAL STATISTICAL TESTS
Although General Linear Models and the application of ANOVA to them is now widespread
in psychology, this is a relatively recent development. Historically, the analysis of data with
multiple IVs has used a small bag of special-purpose tools, each of which is a particular
variant on the General Linear Model idea. We don’t wish to devote much time to these as
they are now really best treated as a remnant of the past. However, you will still encounter
them in research papers and may work with researchers who stick to the traditional
methods, and so it is worth knowing a little about them. Our descriptions here are therefore
kept brief.

13.5.1 Interval DV variable type
Historically, there are three types of analysis that have been used when the DV is an
Interval variable, depending on the combination of IV types involved. The name of the
analysis in each case is provided in Table 13.4 .
Table 13.4 Historical tests for hypotheses with multiple IVs and Interval DV.



This table shows the historical tests for hypotheses with an Interval DV and two (or
more) IVs. Although there are four cells in this table, two of the cells are effectively the
same because they each involve a combination of Categorical and Interval variable.

  Categorical Interval

IV2 Categorical Factorial ANOVA ANCOVA

Interval ANCOVA Multiple regression

Factorial ANOVA: All IVs are Categorical

When all of the IVs are Categorical, the analysis that was used was called either a
Factorial ANOVA or, more specifically, a two-way ANOVA, three-way ANOVA, etc., where
the numbers refer to how many Categorical IVs there are.
In practice, the outputs of a Factorial ANOVA are the same as would be obtained by
applying an ANOVA to a General Linear Model. Therefore, they are measures of the
unique effects of each variable and remove any overlap.

Multiple Regression: All IVs are Interval

When all of the IVs are Interval, the analysis that was used was called a multiple
regression . The analysis behind a multiple regression is identical to that in a General
Linear Model (and multiple regression is sometimes called linear modelling). Since it only
uses Interval variables, there is only one coefficient for each variable (there are no dummy
variables). The coefficient, analogous to the slope term in regression with one IV, is a direct
effect size measured in natural effect size units.
In order to obtain the unique effect size in multiple regression, a variant was developed
where the variables are taken in turn. We would do a multiple regression analysis with the
variables we are least interested in to begin with. Then we add in some more variables that
we are interested in. If the overall model is substantially improved, then we know that our
second set of variables is important. This is a method that removes overlap for the
variables we are most interested in by implication.

ANCOVA: Mixture of Categorical and Interval IVs

The last variant is where the IVs are a mixture of Categorical and Interval variables. The
special purpose analysis for this situation was called an ANCOVA (analysis of covariance).
Its working and outputs are essentially the same as a General Linear Model followed by an
ANOVA.

13.5.2 Categorical DV variable type
Historically, there are two types of analysis that have been used for a Categorical DV,
depending on the combination of IV types involved. The name of the analysis in each case
is provided in Table 13.5 .
Table 13.5 Historical tests for hypotheses with multiple IVs and Categorical DV.

The historical tests for hypotheses with a Categorical DV and two (or more) IVs.
Although there are four cells in this table, two of the cells are left blank as they never had
a special purpose analysis devised for them.



  IV1

  Categorical Interval

IV2 Categorical Chi-square test of independence  

Interval  Logistic regression

We will not dwell on this as the two analyses in this section are simply extensions of the
equivalent two variable analyses that have the same names.

13.6 USING THESE ANALYSES
The two basic processes described in this chapter lead themselves to a very clear work
flow.

1. A General Linear Model produces estimates of the model coefficients. From these we
can calculate the direct effect sizes.

2. ANOVA estimates the unique effect sizes for each of the variables.

Using both of these sets of results, we can build a comprehensive picture of the
relationships between the IVs and the DV.
As we emphasised in Chapter 12 , the most important part of the procedure (and often the
most difficult) is not the statistical analysis provided by these two processes, but is instead
working out what the meaning of the variables in the results is. And we wish to finish this
chapter with another paragraph to draw attention to this.
It is a mistake to take a set of data with several IVs and just apply an ANOVA analysis to it.
This is easily done – all modern software makes this readily available. The problem with
this approach is that it overlooks the possibility of covariation between the IVs. If there is
covariation between the IVs, then the psychological meaning of the unique (i.e. ANOVA)
effect size for each IV may have been altered.
We have considered how to analyse the individual coefficients and/or variables in a
General Linear Model. We’ve said rather little in this chapter about what to do with the
whole model. In the next chapter we will look at this and specifically consider how to
compare different models, such as you might get by adding in or removing variables.

13.7 BEING A RESPONSIBLE RESEARCHER
There is really only one thing that a responsible researcher needs to do in response to the
material in this chapter. The different analysis approaches of general linear models and
ANOVA can give different results (and different statistical significance) to the same
variable. This will make it very tempting to pick and choose the method that produces the
more favourable outcome. These different results are only superficially comparable and a
responsible researcher, recognising that they answer different questions, will use the more
appropriate method rather than the more desirable outcome.

 The Big Picture

Two different analyses
1. There are two basic forms of analysis:

a. General Linear Model



b. ANOVA.
2. The two approaches estimate effect sizes:

a. Direct effect sizes can be calculated using General Linear Model.
b. ANOVA can be used to calculate unique effect sizes.

3. Table 13.6 captures the most important differences between the two
approaches to multiple-IV analysis.

Table 13.6 A side-by-side comparison of the two main types of data analysis.

General Linear Model Analysis of variance (ANOVA)

Find a combination of the IVs that
predicts the DV as closely as possible.

Find out how much of the variance in
the DV each IV uniquely predicts.

Where IVs overlap, share it between
them.

Where IVs overlap, discard.

Split Categorical variables into dummy
variables.

Keep Categorical variables whole.

Give result as coefficients and SEs.
Calculate t-statistic.

Give results as SSQ.
Calculate F-statistic.

Workflow
1. The two processes can be used on the same set of data to provide a

comprehensive insight into the variables. Alternatively, the one that better suits
the purposes of research should be chosen.

2. Bear in mind that where unique effect sizes differ considerably from total effect
sizes, the psychological meaning of the variables must be considered.

 Your Turn
Fill in the answers to complete these sentences.

1. A continuous (Interval) DV requires the use of a ___________ model.
2. A Categorical DV requires the use of a ___________ model.
3. If you are interested in whether or not a variable is having a unique effect on a

DV, then use _________.

Below are the results of a General Linear Model analysis looking at three variables
that might influence a student’s overall grade. There were 51 participants. Fill in the
gaps in the table and in the model formula to complete the results.



Description

Figure 13.1 Some sample results from a General Linear Model.

Overall grade = 52 – 0.521*_______ + ___*ConfidenceStart +
0.401*PredictedGrade +
Table 13.7 Some sample results from a General Linear Model.

Coefficient Estimated value SE t df p-value

Intercept 52.5 13.41 n/a  n/a

PStress  0.380 –1.37  0.174

ConfidenceStart 0.010 0.067 0.15  0.882

PredictedGrade  0.147 2.72  0.008

Answer this question:
Are any of the variables a significant predictor of OverallGrade? _____________
THERE ARE MORE ACTIVITIES AND ANSWERS ONLINE

Your Space
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P stress has a negative effect on the overall grade.

The variables Confident start and predicted grade have positive effects on the overall
grade.



