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Abstract

In modern world, security of confidential information has become one of the fun-

damental requirement. Elliptic curve turn out to be an important tool for secure

communication in cryptography it provides the same level of security with smaller

key as compare to RSA. For working with the elliptic curves over the finite fields of

very large orders we need a mathematical tool like Matlab, ApCoCoA, Mathemat-

ica etc. Matlab and Mathematica are not freely available softwares. In this thesis

we have developed a package in ApCoCoA, which is a freely available mathemat-

ical software for computation in Algebra, that helps us to perform some complex

computations in an easy and efficient way. We used CoCoL programming language

of ApCoCoA to make a computational package for working with the elliptic curve

groups. This package is made to perform different operations on elliptic curve that

are necessary to run schemes based on ECC. Also, use of ApCoCoA is secure as

compared to other online available softwares as it needs not to be connected with

a third party like desmos, over a public network. Using online available softwares

can compromise the security because one must share the EC points over internet

to perform different calculations. As the security of many schemes are based on

EC points, therefore, if a hacker, pretending to be the third party, can take EC

points from the user, can weaken the security. Our package works off line and

hence it is better for security perspective. Once the message is encrypted it can

be sent to the receiver over a public network without compromising the security

because it can only be understandable to a authorized receiver as it is in encrypted

form. We also efficiently executed using the package made in ApCoCoA.
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Chapter 1

Introduction

The security of communication remained a big problem from very beginning. Ro-

man knew some cryptographic methods and used the Shift Cipher or Caesar Cipher

[1] while communicating with each other. As the time passed, new methods in

cryptography were developed that provided more security. Cryptography is the

study of transmitting a message in a form so that no third party can read or gain

a control it. It is the technique that uses mathematical functions for securing the

data or information from adversaries. The original message known as plaintext is

converted into coded message (ciphertext) via the encryption algorithm and with

the help of key (a secret information) for transmitting it to the public network.

The ciphertext is then converted back to plaintext by the receiver or an authorized

person via the decryption algorithm again with the help of a key. Cryptographic

techniques are categorized into two types; technique that uses same key for en-

cryption/decryption is called symmetric key [2] cryptography whereas a technique

that uses two different keys, but there must be some mathematical relation be-

tween the two keys, is called asymmetric key cryptography. In asymmetric key [3]

cryptography one key is recognized as public key of the user and the other one is

called the private key.

1
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1.1 Background

In this thesis, our entire focus will be on asymmetric key cryptography. The famous

mathematical techniques that have been used in the history for asymmetric key

cryptography [3] are integer factorization problem and discrete logarithm problem.

In integer factorization two large primes are used which when multiplied gives an

integer. The security of the system mainly relies on the difficulty of factorizing

that integer. Note that all the work in integer factorization is done in some finite

field. On the other hand, in discrete logarithm problem. A multiplicative cyclic

group is selected to define a discrete logarithm problem using the generator of the

group. We will see these techniques in detail in the next chapter.

There is another branch that tries to reveal the secret information in a secure

communication without having the idea of key or to obtain the key illegally. This

branch is known as cryptanalysis. Discrete logarithm problem provides a fully

secured cryptosystem when a finite field of 1024 bits is used. Since computations

in 1024 bit finite field take a lot of time and are also a bit complicated so there

had been a need of some improved method that could provide the same security

with less computational cost.

1.2 Role of Elliptic Curve

As described in the previous section that to obtain high security a relatively large

field must be used. In large fields computational cost of an algorithm also gets

bigger which in some cases become inefficient and obtaining desired results become

an issue for the user. To attain the same security with less computational cost,

Neil Koblitz and Victor Miller [4], in 1985, defined the use of elliptic curve [5] in

cryptography which was major breakthrough in cryptography. It was completely

a new idea. An elliptic curve is an equation in two variables one of which has

degree two and the other is of degree 3. The general form is:

y2 = ax3 + bx+ c
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One can say that it was an advancement of discrete logarithm problem. Because

this time discrete logarithm problem was defined over an elliptic curve which gave

the same level of security only by working 128 bit finite field. In Chapter 3, we

will look into more details of elliptic curves and their relation with cryptography.

1.3 Tools for Elliptic Curve

To make use of these techniques, one must use some mathematical software that

does all the computations and execute the algorithm. Because manual calcula-

tions cannot be done when working in bigger fields. There are many tools like

MATLAB[6], Mathematica [7] and other programs that are working perfectly fine

to implement different cryptographic schemes in our daily life. There are calcu-

lators which are available online like DESMOS [8],Cryptomath [9], Christomath

[10] etc, which have been in use for years. The objective of these calculators is to

enable the user to perform operations on elliptic curves like point addition (same

or distinct), n times addition, order of a point, sketching a graph of elliptic curve

etc. In this thesis, we will introduce the use of ApCoCoA to implement crypto-

graphic techniques. A package in ApCoCoA is made that is helpful to find the

points lying on elliptic curve, addition of these points to obtain resultant points

etc. There was no uch package available in ApCoCoA before.

1.4 Summary

In this thesis, the purpose of making a package in ApCoCoA is all about algebraic

calculations, it has different built-in functions of algebraic computations that can

be used to make an advance package which is helpful for performing operations

on elliptic curve. We used this package to implement elliptic curve Diffie Hellman

key exchange protocol. The scheme runs smoothly and the operations on elliptic

curve are computed using the package that is made in ApCoCoA. Since ECC is
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related to basic algebra so it sets perfect platform for us to make such a package.

ApCoCoA is also user-friendly and simple to use that is why we chose it.

1.5 Distribution of Thesis

In chapter 2, we will only be dealing with some basic stuff related to basic algebra

and cryptography to facilitate the reader understanding the terms in a best way.

Chapter 3 is regarding the use of elliptic curve in cryptography together with

elliptic curve discrete logarithm problem and some elliptic curve cryptosystems

for a program to run efficiently. All the basics about ApCoCoA and different

programs which are compiled in a single package will be discussed in Chapter 4.



Chapter 2

Preliminaries

This chapter deals with some basic definitions and notations which are going to

help us accomplishing this thesis. In the first section we will recall terms like

group, ring, field together with some examples. Then in the next section, we

will define cryptography and look into the types of it. The possible attacks on a

cryptosystem will also be covered in this chapter. Last section is devoted on the

discussion on elliptic curve cryptography.

2.1 Mathematical Background

In this section we review some mathematical background from algebra which are

necessary for a good understanding of the chapters in this thesis.

Definition 2.1.1. (Groups)

A group [11] G is a finite or infinite set of elements together with a binary operation

(called the group operation) that satisfy the four fundamental properties: The

operation with respect to which a group is defined is often called the “group

operation”, and a set is said to be a group “under” this operation. Elements

x, y, z, ... with binary operation between x and y denoted x ∗ y form a group if

5
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1. Closure law: If x and y are two elements in G, then the product xy is also

in G or

x ∗ y ∈ G

2. Associativity: The defined multiplication is associative, i.e., for all x, y, z

in G,

(x ∗ y) ∗ z = x ∗ (y ∗ z).

3. Identity Element: There is an identity element I (such as 1, E, ore) such

that

I ∗ x = x ∗ I = x for every element x in G.

4. Inverse Element: There must be an inverse (reciprocal) of each element.

Therefore, for each element x of G, the set contains an element y = x−1 such

that x ∗ x−1 = x−1 ∗ x = I

Definition 2.1.2. (Abelian Groups)

If one more property holds with four properties of group G,

x ∗ y = y ∗ x

for all x, y ∈ G then it is known as abelian group [11]. Example of abelian group

are the set R of R real number and Z the set of integers with respect to addition.

Example 2.1.3. Real numbers R \ {0} with respect to multiplication is an

example of abelian group.

1. Closure property holds since a · b ∈ R \ {0}, ∀a, b ∈ R \ {0}.

2. Associativity also holds as (a · b) · c = a · (b · c), ∀a, b, c ∈ R \ {0}.

3. 1 the is identity element.

4. Inverse 1
a

of each nonzero a element also exists.

5. Furhter, a · b = b · a, ∀a, b ∈ R \ {0}. Hence, it is an abelian group.
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Definition 2.1.4. (Cyclic Groups)

Group G is known as cyclic group [11], if there exists that x ∈ G can be generate

every element of G. This x is known as the generator of of the group G and we

write G = 〈x〉. Thus for some element x every u ∈ G has the form xn. Note that

every cyclic group is an abelian group.

Suppose a, b ∈ G and G be a cyclic group.

Then u = xn and v = xm

⇒ uv = xnxm = xn+m = xm+n = xmxn = vu.

Example 2.1.5. The set of integers Z holds all the properties of being a group.

Moreover, with respect to addition, all the elements of Z can be generated by −1

and 1. So, it is a cyclic group with −1 and 1 as generators.

Definition 2.1.6. (Order of an Element in G)

For a cyclic group [11] G with “a′′ as its generator, the smallest whole number n

that gives the identity “e′ in G, is termed as the order of an element “a′′ in G.

Mathematically it is written as,

an = e a ∈ G, n ∈W

Definition 2.1.7. (Ring)

A non-empty set R together with the pair of algebric operations ‘·’ and ‘+’ is said

to be a ring [11] of. For all x, y, z ∈ R, the following properties hold:

1. Abelian: Ring R is an abelian group under +.

2. Associativity: The operation . is associative and it is of course closed also

(x · y) · z = x · (y · z)

3. Distributivity: The set R also holds both distributive laws:

(y + z) · x = y · x+ z · x

x · (y + z) = x · y + x · z
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Definition 2.1.8. (Commutative Ring)

If a ring R further holds that

x · y = y · x

then it is called commutative ring [11].

Example 2.1.9. Set of integers Z is a commutative ring.

1. Since a+ b = b+ a, ∀a, b ∈ Z, so it is an abelian group under addition.

2. The operation

(a · b) · c = a · (b · c)

also exists ∀a, b, c ∈ Z. So, it is associative.

3. Distributive property also exists ∀a, b, c ∈ Z, i.e.,

(b+ c) · a = b · a+ c · a

a · (b+ c) = a · b+ a · c

4. Further, ∀a, b ∈ Z

a · b = b · a

Hence, it is a commutative ring.

Definition 2.1.10. (Field)

Consider a ring (F,+, ·). If the non-zero elements of F form an ablian group under

multiplication, then the ring F is called a field [11].

Examples of field includes R, Q, C wit respect to usual operations of addition and

multiplication .

Further, a field with finite number of elements is called a finite field. The Galois

fields are example of finite fields. These are denoted by GF (pn) where p is prime

number.

When n = 1, the elements of GF (p) are given in the set 0, 1, 2, 3, ..., p− 1. The

set of nonzero elements of GF (p) form a group under multiplications modulo p.
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Definition 2.1.11. Order of a Field

By order of a field, we mean that how many elements a field has. For example, if

a filed has 4 elements then its order will be 4.

Definition 2.1.12. Galois or Finite Field

If a field has finite number of elements then it is recognized as finite or Galois field.

The notation for Galois field is GF (q), where q = pn and p is a prime number.

In cryptography, we further categorized it in two types. In the first type, we take

n = 1 which gives us a field of prime numbers.

In the second type, we set p = 2 which gives us polynomials of maximum n − 1

degree, whose coefficients are only 0 and 1.

Next, our aim is to show multiplication and addition in finite fields. To find the

multiplicative inverse of a number in a given finite field, we will use an algorithm

called Extended Euclidean Algorithm. Here it is given:

Algorithm 2.1.13. (Extended Euclidean Algorithm)

To find the inverse of b under modulo m, below mentioned steps are to be followed:

Input: b and m

Output: b−1 mod m

1. Set (X, Y, Z) = (1, 0,m) and (L,M,N) = (0, 1, b)

2. If N = 0, return that the inverse does not exist and Z is the gcd of (b,m).

3. If N = 1, return that the inverse is M and N is the gcd of (b,m)

4. Store T = bZ/Nc, where b.c represents the floor value.

5. (P,Q,R) = (X − TL, Y − TM,Z − TN)

6. (X, Y, Z) = (L,M,N)

7. (L,M,N) = (P,Q,R)

8. Go back to step no.2



Preliminaries 10

For the fields GF (13), the operations are shown in the addition and multiplication

are shown in the Table 2.1 and Table 2.2, respectively.

+ 0 1 2 3 4 5 6 7 8 9 10 11 12
0 0 1 2 3 4 5 6 7 8 9 10 11 12
1 1 2 3 4 5 6 7 8 9 10 11 12 0
2 3 4 5 6 7 8 9 10 11 12 0 1 2
3 4 5 6 7 8 9 10 11 12 0 1 2 3
4 5 6 7 8 9 10 11 12 0 1 2 3 4
5 6 7 8 9 10 11 12 0 1 2 3 4 5
6 7 8 9 10 11 12 0 1 2 3 4 5 6
7 8 9 10 11 12 0 1 2 3 4 5 6 7
8 9 10 11 12 0 1 2 3 4 5 6 7 8
9 10 11 12 0 1 2 3 4 5 6 7 8 9
10 11 12 0 1 2 3 4 5 6 7 8 9 10
11 12 0 1 2 3 4 5 6 7 8 9 10 11
12 0 1 2 3 4 5 6 7 8 9 10 11 12

Table 2.1: Addition in GF (13)

× 0 1 2 3 4 5 6 7 8 9 10 11 12

0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6 7 8 9 10 11 12

2 0 2 4 6 8 10 12 1 3 5 7 9 11

3 0 3 6 9 12 2 5 8 11 1 4 7 10

4 0 4 8 12 3 7 11 2 6 10 1 5 9

5 0 5 10 2 7 12 4 9 1 6 11 3 8

6 0 6 12 5 11 4 10 3 9 2 8 1 7

7 0 7 1 8 2 9 3 10 4 11 3 10 4

8 0 8 3 11 6 1 9 4 12 7 2 10 5

9 0 9 5 1 10 6 2 11 7 3 12 8 4

10 0 10 7 4 1 11 8 5 2 12 9 6 3

11 0 11 9 7 5 3 1 12 10 8 6 4 2

12 0 12 11 10 9 8 7 6 5 4 3 2 1

Table 2.2: multiplication in GF (13)
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In Table 2.1 the elements which give 0 are additive inverses of each other and in

Table 2.2 the elements which give 1 are multiplicative inverses of each other.

Definition 2.1.14. Trapdoor Function

Trapdoor function is a function that is easy to compute in one direction but

difficult to compute in the reverse direction if some special information known as

“Trapdoor” is not known.

Figure 2.1: Trapdoor Funtion[12]

Which Functions are not “Trapdoor”?

Suppose we define a function x + y = a, in this function if given x and y then a

can be computed easily but is it also easy to compute x and y when any of the

other two are given. That is why it is not a trapdoor function as the definition

says that there must be some special knowledge which must be taken into account

while computing the function in the reverse direction.

2.2 Cryptographic Background

Cryptology is the study of cryptography and cryptanalysis [13]. Cryptography is

used for secure communication. When two parties communicate with each other

in the presence of an attacker, they try to make mechanism which allows them
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to have secure communication. Cryptography is basically the technique which

Figure 2.2: Cryptology

sets up the mechanism for them. Cryptography sets this mechanism by taking

the original message into some coded message so that only the concerned reader

is able to understand/read it. In cryptography, our soul purpose is to design a

system that converts the original message into some unreadable/coded message.

This system is known as cryptosystem. There are some cryptographic terms that

are used for making a cryptosystem.

In any communication, the two parties who are engaged in conversation are usually

known as Alice and Bob. In this conversation, the original message is called

cleartext or plaintext denoted as P . There are two ways to encrypt the plaintext

one is block cipher [14] and the other is stream cipher [15]. The block cipher takes

one block of elements as an input and produces an output block for each input

block. Whereas stream cipher takes input elements continously and produces

output for one element at a time.

The plaintext is not directly sent to the receiver rather it is transformed into coded

form which is not understandable. The coded form in cryptography is known as

ciphertext. The plaintext is passed through some process via an algorithm to
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convert it into a ciphertext. This algorithm is called encryption algorithm.

To make the ciphertext readable, again an algorithm is used to convert it into

plaintext. This algorithm is known as decryption algorithm. To encrypt and

deycrypt the message, both algorithms require a secret information/function which

is known as key. Guarantee of a secure communication is highly dependent on

the key. If a third person gets the knowledge of the key then the security of the

conversation might be compromised.

Cryptography Basic Working

The basic working of any cryptographic technique is explained in the following

algorithm:

Algorithm 2.2.1.

To make a system that enables Alice (sender) and Bob (receiver) to communi-

cate securely. Encryption and decryption have to be taken place in the following

fashion:

Figure 2.3: Block Diagram
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Encryption

Suppose user Alice wants to send some confidential information to Bob. He has

to go through from the following steps to encrypt the original message P .