CHAPTER 14 WHICH MODEL IS BEST? MY GENERAL
LINEAR MODEL IS BETTER THAN YOURS

14.1 Choosing between Models 318

14.2 A New Concept: Statistics for Building and Comparing Models 321

14.3 Thinking about Causation in Models 322

14.4 Multivariate Models 323

14.5 Mediation 324

14.6 Path Models 326

: 



14.7 SEM Analysis 328

14.8 A Summary: Bigger and Bigger Pictures 328

14.9 Being a Responsible Researcher 329

This chapter introduces one last concept that will let us take a brief tour of some more
advanced topics. With the understanding of statistics that we have been building up, this
last step is surprisingly easy to take. For each topic that we have included here, we will
explain the purpose and concept behind it and provide you with enough information to go
away and discover the ‘how-to’ of doing it for yourself. We felt it important to include this
content because, even though the topics here deserve a book of their own, the way they
work underlines a significant change in how statistics can work for psychology. All the
topics we will be considering have at their heart a simple but new type of question: which
model is best?

14.1 CHOOSING BETWEEN MODELS
A model , as we saw in the previous chapter , is a mathematical way of saying what we
think the population is like, given our data . The mean exam grade from a sample is a
model: if that is all we know, then it is the best guess we can make about the exam grade
that anyone in the population might get in the future. If our data has told us that there is an
effect of being a risk-taker on exam grades, then we can build that effect into our model to
produce a more detailed model that should make a more accurate prediction for anyone in
the population.
When we have more than just a few IVs, then we have the potential to use them in many
different ways to make many different models. There are important decisions to be made
about which IVs to include and which to leave out, and each decision leads to a different
model. The last concept we need is a way of understanding how to choose between these
different models.
Just like General Linear Models are a broader, bigger picture version of regression, our last
concept is a broader, bigger picture version of several earlier concepts.

14.1.1 Null hypothesis testing as model comparison
We have seen in Chapter 6 how a simple, frequently used way of deciding whether there is
an effect is to use null hypothesis testing . The null hypothesis is that there is no effect of
the Independent variable (IV) on the Dependent variable (DV) and we hope to reject this
null hypothesis. Another way of thinking about the logic of the null hypothesis test goes like
this. We have two models: (i) the null hypothesis model and (ii) the model which is the null
hypothesis plus the effect of the IV. The null hypothesis test is then rather like a way of
deciding which of these two models is the better one (with a very particular way of making
the decision).
The way that null hypothesis testing chooses between the two models (null hypothesis and
alternative hypothesis) is to use a heavy bias towards the status quo: no effect. It asks that
the proportion of variance in the DV that is explained by the model for the alternative
hypothesis should be enough to make the null hypothesis much less plausible than the
alternative.

14.1.2 Maximum likelihood as model comparison
Recall the likelihood function from Chapter 5 : a plot of the likelihood of different possible
population effect sizes. The peak of the graph indicates the most likely population effect
size. The area under the likelihood function has to sum up to 1. This means that a narrow
likelihood function, where the uncertainty in the result is small, will have a higher maximum
(peak) than a wide one which represents higher uncertainty. Two examples are shown in
Figure 14.1 .



 Description

Figure 14.1 Likelihood functions for two different sample sizes.
This graph shows two likelihood functions. They differ in sample size. The smaller sample size (n = 42 )
leads to a much wider function than the larger sample size (n = 210 ). Since the area under each
function must sum up to 1, the height of the narrower function is higher.

If we now think of all the different possible population effect sizes as being different
models, then we have been using a rule that says prefer the model with the highest
likelihood given our data. When we moved on to General Linear Models, the same
principle applied. We choose the combination of values for the coefficients that creates
the maximum likelihood.

14.1.3 Broader basis for model comparison
When we were only interested in the rather oversimplified situation of just comparing the
null hypothesis with the alternative hypothesis, the significance test was problematical but
acceptable. Now we have reached a point where we might want to compare several quite
different models, and null hypothesis testing isn’t really that helpful any longer.
If we think of the different population effect sizes in a likelihood function as different
models, then we have been choosing the model with the maximum likelihood. Since all the
models in this situation are the same except for the values of their coefficients, they are
equally complex.
We now broaden this process out to comparing likelihoods for models of different
complexities. Given a set of data, we can calculate the likelihood of any model we might be
interested in and of any complexity we wish. In general, introducing more complexity into a
model will result in that model having a higher likelihood: the complexity is designed to give
a better match to the data.The fundamental basis for comparing between models is a
balance between two factors:

(i) Likelihood: how well do the models explain the variance of the DV?

(ii) Complexity: how many coefficients does the model have?

Adding IVs to a model will always make some improvement in the variance explained. A
model with ten IVs will explain more variance in a set of data than a model with only two
IVs would, regardless of whether the extra IVs are valid in reality. If we just use likelihood,
we will end up always preferring models with more IVs. Complexity provides a
counterbalance: a way to prefer models with fewer IVs. A broader process of model
comparison requires a single number that will balance these two factors in a sensible way.
This is what we discuss next.



14.1.4 Model comparison by Akaike Information Criterion
(AIC)
There are quite a few ways to balance model likelihood and complexity. We will describe
one that is representative of the others. It is called the Akaike Information Criterion ( AIC ).
The AIC is a number that can be calculated for some data and any model of those data.
Several models are created, and their AIC values are compared to see which model is
best.
The AIC is a combination of complexity and likelihood set up so that a smaller value is
better. The formula for it is quite straightforward:

AIC = 2 ( k – log ( L ))

where k is the number of coefficients and L is the likelihood of the model, given the data.
A low value for AIC means some combination of low k (few coefficients) and high likelihood
(low uncertainty). There’s a little bit more detail about the AIC in our online resources.
There are other statistics that are also used to answer the new question (some are close
cousins, as you can see from their labels: AICc, BIC, CAIC), but they all work in similar
ways, with each representing a slightly different balance between likelihood and complexity
(variance explained and number of coefficients, respectively).

14.2 A NEW CONCEPT: STATISTICS FOR BUILDING
AND COMPARING MODELS
We are now seeing the role of statistics in psychological research as being about choosing
between different models. The statistical process we use to assist that choice has at its
heart the likelihood function and the number of coefficients that the model has. Between
them, these two parts represent both the need to acknowledge the uncertainty in the data
and a preference for simpler models.
The procedure we are now exploring consists of simple stages: design some possible
models, estimate their coefficients from the data, and then choose the best model using a
criterion like AIC.



 Description

Figure 14.2 Two different General Linear Models, with the AIC value for
each.
This figure shows two different General Linear Models, with the AIC value for each. The upper one has
five IVs, including three demographic variables (age, gender and birth order) that are quite uninteresting
and are not included in the bottom one. Although the top one has a higher value for R 2 than the lower
one, the AIC values tell us that the lower model is the better fit to the data. Those extra demographic
variables are not worth including in the model.

In the previous chapter we saw how the question of interest when conducting an ANOVA
is whether a particular variable changes R 2 , the amount of variance explained by the
model, sufficiently compared to the unexplained variance for the p-value to allow us to
reject the null hypothesis. Here we go one step further: does a variable change the amount
of variance enough to justify the cost of adding that variable into the model? AIC does this
by penalising models that have unnecessary variables.
An example of two models fitted to the same data is shown in Figure 14.2 . The top one
has more variables and has the larger R 2 . Larger R 2 is generally a good thing, but the
bottom model in the figure, despite having a poorer R 2 , has a better AIC value. The
statistics are telling us to prefer the lower model because it is simpler.
In this new approach to General Linear Models, we are seeking the best model we can find
to explain our data. We’ve got some more information about fitting complex models in our
online resources.