Input: original message or plaintext P , encryption algorithm E, key K

Output: Ciphertext C

1. User Alice has plaintext P .

2. Using any encryption algorithm E and key K (must be secret), plaintext is

encrypted as EK(P ) and ciphertext C is generated.

3. Alice sends C to Bob through a public channel.

Decryption

Now Bob has to apply the following steps on C to make it readable.

Input: Ciphertext C, decryption algorithm D, key K

Output: original message or plaintext P

1. Bob has ciphertext C.

2. ciphertext is decrypted by applying decryption algorithm D and K on C as

DK(P ) and plaintext P is obtained.

This procedure can be further illustrated by using any encryption algorithm, for

example, shift cipher. We are using shift cipher because it is simple and helpful

to understand the basic working of cryptography. It works as follows:

Example 2.2.2.

Shift cipher is a technique of encrypting a plaintext P by applying a shift on each

alphabet for example by a shift of 5. In this way each letter is replaced by the

letter that is on the fifth place in the alphabetical order from current letter.

Encryption takes place in the following manner:
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Encryption

Input: Plaintext P , encryption algorithm E i.e. shift cipher, key K(the shift size)

Output: Ciphertext C

1. User Alice has plaintext P =“shift cipher is a branch of symmetric crptog-

raphy”.

2. By applying a key of right shift of 5 on P .

3. Ciphertext C = “xmnky xdkczm dn v wmvixc ja nthhzomdxxmtkojbmvkct”

Decryption

Now Bob has to apply the following steps on C to make it readable.

Input: Ciphertext C, decryption algorithm D, key K (the shift size)

Output: original message or plaintext P

1. Bob has ciphertext C = “xmnky xdkczm dn v wmvixc ja nthhzomdxxmtko-

jbmvkct”.

2. By applying a key of left shift of 5 on C.

3. Plaintext P = “shift cipher is a branch of symmetric crptography”.

2.2.1 Applications/Objectives of Cryptography

The objectives/applications of a secure communication consist of the following

elements:

Confidentiality

Confidentiality of information or data refers to protection of the information from

disclosure to third parties. In todays world, information has value especially in
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government documents, personal information, credit card numbers, trade secrets,

bank account statements etc. Every one wants privacy of information that they

wish to be kept secret. Confidentiality makes sure that no third party can under-

stand the information unless they are authorized to do so.

Intergrity

Integrity guarantees the information being received in its original form. Integrity

of information refers to protecting it from being modified by unauthorized parties.

Information that has been changed or modified could prove to be costly. Informa-

tion only has value if it is correct. For example, suppose a case where we are going

to send Rs.50 but the information is changed or modified and shows that Rs.50,000

had actually been sent. Integrity is very useful in these kind of circumstances for

making sure that information is not altered.

Authentication

Authentication helps us to authenticate a person whenever needed. The person

who is claiming that the information is sent by me is actually is sent by him. It

reveals the identity of the sender and helps the receiver to believe in the sender.

Suppose that the participants Alice, Bob and John are engaged in exchange of

information with one another. Now participant Alice sends a message to partici-

pants John. Later, Participants Bob claims that the message is sent by him. Here

authentication plays its role to confirm who actually sent the message.

Non-Repudiation

Non-repudiation refers to a state where people cannot be deceived. Suppose par-

ticipant Alice sends a message to participant Bob. Here, because non-repudiation

participant Alice can never deny that the message is not sent by him.

Cryptographic schems are further classified into two categories.
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Figure 2.4: Cryptographic protocols [16]

Cryptographic Protocols There are two basic protocols in cryptography which

are differentiated on the bases of keys used in them. They are given below:

A. Symmetric key cryptography

B. Asymmetric key cryptography

2.2.2 Symmetric Key Cryptography

Symmetric key cryptography is a method that ensures secrecy and security of the

communication. An adversary who does not know the key, gets the encrypted

message should not be able to understand the message. When two parties, say,

Alice and Bob communicate over an insecure channel using some symmetric key

protocol. Then the key used for encryption and decryption is same. There might

be cases where decryption key can be obtained easily from the encryption key.
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Figure 2.5: Symmetric key protocol [17]

In this protocol use of secure channel is required for the exchange of key. Because,

Bob cannot be able to decrypt the message unless and until he has the key. So,

Alice after encrypting the message sends the key through some secure channel

which then enables him to decrypt the message. For example popular symmetric

schemes includes AES [18], DES [19], RC4 [11] etc.

2.2.3 Asymmetric Key Cryptography

Asymmetric key cryptography was invented in 1976 by Whitfield Diffie and Mar-

tin Hellman. Symmetric key cryptography has a drawback of sharing a key and

therefore asymmetric key cryptography was introduced. It is a method that is

used for secure communication. It uses two keys; one for encryption and the

other for decryption. The key used for encryption is known as public key of the

owner(receiver) and decryption key is known as private key of the owner. It does

not require a secure channel/way for the exchange of key. Everybody has access

to public key and private key is only known to its owner(receiver).
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Figure 2.6: Asymmetric protocol[17]

Suppose Alice and Bob want to communicate over a insecure channel using asym-

metric protocol. Then Alice first obtains the public key of Bob and use it to

encrypt the message. The ciphertext is sent to Bob. Bob then uses his private

key to decrypt the ciphertext into plaintext. Here we can observe that there is

no need of secure channel for the exchange of key. Hence, it solves the issue of

using a secure channel for key transfer. For example some famous asymmetric key

protocols include DiffieHellman key exchange protocol, ElGamal [20], RSA [21]

encryption algorithm , Elliptic curve [22] etc.

2.3 Cryptanalysis

Cryptanalysis [2] is a method that is used to break the cryptosystem in order to

obtain the plaintext or some useful information like key. It is also studied to check

that how strong and secure a cryptosystem is. The person who does cryptanlysis

is called cryptanalyst. Cryptanalysis is always possible if a cryptosystem lacks any

of the following properties:

1. Confidentialty

2. Integrity
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3. Authentication

4. Non-Repudiation

There are many types of attacks [2], some of them are described below:

1. Brute Force Attacks

In this attack [23], ciphertext and the decryption algorithm are known to

an attacker. On the basis of which attacker attempts every possible key to

obtain the plaintext. This attack requires a lot of time to accomplish the

goal as the attacker has to look for every key available in the key space. If it

is not feasible to attempt all possible keys in a reasonable time frame then

this attack is not possible.

2. Ciphertexts Only Attacks

In this attack [24], the attacker only knows ciphertexts. The corresponding

plaintexts are usually not known. He uses this known ciphertexts to obtain

the corresponding plaintexts.

3. Chosen Ciphertext Attacks

In this attack [25], the attacker has access to decrypted plaintexts of some

ciphertexts. On the basis of this known information he can try to obtain the

key or the plaintexts of other ciphertexts.

4. Chosen Plaintext Attacks

In this attack [24], the attacker knows the plaintext and the correspond-

ing ciphertext through which he tries to guess the key or obtains as much

information as possible.

5. Known Plaintext Attacks

In this attack [26], for a given ciphertext there is some part of plaintext

known to attacker which is further analyzed to get the complete plaintext

or the decyption key.
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6. Man-in-the-middle Attacks

In this attack, when two parties try to agree on a key for secure commu-

nication. The attacker places himself between them in order to agree on a

key without knowing them. Two keys are selected by attacker to deceive

both parties. He uses one of the key to make first party agree on exchange

of information by pretending to be the second party. The other key is used

to deceive the second party. The two parties actually thinks that they are

communicating with each other, but it is the attacker who is obtaining the

information from both ends and hence attacks the communication.

2.4 Popular Asymmteric Techniques

Asymmetric key cryptography is based on the idea of one way trapdoor function.

Now, we take a close into some of the most popular techniques of public key

cryptography. We will see their working and highlight their strong and effective

points which made them popular.

2.4.1 RSA

RSA was named on the names of its inventors i.e. Rivest, Shamir and Adleman.

The idea of RSA was given in 1977. It falls in the category of public key cryp-

tography as the algorithm uses two keys and also uses trapdoor function in its

working. The technique guarantees the existence of confidentiality, integrity, non-

repudiation and authentication in the communication between two parties. The

scheme works on the principle of integer factorization problem. The complete

method of RSA is mentioned below:

Suppose Alice and Bob wants to setup a secure system through RSA to commu-

nicate over an insecure channel. They must follow the following points:
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Key Generation Phase:

1. Alice chooses two large primes p and q. For the confirmation of p, q being

primes primality test is used.

2. The modulus n is computed as n = p× q.

3. Then Euler totient function is computed by φ(n) = (p− 1)× (q − 1).

4. With the help of Euler totient function public key k1 and private key k2 are

generated.

5. Public key k1 may be taken any number that lies between 1 and φ(n) but

gcd(k1, φ(n)) = 1.

6. Private key k2 is the inverse of k1 mod φ(n), which is computed using Algo-

rithm 2.1.13.

Message Encryption/Decryption Phase:

1. A message m is split in blocks m1,m2, ...,m` where ml is the last block in

the message.

2. Each block is then encrypted as ci = mk1
i mod n for i = 1, 2, ...`.

3. The receiver decrypts the ciphertext by mi = ck2i mod n for i = 1, 2, ..., l.

Example 2.4.1. This toy example shows how RSA is used to encrypt and

decrypt a message. Note that this example is made for generating public and

private keys of Alice. So here Bob will use Alice’s public key to send him an

encrypted message and then Alice will use his private key to get it back in its

original form. Same will be done by Bob to generate his private and public keys

and then Alice will use Bob’s public key to continue the communication in a secure

fashion.
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Key Generation Phase:

1. Alice chooses two primes i.e., p = 37 and q = 97.

2. The modulus n is evaluated as n = 37× 97 = 3589.

3. Then Euler totient function is computed by φ(3589) = (37− 1)× (97− 1) =

3456.

4. Public key k1 = 31 is chosen, as gcd(31, 3456) = 1.

5. Using Algorithm 2.1.13, the inverse of k1 in mod 3456 is found to be 223,

which is the private key of the user. So, k2 = 223.

Alice will make (31, 3589) public so if Bob wants to communicate with him. He

can do so. But φ(n) and k2 cannot be made public as the complete security is

dependent on it. The above procedure is also shown in the Figure 2.7.

Figure 2.7: RSA key generation block diagram[27]

Message Encryption/Decryption Phase:

1. Suppose the original message m is “Hello”= 2, which Bob is going to send

to Alice.

2. To obtian ciphetext c. Encryption is done as

c = 231 mod 3589

c = 1909 mod 3589
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3. Now Alice applies his private key k2 on ciphertext c to decrypt it. By de-

crypting the ciphertext c, original message m is computed in the following

way:

m = 1909223 mod 3589

m = 2 mod 3589

4. Alice gets the plaintext “Hello”.

NOTE: All the above calculations are done by RSA calculator available on-

line at https://www.cs.drexel.edu/ jpopyack/IntroCS/HW/RSAWorksheet.html.

The above procedure is also shown in the Figure 2.8.

Figure 2.8: RSA encryption/decryption block diagram[27]

2.4.2 Discrete Logarithm Problem

Recall that in the start of this chapter we defined some mathematical terms which

we need in this thesis. In that section, multiplicative cyclic groups were defined.
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So, in order to define discrete logarithm problem [28] we need to take a help from

cyclic group, which is

ga = b

where g ∈ G and G is a cyclic group and g is its generator. Since G is cyclic so

b ∈ G. But for discrete logarithm problem, one must take a finite field i.e. Z∗p,

where p must be prime. Then the discrete logarithm problem is, for a generator g

of Z∗p, it is easy to compute

ga = b mod p

for a ∈ Z. But knowing only g and b, it is hard to find a. This is known as discrete

logarithm problem. Usually, a is the private key of the user. Discrete logarithm

works on the principle of one-way trapdoor function. Remember that p must be

a large prime number in order to protect a cryptosystem being attacked. For

smaller p, sub-exponential algorithm might break the cryptosystem efficiently. So,

p must be of 1024 bit large to avoid being attacked. Both key exchange protocol

Diffie-Hellman and ElGamal encryption scheme are based on DLP.

2.5 Cryptography and Elliptic Curves

In the world of science and technology different ways of communication are being

utilized. To communicate in a secure way is one of the fundamental objectives now

a days. Because there are confidential informations that one will never want to be

placed in the wrong hands. So to protect the information cryptographic tools are

used so that it is ensured that security of the secret message is not compromised.

A recent new approach of using public key cryptography is based on elliptic curve

finite groups. The next chapter is devoted to elliptic curve cryptography.
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2.6 Summary

In this chapter an overview of mathematical background was presented which

favored us to define the basic techniques of cryptography in an effective way. Most

of the cryptosystems are based on the idea of finite fields. How computations and

different operation like additon multiplication work in finite fields have also been

discussed to define algorithms such as RSA, DLP etc. At the end of the chapter

a strong connection between cryptography has been shown to set a platform for

next chapter which will give us insights into elliptic curve cryptography.



Chapter 3

Elliptic Curve Cryptography

Initially the algorithms were based on integer factorization problem or Discrete

Logarithm Problem (DLP). Some important algorithms include RSA and Diffie-

Hellman key exchange protocol. RSA was proposed by R.Rivest, A.Shamir, and

L.Adleman in 1976 and it is based on integer factorization problem. Whereas

Diffie-Hellman is based on Discrete Logarithm problem proposed in 2002.

In integer factorization problem two large primes are chosen and then they are

multiplied to obtain an integer. The algorithms based on integer factorization

problem depend on the difficulty of the product being factorized. Discrete Loga-

rithm Problem is defined using elements of cyclic group with modular arithmetic.

Let g be a generator of multiplicative cyclic group Zp where p is prime. We know

that ga = b ∈ Zp. Then discrete logarithm problem is to find “a” when only the

knowledge of“g” and “b” is known.

The key size [] that National Institute of Standards and Technology (NIST) has

suggested for DLP is 1024 bits meaning that one need to work with the field of at

least 1024 bits to ensure secure communication. And because of a very large key

size [29] the computations take a long time to be executed.

27
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Figure 3.1: Nist recommended key sizes [30]

So, a need of improved approach was required in cryptography. Then the use of

elliptic curve was introduced and observed that the discrete logarithm problem

can be made more harder if it is defined over elliptic curve.The major advantage

of the use of elliptic curves is that the same security level can be achieved by

only working in a field of 160 bits and hence elliptic curve solves the problem

of computational complexity to achieve the desired security extent. In the next

section, we will see elliptic curve in detail and talk about how are they generated.

3.1 Elliptic Curve Cryptography

The equation of the form:

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a5 (3.1)

defined over a finite field F is a plane curve and known as Weierstrass equation

[31]. Where a1, a2, a3, a4, a5 and a6 are called Weierstrass coefficients and they are

selected from finite field F. This curve is called a smooth curve if the discriminant

−b22b8 − 8b34 − 27b26 + 9b2b4b6 6= 0
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where

b2 = a21 + 4a2

b4 = 2a4 + a1a3

b6 = a23 + 4a6

b8 = a21a6 + 4a2a6 − a1a3a4 + a2a
2
3 − a24

3.1.1 Elliptic Curves Over R

In cryptography generally our focus is on simplified form of Weierstrass equation

which is

y2 = x3 + Ax+B (3.2)

Where A and B are Weierstrass coefficients and they are selected from a finite

field F. The discriminant for simplified form of (3.1) is (4A3 − 27B2). This curve

is said to be smooth if the discriminant (4A3 − 27B2) is nonzero. The smooth

Weierstrass curve is called elliptic curve. If the field F = R the field of Now,let us

consider a curve:

y2 = x3 − 6x+ 4 (3.3)

over the field of R the graphical representation is shown in Figure 3.2 is an elliptic

curve because it does not have edges or self intersection and hence it is smooth

Weierstrass curve. Smoothness of the curve can also be verified by its discriminant

that is 4A3 − 27B2 6= 0, which can be seen as follows:

4A3 − 27B2 = −1296 6= 0

Next, we see the group structure on elliptic curve. Suppose, we have two points

P and Q which are on an elliptic curve E.

a) To add these points, the following steps must be followed:

1. A straight line is passed from points P and Q.

2. The straight line intersects the curve on some point say S of E.
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Figure 3.2: Graph of y2 = x3 − 6x + 4 over R

3. Next to get the point R as the resultant of addition of P and Q, we

just need to take the negative of S which is −S = (x,−y).

This procedure can be best illustrated by showing points addition [32] graph-

ically. Consider elliptic curve in (3.3) E : y2 = x3 − 6x + 4. The points

P = (0, 2) and Q = (2, 0) are displayed by purple and orange color respec-

tively lie on E. Using above mentioned procedure the resultant point R is

shown by green color in Figure 3.3.