14.3 THINKING ABOUT CAUSATION IN MODELS
There is an important final consideration before moving on. The statistics part of this
becomes conceptually simple: make models; use software to find their respective AIC;
choose the lowest AIC. This describes a simple sort of a machine really: think hard and
make some models and sit back and let the statistics choose between them.
In theory, one could take a set of data with lots of different variables and work out what all
the possible models might be. Then, apparently, the analysis of that data comes down to



choosing the model with the lowest AIC. Suddenly, one might think, machines can even do
this. That is certainly a view that some hold, but it is wrong because it overlooks one thing
that statistics cannot yet do adequately. Look at the two models in Figure 14.3 , one of
which is logically implausible. There is no statistical procedure that can identify any
difference between these two models. Only thinking and psychological insight can do that.

Figure 14.3 Thinking psychologically about asymmetry.
Which of these models is the best? Statistics cannot tell us, but there is a definite answer. Hint: the
definite answer most probably isn’t the diagram on the right-hand side.

The fundamental issue here concerns causation . The model on the left of the figure is
plausible as an account of causation; the one on the right is not.
When we choose between models, we have to be aware that there are psychological
issues of causation that will rule out models. Sometimes the issue of causation is very
clear-cut, as in this example. Often it isn’t so. It becomes a topic we have to think about.
All the statistical analysis we have explored is very much blind to causation. There are
some recent techniques that can sometimes identify causation from specific types of
pattern in data. These are called Structural Causal Models (SCM).

14.4 MULTIVARIATE MODELS
So far, we have only examined models that have a single DV. Although there is no real
statistical reason for this, we think that the type of situation where it is possible to justify
having two or more DVs from the psychology is quite rare. If you aren’t certain whether you
are interested in a person’s anxiety score or their depression score and are tempted to use
both as DVs, hoping that something interesting will come out of it all, then our advice is
simple: go away and think. Statistics are never a good replacement for thinking and using
psychological insights. It is not a good idea to take the lazy – and statistically misleading –
option of simply putting all your data together to make analysis faster.
Regardless, let’s look at multiple DVs here. Just as with more than one IV, it is possible to
approach the situation of more than one DV by taking them individually and making a set
of General or Generalised Linear Models. In our example in Figure 14.4 , this approach
would mean that there would be two models, one for each of the two DVs. In some ways,
this is analogous to treating the various IVs in a simple General Linear Model separately.
Just as in that case, the best reason for treating all the DVs as part of a single model is
because that allows you to explore the ways in which any covariation (relationship)
between the DVs may have an effect on how the model works.



 Description

Figure 14.4 A multivariate model.
This diagram shows a multivariate model. We are using three IVs to simultaneously predict two different
DVs. The process of multivariate analysis allows for the exploration of models like this one, which may
have covariation between the IVs and between the DVs.

Finally, the process of fitting a model that has multiple DVs is a variant on the process of
fitting a model with a single DV. It is done by finding a set of coefficients for all direct effects
in the model (i.e. to both DVs at the same time) that best fit the data. In this type of model,
the key issue is the psychological justification. We saw in Chapter 12 that covariation
between IVs means we may have to think carefully about what the IVs mean,
psychologically. That applies here as well: just what do the DVs mean in the presence of
covariation between them?
To begin to repeat ourselves: the statistics here is easy, the psychology often isn’t.

14.5 MEDIATION
Mediation is the name given to a model where, instead of an IV directly affecting a DV, it
instead affects another variable (called a mediator), which then in turn affects the DV. This
is illustrated in Figure 14.5 . It is really a version of covariation where you analyse the
different routes, direct and indirect, to see whether your data is consistent with a particular
hypothesis for how the variables relate to each other.
A lot of the work on mediation analysis has focused on how to get p-values from complex
models like this so that null hypothesis testing can be done. We think, always, that the
desire to do null hypothesis testing is misplaced. But here it is positively unhelpful. To
reach a satisfactory outcome and conclude that the effect of Resilience on ExamGrade is
mediated by PStress, we need to establish that one of the direct effects is zero (the one
between Resilience and ExamGrade). That is very difficult without leaving the framework
of null hypothesis testing.

14.5.1 Evaluation using direct effect sizes
In Chapter 12 we covered two rules about how total effect sizes , unique effect sizes
and direct effect sizes relate to each other in a diagram like Figure 14.5 . With this, we
can ask some potentially interesting questions. All of the three models shown in Figure
14.5 are variants on the basic triangle that we used in Chapter 12 . In the top model, the
direct effect from Resilience to ExamGrade is zero and the other two are non-zero. In the
middle model, the direct effect between Resilience and PStress is zero. In the bottom
model, none of the direct effects is zero. In principle, we can establish which model is best
by seeing which direct effect sizes, if any, are zero.



 Description

Figure 14.5 A typical mediation scenario.
This diagram illustrates a typical mediation scenario. Three possible models are shown. We can use
what we know about effect sizes and indirect routes to work out how the different models would work.
We can use AIC calculations to choose between the models.

A caveat here is that it is critically important for mediation analysis to be able to
demonstrate which direct effect sizes are zero. Establishing that an effect size is zero (no
effect exists) is not the same as establishing that it isn’t non-zero (i.e. under null hypothesis
testing). Go back to our conversation in Chapter 6 to refresh yourself with this problem in
null hypothesis testing.
We need another little caveat. Let’s say that the direct effect size between Resilience and
ExamGrade was zero, as required by the top model in Figure 14.5 . That would seem to
indicate a simple account of the data: the mediation account. Remember, however, that we
have to be clear about the psychological meaning. The variable Resilience has been split
into two parts, and the non-PStress part of Resilience does not affect ExamGrades.
However, that non-PStress part of Resilience might itself have two parts whose opposite
effects are cancelling each other out. Strictly speaking, we should be very careful about
what we conclude.

14.5.2 Evaluation using AIC
In this chapter we have seen a new way of analysing this situation. We have taken our
three variables and created several different ways in which they could be connected
together: different models. Some of those models might be invalid or implausible on
straight psychological grounds and we could drop them for that reason. If there were
several left, then we would now know how to ask a simple question: which of these models
best fits the data we have?
The procedure is simple: compare AIC. In this case, it is actually even simpler as the
number of coefficients is the same in all three models, so with the AIC we are simply
comparing their respective likelihoods and choosing the most likely model. In doing this we
would be wise to be aware of the uncertainty that is built into the AIC itself. Obviously,
small differences in the AIC are less meaningful than large ones.

14.6 PATH MODELS
The next step is one of those small steps that places a new perspective on everything. All
of the previous examples can be collected under the broader umbrella term of a path
model , a fairly new idea in psychological research. The only new feature we need to add
to our thinking is to allow there to be several steps in the model, rather than just one step
from IV(s) to DV, as you’ve seen in most of the figures in this book.
An example of a path model is shown in Figure 14.6 . In this model, we are thinking that
the basic demographic variables on the extreme left might be the causes of a person’s
risk-taking (RiskTaking) and self-efficacy (SelfEff), which are the DVs of the first stage of
the model. Then these DVs become IVs for the second stage of the model, where they
become the causes of a further set of DVs. The new DVs are attendance at tutorials, hours
spent using statistics software, and diligence in collecting data for the module (did we say
that all through the book the ExamGrade variable that we have been examining was from a
statistics exam?). Then these three variables, DVs in the second stage, in turn become IVs



for the third stage, where they are the causes of variation in exam grades and coursework
grades.
This step of going to a path model is a big leap from simple two or three variable
hypotheses to an undoubtedly richer and far more informative psychological model. It feels
rather good to have reached a point where such a model is understandable as a statistical
proposition as well as a psychological one.