Figure 3.3: Graph of points addition y2 = x3 − 6x + 4 over R

b) To add a point P to itself, following steps are applied.
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1. Draw a tangent on P .

2. It intersects the curve on some point again considered as S of E.

3. Next to get the point R = 2P as the resultant of addition of P to itself,

taking negative of S is only required.

Next, we plot the graph for doubling a point means that we are adding a

point to itself. The point P = (0, 2) is displayed by purple color in Figure

3.4. This time we need to draw a tangent on the given point as mentioned

earlier and the tangent then intersects the curve at point S shown by black

color in Figure 3.4. The doubling of point is shown by green color which is

just the reflection of point S.

Figure 3.4: Graph of doubling a point on y2 = x3 − 6x + 4 over R

c) The same procedure can be used for the addition of P to −P . We know that

−P is just the reflection of P . So, when we pass a straight line from them it

reaches to infinity. We also know that when we add a point to its additive

inverse we get the additive identity and thus in the definition of elliptic curve

we define a special point which is located at infinity and recognized as point

at infinity. The point at infinity is denoted as O.

In Figure 3.5 points P = (0, 2) and −P = (0,−2) are displayed by orange

and blue colors respectively. It is clear from the figure that if we pass a line
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from them it approaches to infinity and there we imagine a zero point or

point at infinity O which serves as an additive identity in elliptic curve.

Figure 3.5: Elliptic curve point at infinity O

This is now clear that how do the points on elliptic curve behave when they are

added.

Keeping in mind the above graphical representation of point addition, we next see

the mathematical representation of it.

3.1.1.1 Mathemtical Formulas for Point Addition on Elliptic Curve

In order to add a point P (x1, y1) into Q(x2, y2) on the elliptic curve in (3.2), i.e.

y2 = x3 + Ax+B

A line must be drawn through them as following the graphical structure of point

addition. Let the the line ` passes through P and Q, the point slope form of ` is:

` : y = sx+ c

We are only left to define the slope s. It takes the following cases:
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Case 1: If P and Q are two different points, then

s =
y2 − y1
x2 − x1

(3.4)

Case 2: If P and Q coincide, then

s =
3x21 + A

2y1
(3.5)

the new point say R(x3, y3) obtained by adding P and Q has following co-ordinates:

x3 = s2 − x1 − x2 (3.6)

y3 = s(x1 − x3)− y1 (3.7)

How the Coordinates of the New Point are Computed?

As we know that the line that connects P and Q is:

y = sx+ c

using it in (3.2), we get

(sx+ c)2 = x3 + Ax+B

=⇒ s2x2 + c2 + 2csx = x3 + Ax+B (3.8)

As (3.2) is a cubic equation, it has three roots x1, x2 and x3 can expressed in the

following form:

(x− x1)(x− x2)(x− x3) = 0

That is,

x3 + x2(−x1 − x2 − x3) + x(x1x2 − x2x3 + x1x3)− x1x2x3 = 0 (3.9)
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On comparing the coefficients of x2 in 3.8 and 3.9, we have:

x1 + x2 + x3 = s2

So, the first coordinate of the resultant R is found to be

x3 = s− x1 − x2

For the second coordinate, we have

y3 = sx3 + c

substituting c = y1 − sx1 in the above equation

y3 = sx3 + y1 − sx1

Taking negative of y3 and with some simplification, the second coordinate is:

−y3 = s(x1 − x3)− y1

x3 and −y3 are the required coordinates of the new point.

Example 3.1.1. Let us again take (3.3) which is used to show addition of

points graphically. It can be shown that the same points are obtained using the

mathematical formulas given in the previous section. For elliptic curve:

y2 = x3 − 6x+ 4

For points P (0, 2) and Q(2, 0), slope s is evaluated by (3.4):

s =
0− 2

2− 0

s = −1
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By adding P and Q, coordinates (x3, y3) of R are obtained using (3.6) and (3.7):

x3 = (−1)2 − 0− 2

x3 = −1

y3 = (−1)(0− (−1))− 2

y3 = −3

That is P +Q = R = (−1,−3)

Next we add P into itself. s is calculated by (3.5).

s =
3(0)2 − 6

2(2)

s =
−6

4

s = −6(−4−1)

coordinates (x4, y4) of W is obtained using (3.6) and (3.7):

x4 = (
−6

4
)2 − 2(0)

x4 =
36

16

x4 =
9

4

y4 = (−1)(0− (−1))− 2

y4 = −3

Thus P= Q= R= (9
4
,−3)

So far we have only considered the field of real numbers. Now, we extend the idea

to finite fields because our next aim is to introduce the use of elliptic curve in

cryptography.
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3.1.2 Elliptic Curve over Finite Fields

When we were dealing elliptic curve over real numbers, the graph shows a smooth

curve. To define a curve over finite field, we have to use modular arithmetic. Now,

the curve in Equation 3.2 takes the following form:

()y2 = x3 + Ax+B mod p (3.10)

which is defined over a finite field Fp and p > 3 is prime number. The coefficients

A,B and variables x, y are from finite field Fp. The ordered pair (x, y) which

fulfills Equation (3.10) lie on the elliptic curve. If we talk the geometric behavior

of elliptic curve over finite field then this time we do not see any smooth curve

rather the discrete points appear on the graph.

To strengthen this claim we plot a graph and see its behavior. Let us consider the

same curve over F13.

y2 = x3 + 7x+ 4 mod 13 (3.11)

The points that lie on the given curve are shown in Table 3.1. Elliptic curve points

x y2 y1,2 P (x, y) P ′(x, y)
0 4 2,11 (0,2) (0,11)
1 12 5,8 (1,5) (1,8)
2 0 0 (2,0) -
3 0 0 (3,0) -
4 5 - - -
5 8 - - -
6 2 - - -
7 6 - - -
8 0 0 (8,0) -
9 3 4,9 (9,4) (9,9)
10 8 - - -
11 8 - - -
12 9 3,10 (12,3) (12,10)

Table 3.1: Points of EF13(7, 4)

addition for EF13(7, 4) is given in Table 3.2.
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The graph of it is shown in Figure 3.6.

Figure 3.6: Elliptic curve y2 = x3 + 7x + 4 over F13

The same curve that displayed a smooth curve over real numbers is now showing

discrete points which is only because of finite field F13. This is the change of

behavior that we mentioned previously. The points in red are the ordered pairs

(x, y) that satisfy the given equation (3.11).

Suppose we want to add points P (9, 4) and Q(12, 10) on the elliptic curve (3.11).

To use the formula for point addition, one has to use the modular arithmetic.

Then using the formulas in (3.6) and (3.7) give us the co-ordinates of new point

R(x3, y3). First we calculate the slope s by (3.4).

s =
10− 4

12− 9
mod 13

s =
6

3
mod 13

s = 6(3−1) mod 13

By using extended Euclidean algorithm 2.1.13, we get

3−1 = 9 mod 13
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There

s = (6)(9) mod 13

s = 2 mod 13

Now placing the value of s in (3.6) and (3.7), gives us:

x3 = (2)2 − 9− 12 mod 13

x3 = 9 mod 13

y3 = 2(9− 9)− 4 mod 13

y3 = 9 mod 13

Thus R = (x3, y3) = (9, 9)

So the addition of P (9, 4) and Q(12, 10) gives us R(9, 9).

Now, let us add a point P (9, 4) into itself. To compute 2P = P +P , we again first

find s by using formula (3.5) as:

s =
3(9)2 + 7

2(4)
mod 13

s = 250× 8−1 mod 13

s = 250× 5 mod 13

s = 2

The co-ordinates of the new point are:

x3 = (2)2 − 2(9) mod 13

x3 = 12

y3 = 2(9− 12)− 4 mod 13

y3 = 3

Which means adding P into itself gives us a point, R(12, 3). Similarly, any point
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on the elliptic curve can be added to another point of the elliptic curve and also,

a point can be added to itself as many times as we want. Table 3.2 shows the

addition of all the points on (3.11).

+ ∞ (0,2) (0,11) (1,5) (1,8) (2,0) (3,0) (8,0) (9,4) (9,9) (12,3)(12,10)
∞ ∞ (0,2) (0,11) (1,5) (1,8) (2,0) (3,0) (8,0) (9,4) (9,9) (12,3) (12,10)

(0,2) (0,2) (12,3) ∞ (8,0) (9,9) (12,10) (9,4) (1,8) (1,5) (3,0) (2,0) (0,11)
(0,11) (0,11) ∞ (12,10) (9,4) (8,0) (12,3) (9,9) (1,5) (3,0) (1,8) (0,2) (2,0)
(1,5) (1,5) (8,0) (9,4) (12,10) ∞ (9,9) (12,3) (0,11) (2,0) (0,2) (1,8) (3,0)
(1,8) (1,8) (9,9) (8,0) ∞ (12,3) (9,4) (12,10) (0,2) (0,11) (2,0) (3,0) (1,5)
(2,0) (2,0) (12,10) (12,3) (9,9) (9,4) ∞ (8,0) (3,0) (1,8) (1,5) (0,11) (0,2)
(3,0) (3,0) (9,4) (9,9) (12,3) (12,10) (8,0) ∞ (2,0) (0,2) (0,11) (1,5) (1,8)
8,0 (8,0) (1,8) (1,5) (0,11) (0,2) (3,0) (2,0) ∞ (12,10) (12,3) (9,9) (9,4)
(9,4) (9,4) (1,5) (3,0) (2,0) (0,11) (1,8) (0,2) (12,10) (12,3) ∞ (8,0) (9,9)
(9,9) (9,9) (3,0) (1,8) (0,2) (2,0) (1,5) (0,11) (12,3) ∞ (12,10) (9,4) (8,0)
(12,3) (12,3) (2,0) (0,2) (1,8) (3,0) (0,11) (1,5) (9,9) (8,0) (9,4) (12,10) ∞
(12,10) (12,10) (0,11) (2,0) (3,0) (1,5) (0,2) (1,8) (9,4) (9,9) (8,0) ∞ (12,3)

Table 3.2: Addition of points of EF13(7, 4)

3.1.3 Elliptic Curve Discrete Logarithm Problem (ECDLP)

From the previous discussion we know that elliptic curves over finite fields form

a cyclic group. It can be taken as a good motivation to define discrete logarithm

problem over elliptic curves. As DLP [33] is based on cyclic group so for an

elliptic defined over Fp, we can obatin a point Q on the elliptic curve by adding

P , n number of times, to itself. Mathematically it can be written as

P + P + P + ...+ P︸ ︷︷ ︸
n times

= nP = Q

It is easy to find Q, knowing n and P but relatively difficult to obtain n when only

P and Q are known. The difficulty of finding n by only having the knowledge of

P and Q is known as ECDLP [22]. In DLP section, it was discussed that at least

1024 bits p is required to make a secure system but in case of ECDLP the same

level of security can be achieved by just having a curve over p of 128 bits. This is

why elliptic curves have been in a greatly investigated by the researcher and being

used widely.
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3.1.4 Elliptic Curve Diffie-Hellman Key Exchange

Protocol

In order to communicate in a secure fashion Alice and Bob need to exchange their

keys so that they can encrypt and decrypt the messages. In 1976 Whitefield Diffie

and Martin Hellman [34] gave the idea of exchanging keys over a public network

without compromising the security. The scheme is designed using a cyclic group

of points of elliptic curve and security [35] relis on the difficulty of solving ECDLP.

The following procedure tells all the story that ho do Alice and Bob exchange keys

using Diffie-Hellman key exchange Protocol.

1. An elliptic curve E is mutually selected by Alice and Bob over a finite field

Fqtogether with G as base point of the group of n that is generated by E.

2. Alice selects a random number KA ∈ 1, 2, 3, ..., n− 1 as his secret key and

computes PA = PAG that again turns out to be a point of E.

3. Bob does the same with KA ∈ 1, 2, 3, ..., n− 1 as his secret key and computes

PB = PBG.

4. Both PA and PB are exchanged with each other.

5. Alice then computes PAB: PAB = KAPB

6. Alice then computes PAB: PAB = KBPA

PAB is used as a session key security on finding KA and KB.

3.2 Summary

This chapter is all about use of elliptic curve in cryptography. In the start of the

chapter, we discussed why previously existing techniques were not much efficient to

run a secure cryptosystem. The reason was, those cryptosystems demands a user

to work in bigger fields which eventually make the computations more complicated

and increases the computational cost of the algorithm as well. But in elliptic curve
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cryptography same level of security can be achieved by working in smaller fields

as proved secured by NIST. After defining all the basics of elliptic curve we moved

towards the elliptic curve discrete logarithm problem which is currently the heart

of many cryptosystems. One of the applications of ECDLP is Diffie-Hellman key

exchange protocol that is also taken into consideration to show how ECDLP works.



Chapter 4

The Package Elliptic Curve

In this chapter, we will introduce ApCoCoA, a software that is used to compute

with algebra. In previous chapters we learned about different operations that

can be performed on elliptic curve but once the field gets bigger manual or by

hand calculations become more difficult. So, we need to have some application in

computer that does all the things for us by just giving a command to computer.

Currently, there are many tools available that deals with the elliptic curve such as

MATLAB, MATHEMATICA etc. But, we are going to make a package in ApCo-

CoA for elliptic curve as it is highly efficient for algebraic computations.

ApCoCoA is a computer algebra system that enables the scientists and mathe-

maticians to transform the manual computations of mathematical expressions in a

program that a machine can understand. The term ApCoCoA stands for“Applied

computations in commutative algebra” and it is originated in 1987 by University

of Genova, Italy. It is a free software that is developed for computations related

to numbers and polynomials. It can be easily accessed on modern operating sys-

tems such as windows, LINUX etc. It is useful for the researchers to execute an

algorithm but it can also be used for simple calculations. The software is available

on its official website http://cocoa.dima.unige.it. [36]

ApCoCoA is very useful for dealing with polynomials rings in more than one vari-

ables that are defined over rationals or modular integers. Its high-level language

and easy access make it more suitable and reliable tool for working with algebraic

42
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computation. Its usage is simple and the application is easy to learn. The applica-

tion is also being used for education purpose like teaching and learning purposes.

It is highly active for computations with multivariate polynomials which are de-

fined over rationals or integers. Implementations of most mathematical techniques

is based on Grobner basis.

Figure 4.1: ApCoCoA basic features[36]

4.1 Mathematical Functionality

Basic arithmetic operations as well as some advanced operations like GCD, op-

erations on polynomials such as composition and factorization naturally exists in

the application.ApCoCoA is highly efficient for algebraic computation[37]. The

software is designed to deal with very big integers as 2300000 which was difficult

before. ApCoCoA has a tool that does not approximate the fractions in order to

get the accurate answers. For instance, 1/9 is approximately equal to 0.11111111

and 9×0.11111111 gives 0.99999999 but (1/9)×9 = 1. The software is well suited

for performing different operations on polynomials such as multiplication, division,

factorization etc. ApCoCoA can also be used to solve system of linear equations.

The other features of the software include dealing with logical problems like truth
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tables, coloring different portions of a figure like maps and it can also calculate

the area of a triangle using Heron’s formula by using three sides of the triangle.

The key tool for effective computations in commutative algebra is the concept of

Figure 4.2: ApCoCoA features

Grobner basis. The default ring for commutative algebra has been set as Q[x, y, z],

but it can be changed by defining any other polynomial ring. The complete on-line

help along with application can be obtained by http://cocoa.dima.unige.it [36]

4.2 How to use ApCoCoA?

For complete help guide, we refer the user to on-line help available at:

http://cocoa.dima.unige.it [36]

Here we give a brief overview that how a user can start the application in his

system so that he may not face any problem in initializing the application.
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4.2.1 Requirements

Here are some basic things that must be kept in mind before setting up the appli-

cation in the system:

1. A user must have installed any operating system like windows 7,8,10, Linux,

MAC in his machine.

2. Must have installed ApCoCoA in his machine.

4.2.2 Installation

1. Download the application’s setup from https://apcocoa.uni-passau.de/ [38].

ApCoCoA’s official page looks like this

Figure 4.3: Official website of ApCoCoA

2. Run the setup from where it is saved.

3. After successful installation of the application, following window will be ap-

peared:
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Figure 4.4: ApCoCoA Installation setup

Figure 4.5: ApCoCoA input and output window

It can be seen that the main window is split into two parts; upper is output

window where the output is displayed and the lower is input window where

the program is written.

Note: User must have installed java editor to run ApCoCoA properly.
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4.2.3 How to Save and Run a Programe in ApCoCoA

1. To save a program in ApCoCoA, user writes a program in the input window

by setting up a name and all the inputs that are to be used in the program.

Then the folloing steps are to be followed:

• Go to file.

• Click on ”save as” to save the program.

In Figure, we called the input function ModuloInverse written along with

its inputs N,P. Save the program as displayed in Figure.