 Description

Figure 14.6 A more general path model.
This diagram shows a more general path model. In this model, most variables are now IVs to some
variables and DVs to other variables.

For the new situation where variables can be IVs and DVs at the same time, we switch to a
slightly broader terminology. Any variables (like the three on the left in Figure 14.6 ) that
are only IVs and never DVs are called exogenous variables in this type of model. Their
causes are outside the scope of the model, which has nothing to say what their cause
might be. The other variables which are DVs at some place in the model are called
endogenous variables because we hope that some of their causes are inside the model.
A moment’s reflection on what we have said about the arrows in the basic triangle for two
IVs will show us the importance of the rules for how to compute the effect size of a route
and how to combine the effect sizes from different routes from the same source to the
same destination. Looking at Figure 14.6 , and wondering about the total effect of risk-
taking on exam grades, we can see that there are now various routes (one via each of the
variables in the next stage), so we would work out the effect size for each route and then
add those together. If we look at the situation for being a smoker or not and exam grade,
there are even more routes this time and we would need to combine them all.

14.6.1 A path model as a set of General Linear Models
One way of thinking about a path model is to notice that each endogenous variable is the
DV for a little local General Linear Model. For example, right in the middle of Figure 14.6
there is a simple linear model with SoftwareHours as the DV, and SelfEff and RiskTaking
as IVs. Seen like this, we can then simply think of estimating the coefficients for this local
model and each of the other local models.
In fact, this is unwise. It is analogous to treating a General Linear Model with two IVs as
two separate hypotheses and analyses (so you get only the total effects, not the
informative direct or unique effects). In extreme circumstances you may be quite badly
misled.

14.6.2 A path model as a single model
Instead, it is possible to estimate the coefficients for the model in a single whole step. We
won’t provide details, but we have already touched on the principle. The process of
estimating the whole model is a case of finding a complete set of coefficients for every
stage in the model that best fit the data.
This is important because, implicitly, most path models have lots of zero links. A path
model is likely to have lots of pairs of variables that are not linked together. This means
that the direct effect between those two variables is zero. That needs to be built into the
model. Here we hit, yet again, a point where the importance of zero direct effect sizes can
hardly be underestimated.



14.6.3 Evaluation of path models
When we evaluate a model like this, we can, if we really insist, look at each link in it and
ask the p-value question, hoping perhaps that the bits of the model we like best will be
statistically significant. As we said above, this is not really the best way to think about
these models. The better question instead is this: among the (large) number of
psychologically plausible combinations of these variables into different models, which one
is best and by how much? Then we just compare AIC values.
Notice that the judgement about the models involves not only statistical considerations, but
also, and most importantly, psychological considerations. Imagine, just for a moment, the
mirror image model for Figure 14.6 , where a person’s age and birth order are determined
in part by their risk-taking behaviour. Such a model is implausible, and even if the data fit it
really well, we would not consider it further. Usually in path models there is a high number
of possible models, but many of them can be ruled out on psychological grounds.

14.7 SEM ANALYSIS
There is another new and intriguing further step that we can now take, using the latest
developments in statistics: we can place latent variables (variables that weren’t measured)
into a model. This sounds impossible: how can we use data that we don’t really have?
There are new methods, such as structural equation models (SEM), which can use
covariation and the unexplained relationships between the variables that we do have to
infer the presence of latent variables. We aren’t going to go into them here: we mention
them only to remind you that statistics and the way it can interact with psychological
thinking is always evolving. Who knows what will be possible as you do research of your
own?

14.8 A SUMMARY: BIGGER AND BIGGER PICTURES
This chapter introduced a new type of statistical question: which model is best and by how
much? We have seen how it encompasses older questions, like the null hypothesis test
question, but also that it is a bigger, broader perspective that can be used to achieve more
interesting results. For that new question, we have introduced a way of answering it with
one last statistic: AIC. AIC is a broader concept than null hypothesis testing or likelihood.
With the new question and the means to answer it, something rather interesting has
happened. The machinery for comparing two different models – calculating AIC or
whatever – is conceptually very simple. It is easy to agree that a new model that is better
should replace an old model that is worse. Since the process involves a penalty for the
complexity of the model, the process is slightly predisposed towards simple models, which
is also easy enough to agree to.
We want to persuade you to adopt an attitude. Here are the principles that got us to this
point:

(i) Variables: the way we split the world into pieces we can study.

(ii) Relationships between variables: the way we recognise how variability works.

(iii) Likelihood: uncertainty about the population given just a sample.

(iv) Covariation: all variables may be related to each other.

(v) Statistical models: a way of stating precisely what we know about a population.

If you understand these principles, then you can now understand the statistical part of data
analysis. There is no mystery about statistics. Think right back to the start. Statistics has
two purposes: to describe what our sample has to say about the population it came from;
and to quantify how much uncertainty we should have about that description. The attitude
we think you could adopt is this: because there is no mystery about statistics, you are
freed-up to think about the psychology of the data analysis. And since you collected that
data, you are the expert about what it means: your data, your analysis, your interpretation.



14.9 BEING A RESPONSIBLE RESEARCHER
This chapter brings our main story to an end. We have gone from the simplest of
hypotheses – x affects y – to a much richer set of hypotheses that are really limited more
by imagination than anything else. There is a wonderful freedom in this. There are so many
ways to combine variables into different models. We have emphasised the importance of
thinking like a psychologist as well as a statistician when we come to build these extensive
models. A responsible researcher should use the rich freedom of complex models
sparingly. Models that are more complex than is necessary should really be avoided.
The freedom may lead to quite complex analysis pathways and there is a responsibility
that a researcher has to others to ensure that the work they are doing is fully recorded and
reported. Even though it may be the right answer, presenting a reader with one final model
and explaining that it is the best on various grounds, statistical and psychological, is not a
persuasive argument. The reader will wish to know what process, sequence of
explorations, led to the final result. They will want to know what decisions were made along
the way and why. It pays to be deliberate in planning the analysis and to be completely
clear in describing the steps involved.
First, being deliberate in planning the analysis of our data. With a nice spreadsheet full of
data, it is so tempting to go off and explore. Sometimes this is good, but it is not deliberate
and not helpful where there are specific hypotheses being tested. Explaining the
hypothesis, the manner in which it will be tested and the outcome of the test is the routine
logic of reporting results.
Second, being clear about the analysis that leads to the results. It is important, and
thankfully increasingly common, for published papers to link to the data and to scripts for
its analysis. This allows someone else to see exactly what was done, to query it if they
wish, and to convince themselves that all is well. Where there are choices for analysis
(which variables to include, which types of analysis, etc.), the rationale behind the
decisions made is a very important part of the way the results must be understood. That
rationale is important and needs to be recorded.

 The Big Picture
Once we understand how main effects, interactions and covariation work, we can
easily take the next step to more complex arrangements of variables. The result of
analysis of a set of data is a statistical model: a representation of the salient
patterns of relationship between variables in the data.