Figure 4.6: How to save a program

2. To run the saved program, user calls the function in the output window

and then define the inputs for which the program is to be run. For instance

if we are to find the multiplicative inverse of 12 in Z23, it is to be written like

this ModuloInverse{12,23}; in the input window. To run the program

user presses ctrl+enter. Moreover, the output displayed can also be saved.
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4.3 Computations on Elliptic Curve Groups

The objective of this work is to develop a package in ApCoCoA for the execution

of several programs such as performing operations on the points of elliptic curves.

The package also provides full protocol to find multiplicative inverse of a number

in a finite field. The package consists on the following programs:

4.3.1 Modulo Inverse

The idea of extended euclidean algorithm 2.1.13 is used to make a program to

compute the inverse of a given number in a finite field. All the computations

in this program are done in modulo arithmetic. This program is further used

in other program in the package to find the inverse. The algorithm is imple-

mented for computation of inverse no only in Fp but also in te Galois fields Fp
q.

The user just need to call the function in the input window for example in our

case it is ModuloInverse(N,P). The algorithm is implemented in the function

ModuloInverse(N,P); with inputs N and P . Here N is an element of GFpq and

P is the prime numbers.

Output: The inverse of N .

In ApCoCoA, to find the inverse of a number, a code is prepared for Algorithm

2.1.13. Figure 4.7 shows the screen of the code that a user see on his system.
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Figure 4.7: Use of ApCoCoA for finding inverse in finite field

Suppose, if a user wants to find the inverse of 23 under modulo 37. He will call

the function ModuloInverse(N,P); in input window and replace N by 23 and

P by 37 i.e. ModuloInverse(23,37); and executing the function will display the

answer 29 in the output window as shown in Figure 4.8.

Figure 4.8: Toy Example for user
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4.3.2 EC Addition

The package contains a program for the addition of points on elliptic curve. Again

the basic idea, that is given in Chapter 3, is transformed in ApCoCoA to enable

the system perform the operations on elliptic curve. It can also be used to add

same points. To add two different elliptic curve points using ApCoCoA. Following

steps are required:

a) The user will first run the complete package.

b) In input window, he calls the function ECaddition{P1,P2,C,M}; as shown

in Figure 4.9.

Figure 4.9: Use of ApCoCoA for the addition of points on elliptic curve

c) The user now types the values of all the inputs P1, P2, C,M , where M is a

prime number and the values of P1, P2 and C are to be given in the form of a

list because P1 and P2 are the points of elliptic curve in the form of ordered

pairs and C contains the coefficients a and b of elliptic curve. In particular,

user writes it in the following fashion ECaddition{[6,4],[13,14],[5,25],17; }

and the output is [16, 6] as shown in Figure 4.10.
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Figure 4.10: Toy Example for user

To add a point into itself, the user will again call the function in the input win-

dow as ECaddition{P1,P2,C,M; }. The user now writes the same point at

P1 and P2. For example, if we wish to add [6, 4] into itself the the user writes

ECaddition{[6,4],[6,4],[5,25],17; }, the output of it is [13, 14] which can be seen

in Figure 4.11.

Figure 4.11: ApCoCoA’s example to add a point into itself
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4.3.3 Order of the Point of Elliptic Curve

In cryptography it is very important to construct a cyclic group to define ECDLP

on it as it is the base for many currently available algorithms in the world of

security and cryptography. This program evaluates the order of a point on a given

elliptic curve very efficiently. To find the order [39] of a point of an elliptic curve.

The user will call the function OrderP(P,C,M); from the —- package as in Figure

4.12.

Figure 4.12: Use of ApCoCoA for finding the order of a point on elliptic curve

To find the order of (6, 4) on elliptic curve y2 = ax3 + 5x = 25 mod 17, the user

types OrderP([6,4],[5,25],17); and the order of (6, 4) along with all the points

that can be obtained by adding (6, 4) into itself multiple times will be displayed

in the output window. This task is illustrated in Figure 4.13.
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Figure 4.13: Toy Example for user

4.3.4 Adding a Point to itself Multiple Times

This package is well suited to add points multiple time or to a fixed number of

times say n. User just needs to give the command to the system and it can give

the resultant point in no time after adding it to a desired number of times. If user

wants to add an elliptic curve point to a desired number of times, he can do so

using the code that we are going to introduce next. Figure — shows that apoint

can be added N times. Here, user just needs to call NP{N,P,C,M}; in the input

window as illustrated in Figure 4.14.
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Figure 4.14: Use of ApCoCoA to add a point N times

Now, the user will tell the function NP{N,P,C,M}; that how many times he

wants to add point P . For example, he wants to add P (6, 4) 5 times. So he will

replace N by 5, P and C are in the form of list as [6, 4] and [5, 25], respectively. We

have used a field of F17 so modulo used here is M = 17. Therefore, the function

becomes NP{5,[6,4],[5,25],17}; and by executing it gives [14, 0] which means by

adding (6, 4) 5 times we get (14, 0) as it can be seen in Figure 4.15.
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Figure 4.15: Toy Example for user

In the next section, we will mention different commands along with their descrip-

tion and example.

4.4 CoCoA Command References

4.4.1 Inverse

Modulo inverse for integers.

Syntax

ModuloInverse(N : INT, P : INT ) : INT

where N is an integer: whose inverse to be found in the finite field FP

Description

This function returns the inverse of N in modulo P .
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Example

ModuloInverse(5,7);

3

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

4.4.2 Point addition

Addition for elliptic curve points.

Syntax

ECadd(P1:LIST,P2:LIST,C:LIST,M:INT):LIST

where P1, P2 and C are in the form of list: new point to be found in the finite

field Fm

Description

This function returns the point (in the form of a list) which is the sum of P1 and

P2 in modulo m. By taking P1 and P2 this function adds the point into itself.

Example

ECaddition([16,6],[10,2],[5,25],17);

[16, 11]

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

ECaddition([16,6],[16,6],[5,25],17);

[10, 15]

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
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4.4.3 Adding Point to itself N Number of Time

Addition of elliptic curve point to a desired number of time.

Syntax

NP(N:INT,P:LIST,C:LIST,M:INT):INT

where N is an integer, P and C are in the form of list.

Description

This function returns the point (in the form of list) by adding P to N number of

time in modulo M .

Example

NP(3,[10,2],[5,25],17);

[13, 14]

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

4.4.4 Point Order

Order of an elliptic curve point.

Syntax

OrderP(P:LIST,C:LIST,M:INT):INT

where P and C are in the form of list.
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Description

This function returns the order of P in modulo M along with all te points which

van be obtained by adding P to itself multiple times. Adding P to itself means

P + P = P 2

Example

OrderP([10,2],[5,25],17);

P 2 = [13, 3]

P 3 = [13, 14]

P 4 = [10, 15]

P 5 = Infinity

5

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

4.5 Implementation of ECDH Key Exchange Pro-

tocol using ApCoCoA Package

When Diffie Hellman key exchange protocol is defined over elliptic curve, it is

known as ECDH key exchange protocol. For this purpose both parties agree up

on elliptic curve domain parameters to share a secret. An overview of ECDH is

given below.

4.5.1 Key Agreemenet Algorithm Example

Both parties agree on the following domain parameters to initialize the scheme.

1. Let us consider an elliptic curve y2 = x3 + 30x+ 24 over a finite field F199.

2. Point (2, 93) is taken as the generator G.
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Step 1: Both users A and B choose their private keys as 150 and 123 respectively.

Step 2: Both users A and B compute their public keys QA and QB receptively as

QA = 150× (2, 93) = (79, 91)

QB = 123× (2, 93) = (12, 108)

Note: These points are computed using the package made in ApCoCoA.

Step 3 Both users exchange their public keys

Step 4 User A computes 150× (12, 108) = (196, 92) (using ApCoCoA package)

Step 5 User B computes 123 × (79, 91) = (196, 92) (Using ApCoCoA Package)

The shared secret is same and successfully delivered to both the users.

4.6 Message Encryption/Dycryption using the

Scheme of Omar Reyad

In the scheme proposed by Omer Reyad [40], the following steps have been men-

tioned to encrypt/decrypt a message:

1. Suppose Alice and Bob are interested participants for the secure communi-

cation.

2. First, they agree on an elliptic curve over Fp along with a generator G.

3. Then Alice chooses a random number x as her private key and Bob chooses

a random y as his private key.