Models and model comparison
1. The new concept we need is the idea of comparing different models to

establish which is the best.
2. There are two considerations that work in opposite directions:

a. How well the model describes the data.
b. How simple the model is.

3. We have used a quantity known as AIC to compare models.
4. We must also always think about psychological constraints on models.

Three extensions to General Linear Models
1. Multivariate models:

a. Have multiple DVs.
b. Are of interest when there may be covariation between the DVs.

2. Mediation models are:
a. A version of indirect and direct routes.
b. Of interest when the direct route has zero effect size.
c. Difficult to establish using null hypothesis testing.

3. Path models:
a. Are a general form of model.
b. Can be estimated as lots of local General Linear Models.
c. Are better to estimate in a single complete model.
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In the first model, AIC equals 787. R squared equals 0.04 or 4 percent. The variable
age has a positive effect on exam grade. The variables smoker, birth order, self eff,
and risk taking have negative effects on exam grade.
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variables self eff and risk taking have negative effects on exam grade.
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affects exam grade.
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Age has a positive effect on self eff and risk taking. Smoker has a positive effect on
risk taking and a negative effect on self eff. Birth order has a negative effect on self eff
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Self eff and risk taking have positive and negative effects, respectively, on tutorials,
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Tutorials, software hours, and data collection have positive effects on exam grade and
coursework.
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IM4.1 WHY DO WE NEED MULTIPLE
STUDIES?
Right up until this point, we have been considering a single
research study. For an inference we began with the idea of null
hypothesis testing and now we have reached the idea of
choosing the best model. It is time to see how single studies fit
into wider collections of research. To start with this, let’s look at
two fictional research fields:

Personality and Scuba-diving Studies. This field has a
thriving research community with a steady flow of ideas
leading to testable hypotheses. It has an international
journal that publishes their results with the sole requirement
that the results should be statistically significant. The journal
publishes 120 results each year.

Personality and Trumpet-playing Studies. This field has a
thriving research community with a steady flow of ideas
leading to testable hypotheses. It has an international
journal that publishes their results with the sole requirement
that the results should be statistically significant. The journal
publishes 120 results per year.

On the face of it, these two research fields are very similar and
each appears successful. That is what we can see as outsiders.
But here is the truth that we as outsiders cannot see about each
field:



Personality and Scuba-diving Studies. Not a single
hypothesis tested by researchers in this field is correct. The
false discovery rate is 100%.

Personality and Trumpet-playing Studies. All the
hypotheses tested by researchers in this field are correct.
The false discovery rate is 0%.

On the surface, the two fields looked equally good, but unknown
to an outside reader they are quite different. How can we explain
this? Well, be clear that both fields are doing all their data
collection and analysis correctly. No-one is cheating or bending
the data or doing anything else we would not accept as proper.
Here is the explanation:

Personality and Scuba-diving Studies. Collectively, the
researchers in this field test 2,400 hypotheses each year.
By chance, 5% (120) of the tests are significant but all of
these are Type I errors (false positives). The remaining
2,280 studies that failed to reject the null hypothesis are just
discarded.

Personality and Trumpet-playing Studies. Collectively, the
researchers in this field test 600 hypotheses each year. Of
these tests, 20% (120) are statistically significant. The
remaining 480 are Type II errors because sample sizes
were too small and these are discarded.

The moral here is plain. The truth about the difference between
these two fields lies in what we cannot see: how many studies
they discard. Scuba divers discard 95% of their studies whereas
trumpet players discard 80%. Not a big difference, but a telling
one. Worrying, yes?
The first thing to say is this: there is no foul play in any of this.
What the example shows is how multiple null hypothesis testing
followed by selective reporting can go badly wrong. At the level
of one test, null hypothesis testing is probably OK, especially if
we remain aware of the issues of inferential errors. However,
null hypothesis testing is not as safe when researchers
selectively report only significant results. As the example shows
us, this practice completely hides the false discovery rate from
us. We will focus on two strategies to overcome this problem.

IM4.2 CHECKING RESULTS BY
REPLICATION



The first strategy is called replication: the process of repeating a
piece of research using a new and larger sample, otherwise
copying the original conditions as exactly as is possible, to see
whether a similar result will be obtained.
Replication is a cornerstone of science. It is a basic and obvious
way of dealing with uncertainty: we don’t believe a single finding
too readily, but wait to see if it can be repeated. Think back to
the two hypothetical research fields that we considered above.
In the case of scuba-diving research, all of the published results
were false discoveries: Type I errors. In this circumstance, a
replication of each of them would have a low chance of finding a
second significant result. We can contrast that with the other
field where replications would have a high chance of a
significant result. Systematic replication could offer a broad route
to distinguishing the two fields.
While replication is logical, it has the issues that come with null
hypothesis testing – the problematical process of attaching a
definite conclusion (reject the null hypothesis, or fail to) to an
uncertain result. Normally a replication follows a published
significant result. That means that there are two possible
outcomes: a successful replication or a failure to replicate
(because the replication result is itself not significant). Arguably
the first outcome adds little more knowledge but the second
outcome could be important. That is a problem, because when
we looked at the logic of null hypothesis testing in Chapter 6 ,
we were very clear that a non-significant result did not support
any conclusion. However, in order for replication to make sense,
we will have to suspend that strict view for the specific case
where we are doing a replication, otherwise there is no point in
replication. This is, frankly, uncomfortable.

Im4.2.1 Replication study reproduces the
original result
When a replication produces a significant outcome like the
original study, then there is no proble we would say that the
original result has been replicated. If they both found a
statistically significant result, then that is quite reassuring
because the probability that both studies made a Type I error
(found a false positive) is less than 0.05 × 0.05 = 0.0025 (0.25%
chance).

Im4.2.2 Replication study fails to
reproduce the original result
When the replication study fails to find a significant result in
contrast to the original study, we have a failure to replicate.
There are competing inferences and only one can be correct.



Logically, either the first study made a Type I error or the second
study made a Type II error. At the very least, this should reduce
our confidence in the existence of the effect.
If we were able to calculate the probability for each study that it
made an inferential error, we might lean towards accepting the
conclusion with the lower probability of an inferential error. For
the original study, it is possible to calculate the probability that it
made a Type I error: it is the p-value. For the replication study,
we would wish to know the probability that it made a Type II
error, but unfortunately this is not possible because we don’t
know what the population effect size is.
This leaves us with a dilemma. The replication study will have a
larger sample size and therefore lower uncertainty. It is often
accepted that the replication study can veto the original in this
circumstance. This is not entirely safe, however. We can see this
by returning to our two fictional fields of research.