4. They also compute their public keys as follows:

Alice’s public key PA = x×G

Bob’s public key PB = y ×G
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5. Now, if Alice wants to send an encrypted message to Bob. She works in the

following fashion:

a. Alice first transforms the message in the points of elliptic curve using

ASCII code [41] and the mapping defined by Omer Rayed in [40].

b. Alice chooses another random number k and uses Bob’s public key to

encrypt the message Pm.

c. She then sends the pair of points PC to Bob as an encrypted text.

PC = [([k]×G)), (Pm + [k]× PB)]

6. In order to decrypt the ciphertext PC , the following equation is used by BoB:

Pm = [(Pm + [k]× PB)− ([yk]×G)]

4.6.1 Toy Example

The following examples shows how the scheme works.

Note that all the elliptic curve operations are performed using the package made

in ApCoCoA.

1. Suppose Alice and Bob are interested participants for the secure communi-

cation.

2. They agree on an elliptic curve:

y = x3 + 4x+ 1

defined over F503, with generator G = (283, 315)

3. Then Alice chooses a random number 25 as her private key and Bob chooses

a random 101 as his private key.
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4. They compute their public keys as follows:

Alice’s public key PA = 25× (283, 315) = (354, 146)

Bob’s public key PB = 101× (283, 315) = (363, 109)

5. Alice wants to send the word ”ATTACK” as an original message to Bob.

She works in the following fashion:

a. Using ASCII code [41] and mapping defined by Omer Rayed in [40], she

obtains the following corresponding elliptic curve points for the word

”ATTACK”:

A = (407, 201)

T = (308, 154)

T = (308, 154)

A = (407, 201)

C = (486, 282)

K = (477, 182)

b. Alice chooses another random number 50 and uses Bob’s public key PB =

(363, 109) to encrypt the message

(407, 201)(308, 154)(308, 154)(407, 201)(486, 282)(477, 182)

.

c. She then sends the pairs of points PC1 , PC2 , ..., PC6 to Bob as an encrypted

text.

PC1 = [(50× (283, 315)), ((407, 201) + 50× (363, 109))] = (308, 154)

PC2 = [(50× (283, 315)), ((308, 154) + 50× (363, 109))] = (354, 357)

PC3 = [(50× (283, 315)), ((308, 154) + 50× (363, 109))] = (354, 357)

PC4 = [(50× (283, 315)), ((407, 201) + 50× (363, 109))] = (308, 154)
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PC5 = [(50× (283, 315)), ((486, 282) + 50× (363, 109))] = (306, 429)

PC6 = [(50× (283, 315)), ((477, 182) + 50× (363, 109))] = (45, 303)

6. In order to decrypt the ciphertext PCi
, the following equation are permomed

Pm1 = [(308, 154)− (422, 331)] = (407, 201)

Pm2 = [(354, 357)− (422, 331)] = (308, 154)

Pm3 = [(354, 357)− (422, 331)] = (308, 154)

Pm4 = [(308, 154)− (422, 331)] = (407, 201)

Pm5 = [(306, 429)− (422, 331)] = (486, 282)

Pm6 = [(45, 303)− (422, 331)] = (477, 182)

7. Now, seeing these pairs of points in ASCII code [41], the original text ”AT-

TACK” is obtained.



Chapter 5

Conclusion

In this thesis we developed a package in ApCoCoA to perform different operations

on elliptic curve and in modulo arithmetic such as finding the inverse of a number

using extended euclidean algorithm.

In order to know about some basics terminologies or basic idea are always impor-

tant that is why we first looked into the basics of mathematics like groups, rings

and fields along with basics of cryptography to make a strong connection with the

things like DLP, Elliptic curves and ECDLP. Moving on, we discussed asymmetric

cryptographic techniques like RSA, Diffie-Hellman key exchange protocols.

To run any scheme of cryptography efficiently we are bound to rely on a machine

that does all the computations. Previously, there are number of software avail-

able to perform the computation in modulo arithmetic as well as elliptic curve

but in order to do that user must have access of internet since they do not work

offline.Also, online available softwares are not trustworthy. Since the security can-

not be compromised as the leakage of information to an unauthorized person can

be disastrous. That is why using online available softwares can be risky and not

entirely reliable source.

So, taking the idea of these online platforms we made a package in ApCoCoA that

works equally and efficiently to perform the desired operations. ApCoCoA is reli-

able tool as the user does not need to share his personal information or secret data

to a third party for execution of the algorithm. Its completely in the control of the
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user and hence it is reliable source. Our package is simple and user friendly. Since

ApCoCoA is freely available software and dose not have huge requirements to run

at any system. Following are the points that elaborate what can be computed in

this package.

1. Finding inverse of a number in modulo arithmetic.

2. Different point addition on elliptic curve.

3. Same point addition on elliptic curve.

4. Order of a point of elliptic curve.

5. n times addition of a point.

6. Number of points lying on elliptic curve

The above mentioned points are the major concerns with elliptic curve. But

the ApCoCoA package that has been presented in this thesis can do the things

efficiently and accurately over elliptic curve. So, one can use it to make his life

easy without compromising on the security.
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Appendix

This section contain the ApCoCoA code for calculation of Elliptic Curve. It con-

sists of ModuloInverse, ECaddition, NP, OrderP.

ModuloInverse calculate the inverse of a number under the mod. It require the

input N,P where P is number and N is mod. This function uses the extended

euclidean inverse algorithm.

Define ModuloInverse(N,P)
A1:=1;A2:=0;A3:=P;
B1:=0;B2:=1;B3:=N;
While B3 < 0 Do
B3:=B3+P;
EndWhile;
While B3 <> 1 Do
Q:=Div(A3,B3);
If Q=0 Then Error(” Q is 0”);EndIf;
T1:=A1-Q*B1;T2:=A2-Q*B2;T3:=A3-Q*B3;
A1:=B1;A2:=B2;A3:=B3;
B1:=T1;B2:=T2;B3:=T3;
If B2 < 0 Then B2:=B2+P; EndIf;
If B3=1 Then Return B2;EndIf;
If B3=0 Then Return(”Not Invertible!”); EndIf;
EndWhile;
Return B2;
EndDefine;

===============================================

Dec2Bin(D) converts the decimal number into binary.

===============================================
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Define Dec2Bin(D); L:=[];Q:=1;Rem:=0;
While Q <> 0 Do
Q:=Div(D,2);Rem:=Mod(D,2);
Append(L,Rem);
D:=Q;
EndWhile;
Return Reversed(L);
EndDefine;

ECaddition is use to add the points on P1 and P2 on curve C mod M . It re-

quire P1, P2, C,M where P1, P2 should be given as the list of integers x and y

coordinates of the points. C is list containing a and b of elliptic curve.

Define ECadd(P1,P2,C,M)
If P1=”Infinity” Then Return P2; EndIf;
If P2=”Infinity” Then Return P1; EndIf;
If
Mod(P1[2]2,M) <> Mod(P1[1]3 + C[1] ∗ P1[1] + C[2],M) Then
Error(”First Point is not on the Elliptic Curve”);
EndIf;
If
Mod(P2[2]2,M) <> Mod(P2[1]3 + C[1] ∗ P2[1] + C[2],M) Then
Error(”Second Point is not on the Elliptic Curve”);
EndIf;
If P1[1]=P2[1] AND P1[2]=Mod(-P2[2],M)
Then Return ”Infinity”;
EndIf;
If P1=P2 Then
S := Mod((3P1[1]2 + C[1]) ∗ModuloInverse(2P1[2],M),M); Else
S := Mod((P2[2]− P1[2]) ∗ModuloInverse(P2[1]− P1[1],M),M);
EndIf;
Y 0 := P1[2]− S ∗ P1[1];
XR := Mod(S2 − P1[1]− P2[1],M);
Y R := Mod(−S ∗XR− Y 0,M);
Return [XR,YR];
EndDefine;

===============================================

NP calculates the scalar product of point P on curve C mod M . It require the

input N , P , C, M where N is integer P is the point. It calculate N times P .
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Define NP(N,P,C,M))
S:=P;
For I:=1 To N-1 Do
S:=ECaddition(S,P,C,M);
EndFor;
Return S;
EndDefine;

===============================================

OrderP calculates the order of point P on curve C mod M .

Define OrderP(P,C,M))
N:=1;
P1:=P;
While P1<> ”Infinity” Do
P1:=ECaddition(P1,P,C,M);
N:=N+1;
PrintLn(”P ”, N, ” = ”, P1);
Appendix A 120
EndWhile;
Return N;
EndDefine;

===============================================
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