Im4.2.3 Applying replication to the two
research fields
Let’s work out what the results of replication would be for our
two fictional research fields. In both cases, we must judge the
effectiveness of replication by asking how many false
discoveries it correctly detects and how many true discoveries it
incorrectly rejects.
For the scuba divers, where none of their hypotheses are
correct, the effect of replication is easy to work out. Each
replication has a 5% chance of producing a significant result,
regardless of the sample size. So, overall, 95% of the
replications of published studies will fail to replicate. Since there
are not true discoveries, the question of these does not arise.
For the trumpet players, where all the hypotheses are correct,
the effect of replication is quite different. Recall that original
studies in this field had 20% power: 20% of all studies returned a
significant result. Because of this, the calculation is more
complex. With low-power studies, each published study very
probably overestimates the population effect size. So a
replication aiming for 80% power but using the sample effect
size to calculate this will typically fall short of 80% actual power.
In fact, in this fictional research field, the probability of a
successful replication, despite all hypotheses being correct, is
only 25%. In this scenario, replication will filter out 75% of true
positives.
This situation where all the hypotheses are correct but all the
initial studies have low power is deeply worrying. It is bad
enough that few such studies get a significant result, given that
all the hypotheses are correct. That is, however, made much
worse by a system that will, incorrectly, filter out 75% of the ones



y y y
that did originally reach significance. In Figure Im4.1 , we show
how the power of replication studies depends on the power of
the original study. The figure shows that the resultant replication
power falls considerably short of the target unless the original
study had very high power to start with. This is quite a serious
defect.

Description

Figure Im4.1 Actual power of replication.
This graph shows how the statistical power of a replication study with
a target power of 80% depends on the power of the original study.
Notice that there is a considerable gap when the original study was
low-powered, but there is always a certain gap even when the
original study was high-powered.

Im4.2.4 Replication in practice
A fairly recent study (Open Science Collaboration, 2015) set out
to do a systematic replication of a large set of original studies to
see how replicable psychology actually is in general. The
designers of the replications chose replication power of over
90%. Using the original published sample effect sizes, they
calculated new sample sizes for the replications, which would, in
the absence of publication bias (or any other bias in reported
effect size), produce a Type II error rate in the replications of



around 8% – not for any mathematical reason, but because 8%
was considered an acceptably low figure. This replication Type II
error rate would be the probability of a failure to replicate, if all
the reported effects were real and population effect sizes
equalled the sample effect sizes. The results were not greatly
encouraging: around 60% of studies failed to replicate, which
sounds fairly shocking.
If we expected a failure to replicate around 10–15%, then 60%
would indicate something seriously wrong with most of the
original studies. That 10–15% expectation doesn’t take
publication bias into account, a point that the authors of the
replication study are clear to emphasise, and it is therefore quite
unrealistic. The problem is that it is nearly impossible to know
what would be a realistic allowance for publication bias.

Im4.2.5 The difficulties with replication
The biggest difficulty with replication arises largely because of
publication bias: a bias to publish studies with low p-values and
therefore typically with a higher sample effect size. That results
in a situation where published sample effect sizes are very likely
to overestimate the population effect size. If publication bias
leads to overestimated population effect sizes, then power
calculations of replication sample size are going to
underestimate the sample size needed to reduce the chance of
a Type II error in the replication. So, replication studies will be
making more Type II errors than would be expected at face
value.
The second issue is deeper. Replication, with the expectation
that the results of a second study should veto the results of a
first is a very inefficient way of combining two studies. If we see
replication not as a check on the original study but as a second
source of evidence about the effect in question, then there are
better ways of combining the information from each study. There
is a whole branch of research methodology devoted to finding
robust, efficient and safe ways of combining results from
different experiments. It is called meta-analysis and has even
developed ways of trying to take publication bias into account.

IM4.3 COMBINING RESULTS WITH
META-ANALYSIS
Meta-analysis is a somewhat different approach to combining
multiple results. Replication tends to be competitive and sets
one study against another so that the outcome is that only one
of them survives. Meta-analysis combines results from repeated
studies to produce a new improved result to which both have



contributed. Meta-analysis is a large topic and here we will
provide a brief overview, broken down into three simple steps.

Im4.3.1 Step 1: Average effect size
To start with, there is a really easy way of combining the results
from several studies: we just calculate an average of their effect
sizes (ensuring that the effect sizes are all in the same form,
such as r or Cohen’s d ). This is a little crude and a more
appropriate way to produce an average effect size is by
weighting the contribution of each effect size by how much we
trust it.
Weighting simply means placing more emphasis on the more
trustworthy studies than the untrustworthy studies when adding
the values together. To do this, the standard error of each effect
size is a very useful measure of trustworthiness. An estimate
with a lower standard error is more trustworthy. We weight effect
sizes from different studies by the inverse of their standard error.
The inverse of a number is 1 divided by that number, and can
also be written as x –1 :

inverse (x) = 1
x

Weighting by the inverse of standard errors means that the least
uncertain effect sizes get more heavily weighted. Check our
online resources for an example of how to calculate a weighted
average effect size.
Visually, it is useful to provide a graph showing the effect size
from each individual study as a single point to illustrate how
variable the effect size has been across the research. This
graph is called a forest plot – a term introduced by Cumming
(Cumming, 2012). An example is shown in Figure Im4.2 .



Figure Im4.2 A forest plot of effect sizes.
This forest plot indicates the results from ten different studies. The
triangles indicate the sample effect size.

When doing this averaging meta-analysis process, it is also very
important to estimate what the overall standard error for the
combined result might be.

Im4.3.2 Step 2: Compensate for
publication bias
Simply averaging known effect sizes works well only if there are
no biases in the selection of studies. This is a very unsafe
assumption – publication bias, meaning that small effect sizes
are underrepresented, could be a very large problem. There are
several ways of dealing with this and the common methods work
on a simple idea.
If we plot each study in a meta-analysis as a single point in a
two-dimensional graph with axes of effect size and the inverse of
its standard error, then we get a plot that is called a funnel plot.
This is because the shape of the data on the graph is like a
funnel, wide at the base where standard errors are large and
narrow at the top where they are small. An example is given in
Figure Im4.3 . In a funnel plot, it is normal to use a measure of
effect size called z , which is the Fisher-transformed version of
the familiar r . The funnel plot shows z along the x-axis and the
inverse of the standard error of z along the y-axis. This means



that small standard error (low uncertainty) studies are shown
towards the top of the graph, whereas the higher uncertainty
ones are lower down.

Description

Figure Im4.3 A funnel plot of effect sizes.
A funnel plot with 100 studies plotted and no publication bias
involved in their selection.

Publication bias will remove studies that have small effect sizes
and large standard errors, and these would all be found in the
bottom left corner of the funnel plot. So, if there is publication
bias, we know where to look for it in the funnel plot. An example
of a funnel plot with publication bias is shown in Figure Im4.4 .



Description

Figure Im4.4 Funnel plot showing publication bias.
In this funnel plot, publication bias is visible as an absence of studies
to the lower left.

There are various more or less arbitrary ways of dealing with
publication bias that work quite well in the presence of modest
amounts of publication bias. They are all methods that try to
identify what the missing studies might look like from the pattern
already in the funnel plot. They assume that the funnel should
be symmetric and then work out where the missing ones should
have been. These studies that are thought to be missing are
then added in – hallucinated is a better word – to the averaging
process.

Im4.3.3 Step 3: Likelihood functions
instead of averages
In Chapter 5 we explained the likelihood function for a sample
effect size, which shows how likely different population effect
sizes are. The likelihood function has a very nice property that
we didn’t mention but we can now use: if we have two different
samples, then the joint likelihood function for both samples is
simply the product (multiplying together) of the two individual
likelihood functions. In this way, we can build a combined
maximum likelihood estimate for the population from as many
studies as we wish. However, this process will still require that
we attend to publication bias.



Im4.3.4 Applying meta-analysis to the two
research fields
Let us return to the two fictional research fields and ask how
meta-analysis might treat them. Just for this example, to keep
the results here comparable with the replication considerations
above, we will suppose that the meta-analysis concerns two
studies, an original and a repeated study done with a target
power of 80% (based on the original sample effect size). This
means that meta-analysis procedure is not as strong as it would
be if it were done with more repeated studies. For comparison
with replication, we will use the meta-analytic combined
estimates of effect size and standard error to calculate a new
combined p-value. That lets us make a new decision about
statistical significance based on the joint information from the
two studies.
The scuba divers (whose hypotheses are always incorrect) have
published studies where 100% are false discoveries. These are
each repeated once with a target power of 80%. The result is
that, of the original published studies, after meta-analytic
combination with a replication, 65% will now be found not to be
statistically significant. This is less than the replication process,
which found 95% not to be significant.
The trumpet players (whose hypotheses are always correct)
have published studies where all are true discoveries. This time,
the meta-analysis produces a new p-value that is significant for
85% of the published studies. This is much more than the
replication process, which found that only 25% of the true
discoveries in this scenario would successfully replicate.
The process of meta-analysis, limited in scope by the
impossibility of taking publication bias into account with just two
studies, is not as successful as replication in removing Type I
errors but is considerably more successful in retaining published
studies when they are not Type I errors.



Description

Figure Im4.5 The statistical power of a meta-
analysis.
This graph shows how the statistical power of a meta-analysis
involving two studies (one a replication of the other with a target
power of 80%) depends on the power of the original study. Notice
that the effect of the original study is much less pronounced that than
it was for replication.

IM4.4 A SUMMARY AND THE MORAL
OF THE STORY
We began with a scepticism about any one study because of its
inherent uncertainty. We saw, in two fictional scenarios, how that
uncertainty can become completely lost to sight once we switch
from a single study to examining a whole field of research, if that
field of research practises publication bias.
This is undoubtedly serious. Just looking at the significant
results that a field of research produces does not give anyone
an insight into how many of them are false discoveries: it could
be all of them or none of them, or anything in between. This is
shocking.



We have looked at two ways round this and just because we
can, we will now be very opinionated in describing them. One,
replication, is confrontational and seeks to exclude (false)
positive results from the literature. The other, meta-analysis, is
cooperative and seeks to include (all) positive results. They have
different strengths and weaknesses. Replication is very
successful at detecting false positives but has a high cost
because it will also frequently falsely reject true positives. Meta-
analysis is poorer at detecting false positives but does not carry
the high cost of falsely rejecting true positives.
We have seen that they both have the weakness that their
efficacy is heavily determined by the power of the original study.
This weakness is unavoidable.
This outcome is all round disappointing. There is no good fix for
the issue of false discoveries. But maybe we should remind you
that false discoveries only arise because of the logic of null
hypothesis testing …
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The plots are distributed on either side of a line parallel to
the vertical axis. The line is drawn at a z value of 0.3.

The plots are enclosed by two curves. One curve increases
in a concave up manner, and the other curve decreases in a
concave up manner. A portion of the curves extends close
to the horizontal axis and the remaining extends close to the
vertical line.

Text above the graph reads, Sample size equals 42 plus or
minus 10.

Back to Figure

The horizontal axis is labelled z and ranges from negative
0.5 to 1 in increments of 0.5.

The vertical axis is labelled se of z inverse and ranges from
0 to 80 in increments of 20.

All data are approximate.

A few plots are distributed on either side of a line parallel to
the vertical axis. The line is drawn at a z value of 0.3.

The plots are enclosed by two curves. One curve increases
in a concave up manner, and the other curve decreases in a
concave up manner. A portion of the curves extends close
to the horizontal axis and the remaining extends close to the
vertical line.



Text above the graph reads, Studies equals 28 over 35
equals 80 percent.

Back to Figure

The horizontal axis is labelled power and ranges from 0.1 to
0.9 in increments of 0.1.

The vertical axis is labelled p, significant, in percentage and
ranges from 0 to 100 in increments of 20.

All data are approximate.

The line is plotted through (0.1, 60), (0.5, 74), and (0.9, 74).
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In this final chapter, we will do something different. We are going
to focus on our responsible researcher thread, but in the context
of how to present our research to the world at large. This is a big
step for us. Up until now it has been very much our research
under our control, with us making all the decisions about it. Once
it has been published, it takes on a life of its own and we have
no more direct control of it. So, we need to make sure that it is
as effective as possible in that new life.
This is particularly important given that there has, for some time
now, been talk in our discipline about ‘questionable research
practices’: ways in which the research process is used to
produce favourable outcomes for the researcher rather than the
discipline. Historically, dazzlingly surprising results that are
statistically significant have received the most attention, whereas
non-significant results have tended to be disregarded. This
creates a personal reward system that is not good for the
discipline, trying to push us all in the direction of over-sized
claims about our research. The critical reader of our research
will be aware of this tension between what is good for a
researcher and what is good for the discipline as a whole. So we
must address the reader’s criticisms before they have even been
formed.
At the heart of this is the issue of researcher openness: research
results must be presented clearly with the details of everything
that went into making that result.



Description

Figure 15.1 The research cycle as a set of layers.
Really, the whole research cycle is about discovering knowledge,
and sharing it. We what do is at the bottom layer. All of this feeds
into how we present and persuade, and all of that then generates
knowledge.

In the preceding chapters, we have explored in great depth the
first two phases of the research cycle (hypotheses, designs,
analysis and inferences). But despite its importance, we have
not yet looked at phase three: presenting results to persuade
readers and build knowledge. It would be unethical to do
research and not share it. Even if you haven’t found an effect, or
a statistically significant outcome, that knowledge itself can
benefit someone else. And what use is knowledge if it is not
shared?



There are two parts to this final stage of the research cycle.
First, we must describe our research findings themselves and
hope to persuade others to accept them for whatever they
mean. Second, we must deal with how our findings fit into a
larger literature. Often, they will satisfyingly complement what is
already known: an increment on a growing understanding.
Sometimes they will not fit comfortably with previous research
and we have to deal with that.

15.1 PRESENTING
When it comes to presenting results, here is the only piece of
advice that is needed: results should be relevant, precise and
yet simple. These are easy words and yet they hide some very
hard work. We often have students come to us and ask for a set
of clear instructions: What information should we include in our
work? What order should we write it in? In asking these
questions, they make a mistake: presenting research is not a
checklist of items to be ticked off. It is communication, and we
must consider who we are communicating with. The right
questions to ask are these: What will our readers want to know?
What do they need to know? How can we structure the material
so they will find it easy to grasp? We have already given a big
hint to the answer to these questions: relevant, precise and yet
simple.

Relevant : you have to report everything that you did that
might have made a difference to the result that you got. It is
relevant that you ran a t-test and the version was
independent samples. The time of day you ran your t-test is
not relevant (the time you collected your data might be,
though!). Relevant is a judgement about what the reader will
be concerned about. If you think they may have doubts
about something you have done, then answer those doubts
before they even surface.

Precise : this sounds obvious. Maybe it is, but maybe it
isn’t. Precise does mean quoting effect sizes, but doesn’t
mean quoting effect sizes to 12 decimal places. Precise
means that you make sure that the reader will achieve the
proper understanding of your research, not one that is
biased or incomplete. We think, as a minimum, you need to
be precise in describing the things that formed the subject
matter of the chapters of this book: What are your variables
and how did you measure them ( Chapter 3 )? What effects
did you find and how strong were they ( Chapter 4 )? What
level of uncertainty does your research involve ( Chapter 5
)? What inferences did you reach and how ( Chapter 6 )?



What specific tests did you do and what specific results did
you get ( Chapter 7 )?

Simple : there are no medals for using unusual, exotic or
complicated statistics. If a t-test does the job required, then
stick with it. It is all too common to confuse complicated with
advanced and to suppose that complexity looks more
persuasive. A cautious reader will wonder why you didn’t do
a t-test and quite probably suspect the reason is not a good
one.

There is a really important principle here: the Laziness Principle.
Until this stage, the Laziness Principle is an instruction to us
researchers not to do more than we need to for the purposes of
our research. If we don’t need to fit elaborate network models to
our data, then we should be lazy and not do so. However, from
this point onwards, the Laziness Principle works differently. It is
our readers who can enjoy laziness. Our job is to make our
research as quick and easy to access by them as we can. This
takes a lot of effort on our part.
If you are reading this but still thinking ‘yes, but how do I write all
of this up?’, then we have one more piece of advice for you:
experience being a reader. Read journal articles but with the
critical skills of someone who has just finished this book. What
do the articles tell you? Is there more that you wish they had told
you? What is clear, and what isn’t? Do they satisfy your need for
relevance and precision and are they as simple as they can be?
Draw on what you learn in order to shape your own approach to
presenting results.

15.2 PERSUADING
While presenting research sounds quite straightforward, the
most important thing to remember is that you must present
research in a way that persuades the most sceptical readers. As
we have discussed throughout this book, all research has a
degree of uncertainty: this comes from the samples we use, the
sampling approaches we have used, and the choices of
measurement that we have used. In the last Intermezzo, we
looked at one particularly important cause for scepticis positive
findings might be false positives. Our sceptical reader cannot
know even how to evaluate that possibility. They can look at a
whole research topic and see lots of positive findings but not
know whether they are all false or true. On the face of it, two
research fields will appear similar even though one is entirely
false positives and the other entirely true positives. That is
enough to make the most trusting person sceptical. It is a
consequence of hypothesis testing and publication bias.
Worrying, yes? Does this make you sceptical?



Scepticism is indeed justified. Not because of suspicions of foul
play, but because research has uncertainty that we easily
overlook. In our single study, null hypothesis testing is probably
OK, especially if we remain aware of the issues of inferential
errors. However, when we place it alongside many other studies
which have been subjected to publication bias, a reader is right
to wonder about the uncertainty. Our audiences, quite rightly,
should adopt a critical thinking mindset when they read about
our work. This all means that presenting results in a way that a
reader can assimilate quickly and easily and understand is not
enough. Whether we like it or not, science is a bit of a
marketplace – we need to find buyers and sell our ideas.
Readers will be cautious, sceptical, more so with research that
challenges what is already known. We must take an extra step
and make a conscious effort to persuade the reader. What can
we say that will be persuasive?
Maybe the first point to note is that statistical analysis itself is
actually a persuasive procedure, not an analytic one. When we
say that we reject the null hypothesis, we don’t mean an
outright, irrevocable rejection. We mean that we are persuaded
that it is better to do so than not. Our small p-value or small
standard error nudges us, persuades us, in a particular direction
for our inference. If we report the statistical analysis carefully,
fully and honestly, then we can certainly hope that others will
find it equally persuasive.
Ultimately, however, the strongest selling point we will have is
that our research has been done in a fully responsible manner.
That means that we are trustworthy. Throughout this book, we
have talked about being a responsible researcher. None of it is
difficult, especially if we care deeply about the quality of our
research. We may care about the conclusions – that is entirely
natural – but these preferences must take second place to
caring about the quality of our work. For example, we have a
strong attachment, certainly, to the thought that risk-takers might
do better in exams (and who knows what other situations). But,
as responsible researchers, we have to let our research into this
question speak for itself.
To end this book, we present you with a series of basic
principles that should guide you on your statistics journey. If you
follow these, then your work will be persuasive. We do not claim
that we invented any of the they are always important to keep in
the back of your mind.

15.3 PRINCIPLES FOR RESPONSIBLE
RESEARCH
The overarching theme of responsible research is simple: we
must always openly allow for the possibility that our inferences



might be wrong. The uncertainty of almost all research is
inescapable, and must not be forgotten.

Principle 1: Data is the only connection we have with the
truth.

Any data that we have must be respected, exactly as it is. We
should be willing to offer it openly to others, without doing
anything more than protecting the identities of our participants.
We should be able to say to anyone who asks that here is the
data, the whole data and nothing but the data.

Principle 2: When we collect data, we do so according to a
planned design.

The design is the only guarantee that we have that our sample
represents the population with the uncertainty that we expect.
Sticking to our planned design makes it easy to explain how
uncertain our conclusions are, and why.

Principle 3: Our analysis, and the reasons for it, must be
reported fully.

A good rationale for our analysis doesn’t change the result of it,
but it does make a result more persuasive. Committing
ourselves to an analysis plan before we even see the data will
help to make our results very persuasive.

Principle 4: Any effects we find in our data should be
quantified.

Even though our interests may revolve around qualitative
judgements of significance and whether an effect is large or
small, we must respect our reader enough to allow them to
reach their own opinion about these. They can only do that if we
give them results as quantities.

Principle 5: When we reach inferences, uncertainty must
always be explicitly acknowledged.



We have said enough about this.

15.4 POSTSCRIPT
We want to finish this book with a thought for you, our faithful
reader. What do we hope lies ahead for you in this business of
using numbers and labels to advance psychological knowledge?
Psychological research cannot exist without the methods it uses
and there are three enormously difficult obstacles it has to
overcome.
First, there is the difficulty of relying on small samples to inform
us about whole populations. Statistics was invented to illuminate
the importance of this unavoidable difficulty and we hope you
feel at home by now with the uncertainty it brings.
Second, there is the difficulty of knowing how to measure
thoughts, feelings, attitudes and all the other richness of mental
life. The meaning of things we measure is changed by what
other measurements we place them alongside. If you have
learned that statistics requires flexibility in how we approach our
psychological understanding of our data, then we are pleased.
Third, psychology has been built by trying to demonstrate the
existence of effects rather than quantifying effects. The value of
only knowing about relationships in terms of exist or not is
questionable on logical terms. Psychology needs models and
ways of comparing different models. That turned out to be the
most surprising consequence of allowing more than one IV at a
time. And a key component in choosing between models is
knowing which relationships have zero effect sizes. If you are
able to see that, then we are delighted.
We know that feeling secure with these difficulties in our science
and how statistics deals with them makes psychological
research exciting, as it should be, rather than intimidating.
Our final reminder as we end this book is that, as we explained
at the start, the really big picture to be seen is the ability to turn
your research back into a focus on psychology instead of a
string of numbers and procedures. Once you have understood
the web of relationships between variability and statistics and
decisions and outcomes, you can start asking far more
interesting questions and finding much more interesting
outcomes. It is much more important – and much more
interesting – to think as a psychologist than to think like a
statistician. What story are you able to tell with all the skills that
you have gained?

Descriptions of Images and Figures
Back to Figure



The layers from top to bottom are as follows.

The first layer is labelled knowledge.

The second layer has two rectangles labelled presenting
and persuading.

The third layer consists of the following sequence: idea,
hypothesis design, evidence, inference analysis, and result.
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